ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.205 by root, Sun Jan 20 15:37:03 2008 UTC vs.
Revision 1.347 by root, Fri Oct 15 22:44:41 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
62# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
64# endif 79# endif
65# endif 80# endif
66 81
82# if HAVE_NANOSLEEP
67# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
70# else 86# else
87# undef EV_USE_NANOSLEEP
71# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
72# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
73# endif 98# endif
74 99
100# if HAVE_POLL && HAVE_POLL_H
75# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
76# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif 103# endif
81# endif
82
83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
85# define EV_USE_POLL 1
86# else 104# else
105# undef EV_USE_POLL
87# define EV_USE_POLL 0 106# define EV_USE_POLL 0
88# endif
89# endif 107# endif
90 108
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
94# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# define EV_USE_EPOLL 0
96# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
97# endif 116# endif
98 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
99# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
105# endif 125# endif
106 126
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
110# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
111# define EV_USE_PORT 0
112# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
113# endif 134# endif
114 135
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
118# else
119# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
120# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
121# endif 143# endif
122 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
123#endif 163#endif
124 164
125#include <math.h> 165#include <math.h>
126#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
127#include <fcntl.h> 168#include <fcntl.h>
128#include <stddef.h> 169#include <stddef.h>
129 170
130#include <stdio.h> 171#include <stdio.h>
131 172
132#include <assert.h> 173#include <assert.h>
133#include <errno.h> 174#include <errno.h>
134#include <sys/types.h> 175#include <sys/types.h>
135#include <time.h> 176#include <time.h>
177#include <limits.h>
136 178
137#include <signal.h> 179#include <signal.h>
138 180
139#ifdef EV_H 181#ifdef EV_H
140# include EV_H 182# include EV_H
145#ifndef _WIN32 187#ifndef _WIN32
146# include <sys/time.h> 188# include <sys/time.h>
147# include <sys/wait.h> 189# include <sys/wait.h>
148# include <unistd.h> 190# include <unistd.h>
149#else 191#else
192# include <io.h>
150# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 194# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
154# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
208
209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
155#endif 244# endif
156 245#endif
157/**/
158 246
159#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
160# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
161#endif 253#endif
162 254
163#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 257#endif
166 258
167#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
168# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
264# endif
169#endif 265#endif
170 266
171#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
173#endif 269#endif
174 270
175#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
176# ifdef _WIN32 272# ifdef _WIN32
177# define EV_USE_POLL 0 273# define EV_USE_POLL 0
178# else 274# else
179# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
180# endif 276# endif
181#endif 277#endif
182 278
183#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
282# else
184# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
284# endif
185#endif 285#endif
186 286
187#ifndef EV_USE_KQUEUE 287#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 288# define EV_USE_KQUEUE 0
189#endif 289#endif
191#ifndef EV_USE_PORT 291#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 292# define EV_USE_PORT 0
193#endif 293#endif
194 294
195#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_INOTIFY EV_FEATURE_OS
298# else
196# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
300# endif
197#endif 301#endif
198 302
199#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
201# define EV_PID_HASHSIZE 1 305#endif
306
307#ifndef EV_INOTIFY_HASHSIZE
308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309#endif
310
311#ifndef EV_USE_EVENTFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_EVENTFD EV_FEATURE_OS
202# else 314# else
203# define EV_PID_HASHSIZE 16 315# define EV_USE_EVENTFD 0
204# endif 316# endif
205#endif 317#endif
206 318
207#ifndef EV_INOTIFY_HASHSIZE 319#ifndef EV_USE_SIGNALFD
208# if EV_MINIMAL 320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
209# define EV_INOTIFY_HASHSIZE 1 321# define EV_USE_SIGNALFD EV_FEATURE_OS
210# else 322# else
211# define EV_INOTIFY_HASHSIZE 16 323# define EV_USE_SIGNALFD 0
212# endif 324# endif
213#endif 325#endif
214 326
215/**/ 327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
216 366
217#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
220#endif 370#endif
234# include <sys/select.h> 384# include <sys/select.h>
235# endif 385# endif
236#endif 386#endif
237 387
238#if EV_USE_INOTIFY 388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
239# include <sys/inotify.h> 391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
240#endif 397#endif
241 398
242#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 400# include <winsock.h>
244#endif 401#endif
245 402
403#if EV_USE_EVENTFD
404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
416# ifdef __cplusplus
417extern "C" {
418# endif
419int (eventfd) (unsigned int initval, int flags);
420# ifdef __cplusplus
421}
422# endif
423#endif
424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
246/**/ 453/**/
454
455#if EV_VERIFY >= 3
456# define EV_FREQUENT_CHECK ev_verify (EV_A)
457#else
458# define EV_FREQUENT_CHECK do { } while (0)
459#endif
247 460
248/* 461/*
249 * This is used to avoid floating point rounding problems. 462 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 463 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 464 * to ensure progress, time-wise, even when rounding
255 */ 468 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257 470
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 471#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 472#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 473
474#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
475#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; tv.tv_nsec = (long)((t - tv.tv_sec) * 1e9); } while (0)
261 476
262#if __GNUC__ >= 4 477#if __GNUC__ >= 4
263# define expect(expr,value) __builtin_expect ((expr),(value)) 478# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 479# define noinline __attribute__ ((noinline))
265#else 480#else
266# define expect(expr,value) (expr) 481# define expect(expr,value) (expr)
267# define noinline 482# define noinline
268# if __STDC_VERSION__ < 199901L 483# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 484# define inline
270# endif 485# endif
271#endif 486#endif
272 487
273#define expect_false(expr) expect ((expr) != 0, 0) 488#define expect_false(expr) expect ((expr) != 0, 0)
274#define expect_true(expr) expect ((expr) != 0, 1) 489#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline 490#define inline_size static inline
276 491
277#if EV_MINIMAL 492#if EV_FEATURE_CODE
493# define inline_speed static inline
494#else
278# define inline_speed static noinline 495# define inline_speed static noinline
496#endif
497
498#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499
500#if EV_MINPRI == EV_MAXPRI
501# define ABSPRI(w) (((W)w), 0)
279#else 502#else
280# define inline_speed static inline
281#endif
282
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 503# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504#endif
285 505
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 506#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 507#define EMPTY2(a,b) /* used to suppress some warnings */
288 508
289typedef ev_watcher *W; 509typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 510typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 511typedef ev_watcher_time *WT;
292 512
513#define ev_active(w) ((W)(w))->active
514#define ev_at(w) ((WT)(w))->at
515
516#if EV_USE_REALTIME
517/* sig_atomic_t is used to avoid per-thread variables or locking but still */
518/* giving it a reasonably high chance of working on typical architectures */
519static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
520#endif
521
293#if EV_USE_MONOTONIC 522#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 523static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
524#endif
525
526#ifndef EV_FD_TO_WIN32_HANDLE
527# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528#endif
529#ifndef EV_WIN32_HANDLE_TO_FD
530# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531#endif
532#ifndef EV_WIN32_CLOSE_FD
533# define EV_WIN32_CLOSE_FD(fd) close (fd)
297#endif 534#endif
298 535
299#ifdef _WIN32 536#ifdef _WIN32
300# include "ev_win32.c" 537# include "ev_win32.c"
301#endif 538#endif
302 539
303/*****************************************************************************/ 540/*****************************************************************************/
304 541
542#if EV_AVOID_STDIO
543static void noinline
544ev_printerr (const char *msg)
545{
546 write (STDERR_FILENO, msg, strlen (msg));
547}
548#endif
549
305static void (*syserr_cb)(const char *msg); 550static void (*syserr_cb)(const char *msg);
306 551
307void 552void
308ev_set_syserr_cb (void (*cb)(const char *msg)) 553ev_set_syserr_cb (void (*cb)(const char *msg))
309{ 554{
310 syserr_cb = cb; 555 syserr_cb = cb;
311} 556}
312 557
313static void noinline 558static void noinline
314syserr (const char *msg) 559ev_syserr (const char *msg)
315{ 560{
316 if (!msg) 561 if (!msg)
317 msg = "(libev) system error"; 562 msg = "(libev) system error";
318 563
319 if (syserr_cb) 564 if (syserr_cb)
320 syserr_cb (msg); 565 syserr_cb (msg);
321 else 566 else
322 { 567 {
568#if EV_AVOID_STDIO
569 const char *err = strerror (errno);
570
571 ev_printerr (msg);
572 ev_printerr (": ");
573 ev_printerr (err);
574 ev_printerr ("\n");
575#else
323 perror (msg); 576 perror (msg);
577#endif
324 abort (); 578 abort ();
325 } 579 }
326} 580}
327 581
582static void *
583ev_realloc_emul (void *ptr, long size)
584{
585#if __GLIBC__
586 return realloc (ptr, size);
587#else
588 /* some systems, notably openbsd and darwin, fail to properly
589 * implement realloc (x, 0) (as required by both ansi c-89 and
590 * the single unix specification, so work around them here.
591 */
592
593 if (size)
594 return realloc (ptr, size);
595
596 free (ptr);
597 return 0;
598#endif
599}
600
328static void *(*alloc)(void *ptr, long size); 601static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 602
330void 603void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 604ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 605{
333 alloc = cb; 606 alloc = cb;
334} 607}
335 608
336inline_speed void * 609inline_speed void *
337ev_realloc (void *ptr, long size) 610ev_realloc (void *ptr, long size)
338{ 611{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 612 ptr = alloc (ptr, size);
340 613
341 if (!ptr && size) 614 if (!ptr && size)
342 { 615 {
616#if EV_AVOID_STDIO
617 ev_printerr ("libev: memory allocation failed, aborting.\n");
618#else
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 619 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620#endif
344 abort (); 621 abort ();
345 } 622 }
346 623
347 return ptr; 624 return ptr;
348} 625}
350#define ev_malloc(size) ev_realloc (0, (size)) 627#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 628#define ev_free(ptr) ev_realloc ((ptr), 0)
352 629
353/*****************************************************************************/ 630/*****************************************************************************/
354 631
632/* set in reify when reification needed */
633#define EV_ANFD_REIFY 1
634
635/* file descriptor info structure */
355typedef struct 636typedef struct
356{ 637{
357 WL head; 638 WL head;
358 unsigned char events; 639 unsigned char events; /* the events watched for */
640 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
641 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 642 unsigned char unused;
643#if EV_USE_EPOLL
644 unsigned int egen; /* generation counter to counter epoll bugs */
645#endif
360#if EV_SELECT_IS_WINSOCKET 646#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 647 SOCKET handle;
362#endif 648#endif
363} ANFD; 649} ANFD;
364 650
651/* stores the pending event set for a given watcher */
365typedef struct 652typedef struct
366{ 653{
367 W w; 654 W w;
368 int events; 655 int events; /* the pending event set for the given watcher */
369} ANPENDING; 656} ANPENDING;
370 657
371#if EV_USE_INOTIFY 658#if EV_USE_INOTIFY
659/* hash table entry per inotify-id */
372typedef struct 660typedef struct
373{ 661{
374 WL head; 662 WL head;
375} ANFS; 663} ANFS;
664#endif
665
666/* Heap Entry */
667#if EV_HEAP_CACHE_AT
668 /* a heap element */
669 typedef struct {
670 ev_tstamp at;
671 WT w;
672 } ANHE;
673
674 #define ANHE_w(he) (he).w /* access watcher, read-write */
675 #define ANHE_at(he) (he).at /* access cached at, read-only */
676 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
677#else
678 /* a heap element */
679 typedef WT ANHE;
680
681 #define ANHE_w(he) (he)
682 #define ANHE_at(he) (he)->at
683 #define ANHE_at_cache(he)
376#endif 684#endif
377 685
378#if EV_MULTIPLICITY 686#if EV_MULTIPLICITY
379 687
380 struct ev_loop 688 struct ev_loop
399 707
400 static int ev_default_loop_ptr; 708 static int ev_default_loop_ptr;
401 709
402#endif 710#endif
403 711
712#if EV_FEATURE_API
713# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715# define EV_INVOKE_PENDING invoke_cb (EV_A)
716#else
717# define EV_RELEASE_CB (void)0
718# define EV_ACQUIRE_CB (void)0
719# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720#endif
721
722#define EVUNLOOP_RECURSE 0x80
723
404/*****************************************************************************/ 724/*****************************************************************************/
405 725
726#ifndef EV_HAVE_EV_TIME
406ev_tstamp 727ev_tstamp
407ev_time (void) 728ev_time (void)
408{ 729{
409#if EV_USE_REALTIME 730#if EV_USE_REALTIME
731 if (expect_true (have_realtime))
732 {
410 struct timespec ts; 733 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 734 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 735 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 736 }
737#endif
738
414 struct timeval tv; 739 struct timeval tv;
415 gettimeofday (&tv, 0); 740 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 741 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 742}
743#endif
419 744
420ev_tstamp inline_size 745inline_size ev_tstamp
421get_clock (void) 746get_clock (void)
422{ 747{
423#if EV_USE_MONOTONIC 748#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 749 if (expect_true (have_monotonic))
425 { 750 {
446 if (delay > 0.) 771 if (delay > 0.)
447 { 772 {
448#if EV_USE_NANOSLEEP 773#if EV_USE_NANOSLEEP
449 struct timespec ts; 774 struct timespec ts;
450 775
451 ts.tv_sec = (time_t)delay; 776 EV_SET_TS (ts, delay);
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0); 777 nanosleep (&ts, 0);
455#elif defined(_WIN32) 778#elif defined(_WIN32)
456 Sleep (delay * 1e3); 779 Sleep ((unsigned long)(delay * 1e3));
457#else 780#else
458 struct timeval tv; 781 struct timeval tv;
459 782
460 tv.tv_sec = (time_t)delay; 783 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 784 /* something not guaranteed by newer posix versions, but guaranteed */
462 785 /* by older ones */
786 EV_SET_TV (tv, delay);
463 select (0, 0, 0, 0, &tv); 787 select (0, 0, 0, 0, &tv);
464#endif 788#endif
465 } 789 }
466} 790}
467 791
468/*****************************************************************************/ 792/*****************************************************************************/
469 793
470int inline_size 794#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
795
796/* find a suitable new size for the given array, */
797/* hopefully by rounding to a nice-to-malloc size */
798inline_size int
471array_nextsize (int elem, int cur, int cnt) 799array_nextsize (int elem, int cur, int cnt)
472{ 800{
473 int ncur = cur + 1; 801 int ncur = cur + 1;
474 802
475 do 803 do
476 ncur <<= 1; 804 ncur <<= 1;
477 while (cnt > ncur); 805 while (cnt > ncur);
478 806
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 807 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 808 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 809 {
482 ncur *= elem; 810 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 811 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 812 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 813 ncur /= elem;
486 } 814 }
487 815
488 return ncur; 816 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 820array_realloc (int elem, void *base, int *cur, int cnt)
493{ 821{
494 *cur = array_nextsize (elem, *cur, cnt); 822 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 823 return ev_realloc (base, elem * *cur);
496} 824}
825
826#define array_init_zero(base,count) \
827 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 828
498#define array_needsize(type,base,cur,cnt,init) \ 829#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 830 if (expect_false ((cnt) > (cur))) \
500 { \ 831 { \
501 int ocur_ = (cur); \ 832 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 844 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 845 }
515#endif 846#endif
516 847
517#define array_free(stem, idx) \ 848#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 849 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 850
520/*****************************************************************************/ 851/*****************************************************************************/
852
853/* dummy callback for pending events */
854static void noinline
855pendingcb (EV_P_ ev_prepare *w, int revents)
856{
857}
521 858
522void noinline 859void noinline
523ev_feed_event (EV_P_ void *w, int revents) 860ev_feed_event (EV_P_ void *w, int revents)
524{ 861{
525 W w_ = (W)w; 862 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 871 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 872 pendings [pri][w_->pending - 1].events = revents;
536 } 873 }
537} 874}
538 875
539void inline_speed 876inline_speed void
877feed_reverse (EV_P_ W w)
878{
879 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880 rfeeds [rfeedcnt++] = w;
881}
882
883inline_size void
884feed_reverse_done (EV_P_ int revents)
885{
886 do
887 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888 while (rfeedcnt);
889}
890
891inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 892queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 893{
542 int i; 894 int i;
543 895
544 for (i = 0; i < eventcnt; ++i) 896 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 897 ev_feed_event (EV_A_ events [i], type);
546} 898}
547 899
548/*****************************************************************************/ 900/*****************************************************************************/
549 901
550void inline_size 902inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 903fd_event_nocheck (EV_P_ int fd, int revents)
565{ 904{
566 ANFD *anfd = anfds + fd; 905 ANFD *anfd = anfds + fd;
567 ev_io *w; 906 ev_io *w;
568 907
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 912 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 913 ev_feed_event (EV_A_ (W)w, ev);
575 } 914 }
576} 915}
577 916
917/* do not submit kernel events for fds that have reify set */
918/* because that means they changed while we were polling for new events */
919inline_speed void
920fd_event (EV_P_ int fd, int revents)
921{
922 ANFD *anfd = anfds + fd;
923
924 if (expect_true (!anfd->reify))
925 fd_event_nocheck (EV_A_ fd, revents);
926}
927
578void 928void
579ev_feed_fd_event (EV_P_ int fd, int revents) 929ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 930{
581 if (fd >= 0 && fd < anfdmax) 931 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 932 fd_event_nocheck (EV_A_ fd, revents);
583} 933}
584 934
585void inline_size 935/* make sure the external fd watch events are in-sync */
936/* with the kernel/libev internal state */
937inline_size void
586fd_reify (EV_P) 938fd_reify (EV_P)
587{ 939{
588 int i; 940 int i;
589 941
590 for (i = 0; i < fdchangecnt; ++i) 942 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 951 events |= (unsigned char)w->events;
600 952
601#if EV_SELECT_IS_WINSOCKET 953#if EV_SELECT_IS_WINSOCKET
602 if (events) 954 if (events)
603 { 955 {
604 unsigned long argp; 956 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 957 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 958 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 959 }
612#endif 960#endif
613 961
614 { 962 {
615 unsigned char o_events = anfd->events; 963 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 964 unsigned char o_reify = anfd->reify;
617 965
618 anfd->reify = 0; 966 anfd->reify = 0;
619 anfd->events = events; 967 anfd->events = events;
620 968
621 if (o_events != events || o_reify & EV_IOFDSET) 969 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 970 backend_modify (EV_A_ fd, o_events, events);
623 } 971 }
624 } 972 }
625 973
626 fdchangecnt = 0; 974 fdchangecnt = 0;
627} 975}
628 976
629void inline_size 977/* something about the given fd changed */
978inline_size void
630fd_change (EV_P_ int fd, int flags) 979fd_change (EV_P_ int fd, int flags)
631{ 980{
632 unsigned char reify = anfds [fd].reify; 981 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 982 anfds [fd].reify |= flags;
634 983
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 987 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 988 fdchanges [fdchangecnt - 1] = fd;
640 } 989 }
641} 990}
642 991
643void inline_speed 992/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
993inline_speed void
644fd_kill (EV_P_ int fd) 994fd_kill (EV_P_ int fd)
645{ 995{
646 ev_io *w; 996 ev_io *w;
647 997
648 while ((w = (ev_io *)anfds [fd].head)) 998 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 1000 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1001 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 1002 }
653} 1003}
654 1004
655int inline_size 1005/* check whether the given fd is actually valid, for error recovery */
1006inline_size int
656fd_valid (int fd) 1007fd_valid (int fd)
657{ 1008{
658#ifdef _WIN32 1009#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 1010 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
660#else 1011#else
661 return fcntl (fd, F_GETFD) != -1; 1012 return fcntl (fd, F_GETFD) != -1;
662#endif 1013#endif
663} 1014}
664 1015
668{ 1019{
669 int fd; 1020 int fd;
670 1021
671 for (fd = 0; fd < anfdmax; ++fd) 1022 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 1023 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 1024 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 1025 fd_kill (EV_A_ fd);
675} 1026}
676 1027
677/* called on ENOMEM in select/poll to kill some fds and retry */ 1028/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 1029static void noinline
682 1033
683 for (fd = anfdmax; fd--; ) 1034 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 1035 if (anfds [fd].events)
685 { 1036 {
686 fd_kill (EV_A_ fd); 1037 fd_kill (EV_A_ fd);
687 return; 1038 break;
688 } 1039 }
689} 1040}
690 1041
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 1042/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 1043static void noinline
696 1047
697 for (fd = 0; fd < anfdmax; ++fd) 1048 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 1049 if (anfds [fd].events)
699 { 1050 {
700 anfds [fd].events = 0; 1051 anfds [fd].events = 0;
1052 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1053 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 1054 }
703} 1055}
704 1056
705/*****************************************************************************/ 1057/* used to prepare libev internal fd's */
706 1058/* this is not fork-safe */
707void inline_speed 1059inline_speed void
708upheap (WT *heap, int k)
709{
710 WT w = heap [k];
711
712 while (k)
713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
719 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1;
721 k = p;
722 }
723
724 heap [k] = w;
725 ((W)heap [k])->active = k + 1;
726}
727
728void inline_speed
729downheap (WT *heap, int N, int k)
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k)
758{
759 upheap (heap, k);
760 downheap (heap, N, k);
761}
762
763/*****************************************************************************/
764
765typedef struct
766{
767 WL head;
768 sig_atomic_t volatile gotsig;
769} ANSIG;
770
771static ANSIG *signals;
772static int signalmax;
773
774static int sigpipe [2];
775static sig_atomic_t volatile gotsig;
776static ev_io sigev;
777
778void inline_size
779signals_init (ANSIG *base, int count)
780{
781 while (count--)
782 {
783 base->head = 0;
784 base->gotsig = 0;
785
786 ++base;
787 }
788}
789
790static void
791sighandler (int signum)
792{
793#if _WIN32
794 signal (signum, sighandler);
795#endif
796
797 signals [signum - 1].gotsig = 1;
798
799 if (!gotsig)
800 {
801 int old_errno = errno;
802 gotsig = 1;
803 write (sigpipe [1], &signum, 1);
804 errno = old_errno;
805 }
806}
807
808void noinline
809ev_feed_signal_event (EV_P_ int signum)
810{
811 WL w;
812
813#if EV_MULTIPLICITY
814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
815#endif
816
817 --signum;
818
819 if (signum < 0 || signum >= signalmax)
820 return;
821
822 signals [signum].gotsig = 0;
823
824 for (w = signals [signum].head; w; w = w->next)
825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
826}
827
828static void
829sigcb (EV_P_ ev_io *iow, int revents)
830{
831 int signum;
832
833 read (sigpipe [0], &revents, 1);
834 gotsig = 0;
835
836 for (signum = signalmax; signum--; )
837 if (signals [signum].gotsig)
838 ev_feed_signal_event (EV_A_ signum + 1);
839}
840
841void inline_speed
842fd_intern (int fd) 1060fd_intern (int fd)
843{ 1061{
844#ifdef _WIN32 1062#ifdef _WIN32
845 int arg = 1; 1063 unsigned long arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1064 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
847#else 1065#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC); 1066 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK); 1067 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif 1068#endif
851} 1069}
852 1070
1071/*****************************************************************************/
1072
1073/*
1074 * the heap functions want a real array index. array index 0 is guaranteed to not
1075 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1076 * the branching factor of the d-tree.
1077 */
1078
1079/*
1080 * at the moment we allow libev the luxury of two heaps,
1081 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1082 * which is more cache-efficient.
1083 * the difference is about 5% with 50000+ watchers.
1084 */
1085#if EV_USE_4HEAP
1086
1087#define DHEAP 4
1088#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1089#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1090#define UPHEAP_DONE(p,k) ((p) == (k))
1091
1092/* away from the root */
1093inline_speed void
1094downheap (ANHE *heap, int N, int k)
1095{
1096 ANHE he = heap [k];
1097 ANHE *E = heap + N + HEAP0;
1098
1099 for (;;)
1100 {
1101 ev_tstamp minat;
1102 ANHE *minpos;
1103 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1104
1105 /* find minimum child */
1106 if (expect_true (pos + DHEAP - 1 < E))
1107 {
1108 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1109 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1110 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1111 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1112 }
1113 else if (pos < E)
1114 {
1115 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1116 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1117 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1118 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1119 }
1120 else
1121 break;
1122
1123 if (ANHE_at (he) <= minat)
1124 break;
1125
1126 heap [k] = *minpos;
1127 ev_active (ANHE_w (*minpos)) = k;
1128
1129 k = minpos - heap;
1130 }
1131
1132 heap [k] = he;
1133 ev_active (ANHE_w (he)) = k;
1134}
1135
1136#else /* 4HEAP */
1137
1138#define HEAP0 1
1139#define HPARENT(k) ((k) >> 1)
1140#define UPHEAP_DONE(p,k) (!(p))
1141
1142/* away from the root */
1143inline_speed void
1144downheap (ANHE *heap, int N, int k)
1145{
1146 ANHE he = heap [k];
1147
1148 for (;;)
1149 {
1150 int c = k << 1;
1151
1152 if (c >= N + HEAP0)
1153 break;
1154
1155 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1156 ? 1 : 0;
1157
1158 if (ANHE_at (he) <= ANHE_at (heap [c]))
1159 break;
1160
1161 heap [k] = heap [c];
1162 ev_active (ANHE_w (heap [k])) = k;
1163
1164 k = c;
1165 }
1166
1167 heap [k] = he;
1168 ev_active (ANHE_w (he)) = k;
1169}
1170#endif
1171
1172/* towards the root */
1173inline_speed void
1174upheap (ANHE *heap, int k)
1175{
1176 ANHE he = heap [k];
1177
1178 for (;;)
1179 {
1180 int p = HPARENT (k);
1181
1182 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1183 break;
1184
1185 heap [k] = heap [p];
1186 ev_active (ANHE_w (heap [k])) = k;
1187 k = p;
1188 }
1189
1190 heap [k] = he;
1191 ev_active (ANHE_w (he)) = k;
1192}
1193
1194/* move an element suitably so it is in a correct place */
1195inline_size void
1196adjustheap (ANHE *heap, int N, int k)
1197{
1198 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1199 upheap (heap, k);
1200 else
1201 downheap (heap, N, k);
1202}
1203
1204/* rebuild the heap: this function is used only once and executed rarely */
1205inline_size void
1206reheap (ANHE *heap, int N)
1207{
1208 int i;
1209
1210 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1211 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1212 for (i = 0; i < N; ++i)
1213 upheap (heap, i + HEAP0);
1214}
1215
1216/*****************************************************************************/
1217
1218/* associate signal watchers to a signal signal */
1219typedef struct
1220{
1221 EV_ATOMIC_T pending;
1222#if EV_MULTIPLICITY
1223 EV_P;
1224#endif
1225 WL head;
1226} ANSIG;
1227
1228static ANSIG signals [EV_NSIG - 1];
1229
1230/*****************************************************************************/
1231
1232#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1233
853static void noinline 1234static void noinline
854siginit (EV_P) 1235evpipe_init (EV_P)
855{ 1236{
1237 if (!ev_is_active (&pipe_w))
1238 {
1239# if EV_USE_EVENTFD
1240 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1241 if (evfd < 0 && errno == EINVAL)
1242 evfd = eventfd (0, 0);
1243
1244 if (evfd >= 0)
1245 {
1246 evpipe [0] = -1;
1247 fd_intern (evfd); /* doing it twice doesn't hurt */
1248 ev_io_set (&pipe_w, evfd, EV_READ);
1249 }
1250 else
1251# endif
1252 {
1253 while (pipe (evpipe))
1254 ev_syserr ("(libev) error creating signal/async pipe");
1255
856 fd_intern (sigpipe [0]); 1256 fd_intern (evpipe [0]);
857 fd_intern (sigpipe [1]); 1257 fd_intern (evpipe [1]);
1258 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1259 }
858 1260
859 ev_io_set (&sigev, sigpipe [0], EV_READ);
860 ev_io_start (EV_A_ &sigev); 1261 ev_io_start (EV_A_ &pipe_w);
861 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1262 ev_unref (EV_A); /* watcher should not keep loop alive */
1263 }
1264}
1265
1266inline_size void
1267evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1268{
1269 if (!*flag)
1270 {
1271 int old_errno = errno; /* save errno because write might clobber it */
1272 char dummy;
1273
1274 *flag = 1;
1275
1276#if EV_USE_EVENTFD
1277 if (evfd >= 0)
1278 {
1279 uint64_t counter = 1;
1280 write (evfd, &counter, sizeof (uint64_t));
1281 }
1282 else
1283#endif
1284 /* win32 people keep sending patches that change this write() to send() */
1285 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1286 /* so when you think this write should be a send instead, please find out */
1287 /* where your send() is from - it's definitely not the microsoft send, and */
1288 /* tell me. thank you. */
1289 write (evpipe [1], &dummy, 1);
1290
1291 errno = old_errno;
1292 }
1293}
1294
1295/* called whenever the libev signal pipe */
1296/* got some events (signal, async) */
1297static void
1298pipecb (EV_P_ ev_io *iow, int revents)
1299{
1300 int i;
1301
1302#if EV_USE_EVENTFD
1303 if (evfd >= 0)
1304 {
1305 uint64_t counter;
1306 read (evfd, &counter, sizeof (uint64_t));
1307 }
1308 else
1309#endif
1310 {
1311 char dummy;
1312 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1313 read (evpipe [0], &dummy, 1);
1314 }
1315
1316 if (sig_pending)
1317 {
1318 sig_pending = 0;
1319
1320 for (i = EV_NSIG - 1; i--; )
1321 if (expect_false (signals [i].pending))
1322 ev_feed_signal_event (EV_A_ i + 1);
1323 }
1324
1325#if EV_ASYNC_ENABLE
1326 if (async_pending)
1327 {
1328 async_pending = 0;
1329
1330 for (i = asynccnt; i--; )
1331 if (asyncs [i]->sent)
1332 {
1333 asyncs [i]->sent = 0;
1334 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1335 }
1336 }
1337#endif
862} 1338}
863 1339
864/*****************************************************************************/ 1340/*****************************************************************************/
865 1341
1342static void
1343ev_sighandler (int signum)
1344{
1345#if EV_MULTIPLICITY
1346 EV_P = signals [signum - 1].loop;
1347#endif
1348
1349#ifdef _WIN32
1350 signal (signum, ev_sighandler);
1351#endif
1352
1353 signals [signum - 1].pending = 1;
1354 evpipe_write (EV_A_ &sig_pending);
1355}
1356
1357void noinline
1358ev_feed_signal_event (EV_P_ int signum)
1359{
1360 WL w;
1361
1362 if (expect_false (signum <= 0 || signum > EV_NSIG))
1363 return;
1364
1365 --signum;
1366
1367#if EV_MULTIPLICITY
1368 /* it is permissible to try to feed a signal to the wrong loop */
1369 /* or, likely more useful, feeding a signal nobody is waiting for */
1370
1371 if (expect_false (signals [signum].loop != EV_A))
1372 return;
1373#endif
1374
1375 signals [signum].pending = 0;
1376
1377 for (w = signals [signum].head; w; w = w->next)
1378 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1379}
1380
1381#if EV_USE_SIGNALFD
1382static void
1383sigfdcb (EV_P_ ev_io *iow, int revents)
1384{
1385 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1386
1387 for (;;)
1388 {
1389 ssize_t res = read (sigfd, si, sizeof (si));
1390
1391 /* not ISO-C, as res might be -1, but works with SuS */
1392 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1393 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1394
1395 if (res < (ssize_t)sizeof (si))
1396 break;
1397 }
1398}
1399#endif
1400
1401#endif
1402
1403/*****************************************************************************/
1404
1405#if EV_CHILD_ENABLE
866static WL childs [EV_PID_HASHSIZE]; 1406static WL childs [EV_PID_HASHSIZE];
867 1407
868#ifndef _WIN32
869
870static ev_signal childev; 1408static ev_signal childev;
871 1409
872void inline_speed 1410#ifndef WIFCONTINUED
1411# define WIFCONTINUED(status) 0
1412#endif
1413
1414/* handle a single child status event */
1415inline_speed void
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1416child_reap (EV_P_ int chain, int pid, int status)
874{ 1417{
875 ev_child *w; 1418 ev_child *w;
1419 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
876 1420
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1421 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1422 {
878 if (w->pid == pid || !w->pid) 1423 if ((w->pid == pid || !w->pid)
1424 && (!traced || (w->flags & 1)))
879 { 1425 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1426 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
881 w->rpid = pid; 1427 w->rpid = pid;
882 w->rstatus = status; 1428 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1429 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 } 1430 }
1431 }
885} 1432}
886 1433
887#ifndef WCONTINUED 1434#ifndef WCONTINUED
888# define WCONTINUED 0 1435# define WCONTINUED 0
889#endif 1436#endif
890 1437
1438/* called on sigchld etc., calls waitpid */
891static void 1439static void
892childcb (EV_P_ ev_signal *sw, int revents) 1440childcb (EV_P_ ev_signal *sw, int revents)
893{ 1441{
894 int pid, status; 1442 int pid, status;
895 1443
898 if (!WCONTINUED 1446 if (!WCONTINUED
899 || errno != EINVAL 1447 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1448 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return; 1449 return;
902 1450
903 /* make sure we are called again until all childs have been reaped */ 1451 /* make sure we are called again until all children have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */ 1452 /* we need to do it this way so that the callback gets called before we continue */
905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1453 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
906 1454
907 child_reap (EV_A_ sw, pid, pid, status); 1455 child_reap (EV_A_ pid, pid, status);
908 if (EV_PID_HASHSIZE > 1) 1456 if ((EV_PID_HASHSIZE) > 1)
909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1457 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
910} 1458}
911 1459
912#endif 1460#endif
913 1461
914/*****************************************************************************/ 1462/*****************************************************************************/
976 /* kqueue is borked on everything but netbsd apparently */ 1524 /* kqueue is borked on everything but netbsd apparently */
977 /* it usually doesn't work correctly on anything but sockets and pipes */ 1525 /* it usually doesn't work correctly on anything but sockets and pipes */
978 flags &= ~EVBACKEND_KQUEUE; 1526 flags &= ~EVBACKEND_KQUEUE;
979#endif 1527#endif
980#ifdef __APPLE__ 1528#ifdef __APPLE__
981 // flags &= ~EVBACKEND_KQUEUE; for documentation 1529 /* only select works correctly on that "unix-certified" platform */
982 flags &= ~EVBACKEND_POLL; 1530 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1531 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1532#endif
1533#ifdef __FreeBSD__
1534 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
983#endif 1535#endif
984 1536
985 return flags; 1537 return flags;
986} 1538}
987 1539
1001ev_backend (EV_P) 1553ev_backend (EV_P)
1002{ 1554{
1003 return backend; 1555 return backend;
1004} 1556}
1005 1557
1558#if EV_FEATURE_API
1006unsigned int 1559unsigned int
1007ev_loop_count (EV_P) 1560ev_iteration (EV_P)
1008{ 1561{
1009 return loop_count; 1562 return loop_count;
1010} 1563}
1011 1564
1565unsigned int
1566ev_depth (EV_P)
1567{
1568 return loop_depth;
1569}
1570
1012void 1571void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1572ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{ 1573{
1015 io_blocktime = interval; 1574 io_blocktime = interval;
1016} 1575}
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1578ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{ 1579{
1021 timeout_blocktime = interval; 1580 timeout_blocktime = interval;
1022} 1581}
1023 1582
1583void
1584ev_set_userdata (EV_P_ void *data)
1585{
1586 userdata = data;
1587}
1588
1589void *
1590ev_userdata (EV_P)
1591{
1592 return userdata;
1593}
1594
1595void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1596{
1597 invoke_cb = invoke_pending_cb;
1598}
1599
1600void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1601{
1602 release_cb = release;
1603 acquire_cb = acquire;
1604}
1605#endif
1606
1607/* initialise a loop structure, must be zero-initialised */
1024static void noinline 1608static void noinline
1025loop_init (EV_P_ unsigned int flags) 1609loop_init (EV_P_ unsigned int flags)
1026{ 1610{
1027 if (!backend) 1611 if (!backend)
1028 { 1612 {
1613#if EV_USE_REALTIME
1614 if (!have_realtime)
1615 {
1616 struct timespec ts;
1617
1618 if (!clock_gettime (CLOCK_REALTIME, &ts))
1619 have_realtime = 1;
1620 }
1621#endif
1622
1029#if EV_USE_MONOTONIC 1623#if EV_USE_MONOTONIC
1624 if (!have_monotonic)
1030 { 1625 {
1031 struct timespec ts; 1626 struct timespec ts;
1627
1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1628 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1033 have_monotonic = 1; 1629 have_monotonic = 1;
1034 } 1630 }
1035#endif 1631#endif
1036
1037 ev_rt_now = ev_time ();
1038 mn_now = get_clock ();
1039 now_floor = mn_now;
1040 rtmn_diff = ev_rt_now - mn_now;
1041
1042 io_blocktime = 0.;
1043 timeout_blocktime = 0.;
1044 1632
1045 /* pid check not overridable via env */ 1633 /* pid check not overridable via env */
1046#ifndef _WIN32 1634#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK) 1635 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid (); 1636 curpid = getpid ();
1051 if (!(flags & EVFLAG_NOENV) 1639 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure () 1640 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS")) 1641 && getenv ("LIBEV_FLAGS"))
1054 flags = atoi (getenv ("LIBEV_FLAGS")); 1642 flags = atoi (getenv ("LIBEV_FLAGS"));
1055 1643
1644 ev_rt_now = ev_time ();
1645 mn_now = get_clock ();
1646 now_floor = mn_now;
1647 rtmn_diff = ev_rt_now - mn_now;
1648#if EV_FEATURE_API
1649 invoke_cb = ev_invoke_pending;
1650#endif
1651
1652 io_blocktime = 0.;
1653 timeout_blocktime = 0.;
1654 backend = 0;
1655 backend_fd = -1;
1656 sig_pending = 0;
1657#if EV_ASYNC_ENABLE
1658 async_pending = 0;
1659#endif
1660#if EV_USE_INOTIFY
1661 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1662#endif
1663#if EV_USE_SIGNALFD
1664 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1665#endif
1666
1056 if (!(flags & 0x0000ffffUL)) 1667 if (!(flags & 0x0000ffffU))
1057 flags |= ev_recommended_backends (); 1668 flags |= ev_recommended_backends ();
1058
1059 backend = 0;
1060 backend_fd = -1;
1061#if EV_USE_INOTIFY
1062 fs_fd = -2;
1063#endif
1064 1669
1065#if EV_USE_PORT 1670#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1671 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1067#endif 1672#endif
1068#if EV_USE_KQUEUE 1673#if EV_USE_KQUEUE
1076#endif 1681#endif
1077#if EV_USE_SELECT 1682#if EV_USE_SELECT
1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1683 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1079#endif 1684#endif
1080 1685
1686 ev_prepare_init (&pending_w, pendingcb);
1687
1688#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1081 ev_init (&sigev, sigcb); 1689 ev_init (&pipe_w, pipecb);
1082 ev_set_priority (&sigev, EV_MAXPRI); 1690 ev_set_priority (&pipe_w, EV_MAXPRI);
1691#endif
1083 } 1692 }
1084} 1693}
1085 1694
1695/* free up a loop structure */
1086static void noinline 1696static void noinline
1087loop_destroy (EV_P) 1697loop_destroy (EV_P)
1088{ 1698{
1089 int i; 1699 int i;
1700
1701 if (ev_is_active (&pipe_w))
1702 {
1703 /*ev_ref (EV_A);*/
1704 /*ev_io_stop (EV_A_ &pipe_w);*/
1705
1706#if EV_USE_EVENTFD
1707 if (evfd >= 0)
1708 close (evfd);
1709#endif
1710
1711 if (evpipe [0] >= 0)
1712 {
1713 EV_WIN32_CLOSE_FD (evpipe [0]);
1714 EV_WIN32_CLOSE_FD (evpipe [1]);
1715 }
1716 }
1717
1718#if EV_USE_SIGNALFD
1719 if (ev_is_active (&sigfd_w))
1720 close (sigfd);
1721#endif
1090 1722
1091#if EV_USE_INOTIFY 1723#if EV_USE_INOTIFY
1092 if (fs_fd >= 0) 1724 if (fs_fd >= 0)
1093 close (fs_fd); 1725 close (fs_fd);
1094#endif 1726#endif
1118#if EV_IDLE_ENABLE 1750#if EV_IDLE_ENABLE
1119 array_free (idle, [i]); 1751 array_free (idle, [i]);
1120#endif 1752#endif
1121 } 1753 }
1122 1754
1123 ev_free (anfds); anfdmax = 0; 1755 ev_free (anfds); anfds = 0; anfdmax = 0;
1124 1756
1125 /* have to use the microsoft-never-gets-it-right macro */ 1757 /* have to use the microsoft-never-gets-it-right macro */
1758 array_free (rfeed, EMPTY);
1126 array_free (fdchange, EMPTY); 1759 array_free (fdchange, EMPTY);
1127 array_free (timer, EMPTY); 1760 array_free (timer, EMPTY);
1128#if EV_PERIODIC_ENABLE 1761#if EV_PERIODIC_ENABLE
1129 array_free (periodic, EMPTY); 1762 array_free (periodic, EMPTY);
1130#endif 1763#endif
1131#if EV_FORK_ENABLE 1764#if EV_FORK_ENABLE
1132 array_free (fork, EMPTY); 1765 array_free (fork, EMPTY);
1133#endif 1766#endif
1134 array_free (prepare, EMPTY); 1767 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY); 1768 array_free (check, EMPTY);
1769#if EV_ASYNC_ENABLE
1770 array_free (async, EMPTY);
1771#endif
1136 1772
1137 backend = 0; 1773 backend = 0;
1138} 1774}
1139 1775
1776#if EV_USE_INOTIFY
1140void inline_size infy_fork (EV_P); 1777inline_size void infy_fork (EV_P);
1778#endif
1141 1779
1142void inline_size 1780inline_size void
1143loop_fork (EV_P) 1781loop_fork (EV_P)
1144{ 1782{
1145#if EV_USE_PORT 1783#if EV_USE_PORT
1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1784 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1147#endif 1785#endif
1153#endif 1791#endif
1154#if EV_USE_INOTIFY 1792#if EV_USE_INOTIFY
1155 infy_fork (EV_A); 1793 infy_fork (EV_A);
1156#endif 1794#endif
1157 1795
1158 if (ev_is_active (&sigev)) 1796 if (ev_is_active (&pipe_w))
1159 { 1797 {
1160 /* default loop */ 1798 /* this "locks" the handlers against writing to the pipe */
1799 /* while we modify the fd vars */
1800 sig_pending = 1;
1801#if EV_ASYNC_ENABLE
1802 async_pending = 1;
1803#endif
1161 1804
1162 ev_ref (EV_A); 1805 ev_ref (EV_A);
1163 ev_io_stop (EV_A_ &sigev); 1806 ev_io_stop (EV_A_ &pipe_w);
1164 close (sigpipe [0]);
1165 close (sigpipe [1]);
1166 1807
1167 while (pipe (sigpipe)) 1808#if EV_USE_EVENTFD
1168 syserr ("(libev) error creating pipe"); 1809 if (evfd >= 0)
1810 close (evfd);
1811#endif
1169 1812
1813 if (evpipe [0] >= 0)
1814 {
1815 EV_WIN32_CLOSE_FD (evpipe [0]);
1816 EV_WIN32_CLOSE_FD (evpipe [1]);
1817 }
1818
1819#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1170 siginit (EV_A); 1820 evpipe_init (EV_A);
1821 /* now iterate over everything, in case we missed something */
1171 sigcb (EV_A_ &sigev, EV_READ); 1822 pipecb (EV_A_ &pipe_w, EV_READ);
1823#endif
1172 } 1824 }
1173 1825
1174 postfork = 0; 1826 postfork = 0;
1175} 1827}
1176 1828
1177#if EV_MULTIPLICITY 1829#if EV_MULTIPLICITY
1830
1178struct ev_loop * 1831struct ev_loop *
1179ev_loop_new (unsigned int flags) 1832ev_loop_new (unsigned int flags)
1180{ 1833{
1181 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1834 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1182 1835
1183 memset (loop, 0, sizeof (struct ev_loop)); 1836 memset (EV_A, 0, sizeof (struct ev_loop));
1184
1185 loop_init (EV_A_ flags); 1837 loop_init (EV_A_ flags);
1186 1838
1187 if (ev_backend (EV_A)) 1839 if (ev_backend (EV_A))
1188 return loop; 1840 return EV_A;
1189 1841
1190 return 0; 1842 return 0;
1191} 1843}
1192 1844
1193void 1845void
1200void 1852void
1201ev_loop_fork (EV_P) 1853ev_loop_fork (EV_P)
1202{ 1854{
1203 postfork = 1; /* must be in line with ev_default_fork */ 1855 postfork = 1; /* must be in line with ev_default_fork */
1204} 1856}
1857#endif /* multiplicity */
1205 1858
1859#if EV_VERIFY
1860static void noinline
1861verify_watcher (EV_P_ W w)
1862{
1863 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1864
1865 if (w->pending)
1866 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1867}
1868
1869static void noinline
1870verify_heap (EV_P_ ANHE *heap, int N)
1871{
1872 int i;
1873
1874 for (i = HEAP0; i < N + HEAP0; ++i)
1875 {
1876 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1877 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1878 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1879
1880 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1881 }
1882}
1883
1884static void noinline
1885array_verify (EV_P_ W *ws, int cnt)
1886{
1887 while (cnt--)
1888 {
1889 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1890 verify_watcher (EV_A_ ws [cnt]);
1891 }
1892}
1893#endif
1894
1895#if EV_FEATURE_API
1896void
1897ev_verify (EV_P)
1898{
1899#if EV_VERIFY
1900 int i;
1901 WL w;
1902
1903 assert (activecnt >= -1);
1904
1905 assert (fdchangemax >= fdchangecnt);
1906 for (i = 0; i < fdchangecnt; ++i)
1907 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1908
1909 assert (anfdmax >= 0);
1910 for (i = 0; i < anfdmax; ++i)
1911 for (w = anfds [i].head; w; w = w->next)
1912 {
1913 verify_watcher (EV_A_ (W)w);
1914 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1915 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1916 }
1917
1918 assert (timermax >= timercnt);
1919 verify_heap (EV_A_ timers, timercnt);
1920
1921#if EV_PERIODIC_ENABLE
1922 assert (periodicmax >= periodiccnt);
1923 verify_heap (EV_A_ periodics, periodiccnt);
1924#endif
1925
1926 for (i = NUMPRI; i--; )
1927 {
1928 assert (pendingmax [i] >= pendingcnt [i]);
1929#if EV_IDLE_ENABLE
1930 assert (idleall >= 0);
1931 assert (idlemax [i] >= idlecnt [i]);
1932 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1933#endif
1934 }
1935
1936#if EV_FORK_ENABLE
1937 assert (forkmax >= forkcnt);
1938 array_verify (EV_A_ (W *)forks, forkcnt);
1939#endif
1940
1941#if EV_ASYNC_ENABLE
1942 assert (asyncmax >= asynccnt);
1943 array_verify (EV_A_ (W *)asyncs, asynccnt);
1944#endif
1945
1946#if EV_PREPARE_ENABLE
1947 assert (preparemax >= preparecnt);
1948 array_verify (EV_A_ (W *)prepares, preparecnt);
1949#endif
1950
1951#if EV_CHECK_ENABLE
1952 assert (checkmax >= checkcnt);
1953 array_verify (EV_A_ (W *)checks, checkcnt);
1954#endif
1955
1956# if 0
1957#if EV_CHILD_ENABLE
1958 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1959 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1960#endif
1961# endif
1962#endif
1963}
1206#endif 1964#endif
1207 1965
1208#if EV_MULTIPLICITY 1966#if EV_MULTIPLICITY
1209struct ev_loop * 1967struct ev_loop *
1210ev_default_loop_init (unsigned int flags) 1968ev_default_loop_init (unsigned int flags)
1211#else 1969#else
1212int 1970int
1213ev_default_loop (unsigned int flags) 1971ev_default_loop (unsigned int flags)
1214#endif 1972#endif
1215{ 1973{
1216 if (sigpipe [0] == sigpipe [1])
1217 if (pipe (sigpipe))
1218 return 0;
1219
1220 if (!ev_default_loop_ptr) 1974 if (!ev_default_loop_ptr)
1221 { 1975 {
1222#if EV_MULTIPLICITY 1976#if EV_MULTIPLICITY
1223 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1977 EV_P = ev_default_loop_ptr = &default_loop_struct;
1224#else 1978#else
1225 ev_default_loop_ptr = 1; 1979 ev_default_loop_ptr = 1;
1226#endif 1980#endif
1227 1981
1228 loop_init (EV_A_ flags); 1982 loop_init (EV_A_ flags);
1229 1983
1230 if (ev_backend (EV_A)) 1984 if (ev_backend (EV_A))
1231 { 1985 {
1232 siginit (EV_A); 1986#if EV_CHILD_ENABLE
1233
1234#ifndef _WIN32
1235 ev_signal_init (&childev, childcb, SIGCHLD); 1987 ev_signal_init (&childev, childcb, SIGCHLD);
1236 ev_set_priority (&childev, EV_MAXPRI); 1988 ev_set_priority (&childev, EV_MAXPRI);
1237 ev_signal_start (EV_A_ &childev); 1989 ev_signal_start (EV_A_ &childev);
1238 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1990 ev_unref (EV_A); /* child watcher should not keep loop alive */
1239#endif 1991#endif
1247 1999
1248void 2000void
1249ev_default_destroy (void) 2001ev_default_destroy (void)
1250{ 2002{
1251#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr; 2004 EV_P = ev_default_loop_ptr;
1253#endif 2005#endif
1254 2006
1255#ifndef _WIN32 2007 ev_default_loop_ptr = 0;
2008
2009#if EV_CHILD_ENABLE
1256 ev_ref (EV_A); /* child watcher */ 2010 ev_ref (EV_A); /* child watcher */
1257 ev_signal_stop (EV_A_ &childev); 2011 ev_signal_stop (EV_A_ &childev);
1258#endif 2012#endif
1259 2013
1260 ev_ref (EV_A); /* signal watcher */
1261 ev_io_stop (EV_A_ &sigev);
1262
1263 close (sigpipe [0]); sigpipe [0] = 0;
1264 close (sigpipe [1]); sigpipe [1] = 0;
1265
1266 loop_destroy (EV_A); 2014 loop_destroy (EV_A);
1267} 2015}
1268 2016
1269void 2017void
1270ev_default_fork (void) 2018ev_default_fork (void)
1271{ 2019{
1272#if EV_MULTIPLICITY 2020#if EV_MULTIPLICITY
1273 struct ev_loop *loop = ev_default_loop_ptr; 2021 EV_P = ev_default_loop_ptr;
1274#endif 2022#endif
1275 2023
1276 if (backend)
1277 postfork = 1; /* must be in line with ev_loop_fork */ 2024 postfork = 1; /* must be in line with ev_loop_fork */
1278} 2025}
1279 2026
1280/*****************************************************************************/ 2027/*****************************************************************************/
1281 2028
1282void 2029void
1283ev_invoke (EV_P_ void *w, int revents) 2030ev_invoke (EV_P_ void *w, int revents)
1284{ 2031{
1285 EV_CB_INVOKE ((W)w, revents); 2032 EV_CB_INVOKE ((W)w, revents);
1286} 2033}
1287 2034
1288void inline_speed 2035unsigned int
1289call_pending (EV_P) 2036ev_pending_count (EV_P)
2037{
2038 int pri;
2039 unsigned int count = 0;
2040
2041 for (pri = NUMPRI; pri--; )
2042 count += pendingcnt [pri];
2043
2044 return count;
2045}
2046
2047void noinline
2048ev_invoke_pending (EV_P)
1290{ 2049{
1291 int pri; 2050 int pri;
1292 2051
1293 for (pri = NUMPRI; pri--; ) 2052 for (pri = NUMPRI; pri--; )
1294 while (pendingcnt [pri]) 2053 while (pendingcnt [pri])
1295 { 2054 {
1296 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2055 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1297 2056
1298 if (expect_true (p->w))
1299 {
1300 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2057 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2058 /* ^ this is no longer true, as pending_w could be here */
1301 2059
1302 p->w->pending = 0; 2060 p->w->pending = 0;
1303 EV_CB_INVOKE (p->w, p->events); 2061 EV_CB_INVOKE (p->w, p->events);
1304 } 2062 EV_FREQUENT_CHECK;
1305 } 2063 }
1306} 2064}
1307 2065
1308void inline_size
1309timers_reify (EV_P)
1310{
1311 while (timercnt && ((WT)timers [0])->at <= mn_now)
1312 {
1313 ev_timer *w = (ev_timer *)timers [0];
1314
1315 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1316
1317 /* first reschedule or stop timer */
1318 if (w->repeat)
1319 {
1320 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1321
1322 ((WT)w)->at += w->repeat;
1323 if (((WT)w)->at < mn_now)
1324 ((WT)w)->at = mn_now;
1325
1326 downheap (timers, timercnt, 0);
1327 }
1328 else
1329 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1330
1331 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1332 }
1333}
1334
1335#if EV_PERIODIC_ENABLE
1336void inline_size
1337periodics_reify (EV_P)
1338{
1339 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1340 {
1341 ev_periodic *w = (ev_periodic *)periodics [0];
1342
1343 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1344
1345 /* first reschedule or stop timer */
1346 if (w->reschedule_cb)
1347 {
1348 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1349 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1350 downheap (periodics, periodiccnt, 0);
1351 }
1352 else if (w->interval)
1353 {
1354 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1355 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1356 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1357 downheap (periodics, periodiccnt, 0);
1358 }
1359 else
1360 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1361
1362 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1363 }
1364}
1365
1366static void noinline
1367periodics_reschedule (EV_P)
1368{
1369 int i;
1370
1371 /* adjust periodics after time jump */
1372 for (i = 0; i < periodiccnt; ++i)
1373 {
1374 ev_periodic *w = (ev_periodic *)periodics [i];
1375
1376 if (w->reschedule_cb)
1377 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1378 else if (w->interval)
1379 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1380 }
1381
1382 /* now rebuild the heap */
1383 for (i = periodiccnt >> 1; i--; )
1384 downheap (periodics, periodiccnt, i);
1385}
1386#endif
1387
1388#if EV_IDLE_ENABLE 2066#if EV_IDLE_ENABLE
1389void inline_size 2067/* make idle watchers pending. this handles the "call-idle */
2068/* only when higher priorities are idle" logic */
2069inline_size void
1390idle_reify (EV_P) 2070idle_reify (EV_P)
1391{ 2071{
1392 if (expect_false (idleall)) 2072 if (expect_false (idleall))
1393 { 2073 {
1394 int pri; 2074 int pri;
1406 } 2086 }
1407 } 2087 }
1408} 2088}
1409#endif 2089#endif
1410 2090
1411void inline_speed 2091/* make timers pending */
2092inline_size void
2093timers_reify (EV_P)
2094{
2095 EV_FREQUENT_CHECK;
2096
2097 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2098 {
2099 do
2100 {
2101 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2102
2103 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2104
2105 /* first reschedule or stop timer */
2106 if (w->repeat)
2107 {
2108 ev_at (w) += w->repeat;
2109 if (ev_at (w) < mn_now)
2110 ev_at (w) = mn_now;
2111
2112 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2113
2114 ANHE_at_cache (timers [HEAP0]);
2115 downheap (timers, timercnt, HEAP0);
2116 }
2117 else
2118 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2119
2120 EV_FREQUENT_CHECK;
2121 feed_reverse (EV_A_ (W)w);
2122 }
2123 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2124
2125 feed_reverse_done (EV_A_ EV_TIMER);
2126 }
2127}
2128
2129#if EV_PERIODIC_ENABLE
2130/* make periodics pending */
2131inline_size void
2132periodics_reify (EV_P)
2133{
2134 EV_FREQUENT_CHECK;
2135
2136 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2137 {
2138 int feed_count = 0;
2139
2140 do
2141 {
2142 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2143
2144 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2145
2146 /* first reschedule or stop timer */
2147 if (w->reschedule_cb)
2148 {
2149 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2150
2151 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2152
2153 ANHE_at_cache (periodics [HEAP0]);
2154 downheap (periodics, periodiccnt, HEAP0);
2155 }
2156 else if (w->interval)
2157 {
2158 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2159 /* if next trigger time is not sufficiently in the future, put it there */
2160 /* this might happen because of floating point inexactness */
2161 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2162 {
2163 ev_at (w) += w->interval;
2164
2165 /* if interval is unreasonably low we might still have a time in the past */
2166 /* so correct this. this will make the periodic very inexact, but the user */
2167 /* has effectively asked to get triggered more often than possible */
2168 if (ev_at (w) < ev_rt_now)
2169 ev_at (w) = ev_rt_now;
2170 }
2171
2172 ANHE_at_cache (periodics [HEAP0]);
2173 downheap (periodics, periodiccnt, HEAP0);
2174 }
2175 else
2176 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2177
2178 EV_FREQUENT_CHECK;
2179 feed_reverse (EV_A_ (W)w);
2180 }
2181 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2182
2183 feed_reverse_done (EV_A_ EV_PERIODIC);
2184 }
2185}
2186
2187/* simply recalculate all periodics */
2188/* TODO: maybe ensure that at least one event happens when jumping forward? */
2189static void noinline
2190periodics_reschedule (EV_P)
2191{
2192 int i;
2193
2194 /* adjust periodics after time jump */
2195 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2196 {
2197 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2198
2199 if (w->reschedule_cb)
2200 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2201 else if (w->interval)
2202 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2203
2204 ANHE_at_cache (periodics [i]);
2205 }
2206
2207 reheap (periodics, periodiccnt);
2208}
2209#endif
2210
2211/* adjust all timers by a given offset */
2212static void noinline
2213timers_reschedule (EV_P_ ev_tstamp adjust)
2214{
2215 int i;
2216
2217 for (i = 0; i < timercnt; ++i)
2218 {
2219 ANHE *he = timers + i + HEAP0;
2220 ANHE_w (*he)->at += adjust;
2221 ANHE_at_cache (*he);
2222 }
2223}
2224
2225/* fetch new monotonic and realtime times from the kernel */
2226/* also detect if there was a timejump, and act accordingly */
2227inline_speed void
1412time_update (EV_P_ ev_tstamp max_block) 2228time_update (EV_P_ ev_tstamp max_block)
1413{ 2229{
1414 int i;
1415
1416#if EV_USE_MONOTONIC 2230#if EV_USE_MONOTONIC
1417 if (expect_true (have_monotonic)) 2231 if (expect_true (have_monotonic))
1418 { 2232 {
2233 int i;
1419 ev_tstamp odiff = rtmn_diff; 2234 ev_tstamp odiff = rtmn_diff;
1420 2235
1421 mn_now = get_clock (); 2236 mn_now = get_clock ();
1422 2237
1423 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2238 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1441 */ 2256 */
1442 for (i = 4; --i; ) 2257 for (i = 4; --i; )
1443 { 2258 {
1444 rtmn_diff = ev_rt_now - mn_now; 2259 rtmn_diff = ev_rt_now - mn_now;
1445 2260
1446 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2261 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1447 return; /* all is well */ 2262 return; /* all is well */
1448 2263
1449 ev_rt_now = ev_time (); 2264 ev_rt_now = ev_time ();
1450 mn_now = get_clock (); 2265 mn_now = get_clock ();
1451 now_floor = mn_now; 2266 now_floor = mn_now;
1452 } 2267 }
1453 2268
2269 /* no timer adjustment, as the monotonic clock doesn't jump */
2270 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1454# if EV_PERIODIC_ENABLE 2271# if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A); 2272 periodics_reschedule (EV_A);
1456# endif 2273# endif
1457 /* no timer adjustment, as the monotonic clock doesn't jump */
1458 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1459 } 2274 }
1460 else 2275 else
1461#endif 2276#endif
1462 { 2277 {
1463 ev_rt_now = ev_time (); 2278 ev_rt_now = ev_time ();
1464 2279
1465 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2280 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1466 { 2281 {
2282 /* adjust timers. this is easy, as the offset is the same for all of them */
2283 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1467#if EV_PERIODIC_ENABLE 2284#if EV_PERIODIC_ENABLE
1468 periodics_reschedule (EV_A); 2285 periodics_reschedule (EV_A);
1469#endif 2286#endif
1470 /* adjust timers. this is easy, as the offset is the same for all of them */
1471 for (i = 0; i < timercnt; ++i)
1472 ((WT)timers [i])->at += ev_rt_now - mn_now;
1473 } 2287 }
1474 2288
1475 mn_now = ev_rt_now; 2289 mn_now = ev_rt_now;
1476 } 2290 }
1477} 2291}
1478 2292
1479void 2293void
1480ev_ref (EV_P)
1481{
1482 ++activecnt;
1483}
1484
1485void
1486ev_unref (EV_P)
1487{
1488 --activecnt;
1489}
1490
1491static int loop_done;
1492
1493void
1494ev_loop (EV_P_ int flags) 2294ev_loop (EV_P_ int flags)
1495{ 2295{
1496 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2296#if EV_FEATURE_API
1497 ? EVUNLOOP_ONE 2297 ++loop_depth;
1498 : EVUNLOOP_CANCEL; 2298#endif
1499 2299
2300 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2301
2302 loop_done = EVUNLOOP_CANCEL;
2303
1500 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2304 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1501 2305
1502 do 2306 do
1503 { 2307 {
2308#if EV_VERIFY >= 2
2309 ev_verify (EV_A);
2310#endif
2311
1504#ifndef _WIN32 2312#ifndef _WIN32
1505 if (expect_false (curpid)) /* penalise the forking check even more */ 2313 if (expect_false (curpid)) /* penalise the forking check even more */
1506 if (expect_false (getpid () != curpid)) 2314 if (expect_false (getpid () != curpid))
1507 { 2315 {
1508 curpid = getpid (); 2316 curpid = getpid ();
1514 /* we might have forked, so queue fork handlers */ 2322 /* we might have forked, so queue fork handlers */
1515 if (expect_false (postfork)) 2323 if (expect_false (postfork))
1516 if (forkcnt) 2324 if (forkcnt)
1517 { 2325 {
1518 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2326 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1519 call_pending (EV_A); 2327 EV_INVOKE_PENDING;
1520 } 2328 }
1521#endif 2329#endif
1522 2330
2331#if EV_PREPARE_ENABLE
1523 /* queue prepare watchers (and execute them) */ 2332 /* queue prepare watchers (and execute them) */
1524 if (expect_false (preparecnt)) 2333 if (expect_false (preparecnt))
1525 { 2334 {
1526 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2335 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1527 call_pending (EV_A); 2336 EV_INVOKE_PENDING;
1528 } 2337 }
2338#endif
1529 2339
1530 if (expect_false (!activecnt)) 2340 if (expect_false (loop_done))
1531 break; 2341 break;
1532 2342
1533 /* we might have forked, so reify kernel state if necessary */ 2343 /* we might have forked, so reify kernel state if necessary */
1534 if (expect_false (postfork)) 2344 if (expect_false (postfork))
1535 loop_fork (EV_A); 2345 loop_fork (EV_A);
1542 ev_tstamp waittime = 0.; 2352 ev_tstamp waittime = 0.;
1543 ev_tstamp sleeptime = 0.; 2353 ev_tstamp sleeptime = 0.;
1544 2354
1545 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2355 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1546 { 2356 {
2357 /* remember old timestamp for io_blocktime calculation */
2358 ev_tstamp prev_mn_now = mn_now;
2359
1547 /* update time to cancel out callback processing overhead */ 2360 /* update time to cancel out callback processing overhead */
1548 time_update (EV_A_ 1e100); 2361 time_update (EV_A_ 1e100);
1549 2362
1550 waittime = MAX_BLOCKTIME; 2363 waittime = MAX_BLOCKTIME;
1551 2364
1552 if (timercnt) 2365 if (timercnt)
1553 { 2366 {
1554 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2367 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1555 if (waittime > to) waittime = to; 2368 if (waittime > to) waittime = to;
1556 } 2369 }
1557 2370
1558#if EV_PERIODIC_ENABLE 2371#if EV_PERIODIC_ENABLE
1559 if (periodiccnt) 2372 if (periodiccnt)
1560 { 2373 {
1561 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2374 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1562 if (waittime > to) waittime = to; 2375 if (waittime > to) waittime = to;
1563 } 2376 }
1564#endif 2377#endif
1565 2378
2379 /* don't let timeouts decrease the waittime below timeout_blocktime */
1566 if (expect_false (waittime < timeout_blocktime)) 2380 if (expect_false (waittime < timeout_blocktime))
1567 waittime = timeout_blocktime; 2381 waittime = timeout_blocktime;
1568 2382
1569 sleeptime = waittime - backend_fudge; 2383 /* extra check because io_blocktime is commonly 0 */
1570
1571 if (expect_true (sleeptime > io_blocktime)) 2384 if (expect_false (io_blocktime))
1572 sleeptime = io_blocktime;
1573
1574 if (sleeptime)
1575 { 2385 {
2386 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2387
2388 if (sleeptime > waittime - backend_fudge)
2389 sleeptime = waittime - backend_fudge;
2390
2391 if (expect_true (sleeptime > 0.))
2392 {
1576 ev_sleep (sleeptime); 2393 ev_sleep (sleeptime);
1577 waittime -= sleeptime; 2394 waittime -= sleeptime;
2395 }
1578 } 2396 }
1579 } 2397 }
1580 2398
2399#if EV_FEATURE_API
1581 ++loop_count; 2400 ++loop_count;
2401#endif
2402 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1582 backend_poll (EV_A_ waittime); 2403 backend_poll (EV_A_ waittime);
2404 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1583 2405
1584 /* update ev_rt_now, do magic */ 2406 /* update ev_rt_now, do magic */
1585 time_update (EV_A_ waittime + sleeptime); 2407 time_update (EV_A_ waittime + sleeptime);
1586 } 2408 }
1587 2409
1594#if EV_IDLE_ENABLE 2416#if EV_IDLE_ENABLE
1595 /* queue idle watchers unless other events are pending */ 2417 /* queue idle watchers unless other events are pending */
1596 idle_reify (EV_A); 2418 idle_reify (EV_A);
1597#endif 2419#endif
1598 2420
2421#if EV_CHECK_ENABLE
1599 /* queue check watchers, to be executed first */ 2422 /* queue check watchers, to be executed first */
1600 if (expect_false (checkcnt)) 2423 if (expect_false (checkcnt))
1601 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2424 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2425#endif
1602 2426
1603 call_pending (EV_A); 2427 EV_INVOKE_PENDING;
1604
1605 } 2428 }
1606 while (expect_true (activecnt && !loop_done)); 2429 while (expect_true (
2430 activecnt
2431 && !loop_done
2432 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2433 ));
1607 2434
1608 if (loop_done == EVUNLOOP_ONE) 2435 if (loop_done == EVUNLOOP_ONE)
1609 loop_done = EVUNLOOP_CANCEL; 2436 loop_done = EVUNLOOP_CANCEL;
2437
2438#if EV_FEATURE_API
2439 --loop_depth;
2440#endif
1610} 2441}
1611 2442
1612void 2443void
1613ev_unloop (EV_P_ int how) 2444ev_unloop (EV_P_ int how)
1614{ 2445{
1615 loop_done = how; 2446 loop_done = how;
1616} 2447}
1617 2448
2449void
2450ev_ref (EV_P)
2451{
2452 ++activecnt;
2453}
2454
2455void
2456ev_unref (EV_P)
2457{
2458 --activecnt;
2459}
2460
2461void
2462ev_now_update (EV_P)
2463{
2464 time_update (EV_A_ 1e100);
2465}
2466
2467void
2468ev_suspend (EV_P)
2469{
2470 ev_now_update (EV_A);
2471}
2472
2473void
2474ev_resume (EV_P)
2475{
2476 ev_tstamp mn_prev = mn_now;
2477
2478 ev_now_update (EV_A);
2479 timers_reschedule (EV_A_ mn_now - mn_prev);
2480#if EV_PERIODIC_ENABLE
2481 /* TODO: really do this? */
2482 periodics_reschedule (EV_A);
2483#endif
2484}
2485
1618/*****************************************************************************/ 2486/*****************************************************************************/
2487/* singly-linked list management, used when the expected list length is short */
1619 2488
1620void inline_size 2489inline_size void
1621wlist_add (WL *head, WL elem) 2490wlist_add (WL *head, WL elem)
1622{ 2491{
1623 elem->next = *head; 2492 elem->next = *head;
1624 *head = elem; 2493 *head = elem;
1625} 2494}
1626 2495
1627void inline_size 2496inline_size void
1628wlist_del (WL *head, WL elem) 2497wlist_del (WL *head, WL elem)
1629{ 2498{
1630 while (*head) 2499 while (*head)
1631 { 2500 {
1632 if (*head == elem) 2501 if (expect_true (*head == elem))
1633 { 2502 {
1634 *head = elem->next; 2503 *head = elem->next;
1635 return; 2504 break;
1636 } 2505 }
1637 2506
1638 head = &(*head)->next; 2507 head = &(*head)->next;
1639 } 2508 }
1640} 2509}
1641 2510
1642void inline_speed 2511/* internal, faster, version of ev_clear_pending */
2512inline_speed void
1643clear_pending (EV_P_ W w) 2513clear_pending (EV_P_ W w)
1644{ 2514{
1645 if (w->pending) 2515 if (w->pending)
1646 { 2516 {
1647 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2517 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1648 w->pending = 0; 2518 w->pending = 0;
1649 } 2519 }
1650} 2520}
1651 2521
1652int 2522int
1656 int pending = w_->pending; 2526 int pending = w_->pending;
1657 2527
1658 if (expect_true (pending)) 2528 if (expect_true (pending))
1659 { 2529 {
1660 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2530 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2531 p->w = (W)&pending_w;
1661 w_->pending = 0; 2532 w_->pending = 0;
1662 p->w = 0;
1663 return p->events; 2533 return p->events;
1664 } 2534 }
1665 else 2535 else
1666 return 0; 2536 return 0;
1667} 2537}
1668 2538
1669void inline_size 2539inline_size void
1670pri_adjust (EV_P_ W w) 2540pri_adjust (EV_P_ W w)
1671{ 2541{
1672 int pri = w->priority; 2542 int pri = ev_priority (w);
1673 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2543 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1674 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2544 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1675 w->priority = pri; 2545 ev_set_priority (w, pri);
1676} 2546}
1677 2547
1678void inline_speed 2548inline_speed void
1679ev_start (EV_P_ W w, int active) 2549ev_start (EV_P_ W w, int active)
1680{ 2550{
1681 pri_adjust (EV_A_ w); 2551 pri_adjust (EV_A_ w);
1682 w->active = active; 2552 w->active = active;
1683 ev_ref (EV_A); 2553 ev_ref (EV_A);
1684} 2554}
1685 2555
1686void inline_size 2556inline_size void
1687ev_stop (EV_P_ W w) 2557ev_stop (EV_P_ W w)
1688{ 2558{
1689 ev_unref (EV_A); 2559 ev_unref (EV_A);
1690 w->active = 0; 2560 w->active = 0;
1691} 2561}
1698 int fd = w->fd; 2568 int fd = w->fd;
1699 2569
1700 if (expect_false (ev_is_active (w))) 2570 if (expect_false (ev_is_active (w)))
1701 return; 2571 return;
1702 2572
1703 assert (("ev_io_start called with negative fd", fd >= 0)); 2573 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2574 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2575
2576 EV_FREQUENT_CHECK;
1704 2577
1705 ev_start (EV_A_ (W)w, 1); 2578 ev_start (EV_A_ (W)w, 1);
1706 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2579 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1707 wlist_add (&anfds[fd].head, (WL)w); 2580 wlist_add (&anfds[fd].head, (WL)w);
1708 2581
1709 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2582 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1710 w->events &= ~EV_IOFDSET; 2583 w->events &= ~EV__IOFDSET;
2584
2585 EV_FREQUENT_CHECK;
1711} 2586}
1712 2587
1713void noinline 2588void noinline
1714ev_io_stop (EV_P_ ev_io *w) 2589ev_io_stop (EV_P_ ev_io *w)
1715{ 2590{
1716 clear_pending (EV_A_ (W)w); 2591 clear_pending (EV_A_ (W)w);
1717 if (expect_false (!ev_is_active (w))) 2592 if (expect_false (!ev_is_active (w)))
1718 return; 2593 return;
1719 2594
1720 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2595 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2596
2597 EV_FREQUENT_CHECK;
1721 2598
1722 wlist_del (&anfds[w->fd].head, (WL)w); 2599 wlist_del (&anfds[w->fd].head, (WL)w);
1723 ev_stop (EV_A_ (W)w); 2600 ev_stop (EV_A_ (W)w);
1724 2601
1725 fd_change (EV_A_ w->fd, 1); 2602 fd_change (EV_A_ w->fd, 1);
2603
2604 EV_FREQUENT_CHECK;
1726} 2605}
1727 2606
1728void noinline 2607void noinline
1729ev_timer_start (EV_P_ ev_timer *w) 2608ev_timer_start (EV_P_ ev_timer *w)
1730{ 2609{
1731 if (expect_false (ev_is_active (w))) 2610 if (expect_false (ev_is_active (w)))
1732 return; 2611 return;
1733 2612
1734 ((WT)w)->at += mn_now; 2613 ev_at (w) += mn_now;
1735 2614
1736 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2615 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1737 2616
2617 EV_FREQUENT_CHECK;
2618
2619 ++timercnt;
1738 ev_start (EV_A_ (W)w, ++timercnt); 2620 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1739 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2621 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1740 timers [timercnt - 1] = (WT)w; 2622 ANHE_w (timers [ev_active (w)]) = (WT)w;
1741 upheap (timers, timercnt - 1); 2623 ANHE_at_cache (timers [ev_active (w)]);
2624 upheap (timers, ev_active (w));
1742 2625
2626 EV_FREQUENT_CHECK;
2627
1743 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2628 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1744} 2629}
1745 2630
1746void noinline 2631void noinline
1747ev_timer_stop (EV_P_ ev_timer *w) 2632ev_timer_stop (EV_P_ ev_timer *w)
1748{ 2633{
1749 clear_pending (EV_A_ (W)w); 2634 clear_pending (EV_A_ (W)w);
1750 if (expect_false (!ev_is_active (w))) 2635 if (expect_false (!ev_is_active (w)))
1751 return; 2636 return;
1752 2637
1753 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2638 EV_FREQUENT_CHECK;
1754 2639
1755 { 2640 {
1756 int active = ((W)w)->active; 2641 int active = ev_active (w);
1757 2642
2643 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2644
2645 --timercnt;
2646
1758 if (expect_true (--active < --timercnt)) 2647 if (expect_true (active < timercnt + HEAP0))
1759 { 2648 {
1760 timers [active] = timers [timercnt]; 2649 timers [active] = timers [timercnt + HEAP0];
1761 adjustheap (timers, timercnt, active); 2650 adjustheap (timers, timercnt, active);
1762 } 2651 }
1763 } 2652 }
1764 2653
1765 ((WT)w)->at -= mn_now; 2654 ev_at (w) -= mn_now;
1766 2655
1767 ev_stop (EV_A_ (W)w); 2656 ev_stop (EV_A_ (W)w);
2657
2658 EV_FREQUENT_CHECK;
1768} 2659}
1769 2660
1770void noinline 2661void noinline
1771ev_timer_again (EV_P_ ev_timer *w) 2662ev_timer_again (EV_P_ ev_timer *w)
1772{ 2663{
2664 EV_FREQUENT_CHECK;
2665
1773 if (ev_is_active (w)) 2666 if (ev_is_active (w))
1774 { 2667 {
1775 if (w->repeat) 2668 if (w->repeat)
1776 { 2669 {
1777 ((WT)w)->at = mn_now + w->repeat; 2670 ev_at (w) = mn_now + w->repeat;
2671 ANHE_at_cache (timers [ev_active (w)]);
1778 adjustheap (timers, timercnt, ((W)w)->active - 1); 2672 adjustheap (timers, timercnt, ev_active (w));
1779 } 2673 }
1780 else 2674 else
1781 ev_timer_stop (EV_A_ w); 2675 ev_timer_stop (EV_A_ w);
1782 } 2676 }
1783 else if (w->repeat) 2677 else if (w->repeat)
1784 { 2678 {
1785 w->at = w->repeat; 2679 ev_at (w) = w->repeat;
1786 ev_timer_start (EV_A_ w); 2680 ev_timer_start (EV_A_ w);
1787 } 2681 }
2682
2683 EV_FREQUENT_CHECK;
2684}
2685
2686ev_tstamp
2687ev_timer_remaining (EV_P_ ev_timer *w)
2688{
2689 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1788} 2690}
1789 2691
1790#if EV_PERIODIC_ENABLE 2692#if EV_PERIODIC_ENABLE
1791void noinline 2693void noinline
1792ev_periodic_start (EV_P_ ev_periodic *w) 2694ev_periodic_start (EV_P_ ev_periodic *w)
1793{ 2695{
1794 if (expect_false (ev_is_active (w))) 2696 if (expect_false (ev_is_active (w)))
1795 return; 2697 return;
1796 2698
1797 if (w->reschedule_cb) 2699 if (w->reschedule_cb)
1798 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2700 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1799 else if (w->interval) 2701 else if (w->interval)
1800 { 2702 {
1801 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2703 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1802 /* this formula differs from the one in periodic_reify because we do not always round up */ 2704 /* this formula differs from the one in periodic_reify because we do not always round up */
1803 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2705 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1804 } 2706 }
1805 else 2707 else
1806 ((WT)w)->at = w->offset; 2708 ev_at (w) = w->offset;
1807 2709
2710 EV_FREQUENT_CHECK;
2711
2712 ++periodiccnt;
1808 ev_start (EV_A_ (W)w, ++periodiccnt); 2713 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1809 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2714 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1810 periodics [periodiccnt - 1] = (WT)w; 2715 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1811 upheap (periodics, periodiccnt - 1); 2716 ANHE_at_cache (periodics [ev_active (w)]);
2717 upheap (periodics, ev_active (w));
1812 2718
2719 EV_FREQUENT_CHECK;
2720
1813 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2721 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1814} 2722}
1815 2723
1816void noinline 2724void noinline
1817ev_periodic_stop (EV_P_ ev_periodic *w) 2725ev_periodic_stop (EV_P_ ev_periodic *w)
1818{ 2726{
1819 clear_pending (EV_A_ (W)w); 2727 clear_pending (EV_A_ (W)w);
1820 if (expect_false (!ev_is_active (w))) 2728 if (expect_false (!ev_is_active (w)))
1821 return; 2729 return;
1822 2730
1823 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2731 EV_FREQUENT_CHECK;
1824 2732
1825 { 2733 {
1826 int active = ((W)w)->active; 2734 int active = ev_active (w);
1827 2735
2736 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2737
2738 --periodiccnt;
2739
1828 if (expect_true (--active < --periodiccnt)) 2740 if (expect_true (active < periodiccnt + HEAP0))
1829 { 2741 {
1830 periodics [active] = periodics [periodiccnt]; 2742 periodics [active] = periodics [periodiccnt + HEAP0];
1831 adjustheap (periodics, periodiccnt, active); 2743 adjustheap (periodics, periodiccnt, active);
1832 } 2744 }
1833 } 2745 }
1834 2746
1835 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
1836} 2750}
1837 2751
1838void noinline 2752void noinline
1839ev_periodic_again (EV_P_ ev_periodic *w) 2753ev_periodic_again (EV_P_ ev_periodic *w)
1840{ 2754{
1846 2760
1847#ifndef SA_RESTART 2761#ifndef SA_RESTART
1848# define SA_RESTART 0 2762# define SA_RESTART 0
1849#endif 2763#endif
1850 2764
2765#if EV_SIGNAL_ENABLE
2766
1851void noinline 2767void noinline
1852ev_signal_start (EV_P_ ev_signal *w) 2768ev_signal_start (EV_P_ ev_signal *w)
1853{ 2769{
1854#if EV_MULTIPLICITY
1855 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1856#endif
1857 if (expect_false (ev_is_active (w))) 2770 if (expect_false (ev_is_active (w)))
1858 return; 2771 return;
1859 2772
1860 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2773 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1861 2774
2775#if EV_MULTIPLICITY
2776 assert (("libev: a signal must not be attached to two different loops",
2777 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2778
2779 signals [w->signum - 1].loop = EV_A;
2780#endif
2781
2782 EV_FREQUENT_CHECK;
2783
2784#if EV_USE_SIGNALFD
2785 if (sigfd == -2)
1862 { 2786 {
1863#ifndef _WIN32 2787 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1864 sigset_t full, prev; 2788 if (sigfd < 0 && errno == EINVAL)
1865 sigfillset (&full); 2789 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1866 sigprocmask (SIG_SETMASK, &full, &prev);
1867#endif
1868 2790
1869 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2791 if (sigfd >= 0)
2792 {
2793 fd_intern (sigfd); /* doing it twice will not hurt */
1870 2794
1871#ifndef _WIN32 2795 sigemptyset (&sigfd_set);
1872 sigprocmask (SIG_SETMASK, &prev, 0); 2796
1873#endif 2797 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2798 ev_set_priority (&sigfd_w, EV_MAXPRI);
2799 ev_io_start (EV_A_ &sigfd_w);
2800 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2801 }
1874 } 2802 }
2803
2804 if (sigfd >= 0)
2805 {
2806 /* TODO: check .head */
2807 sigaddset (&sigfd_set, w->signum);
2808 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2809
2810 signalfd (sigfd, &sigfd_set, 0);
2811 }
2812#endif
1875 2813
1876 ev_start (EV_A_ (W)w, 1); 2814 ev_start (EV_A_ (W)w, 1);
1877 wlist_add (&signals [w->signum - 1].head, (WL)w); 2815 wlist_add (&signals [w->signum - 1].head, (WL)w);
1878 2816
1879 if (!((WL)w)->next) 2817 if (!((WL)w)->next)
2818# if EV_USE_SIGNALFD
2819 if (sigfd < 0) /*TODO*/
2820# endif
1880 { 2821 {
1881#if _WIN32 2822# ifdef _WIN32
2823 evpipe_init (EV_A);
2824
1882 signal (w->signum, sighandler); 2825 signal (w->signum, ev_sighandler);
1883#else 2826# else
1884 struct sigaction sa; 2827 struct sigaction sa;
2828
2829 evpipe_init (EV_A);
2830
1885 sa.sa_handler = sighandler; 2831 sa.sa_handler = ev_sighandler;
1886 sigfillset (&sa.sa_mask); 2832 sigfillset (&sa.sa_mask);
1887 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2833 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1888 sigaction (w->signum, &sa, 0); 2834 sigaction (w->signum, &sa, 0);
2835
2836 sigemptyset (&sa.sa_mask);
2837 sigaddset (&sa.sa_mask, w->signum);
2838 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1889#endif 2839#endif
1890 } 2840 }
2841
2842 EV_FREQUENT_CHECK;
1891} 2843}
1892 2844
1893void noinline 2845void noinline
1894ev_signal_stop (EV_P_ ev_signal *w) 2846ev_signal_stop (EV_P_ ev_signal *w)
1895{ 2847{
1896 clear_pending (EV_A_ (W)w); 2848 clear_pending (EV_A_ (W)w);
1897 if (expect_false (!ev_is_active (w))) 2849 if (expect_false (!ev_is_active (w)))
1898 return; 2850 return;
1899 2851
2852 EV_FREQUENT_CHECK;
2853
1900 wlist_del (&signals [w->signum - 1].head, (WL)w); 2854 wlist_del (&signals [w->signum - 1].head, (WL)w);
1901 ev_stop (EV_A_ (W)w); 2855 ev_stop (EV_A_ (W)w);
1902 2856
1903 if (!signals [w->signum - 1].head) 2857 if (!signals [w->signum - 1].head)
2858 {
2859#if EV_MULTIPLICITY
2860 signals [w->signum - 1].loop = 0; /* unattach from signal */
2861#endif
2862#if EV_USE_SIGNALFD
2863 if (sigfd >= 0)
2864 {
2865 sigset_t ss;
2866
2867 sigemptyset (&ss);
2868 sigaddset (&ss, w->signum);
2869 sigdelset (&sigfd_set, w->signum);
2870
2871 signalfd (sigfd, &sigfd_set, 0);
2872 sigprocmask (SIG_UNBLOCK, &ss, 0);
2873 }
2874 else
2875#endif
1904 signal (w->signum, SIG_DFL); 2876 signal (w->signum, SIG_DFL);
2877 }
2878
2879 EV_FREQUENT_CHECK;
1905} 2880}
2881
2882#endif
2883
2884#if EV_CHILD_ENABLE
1906 2885
1907void 2886void
1908ev_child_start (EV_P_ ev_child *w) 2887ev_child_start (EV_P_ ev_child *w)
1909{ 2888{
1910#if EV_MULTIPLICITY 2889#if EV_MULTIPLICITY
1911 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2890 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1912#endif 2891#endif
1913 if (expect_false (ev_is_active (w))) 2892 if (expect_false (ev_is_active (w)))
1914 return; 2893 return;
1915 2894
2895 EV_FREQUENT_CHECK;
2896
1916 ev_start (EV_A_ (W)w, 1); 2897 ev_start (EV_A_ (W)w, 1);
1917 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2898 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2899
2900 EV_FREQUENT_CHECK;
1918} 2901}
1919 2902
1920void 2903void
1921ev_child_stop (EV_P_ ev_child *w) 2904ev_child_stop (EV_P_ ev_child *w)
1922{ 2905{
1923 clear_pending (EV_A_ (W)w); 2906 clear_pending (EV_A_ (W)w);
1924 if (expect_false (!ev_is_active (w))) 2907 if (expect_false (!ev_is_active (w)))
1925 return; 2908 return;
1926 2909
2910 EV_FREQUENT_CHECK;
2911
1927 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2912 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1928 ev_stop (EV_A_ (W)w); 2913 ev_stop (EV_A_ (W)w);
2914
2915 EV_FREQUENT_CHECK;
1929} 2916}
2917
2918#endif
1930 2919
1931#if EV_STAT_ENABLE 2920#if EV_STAT_ENABLE
1932 2921
1933# ifdef _WIN32 2922# ifdef _WIN32
1934# undef lstat 2923# undef lstat
1935# define lstat(a,b) _stati64 (a,b) 2924# define lstat(a,b) _stati64 (a,b)
1936# endif 2925# endif
1937 2926
1938#define DEF_STAT_INTERVAL 5.0074891 2927#define DEF_STAT_INTERVAL 5.0074891
2928#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1939#define MIN_STAT_INTERVAL 0.1074891 2929#define MIN_STAT_INTERVAL 0.1074891
1940 2930
1941static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2931static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1942 2932
1943#if EV_USE_INOTIFY 2933#if EV_USE_INOTIFY
1944# define EV_INOTIFY_BUFSIZE 8192 2934
2935/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2936# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1945 2937
1946static void noinline 2938static void noinline
1947infy_add (EV_P_ ev_stat *w) 2939infy_add (EV_P_ ev_stat *w)
1948{ 2940{
1949 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2941 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1950 2942
1951 if (w->wd < 0) 2943 if (w->wd >= 0)
2944 {
2945 struct statfs sfs;
2946
2947 /* now local changes will be tracked by inotify, but remote changes won't */
2948 /* unless the filesystem is known to be local, we therefore still poll */
2949 /* also do poll on <2.6.25, but with normal frequency */
2950
2951 if (!fs_2625)
2952 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2953 else if (!statfs (w->path, &sfs)
2954 && (sfs.f_type == 0x1373 /* devfs */
2955 || sfs.f_type == 0xEF53 /* ext2/3 */
2956 || sfs.f_type == 0x3153464a /* jfs */
2957 || sfs.f_type == 0x52654973 /* reiser3 */
2958 || sfs.f_type == 0x01021994 /* tempfs */
2959 || sfs.f_type == 0x58465342 /* xfs */))
2960 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2961 else
2962 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1952 { 2963 }
1953 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2964 else
2965 {
2966 /* can't use inotify, continue to stat */
2967 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1954 2968
1955 /* monitor some parent directory for speedup hints */ 2969 /* if path is not there, monitor some parent directory for speedup hints */
2970 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2971 /* but an efficiency issue only */
1956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2972 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1957 { 2973 {
1958 char path [4096]; 2974 char path [4096];
1959 strcpy (path, w->path); 2975 strcpy (path, w->path);
1960 2976
1963 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2979 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1964 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2980 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1965 2981
1966 char *pend = strrchr (path, '/'); 2982 char *pend = strrchr (path, '/');
1967 2983
1968 if (!pend) 2984 if (!pend || pend == path)
1969 break; /* whoops, no '/', complain to your admin */ 2985 break;
1970 2986
1971 *pend = 0; 2987 *pend = 0;
1972 w->wd = inotify_add_watch (fs_fd, path, mask); 2988 w->wd = inotify_add_watch (fs_fd, path, mask);
1973 } 2989 }
1974 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2990 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1975 } 2991 }
1976 } 2992 }
1977 else
1978 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1979 2993
1980 if (w->wd >= 0) 2994 if (w->wd >= 0)
1981 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2995 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2996
2997 /* now re-arm timer, if required */
2998 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2999 ev_timer_again (EV_A_ &w->timer);
3000 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1982} 3001}
1983 3002
1984static void noinline 3003static void noinline
1985infy_del (EV_P_ ev_stat *w) 3004infy_del (EV_P_ ev_stat *w)
1986{ 3005{
1989 3008
1990 if (wd < 0) 3009 if (wd < 0)
1991 return; 3010 return;
1992 3011
1993 w->wd = -2; 3012 w->wd = -2;
1994 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3013 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1995 wlist_del (&fs_hash [slot].head, (WL)w); 3014 wlist_del (&fs_hash [slot].head, (WL)w);
1996 3015
1997 /* remove this watcher, if others are watching it, they will rearm */ 3016 /* remove this watcher, if others are watching it, they will rearm */
1998 inotify_rm_watch (fs_fd, wd); 3017 inotify_rm_watch (fs_fd, wd);
1999} 3018}
2000 3019
2001static void noinline 3020static void noinline
2002infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3021infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2003{ 3022{
2004 if (slot < 0) 3023 if (slot < 0)
2005 /* overflow, need to check for all hahs slots */ 3024 /* overflow, need to check for all hash slots */
2006 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3025 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2007 infy_wd (EV_A_ slot, wd, ev); 3026 infy_wd (EV_A_ slot, wd, ev);
2008 else 3027 else
2009 { 3028 {
2010 WL w_; 3029 WL w_;
2011 3030
2012 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3031 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2013 { 3032 {
2014 ev_stat *w = (ev_stat *)w_; 3033 ev_stat *w = (ev_stat *)w_;
2015 w_ = w_->next; /* lets us remove this watcher and all before it */ 3034 w_ = w_->next; /* lets us remove this watcher and all before it */
2016 3035
2017 if (w->wd == wd || wd == -1) 3036 if (w->wd == wd || wd == -1)
2018 { 3037 {
2019 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3038 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2020 { 3039 {
3040 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2021 w->wd = -1; 3041 w->wd = -1;
2022 infy_add (EV_A_ w); /* re-add, no matter what */ 3042 infy_add (EV_A_ w); /* re-add, no matter what */
2023 } 3043 }
2024 3044
2025 stat_timer_cb (EV_A_ &w->timer, 0); 3045 stat_timer_cb (EV_A_ &w->timer, 0);
2030 3050
2031static void 3051static void
2032infy_cb (EV_P_ ev_io *w, int revents) 3052infy_cb (EV_P_ ev_io *w, int revents)
2033{ 3053{
2034 char buf [EV_INOTIFY_BUFSIZE]; 3054 char buf [EV_INOTIFY_BUFSIZE];
2035 struct inotify_event *ev = (struct inotify_event *)buf;
2036 int ofs; 3055 int ofs;
2037 int len = read (fs_fd, buf, sizeof (buf)); 3056 int len = read (fs_fd, buf, sizeof (buf));
2038 3057
2039 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3058 for (ofs = 0; ofs < len; )
3059 {
3060 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2040 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3061 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3062 ofs += sizeof (struct inotify_event) + ev->len;
3063 }
2041} 3064}
2042 3065
2043void inline_size 3066inline_size unsigned int
3067ev_linux_version (void)
3068{
3069 struct utsname buf;
3070 unsigned int v;
3071 int i;
3072 char *p = buf.release;
3073
3074 if (uname (&buf))
3075 return 0;
3076
3077 for (i = 3+1; --i; )
3078 {
3079 unsigned int c = 0;
3080
3081 for (;;)
3082 {
3083 if (*p >= '0' && *p <= '9')
3084 c = c * 10 + *p++ - '0';
3085 else
3086 {
3087 p += *p == '.';
3088 break;
3089 }
3090 }
3091
3092 v = (v << 8) | c;
3093 }
3094
3095 return v;
3096}
3097
3098inline_size void
3099ev_check_2625 (EV_P)
3100{
3101 /* kernels < 2.6.25 are borked
3102 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3103 */
3104 if (ev_linux_version () < 0x020619)
3105 return;
3106
3107 fs_2625 = 1;
3108}
3109
3110inline_size int
3111infy_newfd (void)
3112{
3113#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3114 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3115 if (fd >= 0)
3116 return fd;
3117#endif
3118 return inotify_init ();
3119}
3120
3121inline_size void
2044infy_init (EV_P) 3122infy_init (EV_P)
2045{ 3123{
2046 if (fs_fd != -2) 3124 if (fs_fd != -2)
2047 return; 3125 return;
2048 3126
3127 fs_fd = -1;
3128
3129 ev_check_2625 (EV_A);
3130
2049 fs_fd = inotify_init (); 3131 fs_fd = infy_newfd ();
2050 3132
2051 if (fs_fd >= 0) 3133 if (fs_fd >= 0)
2052 { 3134 {
3135 fd_intern (fs_fd);
2053 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3136 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2054 ev_set_priority (&fs_w, EV_MAXPRI); 3137 ev_set_priority (&fs_w, EV_MAXPRI);
2055 ev_io_start (EV_A_ &fs_w); 3138 ev_io_start (EV_A_ &fs_w);
3139 ev_unref (EV_A);
2056 } 3140 }
2057} 3141}
2058 3142
2059void inline_size 3143inline_size void
2060infy_fork (EV_P) 3144infy_fork (EV_P)
2061{ 3145{
2062 int slot; 3146 int slot;
2063 3147
2064 if (fs_fd < 0) 3148 if (fs_fd < 0)
2065 return; 3149 return;
2066 3150
3151 ev_ref (EV_A);
3152 ev_io_stop (EV_A_ &fs_w);
2067 close (fs_fd); 3153 close (fs_fd);
2068 fs_fd = inotify_init (); 3154 fs_fd = infy_newfd ();
2069 3155
3156 if (fs_fd >= 0)
3157 {
3158 fd_intern (fs_fd);
3159 ev_io_set (&fs_w, fs_fd, EV_READ);
3160 ev_io_start (EV_A_ &fs_w);
3161 ev_unref (EV_A);
3162 }
3163
2070 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3164 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2071 { 3165 {
2072 WL w_ = fs_hash [slot].head; 3166 WL w_ = fs_hash [slot].head;
2073 fs_hash [slot].head = 0; 3167 fs_hash [slot].head = 0;
2074 3168
2075 while (w_) 3169 while (w_)
2080 w->wd = -1; 3174 w->wd = -1;
2081 3175
2082 if (fs_fd >= 0) 3176 if (fs_fd >= 0)
2083 infy_add (EV_A_ w); /* re-add, no matter what */ 3177 infy_add (EV_A_ w); /* re-add, no matter what */
2084 else 3178 else
3179 {
3180 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3181 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2085 ev_timer_start (EV_A_ &w->timer); 3182 ev_timer_again (EV_A_ &w->timer);
3183 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3184 }
2086 } 3185 }
2087
2088 } 3186 }
2089} 3187}
2090 3188
3189#endif
3190
3191#ifdef _WIN32
3192# define EV_LSTAT(p,b) _stati64 (p, b)
3193#else
3194# define EV_LSTAT(p,b) lstat (p, b)
2091#endif 3195#endif
2092 3196
2093void 3197void
2094ev_stat_stat (EV_P_ ev_stat *w) 3198ev_stat_stat (EV_P_ ev_stat *w)
2095{ 3199{
2102static void noinline 3206static void noinline
2103stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3207stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2104{ 3208{
2105 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3209 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2106 3210
2107 /* we copy this here each the time so that */ 3211 ev_statdata prev = w->attr;
2108 /* prev has the old value when the callback gets invoked */
2109 w->prev = w->attr;
2110 ev_stat_stat (EV_A_ w); 3212 ev_stat_stat (EV_A_ w);
2111 3213
2112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3214 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2113 if ( 3215 if (
2114 w->prev.st_dev != w->attr.st_dev 3216 prev.st_dev != w->attr.st_dev
2115 || w->prev.st_ino != w->attr.st_ino 3217 || prev.st_ino != w->attr.st_ino
2116 || w->prev.st_mode != w->attr.st_mode 3218 || prev.st_mode != w->attr.st_mode
2117 || w->prev.st_nlink != w->attr.st_nlink 3219 || prev.st_nlink != w->attr.st_nlink
2118 || w->prev.st_uid != w->attr.st_uid 3220 || prev.st_uid != w->attr.st_uid
2119 || w->prev.st_gid != w->attr.st_gid 3221 || prev.st_gid != w->attr.st_gid
2120 || w->prev.st_rdev != w->attr.st_rdev 3222 || prev.st_rdev != w->attr.st_rdev
2121 || w->prev.st_size != w->attr.st_size 3223 || prev.st_size != w->attr.st_size
2122 || w->prev.st_atime != w->attr.st_atime 3224 || prev.st_atime != w->attr.st_atime
2123 || w->prev.st_mtime != w->attr.st_mtime 3225 || prev.st_mtime != w->attr.st_mtime
2124 || w->prev.st_ctime != w->attr.st_ctime 3226 || prev.st_ctime != w->attr.st_ctime
2125 ) { 3227 ) {
3228 /* we only update w->prev on actual differences */
3229 /* in case we test more often than invoke the callback, */
3230 /* to ensure that prev is always different to attr */
3231 w->prev = prev;
3232
2126 #if EV_USE_INOTIFY 3233 #if EV_USE_INOTIFY
3234 if (fs_fd >= 0)
3235 {
2127 infy_del (EV_A_ w); 3236 infy_del (EV_A_ w);
2128 infy_add (EV_A_ w); 3237 infy_add (EV_A_ w);
2129 ev_stat_stat (EV_A_ w); /* avoid race... */ 3238 ev_stat_stat (EV_A_ w); /* avoid race... */
3239 }
2130 #endif 3240 #endif
2131 3241
2132 ev_feed_event (EV_A_ w, EV_STAT); 3242 ev_feed_event (EV_A_ w, EV_STAT);
2133 } 3243 }
2134} 3244}
2137ev_stat_start (EV_P_ ev_stat *w) 3247ev_stat_start (EV_P_ ev_stat *w)
2138{ 3248{
2139 if (expect_false (ev_is_active (w))) 3249 if (expect_false (ev_is_active (w)))
2140 return; 3250 return;
2141 3251
2142 /* since we use memcmp, we need to clear any padding data etc. */
2143 memset (&w->prev, 0, sizeof (ev_statdata));
2144 memset (&w->attr, 0, sizeof (ev_statdata));
2145
2146 ev_stat_stat (EV_A_ w); 3252 ev_stat_stat (EV_A_ w);
2147 3253
3254 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2148 if (w->interval < MIN_STAT_INTERVAL) 3255 w->interval = MIN_STAT_INTERVAL;
2149 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2150 3256
2151 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3257 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2152 ev_set_priority (&w->timer, ev_priority (w)); 3258 ev_set_priority (&w->timer, ev_priority (w));
2153 3259
2154#if EV_USE_INOTIFY 3260#if EV_USE_INOTIFY
2155 infy_init (EV_A); 3261 infy_init (EV_A);
2156 3262
2157 if (fs_fd >= 0) 3263 if (fs_fd >= 0)
2158 infy_add (EV_A_ w); 3264 infy_add (EV_A_ w);
2159 else 3265 else
2160#endif 3266#endif
3267 {
2161 ev_timer_start (EV_A_ &w->timer); 3268 ev_timer_again (EV_A_ &w->timer);
3269 ev_unref (EV_A);
3270 }
2162 3271
2163 ev_start (EV_A_ (W)w, 1); 3272 ev_start (EV_A_ (W)w, 1);
3273
3274 EV_FREQUENT_CHECK;
2164} 3275}
2165 3276
2166void 3277void
2167ev_stat_stop (EV_P_ ev_stat *w) 3278ev_stat_stop (EV_P_ ev_stat *w)
2168{ 3279{
2169 clear_pending (EV_A_ (W)w); 3280 clear_pending (EV_A_ (W)w);
2170 if (expect_false (!ev_is_active (w))) 3281 if (expect_false (!ev_is_active (w)))
2171 return; 3282 return;
2172 3283
3284 EV_FREQUENT_CHECK;
3285
2173#if EV_USE_INOTIFY 3286#if EV_USE_INOTIFY
2174 infy_del (EV_A_ w); 3287 infy_del (EV_A_ w);
2175#endif 3288#endif
3289
3290 if (ev_is_active (&w->timer))
3291 {
3292 ev_ref (EV_A);
2176 ev_timer_stop (EV_A_ &w->timer); 3293 ev_timer_stop (EV_A_ &w->timer);
3294 }
2177 3295
2178 ev_stop (EV_A_ (W)w); 3296 ev_stop (EV_A_ (W)w);
3297
3298 EV_FREQUENT_CHECK;
2179} 3299}
2180#endif 3300#endif
2181 3301
2182#if EV_IDLE_ENABLE 3302#if EV_IDLE_ENABLE
2183void 3303void
2185{ 3305{
2186 if (expect_false (ev_is_active (w))) 3306 if (expect_false (ev_is_active (w)))
2187 return; 3307 return;
2188 3308
2189 pri_adjust (EV_A_ (W)w); 3309 pri_adjust (EV_A_ (W)w);
3310
3311 EV_FREQUENT_CHECK;
2190 3312
2191 { 3313 {
2192 int active = ++idlecnt [ABSPRI (w)]; 3314 int active = ++idlecnt [ABSPRI (w)];
2193 3315
2194 ++idleall; 3316 ++idleall;
2195 ev_start (EV_A_ (W)w, active); 3317 ev_start (EV_A_ (W)w, active);
2196 3318
2197 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3319 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2198 idles [ABSPRI (w)][active - 1] = w; 3320 idles [ABSPRI (w)][active - 1] = w;
2199 } 3321 }
3322
3323 EV_FREQUENT_CHECK;
2200} 3324}
2201 3325
2202void 3326void
2203ev_idle_stop (EV_P_ ev_idle *w) 3327ev_idle_stop (EV_P_ ev_idle *w)
2204{ 3328{
2205 clear_pending (EV_A_ (W)w); 3329 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 3330 if (expect_false (!ev_is_active (w)))
2207 return; 3331 return;
2208 3332
3333 EV_FREQUENT_CHECK;
3334
2209 { 3335 {
2210 int active = ((W)w)->active; 3336 int active = ev_active (w);
2211 3337
2212 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3338 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2213 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3339 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2214 3340
2215 ev_stop (EV_A_ (W)w); 3341 ev_stop (EV_A_ (W)w);
2216 --idleall; 3342 --idleall;
2217 } 3343 }
2218}
2219#endif
2220 3344
3345 EV_FREQUENT_CHECK;
3346}
3347#endif
3348
3349#if EV_PREPARE_ENABLE
2221void 3350void
2222ev_prepare_start (EV_P_ ev_prepare *w) 3351ev_prepare_start (EV_P_ ev_prepare *w)
2223{ 3352{
2224 if (expect_false (ev_is_active (w))) 3353 if (expect_false (ev_is_active (w)))
2225 return; 3354 return;
3355
3356 EV_FREQUENT_CHECK;
2226 3357
2227 ev_start (EV_A_ (W)w, ++preparecnt); 3358 ev_start (EV_A_ (W)w, ++preparecnt);
2228 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3359 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2229 prepares [preparecnt - 1] = w; 3360 prepares [preparecnt - 1] = w;
3361
3362 EV_FREQUENT_CHECK;
2230} 3363}
2231 3364
2232void 3365void
2233ev_prepare_stop (EV_P_ ev_prepare *w) 3366ev_prepare_stop (EV_P_ ev_prepare *w)
2234{ 3367{
2235 clear_pending (EV_A_ (W)w); 3368 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w))) 3369 if (expect_false (!ev_is_active (w)))
2237 return; 3370 return;
2238 3371
3372 EV_FREQUENT_CHECK;
3373
2239 { 3374 {
2240 int active = ((W)w)->active; 3375 int active = ev_active (w);
3376
2241 prepares [active - 1] = prepares [--preparecnt]; 3377 prepares [active - 1] = prepares [--preparecnt];
2242 ((W)prepares [active - 1])->active = active; 3378 ev_active (prepares [active - 1]) = active;
2243 } 3379 }
2244 3380
2245 ev_stop (EV_A_ (W)w); 3381 ev_stop (EV_A_ (W)w);
2246}
2247 3382
3383 EV_FREQUENT_CHECK;
3384}
3385#endif
3386
3387#if EV_CHECK_ENABLE
2248void 3388void
2249ev_check_start (EV_P_ ev_check *w) 3389ev_check_start (EV_P_ ev_check *w)
2250{ 3390{
2251 if (expect_false (ev_is_active (w))) 3391 if (expect_false (ev_is_active (w)))
2252 return; 3392 return;
3393
3394 EV_FREQUENT_CHECK;
2253 3395
2254 ev_start (EV_A_ (W)w, ++checkcnt); 3396 ev_start (EV_A_ (W)w, ++checkcnt);
2255 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3397 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2256 checks [checkcnt - 1] = w; 3398 checks [checkcnt - 1] = w;
3399
3400 EV_FREQUENT_CHECK;
2257} 3401}
2258 3402
2259void 3403void
2260ev_check_stop (EV_P_ ev_check *w) 3404ev_check_stop (EV_P_ ev_check *w)
2261{ 3405{
2262 clear_pending (EV_A_ (W)w); 3406 clear_pending (EV_A_ (W)w);
2263 if (expect_false (!ev_is_active (w))) 3407 if (expect_false (!ev_is_active (w)))
2264 return; 3408 return;
2265 3409
3410 EV_FREQUENT_CHECK;
3411
2266 { 3412 {
2267 int active = ((W)w)->active; 3413 int active = ev_active (w);
3414
2268 checks [active - 1] = checks [--checkcnt]; 3415 checks [active - 1] = checks [--checkcnt];
2269 ((W)checks [active - 1])->active = active; 3416 ev_active (checks [active - 1]) = active;
2270 } 3417 }
2271 3418
2272 ev_stop (EV_A_ (W)w); 3419 ev_stop (EV_A_ (W)w);
3420
3421 EV_FREQUENT_CHECK;
2273} 3422}
3423#endif
2274 3424
2275#if EV_EMBED_ENABLE 3425#if EV_EMBED_ENABLE
2276void noinline 3426void noinline
2277ev_embed_sweep (EV_P_ ev_embed *w) 3427ev_embed_sweep (EV_P_ ev_embed *w)
2278{ 3428{
2294embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3444embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2295{ 3445{
2296 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3446 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2297 3447
2298 { 3448 {
2299 struct ev_loop *loop = w->other; 3449 EV_P = w->other;
2300 3450
2301 while (fdchangecnt) 3451 while (fdchangecnt)
2302 { 3452 {
2303 fd_reify (EV_A); 3453 fd_reify (EV_A);
2304 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3454 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2305 } 3455 }
2306 } 3456 }
2307} 3457}
2308 3458
3459static void
3460embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3461{
3462 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3463
3464 ev_embed_stop (EV_A_ w);
3465
3466 {
3467 EV_P = w->other;
3468
3469 ev_loop_fork (EV_A);
3470 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3471 }
3472
3473 ev_embed_start (EV_A_ w);
3474}
3475
2309#if 0 3476#if 0
2310static void 3477static void
2311embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3478embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2312{ 3479{
2313 ev_idle_stop (EV_A_ idle); 3480 ev_idle_stop (EV_A_ idle);
2319{ 3486{
2320 if (expect_false (ev_is_active (w))) 3487 if (expect_false (ev_is_active (w)))
2321 return; 3488 return;
2322 3489
2323 { 3490 {
2324 struct ev_loop *loop = w->other; 3491 EV_P = w->other;
2325 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3492 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2326 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3493 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2327 } 3494 }
3495
3496 EV_FREQUENT_CHECK;
2328 3497
2329 ev_set_priority (&w->io, ev_priority (w)); 3498 ev_set_priority (&w->io, ev_priority (w));
2330 ev_io_start (EV_A_ &w->io); 3499 ev_io_start (EV_A_ &w->io);
2331 3500
2332 ev_prepare_init (&w->prepare, embed_prepare_cb); 3501 ev_prepare_init (&w->prepare, embed_prepare_cb);
2333 ev_set_priority (&w->prepare, EV_MINPRI); 3502 ev_set_priority (&w->prepare, EV_MINPRI);
2334 ev_prepare_start (EV_A_ &w->prepare); 3503 ev_prepare_start (EV_A_ &w->prepare);
2335 3504
3505 ev_fork_init (&w->fork, embed_fork_cb);
3506 ev_fork_start (EV_A_ &w->fork);
3507
2336 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3508 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2337 3509
2338 ev_start (EV_A_ (W)w, 1); 3510 ev_start (EV_A_ (W)w, 1);
3511
3512 EV_FREQUENT_CHECK;
2339} 3513}
2340 3514
2341void 3515void
2342ev_embed_stop (EV_P_ ev_embed *w) 3516ev_embed_stop (EV_P_ ev_embed *w)
2343{ 3517{
2344 clear_pending (EV_A_ (W)w); 3518 clear_pending (EV_A_ (W)w);
2345 if (expect_false (!ev_is_active (w))) 3519 if (expect_false (!ev_is_active (w)))
2346 return; 3520 return;
2347 3521
3522 EV_FREQUENT_CHECK;
3523
2348 ev_io_stop (EV_A_ &w->io); 3524 ev_io_stop (EV_A_ &w->io);
2349 ev_prepare_stop (EV_A_ &w->prepare); 3525 ev_prepare_stop (EV_A_ &w->prepare);
3526 ev_fork_stop (EV_A_ &w->fork);
2350 3527
2351 ev_stop (EV_A_ (W)w); 3528 ev_stop (EV_A_ (W)w);
3529
3530 EV_FREQUENT_CHECK;
2352} 3531}
2353#endif 3532#endif
2354 3533
2355#if EV_FORK_ENABLE 3534#if EV_FORK_ENABLE
2356void 3535void
2357ev_fork_start (EV_P_ ev_fork *w) 3536ev_fork_start (EV_P_ ev_fork *w)
2358{ 3537{
2359 if (expect_false (ev_is_active (w))) 3538 if (expect_false (ev_is_active (w)))
2360 return; 3539 return;
3540
3541 EV_FREQUENT_CHECK;
2361 3542
2362 ev_start (EV_A_ (W)w, ++forkcnt); 3543 ev_start (EV_A_ (W)w, ++forkcnt);
2363 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3544 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2364 forks [forkcnt - 1] = w; 3545 forks [forkcnt - 1] = w;
3546
3547 EV_FREQUENT_CHECK;
2365} 3548}
2366 3549
2367void 3550void
2368ev_fork_stop (EV_P_ ev_fork *w) 3551ev_fork_stop (EV_P_ ev_fork *w)
2369{ 3552{
2370 clear_pending (EV_A_ (W)w); 3553 clear_pending (EV_A_ (W)w);
2371 if (expect_false (!ev_is_active (w))) 3554 if (expect_false (!ev_is_active (w)))
2372 return; 3555 return;
2373 3556
3557 EV_FREQUENT_CHECK;
3558
2374 { 3559 {
2375 int active = ((W)w)->active; 3560 int active = ev_active (w);
3561
2376 forks [active - 1] = forks [--forkcnt]; 3562 forks [active - 1] = forks [--forkcnt];
2377 ((W)forks [active - 1])->active = active; 3563 ev_active (forks [active - 1]) = active;
2378 } 3564 }
2379 3565
2380 ev_stop (EV_A_ (W)w); 3566 ev_stop (EV_A_ (W)w);
3567
3568 EV_FREQUENT_CHECK;
3569}
3570#endif
3571
3572#if EV_ASYNC_ENABLE
3573void
3574ev_async_start (EV_P_ ev_async *w)
3575{
3576 if (expect_false (ev_is_active (w)))
3577 return;
3578
3579 evpipe_init (EV_A);
3580
3581 EV_FREQUENT_CHECK;
3582
3583 ev_start (EV_A_ (W)w, ++asynccnt);
3584 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3585 asyncs [asynccnt - 1] = w;
3586
3587 EV_FREQUENT_CHECK;
3588}
3589
3590void
3591ev_async_stop (EV_P_ ev_async *w)
3592{
3593 clear_pending (EV_A_ (W)w);
3594 if (expect_false (!ev_is_active (w)))
3595 return;
3596
3597 EV_FREQUENT_CHECK;
3598
3599 {
3600 int active = ev_active (w);
3601
3602 asyncs [active - 1] = asyncs [--asynccnt];
3603 ev_active (asyncs [active - 1]) = active;
3604 }
3605
3606 ev_stop (EV_A_ (W)w);
3607
3608 EV_FREQUENT_CHECK;
3609}
3610
3611void
3612ev_async_send (EV_P_ ev_async *w)
3613{
3614 w->sent = 1;
3615 evpipe_write (EV_A_ &async_pending);
2381} 3616}
2382#endif 3617#endif
2383 3618
2384/*****************************************************************************/ 3619/*****************************************************************************/
2385 3620
2395once_cb (EV_P_ struct ev_once *once, int revents) 3630once_cb (EV_P_ struct ev_once *once, int revents)
2396{ 3631{
2397 void (*cb)(int revents, void *arg) = once->cb; 3632 void (*cb)(int revents, void *arg) = once->cb;
2398 void *arg = once->arg; 3633 void *arg = once->arg;
2399 3634
2400 ev_io_stop (EV_A_ &once->io); 3635 ev_io_stop (EV_A_ &once->io);
2401 ev_timer_stop (EV_A_ &once->to); 3636 ev_timer_stop (EV_A_ &once->to);
2402 ev_free (once); 3637 ev_free (once);
2403 3638
2404 cb (revents, arg); 3639 cb (revents, arg);
2405} 3640}
2406 3641
2407static void 3642static void
2408once_cb_io (EV_P_ ev_io *w, int revents) 3643once_cb_io (EV_P_ ev_io *w, int revents)
2409{ 3644{
2410 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3645 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3646
3647 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2411} 3648}
2412 3649
2413static void 3650static void
2414once_cb_to (EV_P_ ev_timer *w, int revents) 3651once_cb_to (EV_P_ ev_timer *w, int revents)
2415{ 3652{
2416 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3653 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3654
3655 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2417} 3656}
2418 3657
2419void 3658void
2420ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3659ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2421{ 3660{
2422 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3661 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2423 3662
2424 if (expect_false (!once)) 3663 if (expect_false (!once))
2425 { 3664 {
2426 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3665 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2427 return; 3666 return;
2428 } 3667 }
2429 3668
2430 once->cb = cb; 3669 once->cb = cb;
2431 once->arg = arg; 3670 once->arg = arg;
2443 ev_timer_set (&once->to, timeout, 0.); 3682 ev_timer_set (&once->to, timeout, 0.);
2444 ev_timer_start (EV_A_ &once->to); 3683 ev_timer_start (EV_A_ &once->to);
2445 } 3684 }
2446} 3685}
2447 3686
3687/*****************************************************************************/
3688
3689#if EV_WALK_ENABLE
3690void
3691ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3692{
3693 int i, j;
3694 ev_watcher_list *wl, *wn;
3695
3696 if (types & (EV_IO | EV_EMBED))
3697 for (i = 0; i < anfdmax; ++i)
3698 for (wl = anfds [i].head; wl; )
3699 {
3700 wn = wl->next;
3701
3702#if EV_EMBED_ENABLE
3703 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3704 {
3705 if (types & EV_EMBED)
3706 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3707 }
3708 else
3709#endif
3710#if EV_USE_INOTIFY
3711 if (ev_cb ((ev_io *)wl) == infy_cb)
3712 ;
3713 else
3714#endif
3715 if ((ev_io *)wl != &pipe_w)
3716 if (types & EV_IO)
3717 cb (EV_A_ EV_IO, wl);
3718
3719 wl = wn;
3720 }
3721
3722 if (types & (EV_TIMER | EV_STAT))
3723 for (i = timercnt + HEAP0; i-- > HEAP0; )
3724#if EV_STAT_ENABLE
3725 /*TODO: timer is not always active*/
3726 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3727 {
3728 if (types & EV_STAT)
3729 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3730 }
3731 else
3732#endif
3733 if (types & EV_TIMER)
3734 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3735
3736#if EV_PERIODIC_ENABLE
3737 if (types & EV_PERIODIC)
3738 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3739 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3740#endif
3741
3742#if EV_IDLE_ENABLE
3743 if (types & EV_IDLE)
3744 for (j = NUMPRI; i--; )
3745 for (i = idlecnt [j]; i--; )
3746 cb (EV_A_ EV_IDLE, idles [j][i]);
3747#endif
3748
3749#if EV_FORK_ENABLE
3750 if (types & EV_FORK)
3751 for (i = forkcnt; i--; )
3752 if (ev_cb (forks [i]) != embed_fork_cb)
3753 cb (EV_A_ EV_FORK, forks [i]);
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757 if (types & EV_ASYNC)
3758 for (i = asynccnt; i--; )
3759 cb (EV_A_ EV_ASYNC, asyncs [i]);
3760#endif
3761
3762#if EV_PREPARE_ENABLE
3763 if (types & EV_PREPARE)
3764 for (i = preparecnt; i--; )
3765# if EV_EMBED_ENABLE
3766 if (ev_cb (prepares [i]) != embed_prepare_cb)
3767# endif
3768 cb (EV_A_ EV_PREPARE, prepares [i]);
3769#endif
3770
3771#if EV_CHECK_ENABLE
3772 if (types & EV_CHECK)
3773 for (i = checkcnt; i--; )
3774 cb (EV_A_ EV_CHECK, checks [i]);
3775#endif
3776
3777#if EV_SIGNAL_ENABLE
3778 if (types & EV_SIGNAL)
3779 for (i = 0; i < EV_NSIG - 1; ++i)
3780 for (wl = signals [i].head; wl; )
3781 {
3782 wn = wl->next;
3783 cb (EV_A_ EV_SIGNAL, wl);
3784 wl = wn;
3785 }
3786#endif
3787
3788#if EV_CHILD_ENABLE
3789 if (types & EV_CHILD)
3790 for (i = (EV_PID_HASHSIZE); i--; )
3791 for (wl = childs [i]; wl; )
3792 {
3793 wn = wl->next;
3794 cb (EV_A_ EV_CHILD, wl);
3795 wl = wn;
3796 }
3797#endif
3798/* EV_STAT 0x00001000 /* stat data changed */
3799/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3800}
3801#endif
3802
2448#if EV_MULTIPLICITY 3803#if EV_MULTIPLICITY
2449 #include "ev_wrap.h" 3804 #include "ev_wrap.h"
2450#endif 3805#endif
2451 3806
2452#ifdef __cplusplus 3807#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines