ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC vs.
Revision 1.346 by root, Thu Oct 14 05:07:04 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
63# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
65# endif 79# endif
66# endif 80# endif
67 81
82# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
71# else 86# else
87# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
74# endif 98# endif
75 99
100# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 103# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 104# else
105# undef EV_USE_POLL
88# define EV_USE_POLL 0 106# define EV_USE_POLL 0
89# endif
90# endif 107# endif
91 108
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
95# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
98# endif 116# endif
99 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
106# endif 125# endif
107 126
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
111# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
114# endif 134# endif
115 135
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
122# endif 143# endif
123 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 147# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
130# endif 161# endif
131 162
132#endif 163#endif
133 164
134#include <math.h> 165#include <math.h>
135#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
136#include <fcntl.h> 168#include <fcntl.h>
137#include <stddef.h> 169#include <stddef.h>
138 170
139#include <stdio.h> 171#include <stdio.h>
140 172
141#include <assert.h> 173#include <assert.h>
142#include <errno.h> 174#include <errno.h>
143#include <sys/types.h> 175#include <sys/types.h>
144#include <time.h> 176#include <time.h>
177#include <limits.h>
145 178
146#include <signal.h> 179#include <signal.h>
147 180
148#ifdef EV_H 181#ifdef EV_H
149# include EV_H 182# include EV_H
154#ifndef _WIN32 187#ifndef _WIN32
155# include <sys/time.h> 188# include <sys/time.h>
156# include <sys/wait.h> 189# include <sys/wait.h>
157# include <unistd.h> 190# include <unistd.h>
158#else 191#else
192# include <io.h>
159# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 194# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
163# endif 197# endif
198# undef EV_AVOID_STDIO
164#endif 199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
165 208
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 209/* this block tries to deduce configuration from header-defined symbols and defaults */
167 210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
244# endif
245#endif
246
168#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
169# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
170#endif 253#endif
171 254
172#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 257#endif
175 258
176#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
177# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
264# endif
178#endif 265#endif
179 266
180#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 269#endif
183 270
184#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
185# ifdef _WIN32 272# ifdef _WIN32
186# define EV_USE_POLL 0 273# define EV_USE_POLL 0
187# else 274# else
188# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 276# endif
190#endif 277#endif
191 278
192#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 282# else
196# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
197# endif 284# endif
198#endif 285#endif
199 286
205# define EV_USE_PORT 0 292# define EV_USE_PORT 0
206#endif 293#endif
207 294
208#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 297# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 298# else
212# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
213# endif 300# endif
214#endif 301#endif
215 302
216#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 305#endif
223 306
224#ifndef EV_INOTIFY_HASHSIZE 307#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 309#endif
231 310
232#ifndef EV_USE_EVENTFD 311#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 313# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 314# else
236# define EV_USE_EVENTFD 0 315# define EV_USE_EVENTFD 0
316# endif
317#endif
318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
237# endif 324# endif
238#endif 325#endif
239 326
240#if 0 /* debugging */ 327#if 0 /* debugging */
241# define EV_VERIFY 3 328# define EV_VERIFY 3
242# define EV_USE_4HEAP 1 329# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1 330# define EV_HEAP_CACHE_AT 1
244#endif 331#endif
245 332
246#ifndef EV_VERIFY 333#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL 334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
248#endif 335#endif
249 336
250#ifndef EV_USE_4HEAP 337#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL 338# define EV_USE_4HEAP EV_FEATURE_DATA
252#endif 339#endif
253 340
254#ifndef EV_HEAP_CACHE_AT 341#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL 342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
256#endif 357#endif
257 358
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
259 366
260#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
261# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
262# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
263#endif 370#endif
277# include <sys/select.h> 384# include <sys/select.h>
278# endif 385# endif
279#endif 386#endif
280 387
281#if EV_USE_INOTIFY 388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
282# include <sys/inotify.h> 391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
283#endif 397#endif
284 398
285#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h> 400# include <winsock.h>
287#endif 401#endif
288 402
289#if EV_USE_EVENTFD 403#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h> 405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
292# ifdef __cplusplus 416# ifdef __cplusplus
293extern "C" { 417extern "C" {
294# endif 418# endif
295int eventfd (unsigned int initval, int flags); 419int (eventfd) (unsigned int initval, int flags);
296# ifdef __cplusplus 420# ifdef __cplusplus
297} 421}
298# endif 422# endif
299#endif 423#endif
300 424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
453
301/**/ 454/**/
302 455
303#if EV_VERIFY >= 3 456#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 457# define EV_FREQUENT_CHECK ev_verify (EV_A)
305#else 458#else
306# define EV_FREQUENT_CHECK do { } while (0) 459# define EV_FREQUENT_CHECK do { } while (0)
307#endif 460#endif
308 461
309/* 462/*
316 */ 469 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 470#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
318 471
319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
322 474
323#if __GNUC__ >= 4 475#if __GNUC__ >= 4
324# define expect(expr,value) __builtin_expect ((expr),(value)) 476# define expect(expr,value) __builtin_expect ((expr),(value))
325# define noinline __attribute__ ((noinline)) 477# define noinline __attribute__ ((noinline))
326#else 478#else
333 485
334#define expect_false(expr) expect ((expr) != 0, 0) 486#define expect_false(expr) expect ((expr) != 0, 0)
335#define expect_true(expr) expect ((expr) != 0, 1) 487#define expect_true(expr) expect ((expr) != 0, 1)
336#define inline_size static inline 488#define inline_size static inline
337 489
338#if EV_MINIMAL 490#if EV_FEATURE_CODE
491# define inline_speed static inline
492#else
339# define inline_speed static noinline 493# define inline_speed static noinline
494#endif
495
496#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
497
498#if EV_MINPRI == EV_MAXPRI
499# define ABSPRI(w) (((W)w), 0)
340#else 500#else
341# define inline_speed static inline
342#endif
343
344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 501# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
502#endif
346 503
347#define EMPTY /* required for microsofts broken pseudo-c compiler */ 504#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */ 505#define EMPTY2(a,b) /* used to suppress some warnings */
349 506
350typedef ev_watcher *W; 507typedef ev_watcher *W;
352typedef ev_watcher_time *WT; 509typedef ev_watcher_time *WT;
353 510
354#define ev_active(w) ((W)(w))->active 511#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at 512#define ev_at(w) ((WT)(w))->at
356 513
514#if EV_USE_REALTIME
515/* sig_atomic_t is used to avoid per-thread variables or locking but still */
516/* giving it a reasonably high chance of working on typical architectures */
517static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
518#endif
519
357#if EV_USE_MONOTONIC 520#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 521static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
522#endif
523
524#ifndef EV_FD_TO_WIN32_HANDLE
525# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
526#endif
527#ifndef EV_WIN32_HANDLE_TO_FD
528# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
529#endif
530#ifndef EV_WIN32_CLOSE_FD
531# define EV_WIN32_CLOSE_FD(fd) close (fd)
361#endif 532#endif
362 533
363#ifdef _WIN32 534#ifdef _WIN32
364# include "ev_win32.c" 535# include "ev_win32.c"
365#endif 536#endif
366 537
367/*****************************************************************************/ 538/*****************************************************************************/
368 539
540#if EV_AVOID_STDIO
541static void noinline
542ev_printerr (const char *msg)
543{
544 write (STDERR_FILENO, msg, strlen (msg));
545}
546#endif
547
369static void (*syserr_cb)(const char *msg); 548static void (*syserr_cb)(const char *msg);
370 549
371void 550void
372ev_set_syserr_cb (void (*cb)(const char *msg)) 551ev_set_syserr_cb (void (*cb)(const char *msg))
373{ 552{
374 syserr_cb = cb; 553 syserr_cb = cb;
375} 554}
376 555
377static void noinline 556static void noinline
378syserr (const char *msg) 557ev_syserr (const char *msg)
379{ 558{
380 if (!msg) 559 if (!msg)
381 msg = "(libev) system error"; 560 msg = "(libev) system error";
382 561
383 if (syserr_cb) 562 if (syserr_cb)
384 syserr_cb (msg); 563 syserr_cb (msg);
385 else 564 else
386 { 565 {
566#if EV_AVOID_STDIO
567 const char *err = strerror (errno);
568
569 ev_printerr (msg);
570 ev_printerr (": ");
571 ev_printerr (err);
572 ev_printerr ("\n");
573#else
387 perror (msg); 574 perror (msg);
575#endif
388 abort (); 576 abort ();
389 } 577 }
390} 578}
391 579
392static void * 580static void *
393ev_realloc_emul (void *ptr, long size) 581ev_realloc_emul (void *ptr, long size)
394{ 582{
583#if __GLIBC__
584 return realloc (ptr, size);
585#else
395 /* some systems, notably openbsd and darwin, fail to properly 586 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and 587 * implement realloc (x, 0) (as required by both ansi c-89 and
397 * the single unix specification, so work around them here. 588 * the single unix specification, so work around them here.
398 */ 589 */
399 590
400 if (size) 591 if (size)
401 return realloc (ptr, size); 592 return realloc (ptr, size);
402 593
403 free (ptr); 594 free (ptr);
404 return 0; 595 return 0;
596#endif
405} 597}
406 598
407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 599static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
408 600
409void 601void
417{ 609{
418 ptr = alloc (ptr, size); 610 ptr = alloc (ptr, size);
419 611
420 if (!ptr && size) 612 if (!ptr && size)
421 { 613 {
614#if EV_AVOID_STDIO
615 ev_printerr ("libev: memory allocation failed, aborting.\n");
616#else
422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 617 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
618#endif
423 abort (); 619 abort ();
424 } 620 }
425 621
426 return ptr; 622 return ptr;
427} 623}
429#define ev_malloc(size) ev_realloc (0, (size)) 625#define ev_malloc(size) ev_realloc (0, (size))
430#define ev_free(ptr) ev_realloc ((ptr), 0) 626#define ev_free(ptr) ev_realloc ((ptr), 0)
431 627
432/*****************************************************************************/ 628/*****************************************************************************/
433 629
630/* set in reify when reification needed */
631#define EV_ANFD_REIFY 1
632
633/* file descriptor info structure */
434typedef struct 634typedef struct
435{ 635{
436 WL head; 636 WL head;
437 unsigned char events; 637 unsigned char events; /* the events watched for */
638 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
639 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
438 unsigned char reify; 640 unsigned char unused;
641#if EV_USE_EPOLL
642 unsigned int egen; /* generation counter to counter epoll bugs */
643#endif
439#if EV_SELECT_IS_WINSOCKET 644#if EV_SELECT_IS_WINSOCKET
440 SOCKET handle; 645 SOCKET handle;
441#endif 646#endif
442} ANFD; 647} ANFD;
443 648
649/* stores the pending event set for a given watcher */
444typedef struct 650typedef struct
445{ 651{
446 W w; 652 W w;
447 int events; 653 int events; /* the pending event set for the given watcher */
448} ANPENDING; 654} ANPENDING;
449 655
450#if EV_USE_INOTIFY 656#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */ 657/* hash table entry per inotify-id */
452typedef struct 658typedef struct
455} ANFS; 661} ANFS;
456#endif 662#endif
457 663
458/* Heap Entry */ 664/* Heap Entry */
459#if EV_HEAP_CACHE_AT 665#if EV_HEAP_CACHE_AT
666 /* a heap element */
460 typedef struct { 667 typedef struct {
461 ev_tstamp at; 668 ev_tstamp at;
462 WT w; 669 WT w;
463 } ANHE; 670 } ANHE;
464 671
465 #define ANHE_w(he) (he).w /* access watcher, read-write */ 672 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */ 673 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 674 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else 675#else
676 /* a heap element */
469 typedef WT ANHE; 677 typedef WT ANHE;
470 678
471 #define ANHE_w(he) (he) 679 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at 680 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he) 681 #define ANHE_at_cache(he)
497 705
498 static int ev_default_loop_ptr; 706 static int ev_default_loop_ptr;
499 707
500#endif 708#endif
501 709
710#if EV_FEATURE_API
711# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
712# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
713# define EV_INVOKE_PENDING invoke_cb (EV_A)
714#else
715# define EV_RELEASE_CB (void)0
716# define EV_ACQUIRE_CB (void)0
717# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
718#endif
719
720#define EVUNLOOP_RECURSE 0x80
721
502/*****************************************************************************/ 722/*****************************************************************************/
503 723
724#ifndef EV_HAVE_EV_TIME
504ev_tstamp 725ev_tstamp
505ev_time (void) 726ev_time (void)
506{ 727{
507#if EV_USE_REALTIME 728#if EV_USE_REALTIME
729 if (expect_true (have_realtime))
730 {
508 struct timespec ts; 731 struct timespec ts;
509 clock_gettime (CLOCK_REALTIME, &ts); 732 clock_gettime (CLOCK_REALTIME, &ts);
510 return ts.tv_sec + ts.tv_nsec * 1e-9; 733 return ts.tv_sec + ts.tv_nsec * 1e-9;
511#else 734 }
735#endif
736
512 struct timeval tv; 737 struct timeval tv;
513 gettimeofday (&tv, 0); 738 gettimeofday (&tv, 0);
514 return tv.tv_sec + tv.tv_usec * 1e-6; 739 return tv.tv_sec + tv.tv_usec * 1e-6;
515#endif
516} 740}
741#endif
517 742
518ev_tstamp inline_size 743inline_size ev_tstamp
519get_clock (void) 744get_clock (void)
520{ 745{
521#if EV_USE_MONOTONIC 746#if EV_USE_MONOTONIC
522 if (expect_true (have_monotonic)) 747 if (expect_true (have_monotonic))
523 { 748 {
556 struct timeval tv; 781 struct timeval tv;
557 782
558 tv.tv_sec = (time_t)delay; 783 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 784 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560 785
786 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
787 /* something not guaranteed by newer posix versions, but guaranteed */
788 /* by older ones */
561 select (0, 0, 0, 0, &tv); 789 select (0, 0, 0, 0, &tv);
562#endif 790#endif
563 } 791 }
564} 792}
565 793
566/*****************************************************************************/ 794/*****************************************************************************/
567 795
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 796#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569 797
570int inline_size 798/* find a suitable new size for the given array, */
799/* hopefully by rounding to a nice-to-malloc size */
800inline_size int
571array_nextsize (int elem, int cur, int cnt) 801array_nextsize (int elem, int cur, int cnt)
572{ 802{
573 int ncur = cur + 1; 803 int ncur = cur + 1;
574 804
575 do 805 do
592array_realloc (int elem, void *base, int *cur, int cnt) 822array_realloc (int elem, void *base, int *cur, int cnt)
593{ 823{
594 *cur = array_nextsize (elem, *cur, cnt); 824 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur); 825 return ev_realloc (base, elem * *cur);
596} 826}
827
828#define array_init_zero(base,count) \
829 memset ((void *)(base), 0, sizeof (*(base)) * (count))
597 830
598#define array_needsize(type,base,cur,cnt,init) \ 831#define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \ 832 if (expect_false ((cnt) > (cur))) \
600 { \ 833 { \
601 int ocur_ = (cur); \ 834 int ocur_ = (cur); \
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 846 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 } 847 }
615#endif 848#endif
616 849
617#define array_free(stem, idx) \ 850#define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 851 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
619 852
620/*****************************************************************************/ 853/*****************************************************************************/
854
855/* dummy callback for pending events */
856static void noinline
857pendingcb (EV_P_ ev_prepare *w, int revents)
858{
859}
621 860
622void noinline 861void noinline
623ev_feed_event (EV_P_ void *w, int revents) 862ev_feed_event (EV_P_ void *w, int revents)
624{ 863{
625 W w_ = (W)w; 864 W w_ = (W)w;
634 pendings [pri][w_->pending - 1].w = w_; 873 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents; 874 pendings [pri][w_->pending - 1].events = revents;
636 } 875 }
637} 876}
638 877
639void inline_speed 878inline_speed void
879feed_reverse (EV_P_ W w)
880{
881 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
882 rfeeds [rfeedcnt++] = w;
883}
884
885inline_size void
886feed_reverse_done (EV_P_ int revents)
887{
888 do
889 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
890 while (rfeedcnt);
891}
892
893inline_speed void
640queue_events (EV_P_ W *events, int eventcnt, int type) 894queue_events (EV_P_ W *events, int eventcnt, int type)
641{ 895{
642 int i; 896 int i;
643 897
644 for (i = 0; i < eventcnt; ++i) 898 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type); 899 ev_feed_event (EV_A_ events [i], type);
646} 900}
647 901
648/*****************************************************************************/ 902/*****************************************************************************/
649 903
650void inline_size 904inline_speed void
651anfds_init (ANFD *base, int count)
652{
653 while (count--)
654 {
655 base->head = 0;
656 base->events = EV_NONE;
657 base->reify = 0;
658
659 ++base;
660 }
661}
662
663void inline_speed
664fd_event (EV_P_ int fd, int revents) 905fd_event_nocheck (EV_P_ int fd, int revents)
665{ 906{
666 ANFD *anfd = anfds + fd; 907 ANFD *anfd = anfds + fd;
667 ev_io *w; 908 ev_io *w;
668 909
669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
673 if (ev) 914 if (ev)
674 ev_feed_event (EV_A_ (W)w, ev); 915 ev_feed_event (EV_A_ (W)w, ev);
675 } 916 }
676} 917}
677 918
919/* do not submit kernel events for fds that have reify set */
920/* because that means they changed while we were polling for new events */
921inline_speed void
922fd_event (EV_P_ int fd, int revents)
923{
924 ANFD *anfd = anfds + fd;
925
926 if (expect_true (!anfd->reify))
927 fd_event_nocheck (EV_A_ fd, revents);
928}
929
678void 930void
679ev_feed_fd_event (EV_P_ int fd, int revents) 931ev_feed_fd_event (EV_P_ int fd, int revents)
680{ 932{
681 if (fd >= 0 && fd < anfdmax) 933 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents); 934 fd_event_nocheck (EV_A_ fd, revents);
683} 935}
684 936
685void inline_size 937/* make sure the external fd watch events are in-sync */
938/* with the kernel/libev internal state */
939inline_size void
686fd_reify (EV_P) 940fd_reify (EV_P)
687{ 941{
688 int i; 942 int i;
689 943
690 for (i = 0; i < fdchangecnt; ++i) 944 for (i = 0; i < fdchangecnt; ++i)
699 events |= (unsigned char)w->events; 953 events |= (unsigned char)w->events;
700 954
701#if EV_SELECT_IS_WINSOCKET 955#if EV_SELECT_IS_WINSOCKET
702 if (events) 956 if (events)
703 { 957 {
704 unsigned long argp; 958 unsigned long arg;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 959 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
708 anfd->handle = _get_osfhandle (fd);
709 #endif
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 960 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
711 } 961 }
712#endif 962#endif
713 963
714 { 964 {
715 unsigned char o_events = anfd->events; 965 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify; 966 unsigned char o_reify = anfd->reify;
717 967
718 anfd->reify = 0; 968 anfd->reify = 0;
719 anfd->events = events; 969 anfd->events = events;
720 970
721 if (o_events != events || o_reify & EV_IOFDSET) 971 if (o_events != events || o_reify & EV__IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events); 972 backend_modify (EV_A_ fd, o_events, events);
723 } 973 }
724 } 974 }
725 975
726 fdchangecnt = 0; 976 fdchangecnt = 0;
727} 977}
728 978
729void inline_size 979/* something about the given fd changed */
980inline_size void
730fd_change (EV_P_ int fd, int flags) 981fd_change (EV_P_ int fd, int flags)
731{ 982{
732 unsigned char reify = anfds [fd].reify; 983 unsigned char reify = anfds [fd].reify;
733 anfds [fd].reify |= flags; 984 anfds [fd].reify |= flags;
734 985
738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 989 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
739 fdchanges [fdchangecnt - 1] = fd; 990 fdchanges [fdchangecnt - 1] = fd;
740 } 991 }
741} 992}
742 993
743void inline_speed 994/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
995inline_speed void
744fd_kill (EV_P_ int fd) 996fd_kill (EV_P_ int fd)
745{ 997{
746 ev_io *w; 998 ev_io *w;
747 999
748 while ((w = (ev_io *)anfds [fd].head)) 1000 while ((w = (ev_io *)anfds [fd].head))
750 ev_io_stop (EV_A_ w); 1002 ev_io_stop (EV_A_ w);
751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1003 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
752 } 1004 }
753} 1005}
754 1006
755int inline_size 1007/* check whether the given fd is actually valid, for error recovery */
1008inline_size int
756fd_valid (int fd) 1009fd_valid (int fd)
757{ 1010{
758#ifdef _WIN32 1011#ifdef _WIN32
759 return _get_osfhandle (fd) != -1; 1012 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
760#else 1013#else
761 return fcntl (fd, F_GETFD) != -1; 1014 return fcntl (fd, F_GETFD) != -1;
762#endif 1015#endif
763} 1016}
764 1017
768{ 1021{
769 int fd; 1022 int fd;
770 1023
771 for (fd = 0; fd < anfdmax; ++fd) 1024 for (fd = 0; fd < anfdmax; ++fd)
772 if (anfds [fd].events) 1025 if (anfds [fd].events)
773 if (!fd_valid (fd) == -1 && errno == EBADF) 1026 if (!fd_valid (fd) && errno == EBADF)
774 fd_kill (EV_A_ fd); 1027 fd_kill (EV_A_ fd);
775} 1028}
776 1029
777/* called on ENOMEM in select/poll to kill some fds and retry */ 1030/* called on ENOMEM in select/poll to kill some fds and retry */
778static void noinline 1031static void noinline
782 1035
783 for (fd = anfdmax; fd--; ) 1036 for (fd = anfdmax; fd--; )
784 if (anfds [fd].events) 1037 if (anfds [fd].events)
785 { 1038 {
786 fd_kill (EV_A_ fd); 1039 fd_kill (EV_A_ fd);
787 return; 1040 break;
788 } 1041 }
789} 1042}
790 1043
791/* usually called after fork if backend needs to re-arm all fds from scratch */ 1044/* usually called after fork if backend needs to re-arm all fds from scratch */
792static void noinline 1045static void noinline
796 1049
797 for (fd = 0; fd < anfdmax; ++fd) 1050 for (fd = 0; fd < anfdmax; ++fd)
798 if (anfds [fd].events) 1051 if (anfds [fd].events)
799 { 1052 {
800 anfds [fd].events = 0; 1053 anfds [fd].events = 0;
1054 anfds [fd].emask = 0;
801 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1055 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
802 } 1056 }
803} 1057}
804 1058
1059/* used to prepare libev internal fd's */
1060/* this is not fork-safe */
1061inline_speed void
1062fd_intern (int fd)
1063{
1064#ifdef _WIN32
1065 unsigned long arg = 1;
1066 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1067#else
1068 fcntl (fd, F_SETFD, FD_CLOEXEC);
1069 fcntl (fd, F_SETFL, O_NONBLOCK);
1070#endif
1071}
1072
805/*****************************************************************************/ 1073/*****************************************************************************/
806 1074
807/* 1075/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not 1076 * the heap functions want a real array index. array index 0 is guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1077 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree. 1078 * the branching factor of the d-tree.
811 */ 1079 */
812 1080
813/* 1081/*
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1090#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1091#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k)) 1092#define UPHEAP_DONE(p,k) ((p) == (k))
825 1093
826/* away from the root */ 1094/* away from the root */
827void inline_speed 1095inline_speed void
828downheap (ANHE *heap, int N, int k) 1096downheap (ANHE *heap, int N, int k)
829{ 1097{
830 ANHE he = heap [k]; 1098 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0; 1099 ANHE *E = heap + N + HEAP0;
832 1100
872#define HEAP0 1 1140#define HEAP0 1
873#define HPARENT(k) ((k) >> 1) 1141#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p)) 1142#define UPHEAP_DONE(p,k) (!(p))
875 1143
876/* away from the root */ 1144/* away from the root */
877void inline_speed 1145inline_speed void
878downheap (ANHE *heap, int N, int k) 1146downheap (ANHE *heap, int N, int k)
879{ 1147{
880 ANHE he = heap [k]; 1148 ANHE he = heap [k];
881 1149
882 for (;;) 1150 for (;;)
883 { 1151 {
884 int c = k << 1; 1152 int c = k << 1;
885 1153
886 if (c > N + HEAP0 - 1) 1154 if (c >= N + HEAP0)
887 break; 1155 break;
888 1156
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1157 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0; 1158 ? 1 : 0;
891 1159
902 ev_active (ANHE_w (he)) = k; 1170 ev_active (ANHE_w (he)) = k;
903} 1171}
904#endif 1172#endif
905 1173
906/* towards the root */ 1174/* towards the root */
907void inline_speed 1175inline_speed void
908upheap (ANHE *heap, int k) 1176upheap (ANHE *heap, int k)
909{ 1177{
910 ANHE he = heap [k]; 1178 ANHE he = heap [k];
911 1179
912 for (;;) 1180 for (;;)
923 1191
924 heap [k] = he; 1192 heap [k] = he;
925 ev_active (ANHE_w (he)) = k; 1193 ev_active (ANHE_w (he)) = k;
926} 1194}
927 1195
928void inline_size 1196/* move an element suitably so it is in a correct place */
1197inline_size void
929adjustheap (ANHE *heap, int N, int k) 1198adjustheap (ANHE *heap, int N, int k)
930{ 1199{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1200 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
932 upheap (heap, k); 1201 upheap (heap, k);
933 else 1202 else
934 downheap (heap, N, k); 1203 downheap (heap, N, k);
935} 1204}
936 1205
937/* rebuild the heap: this function is used only once and executed rarely */ 1206/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size 1207inline_size void
939reheap (ANHE *heap, int N) 1208reheap (ANHE *heap, int N)
940{ 1209{
941 int i; 1210 int i;
942 1211
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1212 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
946 upheap (heap, i + HEAP0); 1215 upheap (heap, i + HEAP0);
947} 1216}
948 1217
949/*****************************************************************************/ 1218/*****************************************************************************/
950 1219
1220/* associate signal watchers to a signal signal */
951typedef struct 1221typedef struct
952{ 1222{
1223 EV_ATOMIC_T pending;
1224#if EV_MULTIPLICITY
1225 EV_P;
1226#endif
953 WL head; 1227 WL head;
954 EV_ATOMIC_T gotsig;
955} ANSIG; 1228} ANSIG;
956 1229
957static ANSIG *signals; 1230static ANSIG signals [EV_NSIG - 1];
958static int signalmax;
959
960static EV_ATOMIC_T gotsig;
961
962void inline_size
963signals_init (ANSIG *base, int count)
964{
965 while (count--)
966 {
967 base->head = 0;
968 base->gotsig = 0;
969
970 ++base;
971 }
972}
973 1231
974/*****************************************************************************/ 1232/*****************************************************************************/
975 1233
976void inline_speed 1234#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
977fd_intern (int fd)
978{
979#ifdef _WIN32
980 int arg = 1;
981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
982#else
983 fcntl (fd, F_SETFD, FD_CLOEXEC);
984 fcntl (fd, F_SETFL, O_NONBLOCK);
985#endif
986}
987 1235
988static void noinline 1236static void noinline
989evpipe_init (EV_P) 1237evpipe_init (EV_P)
990{ 1238{
991 if (!ev_is_active (&pipeev)) 1239 if (!ev_is_active (&pipe_w))
992 { 1240 {
993#if EV_USE_EVENTFD 1241# if EV_USE_EVENTFD
1242 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1243 if (evfd < 0 && errno == EINVAL)
994 if ((evfd = eventfd (0, 0)) >= 0) 1244 evfd = eventfd (0, 0);
1245
1246 if (evfd >= 0)
995 { 1247 {
996 evpipe [0] = -1; 1248 evpipe [0] = -1;
997 fd_intern (evfd); 1249 fd_intern (evfd); /* doing it twice doesn't hurt */
998 ev_io_set (&pipeev, evfd, EV_READ); 1250 ev_io_set (&pipe_w, evfd, EV_READ);
999 } 1251 }
1000 else 1252 else
1001#endif 1253# endif
1002 { 1254 {
1003 while (pipe (evpipe)) 1255 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe"); 1256 ev_syserr ("(libev) error creating signal/async pipe");
1005 1257
1006 fd_intern (evpipe [0]); 1258 fd_intern (evpipe [0]);
1007 fd_intern (evpipe [1]); 1259 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ); 1260 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1009 } 1261 }
1010 1262
1011 ev_io_start (EV_A_ &pipeev); 1263 ev_io_start (EV_A_ &pipe_w);
1012 ev_unref (EV_A); /* watcher should not keep loop alive */ 1264 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 } 1265 }
1014} 1266}
1015 1267
1016void inline_size 1268inline_size void
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1269evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{ 1270{
1019 if (!*flag) 1271 if (!*flag)
1020 { 1272 {
1021 int old_errno = errno; /* save errno because write might clobber it */ 1273 int old_errno = errno; /* save errno because write might clobber it */
1274 char dummy;
1022 1275
1023 *flag = 1; 1276 *flag = 1;
1024 1277
1025#if EV_USE_EVENTFD 1278#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1279 if (evfd >= 0)
1028 uint64_t counter = 1; 1281 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t)); 1282 write (evfd, &counter, sizeof (uint64_t));
1030 } 1283 }
1031 else 1284 else
1032#endif 1285#endif
1286 /* win32 people keep sending patches that change this write() to send() */
1287 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1288 /* so when you think this write should be a send instead, please find out */
1289 /* where your send() is from - it's definitely not the microsoft send, and */
1290 /* tell me. thank you. */
1033 write (evpipe [1], &old_errno, 1); 1291 write (evpipe [1], &dummy, 1);
1034 1292
1035 errno = old_errno; 1293 errno = old_errno;
1036 } 1294 }
1037} 1295}
1038 1296
1297/* called whenever the libev signal pipe */
1298/* got some events (signal, async) */
1039static void 1299static void
1040pipecb (EV_P_ ev_io *iow, int revents) 1300pipecb (EV_P_ ev_io *iow, int revents)
1041{ 1301{
1302 int i;
1303
1042#if EV_USE_EVENTFD 1304#if EV_USE_EVENTFD
1043 if (evfd >= 0) 1305 if (evfd >= 0)
1044 { 1306 {
1045 uint64_t counter; 1307 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t)); 1308 read (evfd, &counter, sizeof (uint64_t));
1047 } 1309 }
1048 else 1310 else
1049#endif 1311#endif
1050 { 1312 {
1051 char dummy; 1313 char dummy;
1314 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1052 read (evpipe [0], &dummy, 1); 1315 read (evpipe [0], &dummy, 1);
1053 } 1316 }
1054 1317
1055 if (gotsig && ev_is_default_loop (EV_A)) 1318 if (sig_pending)
1056 { 1319 {
1057 int signum; 1320 sig_pending = 0;
1058 gotsig = 0;
1059 1321
1060 for (signum = signalmax; signum--; ) 1322 for (i = EV_NSIG - 1; i--; )
1061 if (signals [signum].gotsig) 1323 if (expect_false (signals [i].pending))
1062 ev_feed_signal_event (EV_A_ signum + 1); 1324 ev_feed_signal_event (EV_A_ i + 1);
1063 } 1325 }
1064 1326
1065#if EV_ASYNC_ENABLE 1327#if EV_ASYNC_ENABLE
1066 if (gotasync) 1328 if (async_pending)
1067 { 1329 {
1068 int i; 1330 async_pending = 0;
1069 gotasync = 0;
1070 1331
1071 for (i = asynccnt; i--; ) 1332 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent) 1333 if (asyncs [i]->sent)
1073 { 1334 {
1074 asyncs [i]->sent = 0; 1335 asyncs [i]->sent = 0;
1082 1343
1083static void 1344static void
1084ev_sighandler (int signum) 1345ev_sighandler (int signum)
1085{ 1346{
1086#if EV_MULTIPLICITY 1347#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct; 1348 EV_P = signals [signum - 1].loop;
1088#endif 1349#endif
1089 1350
1090#if _WIN32 1351#ifdef _WIN32
1091 signal (signum, ev_sighandler); 1352 signal (signum, ev_sighandler);
1092#endif 1353#endif
1093 1354
1094 signals [signum - 1].gotsig = 1; 1355 signals [signum - 1].pending = 1;
1095 evpipe_write (EV_A_ &gotsig); 1356 evpipe_write (EV_A_ &sig_pending);
1096} 1357}
1097 1358
1098void noinline 1359void noinline
1099ev_feed_signal_event (EV_P_ int signum) 1360ev_feed_signal_event (EV_P_ int signum)
1100{ 1361{
1101 WL w; 1362 WL w;
1102 1363
1364 if (expect_false (signum <= 0 || signum > EV_NSIG))
1365 return;
1366
1367 --signum;
1368
1103#if EV_MULTIPLICITY 1369#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1370 /* it is permissible to try to feed a signal to the wrong loop */
1105#endif 1371 /* or, likely more useful, feeding a signal nobody is waiting for */
1106 1372
1107 --signum; 1373 if (expect_false (signals [signum].loop != EV_A))
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return; 1374 return;
1375#endif
1111 1376
1112 signals [signum].gotsig = 0; 1377 signals [signum].pending = 0;
1113 1378
1114 for (w = signals [signum].head; w; w = w->next) 1379 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1380 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116} 1381}
1117 1382
1383#if EV_USE_SIGNALFD
1384static void
1385sigfdcb (EV_P_ ev_io *iow, int revents)
1386{
1387 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1388
1389 for (;;)
1390 {
1391 ssize_t res = read (sigfd, si, sizeof (si));
1392
1393 /* not ISO-C, as res might be -1, but works with SuS */
1394 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1395 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1396
1397 if (res < (ssize_t)sizeof (si))
1398 break;
1399 }
1400}
1401#endif
1402
1403#endif
1404
1118/*****************************************************************************/ 1405/*****************************************************************************/
1119 1406
1407#if EV_CHILD_ENABLE
1120static WL childs [EV_PID_HASHSIZE]; 1408static WL childs [EV_PID_HASHSIZE];
1121
1122#ifndef _WIN32
1123 1409
1124static ev_signal childev; 1410static ev_signal childev;
1125 1411
1126#ifndef WIFCONTINUED 1412#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0 1413# define WIFCONTINUED(status) 0
1128#endif 1414#endif
1129 1415
1130void inline_speed 1416/* handle a single child status event */
1417inline_speed void
1131child_reap (EV_P_ int chain, int pid, int status) 1418child_reap (EV_P_ int chain, int pid, int status)
1132{ 1419{
1133 ev_child *w; 1420 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1421 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1135 1422
1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1423 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 { 1424 {
1138 if ((w->pid == pid || !w->pid) 1425 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1))) 1426 && (!traced || (w->flags & 1)))
1140 { 1427 {
1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1428 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1148 1435
1149#ifndef WCONTINUED 1436#ifndef WCONTINUED
1150# define WCONTINUED 0 1437# define WCONTINUED 0
1151#endif 1438#endif
1152 1439
1440/* called on sigchld etc., calls waitpid */
1153static void 1441static void
1154childcb (EV_P_ ev_signal *sw, int revents) 1442childcb (EV_P_ ev_signal *sw, int revents)
1155{ 1443{
1156 int pid, status; 1444 int pid, status;
1157 1445
1165 /* make sure we are called again until all children have been reaped */ 1453 /* make sure we are called again until all children have been reaped */
1166 /* we need to do it this way so that the callback gets called before we continue */ 1454 /* we need to do it this way so that the callback gets called before we continue */
1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1455 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1168 1456
1169 child_reap (EV_A_ pid, pid, status); 1457 child_reap (EV_A_ pid, pid, status);
1170 if (EV_PID_HASHSIZE > 1) 1458 if ((EV_PID_HASHSIZE) > 1)
1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1459 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1172} 1460}
1173 1461
1174#endif 1462#endif
1175 1463
1238 /* kqueue is borked on everything but netbsd apparently */ 1526 /* kqueue is borked on everything but netbsd apparently */
1239 /* it usually doesn't work correctly on anything but sockets and pipes */ 1527 /* it usually doesn't work correctly on anything but sockets and pipes */
1240 flags &= ~EVBACKEND_KQUEUE; 1528 flags &= ~EVBACKEND_KQUEUE;
1241#endif 1529#endif
1242#ifdef __APPLE__ 1530#ifdef __APPLE__
1243 // flags &= ~EVBACKEND_KQUEUE; for documentation 1531 /* only select works correctly on that "unix-certified" platform */
1244 flags &= ~EVBACKEND_POLL; 1532 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1533 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1534#endif
1535#ifdef __FreeBSD__
1536 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1245#endif 1537#endif
1246 1538
1247 return flags; 1539 return flags;
1248} 1540}
1249 1541
1263ev_backend (EV_P) 1555ev_backend (EV_P)
1264{ 1556{
1265 return backend; 1557 return backend;
1266} 1558}
1267 1559
1560#if EV_FEATURE_API
1268unsigned int 1561unsigned int
1269ev_loop_count (EV_P) 1562ev_iteration (EV_P)
1270{ 1563{
1271 return loop_count; 1564 return loop_count;
1272} 1565}
1273 1566
1567unsigned int
1568ev_depth (EV_P)
1569{
1570 return loop_depth;
1571}
1572
1274void 1573void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1574ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{ 1575{
1277 io_blocktime = interval; 1576 io_blocktime = interval;
1278} 1577}
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1580ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{ 1581{
1283 timeout_blocktime = interval; 1582 timeout_blocktime = interval;
1284} 1583}
1285 1584
1585void
1586ev_set_userdata (EV_P_ void *data)
1587{
1588 userdata = data;
1589}
1590
1591void *
1592ev_userdata (EV_P)
1593{
1594 return userdata;
1595}
1596
1597void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1598{
1599 invoke_cb = invoke_pending_cb;
1600}
1601
1602void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1603{
1604 release_cb = release;
1605 acquire_cb = acquire;
1606}
1607#endif
1608
1609/* initialise a loop structure, must be zero-initialised */
1286static void noinline 1610static void noinline
1287loop_init (EV_P_ unsigned int flags) 1611loop_init (EV_P_ unsigned int flags)
1288{ 1612{
1289 if (!backend) 1613 if (!backend)
1290 { 1614 {
1615#if EV_USE_REALTIME
1616 if (!have_realtime)
1617 {
1618 struct timespec ts;
1619
1620 if (!clock_gettime (CLOCK_REALTIME, &ts))
1621 have_realtime = 1;
1622 }
1623#endif
1624
1291#if EV_USE_MONOTONIC 1625#if EV_USE_MONOTONIC
1626 if (!have_monotonic)
1292 { 1627 {
1293 struct timespec ts; 1628 struct timespec ts;
1629
1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1630 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1295 have_monotonic = 1; 1631 have_monotonic = 1;
1296 } 1632 }
1297#endif 1633#endif
1634
1635 /* pid check not overridable via env */
1636#ifndef _WIN32
1637 if (flags & EVFLAG_FORKCHECK)
1638 curpid = getpid ();
1639#endif
1640
1641 if (!(flags & EVFLAG_NOENV)
1642 && !enable_secure ()
1643 && getenv ("LIBEV_FLAGS"))
1644 flags = atoi (getenv ("LIBEV_FLAGS"));
1298 1645
1299 ev_rt_now = ev_time (); 1646 ev_rt_now = ev_time ();
1300 mn_now = get_clock (); 1647 mn_now = get_clock ();
1301 now_floor = mn_now; 1648 now_floor = mn_now;
1302 rtmn_diff = ev_rt_now - mn_now; 1649 rtmn_diff = ev_rt_now - mn_now;
1650#if EV_FEATURE_API
1651 invoke_cb = ev_invoke_pending;
1652#endif
1303 1653
1304 io_blocktime = 0.; 1654 io_blocktime = 0.;
1305 timeout_blocktime = 0.; 1655 timeout_blocktime = 0.;
1306 backend = 0; 1656 backend = 0;
1307 backend_fd = -1; 1657 backend_fd = -1;
1308 gotasync = 0; 1658 sig_pending = 0;
1659#if EV_ASYNC_ENABLE
1660 async_pending = 0;
1661#endif
1309#if EV_USE_INOTIFY 1662#if EV_USE_INOTIFY
1310 fs_fd = -2; 1663 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1311#endif 1664#endif
1312 1665#if EV_USE_SIGNALFD
1313 /* pid check not overridable via env */ 1666 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1314#ifndef _WIN32
1315 if (flags & EVFLAG_FORKCHECK)
1316 curpid = getpid ();
1317#endif 1667#endif
1318
1319 if (!(flags & EVFLAG_NOENV)
1320 && !enable_secure ()
1321 && getenv ("LIBEV_FLAGS"))
1322 flags = atoi (getenv ("LIBEV_FLAGS"));
1323 1668
1324 if (!(flags & 0x0000ffffU)) 1669 if (!(flags & 0x0000ffffU))
1325 flags |= ev_recommended_backends (); 1670 flags |= ev_recommended_backends ();
1326 1671
1327#if EV_USE_PORT 1672#if EV_USE_PORT
1338#endif 1683#endif
1339#if EV_USE_SELECT 1684#if EV_USE_SELECT
1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1685 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1341#endif 1686#endif
1342 1687
1688 ev_prepare_init (&pending_w, pendingcb);
1689
1690#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1343 ev_init (&pipeev, pipecb); 1691 ev_init (&pipe_w, pipecb);
1344 ev_set_priority (&pipeev, EV_MAXPRI); 1692 ev_set_priority (&pipe_w, EV_MAXPRI);
1693#endif
1345 } 1694 }
1346} 1695}
1347 1696
1697/* free up a loop structure */
1348static void noinline 1698static void noinline
1349loop_destroy (EV_P) 1699loop_destroy (EV_P)
1350{ 1700{
1351 int i; 1701 int i;
1352 1702
1353 if (ev_is_active (&pipeev)) 1703 if (ev_is_active (&pipe_w))
1354 { 1704 {
1355 ev_ref (EV_A); /* signal watcher */ 1705 /*ev_ref (EV_A);*/
1356 ev_io_stop (EV_A_ &pipeev); 1706 /*ev_io_stop (EV_A_ &pipe_w);*/
1357 1707
1358#if EV_USE_EVENTFD 1708#if EV_USE_EVENTFD
1359 if (evfd >= 0) 1709 if (evfd >= 0)
1360 close (evfd); 1710 close (evfd);
1361#endif 1711#endif
1362 1712
1363 if (evpipe [0] >= 0) 1713 if (evpipe [0] >= 0)
1364 { 1714 {
1365 close (evpipe [0]); 1715 EV_WIN32_CLOSE_FD (evpipe [0]);
1366 close (evpipe [1]); 1716 EV_WIN32_CLOSE_FD (evpipe [1]);
1367 } 1717 }
1368 } 1718 }
1719
1720#if EV_USE_SIGNALFD
1721 if (ev_is_active (&sigfd_w))
1722 close (sigfd);
1723#endif
1369 1724
1370#if EV_USE_INOTIFY 1725#if EV_USE_INOTIFY
1371 if (fs_fd >= 0) 1726 if (fs_fd >= 0)
1372 close (fs_fd); 1727 close (fs_fd);
1373#endif 1728#endif
1397#if EV_IDLE_ENABLE 1752#if EV_IDLE_ENABLE
1398 array_free (idle, [i]); 1753 array_free (idle, [i]);
1399#endif 1754#endif
1400 } 1755 }
1401 1756
1402 ev_free (anfds); anfdmax = 0; 1757 ev_free (anfds); anfds = 0; anfdmax = 0;
1403 1758
1404 /* have to use the microsoft-never-gets-it-right macro */ 1759 /* have to use the microsoft-never-gets-it-right macro */
1760 array_free (rfeed, EMPTY);
1405 array_free (fdchange, EMPTY); 1761 array_free (fdchange, EMPTY);
1406 array_free (timer, EMPTY); 1762 array_free (timer, EMPTY);
1407#if EV_PERIODIC_ENABLE 1763#if EV_PERIODIC_ENABLE
1408 array_free (periodic, EMPTY); 1764 array_free (periodic, EMPTY);
1409#endif 1765#endif
1418 1774
1419 backend = 0; 1775 backend = 0;
1420} 1776}
1421 1777
1422#if EV_USE_INOTIFY 1778#if EV_USE_INOTIFY
1423void inline_size infy_fork (EV_P); 1779inline_size void infy_fork (EV_P);
1424#endif 1780#endif
1425 1781
1426void inline_size 1782inline_size void
1427loop_fork (EV_P) 1783loop_fork (EV_P)
1428{ 1784{
1429#if EV_USE_PORT 1785#if EV_USE_PORT
1430 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1786 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1431#endif 1787#endif
1437#endif 1793#endif
1438#if EV_USE_INOTIFY 1794#if EV_USE_INOTIFY
1439 infy_fork (EV_A); 1795 infy_fork (EV_A);
1440#endif 1796#endif
1441 1797
1442 if (ev_is_active (&pipeev)) 1798 if (ev_is_active (&pipe_w))
1443 { 1799 {
1444 /* this "locks" the handlers against writing to the pipe */ 1800 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */ 1801 /* while we modify the fd vars */
1446 gotsig = 1; 1802 sig_pending = 1;
1447#if EV_ASYNC_ENABLE 1803#if EV_ASYNC_ENABLE
1448 gotasync = 1; 1804 async_pending = 1;
1449#endif 1805#endif
1450 1806
1451 ev_ref (EV_A); 1807 ev_ref (EV_A);
1452 ev_io_stop (EV_A_ &pipeev); 1808 ev_io_stop (EV_A_ &pipe_w);
1453 1809
1454#if EV_USE_EVENTFD 1810#if EV_USE_EVENTFD
1455 if (evfd >= 0) 1811 if (evfd >= 0)
1456 close (evfd); 1812 close (evfd);
1457#endif 1813#endif
1458 1814
1459 if (evpipe [0] >= 0) 1815 if (evpipe [0] >= 0)
1460 { 1816 {
1461 close (evpipe [0]); 1817 EV_WIN32_CLOSE_FD (evpipe [0]);
1462 close (evpipe [1]); 1818 EV_WIN32_CLOSE_FD (evpipe [1]);
1463 } 1819 }
1464 1820
1821#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1465 evpipe_init (EV_A); 1822 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */ 1823 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ); 1824 pipecb (EV_A_ &pipe_w, EV_READ);
1825#endif
1468 } 1826 }
1469 1827
1470 postfork = 0; 1828 postfork = 0;
1471} 1829}
1472 1830
1473#if EV_MULTIPLICITY 1831#if EV_MULTIPLICITY
1474 1832
1475struct ev_loop * 1833struct ev_loop *
1476ev_loop_new (unsigned int flags) 1834ev_loop_new (unsigned int flags)
1477{ 1835{
1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1836 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1479 1837
1480 memset (loop, 0, sizeof (struct ev_loop)); 1838 memset (EV_A, 0, sizeof (struct ev_loop));
1481
1482 loop_init (EV_A_ flags); 1839 loop_init (EV_A_ flags);
1483 1840
1484 if (ev_backend (EV_A)) 1841 if (ev_backend (EV_A))
1485 return loop; 1842 return EV_A;
1486 1843
1487 return 0; 1844 return 0;
1488} 1845}
1489 1846
1490void 1847void
1497void 1854void
1498ev_loop_fork (EV_P) 1855ev_loop_fork (EV_P)
1499{ 1856{
1500 postfork = 1; /* must be in line with ev_default_fork */ 1857 postfork = 1; /* must be in line with ev_default_fork */
1501} 1858}
1859#endif /* multiplicity */
1502 1860
1503#if EV_VERIFY 1861#if EV_VERIFY
1504void noinline 1862static void noinline
1505verify_watcher (EV_P_ W w) 1863verify_watcher (EV_P_ W w)
1506{ 1864{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1865 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508 1866
1509 if (w->pending) 1867 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1868 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511} 1869}
1512 1870
1513static void noinline 1871static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N) 1872verify_heap (EV_P_ ANHE *heap, int N)
1515{ 1873{
1516 int i; 1874 int i;
1517 1875
1518 for (i = HEAP0; i < N + HEAP0; ++i) 1876 for (i = HEAP0; i < N + HEAP0; ++i)
1519 { 1877 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1878 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1879 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1880 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523 1881
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1882 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 } 1883 }
1526} 1884}
1527 1885
1528static void noinline 1886static void noinline
1529array_verify (EV_P_ W *ws, int cnt) 1887array_verify (EV_P_ W *ws, int cnt)
1530{ 1888{
1531 while (cnt--) 1889 while (cnt--)
1532 { 1890 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1891 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]); 1892 verify_watcher (EV_A_ ws [cnt]);
1535 } 1893 }
1536} 1894}
1537#endif 1895#endif
1538 1896
1897#if EV_FEATURE_API
1539void 1898void
1540ev_loop_verify (EV_P) 1899ev_verify (EV_P)
1541{ 1900{
1542#if EV_VERIFY 1901#if EV_VERIFY
1543 int i; 1902 int i;
1544 WL w; 1903 WL w;
1545 1904
1546 assert (activecnt >= -1); 1905 assert (activecnt >= -1);
1547 1906
1548 assert (fdchangemax >= fdchangecnt); 1907 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i) 1908 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1909 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1551 1910
1552 assert (anfdmax >= 0); 1911 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i) 1912 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next) 1913 for (w = anfds [i].head; w; w = w->next)
1555 { 1914 {
1556 verify_watcher (EV_A_ (W)w); 1915 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1916 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1917 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 } 1918 }
1560 1919
1561 assert (timermax >= timercnt); 1920 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt); 1921 verify_heap (EV_A_ timers, timercnt);
1563 1922
1584#if EV_ASYNC_ENABLE 1943#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt); 1944 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt); 1945 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif 1946#endif
1588 1947
1948#if EV_PREPARE_ENABLE
1589 assert (preparemax >= preparecnt); 1949 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt); 1950 array_verify (EV_A_ (W *)prepares, preparecnt);
1951#endif
1591 1952
1953#if EV_CHECK_ENABLE
1592 assert (checkmax >= checkcnt); 1954 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt); 1955 array_verify (EV_A_ (W *)checks, checkcnt);
1956#endif
1594 1957
1595# if 0 1958# if 0
1959#if EV_CHILD_ENABLE
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1960 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1961 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1962#endif
1598# endif 1963# endif
1599#endif 1964#endif
1600} 1965}
1601 1966#endif
1602#endif /* multiplicity */
1603 1967
1604#if EV_MULTIPLICITY 1968#if EV_MULTIPLICITY
1605struct ev_loop * 1969struct ev_loop *
1606ev_default_loop_init (unsigned int flags) 1970ev_default_loop_init (unsigned int flags)
1607#else 1971#else
1610#endif 1974#endif
1611{ 1975{
1612 if (!ev_default_loop_ptr) 1976 if (!ev_default_loop_ptr)
1613 { 1977 {
1614#if EV_MULTIPLICITY 1978#if EV_MULTIPLICITY
1615 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1979 EV_P = ev_default_loop_ptr = &default_loop_struct;
1616#else 1980#else
1617 ev_default_loop_ptr = 1; 1981 ev_default_loop_ptr = 1;
1618#endif 1982#endif
1619 1983
1620 loop_init (EV_A_ flags); 1984 loop_init (EV_A_ flags);
1621 1985
1622 if (ev_backend (EV_A)) 1986 if (ev_backend (EV_A))
1623 { 1987 {
1624#ifndef _WIN32 1988#if EV_CHILD_ENABLE
1625 ev_signal_init (&childev, childcb, SIGCHLD); 1989 ev_signal_init (&childev, childcb, SIGCHLD);
1626 ev_set_priority (&childev, EV_MAXPRI); 1990 ev_set_priority (&childev, EV_MAXPRI);
1627 ev_signal_start (EV_A_ &childev); 1991 ev_signal_start (EV_A_ &childev);
1628 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1992 ev_unref (EV_A); /* child watcher should not keep loop alive */
1629#endif 1993#endif
1637 2001
1638void 2002void
1639ev_default_destroy (void) 2003ev_default_destroy (void)
1640{ 2004{
1641#if EV_MULTIPLICITY 2005#if EV_MULTIPLICITY
1642 struct ev_loop *loop = ev_default_loop_ptr; 2006 EV_P = ev_default_loop_ptr;
1643#endif 2007#endif
1644 2008
1645#ifndef _WIN32 2009 ev_default_loop_ptr = 0;
2010
2011#if EV_CHILD_ENABLE
1646 ev_ref (EV_A); /* child watcher */ 2012 ev_ref (EV_A); /* child watcher */
1647 ev_signal_stop (EV_A_ &childev); 2013 ev_signal_stop (EV_A_ &childev);
1648#endif 2014#endif
1649 2015
1650 loop_destroy (EV_A); 2016 loop_destroy (EV_A);
1652 2018
1653void 2019void
1654ev_default_fork (void) 2020ev_default_fork (void)
1655{ 2021{
1656#if EV_MULTIPLICITY 2022#if EV_MULTIPLICITY
1657 struct ev_loop *loop = ev_default_loop_ptr; 2023 EV_P = ev_default_loop_ptr;
1658#endif 2024#endif
1659 2025
1660 if (backend)
1661 postfork = 1; /* must be in line with ev_loop_fork */ 2026 postfork = 1; /* must be in line with ev_loop_fork */
1662} 2027}
1663 2028
1664/*****************************************************************************/ 2029/*****************************************************************************/
1665 2030
1666void 2031void
1667ev_invoke (EV_P_ void *w, int revents) 2032ev_invoke (EV_P_ void *w, int revents)
1668{ 2033{
1669 EV_CB_INVOKE ((W)w, revents); 2034 EV_CB_INVOKE ((W)w, revents);
1670} 2035}
1671 2036
1672void inline_speed 2037unsigned int
1673call_pending (EV_P) 2038ev_pending_count (EV_P)
2039{
2040 int pri;
2041 unsigned int count = 0;
2042
2043 for (pri = NUMPRI; pri--; )
2044 count += pendingcnt [pri];
2045
2046 return count;
2047}
2048
2049void noinline
2050ev_invoke_pending (EV_P)
1674{ 2051{
1675 int pri; 2052 int pri;
1676 2053
1677 for (pri = NUMPRI; pri--; ) 2054 for (pri = NUMPRI; pri--; )
1678 while (pendingcnt [pri]) 2055 while (pendingcnt [pri])
1679 { 2056 {
1680 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2057 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1681 2058
1682 if (expect_true (p->w))
1683 {
1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2059 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2060 /* ^ this is no longer true, as pending_w could be here */
1685 2061
1686 p->w->pending = 0; 2062 p->w->pending = 0;
1687 EV_CB_INVOKE (p->w, p->events); 2063 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK; 2064 EV_FREQUENT_CHECK;
1689 }
1690 } 2065 }
1691} 2066}
1692 2067
1693#if EV_IDLE_ENABLE 2068#if EV_IDLE_ENABLE
1694void inline_size 2069/* make idle watchers pending. this handles the "call-idle */
2070/* only when higher priorities are idle" logic */
2071inline_size void
1695idle_reify (EV_P) 2072idle_reify (EV_P)
1696{ 2073{
1697 if (expect_false (idleall)) 2074 if (expect_false (idleall))
1698 { 2075 {
1699 int pri; 2076 int pri;
1711 } 2088 }
1712 } 2089 }
1713} 2090}
1714#endif 2091#endif
1715 2092
1716void inline_size 2093/* make timers pending */
2094inline_size void
1717timers_reify (EV_P) 2095timers_reify (EV_P)
1718{ 2096{
1719 EV_FREQUENT_CHECK; 2097 EV_FREQUENT_CHECK;
1720 2098
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2099 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 { 2100 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2101 do
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 { 2102 {
2103 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2104
2105 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2106
2107 /* first reschedule or stop timer */
2108 if (w->repeat)
2109 {
1730 ev_at (w) += w->repeat; 2110 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now) 2111 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now; 2112 ev_at (w) = mn_now;
1733 2113
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2114 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735 2115
1736 ANHE_at_cache (timers [HEAP0]); 2116 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0); 2117 downheap (timers, timercnt, HEAP0);
2118 }
2119 else
2120 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2121
2122 EV_FREQUENT_CHECK;
2123 feed_reverse (EV_A_ (W)w);
1738 } 2124 }
1739 else 2125 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741 2126
1742 EV_FREQUENT_CHECK; 2127 feed_reverse_done (EV_A_ EV_TIMER);
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 } 2128 }
1745} 2129}
1746 2130
1747#if EV_PERIODIC_ENABLE 2131#if EV_PERIODIC_ENABLE
1748void inline_size 2132/* make periodics pending */
2133inline_size void
1749periodics_reify (EV_P) 2134periodics_reify (EV_P)
1750{ 2135{
1751 EV_FREQUENT_CHECK; 2136 EV_FREQUENT_CHECK;
1752 2137
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2138 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 { 2139 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2140 int feed_count = 0;
1756 2141
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2142 do
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 { 2143 {
2144 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2145
2146 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2147
2148 /* first reschedule or stop timer */
2149 if (w->reschedule_cb)
2150 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2151 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763 2152
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2153 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765 2154
1766 ANHE_at_cache (periodics [HEAP0]); 2155 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0); 2156 downheap (periodics, periodiccnt, HEAP0);
2157 }
2158 else if (w->interval)
2159 {
2160 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2161 /* if next trigger time is not sufficiently in the future, put it there */
2162 /* this might happen because of floating point inexactness */
2163 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2164 {
2165 ev_at (w) += w->interval;
2166
2167 /* if interval is unreasonably low we might still have a time in the past */
2168 /* so correct this. this will make the periodic very inexact, but the user */
2169 /* has effectively asked to get triggered more often than possible */
2170 if (ev_at (w) < ev_rt_now)
2171 ev_at (w) = ev_rt_now;
2172 }
2173
2174 ANHE_at_cache (periodics [HEAP0]);
2175 downheap (periodics, periodiccnt, HEAP0);
2176 }
2177 else
2178 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2179
2180 EV_FREQUENT_CHECK;
2181 feed_reverse (EV_A_ (W)w);
1768 } 2182 }
1769 else if (w->interval) 2183 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777 2184
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2185 feed_reverse_done (EV_A_ EV_PERIODIC);
1793 } 2186 }
1794} 2187}
1795 2188
2189/* simply recalculate all periodics */
2190/* TODO: maybe ensure that at least one event happens when jumping forward? */
1796static void noinline 2191static void noinline
1797periodics_reschedule (EV_P) 2192periodics_reschedule (EV_P)
1798{ 2193{
1799 int i; 2194 int i;
1800 2195
1813 2208
1814 reheap (periodics, periodiccnt); 2209 reheap (periodics, periodiccnt);
1815} 2210}
1816#endif 2211#endif
1817 2212
1818void inline_speed 2213/* adjust all timers by a given offset */
2214static void noinline
2215timers_reschedule (EV_P_ ev_tstamp adjust)
2216{
2217 int i;
2218
2219 for (i = 0; i < timercnt; ++i)
2220 {
2221 ANHE *he = timers + i + HEAP0;
2222 ANHE_w (*he)->at += adjust;
2223 ANHE_at_cache (*he);
2224 }
2225}
2226
2227/* fetch new monotonic and realtime times from the kernel */
2228/* also detect if there was a timejump, and act accordingly */
2229inline_speed void
1819time_update (EV_P_ ev_tstamp max_block) 2230time_update (EV_P_ ev_tstamp max_block)
1820{ 2231{
1821 int i;
1822
1823#if EV_USE_MONOTONIC 2232#if EV_USE_MONOTONIC
1824 if (expect_true (have_monotonic)) 2233 if (expect_true (have_monotonic))
1825 { 2234 {
2235 int i;
1826 ev_tstamp odiff = rtmn_diff; 2236 ev_tstamp odiff = rtmn_diff;
1827 2237
1828 mn_now = get_clock (); 2238 mn_now = get_clock ();
1829 2239
1830 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2240 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1856 ev_rt_now = ev_time (); 2266 ev_rt_now = ev_time ();
1857 mn_now = get_clock (); 2267 mn_now = get_clock ();
1858 now_floor = mn_now; 2268 now_floor = mn_now;
1859 } 2269 }
1860 2270
2271 /* no timer adjustment, as the monotonic clock doesn't jump */
2272 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1861# if EV_PERIODIC_ENABLE 2273# if EV_PERIODIC_ENABLE
1862 periodics_reschedule (EV_A); 2274 periodics_reschedule (EV_A);
1863# endif 2275# endif
1864 /* no timer adjustment, as the monotonic clock doesn't jump */
1865 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1866 } 2276 }
1867 else 2277 else
1868#endif 2278#endif
1869 { 2279 {
1870 ev_rt_now = ev_time (); 2280 ev_rt_now = ev_time ();
1871 2281
1872 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2282 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1873 { 2283 {
2284 /* adjust timers. this is easy, as the offset is the same for all of them */
2285 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1874#if EV_PERIODIC_ENABLE 2286#if EV_PERIODIC_ENABLE
1875 periodics_reschedule (EV_A); 2287 periodics_reschedule (EV_A);
1876#endif 2288#endif
1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1884 } 2289 }
1885 2290
1886 mn_now = ev_rt_now; 2291 mn_now = ev_rt_now;
1887 } 2292 }
1888} 2293}
1889 2294
1890void 2295void
1891ev_ref (EV_P)
1892{
1893 ++activecnt;
1894}
1895
1896void
1897ev_unref (EV_P)
1898{
1899 --activecnt;
1900}
1901
1902static int loop_done;
1903
1904void
1905ev_loop (EV_P_ int flags) 2296ev_loop (EV_P_ int flags)
1906{ 2297{
2298#if EV_FEATURE_API
2299 ++loop_depth;
2300#endif
2301
2302 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2303
1907 loop_done = EVUNLOOP_CANCEL; 2304 loop_done = EVUNLOOP_CANCEL;
1908 2305
1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2306 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1910 2307
1911 do 2308 do
1912 { 2309 {
1913#if EV_VERIFY >= 2 2310#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A); 2311 ev_verify (EV_A);
1915#endif 2312#endif
1916 2313
1917#ifndef _WIN32 2314#ifndef _WIN32
1918 if (expect_false (curpid)) /* penalise the forking check even more */ 2315 if (expect_false (curpid)) /* penalise the forking check even more */
1919 if (expect_false (getpid () != curpid)) 2316 if (expect_false (getpid () != curpid))
1927 /* we might have forked, so queue fork handlers */ 2324 /* we might have forked, so queue fork handlers */
1928 if (expect_false (postfork)) 2325 if (expect_false (postfork))
1929 if (forkcnt) 2326 if (forkcnt)
1930 { 2327 {
1931 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2328 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1932 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1933 } 2330 }
1934#endif 2331#endif
1935 2332
2333#if EV_PREPARE_ENABLE
1936 /* queue prepare watchers (and execute them) */ 2334 /* queue prepare watchers (and execute them) */
1937 if (expect_false (preparecnt)) 2335 if (expect_false (preparecnt))
1938 { 2336 {
1939 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2337 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1940 call_pending (EV_A); 2338 EV_INVOKE_PENDING;
1941 } 2339 }
2340#endif
1942 2341
1943 if (expect_false (!activecnt)) 2342 if (expect_false (loop_done))
1944 break; 2343 break;
1945 2344
1946 /* we might have forked, so reify kernel state if necessary */ 2345 /* we might have forked, so reify kernel state if necessary */
1947 if (expect_false (postfork)) 2346 if (expect_false (postfork))
1948 loop_fork (EV_A); 2347 loop_fork (EV_A);
1955 ev_tstamp waittime = 0.; 2354 ev_tstamp waittime = 0.;
1956 ev_tstamp sleeptime = 0.; 2355 ev_tstamp sleeptime = 0.;
1957 2356
1958 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2357 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1959 { 2358 {
2359 /* remember old timestamp for io_blocktime calculation */
2360 ev_tstamp prev_mn_now = mn_now;
2361
1960 /* update time to cancel out callback processing overhead */ 2362 /* update time to cancel out callback processing overhead */
1961 time_update (EV_A_ 1e100); 2363 time_update (EV_A_ 1e100);
1962 2364
1963 waittime = MAX_BLOCKTIME; 2365 waittime = MAX_BLOCKTIME;
1964 2366
1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2376 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1975 if (waittime > to) waittime = to; 2377 if (waittime > to) waittime = to;
1976 } 2378 }
1977#endif 2379#endif
1978 2380
2381 /* don't let timeouts decrease the waittime below timeout_blocktime */
1979 if (expect_false (waittime < timeout_blocktime)) 2382 if (expect_false (waittime < timeout_blocktime))
1980 waittime = timeout_blocktime; 2383 waittime = timeout_blocktime;
1981 2384
1982 sleeptime = waittime - backend_fudge; 2385 /* extra check because io_blocktime is commonly 0 */
1983
1984 if (expect_true (sleeptime > io_blocktime)) 2386 if (expect_false (io_blocktime))
1985 sleeptime = io_blocktime;
1986
1987 if (sleeptime)
1988 { 2387 {
2388 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2389
2390 if (sleeptime > waittime - backend_fudge)
2391 sleeptime = waittime - backend_fudge;
2392
2393 if (expect_true (sleeptime > 0.))
2394 {
1989 ev_sleep (sleeptime); 2395 ev_sleep (sleeptime);
1990 waittime -= sleeptime; 2396 waittime -= sleeptime;
2397 }
1991 } 2398 }
1992 } 2399 }
1993 2400
2401#if EV_FEATURE_API
1994 ++loop_count; 2402 ++loop_count;
2403#endif
2404 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1995 backend_poll (EV_A_ waittime); 2405 backend_poll (EV_A_ waittime);
2406 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1996 2407
1997 /* update ev_rt_now, do magic */ 2408 /* update ev_rt_now, do magic */
1998 time_update (EV_A_ waittime + sleeptime); 2409 time_update (EV_A_ waittime + sleeptime);
1999 } 2410 }
2000 2411
2007#if EV_IDLE_ENABLE 2418#if EV_IDLE_ENABLE
2008 /* queue idle watchers unless other events are pending */ 2419 /* queue idle watchers unless other events are pending */
2009 idle_reify (EV_A); 2420 idle_reify (EV_A);
2010#endif 2421#endif
2011 2422
2423#if EV_CHECK_ENABLE
2012 /* queue check watchers, to be executed first */ 2424 /* queue check watchers, to be executed first */
2013 if (expect_false (checkcnt)) 2425 if (expect_false (checkcnt))
2014 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2426 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2427#endif
2015 2428
2016 call_pending (EV_A); 2429 EV_INVOKE_PENDING;
2017 } 2430 }
2018 while (expect_true ( 2431 while (expect_true (
2019 activecnt 2432 activecnt
2020 && !loop_done 2433 && !loop_done
2021 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2434 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2022 )); 2435 ));
2023 2436
2024 if (loop_done == EVUNLOOP_ONE) 2437 if (loop_done == EVUNLOOP_ONE)
2025 loop_done = EVUNLOOP_CANCEL; 2438 loop_done = EVUNLOOP_CANCEL;
2439
2440#if EV_FEATURE_API
2441 --loop_depth;
2442#endif
2026} 2443}
2027 2444
2028void 2445void
2029ev_unloop (EV_P_ int how) 2446ev_unloop (EV_P_ int how)
2030{ 2447{
2031 loop_done = how; 2448 loop_done = how;
2032} 2449}
2033 2450
2451void
2452ev_ref (EV_P)
2453{
2454 ++activecnt;
2455}
2456
2457void
2458ev_unref (EV_P)
2459{
2460 --activecnt;
2461}
2462
2463void
2464ev_now_update (EV_P)
2465{
2466 time_update (EV_A_ 1e100);
2467}
2468
2469void
2470ev_suspend (EV_P)
2471{
2472 ev_now_update (EV_A);
2473}
2474
2475void
2476ev_resume (EV_P)
2477{
2478 ev_tstamp mn_prev = mn_now;
2479
2480 ev_now_update (EV_A);
2481 timers_reschedule (EV_A_ mn_now - mn_prev);
2482#if EV_PERIODIC_ENABLE
2483 /* TODO: really do this? */
2484 periodics_reschedule (EV_A);
2485#endif
2486}
2487
2034/*****************************************************************************/ 2488/*****************************************************************************/
2489/* singly-linked list management, used when the expected list length is short */
2035 2490
2036void inline_size 2491inline_size void
2037wlist_add (WL *head, WL elem) 2492wlist_add (WL *head, WL elem)
2038{ 2493{
2039 elem->next = *head; 2494 elem->next = *head;
2040 *head = elem; 2495 *head = elem;
2041} 2496}
2042 2497
2043void inline_size 2498inline_size void
2044wlist_del (WL *head, WL elem) 2499wlist_del (WL *head, WL elem)
2045{ 2500{
2046 while (*head) 2501 while (*head)
2047 { 2502 {
2048 if (*head == elem) 2503 if (expect_true (*head == elem))
2049 { 2504 {
2050 *head = elem->next; 2505 *head = elem->next;
2051 return; 2506 break;
2052 } 2507 }
2053 2508
2054 head = &(*head)->next; 2509 head = &(*head)->next;
2055 } 2510 }
2056} 2511}
2057 2512
2058void inline_speed 2513/* internal, faster, version of ev_clear_pending */
2514inline_speed void
2059clear_pending (EV_P_ W w) 2515clear_pending (EV_P_ W w)
2060{ 2516{
2061 if (w->pending) 2517 if (w->pending)
2062 { 2518 {
2063 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2519 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2064 w->pending = 0; 2520 w->pending = 0;
2065 } 2521 }
2066} 2522}
2067 2523
2068int 2524int
2072 int pending = w_->pending; 2528 int pending = w_->pending;
2073 2529
2074 if (expect_true (pending)) 2530 if (expect_true (pending))
2075 { 2531 {
2076 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2532 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2533 p->w = (W)&pending_w;
2077 w_->pending = 0; 2534 w_->pending = 0;
2078 p->w = 0;
2079 return p->events; 2535 return p->events;
2080 } 2536 }
2081 else 2537 else
2082 return 0; 2538 return 0;
2083} 2539}
2084 2540
2085void inline_size 2541inline_size void
2086pri_adjust (EV_P_ W w) 2542pri_adjust (EV_P_ W w)
2087{ 2543{
2088 int pri = w->priority; 2544 int pri = ev_priority (w);
2089 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2545 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2090 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2546 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2091 w->priority = pri; 2547 ev_set_priority (w, pri);
2092} 2548}
2093 2549
2094void inline_speed 2550inline_speed void
2095ev_start (EV_P_ W w, int active) 2551ev_start (EV_P_ W w, int active)
2096{ 2552{
2097 pri_adjust (EV_A_ w); 2553 pri_adjust (EV_A_ w);
2098 w->active = active; 2554 w->active = active;
2099 ev_ref (EV_A); 2555 ev_ref (EV_A);
2100} 2556}
2101 2557
2102void inline_size 2558inline_size void
2103ev_stop (EV_P_ W w) 2559ev_stop (EV_P_ W w)
2104{ 2560{
2105 ev_unref (EV_A); 2561 ev_unref (EV_A);
2106 w->active = 0; 2562 w->active = 0;
2107} 2563}
2114 int fd = w->fd; 2570 int fd = w->fd;
2115 2571
2116 if (expect_false (ev_is_active (w))) 2572 if (expect_false (ev_is_active (w)))
2117 return; 2573 return;
2118 2574
2119 assert (("ev_io_start called with negative fd", fd >= 0)); 2575 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2576 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2120 2577
2121 EV_FREQUENT_CHECK; 2578 EV_FREQUENT_CHECK;
2122 2579
2123 ev_start (EV_A_ (W)w, 1); 2580 ev_start (EV_A_ (W)w, 1);
2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2581 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2125 wlist_add (&anfds[fd].head, (WL)w); 2582 wlist_add (&anfds[fd].head, (WL)w);
2126 2583
2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2584 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2128 w->events &= ~EV_IOFDSET; 2585 w->events &= ~EV__IOFDSET;
2129 2586
2130 EV_FREQUENT_CHECK; 2587 EV_FREQUENT_CHECK;
2131} 2588}
2132 2589
2133void noinline 2590void noinline
2135{ 2592{
2136 clear_pending (EV_A_ (W)w); 2593 clear_pending (EV_A_ (W)w);
2137 if (expect_false (!ev_is_active (w))) 2594 if (expect_false (!ev_is_active (w)))
2138 return; 2595 return;
2139 2596
2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2597 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2141 2598
2142 EV_FREQUENT_CHECK; 2599 EV_FREQUENT_CHECK;
2143 2600
2144 wlist_del (&anfds[w->fd].head, (WL)w); 2601 wlist_del (&anfds[w->fd].head, (WL)w);
2145 ev_stop (EV_A_ (W)w); 2602 ev_stop (EV_A_ (W)w);
2155 if (expect_false (ev_is_active (w))) 2612 if (expect_false (ev_is_active (w)))
2156 return; 2613 return;
2157 2614
2158 ev_at (w) += mn_now; 2615 ev_at (w) += mn_now;
2159 2616
2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2617 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2161 2618
2162 EV_FREQUENT_CHECK; 2619 EV_FREQUENT_CHECK;
2163 2620
2164 ++timercnt; 2621 ++timercnt;
2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2622 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2168 ANHE_at_cache (timers [ev_active (w)]); 2625 ANHE_at_cache (timers [ev_active (w)]);
2169 upheap (timers, ev_active (w)); 2626 upheap (timers, ev_active (w));
2170 2627
2171 EV_FREQUENT_CHECK; 2628 EV_FREQUENT_CHECK;
2172 2629
2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2630 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2174} 2631}
2175 2632
2176void noinline 2633void noinline
2177ev_timer_stop (EV_P_ ev_timer *w) 2634ev_timer_stop (EV_P_ ev_timer *w)
2178{ 2635{
2183 EV_FREQUENT_CHECK; 2640 EV_FREQUENT_CHECK;
2184 2641
2185 { 2642 {
2186 int active = ev_active (w); 2643 int active = ev_active (w);
2187 2644
2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2645 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2189 2646
2190 --timercnt; 2647 --timercnt;
2191 2648
2192 if (expect_true (active < timercnt + HEAP0)) 2649 if (expect_true (active < timercnt + HEAP0))
2193 { 2650 {
2194 timers [active] = timers [timercnt + HEAP0]; 2651 timers [active] = timers [timercnt + HEAP0];
2195 adjustheap (timers, timercnt, active); 2652 adjustheap (timers, timercnt, active);
2196 } 2653 }
2197 } 2654 }
2198 2655
2199 EV_FREQUENT_CHECK;
2200
2201 ev_at (w) -= mn_now; 2656 ev_at (w) -= mn_now;
2202 2657
2203 ev_stop (EV_A_ (W)w); 2658 ev_stop (EV_A_ (W)w);
2659
2660 EV_FREQUENT_CHECK;
2204} 2661}
2205 2662
2206void noinline 2663void noinline
2207ev_timer_again (EV_P_ ev_timer *w) 2664ev_timer_again (EV_P_ ev_timer *w)
2208{ 2665{
2226 } 2683 }
2227 2684
2228 EV_FREQUENT_CHECK; 2685 EV_FREQUENT_CHECK;
2229} 2686}
2230 2687
2688ev_tstamp
2689ev_timer_remaining (EV_P_ ev_timer *w)
2690{
2691 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2692}
2693
2231#if EV_PERIODIC_ENABLE 2694#if EV_PERIODIC_ENABLE
2232void noinline 2695void noinline
2233ev_periodic_start (EV_P_ ev_periodic *w) 2696ev_periodic_start (EV_P_ ev_periodic *w)
2234{ 2697{
2235 if (expect_false (ev_is_active (w))) 2698 if (expect_false (ev_is_active (w)))
2237 2700
2238 if (w->reschedule_cb) 2701 if (w->reschedule_cb)
2239 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2702 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2240 else if (w->interval) 2703 else if (w->interval)
2241 { 2704 {
2242 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2705 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2243 /* this formula differs from the one in periodic_reify because we do not always round up */ 2706 /* this formula differs from the one in periodic_reify because we do not always round up */
2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2707 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2245 } 2708 }
2246 else 2709 else
2247 ev_at (w) = w->offset; 2710 ev_at (w) = w->offset;
2255 ANHE_at_cache (periodics [ev_active (w)]); 2718 ANHE_at_cache (periodics [ev_active (w)]);
2256 upheap (periodics, ev_active (w)); 2719 upheap (periodics, ev_active (w));
2257 2720
2258 EV_FREQUENT_CHECK; 2721 EV_FREQUENT_CHECK;
2259 2722
2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2723 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2261} 2724}
2262 2725
2263void noinline 2726void noinline
2264ev_periodic_stop (EV_P_ ev_periodic *w) 2727ev_periodic_stop (EV_P_ ev_periodic *w)
2265{ 2728{
2270 EV_FREQUENT_CHECK; 2733 EV_FREQUENT_CHECK;
2271 2734
2272 { 2735 {
2273 int active = ev_active (w); 2736 int active = ev_active (w);
2274 2737
2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2738 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2276 2739
2277 --periodiccnt; 2740 --periodiccnt;
2278 2741
2279 if (expect_true (active < periodiccnt + HEAP0)) 2742 if (expect_true (active < periodiccnt + HEAP0))
2280 { 2743 {
2281 periodics [active] = periodics [periodiccnt + HEAP0]; 2744 periodics [active] = periodics [periodiccnt + HEAP0];
2282 adjustheap (periodics, periodiccnt, active); 2745 adjustheap (periodics, periodiccnt, active);
2283 } 2746 }
2284 } 2747 }
2285 2748
2286 EV_FREQUENT_CHECK;
2287
2288 ev_stop (EV_A_ (W)w); 2749 ev_stop (EV_A_ (W)w);
2750
2751 EV_FREQUENT_CHECK;
2289} 2752}
2290 2753
2291void noinline 2754void noinline
2292ev_periodic_again (EV_P_ ev_periodic *w) 2755ev_periodic_again (EV_P_ ev_periodic *w)
2293{ 2756{
2299 2762
2300#ifndef SA_RESTART 2763#ifndef SA_RESTART
2301# define SA_RESTART 0 2764# define SA_RESTART 0
2302#endif 2765#endif
2303 2766
2767#if EV_SIGNAL_ENABLE
2768
2304void noinline 2769void noinline
2305ev_signal_start (EV_P_ ev_signal *w) 2770ev_signal_start (EV_P_ ev_signal *w)
2306{ 2771{
2307#if EV_MULTIPLICITY
2308 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2309#endif
2310 if (expect_false (ev_is_active (w))) 2772 if (expect_false (ev_is_active (w)))
2311 return; 2773 return;
2312 2774
2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2775 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2314 2776
2315 evpipe_init (EV_A); 2777#if EV_MULTIPLICITY
2778 assert (("libev: a signal must not be attached to two different loops",
2779 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2316 2780
2317 EV_FREQUENT_CHECK; 2781 signals [w->signum - 1].loop = EV_A;
2782#endif
2318 2783
2784 EV_FREQUENT_CHECK;
2785
2786#if EV_USE_SIGNALFD
2787 if (sigfd == -2)
2319 { 2788 {
2320#ifndef _WIN32 2789 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2321 sigset_t full, prev; 2790 if (sigfd < 0 && errno == EINVAL)
2322 sigfillset (&full); 2791 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2323 sigprocmask (SIG_SETMASK, &full, &prev);
2324#endif
2325 2792
2326 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2793 if (sigfd >= 0)
2794 {
2795 fd_intern (sigfd); /* doing it twice will not hurt */
2327 2796
2328#ifndef _WIN32 2797 sigemptyset (&sigfd_set);
2329 sigprocmask (SIG_SETMASK, &prev, 0); 2798
2330#endif 2799 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2800 ev_set_priority (&sigfd_w, EV_MAXPRI);
2801 ev_io_start (EV_A_ &sigfd_w);
2802 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2803 }
2331 } 2804 }
2805
2806 if (sigfd >= 0)
2807 {
2808 /* TODO: check .head */
2809 sigaddset (&sigfd_set, w->signum);
2810 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2811
2812 signalfd (sigfd, &sigfd_set, 0);
2813 }
2814#endif
2332 2815
2333 ev_start (EV_A_ (W)w, 1); 2816 ev_start (EV_A_ (W)w, 1);
2334 wlist_add (&signals [w->signum - 1].head, (WL)w); 2817 wlist_add (&signals [w->signum - 1].head, (WL)w);
2335 2818
2336 if (!((WL)w)->next) 2819 if (!((WL)w)->next)
2820# if EV_USE_SIGNALFD
2821 if (sigfd < 0) /*TODO*/
2822# endif
2337 { 2823 {
2338#if _WIN32 2824# ifdef _WIN32
2825 evpipe_init (EV_A);
2826
2339 signal (w->signum, ev_sighandler); 2827 signal (w->signum, ev_sighandler);
2340#else 2828# else
2341 struct sigaction sa; 2829 struct sigaction sa;
2830
2831 evpipe_init (EV_A);
2832
2342 sa.sa_handler = ev_sighandler; 2833 sa.sa_handler = ev_sighandler;
2343 sigfillset (&sa.sa_mask); 2834 sigfillset (&sa.sa_mask);
2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2835 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2345 sigaction (w->signum, &sa, 0); 2836 sigaction (w->signum, &sa, 0);
2837
2838 sigemptyset (&sa.sa_mask);
2839 sigaddset (&sa.sa_mask, w->signum);
2840 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2346#endif 2841#endif
2347 } 2842 }
2348 2843
2349 EV_FREQUENT_CHECK; 2844 EV_FREQUENT_CHECK;
2350} 2845}
2351 2846
2352void noinline 2847void noinline
2360 2855
2361 wlist_del (&signals [w->signum - 1].head, (WL)w); 2856 wlist_del (&signals [w->signum - 1].head, (WL)w);
2362 ev_stop (EV_A_ (W)w); 2857 ev_stop (EV_A_ (W)w);
2363 2858
2364 if (!signals [w->signum - 1].head) 2859 if (!signals [w->signum - 1].head)
2860 {
2861#if EV_MULTIPLICITY
2862 signals [w->signum - 1].loop = 0; /* unattach from signal */
2863#endif
2864#if EV_USE_SIGNALFD
2865 if (sigfd >= 0)
2866 {
2867 sigset_t ss;
2868
2869 sigemptyset (&ss);
2870 sigaddset (&ss, w->signum);
2871 sigdelset (&sigfd_set, w->signum);
2872
2873 signalfd (sigfd, &sigfd_set, 0);
2874 sigprocmask (SIG_UNBLOCK, &ss, 0);
2875 }
2876 else
2877#endif
2365 signal (w->signum, SIG_DFL); 2878 signal (w->signum, SIG_DFL);
2879 }
2366 2880
2367 EV_FREQUENT_CHECK; 2881 EV_FREQUENT_CHECK;
2368} 2882}
2883
2884#endif
2885
2886#if EV_CHILD_ENABLE
2369 2887
2370void 2888void
2371ev_child_start (EV_P_ ev_child *w) 2889ev_child_start (EV_P_ ev_child *w)
2372{ 2890{
2373#if EV_MULTIPLICITY 2891#if EV_MULTIPLICITY
2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2892 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2375#endif 2893#endif
2376 if (expect_false (ev_is_active (w))) 2894 if (expect_false (ev_is_active (w)))
2377 return; 2895 return;
2378 2896
2379 EV_FREQUENT_CHECK; 2897 EV_FREQUENT_CHECK;
2380 2898
2381 ev_start (EV_A_ (W)w, 1); 2899 ev_start (EV_A_ (W)w, 1);
2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2900 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2383 2901
2384 EV_FREQUENT_CHECK; 2902 EV_FREQUENT_CHECK;
2385} 2903}
2386 2904
2387void 2905void
2391 if (expect_false (!ev_is_active (w))) 2909 if (expect_false (!ev_is_active (w)))
2392 return; 2910 return;
2393 2911
2394 EV_FREQUENT_CHECK; 2912 EV_FREQUENT_CHECK;
2395 2913
2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2914 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2397 ev_stop (EV_A_ (W)w); 2915 ev_stop (EV_A_ (W)w);
2398 2916
2399 EV_FREQUENT_CHECK; 2917 EV_FREQUENT_CHECK;
2400} 2918}
2919
2920#endif
2401 2921
2402#if EV_STAT_ENABLE 2922#if EV_STAT_ENABLE
2403 2923
2404# ifdef _WIN32 2924# ifdef _WIN32
2405# undef lstat 2925# undef lstat
2406# define lstat(a,b) _stati64 (a,b) 2926# define lstat(a,b) _stati64 (a,b)
2407# endif 2927# endif
2408 2928
2409#define DEF_STAT_INTERVAL 5.0074891 2929#define DEF_STAT_INTERVAL 5.0074891
2930#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2410#define MIN_STAT_INTERVAL 0.1074891 2931#define MIN_STAT_INTERVAL 0.1074891
2411 2932
2412static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2933static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2413 2934
2414#if EV_USE_INOTIFY 2935#if EV_USE_INOTIFY
2415# define EV_INOTIFY_BUFSIZE 8192 2936
2937/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2938# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2416 2939
2417static void noinline 2940static void noinline
2418infy_add (EV_P_ ev_stat *w) 2941infy_add (EV_P_ ev_stat *w)
2419{ 2942{
2420 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2943 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2421 2944
2422 if (w->wd < 0) 2945 if (w->wd >= 0)
2946 {
2947 struct statfs sfs;
2948
2949 /* now local changes will be tracked by inotify, but remote changes won't */
2950 /* unless the filesystem is known to be local, we therefore still poll */
2951 /* also do poll on <2.6.25, but with normal frequency */
2952
2953 if (!fs_2625)
2954 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2955 else if (!statfs (w->path, &sfs)
2956 && (sfs.f_type == 0x1373 /* devfs */
2957 || sfs.f_type == 0xEF53 /* ext2/3 */
2958 || sfs.f_type == 0x3153464a /* jfs */
2959 || sfs.f_type == 0x52654973 /* reiser3 */
2960 || sfs.f_type == 0x01021994 /* tempfs */
2961 || sfs.f_type == 0x58465342 /* xfs */))
2962 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2963 else
2964 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2423 { 2965 }
2424 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2966 else
2967 {
2968 /* can't use inotify, continue to stat */
2969 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2425 2970
2426 /* monitor some parent directory for speedup hints */ 2971 /* if path is not there, monitor some parent directory for speedup hints */
2427 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2972 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2428 /* but an efficiency issue only */ 2973 /* but an efficiency issue only */
2429 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2974 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2430 { 2975 {
2431 char path [4096]; 2976 char path [4096];
2432 strcpy (path, w->path); 2977 strcpy (path, w->path);
2436 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2981 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2437 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2982 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2438 2983
2439 char *pend = strrchr (path, '/'); 2984 char *pend = strrchr (path, '/');
2440 2985
2441 if (!pend) 2986 if (!pend || pend == path)
2442 break; /* whoops, no '/', complain to your admin */ 2987 break;
2443 2988
2444 *pend = 0; 2989 *pend = 0;
2445 w->wd = inotify_add_watch (fs_fd, path, mask); 2990 w->wd = inotify_add_watch (fs_fd, path, mask);
2446 } 2991 }
2447 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2992 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2448 } 2993 }
2449 } 2994 }
2450 else
2451 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2452 2995
2453 if (w->wd >= 0) 2996 if (w->wd >= 0)
2454 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2997 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2998
2999 /* now re-arm timer, if required */
3000 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3001 ev_timer_again (EV_A_ &w->timer);
3002 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2455} 3003}
2456 3004
2457static void noinline 3005static void noinline
2458infy_del (EV_P_ ev_stat *w) 3006infy_del (EV_P_ ev_stat *w)
2459{ 3007{
2462 3010
2463 if (wd < 0) 3011 if (wd < 0)
2464 return; 3012 return;
2465 3013
2466 w->wd = -2; 3014 w->wd = -2;
2467 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3015 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2468 wlist_del (&fs_hash [slot].head, (WL)w); 3016 wlist_del (&fs_hash [slot].head, (WL)w);
2469 3017
2470 /* remove this watcher, if others are watching it, they will rearm */ 3018 /* remove this watcher, if others are watching it, they will rearm */
2471 inotify_rm_watch (fs_fd, wd); 3019 inotify_rm_watch (fs_fd, wd);
2472} 3020}
2473 3021
2474static void noinline 3022static void noinline
2475infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3023infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2476{ 3024{
2477 if (slot < 0) 3025 if (slot < 0)
2478 /* overflow, need to check for all hahs slots */ 3026 /* overflow, need to check for all hash slots */
2479 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3027 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2480 infy_wd (EV_A_ slot, wd, ev); 3028 infy_wd (EV_A_ slot, wd, ev);
2481 else 3029 else
2482 { 3030 {
2483 WL w_; 3031 WL w_;
2484 3032
2485 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3033 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2486 { 3034 {
2487 ev_stat *w = (ev_stat *)w_; 3035 ev_stat *w = (ev_stat *)w_;
2488 w_ = w_->next; /* lets us remove this watcher and all before it */ 3036 w_ = w_->next; /* lets us remove this watcher and all before it */
2489 3037
2490 if (w->wd == wd || wd == -1) 3038 if (w->wd == wd || wd == -1)
2491 { 3039 {
2492 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3040 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2493 { 3041 {
3042 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2494 w->wd = -1; 3043 w->wd = -1;
2495 infy_add (EV_A_ w); /* re-add, no matter what */ 3044 infy_add (EV_A_ w); /* re-add, no matter what */
2496 } 3045 }
2497 3046
2498 stat_timer_cb (EV_A_ &w->timer, 0); 3047 stat_timer_cb (EV_A_ &w->timer, 0);
2503 3052
2504static void 3053static void
2505infy_cb (EV_P_ ev_io *w, int revents) 3054infy_cb (EV_P_ ev_io *w, int revents)
2506{ 3055{
2507 char buf [EV_INOTIFY_BUFSIZE]; 3056 char buf [EV_INOTIFY_BUFSIZE];
2508 struct inotify_event *ev = (struct inotify_event *)buf;
2509 int ofs; 3057 int ofs;
2510 int len = read (fs_fd, buf, sizeof (buf)); 3058 int len = read (fs_fd, buf, sizeof (buf));
2511 3059
2512 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3060 for (ofs = 0; ofs < len; )
3061 {
3062 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2513 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3063 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3064 ofs += sizeof (struct inotify_event) + ev->len;
3065 }
2514} 3066}
2515 3067
2516void inline_size 3068inline_size unsigned int
3069ev_linux_version (void)
3070{
3071 struct utsname buf;
3072 unsigned int v;
3073 int i;
3074 char *p = buf.release;
3075
3076 if (uname (&buf))
3077 return 0;
3078
3079 for (i = 3+1; --i; )
3080 {
3081 unsigned int c = 0;
3082
3083 for (;;)
3084 {
3085 if (*p >= '0' && *p <= '9')
3086 c = c * 10 + *p++ - '0';
3087 else
3088 {
3089 p += *p == '.';
3090 break;
3091 }
3092 }
3093
3094 v = (v << 8) | c;
3095 }
3096
3097 return v;
3098}
3099
3100inline_size void
3101ev_check_2625 (EV_P)
3102{
3103 /* kernels < 2.6.25 are borked
3104 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3105 */
3106 if (ev_linux_version () < 0x020619)
3107 return;
3108
3109 fs_2625 = 1;
3110}
3111
3112inline_size int
3113infy_newfd (void)
3114{
3115#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3116 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3117 if (fd >= 0)
3118 return fd;
3119#endif
3120 return inotify_init ();
3121}
3122
3123inline_size void
2517infy_init (EV_P) 3124infy_init (EV_P)
2518{ 3125{
2519 if (fs_fd != -2) 3126 if (fs_fd != -2)
2520 return; 3127 return;
2521 3128
3129 fs_fd = -1;
3130
3131 ev_check_2625 (EV_A);
3132
2522 fs_fd = inotify_init (); 3133 fs_fd = infy_newfd ();
2523 3134
2524 if (fs_fd >= 0) 3135 if (fs_fd >= 0)
2525 { 3136 {
3137 fd_intern (fs_fd);
2526 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3138 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2527 ev_set_priority (&fs_w, EV_MAXPRI); 3139 ev_set_priority (&fs_w, EV_MAXPRI);
2528 ev_io_start (EV_A_ &fs_w); 3140 ev_io_start (EV_A_ &fs_w);
3141 ev_unref (EV_A);
2529 } 3142 }
2530} 3143}
2531 3144
2532void inline_size 3145inline_size void
2533infy_fork (EV_P) 3146infy_fork (EV_P)
2534{ 3147{
2535 int slot; 3148 int slot;
2536 3149
2537 if (fs_fd < 0) 3150 if (fs_fd < 0)
2538 return; 3151 return;
2539 3152
3153 ev_ref (EV_A);
3154 ev_io_stop (EV_A_ &fs_w);
2540 close (fs_fd); 3155 close (fs_fd);
2541 fs_fd = inotify_init (); 3156 fs_fd = infy_newfd ();
2542 3157
3158 if (fs_fd >= 0)
3159 {
3160 fd_intern (fs_fd);
3161 ev_io_set (&fs_w, fs_fd, EV_READ);
3162 ev_io_start (EV_A_ &fs_w);
3163 ev_unref (EV_A);
3164 }
3165
2543 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3166 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2544 { 3167 {
2545 WL w_ = fs_hash [slot].head; 3168 WL w_ = fs_hash [slot].head;
2546 fs_hash [slot].head = 0; 3169 fs_hash [slot].head = 0;
2547 3170
2548 while (w_) 3171 while (w_)
2553 w->wd = -1; 3176 w->wd = -1;
2554 3177
2555 if (fs_fd >= 0) 3178 if (fs_fd >= 0)
2556 infy_add (EV_A_ w); /* re-add, no matter what */ 3179 infy_add (EV_A_ w); /* re-add, no matter what */
2557 else 3180 else
3181 {
3182 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3183 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2558 ev_timer_start (EV_A_ &w->timer); 3184 ev_timer_again (EV_A_ &w->timer);
3185 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3186 }
2559 } 3187 }
2560
2561 } 3188 }
2562} 3189}
2563 3190
3191#endif
3192
3193#ifdef _WIN32
3194# define EV_LSTAT(p,b) _stati64 (p, b)
3195#else
3196# define EV_LSTAT(p,b) lstat (p, b)
2564#endif 3197#endif
2565 3198
2566void 3199void
2567ev_stat_stat (EV_P_ ev_stat *w) 3200ev_stat_stat (EV_P_ ev_stat *w)
2568{ 3201{
2575static void noinline 3208static void noinline
2576stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3209stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2577{ 3210{
2578 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3211 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2579 3212
2580 /* we copy this here each the time so that */ 3213 ev_statdata prev = w->attr;
2581 /* prev has the old value when the callback gets invoked */
2582 w->prev = w->attr;
2583 ev_stat_stat (EV_A_ w); 3214 ev_stat_stat (EV_A_ w);
2584 3215
2585 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3216 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2586 if ( 3217 if (
2587 w->prev.st_dev != w->attr.st_dev 3218 prev.st_dev != w->attr.st_dev
2588 || w->prev.st_ino != w->attr.st_ino 3219 || prev.st_ino != w->attr.st_ino
2589 || w->prev.st_mode != w->attr.st_mode 3220 || prev.st_mode != w->attr.st_mode
2590 || w->prev.st_nlink != w->attr.st_nlink 3221 || prev.st_nlink != w->attr.st_nlink
2591 || w->prev.st_uid != w->attr.st_uid 3222 || prev.st_uid != w->attr.st_uid
2592 || w->prev.st_gid != w->attr.st_gid 3223 || prev.st_gid != w->attr.st_gid
2593 || w->prev.st_rdev != w->attr.st_rdev 3224 || prev.st_rdev != w->attr.st_rdev
2594 || w->prev.st_size != w->attr.st_size 3225 || prev.st_size != w->attr.st_size
2595 || w->prev.st_atime != w->attr.st_atime 3226 || prev.st_atime != w->attr.st_atime
2596 || w->prev.st_mtime != w->attr.st_mtime 3227 || prev.st_mtime != w->attr.st_mtime
2597 || w->prev.st_ctime != w->attr.st_ctime 3228 || prev.st_ctime != w->attr.st_ctime
2598 ) { 3229 ) {
3230 /* we only update w->prev on actual differences */
3231 /* in case we test more often than invoke the callback, */
3232 /* to ensure that prev is always different to attr */
3233 w->prev = prev;
3234
2599 #if EV_USE_INOTIFY 3235 #if EV_USE_INOTIFY
3236 if (fs_fd >= 0)
3237 {
2600 infy_del (EV_A_ w); 3238 infy_del (EV_A_ w);
2601 infy_add (EV_A_ w); 3239 infy_add (EV_A_ w);
2602 ev_stat_stat (EV_A_ w); /* avoid race... */ 3240 ev_stat_stat (EV_A_ w); /* avoid race... */
3241 }
2603 #endif 3242 #endif
2604 3243
2605 ev_feed_event (EV_A_ w, EV_STAT); 3244 ev_feed_event (EV_A_ w, EV_STAT);
2606 } 3245 }
2607} 3246}
2610ev_stat_start (EV_P_ ev_stat *w) 3249ev_stat_start (EV_P_ ev_stat *w)
2611{ 3250{
2612 if (expect_false (ev_is_active (w))) 3251 if (expect_false (ev_is_active (w)))
2613 return; 3252 return;
2614 3253
2615 /* since we use memcmp, we need to clear any padding data etc. */
2616 memset (&w->prev, 0, sizeof (ev_statdata));
2617 memset (&w->attr, 0, sizeof (ev_statdata));
2618
2619 ev_stat_stat (EV_A_ w); 3254 ev_stat_stat (EV_A_ w);
2620 3255
3256 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2621 if (w->interval < MIN_STAT_INTERVAL) 3257 w->interval = MIN_STAT_INTERVAL;
2622 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2623 3258
2624 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3259 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2625 ev_set_priority (&w->timer, ev_priority (w)); 3260 ev_set_priority (&w->timer, ev_priority (w));
2626 3261
2627#if EV_USE_INOTIFY 3262#if EV_USE_INOTIFY
2628 infy_init (EV_A); 3263 infy_init (EV_A);
2629 3264
2630 if (fs_fd >= 0) 3265 if (fs_fd >= 0)
2631 infy_add (EV_A_ w); 3266 infy_add (EV_A_ w);
2632 else 3267 else
2633#endif 3268#endif
3269 {
2634 ev_timer_start (EV_A_ &w->timer); 3270 ev_timer_again (EV_A_ &w->timer);
3271 ev_unref (EV_A);
3272 }
2635 3273
2636 ev_start (EV_A_ (W)w, 1); 3274 ev_start (EV_A_ (W)w, 1);
2637 3275
2638 EV_FREQUENT_CHECK; 3276 EV_FREQUENT_CHECK;
2639} 3277}
2648 EV_FREQUENT_CHECK; 3286 EV_FREQUENT_CHECK;
2649 3287
2650#if EV_USE_INOTIFY 3288#if EV_USE_INOTIFY
2651 infy_del (EV_A_ w); 3289 infy_del (EV_A_ w);
2652#endif 3290#endif
3291
3292 if (ev_is_active (&w->timer))
3293 {
3294 ev_ref (EV_A);
2653 ev_timer_stop (EV_A_ &w->timer); 3295 ev_timer_stop (EV_A_ &w->timer);
3296 }
2654 3297
2655 ev_stop (EV_A_ (W)w); 3298 ev_stop (EV_A_ (W)w);
2656 3299
2657 EV_FREQUENT_CHECK; 3300 EV_FREQUENT_CHECK;
2658} 3301}
2703 3346
2704 EV_FREQUENT_CHECK; 3347 EV_FREQUENT_CHECK;
2705} 3348}
2706#endif 3349#endif
2707 3350
3351#if EV_PREPARE_ENABLE
2708void 3352void
2709ev_prepare_start (EV_P_ ev_prepare *w) 3353ev_prepare_start (EV_P_ ev_prepare *w)
2710{ 3354{
2711 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2712 return; 3356 return;
2738 3382
2739 ev_stop (EV_A_ (W)w); 3383 ev_stop (EV_A_ (W)w);
2740 3384
2741 EV_FREQUENT_CHECK; 3385 EV_FREQUENT_CHECK;
2742} 3386}
3387#endif
2743 3388
3389#if EV_CHECK_ENABLE
2744void 3390void
2745ev_check_start (EV_P_ ev_check *w) 3391ev_check_start (EV_P_ ev_check *w)
2746{ 3392{
2747 if (expect_false (ev_is_active (w))) 3393 if (expect_false (ev_is_active (w)))
2748 return; 3394 return;
2774 3420
2775 ev_stop (EV_A_ (W)w); 3421 ev_stop (EV_A_ (W)w);
2776 3422
2777 EV_FREQUENT_CHECK; 3423 EV_FREQUENT_CHECK;
2778} 3424}
3425#endif
2779 3426
2780#if EV_EMBED_ENABLE 3427#if EV_EMBED_ENABLE
2781void noinline 3428void noinline
2782ev_embed_sweep (EV_P_ ev_embed *w) 3429ev_embed_sweep (EV_P_ ev_embed *w)
2783{ 3430{
2799embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3446embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2800{ 3447{
2801 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3448 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2802 3449
2803 { 3450 {
2804 struct ev_loop *loop = w->other; 3451 EV_P = w->other;
2805 3452
2806 while (fdchangecnt) 3453 while (fdchangecnt)
2807 { 3454 {
2808 fd_reify (EV_A); 3455 fd_reify (EV_A);
2809 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3456 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2810 } 3457 }
2811 } 3458 }
2812} 3459}
2813 3460
3461static void
3462embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3463{
3464 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3465
3466 ev_embed_stop (EV_A_ w);
3467
3468 {
3469 EV_P = w->other;
3470
3471 ev_loop_fork (EV_A);
3472 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3473 }
3474
3475 ev_embed_start (EV_A_ w);
3476}
3477
2814#if 0 3478#if 0
2815static void 3479static void
2816embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3480embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2817{ 3481{
2818 ev_idle_stop (EV_A_ idle); 3482 ev_idle_stop (EV_A_ idle);
2824{ 3488{
2825 if (expect_false (ev_is_active (w))) 3489 if (expect_false (ev_is_active (w)))
2826 return; 3490 return;
2827 3491
2828 { 3492 {
2829 struct ev_loop *loop = w->other; 3493 EV_P = w->other;
2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3494 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3495 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2832 } 3496 }
2833 3497
2834 EV_FREQUENT_CHECK; 3498 EV_FREQUENT_CHECK;
2835 3499
2838 3502
2839 ev_prepare_init (&w->prepare, embed_prepare_cb); 3503 ev_prepare_init (&w->prepare, embed_prepare_cb);
2840 ev_set_priority (&w->prepare, EV_MINPRI); 3504 ev_set_priority (&w->prepare, EV_MINPRI);
2841 ev_prepare_start (EV_A_ &w->prepare); 3505 ev_prepare_start (EV_A_ &w->prepare);
2842 3506
3507 ev_fork_init (&w->fork, embed_fork_cb);
3508 ev_fork_start (EV_A_ &w->fork);
3509
2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3510 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2844 3511
2845 ev_start (EV_A_ (W)w, 1); 3512 ev_start (EV_A_ (W)w, 1);
2846 3513
2847 EV_FREQUENT_CHECK; 3514 EV_FREQUENT_CHECK;
2854 if (expect_false (!ev_is_active (w))) 3521 if (expect_false (!ev_is_active (w)))
2855 return; 3522 return;
2856 3523
2857 EV_FREQUENT_CHECK; 3524 EV_FREQUENT_CHECK;
2858 3525
2859 ev_io_stop (EV_A_ &w->io); 3526 ev_io_stop (EV_A_ &w->io);
2860 ev_prepare_stop (EV_A_ &w->prepare); 3527 ev_prepare_stop (EV_A_ &w->prepare);
3528 ev_fork_stop (EV_A_ &w->fork);
2861 3529
2862 ev_stop (EV_A_ (W)w); 3530 ev_stop (EV_A_ (W)w);
2863 3531
2864 EV_FREQUENT_CHECK; 3532 EV_FREQUENT_CHECK;
2865} 3533}
2944 3612
2945void 3613void
2946ev_async_send (EV_P_ ev_async *w) 3614ev_async_send (EV_P_ ev_async *w)
2947{ 3615{
2948 w->sent = 1; 3616 w->sent = 1;
2949 evpipe_write (EV_A_ &gotasync); 3617 evpipe_write (EV_A_ &async_pending);
2950} 3618}
2951#endif 3619#endif
2952 3620
2953/*****************************************************************************/ 3621/*****************************************************************************/
2954 3622
2964once_cb (EV_P_ struct ev_once *once, int revents) 3632once_cb (EV_P_ struct ev_once *once, int revents)
2965{ 3633{
2966 void (*cb)(int revents, void *arg) = once->cb; 3634 void (*cb)(int revents, void *arg) = once->cb;
2967 void *arg = once->arg; 3635 void *arg = once->arg;
2968 3636
2969 ev_io_stop (EV_A_ &once->io); 3637 ev_io_stop (EV_A_ &once->io);
2970 ev_timer_stop (EV_A_ &once->to); 3638 ev_timer_stop (EV_A_ &once->to);
2971 ev_free (once); 3639 ev_free (once);
2972 3640
2973 cb (revents, arg); 3641 cb (revents, arg);
2974} 3642}
2975 3643
2976static void 3644static void
2977once_cb_io (EV_P_ ev_io *w, int revents) 3645once_cb_io (EV_P_ ev_io *w, int revents)
2978{ 3646{
2979 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3647 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3648
3649 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2980} 3650}
2981 3651
2982static void 3652static void
2983once_cb_to (EV_P_ ev_timer *w, int revents) 3653once_cb_to (EV_P_ ev_timer *w, int revents)
2984{ 3654{
2985 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3655 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3656
3657 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2986} 3658}
2987 3659
2988void 3660void
2989ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3661ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2990{ 3662{
2991 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3663 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2992 3664
2993 if (expect_false (!once)) 3665 if (expect_false (!once))
2994 { 3666 {
2995 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3667 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2996 return; 3668 return;
2997 } 3669 }
2998 3670
2999 once->cb = cb; 3671 once->cb = cb;
3000 once->arg = arg; 3672 once->arg = arg;
3012 ev_timer_set (&once->to, timeout, 0.); 3684 ev_timer_set (&once->to, timeout, 0.);
3013 ev_timer_start (EV_A_ &once->to); 3685 ev_timer_start (EV_A_ &once->to);
3014 } 3686 }
3015} 3687}
3016 3688
3689/*****************************************************************************/
3690
3691#if EV_WALK_ENABLE
3692void
3693ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3694{
3695 int i, j;
3696 ev_watcher_list *wl, *wn;
3697
3698 if (types & (EV_IO | EV_EMBED))
3699 for (i = 0; i < anfdmax; ++i)
3700 for (wl = anfds [i].head; wl; )
3701 {
3702 wn = wl->next;
3703
3704#if EV_EMBED_ENABLE
3705 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3706 {
3707 if (types & EV_EMBED)
3708 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3709 }
3710 else
3711#endif
3712#if EV_USE_INOTIFY
3713 if (ev_cb ((ev_io *)wl) == infy_cb)
3714 ;
3715 else
3716#endif
3717 if ((ev_io *)wl != &pipe_w)
3718 if (types & EV_IO)
3719 cb (EV_A_ EV_IO, wl);
3720
3721 wl = wn;
3722 }
3723
3724 if (types & (EV_TIMER | EV_STAT))
3725 for (i = timercnt + HEAP0; i-- > HEAP0; )
3726#if EV_STAT_ENABLE
3727 /*TODO: timer is not always active*/
3728 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3729 {
3730 if (types & EV_STAT)
3731 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3732 }
3733 else
3734#endif
3735 if (types & EV_TIMER)
3736 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3737
3738#if EV_PERIODIC_ENABLE
3739 if (types & EV_PERIODIC)
3740 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3741 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3742#endif
3743
3744#if EV_IDLE_ENABLE
3745 if (types & EV_IDLE)
3746 for (j = NUMPRI; i--; )
3747 for (i = idlecnt [j]; i--; )
3748 cb (EV_A_ EV_IDLE, idles [j][i]);
3749#endif
3750
3751#if EV_FORK_ENABLE
3752 if (types & EV_FORK)
3753 for (i = forkcnt; i--; )
3754 if (ev_cb (forks [i]) != embed_fork_cb)
3755 cb (EV_A_ EV_FORK, forks [i]);
3756#endif
3757
3758#if EV_ASYNC_ENABLE
3759 if (types & EV_ASYNC)
3760 for (i = asynccnt; i--; )
3761 cb (EV_A_ EV_ASYNC, asyncs [i]);
3762#endif
3763
3764#if EV_PREPARE_ENABLE
3765 if (types & EV_PREPARE)
3766 for (i = preparecnt; i--; )
3767# if EV_EMBED_ENABLE
3768 if (ev_cb (prepares [i]) != embed_prepare_cb)
3769# endif
3770 cb (EV_A_ EV_PREPARE, prepares [i]);
3771#endif
3772
3773#if EV_CHECK_ENABLE
3774 if (types & EV_CHECK)
3775 for (i = checkcnt; i--; )
3776 cb (EV_A_ EV_CHECK, checks [i]);
3777#endif
3778
3779#if EV_SIGNAL_ENABLE
3780 if (types & EV_SIGNAL)
3781 for (i = 0; i < EV_NSIG - 1; ++i)
3782 for (wl = signals [i].head; wl; )
3783 {
3784 wn = wl->next;
3785 cb (EV_A_ EV_SIGNAL, wl);
3786 wl = wn;
3787 }
3788#endif
3789
3790#if EV_CHILD_ENABLE
3791 if (types & EV_CHILD)
3792 for (i = (EV_PID_HASHSIZE); i--; )
3793 for (wl = childs [i]; wl; )
3794 {
3795 wn = wl->next;
3796 cb (EV_A_ EV_CHILD, wl);
3797 wl = wn;
3798 }
3799#endif
3800/* EV_STAT 0x00001000 /* stat data changed */
3801/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3802}
3803#endif
3804
3017#if EV_MULTIPLICITY 3805#if EV_MULTIPLICITY
3018 #include "ev_wrap.h" 3806 #include "ev_wrap.h"
3019#endif 3807#endif
3020 3808
3021#ifdef __cplusplus 3809#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines