ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.226 by root, Fri Apr 18 17:16:44 2008 UTC vs.
Revision 1.348 by root, Fri Oct 15 22:48:25 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
63# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
65# endif 79# endif
66# endif 80# endif
67 81
82# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
71# else 86# else
87# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
74# endif 98# endif
75 99
100# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 103# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 104# else
105# undef EV_USE_POLL
88# define EV_USE_POLL 0 106# define EV_USE_POLL 0
89# endif
90# endif 107# endif
91 108
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
95# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
98# endif 116# endif
99 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
106# endif 125# endif
107 126
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
111# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
114# endif 134# endif
115 135
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
122# endif 143# endif
123 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 147# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
130# endif 152# endif
131 153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
132#endif 163#endif
133 164
134#include <math.h> 165#include <math.h>
135#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
136#include <fcntl.h> 168#include <fcntl.h>
137#include <stddef.h> 169#include <stddef.h>
138 170
139#include <stdio.h> 171#include <stdio.h>
140 172
141#include <assert.h> 173#include <assert.h>
142#include <errno.h> 174#include <errno.h>
143#include <sys/types.h> 175#include <sys/types.h>
144#include <time.h> 176#include <time.h>
177#include <limits.h>
145 178
146#include <signal.h> 179#include <signal.h>
147 180
148#ifdef EV_H 181#ifdef EV_H
149# include EV_H 182# include EV_H
154#ifndef _WIN32 187#ifndef _WIN32
155# include <sys/time.h> 188# include <sys/time.h>
156# include <sys/wait.h> 189# include <sys/wait.h>
157# include <unistd.h> 190# include <unistd.h>
158#else 191#else
192# include <io.h>
159# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 194# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
163# endif 197# endif
198# undef EV_AVOID_STDIO
164#endif 199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
165 208
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 209/* this block tries to deduce configuration from header-defined symbols and defaults */
167 210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
244# endif
245#endif
246
168#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
169# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
170#endif 253#endif
171 254
172#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 257#endif
175 258
176#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
177# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
264# endif
178#endif 265#endif
179 266
180#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 269#endif
183 270
184#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
185# ifdef _WIN32 272# ifdef _WIN32
186# define EV_USE_POLL 0 273# define EV_USE_POLL 0
187# else 274# else
188# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 276# endif
190#endif 277#endif
191 278
192#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 282# else
196# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
197# endif 284# endif
198#endif 285#endif
199 286
205# define EV_USE_PORT 0 292# define EV_USE_PORT 0
206#endif 293#endif
207 294
208#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 297# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 298# else
212# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
213# endif 300# endif
214#endif 301#endif
215 302
216#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 305#endif
223 306
224#ifndef EV_INOTIFY_HASHSIZE 307#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 309#endif
231 310
232#ifndef EV_USE_EVENTFD 311#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 313# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 314# else
236# define EV_USE_EVENTFD 0 315# define EV_USE_EVENTFD 0
237# endif 316# endif
238#endif 317#endif
239 318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
324# endif
325#endif
326
327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
241 366
242#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
245#endif 370#endif
259# include <sys/select.h> 384# include <sys/select.h>
260# endif 385# endif
261#endif 386#endif
262 387
263#if EV_USE_INOTIFY 388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
264# include <sys/inotify.h> 391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
265#endif 397#endif
266 398
267#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 400# include <winsock.h>
269#endif 401#endif
270 402
271#if EV_USE_EVENTFD 403#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
274# ifdef __cplusplus 416# ifdef __cplusplus
275extern "C" { 417extern "C" {
276# endif 418# endif
277int eventfd (unsigned int initval, int flags); 419int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 420# ifdef __cplusplus
279} 421}
280# endif 422# endif
281#endif 423#endif
282 424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
283/**/ 453/**/
454
455#if EV_VERIFY >= 3
456# define EV_FREQUENT_CHECK ev_verify (EV_A)
457#else
458# define EV_FREQUENT_CHECK do { } while (0)
459#endif
284 460
285/* 461/*
286 * This is used to avoid floating point rounding problems. 462 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 463 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 464 * to ensure progress, time-wise, even when rounding
292 */ 468 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 470
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 471#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 472#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 473
474#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
475#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
298 476
299#if __GNUC__ >= 4 477#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 478# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 479# define noinline __attribute__ ((noinline))
302#else 480#else
309 487
310#define expect_false(expr) expect ((expr) != 0, 0) 488#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 489#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 490#define inline_size static inline
313 491
314#if EV_MINIMAL 492#if EV_FEATURE_CODE
493# define inline_speed static inline
494#else
315# define inline_speed static noinline 495# define inline_speed static noinline
496#endif
497
498#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499
500#if EV_MINPRI == EV_MAXPRI
501# define ABSPRI(w) (((W)w), 0)
316#else 502#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 503# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504#endif
322 505
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 506#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 507#define EMPTY2(a,b) /* used to suppress some warnings */
325 508
326typedef ev_watcher *W; 509typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 510typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 511typedef ev_watcher_time *WT;
329 512
513#define ev_active(w) ((W)(w))->active
514#define ev_at(w) ((WT)(w))->at
515
516#if EV_USE_REALTIME
517/* sig_atomic_t is used to avoid per-thread variables or locking but still */
518/* giving it a reasonably high chance of working on typical architectures */
519static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
520#endif
521
330#if EV_USE_MONOTONIC 522#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 523static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
524#endif
525
526#ifndef EV_FD_TO_WIN32_HANDLE
527# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528#endif
529#ifndef EV_WIN32_HANDLE_TO_FD
530# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531#endif
532#ifndef EV_WIN32_CLOSE_FD
533# define EV_WIN32_CLOSE_FD(fd) close (fd)
334#endif 534#endif
335 535
336#ifdef _WIN32 536#ifdef _WIN32
337# include "ev_win32.c" 537# include "ev_win32.c"
338#endif 538#endif
339 539
340/*****************************************************************************/ 540/*****************************************************************************/
341 541
542#if EV_AVOID_STDIO
543static void noinline
544ev_printerr (const char *msg)
545{
546 write (STDERR_FILENO, msg, strlen (msg));
547}
548#endif
549
342static void (*syserr_cb)(const char *msg); 550static void (*syserr_cb)(const char *msg);
343 551
344void 552void
345ev_set_syserr_cb (void (*cb)(const char *msg)) 553ev_set_syserr_cb (void (*cb)(const char *msg))
346{ 554{
347 syserr_cb = cb; 555 syserr_cb = cb;
348} 556}
349 557
350static void noinline 558static void noinline
351syserr (const char *msg) 559ev_syserr (const char *msg)
352{ 560{
353 if (!msg) 561 if (!msg)
354 msg = "(libev) system error"; 562 msg = "(libev) system error";
355 563
356 if (syserr_cb) 564 if (syserr_cb)
357 syserr_cb (msg); 565 syserr_cb (msg);
358 else 566 else
359 { 567 {
568#if EV_AVOID_STDIO
569 const char *err = strerror (errno);
570
571 ev_printerr (msg);
572 ev_printerr (": ");
573 ev_printerr (err);
574 ev_printerr ("\n");
575#else
360 perror (msg); 576 perror (msg);
577#endif
361 abort (); 578 abort ();
362 } 579 }
363} 580}
364 581
365static void * 582static void *
366ev_realloc_emul (void *ptr, long size) 583ev_realloc_emul (void *ptr, long size)
367{ 584{
585#if __GLIBC__
586 return realloc (ptr, size);
587#else
368 /* some systems, notably openbsd and darwin, fail to properly 588 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and 589 * implement realloc (x, 0) (as required by both ansi c-89 and
370 * the single unix specification, so work around them here. 590 * the single unix specification, so work around them here.
371 */ 591 */
372 592
373 if (size) 593 if (size)
374 return realloc (ptr, size); 594 return realloc (ptr, size);
375 595
376 free (ptr); 596 free (ptr);
377 return 0; 597 return 0;
598#endif
378} 599}
379 600
380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 601static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
381 602
382void 603void
390{ 611{
391 ptr = alloc (ptr, size); 612 ptr = alloc (ptr, size);
392 613
393 if (!ptr && size) 614 if (!ptr && size)
394 { 615 {
616#if EV_AVOID_STDIO
617 ev_printerr ("libev: memory allocation failed, aborting.\n");
618#else
395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 619 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620#endif
396 abort (); 621 abort ();
397 } 622 }
398 623
399 return ptr; 624 return ptr;
400} 625}
402#define ev_malloc(size) ev_realloc (0, (size)) 627#define ev_malloc(size) ev_realloc (0, (size))
403#define ev_free(ptr) ev_realloc ((ptr), 0) 628#define ev_free(ptr) ev_realloc ((ptr), 0)
404 629
405/*****************************************************************************/ 630/*****************************************************************************/
406 631
632/* set in reify when reification needed */
633#define EV_ANFD_REIFY 1
634
635/* file descriptor info structure */
407typedef struct 636typedef struct
408{ 637{
409 WL head; 638 WL head;
410 unsigned char events; 639 unsigned char events; /* the events watched for */
640 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
641 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
411 unsigned char reify; 642 unsigned char unused;
643#if EV_USE_EPOLL
644 unsigned int egen; /* generation counter to counter epoll bugs */
645#endif
412#if EV_SELECT_IS_WINSOCKET 646#if EV_SELECT_IS_WINSOCKET
413 SOCKET handle; 647 SOCKET handle;
414#endif 648#endif
415} ANFD; 649} ANFD;
416 650
651/* stores the pending event set for a given watcher */
417typedef struct 652typedef struct
418{ 653{
419 W w; 654 W w;
420 int events; 655 int events; /* the pending event set for the given watcher */
421} ANPENDING; 656} ANPENDING;
422 657
423#if EV_USE_INOTIFY 658#if EV_USE_INOTIFY
659/* hash table entry per inotify-id */
424typedef struct 660typedef struct
425{ 661{
426 WL head; 662 WL head;
427} ANFS; 663} ANFS;
664#endif
665
666/* Heap Entry */
667#if EV_HEAP_CACHE_AT
668 /* a heap element */
669 typedef struct {
670 ev_tstamp at;
671 WT w;
672 } ANHE;
673
674 #define ANHE_w(he) (he).w /* access watcher, read-write */
675 #define ANHE_at(he) (he).at /* access cached at, read-only */
676 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
677#else
678 /* a heap element */
679 typedef WT ANHE;
680
681 #define ANHE_w(he) (he)
682 #define ANHE_at(he) (he)->at
683 #define ANHE_at_cache(he)
428#endif 684#endif
429 685
430#if EV_MULTIPLICITY 686#if EV_MULTIPLICITY
431 687
432 struct ev_loop 688 struct ev_loop
451 707
452 static int ev_default_loop_ptr; 708 static int ev_default_loop_ptr;
453 709
454#endif 710#endif
455 711
712#if EV_FEATURE_API
713# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715# define EV_INVOKE_PENDING invoke_cb (EV_A)
716#else
717# define EV_RELEASE_CB (void)0
718# define EV_ACQUIRE_CB (void)0
719# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720#endif
721
722#define EVUNLOOP_RECURSE 0x80
723
456/*****************************************************************************/ 724/*****************************************************************************/
457 725
726#ifndef EV_HAVE_EV_TIME
458ev_tstamp 727ev_tstamp
459ev_time (void) 728ev_time (void)
460{ 729{
461#if EV_USE_REALTIME 730#if EV_USE_REALTIME
731 if (expect_true (have_realtime))
732 {
462 struct timespec ts; 733 struct timespec ts;
463 clock_gettime (CLOCK_REALTIME, &ts); 734 clock_gettime (CLOCK_REALTIME, &ts);
464 return ts.tv_sec + ts.tv_nsec * 1e-9; 735 return ts.tv_sec + ts.tv_nsec * 1e-9;
465#else 736 }
737#endif
738
466 struct timeval tv; 739 struct timeval tv;
467 gettimeofday (&tv, 0); 740 gettimeofday (&tv, 0);
468 return tv.tv_sec + tv.tv_usec * 1e-6; 741 return tv.tv_sec + tv.tv_usec * 1e-6;
469#endif
470} 742}
743#endif
471 744
472ev_tstamp inline_size 745inline_size ev_tstamp
473get_clock (void) 746get_clock (void)
474{ 747{
475#if EV_USE_MONOTONIC 748#if EV_USE_MONOTONIC
476 if (expect_true (have_monotonic)) 749 if (expect_true (have_monotonic))
477 { 750 {
498 if (delay > 0.) 771 if (delay > 0.)
499 { 772 {
500#if EV_USE_NANOSLEEP 773#if EV_USE_NANOSLEEP
501 struct timespec ts; 774 struct timespec ts;
502 775
503 ts.tv_sec = (time_t)delay; 776 EV_TS_SET (ts, delay);
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0); 777 nanosleep (&ts, 0);
507#elif defined(_WIN32) 778#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3)); 779 Sleep ((unsigned long)(delay * 1e3));
509#else 780#else
510 struct timeval tv; 781 struct timeval tv;
511 782
512 tv.tv_sec = (time_t)delay; 783 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 784 /* something not guaranteed by newer posix versions, but guaranteed */
514 785 /* by older ones */
786 EV_TS_SET (tv, delay);
515 select (0, 0, 0, 0, &tv); 787 select (0, 0, 0, 0, &tv);
516#endif 788#endif
517 } 789 }
518} 790}
519 791
520/*****************************************************************************/ 792/*****************************************************************************/
521 793
522int inline_size 794#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
795
796/* find a suitable new size for the given array, */
797/* hopefully by rounding to a nice-to-malloc size */
798inline_size int
523array_nextsize (int elem, int cur, int cnt) 799array_nextsize (int elem, int cur, int cnt)
524{ 800{
525 int ncur = cur + 1; 801 int ncur = cur + 1;
526 802
527 do 803 do
528 ncur <<= 1; 804 ncur <<= 1;
529 while (cnt > ncur); 805 while (cnt > ncur);
530 806
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 807 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 808 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 809 {
534 ncur *= elem; 810 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 811 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 812 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 813 ncur /= elem;
538 } 814 }
539 815
540 return ncur; 816 return ncur;
544array_realloc (int elem, void *base, int *cur, int cnt) 820array_realloc (int elem, void *base, int *cur, int cnt)
545{ 821{
546 *cur = array_nextsize (elem, *cur, cnt); 822 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 823 return ev_realloc (base, elem * *cur);
548} 824}
825
826#define array_init_zero(base,count) \
827 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 828
550#define array_needsize(type,base,cur,cnt,init) \ 829#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 830 if (expect_false ((cnt) > (cur))) \
552 { \ 831 { \
553 int ocur_ = (cur); \ 832 int ocur_ = (cur); \
565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 844 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
566 } 845 }
567#endif 846#endif
568 847
569#define array_free(stem, idx) \ 848#define array_free(stem, idx) \
570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 849 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
571 850
572/*****************************************************************************/ 851/*****************************************************************************/
852
853/* dummy callback for pending events */
854static void noinline
855pendingcb (EV_P_ ev_prepare *w, int revents)
856{
857}
573 858
574void noinline 859void noinline
575ev_feed_event (EV_P_ void *w, int revents) 860ev_feed_event (EV_P_ void *w, int revents)
576{ 861{
577 W w_ = (W)w; 862 W w_ = (W)w;
586 pendings [pri][w_->pending - 1].w = w_; 871 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents; 872 pendings [pri][w_->pending - 1].events = revents;
588 } 873 }
589} 874}
590 875
591void inline_speed 876inline_speed void
877feed_reverse (EV_P_ W w)
878{
879 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880 rfeeds [rfeedcnt++] = w;
881}
882
883inline_size void
884feed_reverse_done (EV_P_ int revents)
885{
886 do
887 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888 while (rfeedcnt);
889}
890
891inline_speed void
592queue_events (EV_P_ W *events, int eventcnt, int type) 892queue_events (EV_P_ W *events, int eventcnt, int type)
593{ 893{
594 int i; 894 int i;
595 895
596 for (i = 0; i < eventcnt; ++i) 896 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type); 897 ev_feed_event (EV_A_ events [i], type);
598} 898}
599 899
600/*****************************************************************************/ 900/*****************************************************************************/
601 901
602void inline_size 902inline_speed void
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed
616fd_event (EV_P_ int fd, int revents) 903fd_event_nocheck (EV_P_ int fd, int revents)
617{ 904{
618 ANFD *anfd = anfds + fd; 905 ANFD *anfd = anfds + fd;
619 ev_io *w; 906 ev_io *w;
620 907
621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
625 if (ev) 912 if (ev)
626 ev_feed_event (EV_A_ (W)w, ev); 913 ev_feed_event (EV_A_ (W)w, ev);
627 } 914 }
628} 915}
629 916
917/* do not submit kernel events for fds that have reify set */
918/* because that means they changed while we were polling for new events */
919inline_speed void
920fd_event (EV_P_ int fd, int revents)
921{
922 ANFD *anfd = anfds + fd;
923
924 if (expect_true (!anfd->reify))
925 fd_event_nocheck (EV_A_ fd, revents);
926}
927
630void 928void
631ev_feed_fd_event (EV_P_ int fd, int revents) 929ev_feed_fd_event (EV_P_ int fd, int revents)
632{ 930{
633 if (fd >= 0 && fd < anfdmax) 931 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents); 932 fd_event_nocheck (EV_A_ fd, revents);
635} 933}
636 934
637void inline_size 935/* make sure the external fd watch events are in-sync */
936/* with the kernel/libev internal state */
937inline_size void
638fd_reify (EV_P) 938fd_reify (EV_P)
639{ 939{
640 int i; 940 int i;
641 941
642 for (i = 0; i < fdchangecnt; ++i) 942 for (i = 0; i < fdchangecnt; ++i)
651 events |= (unsigned char)w->events; 951 events |= (unsigned char)w->events;
652 952
653#if EV_SELECT_IS_WINSOCKET 953#if EV_SELECT_IS_WINSOCKET
654 if (events) 954 if (events)
655 { 955 {
656 unsigned long argp; 956 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 957 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else
660 anfd->handle = _get_osfhandle (fd);
661 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 958 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 959 }
664#endif 960#endif
665 961
666 { 962 {
667 unsigned char o_events = anfd->events; 963 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify; 964 unsigned char o_reify = anfd->reify;
669 965
670 anfd->reify = 0; 966 anfd->reify = 0;
671 anfd->events = events; 967 anfd->events = events;
672 968
673 if (o_events != events || o_reify & EV_IOFDSET) 969 if (o_events != events || o_reify & EV__IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events); 970 backend_modify (EV_A_ fd, o_events, events);
675 } 971 }
676 } 972 }
677 973
678 fdchangecnt = 0; 974 fdchangecnt = 0;
679} 975}
680 976
681void inline_size 977/* something about the given fd changed */
978inline_size void
682fd_change (EV_P_ int fd, int flags) 979fd_change (EV_P_ int fd, int flags)
683{ 980{
684 unsigned char reify = anfds [fd].reify; 981 unsigned char reify = anfds [fd].reify;
685 anfds [fd].reify |= flags; 982 anfds [fd].reify |= flags;
686 983
690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 987 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
691 fdchanges [fdchangecnt - 1] = fd; 988 fdchanges [fdchangecnt - 1] = fd;
692 } 989 }
693} 990}
694 991
695void inline_speed 992/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
993inline_speed void
696fd_kill (EV_P_ int fd) 994fd_kill (EV_P_ int fd)
697{ 995{
698 ev_io *w; 996 ev_io *w;
699 997
700 while ((w = (ev_io *)anfds [fd].head)) 998 while ((w = (ev_io *)anfds [fd].head))
702 ev_io_stop (EV_A_ w); 1000 ev_io_stop (EV_A_ w);
703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1001 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
704 } 1002 }
705} 1003}
706 1004
707int inline_size 1005/* check whether the given fd is actually valid, for error recovery */
1006inline_size int
708fd_valid (int fd) 1007fd_valid (int fd)
709{ 1008{
710#ifdef _WIN32 1009#ifdef _WIN32
711 return _get_osfhandle (fd) != -1; 1010 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
712#else 1011#else
713 return fcntl (fd, F_GETFD) != -1; 1012 return fcntl (fd, F_GETFD) != -1;
714#endif 1013#endif
715} 1014}
716 1015
720{ 1019{
721 int fd; 1020 int fd;
722 1021
723 for (fd = 0; fd < anfdmax; ++fd) 1022 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 1023 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 1024 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 1025 fd_kill (EV_A_ fd);
727} 1026}
728 1027
729/* called on ENOMEM in select/poll to kill some fds and retry */ 1028/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 1029static void noinline
734 1033
735 for (fd = anfdmax; fd--; ) 1034 for (fd = anfdmax; fd--; )
736 if (anfds [fd].events) 1035 if (anfds [fd].events)
737 { 1036 {
738 fd_kill (EV_A_ fd); 1037 fd_kill (EV_A_ fd);
739 return; 1038 break;
740 } 1039 }
741} 1040}
742 1041
743/* usually called after fork if backend needs to re-arm all fds from scratch */ 1042/* usually called after fork if backend needs to re-arm all fds from scratch */
744static void noinline 1043static void noinline
748 1047
749 for (fd = 0; fd < anfdmax; ++fd) 1048 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 1049 if (anfds [fd].events)
751 { 1050 {
752 anfds [fd].events = 0; 1051 anfds [fd].events = 0;
1052 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1053 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
754 } 1054 }
755} 1055}
756 1056
757/*****************************************************************************/ 1057/* used to prepare libev internal fd's */
758 1058/* this is not fork-safe */
759void inline_speed 1059inline_speed void
760upheap (WT *heap, int k)
761{
762 WT w = heap [k];
763
764 while (k)
765 {
766 int p = (k - 1) >> 1;
767
768 if (heap [p]->at <= w->at)
769 break;
770
771 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1;
773 k = p;
774 }
775
776 heap [k] = w;
777 ((W)heap [k])->active = k + 1;
778}
779
780void inline_speed
781downheap (WT *heap, int N, int k)
782{
783 WT w = heap [k];
784
785 for (;;)
786 {
787 int c = (k << 1) + 1;
788
789 if (c >= N)
790 break;
791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
798 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1;
800
801 k = c;
802 }
803
804 heap [k] = w;
805 ((W)heap [k])->active = k + 1;
806}
807
808void inline_size
809adjustheap (WT *heap, int N, int k)
810{
811 upheap (heap, k);
812 downheap (heap, N, k);
813}
814
815/*****************************************************************************/
816
817typedef struct
818{
819 WL head;
820 EV_ATOMIC_T gotsig;
821} ANSIG;
822
823static ANSIG *signals;
824static int signalmax;
825
826static EV_ATOMIC_T gotsig;
827
828void inline_size
829signals_init (ANSIG *base, int count)
830{
831 while (count--)
832 {
833 base->head = 0;
834 base->gotsig = 0;
835
836 ++base;
837 }
838}
839
840/*****************************************************************************/
841
842void inline_speed
843fd_intern (int fd) 1060fd_intern (int fd)
844{ 1061{
845#ifdef _WIN32 1062#ifdef _WIN32
846 int arg = 1; 1063 unsigned long arg = 1;
847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1064 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
848#else 1065#else
849 fcntl (fd, F_SETFD, FD_CLOEXEC); 1066 fcntl (fd, F_SETFD, FD_CLOEXEC);
850 fcntl (fd, F_SETFL, O_NONBLOCK); 1067 fcntl (fd, F_SETFL, O_NONBLOCK);
851#endif 1068#endif
852} 1069}
853 1070
1071/*****************************************************************************/
1072
1073/*
1074 * the heap functions want a real array index. array index 0 is guaranteed to not
1075 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1076 * the branching factor of the d-tree.
1077 */
1078
1079/*
1080 * at the moment we allow libev the luxury of two heaps,
1081 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1082 * which is more cache-efficient.
1083 * the difference is about 5% with 50000+ watchers.
1084 */
1085#if EV_USE_4HEAP
1086
1087#define DHEAP 4
1088#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1089#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1090#define UPHEAP_DONE(p,k) ((p) == (k))
1091
1092/* away from the root */
1093inline_speed void
1094downheap (ANHE *heap, int N, int k)
1095{
1096 ANHE he = heap [k];
1097 ANHE *E = heap + N + HEAP0;
1098
1099 for (;;)
1100 {
1101 ev_tstamp minat;
1102 ANHE *minpos;
1103 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1104
1105 /* find minimum child */
1106 if (expect_true (pos + DHEAP - 1 < E))
1107 {
1108 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1109 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1110 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1111 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1112 }
1113 else if (pos < E)
1114 {
1115 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1116 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1117 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1118 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1119 }
1120 else
1121 break;
1122
1123 if (ANHE_at (he) <= minat)
1124 break;
1125
1126 heap [k] = *minpos;
1127 ev_active (ANHE_w (*minpos)) = k;
1128
1129 k = minpos - heap;
1130 }
1131
1132 heap [k] = he;
1133 ev_active (ANHE_w (he)) = k;
1134}
1135
1136#else /* 4HEAP */
1137
1138#define HEAP0 1
1139#define HPARENT(k) ((k) >> 1)
1140#define UPHEAP_DONE(p,k) (!(p))
1141
1142/* away from the root */
1143inline_speed void
1144downheap (ANHE *heap, int N, int k)
1145{
1146 ANHE he = heap [k];
1147
1148 for (;;)
1149 {
1150 int c = k << 1;
1151
1152 if (c >= N + HEAP0)
1153 break;
1154
1155 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1156 ? 1 : 0;
1157
1158 if (ANHE_at (he) <= ANHE_at (heap [c]))
1159 break;
1160
1161 heap [k] = heap [c];
1162 ev_active (ANHE_w (heap [k])) = k;
1163
1164 k = c;
1165 }
1166
1167 heap [k] = he;
1168 ev_active (ANHE_w (he)) = k;
1169}
1170#endif
1171
1172/* towards the root */
1173inline_speed void
1174upheap (ANHE *heap, int k)
1175{
1176 ANHE he = heap [k];
1177
1178 for (;;)
1179 {
1180 int p = HPARENT (k);
1181
1182 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1183 break;
1184
1185 heap [k] = heap [p];
1186 ev_active (ANHE_w (heap [k])) = k;
1187 k = p;
1188 }
1189
1190 heap [k] = he;
1191 ev_active (ANHE_w (he)) = k;
1192}
1193
1194/* move an element suitably so it is in a correct place */
1195inline_size void
1196adjustheap (ANHE *heap, int N, int k)
1197{
1198 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1199 upheap (heap, k);
1200 else
1201 downheap (heap, N, k);
1202}
1203
1204/* rebuild the heap: this function is used only once and executed rarely */
1205inline_size void
1206reheap (ANHE *heap, int N)
1207{
1208 int i;
1209
1210 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1211 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1212 for (i = 0; i < N; ++i)
1213 upheap (heap, i + HEAP0);
1214}
1215
1216/*****************************************************************************/
1217
1218/* associate signal watchers to a signal signal */
1219typedef struct
1220{
1221 EV_ATOMIC_T pending;
1222#if EV_MULTIPLICITY
1223 EV_P;
1224#endif
1225 WL head;
1226} ANSIG;
1227
1228static ANSIG signals [EV_NSIG - 1];
1229
1230/*****************************************************************************/
1231
1232#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1233
854static void noinline 1234static void noinline
855evpipe_init (EV_P) 1235evpipe_init (EV_P)
856{ 1236{
857 if (!ev_is_active (&pipeev)) 1237 if (!ev_is_active (&pipe_w))
858 { 1238 {
859#if EV_USE_EVENTFD 1239# if EV_USE_EVENTFD
1240 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1241 if (evfd < 0 && errno == EINVAL)
860 if ((evfd = eventfd (0, 0)) >= 0) 1242 evfd = eventfd (0, 0);
1243
1244 if (evfd >= 0)
861 { 1245 {
862 evpipe [0] = -1; 1246 evpipe [0] = -1;
863 fd_intern (evfd); 1247 fd_intern (evfd); /* doing it twice doesn't hurt */
864 ev_io_set (&pipeev, evfd, EV_READ); 1248 ev_io_set (&pipe_w, evfd, EV_READ);
865 } 1249 }
866 else 1250 else
867#endif 1251# endif
868 { 1252 {
869 while (pipe (evpipe)) 1253 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe"); 1254 ev_syserr ("(libev) error creating signal/async pipe");
871 1255
872 fd_intern (evpipe [0]); 1256 fd_intern (evpipe [0]);
873 fd_intern (evpipe [1]); 1257 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ); 1258 ev_io_set (&pipe_w, evpipe [0], EV_READ);
875 } 1259 }
876 1260
877 ev_io_start (EV_A_ &pipeev); 1261 ev_io_start (EV_A_ &pipe_w);
878 ev_unref (EV_A); /* watcher should not keep loop alive */ 1262 ev_unref (EV_A); /* watcher should not keep loop alive */
879 } 1263 }
880} 1264}
881 1265
882void inline_size 1266inline_size void
883evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1267evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{ 1268{
885 if (!*flag) 1269 if (!*flag)
886 { 1270 {
887 int old_errno = errno; /* save errno because write might clobber it */ 1271 int old_errno = errno; /* save errno because write might clobber it */
1272 char dummy;
888 1273
889 *flag = 1; 1274 *flag = 1;
890 1275
891#if EV_USE_EVENTFD 1276#if EV_USE_EVENTFD
892 if (evfd >= 0) 1277 if (evfd >= 0)
894 uint64_t counter = 1; 1279 uint64_t counter = 1;
895 write (evfd, &counter, sizeof (uint64_t)); 1280 write (evfd, &counter, sizeof (uint64_t));
896 } 1281 }
897 else 1282 else
898#endif 1283#endif
1284 /* win32 people keep sending patches that change this write() to send() */
1285 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1286 /* so when you think this write should be a send instead, please find out */
1287 /* where your send() is from - it's definitely not the microsoft send, and */
1288 /* tell me. thank you. */
899 write (evpipe [1], &old_errno, 1); 1289 write (evpipe [1], &dummy, 1);
900 1290
901 errno = old_errno; 1291 errno = old_errno;
902 } 1292 }
903} 1293}
904 1294
1295/* called whenever the libev signal pipe */
1296/* got some events (signal, async) */
905static void 1297static void
906pipecb (EV_P_ ev_io *iow, int revents) 1298pipecb (EV_P_ ev_io *iow, int revents)
907{ 1299{
1300 int i;
1301
908#if EV_USE_EVENTFD 1302#if EV_USE_EVENTFD
909 if (evfd >= 0) 1303 if (evfd >= 0)
910 { 1304 {
911 uint64_t counter = 1; 1305 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1306 read (evfd, &counter, sizeof (uint64_t));
913 } 1307 }
914 else 1308 else
915#endif 1309#endif
916 { 1310 {
917 char dummy; 1311 char dummy;
1312 /* see discussion in evpipe_write when you think this read should be recv in win32 */
918 read (evpipe [0], &dummy, 1); 1313 read (evpipe [0], &dummy, 1);
919 } 1314 }
920 1315
921 if (gotsig && ev_is_default_loop (EV_A)) 1316 if (sig_pending)
922 { 1317 {
923 int signum; 1318 sig_pending = 0;
924 gotsig = 0;
925 1319
926 for (signum = signalmax; signum--; ) 1320 for (i = EV_NSIG - 1; i--; )
927 if (signals [signum].gotsig) 1321 if (expect_false (signals [i].pending))
928 ev_feed_signal_event (EV_A_ signum + 1); 1322 ev_feed_signal_event (EV_A_ i + 1);
929 } 1323 }
930 1324
931#if EV_ASYNC_ENABLE 1325#if EV_ASYNC_ENABLE
932 if (gotasync) 1326 if (async_pending)
933 { 1327 {
934 int i; 1328 async_pending = 0;
935 gotasync = 0;
936 1329
937 for (i = asynccnt; i--; ) 1330 for (i = asynccnt; i--; )
938 if (asyncs [i]->sent) 1331 if (asyncs [i]->sent)
939 { 1332 {
940 asyncs [i]->sent = 0; 1333 asyncs [i]->sent = 0;
948 1341
949static void 1342static void
950ev_sighandler (int signum) 1343ev_sighandler (int signum)
951{ 1344{
952#if EV_MULTIPLICITY 1345#if EV_MULTIPLICITY
953 struct ev_loop *loop = &default_loop_struct; 1346 EV_P = signals [signum - 1].loop;
954#endif 1347#endif
955 1348
956#if _WIN32 1349#ifdef _WIN32
957 signal (signum, ev_sighandler); 1350 signal (signum, ev_sighandler);
958#endif 1351#endif
959 1352
960 signals [signum - 1].gotsig = 1; 1353 signals [signum - 1].pending = 1;
961 evpipe_write (EV_A_ &gotsig); 1354 evpipe_write (EV_A_ &sig_pending);
962} 1355}
963 1356
964void noinline 1357void noinline
965ev_feed_signal_event (EV_P_ int signum) 1358ev_feed_signal_event (EV_P_ int signum)
966{ 1359{
967 WL w; 1360 WL w;
968 1361
1362 if (expect_false (signum <= 0 || signum > EV_NSIG))
1363 return;
1364
1365 --signum;
1366
969#if EV_MULTIPLICITY 1367#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1368 /* it is permissible to try to feed a signal to the wrong loop */
971#endif 1369 /* or, likely more useful, feeding a signal nobody is waiting for */
972 1370
973 --signum; 1371 if (expect_false (signals [signum].loop != EV_A))
974
975 if (signum < 0 || signum >= signalmax)
976 return; 1372 return;
1373#endif
977 1374
978 signals [signum].gotsig = 0; 1375 signals [signum].pending = 0;
979 1376
980 for (w = signals [signum].head; w; w = w->next) 1377 for (w = signals [signum].head; w; w = w->next)
981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1378 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
982} 1379}
983 1380
1381#if EV_USE_SIGNALFD
1382static void
1383sigfdcb (EV_P_ ev_io *iow, int revents)
1384{
1385 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1386
1387 for (;;)
1388 {
1389 ssize_t res = read (sigfd, si, sizeof (si));
1390
1391 /* not ISO-C, as res might be -1, but works with SuS */
1392 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1393 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1394
1395 if (res < (ssize_t)sizeof (si))
1396 break;
1397 }
1398}
1399#endif
1400
1401#endif
1402
984/*****************************************************************************/ 1403/*****************************************************************************/
985 1404
1405#if EV_CHILD_ENABLE
986static WL childs [EV_PID_HASHSIZE]; 1406static WL childs [EV_PID_HASHSIZE];
987
988#ifndef _WIN32
989 1407
990static ev_signal childev; 1408static ev_signal childev;
991 1409
992#ifndef WIFCONTINUED 1410#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0 1411# define WIFCONTINUED(status) 0
994#endif 1412#endif
995 1413
996void inline_speed 1414/* handle a single child status event */
1415inline_speed void
997child_reap (EV_P_ int chain, int pid, int status) 1416child_reap (EV_P_ int chain, int pid, int status)
998{ 1417{
999 ev_child *w; 1418 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1419 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1001 1420
1002 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1421 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1003 { 1422 {
1004 if ((w->pid == pid || !w->pid) 1423 if ((w->pid == pid || !w->pid)
1005 && (!traced || (w->flags & 1))) 1424 && (!traced || (w->flags & 1)))
1006 { 1425 {
1007 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1426 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1014 1433
1015#ifndef WCONTINUED 1434#ifndef WCONTINUED
1016# define WCONTINUED 0 1435# define WCONTINUED 0
1017#endif 1436#endif
1018 1437
1438/* called on sigchld etc., calls waitpid */
1019static void 1439static void
1020childcb (EV_P_ ev_signal *sw, int revents) 1440childcb (EV_P_ ev_signal *sw, int revents)
1021{ 1441{
1022 int pid, status; 1442 int pid, status;
1023 1443
1031 /* make sure we are called again until all children have been reaped */ 1451 /* make sure we are called again until all children have been reaped */
1032 /* we need to do it this way so that the callback gets called before we continue */ 1452 /* we need to do it this way so that the callback gets called before we continue */
1033 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1453 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1034 1454
1035 child_reap (EV_A_ pid, pid, status); 1455 child_reap (EV_A_ pid, pid, status);
1036 if (EV_PID_HASHSIZE > 1) 1456 if ((EV_PID_HASHSIZE) > 1)
1037 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1457 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1038} 1458}
1039 1459
1040#endif 1460#endif
1041 1461
1104 /* kqueue is borked on everything but netbsd apparently */ 1524 /* kqueue is borked on everything but netbsd apparently */
1105 /* it usually doesn't work correctly on anything but sockets and pipes */ 1525 /* it usually doesn't work correctly on anything but sockets and pipes */
1106 flags &= ~EVBACKEND_KQUEUE; 1526 flags &= ~EVBACKEND_KQUEUE;
1107#endif 1527#endif
1108#ifdef __APPLE__ 1528#ifdef __APPLE__
1109 // flags &= ~EVBACKEND_KQUEUE; for documentation 1529 /* only select works correctly on that "unix-certified" platform */
1110 flags &= ~EVBACKEND_POLL; 1530 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1531 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1532#endif
1533#ifdef __FreeBSD__
1534 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1111#endif 1535#endif
1112 1536
1113 return flags; 1537 return flags;
1114} 1538}
1115 1539
1129ev_backend (EV_P) 1553ev_backend (EV_P)
1130{ 1554{
1131 return backend; 1555 return backend;
1132} 1556}
1133 1557
1558#if EV_FEATURE_API
1134unsigned int 1559unsigned int
1135ev_loop_count (EV_P) 1560ev_iteration (EV_P)
1136{ 1561{
1137 return loop_count; 1562 return loop_count;
1138} 1563}
1139 1564
1565unsigned int
1566ev_depth (EV_P)
1567{
1568 return loop_depth;
1569}
1570
1140void 1571void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1572ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{ 1573{
1143 io_blocktime = interval; 1574 io_blocktime = interval;
1144} 1575}
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1578ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{ 1579{
1149 timeout_blocktime = interval; 1580 timeout_blocktime = interval;
1150} 1581}
1151 1582
1583void
1584ev_set_userdata (EV_P_ void *data)
1585{
1586 userdata = data;
1587}
1588
1589void *
1590ev_userdata (EV_P)
1591{
1592 return userdata;
1593}
1594
1595void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1596{
1597 invoke_cb = invoke_pending_cb;
1598}
1599
1600void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1601{
1602 release_cb = release;
1603 acquire_cb = acquire;
1604}
1605#endif
1606
1607/* initialise a loop structure, must be zero-initialised */
1152static void noinline 1608static void noinline
1153loop_init (EV_P_ unsigned int flags) 1609loop_init (EV_P_ unsigned int flags)
1154{ 1610{
1155 if (!backend) 1611 if (!backend)
1156 { 1612 {
1613#if EV_USE_REALTIME
1614 if (!have_realtime)
1615 {
1616 struct timespec ts;
1617
1618 if (!clock_gettime (CLOCK_REALTIME, &ts))
1619 have_realtime = 1;
1620 }
1621#endif
1622
1157#if EV_USE_MONOTONIC 1623#if EV_USE_MONOTONIC
1624 if (!have_monotonic)
1158 { 1625 {
1159 struct timespec ts; 1626 struct timespec ts;
1627
1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1628 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1161 have_monotonic = 1; 1629 have_monotonic = 1;
1162 } 1630 }
1163#endif 1631#endif
1632
1633 /* pid check not overridable via env */
1634#ifndef _WIN32
1635 if (flags & EVFLAG_FORKCHECK)
1636 curpid = getpid ();
1637#endif
1638
1639 if (!(flags & EVFLAG_NOENV)
1640 && !enable_secure ()
1641 && getenv ("LIBEV_FLAGS"))
1642 flags = atoi (getenv ("LIBEV_FLAGS"));
1164 1643
1165 ev_rt_now = ev_time (); 1644 ev_rt_now = ev_time ();
1166 mn_now = get_clock (); 1645 mn_now = get_clock ();
1167 now_floor = mn_now; 1646 now_floor = mn_now;
1168 rtmn_diff = ev_rt_now - mn_now; 1647 rtmn_diff = ev_rt_now - mn_now;
1648#if EV_FEATURE_API
1649 invoke_cb = ev_invoke_pending;
1650#endif
1169 1651
1170 io_blocktime = 0.; 1652 io_blocktime = 0.;
1171 timeout_blocktime = 0.; 1653 timeout_blocktime = 0.;
1172 backend = 0; 1654 backend = 0;
1173 backend_fd = -1; 1655 backend_fd = -1;
1174 gotasync = 0; 1656 sig_pending = 0;
1657#if EV_ASYNC_ENABLE
1658 async_pending = 0;
1659#endif
1175#if EV_USE_INOTIFY 1660#if EV_USE_INOTIFY
1176 fs_fd = -2; 1661 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1177#endif 1662#endif
1178 1663#if EV_USE_SIGNALFD
1179 /* pid check not overridable via env */ 1664 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1180#ifndef _WIN32
1181 if (flags & EVFLAG_FORKCHECK)
1182 curpid = getpid ();
1183#endif 1665#endif
1184
1185 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS"))
1188 flags = atoi (getenv ("LIBEV_FLAGS"));
1189 1666
1190 if (!(flags & 0x0000ffffU)) 1667 if (!(flags & 0x0000ffffU))
1191 flags |= ev_recommended_backends (); 1668 flags |= ev_recommended_backends ();
1192 1669
1193#if EV_USE_PORT 1670#if EV_USE_PORT
1204#endif 1681#endif
1205#if EV_USE_SELECT 1682#if EV_USE_SELECT
1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1683 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1207#endif 1684#endif
1208 1685
1686 ev_prepare_init (&pending_w, pendingcb);
1687
1688#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1209 ev_init (&pipeev, pipecb); 1689 ev_init (&pipe_w, pipecb);
1210 ev_set_priority (&pipeev, EV_MAXPRI); 1690 ev_set_priority (&pipe_w, EV_MAXPRI);
1691#endif
1211 } 1692 }
1212} 1693}
1213 1694
1695/* free up a loop structure */
1214static void noinline 1696static void noinline
1215loop_destroy (EV_P) 1697loop_destroy (EV_P)
1216{ 1698{
1217 int i; 1699 int i;
1218 1700
1219 if (ev_is_active (&pipeev)) 1701 if (ev_is_active (&pipe_w))
1220 { 1702 {
1221 ev_ref (EV_A); /* signal watcher */ 1703 /*ev_ref (EV_A);*/
1222 ev_io_stop (EV_A_ &pipeev); 1704 /*ev_io_stop (EV_A_ &pipe_w);*/
1223 1705
1224#if EV_USE_EVENTFD 1706#if EV_USE_EVENTFD
1225 if (evfd >= 0) 1707 if (evfd >= 0)
1226 close (evfd); 1708 close (evfd);
1227#endif 1709#endif
1228 1710
1229 if (evpipe [0] >= 0) 1711 if (evpipe [0] >= 0)
1230 { 1712 {
1231 close (evpipe [0]); 1713 EV_WIN32_CLOSE_FD (evpipe [0]);
1232 close (evpipe [1]); 1714 EV_WIN32_CLOSE_FD (evpipe [1]);
1233 } 1715 }
1234 } 1716 }
1717
1718#if EV_USE_SIGNALFD
1719 if (ev_is_active (&sigfd_w))
1720 close (sigfd);
1721#endif
1235 1722
1236#if EV_USE_INOTIFY 1723#if EV_USE_INOTIFY
1237 if (fs_fd >= 0) 1724 if (fs_fd >= 0)
1238 close (fs_fd); 1725 close (fs_fd);
1239#endif 1726#endif
1263#if EV_IDLE_ENABLE 1750#if EV_IDLE_ENABLE
1264 array_free (idle, [i]); 1751 array_free (idle, [i]);
1265#endif 1752#endif
1266 } 1753 }
1267 1754
1268 ev_free (anfds); anfdmax = 0; 1755 ev_free (anfds); anfds = 0; anfdmax = 0;
1269 1756
1270 /* have to use the microsoft-never-gets-it-right macro */ 1757 /* have to use the microsoft-never-gets-it-right macro */
1758 array_free (rfeed, EMPTY);
1271 array_free (fdchange, EMPTY); 1759 array_free (fdchange, EMPTY);
1272 array_free (timer, EMPTY); 1760 array_free (timer, EMPTY);
1273#if EV_PERIODIC_ENABLE 1761#if EV_PERIODIC_ENABLE
1274 array_free (periodic, EMPTY); 1762 array_free (periodic, EMPTY);
1275#endif 1763#endif
1284 1772
1285 backend = 0; 1773 backend = 0;
1286} 1774}
1287 1775
1288#if EV_USE_INOTIFY 1776#if EV_USE_INOTIFY
1289void inline_size infy_fork (EV_P); 1777inline_size void infy_fork (EV_P);
1290#endif 1778#endif
1291 1779
1292void inline_size 1780inline_size void
1293loop_fork (EV_P) 1781loop_fork (EV_P)
1294{ 1782{
1295#if EV_USE_PORT 1783#if EV_USE_PORT
1296 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1784 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1297#endif 1785#endif
1303#endif 1791#endif
1304#if EV_USE_INOTIFY 1792#if EV_USE_INOTIFY
1305 infy_fork (EV_A); 1793 infy_fork (EV_A);
1306#endif 1794#endif
1307 1795
1308 if (ev_is_active (&pipeev)) 1796 if (ev_is_active (&pipe_w))
1309 { 1797 {
1310 /* this "locks" the handlers against writing to the pipe */ 1798 /* this "locks" the handlers against writing to the pipe */
1311 /* while we modify the fd vars */ 1799 /* while we modify the fd vars */
1312 gotsig = 1; 1800 sig_pending = 1;
1313#if EV_ASYNC_ENABLE 1801#if EV_ASYNC_ENABLE
1314 gotasync = 1; 1802 async_pending = 1;
1315#endif 1803#endif
1316 1804
1317 ev_ref (EV_A); 1805 ev_ref (EV_A);
1318 ev_io_stop (EV_A_ &pipeev); 1806 ev_io_stop (EV_A_ &pipe_w);
1319 1807
1320#if EV_USE_EVENTFD 1808#if EV_USE_EVENTFD
1321 if (evfd >= 0) 1809 if (evfd >= 0)
1322 close (evfd); 1810 close (evfd);
1323#endif 1811#endif
1324 1812
1325 if (evpipe [0] >= 0) 1813 if (evpipe [0] >= 0)
1326 { 1814 {
1327 close (evpipe [0]); 1815 EV_WIN32_CLOSE_FD (evpipe [0]);
1328 close (evpipe [1]); 1816 EV_WIN32_CLOSE_FD (evpipe [1]);
1329 } 1817 }
1330 1818
1819#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1331 evpipe_init (EV_A); 1820 evpipe_init (EV_A);
1332 /* now iterate over everything, in case we missed something */ 1821 /* now iterate over everything, in case we missed something */
1333 pipecb (EV_A_ &pipeev, EV_READ); 1822 pipecb (EV_A_ &pipe_w, EV_READ);
1823#endif
1334 } 1824 }
1335 1825
1336 postfork = 0; 1826 postfork = 0;
1337} 1827}
1338 1828
1339#if EV_MULTIPLICITY 1829#if EV_MULTIPLICITY
1830
1340struct ev_loop * 1831struct ev_loop *
1341ev_loop_new (unsigned int flags) 1832ev_loop_new (unsigned int flags)
1342{ 1833{
1343 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1834 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1344 1835
1345 memset (loop, 0, sizeof (struct ev_loop)); 1836 memset (EV_A, 0, sizeof (struct ev_loop));
1346
1347 loop_init (EV_A_ flags); 1837 loop_init (EV_A_ flags);
1348 1838
1349 if (ev_backend (EV_A)) 1839 if (ev_backend (EV_A))
1350 return loop; 1840 return EV_A;
1351 1841
1352 return 0; 1842 return 0;
1353} 1843}
1354 1844
1355void 1845void
1362void 1852void
1363ev_loop_fork (EV_P) 1853ev_loop_fork (EV_P)
1364{ 1854{
1365 postfork = 1; /* must be in line with ev_default_fork */ 1855 postfork = 1; /* must be in line with ev_default_fork */
1366} 1856}
1857#endif /* multiplicity */
1367 1858
1859#if EV_VERIFY
1860static void noinline
1861verify_watcher (EV_P_ W w)
1862{
1863 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1864
1865 if (w->pending)
1866 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1867}
1868
1869static void noinline
1870verify_heap (EV_P_ ANHE *heap, int N)
1871{
1872 int i;
1873
1874 for (i = HEAP0; i < N + HEAP0; ++i)
1875 {
1876 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1877 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1878 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1879
1880 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1881 }
1882}
1883
1884static void noinline
1885array_verify (EV_P_ W *ws, int cnt)
1886{
1887 while (cnt--)
1888 {
1889 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1890 verify_watcher (EV_A_ ws [cnt]);
1891 }
1892}
1893#endif
1894
1895#if EV_FEATURE_API
1896void
1897ev_verify (EV_P)
1898{
1899#if EV_VERIFY
1900 int i;
1901 WL w;
1902
1903 assert (activecnt >= -1);
1904
1905 assert (fdchangemax >= fdchangecnt);
1906 for (i = 0; i < fdchangecnt; ++i)
1907 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1908
1909 assert (anfdmax >= 0);
1910 for (i = 0; i < anfdmax; ++i)
1911 for (w = anfds [i].head; w; w = w->next)
1912 {
1913 verify_watcher (EV_A_ (W)w);
1914 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1915 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1916 }
1917
1918 assert (timermax >= timercnt);
1919 verify_heap (EV_A_ timers, timercnt);
1920
1921#if EV_PERIODIC_ENABLE
1922 assert (periodicmax >= periodiccnt);
1923 verify_heap (EV_A_ periodics, periodiccnt);
1924#endif
1925
1926 for (i = NUMPRI; i--; )
1927 {
1928 assert (pendingmax [i] >= pendingcnt [i]);
1929#if EV_IDLE_ENABLE
1930 assert (idleall >= 0);
1931 assert (idlemax [i] >= idlecnt [i]);
1932 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1933#endif
1934 }
1935
1936#if EV_FORK_ENABLE
1937 assert (forkmax >= forkcnt);
1938 array_verify (EV_A_ (W *)forks, forkcnt);
1939#endif
1940
1941#if EV_ASYNC_ENABLE
1942 assert (asyncmax >= asynccnt);
1943 array_verify (EV_A_ (W *)asyncs, asynccnt);
1944#endif
1945
1946#if EV_PREPARE_ENABLE
1947 assert (preparemax >= preparecnt);
1948 array_verify (EV_A_ (W *)prepares, preparecnt);
1949#endif
1950
1951#if EV_CHECK_ENABLE
1952 assert (checkmax >= checkcnt);
1953 array_verify (EV_A_ (W *)checks, checkcnt);
1954#endif
1955
1956# if 0
1957#if EV_CHILD_ENABLE
1958 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1959 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1960#endif
1961# endif
1962#endif
1963}
1368#endif 1964#endif
1369 1965
1370#if EV_MULTIPLICITY 1966#if EV_MULTIPLICITY
1371struct ev_loop * 1967struct ev_loop *
1372ev_default_loop_init (unsigned int flags) 1968ev_default_loop_init (unsigned int flags)
1376#endif 1972#endif
1377{ 1973{
1378 if (!ev_default_loop_ptr) 1974 if (!ev_default_loop_ptr)
1379 { 1975 {
1380#if EV_MULTIPLICITY 1976#if EV_MULTIPLICITY
1381 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1977 EV_P = ev_default_loop_ptr = &default_loop_struct;
1382#else 1978#else
1383 ev_default_loop_ptr = 1; 1979 ev_default_loop_ptr = 1;
1384#endif 1980#endif
1385 1981
1386 loop_init (EV_A_ flags); 1982 loop_init (EV_A_ flags);
1387 1983
1388 if (ev_backend (EV_A)) 1984 if (ev_backend (EV_A))
1389 { 1985 {
1390#ifndef _WIN32 1986#if EV_CHILD_ENABLE
1391 ev_signal_init (&childev, childcb, SIGCHLD); 1987 ev_signal_init (&childev, childcb, SIGCHLD);
1392 ev_set_priority (&childev, EV_MAXPRI); 1988 ev_set_priority (&childev, EV_MAXPRI);
1393 ev_signal_start (EV_A_ &childev); 1989 ev_signal_start (EV_A_ &childev);
1394 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1990 ev_unref (EV_A); /* child watcher should not keep loop alive */
1395#endif 1991#endif
1403 1999
1404void 2000void
1405ev_default_destroy (void) 2001ev_default_destroy (void)
1406{ 2002{
1407#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
1408 struct ev_loop *loop = ev_default_loop_ptr; 2004 EV_P = ev_default_loop_ptr;
1409#endif 2005#endif
1410 2006
1411#ifndef _WIN32 2007 ev_default_loop_ptr = 0;
2008
2009#if EV_CHILD_ENABLE
1412 ev_ref (EV_A); /* child watcher */ 2010 ev_ref (EV_A); /* child watcher */
1413 ev_signal_stop (EV_A_ &childev); 2011 ev_signal_stop (EV_A_ &childev);
1414#endif 2012#endif
1415 2013
1416 loop_destroy (EV_A); 2014 loop_destroy (EV_A);
1418 2016
1419void 2017void
1420ev_default_fork (void) 2018ev_default_fork (void)
1421{ 2019{
1422#if EV_MULTIPLICITY 2020#if EV_MULTIPLICITY
1423 struct ev_loop *loop = ev_default_loop_ptr; 2021 EV_P = ev_default_loop_ptr;
1424#endif 2022#endif
1425 2023
1426 if (backend)
1427 postfork = 1; /* must be in line with ev_loop_fork */ 2024 postfork = 1; /* must be in line with ev_loop_fork */
1428} 2025}
1429 2026
1430/*****************************************************************************/ 2027/*****************************************************************************/
1431 2028
1432void 2029void
1433ev_invoke (EV_P_ void *w, int revents) 2030ev_invoke (EV_P_ void *w, int revents)
1434{ 2031{
1435 EV_CB_INVOKE ((W)w, revents); 2032 EV_CB_INVOKE ((W)w, revents);
1436} 2033}
1437 2034
1438void inline_speed 2035unsigned int
1439call_pending (EV_P) 2036ev_pending_count (EV_P)
2037{
2038 int pri;
2039 unsigned int count = 0;
2040
2041 for (pri = NUMPRI; pri--; )
2042 count += pendingcnt [pri];
2043
2044 return count;
2045}
2046
2047void noinline
2048ev_invoke_pending (EV_P)
1440{ 2049{
1441 int pri; 2050 int pri;
1442 2051
1443 for (pri = NUMPRI; pri--; ) 2052 for (pri = NUMPRI; pri--; )
1444 while (pendingcnt [pri]) 2053 while (pendingcnt [pri])
1445 { 2054 {
1446 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2055 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1447 2056
1448 if (expect_true (p->w))
1449 {
1450 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2057 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2058 /* ^ this is no longer true, as pending_w could be here */
1451 2059
1452 p->w->pending = 0; 2060 p->w->pending = 0;
1453 EV_CB_INVOKE (p->w, p->events); 2061 EV_CB_INVOKE (p->w, p->events);
1454 } 2062 EV_FREQUENT_CHECK;
1455 } 2063 }
1456} 2064}
1457 2065
1458void inline_size
1459timers_reify (EV_P)
1460{
1461 while (timercnt && ((WT)timers [0])->at <= mn_now)
1462 {
1463 ev_timer *w = (ev_timer *)timers [0];
1464
1465 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1466
1467 /* first reschedule or stop timer */
1468 if (w->repeat)
1469 {
1470 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1471
1472 ((WT)w)->at += w->repeat;
1473 if (((WT)w)->at < mn_now)
1474 ((WT)w)->at = mn_now;
1475
1476 downheap (timers, timercnt, 0);
1477 }
1478 else
1479 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1480
1481 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1482 }
1483}
1484
1485#if EV_PERIODIC_ENABLE
1486void inline_size
1487periodics_reify (EV_P)
1488{
1489 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1490 {
1491 ev_periodic *w = (ev_periodic *)periodics [0];
1492
1493 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1494
1495 /* first reschedule or stop timer */
1496 if (w->reschedule_cb)
1497 {
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1499 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1500 downheap (periodics, periodiccnt, 0);
1501 }
1502 else if (w->interval)
1503 {
1504 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1505 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1506 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1507 downheap (periodics, periodiccnt, 0);
1508 }
1509 else
1510 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1511
1512 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1513 }
1514}
1515
1516static void noinline
1517periodics_reschedule (EV_P)
1518{
1519 int i;
1520
1521 /* adjust periodics after time jump */
1522 for (i = 0; i < periodiccnt; ++i)
1523 {
1524 ev_periodic *w = (ev_periodic *)periodics [i];
1525
1526 if (w->reschedule_cb)
1527 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1528 else if (w->interval)
1529 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1530 }
1531
1532 /* now rebuild the heap */
1533 for (i = periodiccnt >> 1; i--; )
1534 downheap (periodics, periodiccnt, i);
1535}
1536#endif
1537
1538#if EV_IDLE_ENABLE 2066#if EV_IDLE_ENABLE
1539void inline_size 2067/* make idle watchers pending. this handles the "call-idle */
2068/* only when higher priorities are idle" logic */
2069inline_size void
1540idle_reify (EV_P) 2070idle_reify (EV_P)
1541{ 2071{
1542 if (expect_false (idleall)) 2072 if (expect_false (idleall))
1543 { 2073 {
1544 int pri; 2074 int pri;
1556 } 2086 }
1557 } 2087 }
1558} 2088}
1559#endif 2089#endif
1560 2090
1561void inline_speed 2091/* make timers pending */
2092inline_size void
2093timers_reify (EV_P)
2094{
2095 EV_FREQUENT_CHECK;
2096
2097 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2098 {
2099 do
2100 {
2101 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2102
2103 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2104
2105 /* first reschedule or stop timer */
2106 if (w->repeat)
2107 {
2108 ev_at (w) += w->repeat;
2109 if (ev_at (w) < mn_now)
2110 ev_at (w) = mn_now;
2111
2112 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2113
2114 ANHE_at_cache (timers [HEAP0]);
2115 downheap (timers, timercnt, HEAP0);
2116 }
2117 else
2118 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2119
2120 EV_FREQUENT_CHECK;
2121 feed_reverse (EV_A_ (W)w);
2122 }
2123 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2124
2125 feed_reverse_done (EV_A_ EV_TIMER);
2126 }
2127}
2128
2129#if EV_PERIODIC_ENABLE
2130/* make periodics pending */
2131inline_size void
2132periodics_reify (EV_P)
2133{
2134 EV_FREQUENT_CHECK;
2135
2136 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2137 {
2138 int feed_count = 0;
2139
2140 do
2141 {
2142 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2143
2144 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2145
2146 /* first reschedule or stop timer */
2147 if (w->reschedule_cb)
2148 {
2149 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2150
2151 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2152
2153 ANHE_at_cache (periodics [HEAP0]);
2154 downheap (periodics, periodiccnt, HEAP0);
2155 }
2156 else if (w->interval)
2157 {
2158 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2159 /* if next trigger time is not sufficiently in the future, put it there */
2160 /* this might happen because of floating point inexactness */
2161 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2162 {
2163 ev_at (w) += w->interval;
2164
2165 /* if interval is unreasonably low we might still have a time in the past */
2166 /* so correct this. this will make the periodic very inexact, but the user */
2167 /* has effectively asked to get triggered more often than possible */
2168 if (ev_at (w) < ev_rt_now)
2169 ev_at (w) = ev_rt_now;
2170 }
2171
2172 ANHE_at_cache (periodics [HEAP0]);
2173 downheap (periodics, periodiccnt, HEAP0);
2174 }
2175 else
2176 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2177
2178 EV_FREQUENT_CHECK;
2179 feed_reverse (EV_A_ (W)w);
2180 }
2181 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2182
2183 feed_reverse_done (EV_A_ EV_PERIODIC);
2184 }
2185}
2186
2187/* simply recalculate all periodics */
2188/* TODO: maybe ensure that at least one event happens when jumping forward? */
2189static void noinline
2190periodics_reschedule (EV_P)
2191{
2192 int i;
2193
2194 /* adjust periodics after time jump */
2195 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2196 {
2197 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2198
2199 if (w->reschedule_cb)
2200 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2201 else if (w->interval)
2202 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2203
2204 ANHE_at_cache (periodics [i]);
2205 }
2206
2207 reheap (periodics, periodiccnt);
2208}
2209#endif
2210
2211/* adjust all timers by a given offset */
2212static void noinline
2213timers_reschedule (EV_P_ ev_tstamp adjust)
2214{
2215 int i;
2216
2217 for (i = 0; i < timercnt; ++i)
2218 {
2219 ANHE *he = timers + i + HEAP0;
2220 ANHE_w (*he)->at += adjust;
2221 ANHE_at_cache (*he);
2222 }
2223}
2224
2225/* fetch new monotonic and realtime times from the kernel */
2226/* also detect if there was a timejump, and act accordingly */
2227inline_speed void
1562time_update (EV_P_ ev_tstamp max_block) 2228time_update (EV_P_ ev_tstamp max_block)
1563{ 2229{
1564 int i;
1565
1566#if EV_USE_MONOTONIC 2230#if EV_USE_MONOTONIC
1567 if (expect_true (have_monotonic)) 2231 if (expect_true (have_monotonic))
1568 { 2232 {
2233 int i;
1569 ev_tstamp odiff = rtmn_diff; 2234 ev_tstamp odiff = rtmn_diff;
1570 2235
1571 mn_now = get_clock (); 2236 mn_now = get_clock ();
1572 2237
1573 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2238 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1591 */ 2256 */
1592 for (i = 4; --i; ) 2257 for (i = 4; --i; )
1593 { 2258 {
1594 rtmn_diff = ev_rt_now - mn_now; 2259 rtmn_diff = ev_rt_now - mn_now;
1595 2260
1596 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2261 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1597 return; /* all is well */ 2262 return; /* all is well */
1598 2263
1599 ev_rt_now = ev_time (); 2264 ev_rt_now = ev_time ();
1600 mn_now = get_clock (); 2265 mn_now = get_clock ();
1601 now_floor = mn_now; 2266 now_floor = mn_now;
1602 } 2267 }
1603 2268
2269 /* no timer adjustment, as the monotonic clock doesn't jump */
2270 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1604# if EV_PERIODIC_ENABLE 2271# if EV_PERIODIC_ENABLE
1605 periodics_reschedule (EV_A); 2272 periodics_reschedule (EV_A);
1606# endif 2273# endif
1607 /* no timer adjustment, as the monotonic clock doesn't jump */
1608 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609 } 2274 }
1610 else 2275 else
1611#endif 2276#endif
1612 { 2277 {
1613 ev_rt_now = ev_time (); 2278 ev_rt_now = ev_time ();
1614 2279
1615 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2280 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1616 { 2281 {
2282 /* adjust timers. this is easy, as the offset is the same for all of them */
2283 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1617#if EV_PERIODIC_ENABLE 2284#if EV_PERIODIC_ENABLE
1618 periodics_reschedule (EV_A); 2285 periodics_reschedule (EV_A);
1619#endif 2286#endif
1620 /* adjust timers. this is easy, as the offset is the same for all of them */
1621 for (i = 0; i < timercnt; ++i)
1622 ((WT)timers [i])->at += ev_rt_now - mn_now;
1623 } 2287 }
1624 2288
1625 mn_now = ev_rt_now; 2289 mn_now = ev_rt_now;
1626 } 2290 }
1627} 2291}
1628 2292
1629void 2293void
1630ev_ref (EV_P)
1631{
1632 ++activecnt;
1633}
1634
1635void
1636ev_unref (EV_P)
1637{
1638 --activecnt;
1639}
1640
1641static int loop_done;
1642
1643void
1644ev_loop (EV_P_ int flags) 2294ev_loop (EV_P_ int flags)
1645{ 2295{
2296#if EV_FEATURE_API
2297 ++loop_depth;
2298#endif
2299
2300 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2301
1646 loop_done = EVUNLOOP_CANCEL; 2302 loop_done = EVUNLOOP_CANCEL;
1647 2303
1648 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2304 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1649 2305
1650 do 2306 do
1651 { 2307 {
2308#if EV_VERIFY >= 2
2309 ev_verify (EV_A);
2310#endif
2311
1652#ifndef _WIN32 2312#ifndef _WIN32
1653 if (expect_false (curpid)) /* penalise the forking check even more */ 2313 if (expect_false (curpid)) /* penalise the forking check even more */
1654 if (expect_false (getpid () != curpid)) 2314 if (expect_false (getpid () != curpid))
1655 { 2315 {
1656 curpid = getpid (); 2316 curpid = getpid ();
1662 /* we might have forked, so queue fork handlers */ 2322 /* we might have forked, so queue fork handlers */
1663 if (expect_false (postfork)) 2323 if (expect_false (postfork))
1664 if (forkcnt) 2324 if (forkcnt)
1665 { 2325 {
1666 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2326 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1667 call_pending (EV_A); 2327 EV_INVOKE_PENDING;
1668 } 2328 }
1669#endif 2329#endif
1670 2330
2331#if EV_PREPARE_ENABLE
1671 /* queue prepare watchers (and execute them) */ 2332 /* queue prepare watchers (and execute them) */
1672 if (expect_false (preparecnt)) 2333 if (expect_false (preparecnt))
1673 { 2334 {
1674 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2335 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1675 call_pending (EV_A); 2336 EV_INVOKE_PENDING;
1676 } 2337 }
2338#endif
1677 2339
1678 if (expect_false (!activecnt)) 2340 if (expect_false (loop_done))
1679 break; 2341 break;
1680 2342
1681 /* we might have forked, so reify kernel state if necessary */ 2343 /* we might have forked, so reify kernel state if necessary */
1682 if (expect_false (postfork)) 2344 if (expect_false (postfork))
1683 loop_fork (EV_A); 2345 loop_fork (EV_A);
1690 ev_tstamp waittime = 0.; 2352 ev_tstamp waittime = 0.;
1691 ev_tstamp sleeptime = 0.; 2353 ev_tstamp sleeptime = 0.;
1692 2354
1693 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2355 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1694 { 2356 {
2357 /* remember old timestamp for io_blocktime calculation */
2358 ev_tstamp prev_mn_now = mn_now;
2359
1695 /* update time to cancel out callback processing overhead */ 2360 /* update time to cancel out callback processing overhead */
1696 time_update (EV_A_ 1e100); 2361 time_update (EV_A_ 1e100);
1697 2362
1698 waittime = MAX_BLOCKTIME; 2363 waittime = MAX_BLOCKTIME;
1699 2364
1700 if (timercnt) 2365 if (timercnt)
1701 { 2366 {
1702 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2367 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1703 if (waittime > to) waittime = to; 2368 if (waittime > to) waittime = to;
1704 } 2369 }
1705 2370
1706#if EV_PERIODIC_ENABLE 2371#if EV_PERIODIC_ENABLE
1707 if (periodiccnt) 2372 if (periodiccnt)
1708 { 2373 {
1709 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2374 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1710 if (waittime > to) waittime = to; 2375 if (waittime > to) waittime = to;
1711 } 2376 }
1712#endif 2377#endif
1713 2378
2379 /* don't let timeouts decrease the waittime below timeout_blocktime */
1714 if (expect_false (waittime < timeout_blocktime)) 2380 if (expect_false (waittime < timeout_blocktime))
1715 waittime = timeout_blocktime; 2381 waittime = timeout_blocktime;
1716 2382
1717 sleeptime = waittime - backend_fudge; 2383 /* extra check because io_blocktime is commonly 0 */
1718
1719 if (expect_true (sleeptime > io_blocktime)) 2384 if (expect_false (io_blocktime))
1720 sleeptime = io_blocktime;
1721
1722 if (sleeptime)
1723 { 2385 {
2386 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2387
2388 if (sleeptime > waittime - backend_fudge)
2389 sleeptime = waittime - backend_fudge;
2390
2391 if (expect_true (sleeptime > 0.))
2392 {
1724 ev_sleep (sleeptime); 2393 ev_sleep (sleeptime);
1725 waittime -= sleeptime; 2394 waittime -= sleeptime;
2395 }
1726 } 2396 }
1727 } 2397 }
1728 2398
2399#if EV_FEATURE_API
1729 ++loop_count; 2400 ++loop_count;
2401#endif
2402 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1730 backend_poll (EV_A_ waittime); 2403 backend_poll (EV_A_ waittime);
2404 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1731 2405
1732 /* update ev_rt_now, do magic */ 2406 /* update ev_rt_now, do magic */
1733 time_update (EV_A_ waittime + sleeptime); 2407 time_update (EV_A_ waittime + sleeptime);
1734 } 2408 }
1735 2409
1742#if EV_IDLE_ENABLE 2416#if EV_IDLE_ENABLE
1743 /* queue idle watchers unless other events are pending */ 2417 /* queue idle watchers unless other events are pending */
1744 idle_reify (EV_A); 2418 idle_reify (EV_A);
1745#endif 2419#endif
1746 2420
2421#if EV_CHECK_ENABLE
1747 /* queue check watchers, to be executed first */ 2422 /* queue check watchers, to be executed first */
1748 if (expect_false (checkcnt)) 2423 if (expect_false (checkcnt))
1749 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2424 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2425#endif
1750 2426
1751 call_pending (EV_A); 2427 EV_INVOKE_PENDING;
1752 } 2428 }
1753 while (expect_true ( 2429 while (expect_true (
1754 activecnt 2430 activecnt
1755 && !loop_done 2431 && !loop_done
1756 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2432 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1757 )); 2433 ));
1758 2434
1759 if (loop_done == EVUNLOOP_ONE) 2435 if (loop_done == EVUNLOOP_ONE)
1760 loop_done = EVUNLOOP_CANCEL; 2436 loop_done = EVUNLOOP_CANCEL;
2437
2438#if EV_FEATURE_API
2439 --loop_depth;
2440#endif
1761} 2441}
1762 2442
1763void 2443void
1764ev_unloop (EV_P_ int how) 2444ev_unloop (EV_P_ int how)
1765{ 2445{
1766 loop_done = how; 2446 loop_done = how;
1767} 2447}
1768 2448
2449void
2450ev_ref (EV_P)
2451{
2452 ++activecnt;
2453}
2454
2455void
2456ev_unref (EV_P)
2457{
2458 --activecnt;
2459}
2460
2461void
2462ev_now_update (EV_P)
2463{
2464 time_update (EV_A_ 1e100);
2465}
2466
2467void
2468ev_suspend (EV_P)
2469{
2470 ev_now_update (EV_A);
2471}
2472
2473void
2474ev_resume (EV_P)
2475{
2476 ev_tstamp mn_prev = mn_now;
2477
2478 ev_now_update (EV_A);
2479 timers_reschedule (EV_A_ mn_now - mn_prev);
2480#if EV_PERIODIC_ENABLE
2481 /* TODO: really do this? */
2482 periodics_reschedule (EV_A);
2483#endif
2484}
2485
1769/*****************************************************************************/ 2486/*****************************************************************************/
2487/* singly-linked list management, used when the expected list length is short */
1770 2488
1771void inline_size 2489inline_size void
1772wlist_add (WL *head, WL elem) 2490wlist_add (WL *head, WL elem)
1773{ 2491{
1774 elem->next = *head; 2492 elem->next = *head;
1775 *head = elem; 2493 *head = elem;
1776} 2494}
1777 2495
1778void inline_size 2496inline_size void
1779wlist_del (WL *head, WL elem) 2497wlist_del (WL *head, WL elem)
1780{ 2498{
1781 while (*head) 2499 while (*head)
1782 { 2500 {
1783 if (*head == elem) 2501 if (expect_true (*head == elem))
1784 { 2502 {
1785 *head = elem->next; 2503 *head = elem->next;
1786 return; 2504 break;
1787 } 2505 }
1788 2506
1789 head = &(*head)->next; 2507 head = &(*head)->next;
1790 } 2508 }
1791} 2509}
1792 2510
1793void inline_speed 2511/* internal, faster, version of ev_clear_pending */
2512inline_speed void
1794clear_pending (EV_P_ W w) 2513clear_pending (EV_P_ W w)
1795{ 2514{
1796 if (w->pending) 2515 if (w->pending)
1797 { 2516 {
1798 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2517 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1799 w->pending = 0; 2518 w->pending = 0;
1800 } 2519 }
1801} 2520}
1802 2521
1803int 2522int
1807 int pending = w_->pending; 2526 int pending = w_->pending;
1808 2527
1809 if (expect_true (pending)) 2528 if (expect_true (pending))
1810 { 2529 {
1811 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2530 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2531 p->w = (W)&pending_w;
1812 w_->pending = 0; 2532 w_->pending = 0;
1813 p->w = 0;
1814 return p->events; 2533 return p->events;
1815 } 2534 }
1816 else 2535 else
1817 return 0; 2536 return 0;
1818} 2537}
1819 2538
1820void inline_size 2539inline_size void
1821pri_adjust (EV_P_ W w) 2540pri_adjust (EV_P_ W w)
1822{ 2541{
1823 int pri = w->priority; 2542 int pri = ev_priority (w);
1824 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2543 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1825 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2544 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1826 w->priority = pri; 2545 ev_set_priority (w, pri);
1827} 2546}
1828 2547
1829void inline_speed 2548inline_speed void
1830ev_start (EV_P_ W w, int active) 2549ev_start (EV_P_ W w, int active)
1831{ 2550{
1832 pri_adjust (EV_A_ w); 2551 pri_adjust (EV_A_ w);
1833 w->active = active; 2552 w->active = active;
1834 ev_ref (EV_A); 2553 ev_ref (EV_A);
1835} 2554}
1836 2555
1837void inline_size 2556inline_size void
1838ev_stop (EV_P_ W w) 2557ev_stop (EV_P_ W w)
1839{ 2558{
1840 ev_unref (EV_A); 2559 ev_unref (EV_A);
1841 w->active = 0; 2560 w->active = 0;
1842} 2561}
1849 int fd = w->fd; 2568 int fd = w->fd;
1850 2569
1851 if (expect_false (ev_is_active (w))) 2570 if (expect_false (ev_is_active (w)))
1852 return; 2571 return;
1853 2572
1854 assert (("ev_io_start called with negative fd", fd >= 0)); 2573 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2574 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2575
2576 EV_FREQUENT_CHECK;
1855 2577
1856 ev_start (EV_A_ (W)w, 1); 2578 ev_start (EV_A_ (W)w, 1);
1857 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2579 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1858 wlist_add (&anfds[fd].head, (WL)w); 2580 wlist_add (&anfds[fd].head, (WL)w);
1859 2581
1860 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2582 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1861 w->events &= ~EV_IOFDSET; 2583 w->events &= ~EV__IOFDSET;
2584
2585 EV_FREQUENT_CHECK;
1862} 2586}
1863 2587
1864void noinline 2588void noinline
1865ev_io_stop (EV_P_ ev_io *w) 2589ev_io_stop (EV_P_ ev_io *w)
1866{ 2590{
1867 clear_pending (EV_A_ (W)w); 2591 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 2592 if (expect_false (!ev_is_active (w)))
1869 return; 2593 return;
1870 2594
1871 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2595 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2596
2597 EV_FREQUENT_CHECK;
1872 2598
1873 wlist_del (&anfds[w->fd].head, (WL)w); 2599 wlist_del (&anfds[w->fd].head, (WL)w);
1874 ev_stop (EV_A_ (W)w); 2600 ev_stop (EV_A_ (W)w);
1875 2601
1876 fd_change (EV_A_ w->fd, 1); 2602 fd_change (EV_A_ w->fd, 1);
2603
2604 EV_FREQUENT_CHECK;
1877} 2605}
1878 2606
1879void noinline 2607void noinline
1880ev_timer_start (EV_P_ ev_timer *w) 2608ev_timer_start (EV_P_ ev_timer *w)
1881{ 2609{
1882 if (expect_false (ev_is_active (w))) 2610 if (expect_false (ev_is_active (w)))
1883 return; 2611 return;
1884 2612
1885 ((WT)w)->at += mn_now; 2613 ev_at (w) += mn_now;
1886 2614
1887 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2615 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1888 2616
2617 EV_FREQUENT_CHECK;
2618
2619 ++timercnt;
1889 ev_start (EV_A_ (W)w, ++timercnt); 2620 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1890 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2621 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1891 timers [timercnt - 1] = (WT)w; 2622 ANHE_w (timers [ev_active (w)]) = (WT)w;
1892 upheap (timers, timercnt - 1); 2623 ANHE_at_cache (timers [ev_active (w)]);
2624 upheap (timers, ev_active (w));
1893 2625
2626 EV_FREQUENT_CHECK;
2627
1894 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2628 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1895} 2629}
1896 2630
1897void noinline 2631void noinline
1898ev_timer_stop (EV_P_ ev_timer *w) 2632ev_timer_stop (EV_P_ ev_timer *w)
1899{ 2633{
1900 clear_pending (EV_A_ (W)w); 2634 clear_pending (EV_A_ (W)w);
1901 if (expect_false (!ev_is_active (w))) 2635 if (expect_false (!ev_is_active (w)))
1902 return; 2636 return;
1903 2637
1904 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2638 EV_FREQUENT_CHECK;
1905 2639
1906 { 2640 {
1907 int active = ((W)w)->active; 2641 int active = ev_active (w);
1908 2642
2643 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2644
2645 --timercnt;
2646
1909 if (expect_true (--active < --timercnt)) 2647 if (expect_true (active < timercnt + HEAP0))
1910 { 2648 {
1911 timers [active] = timers [timercnt]; 2649 timers [active] = timers [timercnt + HEAP0];
1912 adjustheap (timers, timercnt, active); 2650 adjustheap (timers, timercnt, active);
1913 } 2651 }
1914 } 2652 }
1915 2653
1916 ((WT)w)->at -= mn_now; 2654 ev_at (w) -= mn_now;
1917 2655
1918 ev_stop (EV_A_ (W)w); 2656 ev_stop (EV_A_ (W)w);
2657
2658 EV_FREQUENT_CHECK;
1919} 2659}
1920 2660
1921void noinline 2661void noinline
1922ev_timer_again (EV_P_ ev_timer *w) 2662ev_timer_again (EV_P_ ev_timer *w)
1923{ 2663{
2664 EV_FREQUENT_CHECK;
2665
1924 if (ev_is_active (w)) 2666 if (ev_is_active (w))
1925 { 2667 {
1926 if (w->repeat) 2668 if (w->repeat)
1927 { 2669 {
1928 ((WT)w)->at = mn_now + w->repeat; 2670 ev_at (w) = mn_now + w->repeat;
2671 ANHE_at_cache (timers [ev_active (w)]);
1929 adjustheap (timers, timercnt, ((W)w)->active - 1); 2672 adjustheap (timers, timercnt, ev_active (w));
1930 } 2673 }
1931 else 2674 else
1932 ev_timer_stop (EV_A_ w); 2675 ev_timer_stop (EV_A_ w);
1933 } 2676 }
1934 else if (w->repeat) 2677 else if (w->repeat)
1935 { 2678 {
1936 w->at = w->repeat; 2679 ev_at (w) = w->repeat;
1937 ev_timer_start (EV_A_ w); 2680 ev_timer_start (EV_A_ w);
1938 } 2681 }
2682
2683 EV_FREQUENT_CHECK;
2684}
2685
2686ev_tstamp
2687ev_timer_remaining (EV_P_ ev_timer *w)
2688{
2689 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1939} 2690}
1940 2691
1941#if EV_PERIODIC_ENABLE 2692#if EV_PERIODIC_ENABLE
1942void noinline 2693void noinline
1943ev_periodic_start (EV_P_ ev_periodic *w) 2694ev_periodic_start (EV_P_ ev_periodic *w)
1944{ 2695{
1945 if (expect_false (ev_is_active (w))) 2696 if (expect_false (ev_is_active (w)))
1946 return; 2697 return;
1947 2698
1948 if (w->reschedule_cb) 2699 if (w->reschedule_cb)
1949 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2700 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1950 else if (w->interval) 2701 else if (w->interval)
1951 { 2702 {
1952 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2703 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1953 /* this formula differs from the one in periodic_reify because we do not always round up */ 2704 /* this formula differs from the one in periodic_reify because we do not always round up */
1954 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2705 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1955 } 2706 }
1956 else 2707 else
1957 ((WT)w)->at = w->offset; 2708 ev_at (w) = w->offset;
1958 2709
2710 EV_FREQUENT_CHECK;
2711
2712 ++periodiccnt;
1959 ev_start (EV_A_ (W)w, ++periodiccnt); 2713 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1960 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2714 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1961 periodics [periodiccnt - 1] = (WT)w; 2715 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1962 upheap (periodics, periodiccnt - 1); 2716 ANHE_at_cache (periodics [ev_active (w)]);
2717 upheap (periodics, ev_active (w));
1963 2718
2719 EV_FREQUENT_CHECK;
2720
1964 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2721 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1965} 2722}
1966 2723
1967void noinline 2724void noinline
1968ev_periodic_stop (EV_P_ ev_periodic *w) 2725ev_periodic_stop (EV_P_ ev_periodic *w)
1969{ 2726{
1970 clear_pending (EV_A_ (W)w); 2727 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2728 if (expect_false (!ev_is_active (w)))
1972 return; 2729 return;
1973 2730
1974 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2731 EV_FREQUENT_CHECK;
1975 2732
1976 { 2733 {
1977 int active = ((W)w)->active; 2734 int active = ev_active (w);
1978 2735
2736 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2737
2738 --periodiccnt;
2739
1979 if (expect_true (--active < --periodiccnt)) 2740 if (expect_true (active < periodiccnt + HEAP0))
1980 { 2741 {
1981 periodics [active] = periodics [periodiccnt]; 2742 periodics [active] = periodics [periodiccnt + HEAP0];
1982 adjustheap (periodics, periodiccnt, active); 2743 adjustheap (periodics, periodiccnt, active);
1983 } 2744 }
1984 } 2745 }
1985 2746
1986 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
1987} 2750}
1988 2751
1989void noinline 2752void noinline
1990ev_periodic_again (EV_P_ ev_periodic *w) 2753ev_periodic_again (EV_P_ ev_periodic *w)
1991{ 2754{
1997 2760
1998#ifndef SA_RESTART 2761#ifndef SA_RESTART
1999# define SA_RESTART 0 2762# define SA_RESTART 0
2000#endif 2763#endif
2001 2764
2765#if EV_SIGNAL_ENABLE
2766
2002void noinline 2767void noinline
2003ev_signal_start (EV_P_ ev_signal *w) 2768ev_signal_start (EV_P_ ev_signal *w)
2004{ 2769{
2005#if EV_MULTIPLICITY
2006 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2007#endif
2008 if (expect_false (ev_is_active (w))) 2770 if (expect_false (ev_is_active (w)))
2009 return; 2771 return;
2010 2772
2011 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2773 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2012 2774
2013 evpipe_init (EV_A); 2775#if EV_MULTIPLICITY
2776 assert (("libev: a signal must not be attached to two different loops",
2777 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2014 2778
2779 signals [w->signum - 1].loop = EV_A;
2780#endif
2781
2782 EV_FREQUENT_CHECK;
2783
2784#if EV_USE_SIGNALFD
2785 if (sigfd == -2)
2015 { 2786 {
2016#ifndef _WIN32 2787 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2017 sigset_t full, prev; 2788 if (sigfd < 0 && errno == EINVAL)
2018 sigfillset (&full); 2789 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2019 sigprocmask (SIG_SETMASK, &full, &prev);
2020#endif
2021 2790
2022 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2791 if (sigfd >= 0)
2792 {
2793 fd_intern (sigfd); /* doing it twice will not hurt */
2023 2794
2024#ifndef _WIN32 2795 sigemptyset (&sigfd_set);
2025 sigprocmask (SIG_SETMASK, &prev, 0); 2796
2026#endif 2797 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2798 ev_set_priority (&sigfd_w, EV_MAXPRI);
2799 ev_io_start (EV_A_ &sigfd_w);
2800 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2801 }
2027 } 2802 }
2803
2804 if (sigfd >= 0)
2805 {
2806 /* TODO: check .head */
2807 sigaddset (&sigfd_set, w->signum);
2808 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2809
2810 signalfd (sigfd, &sigfd_set, 0);
2811 }
2812#endif
2028 2813
2029 ev_start (EV_A_ (W)w, 1); 2814 ev_start (EV_A_ (W)w, 1);
2030 wlist_add (&signals [w->signum - 1].head, (WL)w); 2815 wlist_add (&signals [w->signum - 1].head, (WL)w);
2031 2816
2032 if (!((WL)w)->next) 2817 if (!((WL)w)->next)
2818# if EV_USE_SIGNALFD
2819 if (sigfd < 0) /*TODO*/
2820# endif
2033 { 2821 {
2034#if _WIN32 2822# ifdef _WIN32
2823 evpipe_init (EV_A);
2824
2035 signal (w->signum, ev_sighandler); 2825 signal (w->signum, ev_sighandler);
2036#else 2826# else
2037 struct sigaction sa; 2827 struct sigaction sa;
2828
2829 evpipe_init (EV_A);
2830
2038 sa.sa_handler = ev_sighandler; 2831 sa.sa_handler = ev_sighandler;
2039 sigfillset (&sa.sa_mask); 2832 sigfillset (&sa.sa_mask);
2040 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2833 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2041 sigaction (w->signum, &sa, 0); 2834 sigaction (w->signum, &sa, 0);
2835
2836 sigemptyset (&sa.sa_mask);
2837 sigaddset (&sa.sa_mask, w->signum);
2838 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2042#endif 2839#endif
2043 } 2840 }
2841
2842 EV_FREQUENT_CHECK;
2044} 2843}
2045 2844
2046void noinline 2845void noinline
2047ev_signal_stop (EV_P_ ev_signal *w) 2846ev_signal_stop (EV_P_ ev_signal *w)
2048{ 2847{
2049 clear_pending (EV_A_ (W)w); 2848 clear_pending (EV_A_ (W)w);
2050 if (expect_false (!ev_is_active (w))) 2849 if (expect_false (!ev_is_active (w)))
2051 return; 2850 return;
2052 2851
2852 EV_FREQUENT_CHECK;
2853
2053 wlist_del (&signals [w->signum - 1].head, (WL)w); 2854 wlist_del (&signals [w->signum - 1].head, (WL)w);
2054 ev_stop (EV_A_ (W)w); 2855 ev_stop (EV_A_ (W)w);
2055 2856
2056 if (!signals [w->signum - 1].head) 2857 if (!signals [w->signum - 1].head)
2858 {
2859#if EV_MULTIPLICITY
2860 signals [w->signum - 1].loop = 0; /* unattach from signal */
2861#endif
2862#if EV_USE_SIGNALFD
2863 if (sigfd >= 0)
2864 {
2865 sigset_t ss;
2866
2867 sigemptyset (&ss);
2868 sigaddset (&ss, w->signum);
2869 sigdelset (&sigfd_set, w->signum);
2870
2871 signalfd (sigfd, &sigfd_set, 0);
2872 sigprocmask (SIG_UNBLOCK, &ss, 0);
2873 }
2874 else
2875#endif
2057 signal (w->signum, SIG_DFL); 2876 signal (w->signum, SIG_DFL);
2877 }
2878
2879 EV_FREQUENT_CHECK;
2058} 2880}
2881
2882#endif
2883
2884#if EV_CHILD_ENABLE
2059 2885
2060void 2886void
2061ev_child_start (EV_P_ ev_child *w) 2887ev_child_start (EV_P_ ev_child *w)
2062{ 2888{
2063#if EV_MULTIPLICITY 2889#if EV_MULTIPLICITY
2064 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2890 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2065#endif 2891#endif
2066 if (expect_false (ev_is_active (w))) 2892 if (expect_false (ev_is_active (w)))
2067 return; 2893 return;
2068 2894
2895 EV_FREQUENT_CHECK;
2896
2069 ev_start (EV_A_ (W)w, 1); 2897 ev_start (EV_A_ (W)w, 1);
2070 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2898 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2899
2900 EV_FREQUENT_CHECK;
2071} 2901}
2072 2902
2073void 2903void
2074ev_child_stop (EV_P_ ev_child *w) 2904ev_child_stop (EV_P_ ev_child *w)
2075{ 2905{
2076 clear_pending (EV_A_ (W)w); 2906 clear_pending (EV_A_ (W)w);
2077 if (expect_false (!ev_is_active (w))) 2907 if (expect_false (!ev_is_active (w)))
2078 return; 2908 return;
2079 2909
2910 EV_FREQUENT_CHECK;
2911
2080 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2912 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2081 ev_stop (EV_A_ (W)w); 2913 ev_stop (EV_A_ (W)w);
2914
2915 EV_FREQUENT_CHECK;
2082} 2916}
2917
2918#endif
2083 2919
2084#if EV_STAT_ENABLE 2920#if EV_STAT_ENABLE
2085 2921
2086# ifdef _WIN32 2922# ifdef _WIN32
2087# undef lstat 2923# undef lstat
2088# define lstat(a,b) _stati64 (a,b) 2924# define lstat(a,b) _stati64 (a,b)
2089# endif 2925# endif
2090 2926
2091#define DEF_STAT_INTERVAL 5.0074891 2927#define DEF_STAT_INTERVAL 5.0074891
2928#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2092#define MIN_STAT_INTERVAL 0.1074891 2929#define MIN_STAT_INTERVAL 0.1074891
2093 2930
2094static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2931static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2095 2932
2096#if EV_USE_INOTIFY 2933#if EV_USE_INOTIFY
2097# define EV_INOTIFY_BUFSIZE 8192 2934
2935/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2936# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2098 2937
2099static void noinline 2938static void noinline
2100infy_add (EV_P_ ev_stat *w) 2939infy_add (EV_P_ ev_stat *w)
2101{ 2940{
2102 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2941 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2103 2942
2104 if (w->wd < 0) 2943 if (w->wd >= 0)
2944 {
2945 struct statfs sfs;
2946
2947 /* now local changes will be tracked by inotify, but remote changes won't */
2948 /* unless the filesystem is known to be local, we therefore still poll */
2949 /* also do poll on <2.6.25, but with normal frequency */
2950
2951 if (!fs_2625)
2952 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2953 else if (!statfs (w->path, &sfs)
2954 && (sfs.f_type == 0x1373 /* devfs */
2955 || sfs.f_type == 0xEF53 /* ext2/3 */
2956 || sfs.f_type == 0x3153464a /* jfs */
2957 || sfs.f_type == 0x52654973 /* reiser3 */
2958 || sfs.f_type == 0x01021994 /* tempfs */
2959 || sfs.f_type == 0x58465342 /* xfs */))
2960 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2961 else
2962 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2105 { 2963 }
2106 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2964 else
2965 {
2966 /* can't use inotify, continue to stat */
2967 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2107 2968
2108 /* monitor some parent directory for speedup hints */ 2969 /* if path is not there, monitor some parent directory for speedup hints */
2970 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2971 /* but an efficiency issue only */
2109 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2972 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2110 { 2973 {
2111 char path [4096]; 2974 char path [4096];
2112 strcpy (path, w->path); 2975 strcpy (path, w->path);
2113 2976
2116 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2979 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2117 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2980 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2118 2981
2119 char *pend = strrchr (path, '/'); 2982 char *pend = strrchr (path, '/');
2120 2983
2121 if (!pend) 2984 if (!pend || pend == path)
2122 break; /* whoops, no '/', complain to your admin */ 2985 break;
2123 2986
2124 *pend = 0; 2987 *pend = 0;
2125 w->wd = inotify_add_watch (fs_fd, path, mask); 2988 w->wd = inotify_add_watch (fs_fd, path, mask);
2126 } 2989 }
2127 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2990 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2128 } 2991 }
2129 } 2992 }
2130 else
2131 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2132 2993
2133 if (w->wd >= 0) 2994 if (w->wd >= 0)
2134 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2995 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2996
2997 /* now re-arm timer, if required */
2998 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2999 ev_timer_again (EV_A_ &w->timer);
3000 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2135} 3001}
2136 3002
2137static void noinline 3003static void noinline
2138infy_del (EV_P_ ev_stat *w) 3004infy_del (EV_P_ ev_stat *w)
2139{ 3005{
2142 3008
2143 if (wd < 0) 3009 if (wd < 0)
2144 return; 3010 return;
2145 3011
2146 w->wd = -2; 3012 w->wd = -2;
2147 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3013 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2148 wlist_del (&fs_hash [slot].head, (WL)w); 3014 wlist_del (&fs_hash [slot].head, (WL)w);
2149 3015
2150 /* remove this watcher, if others are watching it, they will rearm */ 3016 /* remove this watcher, if others are watching it, they will rearm */
2151 inotify_rm_watch (fs_fd, wd); 3017 inotify_rm_watch (fs_fd, wd);
2152} 3018}
2153 3019
2154static void noinline 3020static void noinline
2155infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3021infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2156{ 3022{
2157 if (slot < 0) 3023 if (slot < 0)
2158 /* overflow, need to check for all hahs slots */ 3024 /* overflow, need to check for all hash slots */
2159 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3025 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2160 infy_wd (EV_A_ slot, wd, ev); 3026 infy_wd (EV_A_ slot, wd, ev);
2161 else 3027 else
2162 { 3028 {
2163 WL w_; 3029 WL w_;
2164 3030
2165 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3031 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2166 { 3032 {
2167 ev_stat *w = (ev_stat *)w_; 3033 ev_stat *w = (ev_stat *)w_;
2168 w_ = w_->next; /* lets us remove this watcher and all before it */ 3034 w_ = w_->next; /* lets us remove this watcher and all before it */
2169 3035
2170 if (w->wd == wd || wd == -1) 3036 if (w->wd == wd || wd == -1)
2171 { 3037 {
2172 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3038 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2173 { 3039 {
3040 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2174 w->wd = -1; 3041 w->wd = -1;
2175 infy_add (EV_A_ w); /* re-add, no matter what */ 3042 infy_add (EV_A_ w); /* re-add, no matter what */
2176 } 3043 }
2177 3044
2178 stat_timer_cb (EV_A_ &w->timer, 0); 3045 stat_timer_cb (EV_A_ &w->timer, 0);
2183 3050
2184static void 3051static void
2185infy_cb (EV_P_ ev_io *w, int revents) 3052infy_cb (EV_P_ ev_io *w, int revents)
2186{ 3053{
2187 char buf [EV_INOTIFY_BUFSIZE]; 3054 char buf [EV_INOTIFY_BUFSIZE];
2188 struct inotify_event *ev = (struct inotify_event *)buf;
2189 int ofs; 3055 int ofs;
2190 int len = read (fs_fd, buf, sizeof (buf)); 3056 int len = read (fs_fd, buf, sizeof (buf));
2191 3057
2192 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3058 for (ofs = 0; ofs < len; )
3059 {
3060 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2193 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3061 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3062 ofs += sizeof (struct inotify_event) + ev->len;
3063 }
2194} 3064}
2195 3065
2196void inline_size 3066inline_size unsigned int
3067ev_linux_version (void)
3068{
3069 struct utsname buf;
3070 unsigned int v;
3071 int i;
3072 char *p = buf.release;
3073
3074 if (uname (&buf))
3075 return 0;
3076
3077 for (i = 3+1; --i; )
3078 {
3079 unsigned int c = 0;
3080
3081 for (;;)
3082 {
3083 if (*p >= '0' && *p <= '9')
3084 c = c * 10 + *p++ - '0';
3085 else
3086 {
3087 p += *p == '.';
3088 break;
3089 }
3090 }
3091
3092 v = (v << 8) | c;
3093 }
3094
3095 return v;
3096}
3097
3098inline_size void
3099ev_check_2625 (EV_P)
3100{
3101 /* kernels < 2.6.25 are borked
3102 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3103 */
3104 if (ev_linux_version () < 0x020619)
3105 return;
3106
3107 fs_2625 = 1;
3108}
3109
3110inline_size int
3111infy_newfd (void)
3112{
3113#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3114 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3115 if (fd >= 0)
3116 return fd;
3117#endif
3118 return inotify_init ();
3119}
3120
3121inline_size void
2197infy_init (EV_P) 3122infy_init (EV_P)
2198{ 3123{
2199 if (fs_fd != -2) 3124 if (fs_fd != -2)
2200 return; 3125 return;
2201 3126
3127 fs_fd = -1;
3128
3129 ev_check_2625 (EV_A);
3130
2202 fs_fd = inotify_init (); 3131 fs_fd = infy_newfd ();
2203 3132
2204 if (fs_fd >= 0) 3133 if (fs_fd >= 0)
2205 { 3134 {
3135 fd_intern (fs_fd);
2206 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3136 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2207 ev_set_priority (&fs_w, EV_MAXPRI); 3137 ev_set_priority (&fs_w, EV_MAXPRI);
2208 ev_io_start (EV_A_ &fs_w); 3138 ev_io_start (EV_A_ &fs_w);
3139 ev_unref (EV_A);
2209 } 3140 }
2210} 3141}
2211 3142
2212void inline_size 3143inline_size void
2213infy_fork (EV_P) 3144infy_fork (EV_P)
2214{ 3145{
2215 int slot; 3146 int slot;
2216 3147
2217 if (fs_fd < 0) 3148 if (fs_fd < 0)
2218 return; 3149 return;
2219 3150
3151 ev_ref (EV_A);
3152 ev_io_stop (EV_A_ &fs_w);
2220 close (fs_fd); 3153 close (fs_fd);
2221 fs_fd = inotify_init (); 3154 fs_fd = infy_newfd ();
2222 3155
3156 if (fs_fd >= 0)
3157 {
3158 fd_intern (fs_fd);
3159 ev_io_set (&fs_w, fs_fd, EV_READ);
3160 ev_io_start (EV_A_ &fs_w);
3161 ev_unref (EV_A);
3162 }
3163
2223 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3164 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2224 { 3165 {
2225 WL w_ = fs_hash [slot].head; 3166 WL w_ = fs_hash [slot].head;
2226 fs_hash [slot].head = 0; 3167 fs_hash [slot].head = 0;
2227 3168
2228 while (w_) 3169 while (w_)
2233 w->wd = -1; 3174 w->wd = -1;
2234 3175
2235 if (fs_fd >= 0) 3176 if (fs_fd >= 0)
2236 infy_add (EV_A_ w); /* re-add, no matter what */ 3177 infy_add (EV_A_ w); /* re-add, no matter what */
2237 else 3178 else
3179 {
3180 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3181 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2238 ev_timer_start (EV_A_ &w->timer); 3182 ev_timer_again (EV_A_ &w->timer);
3183 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3184 }
2239 } 3185 }
2240
2241 } 3186 }
2242} 3187}
2243 3188
3189#endif
3190
3191#ifdef _WIN32
3192# define EV_LSTAT(p,b) _stati64 (p, b)
3193#else
3194# define EV_LSTAT(p,b) lstat (p, b)
2244#endif 3195#endif
2245 3196
2246void 3197void
2247ev_stat_stat (EV_P_ ev_stat *w) 3198ev_stat_stat (EV_P_ ev_stat *w)
2248{ 3199{
2255static void noinline 3206static void noinline
2256stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3207stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2257{ 3208{
2258 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3209 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2259 3210
2260 /* we copy this here each the time so that */ 3211 ev_statdata prev = w->attr;
2261 /* prev has the old value when the callback gets invoked */
2262 w->prev = w->attr;
2263 ev_stat_stat (EV_A_ w); 3212 ev_stat_stat (EV_A_ w);
2264 3213
2265 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3214 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2266 if ( 3215 if (
2267 w->prev.st_dev != w->attr.st_dev 3216 prev.st_dev != w->attr.st_dev
2268 || w->prev.st_ino != w->attr.st_ino 3217 || prev.st_ino != w->attr.st_ino
2269 || w->prev.st_mode != w->attr.st_mode 3218 || prev.st_mode != w->attr.st_mode
2270 || w->prev.st_nlink != w->attr.st_nlink 3219 || prev.st_nlink != w->attr.st_nlink
2271 || w->prev.st_uid != w->attr.st_uid 3220 || prev.st_uid != w->attr.st_uid
2272 || w->prev.st_gid != w->attr.st_gid 3221 || prev.st_gid != w->attr.st_gid
2273 || w->prev.st_rdev != w->attr.st_rdev 3222 || prev.st_rdev != w->attr.st_rdev
2274 || w->prev.st_size != w->attr.st_size 3223 || prev.st_size != w->attr.st_size
2275 || w->prev.st_atime != w->attr.st_atime 3224 || prev.st_atime != w->attr.st_atime
2276 || w->prev.st_mtime != w->attr.st_mtime 3225 || prev.st_mtime != w->attr.st_mtime
2277 || w->prev.st_ctime != w->attr.st_ctime 3226 || prev.st_ctime != w->attr.st_ctime
2278 ) { 3227 ) {
3228 /* we only update w->prev on actual differences */
3229 /* in case we test more often than invoke the callback, */
3230 /* to ensure that prev is always different to attr */
3231 w->prev = prev;
3232
2279 #if EV_USE_INOTIFY 3233 #if EV_USE_INOTIFY
3234 if (fs_fd >= 0)
3235 {
2280 infy_del (EV_A_ w); 3236 infy_del (EV_A_ w);
2281 infy_add (EV_A_ w); 3237 infy_add (EV_A_ w);
2282 ev_stat_stat (EV_A_ w); /* avoid race... */ 3238 ev_stat_stat (EV_A_ w); /* avoid race... */
3239 }
2283 #endif 3240 #endif
2284 3241
2285 ev_feed_event (EV_A_ w, EV_STAT); 3242 ev_feed_event (EV_A_ w, EV_STAT);
2286 } 3243 }
2287} 3244}
2290ev_stat_start (EV_P_ ev_stat *w) 3247ev_stat_start (EV_P_ ev_stat *w)
2291{ 3248{
2292 if (expect_false (ev_is_active (w))) 3249 if (expect_false (ev_is_active (w)))
2293 return; 3250 return;
2294 3251
2295 /* since we use memcmp, we need to clear any padding data etc. */
2296 memset (&w->prev, 0, sizeof (ev_statdata));
2297 memset (&w->attr, 0, sizeof (ev_statdata));
2298
2299 ev_stat_stat (EV_A_ w); 3252 ev_stat_stat (EV_A_ w);
2300 3253
3254 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2301 if (w->interval < MIN_STAT_INTERVAL) 3255 w->interval = MIN_STAT_INTERVAL;
2302 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2303 3256
2304 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3257 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2305 ev_set_priority (&w->timer, ev_priority (w)); 3258 ev_set_priority (&w->timer, ev_priority (w));
2306 3259
2307#if EV_USE_INOTIFY 3260#if EV_USE_INOTIFY
2308 infy_init (EV_A); 3261 infy_init (EV_A);
2309 3262
2310 if (fs_fd >= 0) 3263 if (fs_fd >= 0)
2311 infy_add (EV_A_ w); 3264 infy_add (EV_A_ w);
2312 else 3265 else
2313#endif 3266#endif
3267 {
2314 ev_timer_start (EV_A_ &w->timer); 3268 ev_timer_again (EV_A_ &w->timer);
3269 ev_unref (EV_A);
3270 }
2315 3271
2316 ev_start (EV_A_ (W)w, 1); 3272 ev_start (EV_A_ (W)w, 1);
3273
3274 EV_FREQUENT_CHECK;
2317} 3275}
2318 3276
2319void 3277void
2320ev_stat_stop (EV_P_ ev_stat *w) 3278ev_stat_stop (EV_P_ ev_stat *w)
2321{ 3279{
2322 clear_pending (EV_A_ (W)w); 3280 clear_pending (EV_A_ (W)w);
2323 if (expect_false (!ev_is_active (w))) 3281 if (expect_false (!ev_is_active (w)))
2324 return; 3282 return;
2325 3283
3284 EV_FREQUENT_CHECK;
3285
2326#if EV_USE_INOTIFY 3286#if EV_USE_INOTIFY
2327 infy_del (EV_A_ w); 3287 infy_del (EV_A_ w);
2328#endif 3288#endif
3289
3290 if (ev_is_active (&w->timer))
3291 {
3292 ev_ref (EV_A);
2329 ev_timer_stop (EV_A_ &w->timer); 3293 ev_timer_stop (EV_A_ &w->timer);
3294 }
2330 3295
2331 ev_stop (EV_A_ (W)w); 3296 ev_stop (EV_A_ (W)w);
3297
3298 EV_FREQUENT_CHECK;
2332} 3299}
2333#endif 3300#endif
2334 3301
2335#if EV_IDLE_ENABLE 3302#if EV_IDLE_ENABLE
2336void 3303void
2338{ 3305{
2339 if (expect_false (ev_is_active (w))) 3306 if (expect_false (ev_is_active (w)))
2340 return; 3307 return;
2341 3308
2342 pri_adjust (EV_A_ (W)w); 3309 pri_adjust (EV_A_ (W)w);
3310
3311 EV_FREQUENT_CHECK;
2343 3312
2344 { 3313 {
2345 int active = ++idlecnt [ABSPRI (w)]; 3314 int active = ++idlecnt [ABSPRI (w)];
2346 3315
2347 ++idleall; 3316 ++idleall;
2348 ev_start (EV_A_ (W)w, active); 3317 ev_start (EV_A_ (W)w, active);
2349 3318
2350 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3319 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2351 idles [ABSPRI (w)][active - 1] = w; 3320 idles [ABSPRI (w)][active - 1] = w;
2352 } 3321 }
3322
3323 EV_FREQUENT_CHECK;
2353} 3324}
2354 3325
2355void 3326void
2356ev_idle_stop (EV_P_ ev_idle *w) 3327ev_idle_stop (EV_P_ ev_idle *w)
2357{ 3328{
2358 clear_pending (EV_A_ (W)w); 3329 clear_pending (EV_A_ (W)w);
2359 if (expect_false (!ev_is_active (w))) 3330 if (expect_false (!ev_is_active (w)))
2360 return; 3331 return;
2361 3332
3333 EV_FREQUENT_CHECK;
3334
2362 { 3335 {
2363 int active = ((W)w)->active; 3336 int active = ev_active (w);
2364 3337
2365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3338 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2366 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3339 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2367 3340
2368 ev_stop (EV_A_ (W)w); 3341 ev_stop (EV_A_ (W)w);
2369 --idleall; 3342 --idleall;
2370 } 3343 }
2371}
2372#endif
2373 3344
3345 EV_FREQUENT_CHECK;
3346}
3347#endif
3348
3349#if EV_PREPARE_ENABLE
2374void 3350void
2375ev_prepare_start (EV_P_ ev_prepare *w) 3351ev_prepare_start (EV_P_ ev_prepare *w)
2376{ 3352{
2377 if (expect_false (ev_is_active (w))) 3353 if (expect_false (ev_is_active (w)))
2378 return; 3354 return;
3355
3356 EV_FREQUENT_CHECK;
2379 3357
2380 ev_start (EV_A_ (W)w, ++preparecnt); 3358 ev_start (EV_A_ (W)w, ++preparecnt);
2381 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3359 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2382 prepares [preparecnt - 1] = w; 3360 prepares [preparecnt - 1] = w;
3361
3362 EV_FREQUENT_CHECK;
2383} 3363}
2384 3364
2385void 3365void
2386ev_prepare_stop (EV_P_ ev_prepare *w) 3366ev_prepare_stop (EV_P_ ev_prepare *w)
2387{ 3367{
2388 clear_pending (EV_A_ (W)w); 3368 clear_pending (EV_A_ (W)w);
2389 if (expect_false (!ev_is_active (w))) 3369 if (expect_false (!ev_is_active (w)))
2390 return; 3370 return;
2391 3371
3372 EV_FREQUENT_CHECK;
3373
2392 { 3374 {
2393 int active = ((W)w)->active; 3375 int active = ev_active (w);
3376
2394 prepares [active - 1] = prepares [--preparecnt]; 3377 prepares [active - 1] = prepares [--preparecnt];
2395 ((W)prepares [active - 1])->active = active; 3378 ev_active (prepares [active - 1]) = active;
2396 } 3379 }
2397 3380
2398 ev_stop (EV_A_ (W)w); 3381 ev_stop (EV_A_ (W)w);
2399}
2400 3382
3383 EV_FREQUENT_CHECK;
3384}
3385#endif
3386
3387#if EV_CHECK_ENABLE
2401void 3388void
2402ev_check_start (EV_P_ ev_check *w) 3389ev_check_start (EV_P_ ev_check *w)
2403{ 3390{
2404 if (expect_false (ev_is_active (w))) 3391 if (expect_false (ev_is_active (w)))
2405 return; 3392 return;
3393
3394 EV_FREQUENT_CHECK;
2406 3395
2407 ev_start (EV_A_ (W)w, ++checkcnt); 3396 ev_start (EV_A_ (W)w, ++checkcnt);
2408 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3397 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2409 checks [checkcnt - 1] = w; 3398 checks [checkcnt - 1] = w;
3399
3400 EV_FREQUENT_CHECK;
2410} 3401}
2411 3402
2412void 3403void
2413ev_check_stop (EV_P_ ev_check *w) 3404ev_check_stop (EV_P_ ev_check *w)
2414{ 3405{
2415 clear_pending (EV_A_ (W)w); 3406 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 3407 if (expect_false (!ev_is_active (w)))
2417 return; 3408 return;
2418 3409
3410 EV_FREQUENT_CHECK;
3411
2419 { 3412 {
2420 int active = ((W)w)->active; 3413 int active = ev_active (w);
3414
2421 checks [active - 1] = checks [--checkcnt]; 3415 checks [active - 1] = checks [--checkcnt];
2422 ((W)checks [active - 1])->active = active; 3416 ev_active (checks [active - 1]) = active;
2423 } 3417 }
2424 3418
2425 ev_stop (EV_A_ (W)w); 3419 ev_stop (EV_A_ (W)w);
3420
3421 EV_FREQUENT_CHECK;
2426} 3422}
3423#endif
2427 3424
2428#if EV_EMBED_ENABLE 3425#if EV_EMBED_ENABLE
2429void noinline 3426void noinline
2430ev_embed_sweep (EV_P_ ev_embed *w) 3427ev_embed_sweep (EV_P_ ev_embed *w)
2431{ 3428{
2447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3444embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2448{ 3445{
2449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3446 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2450 3447
2451 { 3448 {
2452 struct ev_loop *loop = w->other; 3449 EV_P = w->other;
2453 3450
2454 while (fdchangecnt) 3451 while (fdchangecnt)
2455 { 3452 {
2456 fd_reify (EV_A); 3453 fd_reify (EV_A);
2457 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3454 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2458 } 3455 }
2459 } 3456 }
2460} 3457}
2461 3458
3459static void
3460embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3461{
3462 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3463
3464 ev_embed_stop (EV_A_ w);
3465
3466 {
3467 EV_P = w->other;
3468
3469 ev_loop_fork (EV_A);
3470 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3471 }
3472
3473 ev_embed_start (EV_A_ w);
3474}
3475
2462#if 0 3476#if 0
2463static void 3477static void
2464embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3478embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2465{ 3479{
2466 ev_idle_stop (EV_A_ idle); 3480 ev_idle_stop (EV_A_ idle);
2472{ 3486{
2473 if (expect_false (ev_is_active (w))) 3487 if (expect_false (ev_is_active (w)))
2474 return; 3488 return;
2475 3489
2476 { 3490 {
2477 struct ev_loop *loop = w->other; 3491 EV_P = w->other;
2478 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3492 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3493 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2480 } 3494 }
3495
3496 EV_FREQUENT_CHECK;
2481 3497
2482 ev_set_priority (&w->io, ev_priority (w)); 3498 ev_set_priority (&w->io, ev_priority (w));
2483 ev_io_start (EV_A_ &w->io); 3499 ev_io_start (EV_A_ &w->io);
2484 3500
2485 ev_prepare_init (&w->prepare, embed_prepare_cb); 3501 ev_prepare_init (&w->prepare, embed_prepare_cb);
2486 ev_set_priority (&w->prepare, EV_MINPRI); 3502 ev_set_priority (&w->prepare, EV_MINPRI);
2487 ev_prepare_start (EV_A_ &w->prepare); 3503 ev_prepare_start (EV_A_ &w->prepare);
2488 3504
3505 ev_fork_init (&w->fork, embed_fork_cb);
3506 ev_fork_start (EV_A_ &w->fork);
3507
2489 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3508 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2490 3509
2491 ev_start (EV_A_ (W)w, 1); 3510 ev_start (EV_A_ (W)w, 1);
3511
3512 EV_FREQUENT_CHECK;
2492} 3513}
2493 3514
2494void 3515void
2495ev_embed_stop (EV_P_ ev_embed *w) 3516ev_embed_stop (EV_P_ ev_embed *w)
2496{ 3517{
2497 clear_pending (EV_A_ (W)w); 3518 clear_pending (EV_A_ (W)w);
2498 if (expect_false (!ev_is_active (w))) 3519 if (expect_false (!ev_is_active (w)))
2499 return; 3520 return;
2500 3521
3522 EV_FREQUENT_CHECK;
3523
2501 ev_io_stop (EV_A_ &w->io); 3524 ev_io_stop (EV_A_ &w->io);
2502 ev_prepare_stop (EV_A_ &w->prepare); 3525 ev_prepare_stop (EV_A_ &w->prepare);
3526 ev_fork_stop (EV_A_ &w->fork);
2503 3527
2504 ev_stop (EV_A_ (W)w); 3528 ev_stop (EV_A_ (W)w);
3529
3530 EV_FREQUENT_CHECK;
2505} 3531}
2506#endif 3532#endif
2507 3533
2508#if EV_FORK_ENABLE 3534#if EV_FORK_ENABLE
2509void 3535void
2510ev_fork_start (EV_P_ ev_fork *w) 3536ev_fork_start (EV_P_ ev_fork *w)
2511{ 3537{
2512 if (expect_false (ev_is_active (w))) 3538 if (expect_false (ev_is_active (w)))
2513 return; 3539 return;
3540
3541 EV_FREQUENT_CHECK;
2514 3542
2515 ev_start (EV_A_ (W)w, ++forkcnt); 3543 ev_start (EV_A_ (W)w, ++forkcnt);
2516 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3544 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2517 forks [forkcnt - 1] = w; 3545 forks [forkcnt - 1] = w;
3546
3547 EV_FREQUENT_CHECK;
2518} 3548}
2519 3549
2520void 3550void
2521ev_fork_stop (EV_P_ ev_fork *w) 3551ev_fork_stop (EV_P_ ev_fork *w)
2522{ 3552{
2523 clear_pending (EV_A_ (W)w); 3553 clear_pending (EV_A_ (W)w);
2524 if (expect_false (!ev_is_active (w))) 3554 if (expect_false (!ev_is_active (w)))
2525 return; 3555 return;
2526 3556
3557 EV_FREQUENT_CHECK;
3558
2527 { 3559 {
2528 int active = ((W)w)->active; 3560 int active = ev_active (w);
3561
2529 forks [active - 1] = forks [--forkcnt]; 3562 forks [active - 1] = forks [--forkcnt];
2530 ((W)forks [active - 1])->active = active; 3563 ev_active (forks [active - 1]) = active;
2531 } 3564 }
2532 3565
2533 ev_stop (EV_A_ (W)w); 3566 ev_stop (EV_A_ (W)w);
3567
3568 EV_FREQUENT_CHECK;
2534} 3569}
2535#endif 3570#endif
2536 3571
2537#if EV_ASYNC_ENABLE 3572#if EV_ASYNC_ENABLE
2538void 3573void
2540{ 3575{
2541 if (expect_false (ev_is_active (w))) 3576 if (expect_false (ev_is_active (w)))
2542 return; 3577 return;
2543 3578
2544 evpipe_init (EV_A); 3579 evpipe_init (EV_A);
3580
3581 EV_FREQUENT_CHECK;
2545 3582
2546 ev_start (EV_A_ (W)w, ++asynccnt); 3583 ev_start (EV_A_ (W)w, ++asynccnt);
2547 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3584 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2548 asyncs [asynccnt - 1] = w; 3585 asyncs [asynccnt - 1] = w;
3586
3587 EV_FREQUENT_CHECK;
2549} 3588}
2550 3589
2551void 3590void
2552ev_async_stop (EV_P_ ev_async *w) 3591ev_async_stop (EV_P_ ev_async *w)
2553{ 3592{
2554 clear_pending (EV_A_ (W)w); 3593 clear_pending (EV_A_ (W)w);
2555 if (expect_false (!ev_is_active (w))) 3594 if (expect_false (!ev_is_active (w)))
2556 return; 3595 return;
2557 3596
3597 EV_FREQUENT_CHECK;
3598
2558 { 3599 {
2559 int active = ((W)w)->active; 3600 int active = ev_active (w);
3601
2560 asyncs [active - 1] = asyncs [--asynccnt]; 3602 asyncs [active - 1] = asyncs [--asynccnt];
2561 ((W)asyncs [active - 1])->active = active; 3603 ev_active (asyncs [active - 1]) = active;
2562 } 3604 }
2563 3605
2564 ev_stop (EV_A_ (W)w); 3606 ev_stop (EV_A_ (W)w);
3607
3608 EV_FREQUENT_CHECK;
2565} 3609}
2566 3610
2567void 3611void
2568ev_async_send (EV_P_ ev_async *w) 3612ev_async_send (EV_P_ ev_async *w)
2569{ 3613{
2570 w->sent = 1; 3614 w->sent = 1;
2571 evpipe_write (EV_A_ &gotasync); 3615 evpipe_write (EV_A_ &async_pending);
2572} 3616}
2573#endif 3617#endif
2574 3618
2575/*****************************************************************************/ 3619/*****************************************************************************/
2576 3620
2586once_cb (EV_P_ struct ev_once *once, int revents) 3630once_cb (EV_P_ struct ev_once *once, int revents)
2587{ 3631{
2588 void (*cb)(int revents, void *arg) = once->cb; 3632 void (*cb)(int revents, void *arg) = once->cb;
2589 void *arg = once->arg; 3633 void *arg = once->arg;
2590 3634
2591 ev_io_stop (EV_A_ &once->io); 3635 ev_io_stop (EV_A_ &once->io);
2592 ev_timer_stop (EV_A_ &once->to); 3636 ev_timer_stop (EV_A_ &once->to);
2593 ev_free (once); 3637 ev_free (once);
2594 3638
2595 cb (revents, arg); 3639 cb (revents, arg);
2596} 3640}
2597 3641
2598static void 3642static void
2599once_cb_io (EV_P_ ev_io *w, int revents) 3643once_cb_io (EV_P_ ev_io *w, int revents)
2600{ 3644{
2601 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3645 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3646
3647 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2602} 3648}
2603 3649
2604static void 3650static void
2605once_cb_to (EV_P_ ev_timer *w, int revents) 3651once_cb_to (EV_P_ ev_timer *w, int revents)
2606{ 3652{
2607 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3653 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3654
3655 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2608} 3656}
2609 3657
2610void 3658void
2611ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3659ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2612{ 3660{
2613 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3661 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2614 3662
2615 if (expect_false (!once)) 3663 if (expect_false (!once))
2616 { 3664 {
2617 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3665 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2618 return; 3666 return;
2619 } 3667 }
2620 3668
2621 once->cb = cb; 3669 once->cb = cb;
2622 once->arg = arg; 3670 once->arg = arg;
2634 ev_timer_set (&once->to, timeout, 0.); 3682 ev_timer_set (&once->to, timeout, 0.);
2635 ev_timer_start (EV_A_ &once->to); 3683 ev_timer_start (EV_A_ &once->to);
2636 } 3684 }
2637} 3685}
2638 3686
3687/*****************************************************************************/
3688
3689#if EV_WALK_ENABLE
3690void
3691ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3692{
3693 int i, j;
3694 ev_watcher_list *wl, *wn;
3695
3696 if (types & (EV_IO | EV_EMBED))
3697 for (i = 0; i < anfdmax; ++i)
3698 for (wl = anfds [i].head; wl; )
3699 {
3700 wn = wl->next;
3701
3702#if EV_EMBED_ENABLE
3703 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3704 {
3705 if (types & EV_EMBED)
3706 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3707 }
3708 else
3709#endif
3710#if EV_USE_INOTIFY
3711 if (ev_cb ((ev_io *)wl) == infy_cb)
3712 ;
3713 else
3714#endif
3715 if ((ev_io *)wl != &pipe_w)
3716 if (types & EV_IO)
3717 cb (EV_A_ EV_IO, wl);
3718
3719 wl = wn;
3720 }
3721
3722 if (types & (EV_TIMER | EV_STAT))
3723 for (i = timercnt + HEAP0; i-- > HEAP0; )
3724#if EV_STAT_ENABLE
3725 /*TODO: timer is not always active*/
3726 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3727 {
3728 if (types & EV_STAT)
3729 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3730 }
3731 else
3732#endif
3733 if (types & EV_TIMER)
3734 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3735
3736#if EV_PERIODIC_ENABLE
3737 if (types & EV_PERIODIC)
3738 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3739 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3740#endif
3741
3742#if EV_IDLE_ENABLE
3743 if (types & EV_IDLE)
3744 for (j = NUMPRI; i--; )
3745 for (i = idlecnt [j]; i--; )
3746 cb (EV_A_ EV_IDLE, idles [j][i]);
3747#endif
3748
3749#if EV_FORK_ENABLE
3750 if (types & EV_FORK)
3751 for (i = forkcnt; i--; )
3752 if (ev_cb (forks [i]) != embed_fork_cb)
3753 cb (EV_A_ EV_FORK, forks [i]);
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757 if (types & EV_ASYNC)
3758 for (i = asynccnt; i--; )
3759 cb (EV_A_ EV_ASYNC, asyncs [i]);
3760#endif
3761
3762#if EV_PREPARE_ENABLE
3763 if (types & EV_PREPARE)
3764 for (i = preparecnt; i--; )
3765# if EV_EMBED_ENABLE
3766 if (ev_cb (prepares [i]) != embed_prepare_cb)
3767# endif
3768 cb (EV_A_ EV_PREPARE, prepares [i]);
3769#endif
3770
3771#if EV_CHECK_ENABLE
3772 if (types & EV_CHECK)
3773 for (i = checkcnt; i--; )
3774 cb (EV_A_ EV_CHECK, checks [i]);
3775#endif
3776
3777#if EV_SIGNAL_ENABLE
3778 if (types & EV_SIGNAL)
3779 for (i = 0; i < EV_NSIG - 1; ++i)
3780 for (wl = signals [i].head; wl; )
3781 {
3782 wn = wl->next;
3783 cb (EV_A_ EV_SIGNAL, wl);
3784 wl = wn;
3785 }
3786#endif
3787
3788#if EV_CHILD_ENABLE
3789 if (types & EV_CHILD)
3790 for (i = (EV_PID_HASHSIZE); i--; )
3791 for (wl = childs [i]; wl; )
3792 {
3793 wn = wl->next;
3794 cb (EV_A_ EV_CHILD, wl);
3795 wl = wn;
3796 }
3797#endif
3798/* EV_STAT 0x00001000 /* stat data changed */
3799/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3800}
3801#endif
3802
2639#if EV_MULTIPLICITY 3803#if EV_MULTIPLICITY
2640 #include "ev_wrap.h" 3804 #include "ev_wrap.h"
2641#endif 3805#endif
2642 3806
2643#ifdef __cplusplus 3807#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines