ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.347 by root, Fri Oct 15 22:44:41 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
63# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
65# endif 79# endif
66# endif 80# endif
67 81
82# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
71# else 86# else
87# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
74# endif 98# endif
75 99
100# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 103# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 104# else
105# undef EV_USE_POLL
88# define EV_USE_POLL 0 106# define EV_USE_POLL 0
89# endif
90# endif 107# endif
91 108
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
95# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
98# endif 116# endif
99 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
106# endif 125# endif
107 126
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
111# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
114# endif 134# endif
115 135
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
122# endif 143# endif
123 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 147# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
130# endif 152# endif
131 153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
132#endif 163#endif
133 164
134#include <math.h> 165#include <math.h>
135#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
136#include <fcntl.h> 168#include <fcntl.h>
137#include <stddef.h> 169#include <stddef.h>
138 170
139#include <stdio.h> 171#include <stdio.h>
140 172
141#include <assert.h> 173#include <assert.h>
142#include <errno.h> 174#include <errno.h>
143#include <sys/types.h> 175#include <sys/types.h>
144#include <time.h> 176#include <time.h>
177#include <limits.h>
145 178
146#include <signal.h> 179#include <signal.h>
147 180
148#ifdef EV_H 181#ifdef EV_H
149# include EV_H 182# include EV_H
154#ifndef _WIN32 187#ifndef _WIN32
155# include <sys/time.h> 188# include <sys/time.h>
156# include <sys/wait.h> 189# include <sys/wait.h>
157# include <unistd.h> 190# include <unistd.h>
158#else 191#else
192# include <io.h>
159# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 194# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
163# endif 197# endif
198# undef EV_AVOID_STDIO
164#endif 199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
165 208
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 209/* this block tries to deduce configuration from header-defined symbols and defaults */
167 210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
244# endif
245#endif
246
168#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
169# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
170#endif 253#endif
171 254
172#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 257#endif
175 258
176#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
177# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
264# endif
178#endif 265#endif
179 266
180#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 269#endif
183 270
184#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
185# ifdef _WIN32 272# ifdef _WIN32
186# define EV_USE_POLL 0 273# define EV_USE_POLL 0
187# else 274# else
188# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 276# endif
190#endif 277#endif
191 278
192#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 282# else
196# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
197# endif 284# endif
198#endif 285#endif
199 286
205# define EV_USE_PORT 0 292# define EV_USE_PORT 0
206#endif 293#endif
207 294
208#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 297# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 298# else
212# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
213# endif 300# endif
214#endif 301#endif
215 302
216#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 305#endif
223 306
224#ifndef EV_INOTIFY_HASHSIZE 307#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 309#endif
231 310
232#ifndef EV_USE_EVENTFD 311#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 313# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 314# else
236# define EV_USE_EVENTFD 0 315# define EV_USE_EVENTFD 0
237# endif 316# endif
238#endif 317#endif
239 318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
324# endif
325#endif
326
327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
241 366
242#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
245#endif 370#endif
259# include <sys/select.h> 384# include <sys/select.h>
260# endif 385# endif
261#endif 386#endif
262 387
263#if EV_USE_INOTIFY 388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
264# include <sys/inotify.h> 391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
265#endif 397#endif
266 398
267#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 400# include <winsock.h>
269#endif 401#endif
270 402
271#if EV_USE_EVENTFD 403#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
274# ifdef __cplusplus 416# ifdef __cplusplus
275extern "C" { 417extern "C" {
276# endif 418# endif
277int eventfd (unsigned int initval, int flags); 419int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 420# ifdef __cplusplus
279} 421}
280# endif 422# endif
281#endif 423#endif
282 424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
283/**/ 453/**/
454
455#if EV_VERIFY >= 3
456# define EV_FREQUENT_CHECK ev_verify (EV_A)
457#else
458# define EV_FREQUENT_CHECK do { } while (0)
459#endif
284 460
285/* 461/*
286 * This is used to avoid floating point rounding problems. 462 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 463 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 464 * to ensure progress, time-wise, even when rounding
292 */ 468 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 470
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 471#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 472#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 473
474#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
475#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; tv.tv_nsec = (long)((t - tv.tv_sec) * 1e9); } while (0)
298 476
299#if __GNUC__ >= 4 477#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 478# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 479# define noinline __attribute__ ((noinline))
302#else 480#else
309 487
310#define expect_false(expr) expect ((expr) != 0, 0) 488#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 489#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 490#define inline_size static inline
313 491
314#if EV_MINIMAL 492#if EV_FEATURE_CODE
493# define inline_speed static inline
494#else
315# define inline_speed static noinline 495# define inline_speed static noinline
496#endif
497
498#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499
500#if EV_MINPRI == EV_MAXPRI
501# define ABSPRI(w) (((W)w), 0)
316#else 502#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 503# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504#endif
322 505
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 506#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 507#define EMPTY2(a,b) /* used to suppress some warnings */
325 508
326typedef ev_watcher *W; 509typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 511typedef ev_watcher_time *WT;
329 512
330#define ev_active(w) ((W)(w))->active 513#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 514#define ev_at(w) ((WT)(w))->at
332 515
516#if EV_USE_REALTIME
517/* sig_atomic_t is used to avoid per-thread variables or locking but still */
518/* giving it a reasonably high chance of working on typical architectures */
519static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
520#endif
521
333#if EV_USE_MONOTONIC 522#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 523static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
524#endif
525
526#ifndef EV_FD_TO_WIN32_HANDLE
527# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528#endif
529#ifndef EV_WIN32_HANDLE_TO_FD
530# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531#endif
532#ifndef EV_WIN32_CLOSE_FD
533# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 534#endif
338 535
339#ifdef _WIN32 536#ifdef _WIN32
340# include "ev_win32.c" 537# include "ev_win32.c"
341#endif 538#endif
342 539
343/*****************************************************************************/ 540/*****************************************************************************/
344 541
542#if EV_AVOID_STDIO
543static void noinline
544ev_printerr (const char *msg)
545{
546 write (STDERR_FILENO, msg, strlen (msg));
547}
548#endif
549
345static void (*syserr_cb)(const char *msg); 550static void (*syserr_cb)(const char *msg);
346 551
347void 552void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 553ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 554{
350 syserr_cb = cb; 555 syserr_cb = cb;
351} 556}
352 557
353static void noinline 558static void noinline
354syserr (const char *msg) 559ev_syserr (const char *msg)
355{ 560{
356 if (!msg) 561 if (!msg)
357 msg = "(libev) system error"; 562 msg = "(libev) system error";
358 563
359 if (syserr_cb) 564 if (syserr_cb)
360 syserr_cb (msg); 565 syserr_cb (msg);
361 else 566 else
362 { 567 {
568#if EV_AVOID_STDIO
569 const char *err = strerror (errno);
570
571 ev_printerr (msg);
572 ev_printerr (": ");
573 ev_printerr (err);
574 ev_printerr ("\n");
575#else
363 perror (msg); 576 perror (msg);
577#endif
364 abort (); 578 abort ();
365 } 579 }
366} 580}
367 581
368static void * 582static void *
369ev_realloc_emul (void *ptr, long size) 583ev_realloc_emul (void *ptr, long size)
370{ 584{
585#if __GLIBC__
586 return realloc (ptr, size);
587#else
371 /* some systems, notably openbsd and darwin, fail to properly 588 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 589 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 590 * the single unix specification, so work around them here.
374 */ 591 */
375 592
376 if (size) 593 if (size)
377 return realloc (ptr, size); 594 return realloc (ptr, size);
378 595
379 free (ptr); 596 free (ptr);
380 return 0; 597 return 0;
598#endif
381} 599}
382 600
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 601static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 602
385void 603void
393{ 611{
394 ptr = alloc (ptr, size); 612 ptr = alloc (ptr, size);
395 613
396 if (!ptr && size) 614 if (!ptr && size)
397 { 615 {
616#if EV_AVOID_STDIO
617 ev_printerr ("libev: memory allocation failed, aborting.\n");
618#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 619 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620#endif
399 abort (); 621 abort ();
400 } 622 }
401 623
402 return ptr; 624 return ptr;
403} 625}
405#define ev_malloc(size) ev_realloc (0, (size)) 627#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 628#define ev_free(ptr) ev_realloc ((ptr), 0)
407 629
408/*****************************************************************************/ 630/*****************************************************************************/
409 631
632/* set in reify when reification needed */
633#define EV_ANFD_REIFY 1
634
635/* file descriptor info structure */
410typedef struct 636typedef struct
411{ 637{
412 WL head; 638 WL head;
413 unsigned char events; 639 unsigned char events; /* the events watched for */
640 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
641 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 642 unsigned char unused;
643#if EV_USE_EPOLL
644 unsigned int egen; /* generation counter to counter epoll bugs */
645#endif
415#if EV_SELECT_IS_WINSOCKET 646#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 647 SOCKET handle;
417#endif 648#endif
418} ANFD; 649} ANFD;
419 650
651/* stores the pending event set for a given watcher */
420typedef struct 652typedef struct
421{ 653{
422 W w; 654 W w;
423 int events; 655 int events; /* the pending event set for the given watcher */
424} ANPENDING; 656} ANPENDING;
425 657
426#if EV_USE_INOTIFY 658#if EV_USE_INOTIFY
659/* hash table entry per inotify-id */
427typedef struct 660typedef struct
428{ 661{
429 WL head; 662 WL head;
430} ANFS; 663} ANFS;
664#endif
665
666/* Heap Entry */
667#if EV_HEAP_CACHE_AT
668 /* a heap element */
669 typedef struct {
670 ev_tstamp at;
671 WT w;
672 } ANHE;
673
674 #define ANHE_w(he) (he).w /* access watcher, read-write */
675 #define ANHE_at(he) (he).at /* access cached at, read-only */
676 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
677#else
678 /* a heap element */
679 typedef WT ANHE;
680
681 #define ANHE_w(he) (he)
682 #define ANHE_at(he) (he)->at
683 #define ANHE_at_cache(he)
431#endif 684#endif
432 685
433#if EV_MULTIPLICITY 686#if EV_MULTIPLICITY
434 687
435 struct ev_loop 688 struct ev_loop
454 707
455 static int ev_default_loop_ptr; 708 static int ev_default_loop_ptr;
456 709
457#endif 710#endif
458 711
712#if EV_FEATURE_API
713# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715# define EV_INVOKE_PENDING invoke_cb (EV_A)
716#else
717# define EV_RELEASE_CB (void)0
718# define EV_ACQUIRE_CB (void)0
719# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720#endif
721
722#define EVUNLOOP_RECURSE 0x80
723
459/*****************************************************************************/ 724/*****************************************************************************/
460 725
726#ifndef EV_HAVE_EV_TIME
461ev_tstamp 727ev_tstamp
462ev_time (void) 728ev_time (void)
463{ 729{
464#if EV_USE_REALTIME 730#if EV_USE_REALTIME
731 if (expect_true (have_realtime))
732 {
465 struct timespec ts; 733 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 734 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 735 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 736 }
737#endif
738
469 struct timeval tv; 739 struct timeval tv;
470 gettimeofday (&tv, 0); 740 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 741 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 742}
743#endif
474 744
475ev_tstamp inline_size 745inline_size ev_tstamp
476get_clock (void) 746get_clock (void)
477{ 747{
478#if EV_USE_MONOTONIC 748#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 749 if (expect_true (have_monotonic))
480 { 750 {
501 if (delay > 0.) 771 if (delay > 0.)
502 { 772 {
503#if EV_USE_NANOSLEEP 773#if EV_USE_NANOSLEEP
504 struct timespec ts; 774 struct timespec ts;
505 775
506 ts.tv_sec = (time_t)delay; 776 EV_SET_TS (ts, delay);
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0); 777 nanosleep (&ts, 0);
510#elif defined(_WIN32) 778#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3)); 779 Sleep ((unsigned long)(delay * 1e3));
512#else 780#else
513 struct timeval tv; 781 struct timeval tv;
514 782
515 tv.tv_sec = (time_t)delay; 783 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 784 /* something not guaranteed by newer posix versions, but guaranteed */
517 785 /* by older ones */
786 EV_SET_TV (tv, delay);
518 select (0, 0, 0, 0, &tv); 787 select (0, 0, 0, 0, &tv);
519#endif 788#endif
520 } 789 }
521} 790}
522 791
523/*****************************************************************************/ 792/*****************************************************************************/
524 793
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 794#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 795
527int inline_size 796/* find a suitable new size for the given array, */
797/* hopefully by rounding to a nice-to-malloc size */
798inline_size int
528array_nextsize (int elem, int cur, int cnt) 799array_nextsize (int elem, int cur, int cnt)
529{ 800{
530 int ncur = cur + 1; 801 int ncur = cur + 1;
531 802
532 do 803 do
549array_realloc (int elem, void *base, int *cur, int cnt) 820array_realloc (int elem, void *base, int *cur, int cnt)
550{ 821{
551 *cur = array_nextsize (elem, *cur, cnt); 822 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 823 return ev_realloc (base, elem * *cur);
553} 824}
825
826#define array_init_zero(base,count) \
827 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 828
555#define array_needsize(type,base,cur,cnt,init) \ 829#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 830 if (expect_false ((cnt) > (cur))) \
557 { \ 831 { \
558 int ocur_ = (cur); \ 832 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 844 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 845 }
572#endif 846#endif
573 847
574#define array_free(stem, idx) \ 848#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 849 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 850
577/*****************************************************************************/ 851/*****************************************************************************/
852
853/* dummy callback for pending events */
854static void noinline
855pendingcb (EV_P_ ev_prepare *w, int revents)
856{
857}
578 858
579void noinline 859void noinline
580ev_feed_event (EV_P_ void *w, int revents) 860ev_feed_event (EV_P_ void *w, int revents)
581{ 861{
582 W w_ = (W)w; 862 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 871 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 872 pendings [pri][w_->pending - 1].events = revents;
593 } 873 }
594} 874}
595 875
596void inline_speed 876inline_speed void
877feed_reverse (EV_P_ W w)
878{
879 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880 rfeeds [rfeedcnt++] = w;
881}
882
883inline_size void
884feed_reverse_done (EV_P_ int revents)
885{
886 do
887 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888 while (rfeedcnt);
889}
890
891inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 892queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 893{
599 int i; 894 int i;
600 895
601 for (i = 0; i < eventcnt; ++i) 896 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 897 ev_feed_event (EV_A_ events [i], type);
603} 898}
604 899
605/*****************************************************************************/ 900/*****************************************************************************/
606 901
607void inline_size 902inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 903fd_event_nocheck (EV_P_ int fd, int revents)
622{ 904{
623 ANFD *anfd = anfds + fd; 905 ANFD *anfd = anfds + fd;
624 ev_io *w; 906 ev_io *w;
625 907
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 912 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 913 ev_feed_event (EV_A_ (W)w, ev);
632 } 914 }
633} 915}
634 916
917/* do not submit kernel events for fds that have reify set */
918/* because that means they changed while we were polling for new events */
919inline_speed void
920fd_event (EV_P_ int fd, int revents)
921{
922 ANFD *anfd = anfds + fd;
923
924 if (expect_true (!anfd->reify))
925 fd_event_nocheck (EV_A_ fd, revents);
926}
927
635void 928void
636ev_feed_fd_event (EV_P_ int fd, int revents) 929ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 930{
638 if (fd >= 0 && fd < anfdmax) 931 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 932 fd_event_nocheck (EV_A_ fd, revents);
640} 933}
641 934
642void inline_size 935/* make sure the external fd watch events are in-sync */
936/* with the kernel/libev internal state */
937inline_size void
643fd_reify (EV_P) 938fd_reify (EV_P)
644{ 939{
645 int i; 940 int i;
646 941
647 for (i = 0; i < fdchangecnt; ++i) 942 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 951 events |= (unsigned char)w->events;
657 952
658#if EV_SELECT_IS_WINSOCKET 953#if EV_SELECT_IS_WINSOCKET
659 if (events) 954 if (events)
660 { 955 {
661 unsigned long argp; 956 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 957 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
665 anfd->handle = _get_osfhandle (fd);
666 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 958 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 959 }
669#endif 960#endif
670 961
671 { 962 {
672 unsigned char o_events = anfd->events; 963 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 964 unsigned char o_reify = anfd->reify;
674 965
675 anfd->reify = 0; 966 anfd->reify = 0;
676 anfd->events = events; 967 anfd->events = events;
677 968
678 if (o_events != events || o_reify & EV_IOFDSET) 969 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 970 backend_modify (EV_A_ fd, o_events, events);
680 } 971 }
681 } 972 }
682 973
683 fdchangecnt = 0; 974 fdchangecnt = 0;
684} 975}
685 976
686void inline_size 977/* something about the given fd changed */
978inline_size void
687fd_change (EV_P_ int fd, int flags) 979fd_change (EV_P_ int fd, int flags)
688{ 980{
689 unsigned char reify = anfds [fd].reify; 981 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 982 anfds [fd].reify |= flags;
691 983
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 987 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 988 fdchanges [fdchangecnt - 1] = fd;
697 } 989 }
698} 990}
699 991
700void inline_speed 992/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
993inline_speed void
701fd_kill (EV_P_ int fd) 994fd_kill (EV_P_ int fd)
702{ 995{
703 ev_io *w; 996 ev_io *w;
704 997
705 while ((w = (ev_io *)anfds [fd].head)) 998 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 1000 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1001 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 1002 }
710} 1003}
711 1004
712int inline_size 1005/* check whether the given fd is actually valid, for error recovery */
1006inline_size int
713fd_valid (int fd) 1007fd_valid (int fd)
714{ 1008{
715#ifdef _WIN32 1009#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 1010 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
717#else 1011#else
718 return fcntl (fd, F_GETFD) != -1; 1012 return fcntl (fd, F_GETFD) != -1;
719#endif 1013#endif
720} 1014}
721 1015
725{ 1019{
726 int fd; 1020 int fd;
727 1021
728 for (fd = 0; fd < anfdmax; ++fd) 1022 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1023 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 1024 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 1025 fd_kill (EV_A_ fd);
732} 1026}
733 1027
734/* called on ENOMEM in select/poll to kill some fds and retry */ 1028/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 1029static void noinline
739 1033
740 for (fd = anfdmax; fd--; ) 1034 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 1035 if (anfds [fd].events)
742 { 1036 {
743 fd_kill (EV_A_ fd); 1037 fd_kill (EV_A_ fd);
744 return; 1038 break;
745 } 1039 }
746} 1040}
747 1041
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 1042/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 1043static void noinline
753 1047
754 for (fd = 0; fd < anfdmax; ++fd) 1048 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 1049 if (anfds [fd].events)
756 { 1050 {
757 anfds [fd].events = 0; 1051 anfds [fd].events = 0;
1052 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1053 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 1054 }
760} 1055}
761 1056
1057/* used to prepare libev internal fd's */
1058/* this is not fork-safe */
1059inline_speed void
1060fd_intern (int fd)
1061{
1062#ifdef _WIN32
1063 unsigned long arg = 1;
1064 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1065#else
1066 fcntl (fd, F_SETFD, FD_CLOEXEC);
1067 fcntl (fd, F_SETFL, O_NONBLOCK);
1068#endif
1069}
1070
762/*****************************************************************************/ 1071/*****************************************************************************/
1072
1073/*
1074 * the heap functions want a real array index. array index 0 is guaranteed to not
1075 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1076 * the branching factor of the d-tree.
1077 */
763 1078
764/* 1079/*
765 * at the moment we allow libev the luxury of two heaps, 1080 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1081 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 1082 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 1083 * the difference is about 5% with 50000+ watchers.
769 */ 1084 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 1085#if EV_USE_4HEAP
772 1086
1087#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 1088#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1089#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1090#define UPHEAP_DONE(p,k) ((p) == (k))
774 1091
775/* towards the root */ 1092/* away from the root */
776void inline_speed 1093inline_speed void
777upheap (WT *heap, int k) 1094downheap (ANHE *heap, int N, int k)
778{ 1095{
779 WT w = heap [k]; 1096 ANHE he = heap [k];
1097 ANHE *E = heap + N + HEAP0;
780 1098
781 for (;;) 1099 for (;;)
782 { 1100 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
784
785 if (p >= HEAP0 || heap [p]->at <= w->at)
786 break;
787
788 heap [k] = heap [p];
789 ev_active (heap [k]) = k;
790 k = p;
791 }
792
793 heap [k] = w;
794 ev_active (heap [k]) = k;
795}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat; 1101 ev_tstamp minat;
807 WT *minpos; 1102 ANHE *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0; 1103 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
809 1104
810 // find minimum child 1105 /* find minimum child */
811 if (expect_true (pos +3 < E)) 1106 if (expect_true (pos + DHEAP - 1 < E))
812 { 1107 {
813 (minpos = pos + 0), (minat = (*minpos)->at); 1108 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 1109 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 1110 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 1111 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1112 }
1113 else if (pos < E)
1114 {
1115 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1116 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1117 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1118 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
817 } 1119 }
818 else 1120 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break; 1121 break;
831 1122
832 ev_active (*minpos) = k; 1123 if (ANHE_at (he) <= minat)
1124 break;
1125
833 heap [k] = *minpos; 1126 heap [k] = *minpos;
1127 ev_active (ANHE_w (*minpos)) = k;
834 1128
835 k = minpos - heap; 1129 k = minpos - heap;
836 } 1130 }
837 1131
838 heap [k] = w; 1132 heap [k] = he;
839 ev_active (heap [k]) = k; 1133 ev_active (ANHE_w (he)) = k;
840} 1134}
841 1135
842#else // 4HEAP 1136#else /* 4HEAP */
843 1137
844#define HEAP0 1 1138#define HEAP0 1
1139#define HPARENT(k) ((k) >> 1)
1140#define UPHEAP_DONE(p,k) (!(p))
845 1141
846/* towards the root */ 1142/* away from the root */
847void inline_speed 1143inline_speed void
848upheap (WT *heap, int k) 1144downheap (ANHE *heap, int N, int k)
849{ 1145{
850 WT w = heap [k]; 1146 ANHE he = heap [k];
851 1147
852 for (;;) 1148 for (;;)
853 { 1149 {
854 int p = k >> 1; 1150 int c = k << 1;
855 1151
856 /* maybe we could use a dummy element at heap [0]? */ 1152 if (c >= N + HEAP0)
857 if (!p || heap [p]->at <= w->at)
858 break; 1153 break;
859 1154
860 heap [k] = heap [p]; 1155 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
861 ev_active (heap [k]) = k; 1156 ? 1 : 0;
862 k = p;
863 }
864 1157
865 heap [k] = w; 1158 if (ANHE_at (he) <= ANHE_at (heap [c]))
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break; 1159 break;
881 1160
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c]; 1161 heap [k] = heap [c];
889 ((W)heap [k])->active = k; 1162 ev_active (ANHE_w (heap [k])) = k;
890 1163
891 k = c; 1164 k = c;
892 } 1165 }
893 1166
894 heap [k] = w; 1167 heap [k] = he;
1168 ev_active (ANHE_w (he)) = k;
1169}
1170#endif
1171
1172/* towards the root */
1173inline_speed void
1174upheap (ANHE *heap, int k)
1175{
1176 ANHE he = heap [k];
1177
1178 for (;;)
1179 {
1180 int p = HPARENT (k);
1181
1182 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1183 break;
1184
1185 heap [k] = heap [p];
895 ev_active (heap [k]) = k; 1186 ev_active (ANHE_w (heap [k])) = k;
896} 1187 k = p;
897#endif 1188 }
898 1189
899void inline_size 1190 heap [k] = he;
1191 ev_active (ANHE_w (he)) = k;
1192}
1193
1194/* move an element suitably so it is in a correct place */
1195inline_size void
900adjustheap (WT *heap, int N, int k) 1196adjustheap (ANHE *heap, int N, int k)
901{ 1197{
1198 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
902 upheap (heap, k); 1199 upheap (heap, k);
1200 else
903 downheap (heap, N, k); 1201 downheap (heap, N, k);
1202}
1203
1204/* rebuild the heap: this function is used only once and executed rarely */
1205inline_size void
1206reheap (ANHE *heap, int N)
1207{
1208 int i;
1209
1210 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1211 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1212 for (i = 0; i < N; ++i)
1213 upheap (heap, i + HEAP0);
904} 1214}
905 1215
906/*****************************************************************************/ 1216/*****************************************************************************/
907 1217
1218/* associate signal watchers to a signal signal */
908typedef struct 1219typedef struct
909{ 1220{
1221 EV_ATOMIC_T pending;
1222#if EV_MULTIPLICITY
1223 EV_P;
1224#endif
910 WL head; 1225 WL head;
911 EV_ATOMIC_T gotsig;
912} ANSIG; 1226} ANSIG;
913 1227
914static ANSIG *signals; 1228static ANSIG signals [EV_NSIG - 1];
915static int signalmax;
916
917static EV_ATOMIC_T gotsig;
918
919void inline_size
920signals_init (ANSIG *base, int count)
921{
922 while (count--)
923 {
924 base->head = 0;
925 base->gotsig = 0;
926
927 ++base;
928 }
929}
930 1229
931/*****************************************************************************/ 1230/*****************************************************************************/
932 1231
933void inline_speed 1232#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
934fd_intern (int fd)
935{
936#ifdef _WIN32
937 int arg = 1;
938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
939#else
940 fcntl (fd, F_SETFD, FD_CLOEXEC);
941 fcntl (fd, F_SETFL, O_NONBLOCK);
942#endif
943}
944 1233
945static void noinline 1234static void noinline
946evpipe_init (EV_P) 1235evpipe_init (EV_P)
947{ 1236{
948 if (!ev_is_active (&pipeev)) 1237 if (!ev_is_active (&pipe_w))
949 { 1238 {
950#if EV_USE_EVENTFD 1239# if EV_USE_EVENTFD
1240 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1241 if (evfd < 0 && errno == EINVAL)
951 if ((evfd = eventfd (0, 0)) >= 0) 1242 evfd = eventfd (0, 0);
1243
1244 if (evfd >= 0)
952 { 1245 {
953 evpipe [0] = -1; 1246 evpipe [0] = -1;
954 fd_intern (evfd); 1247 fd_intern (evfd); /* doing it twice doesn't hurt */
955 ev_io_set (&pipeev, evfd, EV_READ); 1248 ev_io_set (&pipe_w, evfd, EV_READ);
956 } 1249 }
957 else 1250 else
958#endif 1251# endif
959 { 1252 {
960 while (pipe (evpipe)) 1253 while (pipe (evpipe))
961 syserr ("(libev) error creating signal/async pipe"); 1254 ev_syserr ("(libev) error creating signal/async pipe");
962 1255
963 fd_intern (evpipe [0]); 1256 fd_intern (evpipe [0]);
964 fd_intern (evpipe [1]); 1257 fd_intern (evpipe [1]);
965 ev_io_set (&pipeev, evpipe [0], EV_READ); 1258 ev_io_set (&pipe_w, evpipe [0], EV_READ);
966 } 1259 }
967 1260
968 ev_io_start (EV_A_ &pipeev); 1261 ev_io_start (EV_A_ &pipe_w);
969 ev_unref (EV_A); /* watcher should not keep loop alive */ 1262 ev_unref (EV_A); /* watcher should not keep loop alive */
970 } 1263 }
971} 1264}
972 1265
973void inline_size 1266inline_size void
974evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1267evpipe_write (EV_P_ EV_ATOMIC_T *flag)
975{ 1268{
976 if (!*flag) 1269 if (!*flag)
977 { 1270 {
978 int old_errno = errno; /* save errno because write might clobber it */ 1271 int old_errno = errno; /* save errno because write might clobber it */
1272 char dummy;
979 1273
980 *flag = 1; 1274 *flag = 1;
981 1275
982#if EV_USE_EVENTFD 1276#if EV_USE_EVENTFD
983 if (evfd >= 0) 1277 if (evfd >= 0)
985 uint64_t counter = 1; 1279 uint64_t counter = 1;
986 write (evfd, &counter, sizeof (uint64_t)); 1280 write (evfd, &counter, sizeof (uint64_t));
987 } 1281 }
988 else 1282 else
989#endif 1283#endif
1284 /* win32 people keep sending patches that change this write() to send() */
1285 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1286 /* so when you think this write should be a send instead, please find out */
1287 /* where your send() is from - it's definitely not the microsoft send, and */
1288 /* tell me. thank you. */
990 write (evpipe [1], &old_errno, 1); 1289 write (evpipe [1], &dummy, 1);
991 1290
992 errno = old_errno; 1291 errno = old_errno;
993 } 1292 }
994} 1293}
995 1294
1295/* called whenever the libev signal pipe */
1296/* got some events (signal, async) */
996static void 1297static void
997pipecb (EV_P_ ev_io *iow, int revents) 1298pipecb (EV_P_ ev_io *iow, int revents)
998{ 1299{
1300 int i;
1301
999#if EV_USE_EVENTFD 1302#if EV_USE_EVENTFD
1000 if (evfd >= 0) 1303 if (evfd >= 0)
1001 { 1304 {
1002 uint64_t counter; 1305 uint64_t counter;
1003 read (evfd, &counter, sizeof (uint64_t)); 1306 read (evfd, &counter, sizeof (uint64_t));
1004 } 1307 }
1005 else 1308 else
1006#endif 1309#endif
1007 { 1310 {
1008 char dummy; 1311 char dummy;
1312 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1009 read (evpipe [0], &dummy, 1); 1313 read (evpipe [0], &dummy, 1);
1010 } 1314 }
1011 1315
1012 if (gotsig && ev_is_default_loop (EV_A)) 1316 if (sig_pending)
1013 { 1317 {
1014 int signum; 1318 sig_pending = 0;
1015 gotsig = 0;
1016 1319
1017 for (signum = signalmax; signum--; ) 1320 for (i = EV_NSIG - 1; i--; )
1018 if (signals [signum].gotsig) 1321 if (expect_false (signals [i].pending))
1019 ev_feed_signal_event (EV_A_ signum + 1); 1322 ev_feed_signal_event (EV_A_ i + 1);
1020 } 1323 }
1021 1324
1022#if EV_ASYNC_ENABLE 1325#if EV_ASYNC_ENABLE
1023 if (gotasync) 1326 if (async_pending)
1024 { 1327 {
1025 int i; 1328 async_pending = 0;
1026 gotasync = 0;
1027 1329
1028 for (i = asynccnt; i--; ) 1330 for (i = asynccnt; i--; )
1029 if (asyncs [i]->sent) 1331 if (asyncs [i]->sent)
1030 { 1332 {
1031 asyncs [i]->sent = 0; 1333 asyncs [i]->sent = 0;
1039 1341
1040static void 1342static void
1041ev_sighandler (int signum) 1343ev_sighandler (int signum)
1042{ 1344{
1043#if EV_MULTIPLICITY 1345#if EV_MULTIPLICITY
1044 struct ev_loop *loop = &default_loop_struct; 1346 EV_P = signals [signum - 1].loop;
1045#endif 1347#endif
1046 1348
1047#if _WIN32 1349#ifdef _WIN32
1048 signal (signum, ev_sighandler); 1350 signal (signum, ev_sighandler);
1049#endif 1351#endif
1050 1352
1051 signals [signum - 1].gotsig = 1; 1353 signals [signum - 1].pending = 1;
1052 evpipe_write (EV_A_ &gotsig); 1354 evpipe_write (EV_A_ &sig_pending);
1053} 1355}
1054 1356
1055void noinline 1357void noinline
1056ev_feed_signal_event (EV_P_ int signum) 1358ev_feed_signal_event (EV_P_ int signum)
1057{ 1359{
1058 WL w; 1360 WL w;
1059 1361
1362 if (expect_false (signum <= 0 || signum > EV_NSIG))
1363 return;
1364
1365 --signum;
1366
1060#if EV_MULTIPLICITY 1367#if EV_MULTIPLICITY
1061 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1368 /* it is permissible to try to feed a signal to the wrong loop */
1062#endif 1369 /* or, likely more useful, feeding a signal nobody is waiting for */
1063 1370
1064 --signum; 1371 if (expect_false (signals [signum].loop != EV_A))
1065
1066 if (signum < 0 || signum >= signalmax)
1067 return; 1372 return;
1373#endif
1068 1374
1069 signals [signum].gotsig = 0; 1375 signals [signum].pending = 0;
1070 1376
1071 for (w = signals [signum].head; w; w = w->next) 1377 for (w = signals [signum].head; w; w = w->next)
1072 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1378 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1073} 1379}
1074 1380
1381#if EV_USE_SIGNALFD
1382static void
1383sigfdcb (EV_P_ ev_io *iow, int revents)
1384{
1385 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1386
1387 for (;;)
1388 {
1389 ssize_t res = read (sigfd, si, sizeof (si));
1390
1391 /* not ISO-C, as res might be -1, but works with SuS */
1392 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1393 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1394
1395 if (res < (ssize_t)sizeof (si))
1396 break;
1397 }
1398}
1399#endif
1400
1401#endif
1402
1075/*****************************************************************************/ 1403/*****************************************************************************/
1076 1404
1405#if EV_CHILD_ENABLE
1077static WL childs [EV_PID_HASHSIZE]; 1406static WL childs [EV_PID_HASHSIZE];
1078
1079#ifndef _WIN32
1080 1407
1081static ev_signal childev; 1408static ev_signal childev;
1082 1409
1083#ifndef WIFCONTINUED 1410#ifndef WIFCONTINUED
1084# define WIFCONTINUED(status) 0 1411# define WIFCONTINUED(status) 0
1085#endif 1412#endif
1086 1413
1087void inline_speed 1414/* handle a single child status event */
1415inline_speed void
1088child_reap (EV_P_ int chain, int pid, int status) 1416child_reap (EV_P_ int chain, int pid, int status)
1089{ 1417{
1090 ev_child *w; 1418 ev_child *w;
1091 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1419 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1092 1420
1093 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1421 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1094 { 1422 {
1095 if ((w->pid == pid || !w->pid) 1423 if ((w->pid == pid || !w->pid)
1096 && (!traced || (w->flags & 1))) 1424 && (!traced || (w->flags & 1)))
1097 { 1425 {
1098 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1426 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1105 1433
1106#ifndef WCONTINUED 1434#ifndef WCONTINUED
1107# define WCONTINUED 0 1435# define WCONTINUED 0
1108#endif 1436#endif
1109 1437
1438/* called on sigchld etc., calls waitpid */
1110static void 1439static void
1111childcb (EV_P_ ev_signal *sw, int revents) 1440childcb (EV_P_ ev_signal *sw, int revents)
1112{ 1441{
1113 int pid, status; 1442 int pid, status;
1114 1443
1122 /* make sure we are called again until all children have been reaped */ 1451 /* make sure we are called again until all children have been reaped */
1123 /* we need to do it this way so that the callback gets called before we continue */ 1452 /* we need to do it this way so that the callback gets called before we continue */
1124 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1453 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1125 1454
1126 child_reap (EV_A_ pid, pid, status); 1455 child_reap (EV_A_ pid, pid, status);
1127 if (EV_PID_HASHSIZE > 1) 1456 if ((EV_PID_HASHSIZE) > 1)
1128 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1457 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1129} 1458}
1130 1459
1131#endif 1460#endif
1132 1461
1195 /* kqueue is borked on everything but netbsd apparently */ 1524 /* kqueue is borked on everything but netbsd apparently */
1196 /* it usually doesn't work correctly on anything but sockets and pipes */ 1525 /* it usually doesn't work correctly on anything but sockets and pipes */
1197 flags &= ~EVBACKEND_KQUEUE; 1526 flags &= ~EVBACKEND_KQUEUE;
1198#endif 1527#endif
1199#ifdef __APPLE__ 1528#ifdef __APPLE__
1200 // flags &= ~EVBACKEND_KQUEUE; for documentation 1529 /* only select works correctly on that "unix-certified" platform */
1201 flags &= ~EVBACKEND_POLL; 1530 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1531 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1532#endif
1533#ifdef __FreeBSD__
1534 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1202#endif 1535#endif
1203 1536
1204 return flags; 1537 return flags;
1205} 1538}
1206 1539
1220ev_backend (EV_P) 1553ev_backend (EV_P)
1221{ 1554{
1222 return backend; 1555 return backend;
1223} 1556}
1224 1557
1558#if EV_FEATURE_API
1225unsigned int 1559unsigned int
1226ev_loop_count (EV_P) 1560ev_iteration (EV_P)
1227{ 1561{
1228 return loop_count; 1562 return loop_count;
1229} 1563}
1230 1564
1565unsigned int
1566ev_depth (EV_P)
1567{
1568 return loop_depth;
1569}
1570
1231void 1571void
1232ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1572ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1233{ 1573{
1234 io_blocktime = interval; 1574 io_blocktime = interval;
1235} 1575}
1238ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1578ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1239{ 1579{
1240 timeout_blocktime = interval; 1580 timeout_blocktime = interval;
1241} 1581}
1242 1582
1583void
1584ev_set_userdata (EV_P_ void *data)
1585{
1586 userdata = data;
1587}
1588
1589void *
1590ev_userdata (EV_P)
1591{
1592 return userdata;
1593}
1594
1595void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1596{
1597 invoke_cb = invoke_pending_cb;
1598}
1599
1600void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1601{
1602 release_cb = release;
1603 acquire_cb = acquire;
1604}
1605#endif
1606
1607/* initialise a loop structure, must be zero-initialised */
1243static void noinline 1608static void noinline
1244loop_init (EV_P_ unsigned int flags) 1609loop_init (EV_P_ unsigned int flags)
1245{ 1610{
1246 if (!backend) 1611 if (!backend)
1247 { 1612 {
1613#if EV_USE_REALTIME
1614 if (!have_realtime)
1615 {
1616 struct timespec ts;
1617
1618 if (!clock_gettime (CLOCK_REALTIME, &ts))
1619 have_realtime = 1;
1620 }
1621#endif
1622
1248#if EV_USE_MONOTONIC 1623#if EV_USE_MONOTONIC
1624 if (!have_monotonic)
1249 { 1625 {
1250 struct timespec ts; 1626 struct timespec ts;
1627
1251 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1628 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1252 have_monotonic = 1; 1629 have_monotonic = 1;
1253 } 1630 }
1254#endif 1631#endif
1632
1633 /* pid check not overridable via env */
1634#ifndef _WIN32
1635 if (flags & EVFLAG_FORKCHECK)
1636 curpid = getpid ();
1637#endif
1638
1639 if (!(flags & EVFLAG_NOENV)
1640 && !enable_secure ()
1641 && getenv ("LIBEV_FLAGS"))
1642 flags = atoi (getenv ("LIBEV_FLAGS"));
1255 1643
1256 ev_rt_now = ev_time (); 1644 ev_rt_now = ev_time ();
1257 mn_now = get_clock (); 1645 mn_now = get_clock ();
1258 now_floor = mn_now; 1646 now_floor = mn_now;
1259 rtmn_diff = ev_rt_now - mn_now; 1647 rtmn_diff = ev_rt_now - mn_now;
1648#if EV_FEATURE_API
1649 invoke_cb = ev_invoke_pending;
1650#endif
1260 1651
1261 io_blocktime = 0.; 1652 io_blocktime = 0.;
1262 timeout_blocktime = 0.; 1653 timeout_blocktime = 0.;
1263 backend = 0; 1654 backend = 0;
1264 backend_fd = -1; 1655 backend_fd = -1;
1265 gotasync = 0; 1656 sig_pending = 0;
1657#if EV_ASYNC_ENABLE
1658 async_pending = 0;
1659#endif
1266#if EV_USE_INOTIFY 1660#if EV_USE_INOTIFY
1267 fs_fd = -2; 1661 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1268#endif 1662#endif
1269 1663#if EV_USE_SIGNALFD
1270 /* pid check not overridable via env */ 1664 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1271#ifndef _WIN32
1272 if (flags & EVFLAG_FORKCHECK)
1273 curpid = getpid ();
1274#endif 1665#endif
1275
1276 if (!(flags & EVFLAG_NOENV)
1277 && !enable_secure ()
1278 && getenv ("LIBEV_FLAGS"))
1279 flags = atoi (getenv ("LIBEV_FLAGS"));
1280 1666
1281 if (!(flags & 0x0000ffffU)) 1667 if (!(flags & 0x0000ffffU))
1282 flags |= ev_recommended_backends (); 1668 flags |= ev_recommended_backends ();
1283 1669
1284#if EV_USE_PORT 1670#if EV_USE_PORT
1295#endif 1681#endif
1296#if EV_USE_SELECT 1682#if EV_USE_SELECT
1297 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1683 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1298#endif 1684#endif
1299 1685
1686 ev_prepare_init (&pending_w, pendingcb);
1687
1688#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1300 ev_init (&pipeev, pipecb); 1689 ev_init (&pipe_w, pipecb);
1301 ev_set_priority (&pipeev, EV_MAXPRI); 1690 ev_set_priority (&pipe_w, EV_MAXPRI);
1691#endif
1302 } 1692 }
1303} 1693}
1304 1694
1695/* free up a loop structure */
1305static void noinline 1696static void noinline
1306loop_destroy (EV_P) 1697loop_destroy (EV_P)
1307{ 1698{
1308 int i; 1699 int i;
1309 1700
1310 if (ev_is_active (&pipeev)) 1701 if (ev_is_active (&pipe_w))
1311 { 1702 {
1312 ev_ref (EV_A); /* signal watcher */ 1703 /*ev_ref (EV_A);*/
1313 ev_io_stop (EV_A_ &pipeev); 1704 /*ev_io_stop (EV_A_ &pipe_w);*/
1314 1705
1315#if EV_USE_EVENTFD 1706#if EV_USE_EVENTFD
1316 if (evfd >= 0) 1707 if (evfd >= 0)
1317 close (evfd); 1708 close (evfd);
1318#endif 1709#endif
1319 1710
1320 if (evpipe [0] >= 0) 1711 if (evpipe [0] >= 0)
1321 { 1712 {
1322 close (evpipe [0]); 1713 EV_WIN32_CLOSE_FD (evpipe [0]);
1323 close (evpipe [1]); 1714 EV_WIN32_CLOSE_FD (evpipe [1]);
1324 } 1715 }
1325 } 1716 }
1717
1718#if EV_USE_SIGNALFD
1719 if (ev_is_active (&sigfd_w))
1720 close (sigfd);
1721#endif
1326 1722
1327#if EV_USE_INOTIFY 1723#if EV_USE_INOTIFY
1328 if (fs_fd >= 0) 1724 if (fs_fd >= 0)
1329 close (fs_fd); 1725 close (fs_fd);
1330#endif 1726#endif
1354#if EV_IDLE_ENABLE 1750#if EV_IDLE_ENABLE
1355 array_free (idle, [i]); 1751 array_free (idle, [i]);
1356#endif 1752#endif
1357 } 1753 }
1358 1754
1359 ev_free (anfds); anfdmax = 0; 1755 ev_free (anfds); anfds = 0; anfdmax = 0;
1360 1756
1361 /* have to use the microsoft-never-gets-it-right macro */ 1757 /* have to use the microsoft-never-gets-it-right macro */
1758 array_free (rfeed, EMPTY);
1362 array_free (fdchange, EMPTY); 1759 array_free (fdchange, EMPTY);
1363 array_free (timer, EMPTY); 1760 array_free (timer, EMPTY);
1364#if EV_PERIODIC_ENABLE 1761#if EV_PERIODIC_ENABLE
1365 array_free (periodic, EMPTY); 1762 array_free (periodic, EMPTY);
1366#endif 1763#endif
1375 1772
1376 backend = 0; 1773 backend = 0;
1377} 1774}
1378 1775
1379#if EV_USE_INOTIFY 1776#if EV_USE_INOTIFY
1380void inline_size infy_fork (EV_P); 1777inline_size void infy_fork (EV_P);
1381#endif 1778#endif
1382 1779
1383void inline_size 1780inline_size void
1384loop_fork (EV_P) 1781loop_fork (EV_P)
1385{ 1782{
1386#if EV_USE_PORT 1783#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1784 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1388#endif 1785#endif
1394#endif 1791#endif
1395#if EV_USE_INOTIFY 1792#if EV_USE_INOTIFY
1396 infy_fork (EV_A); 1793 infy_fork (EV_A);
1397#endif 1794#endif
1398 1795
1399 if (ev_is_active (&pipeev)) 1796 if (ev_is_active (&pipe_w))
1400 { 1797 {
1401 /* this "locks" the handlers against writing to the pipe */ 1798 /* this "locks" the handlers against writing to the pipe */
1402 /* while we modify the fd vars */ 1799 /* while we modify the fd vars */
1403 gotsig = 1; 1800 sig_pending = 1;
1404#if EV_ASYNC_ENABLE 1801#if EV_ASYNC_ENABLE
1405 gotasync = 1; 1802 async_pending = 1;
1406#endif 1803#endif
1407 1804
1408 ev_ref (EV_A); 1805 ev_ref (EV_A);
1409 ev_io_stop (EV_A_ &pipeev); 1806 ev_io_stop (EV_A_ &pipe_w);
1410 1807
1411#if EV_USE_EVENTFD 1808#if EV_USE_EVENTFD
1412 if (evfd >= 0) 1809 if (evfd >= 0)
1413 close (evfd); 1810 close (evfd);
1414#endif 1811#endif
1415 1812
1416 if (evpipe [0] >= 0) 1813 if (evpipe [0] >= 0)
1417 { 1814 {
1418 close (evpipe [0]); 1815 EV_WIN32_CLOSE_FD (evpipe [0]);
1419 close (evpipe [1]); 1816 EV_WIN32_CLOSE_FD (evpipe [1]);
1420 } 1817 }
1421 1818
1819#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1422 evpipe_init (EV_A); 1820 evpipe_init (EV_A);
1423 /* now iterate over everything, in case we missed something */ 1821 /* now iterate over everything, in case we missed something */
1424 pipecb (EV_A_ &pipeev, EV_READ); 1822 pipecb (EV_A_ &pipe_w, EV_READ);
1823#endif
1425 } 1824 }
1426 1825
1427 postfork = 0; 1826 postfork = 0;
1428} 1827}
1429 1828
1430#if EV_MULTIPLICITY 1829#if EV_MULTIPLICITY
1830
1431struct ev_loop * 1831struct ev_loop *
1432ev_loop_new (unsigned int flags) 1832ev_loop_new (unsigned int flags)
1433{ 1833{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1834 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435 1835
1436 memset (loop, 0, sizeof (struct ev_loop)); 1836 memset (EV_A, 0, sizeof (struct ev_loop));
1437
1438 loop_init (EV_A_ flags); 1837 loop_init (EV_A_ flags);
1439 1838
1440 if (ev_backend (EV_A)) 1839 if (ev_backend (EV_A))
1441 return loop; 1840 return EV_A;
1442 1841
1443 return 0; 1842 return 0;
1444} 1843}
1445 1844
1446void 1845void
1452 1851
1453void 1852void
1454ev_loop_fork (EV_P) 1853ev_loop_fork (EV_P)
1455{ 1854{
1456 postfork = 1; /* must be in line with ev_default_fork */ 1855 postfork = 1; /* must be in line with ev_default_fork */
1856}
1857#endif /* multiplicity */
1858
1859#if EV_VERIFY
1860static void noinline
1861verify_watcher (EV_P_ W w)
1862{
1863 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1864
1865 if (w->pending)
1866 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1867}
1868
1869static void noinline
1870verify_heap (EV_P_ ANHE *heap, int N)
1871{
1872 int i;
1873
1874 for (i = HEAP0; i < N + HEAP0; ++i)
1875 {
1876 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1877 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1878 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1879
1880 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1881 }
1882}
1883
1884static void noinline
1885array_verify (EV_P_ W *ws, int cnt)
1886{
1887 while (cnt--)
1888 {
1889 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1890 verify_watcher (EV_A_ ws [cnt]);
1891 }
1892}
1893#endif
1894
1895#if EV_FEATURE_API
1896void
1897ev_verify (EV_P)
1898{
1899#if EV_VERIFY
1900 int i;
1901 WL w;
1902
1903 assert (activecnt >= -1);
1904
1905 assert (fdchangemax >= fdchangecnt);
1906 for (i = 0; i < fdchangecnt; ++i)
1907 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1908
1909 assert (anfdmax >= 0);
1910 for (i = 0; i < anfdmax; ++i)
1911 for (w = anfds [i].head; w; w = w->next)
1912 {
1913 verify_watcher (EV_A_ (W)w);
1914 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1915 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1916 }
1917
1918 assert (timermax >= timercnt);
1919 verify_heap (EV_A_ timers, timercnt);
1920
1921#if EV_PERIODIC_ENABLE
1922 assert (periodicmax >= periodiccnt);
1923 verify_heap (EV_A_ periodics, periodiccnt);
1924#endif
1925
1926 for (i = NUMPRI; i--; )
1927 {
1928 assert (pendingmax [i] >= pendingcnt [i]);
1929#if EV_IDLE_ENABLE
1930 assert (idleall >= 0);
1931 assert (idlemax [i] >= idlecnt [i]);
1932 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1933#endif
1934 }
1935
1936#if EV_FORK_ENABLE
1937 assert (forkmax >= forkcnt);
1938 array_verify (EV_A_ (W *)forks, forkcnt);
1939#endif
1940
1941#if EV_ASYNC_ENABLE
1942 assert (asyncmax >= asynccnt);
1943 array_verify (EV_A_ (W *)asyncs, asynccnt);
1944#endif
1945
1946#if EV_PREPARE_ENABLE
1947 assert (preparemax >= preparecnt);
1948 array_verify (EV_A_ (W *)prepares, preparecnt);
1949#endif
1950
1951#if EV_CHECK_ENABLE
1952 assert (checkmax >= checkcnt);
1953 array_verify (EV_A_ (W *)checks, checkcnt);
1954#endif
1955
1956# if 0
1957#if EV_CHILD_ENABLE
1958 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1959 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1960#endif
1961# endif
1962#endif
1457} 1963}
1458#endif 1964#endif
1459 1965
1460#if EV_MULTIPLICITY 1966#if EV_MULTIPLICITY
1461struct ev_loop * 1967struct ev_loop *
1466#endif 1972#endif
1467{ 1973{
1468 if (!ev_default_loop_ptr) 1974 if (!ev_default_loop_ptr)
1469 { 1975 {
1470#if EV_MULTIPLICITY 1976#if EV_MULTIPLICITY
1471 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1977 EV_P = ev_default_loop_ptr = &default_loop_struct;
1472#else 1978#else
1473 ev_default_loop_ptr = 1; 1979 ev_default_loop_ptr = 1;
1474#endif 1980#endif
1475 1981
1476 loop_init (EV_A_ flags); 1982 loop_init (EV_A_ flags);
1477 1983
1478 if (ev_backend (EV_A)) 1984 if (ev_backend (EV_A))
1479 { 1985 {
1480#ifndef _WIN32 1986#if EV_CHILD_ENABLE
1481 ev_signal_init (&childev, childcb, SIGCHLD); 1987 ev_signal_init (&childev, childcb, SIGCHLD);
1482 ev_set_priority (&childev, EV_MAXPRI); 1988 ev_set_priority (&childev, EV_MAXPRI);
1483 ev_signal_start (EV_A_ &childev); 1989 ev_signal_start (EV_A_ &childev);
1484 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1990 ev_unref (EV_A); /* child watcher should not keep loop alive */
1485#endif 1991#endif
1493 1999
1494void 2000void
1495ev_default_destroy (void) 2001ev_default_destroy (void)
1496{ 2002{
1497#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
1498 struct ev_loop *loop = ev_default_loop_ptr; 2004 EV_P = ev_default_loop_ptr;
1499#endif 2005#endif
1500 2006
1501#ifndef _WIN32 2007 ev_default_loop_ptr = 0;
2008
2009#if EV_CHILD_ENABLE
1502 ev_ref (EV_A); /* child watcher */ 2010 ev_ref (EV_A); /* child watcher */
1503 ev_signal_stop (EV_A_ &childev); 2011 ev_signal_stop (EV_A_ &childev);
1504#endif 2012#endif
1505 2013
1506 loop_destroy (EV_A); 2014 loop_destroy (EV_A);
1508 2016
1509void 2017void
1510ev_default_fork (void) 2018ev_default_fork (void)
1511{ 2019{
1512#if EV_MULTIPLICITY 2020#if EV_MULTIPLICITY
1513 struct ev_loop *loop = ev_default_loop_ptr; 2021 EV_P = ev_default_loop_ptr;
1514#endif 2022#endif
1515 2023
1516 if (backend)
1517 postfork = 1; /* must be in line with ev_loop_fork */ 2024 postfork = 1; /* must be in line with ev_loop_fork */
1518} 2025}
1519 2026
1520/*****************************************************************************/ 2027/*****************************************************************************/
1521 2028
1522void 2029void
1523ev_invoke (EV_P_ void *w, int revents) 2030ev_invoke (EV_P_ void *w, int revents)
1524{ 2031{
1525 EV_CB_INVOKE ((W)w, revents); 2032 EV_CB_INVOKE ((W)w, revents);
1526} 2033}
1527 2034
1528void inline_speed 2035unsigned int
1529call_pending (EV_P) 2036ev_pending_count (EV_P)
2037{
2038 int pri;
2039 unsigned int count = 0;
2040
2041 for (pri = NUMPRI; pri--; )
2042 count += pendingcnt [pri];
2043
2044 return count;
2045}
2046
2047void noinline
2048ev_invoke_pending (EV_P)
1530{ 2049{
1531 int pri; 2050 int pri;
1532 2051
1533 for (pri = NUMPRI; pri--; ) 2052 for (pri = NUMPRI; pri--; )
1534 while (pendingcnt [pri]) 2053 while (pendingcnt [pri])
1535 { 2054 {
1536 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2055 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1537 2056
1538 if (expect_true (p->w))
1539 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2057 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2058 /* ^ this is no longer true, as pending_w could be here */
1541 2059
1542 p->w->pending = 0; 2060 p->w->pending = 0;
1543 EV_CB_INVOKE (p->w, p->events); 2061 EV_CB_INVOKE (p->w, p->events);
1544 } 2062 EV_FREQUENT_CHECK;
1545 } 2063 }
1546} 2064}
1547 2065
1548#if EV_IDLE_ENABLE 2066#if EV_IDLE_ENABLE
1549void inline_size 2067/* make idle watchers pending. this handles the "call-idle */
2068/* only when higher priorities are idle" logic */
2069inline_size void
1550idle_reify (EV_P) 2070idle_reify (EV_P)
1551{ 2071{
1552 if (expect_false (idleall)) 2072 if (expect_false (idleall))
1553 { 2073 {
1554 int pri; 2074 int pri;
1566 } 2086 }
1567 } 2087 }
1568} 2088}
1569#endif 2089#endif
1570 2090
1571void inline_size 2091/* make timers pending */
2092inline_size void
1572timers_reify (EV_P) 2093timers_reify (EV_P)
1573{ 2094{
2095 EV_FREQUENT_CHECK;
2096
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 2097 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 2098 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 2099 do
1577
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579
1580 /* first reschedule or stop timer */
1581 if (w->repeat)
1582 { 2100 {
2101 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2102
2103 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2104
2105 /* first reschedule or stop timer */
2106 if (w->repeat)
2107 {
2108 ev_at (w) += w->repeat;
2109 if (ev_at (w) < mn_now)
2110 ev_at (w) = mn_now;
2111
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2112 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584 2113
1585 ev_at (w) += w->repeat; 2114 ANHE_at_cache (timers [HEAP0]);
1586 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now;
1588
1589 downheap (timers, timercnt, HEAP0); 2115 downheap (timers, timercnt, HEAP0);
2116 }
2117 else
2118 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2119
2120 EV_FREQUENT_CHECK;
2121 feed_reverse (EV_A_ (W)w);
1590 } 2122 }
1591 else 2123 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 2124
1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2125 feed_reverse_done (EV_A_ EV_TIMER);
1595 } 2126 }
1596} 2127}
1597 2128
1598#if EV_PERIODIC_ENABLE 2129#if EV_PERIODIC_ENABLE
1599void inline_size 2130/* make periodics pending */
2131inline_size void
1600periodics_reify (EV_P) 2132periodics_reify (EV_P)
1601{ 2133{
2134 EV_FREQUENT_CHECK;
2135
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 2136 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 2137 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 2138 int feed_count = 0;
1605 2139
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2140 do
1607
1608 /* first reschedule or stop timer */
1609 if (w->reschedule_cb)
1610 { 2141 {
2142 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2143
2144 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2145
2146 /* first reschedule or stop timer */
2147 if (w->reschedule_cb)
2148 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2149 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2150
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2151 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2152
2153 ANHE_at_cache (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 2154 downheap (periodics, periodiccnt, HEAP0);
2155 }
2156 else if (w->interval)
2157 {
2158 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2159 /* if next trigger time is not sufficiently in the future, put it there */
2160 /* this might happen because of floating point inexactness */
2161 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2162 {
2163 ev_at (w) += w->interval;
2164
2165 /* if interval is unreasonably low we might still have a time in the past */
2166 /* so correct this. this will make the periodic very inexact, but the user */
2167 /* has effectively asked to get triggered more often than possible */
2168 if (ev_at (w) < ev_rt_now)
2169 ev_at (w) = ev_rt_now;
2170 }
2171
2172 ANHE_at_cache (periodics [HEAP0]);
2173 downheap (periodics, periodiccnt, HEAP0);
2174 }
2175 else
2176 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2177
2178 EV_FREQUENT_CHECK;
2179 feed_reverse (EV_A_ (W)w);
1614 } 2180 }
1615 else if (w->interval) 2181 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1616 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1620 downheap (periodics, periodiccnt, HEAP0);
1621 }
1622 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 2182
1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2183 feed_reverse_done (EV_A_ EV_PERIODIC);
1626 } 2184 }
1627} 2185}
1628 2186
2187/* simply recalculate all periodics */
2188/* TODO: maybe ensure that at least one event happens when jumping forward? */
1629static void noinline 2189static void noinline
1630periodics_reschedule (EV_P) 2190periodics_reschedule (EV_P)
1631{ 2191{
1632 int i; 2192 int i;
1633 2193
1634 /* adjust periodics after time jump */ 2194 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 2195 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 2196 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 2197 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 2198
1639 if (w->reschedule_cb) 2199 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2200 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 2201 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2202 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2203
2204 ANHE_at_cache (periodics [i]);
2205 }
2206
2207 reheap (periodics, periodiccnt);
2208}
2209#endif
2210
2211/* adjust all timers by a given offset */
2212static void noinline
2213timers_reschedule (EV_P_ ev_tstamp adjust)
2214{
2215 int i;
2216
2217 for (i = 0; i < timercnt; ++i)
1643 } 2218 {
1644 2219 ANHE *he = timers + i + HEAP0;
1645 /* now rebuild the heap */ 2220 ANHE_w (*he)->at += adjust;
1646 for (i = periodiccnt >> 1; --i; ) 2221 ANHE_at_cache (*he);
1647 downheap (periodics, periodiccnt, i + HEAP0); 2222 }
1648} 2223}
1649#endif
1650 2224
1651void inline_speed 2225/* fetch new monotonic and realtime times from the kernel */
2226/* also detect if there was a timejump, and act accordingly */
2227inline_speed void
1652time_update (EV_P_ ev_tstamp max_block) 2228time_update (EV_P_ ev_tstamp max_block)
1653{ 2229{
1654 int i;
1655
1656#if EV_USE_MONOTONIC 2230#if EV_USE_MONOTONIC
1657 if (expect_true (have_monotonic)) 2231 if (expect_true (have_monotonic))
1658 { 2232 {
2233 int i;
1659 ev_tstamp odiff = rtmn_diff; 2234 ev_tstamp odiff = rtmn_diff;
1660 2235
1661 mn_now = get_clock (); 2236 mn_now = get_clock ();
1662 2237
1663 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2238 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1689 ev_rt_now = ev_time (); 2264 ev_rt_now = ev_time ();
1690 mn_now = get_clock (); 2265 mn_now = get_clock ();
1691 now_floor = mn_now; 2266 now_floor = mn_now;
1692 } 2267 }
1693 2268
2269 /* no timer adjustment, as the monotonic clock doesn't jump */
2270 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1694# if EV_PERIODIC_ENABLE 2271# if EV_PERIODIC_ENABLE
1695 periodics_reschedule (EV_A); 2272 periodics_reschedule (EV_A);
1696# endif 2273# endif
1697 /* no timer adjustment, as the monotonic clock doesn't jump */
1698 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1699 } 2274 }
1700 else 2275 else
1701#endif 2276#endif
1702 { 2277 {
1703 ev_rt_now = ev_time (); 2278 ev_rt_now = ev_time ();
1704 2279
1705 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2280 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1706 { 2281 {
2282 /* adjust timers. this is easy, as the offset is the same for all of them */
2283 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1707#if EV_PERIODIC_ENABLE 2284#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 2285 periodics_reschedule (EV_A);
1709#endif 2286#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now;
1713 } 2287 }
1714 2288
1715 mn_now = ev_rt_now; 2289 mn_now = ev_rt_now;
1716 } 2290 }
1717} 2291}
1718 2292
1719void 2293void
1720ev_ref (EV_P)
1721{
1722 ++activecnt;
1723}
1724
1725void
1726ev_unref (EV_P)
1727{
1728 --activecnt;
1729}
1730
1731static int loop_done;
1732
1733void
1734ev_loop (EV_P_ int flags) 2294ev_loop (EV_P_ int flags)
1735{ 2295{
2296#if EV_FEATURE_API
2297 ++loop_depth;
2298#endif
2299
2300 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2301
1736 loop_done = EVUNLOOP_CANCEL; 2302 loop_done = EVUNLOOP_CANCEL;
1737 2303
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2304 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1739 2305
1740 do 2306 do
1741 { 2307 {
2308#if EV_VERIFY >= 2
2309 ev_verify (EV_A);
2310#endif
2311
1742#ifndef _WIN32 2312#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */ 2313 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid)) 2314 if (expect_false (getpid () != curpid))
1745 { 2315 {
1746 curpid = getpid (); 2316 curpid = getpid ();
1752 /* we might have forked, so queue fork handlers */ 2322 /* we might have forked, so queue fork handlers */
1753 if (expect_false (postfork)) 2323 if (expect_false (postfork))
1754 if (forkcnt) 2324 if (forkcnt)
1755 { 2325 {
1756 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2326 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1757 call_pending (EV_A); 2327 EV_INVOKE_PENDING;
1758 } 2328 }
1759#endif 2329#endif
1760 2330
2331#if EV_PREPARE_ENABLE
1761 /* queue prepare watchers (and execute them) */ 2332 /* queue prepare watchers (and execute them) */
1762 if (expect_false (preparecnt)) 2333 if (expect_false (preparecnt))
1763 { 2334 {
1764 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2335 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1765 call_pending (EV_A); 2336 EV_INVOKE_PENDING;
1766 } 2337 }
2338#endif
1767 2339
1768 if (expect_false (!activecnt)) 2340 if (expect_false (loop_done))
1769 break; 2341 break;
1770 2342
1771 /* we might have forked, so reify kernel state if necessary */ 2343 /* we might have forked, so reify kernel state if necessary */
1772 if (expect_false (postfork)) 2344 if (expect_false (postfork))
1773 loop_fork (EV_A); 2345 loop_fork (EV_A);
1780 ev_tstamp waittime = 0.; 2352 ev_tstamp waittime = 0.;
1781 ev_tstamp sleeptime = 0.; 2353 ev_tstamp sleeptime = 0.;
1782 2354
1783 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2355 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1784 { 2356 {
2357 /* remember old timestamp for io_blocktime calculation */
2358 ev_tstamp prev_mn_now = mn_now;
2359
1785 /* update time to cancel out callback processing overhead */ 2360 /* update time to cancel out callback processing overhead */
1786 time_update (EV_A_ 1e100); 2361 time_update (EV_A_ 1e100);
1787 2362
1788 waittime = MAX_BLOCKTIME; 2363 waittime = MAX_BLOCKTIME;
1789 2364
1790 if (timercnt) 2365 if (timercnt)
1791 { 2366 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2367 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1793 if (waittime > to) waittime = to; 2368 if (waittime > to) waittime = to;
1794 } 2369 }
1795 2370
1796#if EV_PERIODIC_ENABLE 2371#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 2372 if (periodiccnt)
1798 { 2373 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2374 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1800 if (waittime > to) waittime = to; 2375 if (waittime > to) waittime = to;
1801 } 2376 }
1802#endif 2377#endif
1803 2378
2379 /* don't let timeouts decrease the waittime below timeout_blocktime */
1804 if (expect_false (waittime < timeout_blocktime)) 2380 if (expect_false (waittime < timeout_blocktime))
1805 waittime = timeout_blocktime; 2381 waittime = timeout_blocktime;
1806 2382
1807 sleeptime = waittime - backend_fudge; 2383 /* extra check because io_blocktime is commonly 0 */
1808
1809 if (expect_true (sleeptime > io_blocktime)) 2384 if (expect_false (io_blocktime))
1810 sleeptime = io_blocktime;
1811
1812 if (sleeptime)
1813 { 2385 {
2386 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2387
2388 if (sleeptime > waittime - backend_fudge)
2389 sleeptime = waittime - backend_fudge;
2390
2391 if (expect_true (sleeptime > 0.))
2392 {
1814 ev_sleep (sleeptime); 2393 ev_sleep (sleeptime);
1815 waittime -= sleeptime; 2394 waittime -= sleeptime;
2395 }
1816 } 2396 }
1817 } 2397 }
1818 2398
2399#if EV_FEATURE_API
1819 ++loop_count; 2400 ++loop_count;
2401#endif
2402 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1820 backend_poll (EV_A_ waittime); 2403 backend_poll (EV_A_ waittime);
2404 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1821 2405
1822 /* update ev_rt_now, do magic */ 2406 /* update ev_rt_now, do magic */
1823 time_update (EV_A_ waittime + sleeptime); 2407 time_update (EV_A_ waittime + sleeptime);
1824 } 2408 }
1825 2409
1832#if EV_IDLE_ENABLE 2416#if EV_IDLE_ENABLE
1833 /* queue idle watchers unless other events are pending */ 2417 /* queue idle watchers unless other events are pending */
1834 idle_reify (EV_A); 2418 idle_reify (EV_A);
1835#endif 2419#endif
1836 2420
2421#if EV_CHECK_ENABLE
1837 /* queue check watchers, to be executed first */ 2422 /* queue check watchers, to be executed first */
1838 if (expect_false (checkcnt)) 2423 if (expect_false (checkcnt))
1839 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2424 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2425#endif
1840 2426
1841 call_pending (EV_A); 2427 EV_INVOKE_PENDING;
1842 } 2428 }
1843 while (expect_true ( 2429 while (expect_true (
1844 activecnt 2430 activecnt
1845 && !loop_done 2431 && !loop_done
1846 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2432 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1847 )); 2433 ));
1848 2434
1849 if (loop_done == EVUNLOOP_ONE) 2435 if (loop_done == EVUNLOOP_ONE)
1850 loop_done = EVUNLOOP_CANCEL; 2436 loop_done = EVUNLOOP_CANCEL;
2437
2438#if EV_FEATURE_API
2439 --loop_depth;
2440#endif
1851} 2441}
1852 2442
1853void 2443void
1854ev_unloop (EV_P_ int how) 2444ev_unloop (EV_P_ int how)
1855{ 2445{
1856 loop_done = how; 2446 loop_done = how;
1857} 2447}
1858 2448
2449void
2450ev_ref (EV_P)
2451{
2452 ++activecnt;
2453}
2454
2455void
2456ev_unref (EV_P)
2457{
2458 --activecnt;
2459}
2460
2461void
2462ev_now_update (EV_P)
2463{
2464 time_update (EV_A_ 1e100);
2465}
2466
2467void
2468ev_suspend (EV_P)
2469{
2470 ev_now_update (EV_A);
2471}
2472
2473void
2474ev_resume (EV_P)
2475{
2476 ev_tstamp mn_prev = mn_now;
2477
2478 ev_now_update (EV_A);
2479 timers_reschedule (EV_A_ mn_now - mn_prev);
2480#if EV_PERIODIC_ENABLE
2481 /* TODO: really do this? */
2482 periodics_reschedule (EV_A);
2483#endif
2484}
2485
1859/*****************************************************************************/ 2486/*****************************************************************************/
2487/* singly-linked list management, used when the expected list length is short */
1860 2488
1861void inline_size 2489inline_size void
1862wlist_add (WL *head, WL elem) 2490wlist_add (WL *head, WL elem)
1863{ 2491{
1864 elem->next = *head; 2492 elem->next = *head;
1865 *head = elem; 2493 *head = elem;
1866} 2494}
1867 2495
1868void inline_size 2496inline_size void
1869wlist_del (WL *head, WL elem) 2497wlist_del (WL *head, WL elem)
1870{ 2498{
1871 while (*head) 2499 while (*head)
1872 { 2500 {
1873 if (*head == elem) 2501 if (expect_true (*head == elem))
1874 { 2502 {
1875 *head = elem->next; 2503 *head = elem->next;
1876 return; 2504 break;
1877 } 2505 }
1878 2506
1879 head = &(*head)->next; 2507 head = &(*head)->next;
1880 } 2508 }
1881} 2509}
1882 2510
1883void inline_speed 2511/* internal, faster, version of ev_clear_pending */
2512inline_speed void
1884clear_pending (EV_P_ W w) 2513clear_pending (EV_P_ W w)
1885{ 2514{
1886 if (w->pending) 2515 if (w->pending)
1887 { 2516 {
1888 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2517 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1889 w->pending = 0; 2518 w->pending = 0;
1890 } 2519 }
1891} 2520}
1892 2521
1893int 2522int
1897 int pending = w_->pending; 2526 int pending = w_->pending;
1898 2527
1899 if (expect_true (pending)) 2528 if (expect_true (pending))
1900 { 2529 {
1901 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2530 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2531 p->w = (W)&pending_w;
1902 w_->pending = 0; 2532 w_->pending = 0;
1903 p->w = 0;
1904 return p->events; 2533 return p->events;
1905 } 2534 }
1906 else 2535 else
1907 return 0; 2536 return 0;
1908} 2537}
1909 2538
1910void inline_size 2539inline_size void
1911pri_adjust (EV_P_ W w) 2540pri_adjust (EV_P_ W w)
1912{ 2541{
1913 int pri = w->priority; 2542 int pri = ev_priority (w);
1914 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2543 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1915 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2544 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1916 w->priority = pri; 2545 ev_set_priority (w, pri);
1917} 2546}
1918 2547
1919void inline_speed 2548inline_speed void
1920ev_start (EV_P_ W w, int active) 2549ev_start (EV_P_ W w, int active)
1921{ 2550{
1922 pri_adjust (EV_A_ w); 2551 pri_adjust (EV_A_ w);
1923 w->active = active; 2552 w->active = active;
1924 ev_ref (EV_A); 2553 ev_ref (EV_A);
1925} 2554}
1926 2555
1927void inline_size 2556inline_size void
1928ev_stop (EV_P_ W w) 2557ev_stop (EV_P_ W w)
1929{ 2558{
1930 ev_unref (EV_A); 2559 ev_unref (EV_A);
1931 w->active = 0; 2560 w->active = 0;
1932} 2561}
1939 int fd = w->fd; 2568 int fd = w->fd;
1940 2569
1941 if (expect_false (ev_is_active (w))) 2570 if (expect_false (ev_is_active (w)))
1942 return; 2571 return;
1943 2572
1944 assert (("ev_io_start called with negative fd", fd >= 0)); 2573 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2574 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2575
2576 EV_FREQUENT_CHECK;
1945 2577
1946 ev_start (EV_A_ (W)w, 1); 2578 ev_start (EV_A_ (W)w, 1);
1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2579 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1948 wlist_add (&anfds[fd].head, (WL)w); 2580 wlist_add (&anfds[fd].head, (WL)w);
1949 2581
1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2582 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1951 w->events &= ~EV_IOFDSET; 2583 w->events &= ~EV__IOFDSET;
2584
2585 EV_FREQUENT_CHECK;
1952} 2586}
1953 2587
1954void noinline 2588void noinline
1955ev_io_stop (EV_P_ ev_io *w) 2589ev_io_stop (EV_P_ ev_io *w)
1956{ 2590{
1957 clear_pending (EV_A_ (W)w); 2591 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2592 if (expect_false (!ev_is_active (w)))
1959 return; 2593 return;
1960 2594
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2595 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2596
2597 EV_FREQUENT_CHECK;
1962 2598
1963 wlist_del (&anfds[w->fd].head, (WL)w); 2599 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 2600 ev_stop (EV_A_ (W)w);
1965 2601
1966 fd_change (EV_A_ w->fd, 1); 2602 fd_change (EV_A_ w->fd, 1);
2603
2604 EV_FREQUENT_CHECK;
1967} 2605}
1968 2606
1969void noinline 2607void noinline
1970ev_timer_start (EV_P_ ev_timer *w) 2608ev_timer_start (EV_P_ ev_timer *w)
1971{ 2609{
1972 if (expect_false (ev_is_active (w))) 2610 if (expect_false (ev_is_active (w)))
1973 return; 2611 return;
1974 2612
1975 ev_at (w) += mn_now; 2613 ev_at (w) += mn_now;
1976 2614
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2615 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 2616
2617 EV_FREQUENT_CHECK;
2618
2619 ++timercnt;
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2620 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2621 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 2622 ANHE_w (timers [ev_active (w)]) = (WT)w;
2623 ANHE_at_cache (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 2624 upheap (timers, ev_active (w));
1983 2625
2626 EV_FREQUENT_CHECK;
2627
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2628 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 2629}
1986 2630
1987void noinline 2631void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 2632ev_timer_stop (EV_P_ ev_timer *w)
1989{ 2633{
1990 clear_pending (EV_A_ (W)w); 2634 clear_pending (EV_A_ (W)w);
1991 if (expect_false (!ev_is_active (w))) 2635 if (expect_false (!ev_is_active (w)))
1992 return; 2636 return;
1993 2637
2638 EV_FREQUENT_CHECK;
2639
1994 { 2640 {
1995 int active = ev_active (w); 2641 int active = ev_active (w);
1996 2642
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2643 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 2644
2645 --timercnt;
2646
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 2647 if (expect_true (active < timercnt + HEAP0))
2000 { 2648 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 2649 timers [active] = timers [timercnt + HEAP0];
2002 adjustheap (timers, timercnt, active); 2650 adjustheap (timers, timercnt, active);
2003 } 2651 }
2004
2005 --timercnt;
2006 } 2652 }
2007 2653
2008 ev_at (w) -= mn_now; 2654 ev_at (w) -= mn_now;
2009 2655
2010 ev_stop (EV_A_ (W)w); 2656 ev_stop (EV_A_ (W)w);
2657
2658 EV_FREQUENT_CHECK;
2011} 2659}
2012 2660
2013void noinline 2661void noinline
2014ev_timer_again (EV_P_ ev_timer *w) 2662ev_timer_again (EV_P_ ev_timer *w)
2015{ 2663{
2664 EV_FREQUENT_CHECK;
2665
2016 if (ev_is_active (w)) 2666 if (ev_is_active (w))
2017 { 2667 {
2018 if (w->repeat) 2668 if (w->repeat)
2019 { 2669 {
2020 ev_at (w) = mn_now + w->repeat; 2670 ev_at (w) = mn_now + w->repeat;
2671 ANHE_at_cache (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 2672 adjustheap (timers, timercnt, ev_active (w));
2022 } 2673 }
2023 else 2674 else
2024 ev_timer_stop (EV_A_ w); 2675 ev_timer_stop (EV_A_ w);
2025 } 2676 }
2026 else if (w->repeat) 2677 else if (w->repeat)
2027 { 2678 {
2028 ev_at (w) = w->repeat; 2679 ev_at (w) = w->repeat;
2029 ev_timer_start (EV_A_ w); 2680 ev_timer_start (EV_A_ w);
2030 } 2681 }
2682
2683 EV_FREQUENT_CHECK;
2684}
2685
2686ev_tstamp
2687ev_timer_remaining (EV_P_ ev_timer *w)
2688{
2689 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2031} 2690}
2032 2691
2033#if EV_PERIODIC_ENABLE 2692#if EV_PERIODIC_ENABLE
2034void noinline 2693void noinline
2035ev_periodic_start (EV_P_ ev_periodic *w) 2694ev_periodic_start (EV_P_ ev_periodic *w)
2039 2698
2040 if (w->reschedule_cb) 2699 if (w->reschedule_cb)
2041 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2700 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2042 else if (w->interval) 2701 else if (w->interval)
2043 { 2702 {
2044 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2703 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2045 /* this formula differs from the one in periodic_reify because we do not always round up */ 2704 /* this formula differs from the one in periodic_reify because we do not always round up */
2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2705 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 } 2706 }
2048 else 2707 else
2049 ev_at (w) = w->offset; 2708 ev_at (w) = w->offset;
2050 2709
2710 EV_FREQUENT_CHECK;
2711
2712 ++periodiccnt;
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2713 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2714 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 2715 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2716 ANHE_at_cache (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 2717 upheap (periodics, ev_active (w));
2055 2718
2719 EV_FREQUENT_CHECK;
2720
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2721 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 2722}
2058 2723
2059void noinline 2724void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 2725ev_periodic_stop (EV_P_ ev_periodic *w)
2061{ 2726{
2062 clear_pending (EV_A_ (W)w); 2727 clear_pending (EV_A_ (W)w);
2063 if (expect_false (!ev_is_active (w))) 2728 if (expect_false (!ev_is_active (w)))
2064 return; 2729 return;
2065 2730
2731 EV_FREQUENT_CHECK;
2732
2066 { 2733 {
2067 int active = ev_active (w); 2734 int active = ev_active (w);
2068 2735
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2736 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 2737
2738 --periodiccnt;
2739
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2740 if (expect_true (active < periodiccnt + HEAP0))
2072 { 2741 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2742 periodics [active] = periodics [periodiccnt + HEAP0];
2074 adjustheap (periodics, periodiccnt, active); 2743 adjustheap (periodics, periodiccnt, active);
2075 } 2744 }
2076
2077 --periodiccnt;
2078 } 2745 }
2079 2746
2080 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2081} 2750}
2082 2751
2083void noinline 2752void noinline
2084ev_periodic_again (EV_P_ ev_periodic *w) 2753ev_periodic_again (EV_P_ ev_periodic *w)
2085{ 2754{
2091 2760
2092#ifndef SA_RESTART 2761#ifndef SA_RESTART
2093# define SA_RESTART 0 2762# define SA_RESTART 0
2094#endif 2763#endif
2095 2764
2765#if EV_SIGNAL_ENABLE
2766
2096void noinline 2767void noinline
2097ev_signal_start (EV_P_ ev_signal *w) 2768ev_signal_start (EV_P_ ev_signal *w)
2098{ 2769{
2099#if EV_MULTIPLICITY
2100 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2101#endif
2102 if (expect_false (ev_is_active (w))) 2770 if (expect_false (ev_is_active (w)))
2103 return; 2771 return;
2104 2772
2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2773 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2106 2774
2107 evpipe_init (EV_A); 2775#if EV_MULTIPLICITY
2776 assert (("libev: a signal must not be attached to two different loops",
2777 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2108 2778
2779 signals [w->signum - 1].loop = EV_A;
2780#endif
2781
2782 EV_FREQUENT_CHECK;
2783
2784#if EV_USE_SIGNALFD
2785 if (sigfd == -2)
2109 { 2786 {
2110#ifndef _WIN32 2787 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2111 sigset_t full, prev; 2788 if (sigfd < 0 && errno == EINVAL)
2112 sigfillset (&full); 2789 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2113 sigprocmask (SIG_SETMASK, &full, &prev);
2114#endif
2115 2790
2116 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2791 if (sigfd >= 0)
2792 {
2793 fd_intern (sigfd); /* doing it twice will not hurt */
2117 2794
2118#ifndef _WIN32 2795 sigemptyset (&sigfd_set);
2119 sigprocmask (SIG_SETMASK, &prev, 0); 2796
2120#endif 2797 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2798 ev_set_priority (&sigfd_w, EV_MAXPRI);
2799 ev_io_start (EV_A_ &sigfd_w);
2800 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2801 }
2121 } 2802 }
2803
2804 if (sigfd >= 0)
2805 {
2806 /* TODO: check .head */
2807 sigaddset (&sigfd_set, w->signum);
2808 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2809
2810 signalfd (sigfd, &sigfd_set, 0);
2811 }
2812#endif
2122 2813
2123 ev_start (EV_A_ (W)w, 1); 2814 ev_start (EV_A_ (W)w, 1);
2124 wlist_add (&signals [w->signum - 1].head, (WL)w); 2815 wlist_add (&signals [w->signum - 1].head, (WL)w);
2125 2816
2126 if (!((WL)w)->next) 2817 if (!((WL)w)->next)
2818# if EV_USE_SIGNALFD
2819 if (sigfd < 0) /*TODO*/
2820# endif
2127 { 2821 {
2128#if _WIN32 2822# ifdef _WIN32
2823 evpipe_init (EV_A);
2824
2129 signal (w->signum, ev_sighandler); 2825 signal (w->signum, ev_sighandler);
2130#else 2826# else
2131 struct sigaction sa; 2827 struct sigaction sa;
2828
2829 evpipe_init (EV_A);
2830
2132 sa.sa_handler = ev_sighandler; 2831 sa.sa_handler = ev_sighandler;
2133 sigfillset (&sa.sa_mask); 2832 sigfillset (&sa.sa_mask);
2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2833 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2135 sigaction (w->signum, &sa, 0); 2834 sigaction (w->signum, &sa, 0);
2835
2836 sigemptyset (&sa.sa_mask);
2837 sigaddset (&sa.sa_mask, w->signum);
2838 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2136#endif 2839#endif
2137 } 2840 }
2841
2842 EV_FREQUENT_CHECK;
2138} 2843}
2139 2844
2140void noinline 2845void noinline
2141ev_signal_stop (EV_P_ ev_signal *w) 2846ev_signal_stop (EV_P_ ev_signal *w)
2142{ 2847{
2143 clear_pending (EV_A_ (W)w); 2848 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2849 if (expect_false (!ev_is_active (w)))
2145 return; 2850 return;
2146 2851
2852 EV_FREQUENT_CHECK;
2853
2147 wlist_del (&signals [w->signum - 1].head, (WL)w); 2854 wlist_del (&signals [w->signum - 1].head, (WL)w);
2148 ev_stop (EV_A_ (W)w); 2855 ev_stop (EV_A_ (W)w);
2149 2856
2150 if (!signals [w->signum - 1].head) 2857 if (!signals [w->signum - 1].head)
2858 {
2859#if EV_MULTIPLICITY
2860 signals [w->signum - 1].loop = 0; /* unattach from signal */
2861#endif
2862#if EV_USE_SIGNALFD
2863 if (sigfd >= 0)
2864 {
2865 sigset_t ss;
2866
2867 sigemptyset (&ss);
2868 sigaddset (&ss, w->signum);
2869 sigdelset (&sigfd_set, w->signum);
2870
2871 signalfd (sigfd, &sigfd_set, 0);
2872 sigprocmask (SIG_UNBLOCK, &ss, 0);
2873 }
2874 else
2875#endif
2151 signal (w->signum, SIG_DFL); 2876 signal (w->signum, SIG_DFL);
2877 }
2878
2879 EV_FREQUENT_CHECK;
2152} 2880}
2881
2882#endif
2883
2884#if EV_CHILD_ENABLE
2153 2885
2154void 2886void
2155ev_child_start (EV_P_ ev_child *w) 2887ev_child_start (EV_P_ ev_child *w)
2156{ 2888{
2157#if EV_MULTIPLICITY 2889#if EV_MULTIPLICITY
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2890 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif 2891#endif
2160 if (expect_false (ev_is_active (w))) 2892 if (expect_false (ev_is_active (w)))
2161 return; 2893 return;
2162 2894
2895 EV_FREQUENT_CHECK;
2896
2163 ev_start (EV_A_ (W)w, 1); 2897 ev_start (EV_A_ (W)w, 1);
2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2898 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2899
2900 EV_FREQUENT_CHECK;
2165} 2901}
2166 2902
2167void 2903void
2168ev_child_stop (EV_P_ ev_child *w) 2904ev_child_stop (EV_P_ ev_child *w)
2169{ 2905{
2170 clear_pending (EV_A_ (W)w); 2906 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2907 if (expect_false (!ev_is_active (w)))
2172 return; 2908 return;
2173 2909
2910 EV_FREQUENT_CHECK;
2911
2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2912 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2175 ev_stop (EV_A_ (W)w); 2913 ev_stop (EV_A_ (W)w);
2914
2915 EV_FREQUENT_CHECK;
2176} 2916}
2917
2918#endif
2177 2919
2178#if EV_STAT_ENABLE 2920#if EV_STAT_ENABLE
2179 2921
2180# ifdef _WIN32 2922# ifdef _WIN32
2181# undef lstat 2923# undef lstat
2182# define lstat(a,b) _stati64 (a,b) 2924# define lstat(a,b) _stati64 (a,b)
2183# endif 2925# endif
2184 2926
2185#define DEF_STAT_INTERVAL 5.0074891 2927#define DEF_STAT_INTERVAL 5.0074891
2928#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2186#define MIN_STAT_INTERVAL 0.1074891 2929#define MIN_STAT_INTERVAL 0.1074891
2187 2930
2188static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2931static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2189 2932
2190#if EV_USE_INOTIFY 2933#if EV_USE_INOTIFY
2191# define EV_INOTIFY_BUFSIZE 8192 2934
2935/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2936# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2192 2937
2193static void noinline 2938static void noinline
2194infy_add (EV_P_ ev_stat *w) 2939infy_add (EV_P_ ev_stat *w)
2195{ 2940{
2196 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2941 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2197 2942
2198 if (w->wd < 0) 2943 if (w->wd >= 0)
2944 {
2945 struct statfs sfs;
2946
2947 /* now local changes will be tracked by inotify, but remote changes won't */
2948 /* unless the filesystem is known to be local, we therefore still poll */
2949 /* also do poll on <2.6.25, but with normal frequency */
2950
2951 if (!fs_2625)
2952 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2953 else if (!statfs (w->path, &sfs)
2954 && (sfs.f_type == 0x1373 /* devfs */
2955 || sfs.f_type == 0xEF53 /* ext2/3 */
2956 || sfs.f_type == 0x3153464a /* jfs */
2957 || sfs.f_type == 0x52654973 /* reiser3 */
2958 || sfs.f_type == 0x01021994 /* tempfs */
2959 || sfs.f_type == 0x58465342 /* xfs */))
2960 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2961 else
2962 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2199 { 2963 }
2200 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2964 else
2965 {
2966 /* can't use inotify, continue to stat */
2967 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2201 2968
2202 /* monitor some parent directory for speedup hints */ 2969 /* if path is not there, monitor some parent directory for speedup hints */
2203 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2970 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2204 /* but an efficiency issue only */ 2971 /* but an efficiency issue only */
2205 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2972 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2206 { 2973 {
2207 char path [4096]; 2974 char path [4096];
2208 strcpy (path, w->path); 2975 strcpy (path, w->path);
2212 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2979 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2213 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2980 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2214 2981
2215 char *pend = strrchr (path, '/'); 2982 char *pend = strrchr (path, '/');
2216 2983
2217 if (!pend) 2984 if (!pend || pend == path)
2218 break; /* whoops, no '/', complain to your admin */ 2985 break;
2219 2986
2220 *pend = 0; 2987 *pend = 0;
2221 w->wd = inotify_add_watch (fs_fd, path, mask); 2988 w->wd = inotify_add_watch (fs_fd, path, mask);
2222 } 2989 }
2223 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2990 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2224 } 2991 }
2225 } 2992 }
2226 else
2227 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2228 2993
2229 if (w->wd >= 0) 2994 if (w->wd >= 0)
2230 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2995 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2996
2997 /* now re-arm timer, if required */
2998 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2999 ev_timer_again (EV_A_ &w->timer);
3000 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2231} 3001}
2232 3002
2233static void noinline 3003static void noinline
2234infy_del (EV_P_ ev_stat *w) 3004infy_del (EV_P_ ev_stat *w)
2235{ 3005{
2238 3008
2239 if (wd < 0) 3009 if (wd < 0)
2240 return; 3010 return;
2241 3011
2242 w->wd = -2; 3012 w->wd = -2;
2243 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3013 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2244 wlist_del (&fs_hash [slot].head, (WL)w); 3014 wlist_del (&fs_hash [slot].head, (WL)w);
2245 3015
2246 /* remove this watcher, if others are watching it, they will rearm */ 3016 /* remove this watcher, if others are watching it, they will rearm */
2247 inotify_rm_watch (fs_fd, wd); 3017 inotify_rm_watch (fs_fd, wd);
2248} 3018}
2249 3019
2250static void noinline 3020static void noinline
2251infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3021infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2252{ 3022{
2253 if (slot < 0) 3023 if (slot < 0)
2254 /* overflow, need to check for all hahs slots */ 3024 /* overflow, need to check for all hash slots */
2255 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3025 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2256 infy_wd (EV_A_ slot, wd, ev); 3026 infy_wd (EV_A_ slot, wd, ev);
2257 else 3027 else
2258 { 3028 {
2259 WL w_; 3029 WL w_;
2260 3030
2261 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3031 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2262 { 3032 {
2263 ev_stat *w = (ev_stat *)w_; 3033 ev_stat *w = (ev_stat *)w_;
2264 w_ = w_->next; /* lets us remove this watcher and all before it */ 3034 w_ = w_->next; /* lets us remove this watcher and all before it */
2265 3035
2266 if (w->wd == wd || wd == -1) 3036 if (w->wd == wd || wd == -1)
2267 { 3037 {
2268 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3038 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2269 { 3039 {
3040 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2270 w->wd = -1; 3041 w->wd = -1;
2271 infy_add (EV_A_ w); /* re-add, no matter what */ 3042 infy_add (EV_A_ w); /* re-add, no matter what */
2272 } 3043 }
2273 3044
2274 stat_timer_cb (EV_A_ &w->timer, 0); 3045 stat_timer_cb (EV_A_ &w->timer, 0);
2279 3050
2280static void 3051static void
2281infy_cb (EV_P_ ev_io *w, int revents) 3052infy_cb (EV_P_ ev_io *w, int revents)
2282{ 3053{
2283 char buf [EV_INOTIFY_BUFSIZE]; 3054 char buf [EV_INOTIFY_BUFSIZE];
2284 struct inotify_event *ev = (struct inotify_event *)buf;
2285 int ofs; 3055 int ofs;
2286 int len = read (fs_fd, buf, sizeof (buf)); 3056 int len = read (fs_fd, buf, sizeof (buf));
2287 3057
2288 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3058 for (ofs = 0; ofs < len; )
3059 {
3060 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2289 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3061 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3062 ofs += sizeof (struct inotify_event) + ev->len;
3063 }
2290} 3064}
2291 3065
2292void inline_size 3066inline_size unsigned int
3067ev_linux_version (void)
3068{
3069 struct utsname buf;
3070 unsigned int v;
3071 int i;
3072 char *p = buf.release;
3073
3074 if (uname (&buf))
3075 return 0;
3076
3077 for (i = 3+1; --i; )
3078 {
3079 unsigned int c = 0;
3080
3081 for (;;)
3082 {
3083 if (*p >= '0' && *p <= '9')
3084 c = c * 10 + *p++ - '0';
3085 else
3086 {
3087 p += *p == '.';
3088 break;
3089 }
3090 }
3091
3092 v = (v << 8) | c;
3093 }
3094
3095 return v;
3096}
3097
3098inline_size void
3099ev_check_2625 (EV_P)
3100{
3101 /* kernels < 2.6.25 are borked
3102 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3103 */
3104 if (ev_linux_version () < 0x020619)
3105 return;
3106
3107 fs_2625 = 1;
3108}
3109
3110inline_size int
3111infy_newfd (void)
3112{
3113#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3114 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3115 if (fd >= 0)
3116 return fd;
3117#endif
3118 return inotify_init ();
3119}
3120
3121inline_size void
2293infy_init (EV_P) 3122infy_init (EV_P)
2294{ 3123{
2295 if (fs_fd != -2) 3124 if (fs_fd != -2)
2296 return; 3125 return;
2297 3126
3127 fs_fd = -1;
3128
3129 ev_check_2625 (EV_A);
3130
2298 fs_fd = inotify_init (); 3131 fs_fd = infy_newfd ();
2299 3132
2300 if (fs_fd >= 0) 3133 if (fs_fd >= 0)
2301 { 3134 {
3135 fd_intern (fs_fd);
2302 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3136 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2303 ev_set_priority (&fs_w, EV_MAXPRI); 3137 ev_set_priority (&fs_w, EV_MAXPRI);
2304 ev_io_start (EV_A_ &fs_w); 3138 ev_io_start (EV_A_ &fs_w);
3139 ev_unref (EV_A);
2305 } 3140 }
2306} 3141}
2307 3142
2308void inline_size 3143inline_size void
2309infy_fork (EV_P) 3144infy_fork (EV_P)
2310{ 3145{
2311 int slot; 3146 int slot;
2312 3147
2313 if (fs_fd < 0) 3148 if (fs_fd < 0)
2314 return; 3149 return;
2315 3150
3151 ev_ref (EV_A);
3152 ev_io_stop (EV_A_ &fs_w);
2316 close (fs_fd); 3153 close (fs_fd);
2317 fs_fd = inotify_init (); 3154 fs_fd = infy_newfd ();
2318 3155
3156 if (fs_fd >= 0)
3157 {
3158 fd_intern (fs_fd);
3159 ev_io_set (&fs_w, fs_fd, EV_READ);
3160 ev_io_start (EV_A_ &fs_w);
3161 ev_unref (EV_A);
3162 }
3163
2319 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3164 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2320 { 3165 {
2321 WL w_ = fs_hash [slot].head; 3166 WL w_ = fs_hash [slot].head;
2322 fs_hash [slot].head = 0; 3167 fs_hash [slot].head = 0;
2323 3168
2324 while (w_) 3169 while (w_)
2329 w->wd = -1; 3174 w->wd = -1;
2330 3175
2331 if (fs_fd >= 0) 3176 if (fs_fd >= 0)
2332 infy_add (EV_A_ w); /* re-add, no matter what */ 3177 infy_add (EV_A_ w); /* re-add, no matter what */
2333 else 3178 else
3179 {
3180 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3181 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2334 ev_timer_start (EV_A_ &w->timer); 3182 ev_timer_again (EV_A_ &w->timer);
3183 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3184 }
2335 } 3185 }
2336
2337 } 3186 }
2338} 3187}
2339 3188
3189#endif
3190
3191#ifdef _WIN32
3192# define EV_LSTAT(p,b) _stati64 (p, b)
3193#else
3194# define EV_LSTAT(p,b) lstat (p, b)
2340#endif 3195#endif
2341 3196
2342void 3197void
2343ev_stat_stat (EV_P_ ev_stat *w) 3198ev_stat_stat (EV_P_ ev_stat *w)
2344{ 3199{
2351static void noinline 3206static void noinline
2352stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3207stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2353{ 3208{
2354 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3209 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2355 3210
2356 /* we copy this here each the time so that */ 3211 ev_statdata prev = w->attr;
2357 /* prev has the old value when the callback gets invoked */
2358 w->prev = w->attr;
2359 ev_stat_stat (EV_A_ w); 3212 ev_stat_stat (EV_A_ w);
2360 3213
2361 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3214 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2362 if ( 3215 if (
2363 w->prev.st_dev != w->attr.st_dev 3216 prev.st_dev != w->attr.st_dev
2364 || w->prev.st_ino != w->attr.st_ino 3217 || prev.st_ino != w->attr.st_ino
2365 || w->prev.st_mode != w->attr.st_mode 3218 || prev.st_mode != w->attr.st_mode
2366 || w->prev.st_nlink != w->attr.st_nlink 3219 || prev.st_nlink != w->attr.st_nlink
2367 || w->prev.st_uid != w->attr.st_uid 3220 || prev.st_uid != w->attr.st_uid
2368 || w->prev.st_gid != w->attr.st_gid 3221 || prev.st_gid != w->attr.st_gid
2369 || w->prev.st_rdev != w->attr.st_rdev 3222 || prev.st_rdev != w->attr.st_rdev
2370 || w->prev.st_size != w->attr.st_size 3223 || prev.st_size != w->attr.st_size
2371 || w->prev.st_atime != w->attr.st_atime 3224 || prev.st_atime != w->attr.st_atime
2372 || w->prev.st_mtime != w->attr.st_mtime 3225 || prev.st_mtime != w->attr.st_mtime
2373 || w->prev.st_ctime != w->attr.st_ctime 3226 || prev.st_ctime != w->attr.st_ctime
2374 ) { 3227 ) {
3228 /* we only update w->prev on actual differences */
3229 /* in case we test more often than invoke the callback, */
3230 /* to ensure that prev is always different to attr */
3231 w->prev = prev;
3232
2375 #if EV_USE_INOTIFY 3233 #if EV_USE_INOTIFY
3234 if (fs_fd >= 0)
3235 {
2376 infy_del (EV_A_ w); 3236 infy_del (EV_A_ w);
2377 infy_add (EV_A_ w); 3237 infy_add (EV_A_ w);
2378 ev_stat_stat (EV_A_ w); /* avoid race... */ 3238 ev_stat_stat (EV_A_ w); /* avoid race... */
3239 }
2379 #endif 3240 #endif
2380 3241
2381 ev_feed_event (EV_A_ w, EV_STAT); 3242 ev_feed_event (EV_A_ w, EV_STAT);
2382 } 3243 }
2383} 3244}
2386ev_stat_start (EV_P_ ev_stat *w) 3247ev_stat_start (EV_P_ ev_stat *w)
2387{ 3248{
2388 if (expect_false (ev_is_active (w))) 3249 if (expect_false (ev_is_active (w)))
2389 return; 3250 return;
2390 3251
2391 /* since we use memcmp, we need to clear any padding data etc. */
2392 memset (&w->prev, 0, sizeof (ev_statdata));
2393 memset (&w->attr, 0, sizeof (ev_statdata));
2394
2395 ev_stat_stat (EV_A_ w); 3252 ev_stat_stat (EV_A_ w);
2396 3253
3254 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2397 if (w->interval < MIN_STAT_INTERVAL) 3255 w->interval = MIN_STAT_INTERVAL;
2398 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2399 3256
2400 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3257 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2401 ev_set_priority (&w->timer, ev_priority (w)); 3258 ev_set_priority (&w->timer, ev_priority (w));
2402 3259
2403#if EV_USE_INOTIFY 3260#if EV_USE_INOTIFY
2404 infy_init (EV_A); 3261 infy_init (EV_A);
2405 3262
2406 if (fs_fd >= 0) 3263 if (fs_fd >= 0)
2407 infy_add (EV_A_ w); 3264 infy_add (EV_A_ w);
2408 else 3265 else
2409#endif 3266#endif
3267 {
2410 ev_timer_start (EV_A_ &w->timer); 3268 ev_timer_again (EV_A_ &w->timer);
3269 ev_unref (EV_A);
3270 }
2411 3271
2412 ev_start (EV_A_ (W)w, 1); 3272 ev_start (EV_A_ (W)w, 1);
3273
3274 EV_FREQUENT_CHECK;
2413} 3275}
2414 3276
2415void 3277void
2416ev_stat_stop (EV_P_ ev_stat *w) 3278ev_stat_stop (EV_P_ ev_stat *w)
2417{ 3279{
2418 clear_pending (EV_A_ (W)w); 3280 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w))) 3281 if (expect_false (!ev_is_active (w)))
2420 return; 3282 return;
2421 3283
3284 EV_FREQUENT_CHECK;
3285
2422#if EV_USE_INOTIFY 3286#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w); 3287 infy_del (EV_A_ w);
2424#endif 3288#endif
3289
3290 if (ev_is_active (&w->timer))
3291 {
3292 ev_ref (EV_A);
2425 ev_timer_stop (EV_A_ &w->timer); 3293 ev_timer_stop (EV_A_ &w->timer);
3294 }
2426 3295
2427 ev_stop (EV_A_ (W)w); 3296 ev_stop (EV_A_ (W)w);
3297
3298 EV_FREQUENT_CHECK;
2428} 3299}
2429#endif 3300#endif
2430 3301
2431#if EV_IDLE_ENABLE 3302#if EV_IDLE_ENABLE
2432void 3303void
2434{ 3305{
2435 if (expect_false (ev_is_active (w))) 3306 if (expect_false (ev_is_active (w)))
2436 return; 3307 return;
2437 3308
2438 pri_adjust (EV_A_ (W)w); 3309 pri_adjust (EV_A_ (W)w);
3310
3311 EV_FREQUENT_CHECK;
2439 3312
2440 { 3313 {
2441 int active = ++idlecnt [ABSPRI (w)]; 3314 int active = ++idlecnt [ABSPRI (w)];
2442 3315
2443 ++idleall; 3316 ++idleall;
2444 ev_start (EV_A_ (W)w, active); 3317 ev_start (EV_A_ (W)w, active);
2445 3318
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3319 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w; 3320 idles [ABSPRI (w)][active - 1] = w;
2448 } 3321 }
3322
3323 EV_FREQUENT_CHECK;
2449} 3324}
2450 3325
2451void 3326void
2452ev_idle_stop (EV_P_ ev_idle *w) 3327ev_idle_stop (EV_P_ ev_idle *w)
2453{ 3328{
2454 clear_pending (EV_A_ (W)w); 3329 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 3330 if (expect_false (!ev_is_active (w)))
2456 return; 3331 return;
2457 3332
3333 EV_FREQUENT_CHECK;
3334
2458 { 3335 {
2459 int active = ev_active (w); 3336 int active = ev_active (w);
2460 3337
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3338 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3339 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463 3340
2464 ev_stop (EV_A_ (W)w); 3341 ev_stop (EV_A_ (W)w);
2465 --idleall; 3342 --idleall;
2466 } 3343 }
2467}
2468#endif
2469 3344
3345 EV_FREQUENT_CHECK;
3346}
3347#endif
3348
3349#if EV_PREPARE_ENABLE
2470void 3350void
2471ev_prepare_start (EV_P_ ev_prepare *w) 3351ev_prepare_start (EV_P_ ev_prepare *w)
2472{ 3352{
2473 if (expect_false (ev_is_active (w))) 3353 if (expect_false (ev_is_active (w)))
2474 return; 3354 return;
3355
3356 EV_FREQUENT_CHECK;
2475 3357
2476 ev_start (EV_A_ (W)w, ++preparecnt); 3358 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3359 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w; 3360 prepares [preparecnt - 1] = w;
3361
3362 EV_FREQUENT_CHECK;
2479} 3363}
2480 3364
2481void 3365void
2482ev_prepare_stop (EV_P_ ev_prepare *w) 3366ev_prepare_stop (EV_P_ ev_prepare *w)
2483{ 3367{
2484 clear_pending (EV_A_ (W)w); 3368 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w))) 3369 if (expect_false (!ev_is_active (w)))
2486 return; 3370 return;
2487 3371
3372 EV_FREQUENT_CHECK;
3373
2488 { 3374 {
2489 int active = ev_active (w); 3375 int active = ev_active (w);
2490 3376
2491 prepares [active - 1] = prepares [--preparecnt]; 3377 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active; 3378 ev_active (prepares [active - 1]) = active;
2493 } 3379 }
2494 3380
2495 ev_stop (EV_A_ (W)w); 3381 ev_stop (EV_A_ (W)w);
2496}
2497 3382
3383 EV_FREQUENT_CHECK;
3384}
3385#endif
3386
3387#if EV_CHECK_ENABLE
2498void 3388void
2499ev_check_start (EV_P_ ev_check *w) 3389ev_check_start (EV_P_ ev_check *w)
2500{ 3390{
2501 if (expect_false (ev_is_active (w))) 3391 if (expect_false (ev_is_active (w)))
2502 return; 3392 return;
3393
3394 EV_FREQUENT_CHECK;
2503 3395
2504 ev_start (EV_A_ (W)w, ++checkcnt); 3396 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3397 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w; 3398 checks [checkcnt - 1] = w;
3399
3400 EV_FREQUENT_CHECK;
2507} 3401}
2508 3402
2509void 3403void
2510ev_check_stop (EV_P_ ev_check *w) 3404ev_check_stop (EV_P_ ev_check *w)
2511{ 3405{
2512 clear_pending (EV_A_ (W)w); 3406 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 3407 if (expect_false (!ev_is_active (w)))
2514 return; 3408 return;
2515 3409
3410 EV_FREQUENT_CHECK;
3411
2516 { 3412 {
2517 int active = ev_active (w); 3413 int active = ev_active (w);
2518 3414
2519 checks [active - 1] = checks [--checkcnt]; 3415 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active; 3416 ev_active (checks [active - 1]) = active;
2521 } 3417 }
2522 3418
2523 ev_stop (EV_A_ (W)w); 3419 ev_stop (EV_A_ (W)w);
3420
3421 EV_FREQUENT_CHECK;
2524} 3422}
3423#endif
2525 3424
2526#if EV_EMBED_ENABLE 3425#if EV_EMBED_ENABLE
2527void noinline 3426void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w) 3427ev_embed_sweep (EV_P_ ev_embed *w)
2529{ 3428{
2545embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3444embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2546{ 3445{
2547 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3446 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2548 3447
2549 { 3448 {
2550 struct ev_loop *loop = w->other; 3449 EV_P = w->other;
2551 3450
2552 while (fdchangecnt) 3451 while (fdchangecnt)
2553 { 3452 {
2554 fd_reify (EV_A); 3453 fd_reify (EV_A);
2555 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3454 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2556 } 3455 }
2557 } 3456 }
2558} 3457}
2559 3458
3459static void
3460embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3461{
3462 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3463
3464 ev_embed_stop (EV_A_ w);
3465
3466 {
3467 EV_P = w->other;
3468
3469 ev_loop_fork (EV_A);
3470 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3471 }
3472
3473 ev_embed_start (EV_A_ w);
3474}
3475
2560#if 0 3476#if 0
2561static void 3477static void
2562embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3478embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2563{ 3479{
2564 ev_idle_stop (EV_A_ idle); 3480 ev_idle_stop (EV_A_ idle);
2570{ 3486{
2571 if (expect_false (ev_is_active (w))) 3487 if (expect_false (ev_is_active (w)))
2572 return; 3488 return;
2573 3489
2574 { 3490 {
2575 struct ev_loop *loop = w->other; 3491 EV_P = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3492 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3493 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 } 3494 }
3495
3496 EV_FREQUENT_CHECK;
2579 3497
2580 ev_set_priority (&w->io, ev_priority (w)); 3498 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io); 3499 ev_io_start (EV_A_ &w->io);
2582 3500
2583 ev_prepare_init (&w->prepare, embed_prepare_cb); 3501 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI); 3502 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare); 3503 ev_prepare_start (EV_A_ &w->prepare);
2586 3504
3505 ev_fork_init (&w->fork, embed_fork_cb);
3506 ev_fork_start (EV_A_ &w->fork);
3507
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3508 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588 3509
2589 ev_start (EV_A_ (W)w, 1); 3510 ev_start (EV_A_ (W)w, 1);
3511
3512 EV_FREQUENT_CHECK;
2590} 3513}
2591 3514
2592void 3515void
2593ev_embed_stop (EV_P_ ev_embed *w) 3516ev_embed_stop (EV_P_ ev_embed *w)
2594{ 3517{
2595 clear_pending (EV_A_ (W)w); 3518 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 3519 if (expect_false (!ev_is_active (w)))
2597 return; 3520 return;
2598 3521
3522 EV_FREQUENT_CHECK;
3523
2599 ev_io_stop (EV_A_ &w->io); 3524 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare); 3525 ev_prepare_stop (EV_A_ &w->prepare);
3526 ev_fork_stop (EV_A_ &w->fork);
2601 3527
2602 ev_stop (EV_A_ (W)w); 3528 ev_stop (EV_A_ (W)w);
3529
3530 EV_FREQUENT_CHECK;
2603} 3531}
2604#endif 3532#endif
2605 3533
2606#if EV_FORK_ENABLE 3534#if EV_FORK_ENABLE
2607void 3535void
2608ev_fork_start (EV_P_ ev_fork *w) 3536ev_fork_start (EV_P_ ev_fork *w)
2609{ 3537{
2610 if (expect_false (ev_is_active (w))) 3538 if (expect_false (ev_is_active (w)))
2611 return; 3539 return;
3540
3541 EV_FREQUENT_CHECK;
2612 3542
2613 ev_start (EV_A_ (W)w, ++forkcnt); 3543 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3544 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w; 3545 forks [forkcnt - 1] = w;
3546
3547 EV_FREQUENT_CHECK;
2616} 3548}
2617 3549
2618void 3550void
2619ev_fork_stop (EV_P_ ev_fork *w) 3551ev_fork_stop (EV_P_ ev_fork *w)
2620{ 3552{
2621 clear_pending (EV_A_ (W)w); 3553 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w))) 3554 if (expect_false (!ev_is_active (w)))
2623 return; 3555 return;
2624 3556
3557 EV_FREQUENT_CHECK;
3558
2625 { 3559 {
2626 int active = ev_active (w); 3560 int active = ev_active (w);
2627 3561
2628 forks [active - 1] = forks [--forkcnt]; 3562 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active; 3563 ev_active (forks [active - 1]) = active;
2630 } 3564 }
2631 3565
2632 ev_stop (EV_A_ (W)w); 3566 ev_stop (EV_A_ (W)w);
3567
3568 EV_FREQUENT_CHECK;
2633} 3569}
2634#endif 3570#endif
2635 3571
2636#if EV_ASYNC_ENABLE 3572#if EV_ASYNC_ENABLE
2637void 3573void
2639{ 3575{
2640 if (expect_false (ev_is_active (w))) 3576 if (expect_false (ev_is_active (w)))
2641 return; 3577 return;
2642 3578
2643 evpipe_init (EV_A); 3579 evpipe_init (EV_A);
3580
3581 EV_FREQUENT_CHECK;
2644 3582
2645 ev_start (EV_A_ (W)w, ++asynccnt); 3583 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3584 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w; 3585 asyncs [asynccnt - 1] = w;
3586
3587 EV_FREQUENT_CHECK;
2648} 3588}
2649 3589
2650void 3590void
2651ev_async_stop (EV_P_ ev_async *w) 3591ev_async_stop (EV_P_ ev_async *w)
2652{ 3592{
2653 clear_pending (EV_A_ (W)w); 3593 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 3594 if (expect_false (!ev_is_active (w)))
2655 return; 3595 return;
2656 3596
3597 EV_FREQUENT_CHECK;
3598
2657 { 3599 {
2658 int active = ev_active (w); 3600 int active = ev_active (w);
2659 3601
2660 asyncs [active - 1] = asyncs [--asynccnt]; 3602 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active; 3603 ev_active (asyncs [active - 1]) = active;
2662 } 3604 }
2663 3605
2664 ev_stop (EV_A_ (W)w); 3606 ev_stop (EV_A_ (W)w);
3607
3608 EV_FREQUENT_CHECK;
2665} 3609}
2666 3610
2667void 3611void
2668ev_async_send (EV_P_ ev_async *w) 3612ev_async_send (EV_P_ ev_async *w)
2669{ 3613{
2670 w->sent = 1; 3614 w->sent = 1;
2671 evpipe_write (EV_A_ &gotasync); 3615 evpipe_write (EV_A_ &async_pending);
2672} 3616}
2673#endif 3617#endif
2674 3618
2675/*****************************************************************************/ 3619/*****************************************************************************/
2676 3620
2686once_cb (EV_P_ struct ev_once *once, int revents) 3630once_cb (EV_P_ struct ev_once *once, int revents)
2687{ 3631{
2688 void (*cb)(int revents, void *arg) = once->cb; 3632 void (*cb)(int revents, void *arg) = once->cb;
2689 void *arg = once->arg; 3633 void *arg = once->arg;
2690 3634
2691 ev_io_stop (EV_A_ &once->io); 3635 ev_io_stop (EV_A_ &once->io);
2692 ev_timer_stop (EV_A_ &once->to); 3636 ev_timer_stop (EV_A_ &once->to);
2693 ev_free (once); 3637 ev_free (once);
2694 3638
2695 cb (revents, arg); 3639 cb (revents, arg);
2696} 3640}
2697 3641
2698static void 3642static void
2699once_cb_io (EV_P_ ev_io *w, int revents) 3643once_cb_io (EV_P_ ev_io *w, int revents)
2700{ 3644{
2701 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3645 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3646
3647 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2702} 3648}
2703 3649
2704static void 3650static void
2705once_cb_to (EV_P_ ev_timer *w, int revents) 3651once_cb_to (EV_P_ ev_timer *w, int revents)
2706{ 3652{
2707 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3653 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3654
3655 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2708} 3656}
2709 3657
2710void 3658void
2711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3659ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2712{ 3660{
2713 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3661 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2714 3662
2715 if (expect_false (!once)) 3663 if (expect_false (!once))
2716 { 3664 {
2717 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3665 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2718 return; 3666 return;
2719 } 3667 }
2720 3668
2721 once->cb = cb; 3669 once->cb = cb;
2722 once->arg = arg; 3670 once->arg = arg;
2734 ev_timer_set (&once->to, timeout, 0.); 3682 ev_timer_set (&once->to, timeout, 0.);
2735 ev_timer_start (EV_A_ &once->to); 3683 ev_timer_start (EV_A_ &once->to);
2736 } 3684 }
2737} 3685}
2738 3686
3687/*****************************************************************************/
3688
3689#if EV_WALK_ENABLE
3690void
3691ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3692{
3693 int i, j;
3694 ev_watcher_list *wl, *wn;
3695
3696 if (types & (EV_IO | EV_EMBED))
3697 for (i = 0; i < anfdmax; ++i)
3698 for (wl = anfds [i].head; wl; )
3699 {
3700 wn = wl->next;
3701
3702#if EV_EMBED_ENABLE
3703 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3704 {
3705 if (types & EV_EMBED)
3706 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3707 }
3708 else
3709#endif
3710#if EV_USE_INOTIFY
3711 if (ev_cb ((ev_io *)wl) == infy_cb)
3712 ;
3713 else
3714#endif
3715 if ((ev_io *)wl != &pipe_w)
3716 if (types & EV_IO)
3717 cb (EV_A_ EV_IO, wl);
3718
3719 wl = wn;
3720 }
3721
3722 if (types & (EV_TIMER | EV_STAT))
3723 for (i = timercnt + HEAP0; i-- > HEAP0; )
3724#if EV_STAT_ENABLE
3725 /*TODO: timer is not always active*/
3726 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3727 {
3728 if (types & EV_STAT)
3729 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3730 }
3731 else
3732#endif
3733 if (types & EV_TIMER)
3734 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3735
3736#if EV_PERIODIC_ENABLE
3737 if (types & EV_PERIODIC)
3738 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3739 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3740#endif
3741
3742#if EV_IDLE_ENABLE
3743 if (types & EV_IDLE)
3744 for (j = NUMPRI; i--; )
3745 for (i = idlecnt [j]; i--; )
3746 cb (EV_A_ EV_IDLE, idles [j][i]);
3747#endif
3748
3749#if EV_FORK_ENABLE
3750 if (types & EV_FORK)
3751 for (i = forkcnt; i--; )
3752 if (ev_cb (forks [i]) != embed_fork_cb)
3753 cb (EV_A_ EV_FORK, forks [i]);
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757 if (types & EV_ASYNC)
3758 for (i = asynccnt; i--; )
3759 cb (EV_A_ EV_ASYNC, asyncs [i]);
3760#endif
3761
3762#if EV_PREPARE_ENABLE
3763 if (types & EV_PREPARE)
3764 for (i = preparecnt; i--; )
3765# if EV_EMBED_ENABLE
3766 if (ev_cb (prepares [i]) != embed_prepare_cb)
3767# endif
3768 cb (EV_A_ EV_PREPARE, prepares [i]);
3769#endif
3770
3771#if EV_CHECK_ENABLE
3772 if (types & EV_CHECK)
3773 for (i = checkcnt; i--; )
3774 cb (EV_A_ EV_CHECK, checks [i]);
3775#endif
3776
3777#if EV_SIGNAL_ENABLE
3778 if (types & EV_SIGNAL)
3779 for (i = 0; i < EV_NSIG - 1; ++i)
3780 for (wl = signals [i].head; wl; )
3781 {
3782 wn = wl->next;
3783 cb (EV_A_ EV_SIGNAL, wl);
3784 wl = wn;
3785 }
3786#endif
3787
3788#if EV_CHILD_ENABLE
3789 if (types & EV_CHILD)
3790 for (i = (EV_PID_HASHSIZE); i--; )
3791 for (wl = childs [i]; wl; )
3792 {
3793 wn = wl->next;
3794 cb (EV_A_ EV_CHILD, wl);
3795 wl = wn;
3796 }
3797#endif
3798/* EV_STAT 0x00001000 /* stat data changed */
3799/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3800}
3801#endif
3802
2739#if EV_MULTIPLICITY 3803#if EV_MULTIPLICITY
2740 #include "ev_wrap.h" 3804 #include "ev_wrap.h"
2741#endif 3805#endif
2742 3806
2743#ifdef __cplusplus 3807#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines