ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.263 by root, Wed Oct 1 18:50:03 2008 UTC vs.
Revision 1.348 by root, Fri Oct 15 22:48:25 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
63# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
65# endif 79# endif
66# endif 80# endif
67 81
82# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
71# else 86# else
87# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
74# endif 98# endif
75 99
100# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 103# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 104# else
105# undef EV_USE_POLL
88# define EV_USE_POLL 0 106# define EV_USE_POLL 0
89# endif
90# endif 107# endif
91 108
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
95# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
98# endif 116# endif
99 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
106# endif 125# endif
107 126
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
111# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
114# endif 134# endif
115 135
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
122# endif 143# endif
123 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 147# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
130# endif 161# endif
131 162
132#endif 163#endif
133 164
134#include <math.h> 165#include <math.h>
135#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
136#include <fcntl.h> 168#include <fcntl.h>
137#include <stddef.h> 169#include <stddef.h>
138 170
139#include <stdio.h> 171#include <stdio.h>
140 172
141#include <assert.h> 173#include <assert.h>
142#include <errno.h> 174#include <errno.h>
143#include <sys/types.h> 175#include <sys/types.h>
144#include <time.h> 176#include <time.h>
177#include <limits.h>
145 178
146#include <signal.h> 179#include <signal.h>
147 180
148#ifdef EV_H 181#ifdef EV_H
149# include EV_H 182# include EV_H
160# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
161# include <windows.h> 194# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
164# endif 197# endif
198# undef EV_AVOID_STDIO
165#endif 199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
166 208
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
244# endif
245#endif
168 246
169#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 249# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 250# else
173# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
174# endif 252# endif
175#endif 253#endif
176 254
177#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 257#endif
180 258
181#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 260# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 261# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 262# else
185# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
186# endif 264# endif
187#endif 265#endif
188 266
189#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 269#endif
192 270
193#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
194# ifdef _WIN32 272# ifdef _WIN32
195# define EV_USE_POLL 0 273# define EV_USE_POLL 0
196# else 274# else
197# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 276# endif
199#endif 277#endif
200 278
201#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 282# else
205# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
206# endif 284# endif
207#endif 285#endif
208 286
214# define EV_USE_PORT 0 292# define EV_USE_PORT 0
215#endif 293#endif
216 294
217#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 297# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 298# else
221# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
222# endif 300# endif
223#endif 301#endif
224 302
225#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 305#endif
232 306
233#ifndef EV_INOTIFY_HASHSIZE 307#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 309#endif
240 310
241#ifndef EV_USE_EVENTFD 311#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 313# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 314# else
245# define EV_USE_EVENTFD 0 315# define EV_USE_EVENTFD 0
316# endif
317#endif
318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
246# endif 324# endif
247#endif 325#endif
248 326
249#if 0 /* debugging */ 327#if 0 /* debugging */
250# define EV_VERIFY 3 328# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 329# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 330# define EV_HEAP_CACHE_AT 1
253#endif 331#endif
254 332
255#ifndef EV_VERIFY 333#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 335#endif
258 336
259#ifndef EV_USE_4HEAP 337#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 338# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 339#endif
262 340
263#ifndef EV_HEAP_CACHE_AT 341#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
265#endif 357#endif
266 358
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
268 366
269#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
272#endif 370#endif
286# include <sys/select.h> 384# include <sys/select.h>
287# endif 385# endif
288#endif 386#endif
289 387
290#if EV_USE_INOTIFY 388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
291# include <sys/inotify.h> 391# include <sys/inotify.h>
292/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
293# ifndef IN_DONT_FOLLOW 393# ifndef IN_DONT_FOLLOW
294# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
295# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
301#endif 401#endif
302 402
303#if EV_USE_EVENTFD 403#if EV_USE_EVENTFD
304/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
305# include <stdint.h> 405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
306# ifdef __cplusplus 416# ifdef __cplusplus
307extern "C" { 417extern "C" {
308# endif 418# endif
309int eventfd (unsigned int initval, int flags); 419int (eventfd) (unsigned int initval, int flags);
310# ifdef __cplusplus 420# ifdef __cplusplus
311} 421}
312# endif 422# endif
313#endif 423#endif
314 424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
315/**/ 453/**/
316 454
317#if EV_VERIFY >= 3 455#if EV_VERIFY >= 3
318# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 456# define EV_FREQUENT_CHECK ev_verify (EV_A)
319#else 457#else
320# define EV_FREQUENT_CHECK do { } while (0) 458# define EV_FREQUENT_CHECK do { } while (0)
321#endif 459#endif
322 460
323/* 461/*
330 */ 468 */
331#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
332 470
333#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 471#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
334#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 472#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
335/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 473
474#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
475#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
336 476
337#if __GNUC__ >= 4 477#if __GNUC__ >= 4
338# define expect(expr,value) __builtin_expect ((expr),(value)) 478# define expect(expr,value) __builtin_expect ((expr),(value))
339# define noinline __attribute__ ((noinline)) 479# define noinline __attribute__ ((noinline))
340#else 480#else
347 487
348#define expect_false(expr) expect ((expr) != 0, 0) 488#define expect_false(expr) expect ((expr) != 0, 0)
349#define expect_true(expr) expect ((expr) != 0, 1) 489#define expect_true(expr) expect ((expr) != 0, 1)
350#define inline_size static inline 490#define inline_size static inline
351 491
352#if EV_MINIMAL 492#if EV_FEATURE_CODE
493# define inline_speed static inline
494#else
353# define inline_speed static noinline 495# define inline_speed static noinline
496#endif
497
498#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499
500#if EV_MINPRI == EV_MAXPRI
501# define ABSPRI(w) (((W)w), 0)
354#else 502#else
355# define inline_speed static inline
356#endif
357
358#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
359#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 503# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504#endif
360 505
361#define EMPTY /* required for microsofts broken pseudo-c compiler */ 506#define EMPTY /* required for microsofts broken pseudo-c compiler */
362#define EMPTY2(a,b) /* used to suppress some warnings */ 507#define EMPTY2(a,b) /* used to suppress some warnings */
363 508
364typedef ev_watcher *W; 509typedef ev_watcher *W;
366typedef ev_watcher_time *WT; 511typedef ev_watcher_time *WT;
367 512
368#define ev_active(w) ((W)(w))->active 513#define ev_active(w) ((W)(w))->active
369#define ev_at(w) ((WT)(w))->at 514#define ev_at(w) ((WT)(w))->at
370 515
516#if EV_USE_REALTIME
517/* sig_atomic_t is used to avoid per-thread variables or locking but still */
518/* giving it a reasonably high chance of working on typical architectures */
519static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
520#endif
521
371#if EV_USE_MONOTONIC 522#if EV_USE_MONOTONIC
372/* sig_atomic_t is used to avoid per-thread variables or locking but still */
373/* giving it a reasonably high chance of working on typical architetcures */
374static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 523static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
524#endif
525
526#ifndef EV_FD_TO_WIN32_HANDLE
527# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528#endif
529#ifndef EV_WIN32_HANDLE_TO_FD
530# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531#endif
532#ifndef EV_WIN32_CLOSE_FD
533# define EV_WIN32_CLOSE_FD(fd) close (fd)
375#endif 534#endif
376 535
377#ifdef _WIN32 536#ifdef _WIN32
378# include "ev_win32.c" 537# include "ev_win32.c"
379#endif 538#endif
380 539
381/*****************************************************************************/ 540/*****************************************************************************/
382 541
542#if EV_AVOID_STDIO
543static void noinline
544ev_printerr (const char *msg)
545{
546 write (STDERR_FILENO, msg, strlen (msg));
547}
548#endif
549
383static void (*syserr_cb)(const char *msg); 550static void (*syserr_cb)(const char *msg);
384 551
385void 552void
386ev_set_syserr_cb (void (*cb)(const char *msg)) 553ev_set_syserr_cb (void (*cb)(const char *msg))
387{ 554{
388 syserr_cb = cb; 555 syserr_cb = cb;
389} 556}
390 557
391static void noinline 558static void noinline
392syserr (const char *msg) 559ev_syserr (const char *msg)
393{ 560{
394 if (!msg) 561 if (!msg)
395 msg = "(libev) system error"; 562 msg = "(libev) system error";
396 563
397 if (syserr_cb) 564 if (syserr_cb)
398 syserr_cb (msg); 565 syserr_cb (msg);
399 else 566 else
400 { 567 {
568#if EV_AVOID_STDIO
569 const char *err = strerror (errno);
570
571 ev_printerr (msg);
572 ev_printerr (": ");
573 ev_printerr (err);
574 ev_printerr ("\n");
575#else
401 perror (msg); 576 perror (msg);
577#endif
402 abort (); 578 abort ();
403 } 579 }
404} 580}
405 581
406static void * 582static void *
407ev_realloc_emul (void *ptr, long size) 583ev_realloc_emul (void *ptr, long size)
408{ 584{
585#if __GLIBC__
586 return realloc (ptr, size);
587#else
409 /* some systems, notably openbsd and darwin, fail to properly 588 /* some systems, notably openbsd and darwin, fail to properly
410 * implement realloc (x, 0) (as required by both ansi c-98 and 589 * implement realloc (x, 0) (as required by both ansi c-89 and
411 * the single unix specification, so work around them here. 590 * the single unix specification, so work around them here.
412 */ 591 */
413 592
414 if (size) 593 if (size)
415 return realloc (ptr, size); 594 return realloc (ptr, size);
416 595
417 free (ptr); 596 free (ptr);
418 return 0; 597 return 0;
598#endif
419} 599}
420 600
421static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 601static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
422 602
423void 603void
431{ 611{
432 ptr = alloc (ptr, size); 612 ptr = alloc (ptr, size);
433 613
434 if (!ptr && size) 614 if (!ptr && size)
435 { 615 {
616#if EV_AVOID_STDIO
617 ev_printerr ("libev: memory allocation failed, aborting.\n");
618#else
436 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 619 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620#endif
437 abort (); 621 abort ();
438 } 622 }
439 623
440 return ptr; 624 return ptr;
441} 625}
443#define ev_malloc(size) ev_realloc (0, (size)) 627#define ev_malloc(size) ev_realloc (0, (size))
444#define ev_free(ptr) ev_realloc ((ptr), 0) 628#define ev_free(ptr) ev_realloc ((ptr), 0)
445 629
446/*****************************************************************************/ 630/*****************************************************************************/
447 631
632/* set in reify when reification needed */
633#define EV_ANFD_REIFY 1
634
635/* file descriptor info structure */
448typedef struct 636typedef struct
449{ 637{
450 WL head; 638 WL head;
451 unsigned char events; 639 unsigned char events; /* the events watched for */
640 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
641 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
452 unsigned char reify; 642 unsigned char unused;
643#if EV_USE_EPOLL
644 unsigned int egen; /* generation counter to counter epoll bugs */
645#endif
453#if EV_SELECT_IS_WINSOCKET 646#if EV_SELECT_IS_WINSOCKET
454 SOCKET handle; 647 SOCKET handle;
455#endif 648#endif
456} ANFD; 649} ANFD;
457 650
651/* stores the pending event set for a given watcher */
458typedef struct 652typedef struct
459{ 653{
460 W w; 654 W w;
461 int events; 655 int events; /* the pending event set for the given watcher */
462} ANPENDING; 656} ANPENDING;
463 657
464#if EV_USE_INOTIFY 658#if EV_USE_INOTIFY
465/* hash table entry per inotify-id */ 659/* hash table entry per inotify-id */
466typedef struct 660typedef struct
469} ANFS; 663} ANFS;
470#endif 664#endif
471 665
472/* Heap Entry */ 666/* Heap Entry */
473#if EV_HEAP_CACHE_AT 667#if EV_HEAP_CACHE_AT
668 /* a heap element */
474 typedef struct { 669 typedef struct {
475 ev_tstamp at; 670 ev_tstamp at;
476 WT w; 671 WT w;
477 } ANHE; 672 } ANHE;
478 673
479 #define ANHE_w(he) (he).w /* access watcher, read-write */ 674 #define ANHE_w(he) (he).w /* access watcher, read-write */
480 #define ANHE_at(he) (he).at /* access cached at, read-only */ 675 #define ANHE_at(he) (he).at /* access cached at, read-only */
481 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 676 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
482#else 677#else
678 /* a heap element */
483 typedef WT ANHE; 679 typedef WT ANHE;
484 680
485 #define ANHE_w(he) (he) 681 #define ANHE_w(he) (he)
486 #define ANHE_at(he) (he)->at 682 #define ANHE_at(he) (he)->at
487 #define ANHE_at_cache(he) 683 #define ANHE_at_cache(he)
511 707
512 static int ev_default_loop_ptr; 708 static int ev_default_loop_ptr;
513 709
514#endif 710#endif
515 711
712#if EV_FEATURE_API
713# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715# define EV_INVOKE_PENDING invoke_cb (EV_A)
716#else
717# define EV_RELEASE_CB (void)0
718# define EV_ACQUIRE_CB (void)0
719# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720#endif
721
722#define EVUNLOOP_RECURSE 0x80
723
516/*****************************************************************************/ 724/*****************************************************************************/
517 725
726#ifndef EV_HAVE_EV_TIME
518ev_tstamp 727ev_tstamp
519ev_time (void) 728ev_time (void)
520{ 729{
521#if EV_USE_REALTIME 730#if EV_USE_REALTIME
731 if (expect_true (have_realtime))
732 {
522 struct timespec ts; 733 struct timespec ts;
523 clock_gettime (CLOCK_REALTIME, &ts); 734 clock_gettime (CLOCK_REALTIME, &ts);
524 return ts.tv_sec + ts.tv_nsec * 1e-9; 735 return ts.tv_sec + ts.tv_nsec * 1e-9;
525#else 736 }
737#endif
738
526 struct timeval tv; 739 struct timeval tv;
527 gettimeofday (&tv, 0); 740 gettimeofday (&tv, 0);
528 return tv.tv_sec + tv.tv_usec * 1e-6; 741 return tv.tv_sec + tv.tv_usec * 1e-6;
529#endif
530} 742}
743#endif
531 744
532ev_tstamp inline_size 745inline_size ev_tstamp
533get_clock (void) 746get_clock (void)
534{ 747{
535#if EV_USE_MONOTONIC 748#if EV_USE_MONOTONIC
536 if (expect_true (have_monotonic)) 749 if (expect_true (have_monotonic))
537 { 750 {
558 if (delay > 0.) 771 if (delay > 0.)
559 { 772 {
560#if EV_USE_NANOSLEEP 773#if EV_USE_NANOSLEEP
561 struct timespec ts; 774 struct timespec ts;
562 775
563 ts.tv_sec = (time_t)delay; 776 EV_TS_SET (ts, delay);
564 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
565
566 nanosleep (&ts, 0); 777 nanosleep (&ts, 0);
567#elif defined(_WIN32) 778#elif defined(_WIN32)
568 Sleep ((unsigned long)(delay * 1e3)); 779 Sleep ((unsigned long)(delay * 1e3));
569#else 780#else
570 struct timeval tv; 781 struct timeval tv;
571 782
572 tv.tv_sec = (time_t)delay;
573 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
574
575 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 783 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
576 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 784 /* something not guaranteed by newer posix versions, but guaranteed */
577 /* by older ones */ 785 /* by older ones */
786 EV_TS_SET (tv, delay);
578 select (0, 0, 0, 0, &tv); 787 select (0, 0, 0, 0, &tv);
579#endif 788#endif
580 } 789 }
581} 790}
582 791
583/*****************************************************************************/ 792/*****************************************************************************/
584 793
585#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 794#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
586 795
587int inline_size 796/* find a suitable new size for the given array, */
797/* hopefully by rounding to a nice-to-malloc size */
798inline_size int
588array_nextsize (int elem, int cur, int cnt) 799array_nextsize (int elem, int cur, int cnt)
589{ 800{
590 int ncur = cur + 1; 801 int ncur = cur + 1;
591 802
592 do 803 do
609array_realloc (int elem, void *base, int *cur, int cnt) 820array_realloc (int elem, void *base, int *cur, int cnt)
610{ 821{
611 *cur = array_nextsize (elem, *cur, cnt); 822 *cur = array_nextsize (elem, *cur, cnt);
612 return ev_realloc (base, elem * *cur); 823 return ev_realloc (base, elem * *cur);
613} 824}
825
826#define array_init_zero(base,count) \
827 memset ((void *)(base), 0, sizeof (*(base)) * (count))
614 828
615#define array_needsize(type,base,cur,cnt,init) \ 829#define array_needsize(type,base,cur,cnt,init) \
616 if (expect_false ((cnt) > (cur))) \ 830 if (expect_false ((cnt) > (cur))) \
617 { \ 831 { \
618 int ocur_ = (cur); \ 832 int ocur_ = (cur); \
630 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 844 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
631 } 845 }
632#endif 846#endif
633 847
634#define array_free(stem, idx) \ 848#define array_free(stem, idx) \
635 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 849 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
636 850
637/*****************************************************************************/ 851/*****************************************************************************/
852
853/* dummy callback for pending events */
854static void noinline
855pendingcb (EV_P_ ev_prepare *w, int revents)
856{
857}
638 858
639void noinline 859void noinline
640ev_feed_event (EV_P_ void *w, int revents) 860ev_feed_event (EV_P_ void *w, int revents)
641{ 861{
642 W w_ = (W)w; 862 W w_ = (W)w;
651 pendings [pri][w_->pending - 1].w = w_; 871 pendings [pri][w_->pending - 1].w = w_;
652 pendings [pri][w_->pending - 1].events = revents; 872 pendings [pri][w_->pending - 1].events = revents;
653 } 873 }
654} 874}
655 875
656void inline_speed 876inline_speed void
877feed_reverse (EV_P_ W w)
878{
879 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880 rfeeds [rfeedcnt++] = w;
881}
882
883inline_size void
884feed_reverse_done (EV_P_ int revents)
885{
886 do
887 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888 while (rfeedcnt);
889}
890
891inline_speed void
657queue_events (EV_P_ W *events, int eventcnt, int type) 892queue_events (EV_P_ W *events, int eventcnt, int type)
658{ 893{
659 int i; 894 int i;
660 895
661 for (i = 0; i < eventcnt; ++i) 896 for (i = 0; i < eventcnt; ++i)
662 ev_feed_event (EV_A_ events [i], type); 897 ev_feed_event (EV_A_ events [i], type);
663} 898}
664 899
665/*****************************************************************************/ 900/*****************************************************************************/
666 901
667void inline_size 902inline_speed void
668anfds_init (ANFD *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->events = EV_NONE;
674 base->reify = 0;
675
676 ++base;
677 }
678}
679
680void inline_speed
681fd_event (EV_P_ int fd, int revents) 903fd_event_nocheck (EV_P_ int fd, int revents)
682{ 904{
683 ANFD *anfd = anfds + fd; 905 ANFD *anfd = anfds + fd;
684 ev_io *w; 906 ev_io *w;
685 907
686 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
690 if (ev) 912 if (ev)
691 ev_feed_event (EV_A_ (W)w, ev); 913 ev_feed_event (EV_A_ (W)w, ev);
692 } 914 }
693} 915}
694 916
917/* do not submit kernel events for fds that have reify set */
918/* because that means they changed while we were polling for new events */
919inline_speed void
920fd_event (EV_P_ int fd, int revents)
921{
922 ANFD *anfd = anfds + fd;
923
924 if (expect_true (!anfd->reify))
925 fd_event_nocheck (EV_A_ fd, revents);
926}
927
695void 928void
696ev_feed_fd_event (EV_P_ int fd, int revents) 929ev_feed_fd_event (EV_P_ int fd, int revents)
697{ 930{
698 if (fd >= 0 && fd < anfdmax) 931 if (fd >= 0 && fd < anfdmax)
699 fd_event (EV_A_ fd, revents); 932 fd_event_nocheck (EV_A_ fd, revents);
700} 933}
701 934
702void inline_size 935/* make sure the external fd watch events are in-sync */
936/* with the kernel/libev internal state */
937inline_size void
703fd_reify (EV_P) 938fd_reify (EV_P)
704{ 939{
705 int i; 940 int i;
706 941
707 for (i = 0; i < fdchangecnt; ++i) 942 for (i = 0; i < fdchangecnt; ++i)
717 952
718#if EV_SELECT_IS_WINSOCKET 953#if EV_SELECT_IS_WINSOCKET
719 if (events) 954 if (events)
720 { 955 {
721 unsigned long arg; 956 unsigned long arg;
722 #ifdef EV_FD_TO_WIN32_HANDLE
723 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 957 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
724 #else
725 anfd->handle = _get_osfhandle (fd);
726 #endif
727 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 958 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
728 } 959 }
729#endif 960#endif
730 961
731 { 962 {
732 unsigned char o_events = anfd->events; 963 unsigned char o_events = anfd->events;
733 unsigned char o_reify = anfd->reify; 964 unsigned char o_reify = anfd->reify;
734 965
735 anfd->reify = 0; 966 anfd->reify = 0;
736 anfd->events = events; 967 anfd->events = events;
737 968
738 if (o_events != events || o_reify & EV_IOFDSET) 969 if (o_events != events || o_reify & EV__IOFDSET)
739 backend_modify (EV_A_ fd, o_events, events); 970 backend_modify (EV_A_ fd, o_events, events);
740 } 971 }
741 } 972 }
742 973
743 fdchangecnt = 0; 974 fdchangecnt = 0;
744} 975}
745 976
746void inline_size 977/* something about the given fd changed */
978inline_size void
747fd_change (EV_P_ int fd, int flags) 979fd_change (EV_P_ int fd, int flags)
748{ 980{
749 unsigned char reify = anfds [fd].reify; 981 unsigned char reify = anfds [fd].reify;
750 anfds [fd].reify |= flags; 982 anfds [fd].reify |= flags;
751 983
755 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 987 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
756 fdchanges [fdchangecnt - 1] = fd; 988 fdchanges [fdchangecnt - 1] = fd;
757 } 989 }
758} 990}
759 991
760void inline_speed 992/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
993inline_speed void
761fd_kill (EV_P_ int fd) 994fd_kill (EV_P_ int fd)
762{ 995{
763 ev_io *w; 996 ev_io *w;
764 997
765 while ((w = (ev_io *)anfds [fd].head)) 998 while ((w = (ev_io *)anfds [fd].head))
767 ev_io_stop (EV_A_ w); 1000 ev_io_stop (EV_A_ w);
768 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1001 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
769 } 1002 }
770} 1003}
771 1004
772int inline_size 1005/* check whether the given fd is actually valid, for error recovery */
1006inline_size int
773fd_valid (int fd) 1007fd_valid (int fd)
774{ 1008{
775#ifdef _WIN32 1009#ifdef _WIN32
776 return _get_osfhandle (fd) != -1; 1010 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
777#else 1011#else
778 return fcntl (fd, F_GETFD) != -1; 1012 return fcntl (fd, F_GETFD) != -1;
779#endif 1013#endif
780} 1014}
781 1015
799 1033
800 for (fd = anfdmax; fd--; ) 1034 for (fd = anfdmax; fd--; )
801 if (anfds [fd].events) 1035 if (anfds [fd].events)
802 { 1036 {
803 fd_kill (EV_A_ fd); 1037 fd_kill (EV_A_ fd);
804 return; 1038 break;
805 } 1039 }
806} 1040}
807 1041
808/* usually called after fork if backend needs to re-arm all fds from scratch */ 1042/* usually called after fork if backend needs to re-arm all fds from scratch */
809static void noinline 1043static void noinline
813 1047
814 for (fd = 0; fd < anfdmax; ++fd) 1048 for (fd = 0; fd < anfdmax; ++fd)
815 if (anfds [fd].events) 1049 if (anfds [fd].events)
816 { 1050 {
817 anfds [fd].events = 0; 1051 anfds [fd].events = 0;
1052 anfds [fd].emask = 0;
818 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1053 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
819 } 1054 }
820} 1055}
821 1056
1057/* used to prepare libev internal fd's */
1058/* this is not fork-safe */
1059inline_speed void
1060fd_intern (int fd)
1061{
1062#ifdef _WIN32
1063 unsigned long arg = 1;
1064 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1065#else
1066 fcntl (fd, F_SETFD, FD_CLOEXEC);
1067 fcntl (fd, F_SETFL, O_NONBLOCK);
1068#endif
1069}
1070
822/*****************************************************************************/ 1071/*****************************************************************************/
823 1072
824/* 1073/*
825 * the heap functions want a real array index. array index 0 uis guaranteed to not 1074 * the heap functions want a real array index. array index 0 is guaranteed to not
826 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1075 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
827 * the branching factor of the d-tree. 1076 * the branching factor of the d-tree.
828 */ 1077 */
829 1078
830/* 1079/*
839#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1088#define HEAP0 (DHEAP - 1) /* index of first element in heap */
840#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1089#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
841#define UPHEAP_DONE(p,k) ((p) == (k)) 1090#define UPHEAP_DONE(p,k) ((p) == (k))
842 1091
843/* away from the root */ 1092/* away from the root */
844void inline_speed 1093inline_speed void
845downheap (ANHE *heap, int N, int k) 1094downheap (ANHE *heap, int N, int k)
846{ 1095{
847 ANHE he = heap [k]; 1096 ANHE he = heap [k];
848 ANHE *E = heap + N + HEAP0; 1097 ANHE *E = heap + N + HEAP0;
849 1098
889#define HEAP0 1 1138#define HEAP0 1
890#define HPARENT(k) ((k) >> 1) 1139#define HPARENT(k) ((k) >> 1)
891#define UPHEAP_DONE(p,k) (!(p)) 1140#define UPHEAP_DONE(p,k) (!(p))
892 1141
893/* away from the root */ 1142/* away from the root */
894void inline_speed 1143inline_speed void
895downheap (ANHE *heap, int N, int k) 1144downheap (ANHE *heap, int N, int k)
896{ 1145{
897 ANHE he = heap [k]; 1146 ANHE he = heap [k];
898 1147
899 for (;;) 1148 for (;;)
900 { 1149 {
901 int c = k << 1; 1150 int c = k << 1;
902 1151
903 if (c > N + HEAP0 - 1) 1152 if (c >= N + HEAP0)
904 break; 1153 break;
905 1154
906 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1155 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
907 ? 1 : 0; 1156 ? 1 : 0;
908 1157
919 ev_active (ANHE_w (he)) = k; 1168 ev_active (ANHE_w (he)) = k;
920} 1169}
921#endif 1170#endif
922 1171
923/* towards the root */ 1172/* towards the root */
924void inline_speed 1173inline_speed void
925upheap (ANHE *heap, int k) 1174upheap (ANHE *heap, int k)
926{ 1175{
927 ANHE he = heap [k]; 1176 ANHE he = heap [k];
928 1177
929 for (;;) 1178 for (;;)
940 1189
941 heap [k] = he; 1190 heap [k] = he;
942 ev_active (ANHE_w (he)) = k; 1191 ev_active (ANHE_w (he)) = k;
943} 1192}
944 1193
945void inline_size 1194/* move an element suitably so it is in a correct place */
1195inline_size void
946adjustheap (ANHE *heap, int N, int k) 1196adjustheap (ANHE *heap, int N, int k)
947{ 1197{
948 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1198 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
949 upheap (heap, k); 1199 upheap (heap, k);
950 else 1200 else
951 downheap (heap, N, k); 1201 downheap (heap, N, k);
952} 1202}
953 1203
954/* rebuild the heap: this function is used only once and executed rarely */ 1204/* rebuild the heap: this function is used only once and executed rarely */
955void inline_size 1205inline_size void
956reheap (ANHE *heap, int N) 1206reheap (ANHE *heap, int N)
957{ 1207{
958 int i; 1208 int i;
959 1209
960 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1210 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
963 upheap (heap, i + HEAP0); 1213 upheap (heap, i + HEAP0);
964} 1214}
965 1215
966/*****************************************************************************/ 1216/*****************************************************************************/
967 1217
1218/* associate signal watchers to a signal signal */
968typedef struct 1219typedef struct
969{ 1220{
1221 EV_ATOMIC_T pending;
1222#if EV_MULTIPLICITY
1223 EV_P;
1224#endif
970 WL head; 1225 WL head;
971 EV_ATOMIC_T gotsig;
972} ANSIG; 1226} ANSIG;
973 1227
974static ANSIG *signals; 1228static ANSIG signals [EV_NSIG - 1];
975static int signalmax;
976
977static EV_ATOMIC_T gotsig;
978
979void inline_size
980signals_init (ANSIG *base, int count)
981{
982 while (count--)
983 {
984 base->head = 0;
985 base->gotsig = 0;
986
987 ++base;
988 }
989}
990 1229
991/*****************************************************************************/ 1230/*****************************************************************************/
992 1231
993void inline_speed 1232#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
994fd_intern (int fd)
995{
996#ifdef _WIN32
997 unsigned long arg = 1;
998 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
999#else
1000 fcntl (fd, F_SETFD, FD_CLOEXEC);
1001 fcntl (fd, F_SETFL, O_NONBLOCK);
1002#endif
1003}
1004 1233
1005static void noinline 1234static void noinline
1006evpipe_init (EV_P) 1235evpipe_init (EV_P)
1007{ 1236{
1008 if (!ev_is_active (&pipeev)) 1237 if (!ev_is_active (&pipe_w))
1009 { 1238 {
1010#if EV_USE_EVENTFD 1239# if EV_USE_EVENTFD
1240 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1241 if (evfd < 0 && errno == EINVAL)
1011 if ((evfd = eventfd (0, 0)) >= 0) 1242 evfd = eventfd (0, 0);
1243
1244 if (evfd >= 0)
1012 { 1245 {
1013 evpipe [0] = -1; 1246 evpipe [0] = -1;
1014 fd_intern (evfd); 1247 fd_intern (evfd); /* doing it twice doesn't hurt */
1015 ev_io_set (&pipeev, evfd, EV_READ); 1248 ev_io_set (&pipe_w, evfd, EV_READ);
1016 } 1249 }
1017 else 1250 else
1018#endif 1251# endif
1019 { 1252 {
1020 while (pipe (evpipe)) 1253 while (pipe (evpipe))
1021 syserr ("(libev) error creating signal/async pipe"); 1254 ev_syserr ("(libev) error creating signal/async pipe");
1022 1255
1023 fd_intern (evpipe [0]); 1256 fd_intern (evpipe [0]);
1024 fd_intern (evpipe [1]); 1257 fd_intern (evpipe [1]);
1025 ev_io_set (&pipeev, evpipe [0], EV_READ); 1258 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1026 } 1259 }
1027 1260
1028 ev_io_start (EV_A_ &pipeev); 1261 ev_io_start (EV_A_ &pipe_w);
1029 ev_unref (EV_A); /* watcher should not keep loop alive */ 1262 ev_unref (EV_A); /* watcher should not keep loop alive */
1030 } 1263 }
1031} 1264}
1032 1265
1033void inline_size 1266inline_size void
1034evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1267evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1035{ 1268{
1036 if (!*flag) 1269 if (!*flag)
1037 { 1270 {
1038 int old_errno = errno; /* save errno because write might clobber it */ 1271 int old_errno = errno; /* save errno because write might clobber it */
1272 char dummy;
1039 1273
1040 *flag = 1; 1274 *flag = 1;
1041 1275
1042#if EV_USE_EVENTFD 1276#if EV_USE_EVENTFD
1043 if (evfd >= 0) 1277 if (evfd >= 0)
1045 uint64_t counter = 1; 1279 uint64_t counter = 1;
1046 write (evfd, &counter, sizeof (uint64_t)); 1280 write (evfd, &counter, sizeof (uint64_t));
1047 } 1281 }
1048 else 1282 else
1049#endif 1283#endif
1284 /* win32 people keep sending patches that change this write() to send() */
1285 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1286 /* so when you think this write should be a send instead, please find out */
1287 /* where your send() is from - it's definitely not the microsoft send, and */
1288 /* tell me. thank you. */
1050 write (evpipe [1], &old_errno, 1); 1289 write (evpipe [1], &dummy, 1);
1051 1290
1052 errno = old_errno; 1291 errno = old_errno;
1053 } 1292 }
1054} 1293}
1055 1294
1295/* called whenever the libev signal pipe */
1296/* got some events (signal, async) */
1056static void 1297static void
1057pipecb (EV_P_ ev_io *iow, int revents) 1298pipecb (EV_P_ ev_io *iow, int revents)
1058{ 1299{
1300 int i;
1301
1059#if EV_USE_EVENTFD 1302#if EV_USE_EVENTFD
1060 if (evfd >= 0) 1303 if (evfd >= 0)
1061 { 1304 {
1062 uint64_t counter; 1305 uint64_t counter;
1063 read (evfd, &counter, sizeof (uint64_t)); 1306 read (evfd, &counter, sizeof (uint64_t));
1064 } 1307 }
1065 else 1308 else
1066#endif 1309#endif
1067 { 1310 {
1068 char dummy; 1311 char dummy;
1312 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1069 read (evpipe [0], &dummy, 1); 1313 read (evpipe [0], &dummy, 1);
1070 } 1314 }
1071 1315
1072 if (gotsig && ev_is_default_loop (EV_A)) 1316 if (sig_pending)
1073 { 1317 {
1074 int signum; 1318 sig_pending = 0;
1075 gotsig = 0;
1076 1319
1077 for (signum = signalmax; signum--; ) 1320 for (i = EV_NSIG - 1; i--; )
1078 if (signals [signum].gotsig) 1321 if (expect_false (signals [i].pending))
1079 ev_feed_signal_event (EV_A_ signum + 1); 1322 ev_feed_signal_event (EV_A_ i + 1);
1080 } 1323 }
1081 1324
1082#if EV_ASYNC_ENABLE 1325#if EV_ASYNC_ENABLE
1083 if (gotasync) 1326 if (async_pending)
1084 { 1327 {
1085 int i; 1328 async_pending = 0;
1086 gotasync = 0;
1087 1329
1088 for (i = asynccnt; i--; ) 1330 for (i = asynccnt; i--; )
1089 if (asyncs [i]->sent) 1331 if (asyncs [i]->sent)
1090 { 1332 {
1091 asyncs [i]->sent = 0; 1333 asyncs [i]->sent = 0;
1099 1341
1100static void 1342static void
1101ev_sighandler (int signum) 1343ev_sighandler (int signum)
1102{ 1344{
1103#if EV_MULTIPLICITY 1345#if EV_MULTIPLICITY
1104 struct ev_loop *loop = &default_loop_struct; 1346 EV_P = signals [signum - 1].loop;
1105#endif 1347#endif
1106 1348
1107#if _WIN32 1349#ifdef _WIN32
1108 signal (signum, ev_sighandler); 1350 signal (signum, ev_sighandler);
1109#endif 1351#endif
1110 1352
1111 signals [signum - 1].gotsig = 1; 1353 signals [signum - 1].pending = 1;
1112 evpipe_write (EV_A_ &gotsig); 1354 evpipe_write (EV_A_ &sig_pending);
1113} 1355}
1114 1356
1115void noinline 1357void noinline
1116ev_feed_signal_event (EV_P_ int signum) 1358ev_feed_signal_event (EV_P_ int signum)
1117{ 1359{
1118 WL w; 1360 WL w;
1119 1361
1362 if (expect_false (signum <= 0 || signum > EV_NSIG))
1363 return;
1364
1365 --signum;
1366
1120#if EV_MULTIPLICITY 1367#if EV_MULTIPLICITY
1121 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1368 /* it is permissible to try to feed a signal to the wrong loop */
1122#endif 1369 /* or, likely more useful, feeding a signal nobody is waiting for */
1123 1370
1124 --signum; 1371 if (expect_false (signals [signum].loop != EV_A))
1125
1126 if (signum < 0 || signum >= signalmax)
1127 return; 1372 return;
1373#endif
1128 1374
1129 signals [signum].gotsig = 0; 1375 signals [signum].pending = 0;
1130 1376
1131 for (w = signals [signum].head; w; w = w->next) 1377 for (w = signals [signum].head; w; w = w->next)
1132 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1378 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1133} 1379}
1134 1380
1381#if EV_USE_SIGNALFD
1382static void
1383sigfdcb (EV_P_ ev_io *iow, int revents)
1384{
1385 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1386
1387 for (;;)
1388 {
1389 ssize_t res = read (sigfd, si, sizeof (si));
1390
1391 /* not ISO-C, as res might be -1, but works with SuS */
1392 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1393 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1394
1395 if (res < (ssize_t)sizeof (si))
1396 break;
1397 }
1398}
1399#endif
1400
1401#endif
1402
1135/*****************************************************************************/ 1403/*****************************************************************************/
1136 1404
1405#if EV_CHILD_ENABLE
1137static WL childs [EV_PID_HASHSIZE]; 1406static WL childs [EV_PID_HASHSIZE];
1138
1139#ifndef _WIN32
1140 1407
1141static ev_signal childev; 1408static ev_signal childev;
1142 1409
1143#ifndef WIFCONTINUED 1410#ifndef WIFCONTINUED
1144# define WIFCONTINUED(status) 0 1411# define WIFCONTINUED(status) 0
1145#endif 1412#endif
1146 1413
1147void inline_speed 1414/* handle a single child status event */
1415inline_speed void
1148child_reap (EV_P_ int chain, int pid, int status) 1416child_reap (EV_P_ int chain, int pid, int status)
1149{ 1417{
1150 ev_child *w; 1418 ev_child *w;
1151 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1419 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1152 1420
1153 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1421 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1154 { 1422 {
1155 if ((w->pid == pid || !w->pid) 1423 if ((w->pid == pid || !w->pid)
1156 && (!traced || (w->flags & 1))) 1424 && (!traced || (w->flags & 1)))
1157 { 1425 {
1158 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1426 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1165 1433
1166#ifndef WCONTINUED 1434#ifndef WCONTINUED
1167# define WCONTINUED 0 1435# define WCONTINUED 0
1168#endif 1436#endif
1169 1437
1438/* called on sigchld etc., calls waitpid */
1170static void 1439static void
1171childcb (EV_P_ ev_signal *sw, int revents) 1440childcb (EV_P_ ev_signal *sw, int revents)
1172{ 1441{
1173 int pid, status; 1442 int pid, status;
1174 1443
1182 /* make sure we are called again until all children have been reaped */ 1451 /* make sure we are called again until all children have been reaped */
1183 /* we need to do it this way so that the callback gets called before we continue */ 1452 /* we need to do it this way so that the callback gets called before we continue */
1184 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1453 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1185 1454
1186 child_reap (EV_A_ pid, pid, status); 1455 child_reap (EV_A_ pid, pid, status);
1187 if (EV_PID_HASHSIZE > 1) 1456 if ((EV_PID_HASHSIZE) > 1)
1188 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1457 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1189} 1458}
1190 1459
1191#endif 1460#endif
1192 1461
1255 /* kqueue is borked on everything but netbsd apparently */ 1524 /* kqueue is borked on everything but netbsd apparently */
1256 /* it usually doesn't work correctly on anything but sockets and pipes */ 1525 /* it usually doesn't work correctly on anything but sockets and pipes */
1257 flags &= ~EVBACKEND_KQUEUE; 1526 flags &= ~EVBACKEND_KQUEUE;
1258#endif 1527#endif
1259#ifdef __APPLE__ 1528#ifdef __APPLE__
1260 // flags &= ~EVBACKEND_KQUEUE; for documentation 1529 /* only select works correctly on that "unix-certified" platform */
1261 flags &= ~EVBACKEND_POLL; 1530 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1531 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1532#endif
1533#ifdef __FreeBSD__
1534 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1262#endif 1535#endif
1263 1536
1264 return flags; 1537 return flags;
1265} 1538}
1266 1539
1280ev_backend (EV_P) 1553ev_backend (EV_P)
1281{ 1554{
1282 return backend; 1555 return backend;
1283} 1556}
1284 1557
1558#if EV_FEATURE_API
1285unsigned int 1559unsigned int
1286ev_loop_count (EV_P) 1560ev_iteration (EV_P)
1287{ 1561{
1288 return loop_count; 1562 return loop_count;
1289} 1563}
1290 1564
1565unsigned int
1566ev_depth (EV_P)
1567{
1568 return loop_depth;
1569}
1570
1291void 1571void
1292ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1572ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1293{ 1573{
1294 io_blocktime = interval; 1574 io_blocktime = interval;
1295} 1575}
1298ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1578ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1299{ 1579{
1300 timeout_blocktime = interval; 1580 timeout_blocktime = interval;
1301} 1581}
1302 1582
1583void
1584ev_set_userdata (EV_P_ void *data)
1585{
1586 userdata = data;
1587}
1588
1589void *
1590ev_userdata (EV_P)
1591{
1592 return userdata;
1593}
1594
1595void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1596{
1597 invoke_cb = invoke_pending_cb;
1598}
1599
1600void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1601{
1602 release_cb = release;
1603 acquire_cb = acquire;
1604}
1605#endif
1606
1607/* initialise a loop structure, must be zero-initialised */
1303static void noinline 1608static void noinline
1304loop_init (EV_P_ unsigned int flags) 1609loop_init (EV_P_ unsigned int flags)
1305{ 1610{
1306 if (!backend) 1611 if (!backend)
1307 { 1612 {
1613#if EV_USE_REALTIME
1614 if (!have_realtime)
1615 {
1616 struct timespec ts;
1617
1618 if (!clock_gettime (CLOCK_REALTIME, &ts))
1619 have_realtime = 1;
1620 }
1621#endif
1622
1308#if EV_USE_MONOTONIC 1623#if EV_USE_MONOTONIC
1624 if (!have_monotonic)
1309 { 1625 {
1310 struct timespec ts; 1626 struct timespec ts;
1627
1311 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1628 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1312 have_monotonic = 1; 1629 have_monotonic = 1;
1313 } 1630 }
1314#endif 1631#endif
1632
1633 /* pid check not overridable via env */
1634#ifndef _WIN32
1635 if (flags & EVFLAG_FORKCHECK)
1636 curpid = getpid ();
1637#endif
1638
1639 if (!(flags & EVFLAG_NOENV)
1640 && !enable_secure ()
1641 && getenv ("LIBEV_FLAGS"))
1642 flags = atoi (getenv ("LIBEV_FLAGS"));
1315 1643
1316 ev_rt_now = ev_time (); 1644 ev_rt_now = ev_time ();
1317 mn_now = get_clock (); 1645 mn_now = get_clock ();
1318 now_floor = mn_now; 1646 now_floor = mn_now;
1319 rtmn_diff = ev_rt_now - mn_now; 1647 rtmn_diff = ev_rt_now - mn_now;
1648#if EV_FEATURE_API
1649 invoke_cb = ev_invoke_pending;
1650#endif
1320 1651
1321 io_blocktime = 0.; 1652 io_blocktime = 0.;
1322 timeout_blocktime = 0.; 1653 timeout_blocktime = 0.;
1323 backend = 0; 1654 backend = 0;
1324 backend_fd = -1; 1655 backend_fd = -1;
1325 gotasync = 0; 1656 sig_pending = 0;
1657#if EV_ASYNC_ENABLE
1658 async_pending = 0;
1659#endif
1326#if EV_USE_INOTIFY 1660#if EV_USE_INOTIFY
1327 fs_fd = -2; 1661 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1328#endif 1662#endif
1329 1663#if EV_USE_SIGNALFD
1330 /* pid check not overridable via env */ 1664 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1331#ifndef _WIN32
1332 if (flags & EVFLAG_FORKCHECK)
1333 curpid = getpid ();
1334#endif 1665#endif
1335
1336 if (!(flags & EVFLAG_NOENV)
1337 && !enable_secure ()
1338 && getenv ("LIBEV_FLAGS"))
1339 flags = atoi (getenv ("LIBEV_FLAGS"));
1340 1666
1341 if (!(flags & 0x0000ffffU)) 1667 if (!(flags & 0x0000ffffU))
1342 flags |= ev_recommended_backends (); 1668 flags |= ev_recommended_backends ();
1343 1669
1344#if EV_USE_PORT 1670#if EV_USE_PORT
1355#endif 1681#endif
1356#if EV_USE_SELECT 1682#if EV_USE_SELECT
1357 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1683 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1358#endif 1684#endif
1359 1685
1686 ev_prepare_init (&pending_w, pendingcb);
1687
1688#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1360 ev_init (&pipeev, pipecb); 1689 ev_init (&pipe_w, pipecb);
1361 ev_set_priority (&pipeev, EV_MAXPRI); 1690 ev_set_priority (&pipe_w, EV_MAXPRI);
1691#endif
1362 } 1692 }
1363} 1693}
1364 1694
1695/* free up a loop structure */
1365static void noinline 1696static void noinline
1366loop_destroy (EV_P) 1697loop_destroy (EV_P)
1367{ 1698{
1368 int i; 1699 int i;
1369 1700
1370 if (ev_is_active (&pipeev)) 1701 if (ev_is_active (&pipe_w))
1371 { 1702 {
1372 ev_ref (EV_A); /* signal watcher */ 1703 /*ev_ref (EV_A);*/
1373 ev_io_stop (EV_A_ &pipeev); 1704 /*ev_io_stop (EV_A_ &pipe_w);*/
1374 1705
1375#if EV_USE_EVENTFD 1706#if EV_USE_EVENTFD
1376 if (evfd >= 0) 1707 if (evfd >= 0)
1377 close (evfd); 1708 close (evfd);
1378#endif 1709#endif
1379 1710
1380 if (evpipe [0] >= 0) 1711 if (evpipe [0] >= 0)
1381 { 1712 {
1382 close (evpipe [0]); 1713 EV_WIN32_CLOSE_FD (evpipe [0]);
1383 close (evpipe [1]); 1714 EV_WIN32_CLOSE_FD (evpipe [1]);
1384 } 1715 }
1385 } 1716 }
1717
1718#if EV_USE_SIGNALFD
1719 if (ev_is_active (&sigfd_w))
1720 close (sigfd);
1721#endif
1386 1722
1387#if EV_USE_INOTIFY 1723#if EV_USE_INOTIFY
1388 if (fs_fd >= 0) 1724 if (fs_fd >= 0)
1389 close (fs_fd); 1725 close (fs_fd);
1390#endif 1726#endif
1414#if EV_IDLE_ENABLE 1750#if EV_IDLE_ENABLE
1415 array_free (idle, [i]); 1751 array_free (idle, [i]);
1416#endif 1752#endif
1417 } 1753 }
1418 1754
1419 ev_free (anfds); anfdmax = 0; 1755 ev_free (anfds); anfds = 0; anfdmax = 0;
1420 1756
1421 /* have to use the microsoft-never-gets-it-right macro */ 1757 /* have to use the microsoft-never-gets-it-right macro */
1758 array_free (rfeed, EMPTY);
1422 array_free (fdchange, EMPTY); 1759 array_free (fdchange, EMPTY);
1423 array_free (timer, EMPTY); 1760 array_free (timer, EMPTY);
1424#if EV_PERIODIC_ENABLE 1761#if EV_PERIODIC_ENABLE
1425 array_free (periodic, EMPTY); 1762 array_free (periodic, EMPTY);
1426#endif 1763#endif
1435 1772
1436 backend = 0; 1773 backend = 0;
1437} 1774}
1438 1775
1439#if EV_USE_INOTIFY 1776#if EV_USE_INOTIFY
1440void inline_size infy_fork (EV_P); 1777inline_size void infy_fork (EV_P);
1441#endif 1778#endif
1442 1779
1443void inline_size 1780inline_size void
1444loop_fork (EV_P) 1781loop_fork (EV_P)
1445{ 1782{
1446#if EV_USE_PORT 1783#if EV_USE_PORT
1447 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1784 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1448#endif 1785#endif
1454#endif 1791#endif
1455#if EV_USE_INOTIFY 1792#if EV_USE_INOTIFY
1456 infy_fork (EV_A); 1793 infy_fork (EV_A);
1457#endif 1794#endif
1458 1795
1459 if (ev_is_active (&pipeev)) 1796 if (ev_is_active (&pipe_w))
1460 { 1797 {
1461 /* this "locks" the handlers against writing to the pipe */ 1798 /* this "locks" the handlers against writing to the pipe */
1462 /* while we modify the fd vars */ 1799 /* while we modify the fd vars */
1463 gotsig = 1; 1800 sig_pending = 1;
1464#if EV_ASYNC_ENABLE 1801#if EV_ASYNC_ENABLE
1465 gotasync = 1; 1802 async_pending = 1;
1466#endif 1803#endif
1467 1804
1468 ev_ref (EV_A); 1805 ev_ref (EV_A);
1469 ev_io_stop (EV_A_ &pipeev); 1806 ev_io_stop (EV_A_ &pipe_w);
1470 1807
1471#if EV_USE_EVENTFD 1808#if EV_USE_EVENTFD
1472 if (evfd >= 0) 1809 if (evfd >= 0)
1473 close (evfd); 1810 close (evfd);
1474#endif 1811#endif
1475 1812
1476 if (evpipe [0] >= 0) 1813 if (evpipe [0] >= 0)
1477 { 1814 {
1478 close (evpipe [0]); 1815 EV_WIN32_CLOSE_FD (evpipe [0]);
1479 close (evpipe [1]); 1816 EV_WIN32_CLOSE_FD (evpipe [1]);
1480 } 1817 }
1481 1818
1819#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1482 evpipe_init (EV_A); 1820 evpipe_init (EV_A);
1483 /* now iterate over everything, in case we missed something */ 1821 /* now iterate over everything, in case we missed something */
1484 pipecb (EV_A_ &pipeev, EV_READ); 1822 pipecb (EV_A_ &pipe_w, EV_READ);
1823#endif
1485 } 1824 }
1486 1825
1487 postfork = 0; 1826 postfork = 0;
1488} 1827}
1489 1828
1490#if EV_MULTIPLICITY 1829#if EV_MULTIPLICITY
1491 1830
1492struct ev_loop * 1831struct ev_loop *
1493ev_loop_new (unsigned int flags) 1832ev_loop_new (unsigned int flags)
1494{ 1833{
1495 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1834 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1496 1835
1497 memset (loop, 0, sizeof (struct ev_loop)); 1836 memset (EV_A, 0, sizeof (struct ev_loop));
1498
1499 loop_init (EV_A_ flags); 1837 loop_init (EV_A_ flags);
1500 1838
1501 if (ev_backend (EV_A)) 1839 if (ev_backend (EV_A))
1502 return loop; 1840 return EV_A;
1503 1841
1504 return 0; 1842 return 0;
1505} 1843}
1506 1844
1507void 1845void
1514void 1852void
1515ev_loop_fork (EV_P) 1853ev_loop_fork (EV_P)
1516{ 1854{
1517 postfork = 1; /* must be in line with ev_default_fork */ 1855 postfork = 1; /* must be in line with ev_default_fork */
1518} 1856}
1857#endif /* multiplicity */
1519 1858
1520#if EV_VERIFY 1859#if EV_VERIFY
1521static void noinline 1860static void noinline
1522verify_watcher (EV_P_ W w) 1861verify_watcher (EV_P_ W w)
1523{ 1862{
1524 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1863 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1525 1864
1526 if (w->pending) 1865 if (w->pending)
1527 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1866 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1528} 1867}
1529 1868
1530static void noinline 1869static void noinline
1531verify_heap (EV_P_ ANHE *heap, int N) 1870verify_heap (EV_P_ ANHE *heap, int N)
1532{ 1871{
1533 int i; 1872 int i;
1534 1873
1535 for (i = HEAP0; i < N + HEAP0; ++i) 1874 for (i = HEAP0; i < N + HEAP0; ++i)
1536 { 1875 {
1537 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1876 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1538 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1877 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1539 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1878 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1540 1879
1541 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1880 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1542 } 1881 }
1543} 1882}
1544 1883
1545static void noinline 1884static void noinline
1546array_verify (EV_P_ W *ws, int cnt) 1885array_verify (EV_P_ W *ws, int cnt)
1547{ 1886{
1548 while (cnt--) 1887 while (cnt--)
1549 { 1888 {
1550 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1889 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1551 verify_watcher (EV_A_ ws [cnt]); 1890 verify_watcher (EV_A_ ws [cnt]);
1552 } 1891 }
1553} 1892}
1554#endif 1893#endif
1555 1894
1895#if EV_FEATURE_API
1556void 1896void
1557ev_loop_verify (EV_P) 1897ev_verify (EV_P)
1558{ 1898{
1559#if EV_VERIFY 1899#if EV_VERIFY
1560 int i; 1900 int i;
1561 WL w; 1901 WL w;
1562 1902
1563 assert (activecnt >= -1); 1903 assert (activecnt >= -1);
1564 1904
1565 assert (fdchangemax >= fdchangecnt); 1905 assert (fdchangemax >= fdchangecnt);
1566 for (i = 0; i < fdchangecnt; ++i) 1906 for (i = 0; i < fdchangecnt; ++i)
1567 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1907 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1568 1908
1569 assert (anfdmax >= 0); 1909 assert (anfdmax >= 0);
1570 for (i = 0; i < anfdmax; ++i) 1910 for (i = 0; i < anfdmax; ++i)
1571 for (w = anfds [i].head; w; w = w->next) 1911 for (w = anfds [i].head; w; w = w->next)
1572 { 1912 {
1573 verify_watcher (EV_A_ (W)w); 1913 verify_watcher (EV_A_ (W)w);
1574 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1914 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1575 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1915 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1576 } 1916 }
1577 1917
1578 assert (timermax >= timercnt); 1918 assert (timermax >= timercnt);
1579 verify_heap (EV_A_ timers, timercnt); 1919 verify_heap (EV_A_ timers, timercnt);
1580 1920
1601#if EV_ASYNC_ENABLE 1941#if EV_ASYNC_ENABLE
1602 assert (asyncmax >= asynccnt); 1942 assert (asyncmax >= asynccnt);
1603 array_verify (EV_A_ (W *)asyncs, asynccnt); 1943 array_verify (EV_A_ (W *)asyncs, asynccnt);
1604#endif 1944#endif
1605 1945
1946#if EV_PREPARE_ENABLE
1606 assert (preparemax >= preparecnt); 1947 assert (preparemax >= preparecnt);
1607 array_verify (EV_A_ (W *)prepares, preparecnt); 1948 array_verify (EV_A_ (W *)prepares, preparecnt);
1949#endif
1608 1950
1951#if EV_CHECK_ENABLE
1609 assert (checkmax >= checkcnt); 1952 assert (checkmax >= checkcnt);
1610 array_verify (EV_A_ (W *)checks, checkcnt); 1953 array_verify (EV_A_ (W *)checks, checkcnt);
1954#endif
1611 1955
1612# if 0 1956# if 0
1957#if EV_CHILD_ENABLE
1613 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1958 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1614 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1959 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1960#endif
1615# endif 1961# endif
1616#endif 1962#endif
1617} 1963}
1618 1964#endif
1619#endif /* multiplicity */
1620 1965
1621#if EV_MULTIPLICITY 1966#if EV_MULTIPLICITY
1622struct ev_loop * 1967struct ev_loop *
1623ev_default_loop_init (unsigned int flags) 1968ev_default_loop_init (unsigned int flags)
1624#else 1969#else
1627#endif 1972#endif
1628{ 1973{
1629 if (!ev_default_loop_ptr) 1974 if (!ev_default_loop_ptr)
1630 { 1975 {
1631#if EV_MULTIPLICITY 1976#if EV_MULTIPLICITY
1632 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1977 EV_P = ev_default_loop_ptr = &default_loop_struct;
1633#else 1978#else
1634 ev_default_loop_ptr = 1; 1979 ev_default_loop_ptr = 1;
1635#endif 1980#endif
1636 1981
1637 loop_init (EV_A_ flags); 1982 loop_init (EV_A_ flags);
1638 1983
1639 if (ev_backend (EV_A)) 1984 if (ev_backend (EV_A))
1640 { 1985 {
1641#ifndef _WIN32 1986#if EV_CHILD_ENABLE
1642 ev_signal_init (&childev, childcb, SIGCHLD); 1987 ev_signal_init (&childev, childcb, SIGCHLD);
1643 ev_set_priority (&childev, EV_MAXPRI); 1988 ev_set_priority (&childev, EV_MAXPRI);
1644 ev_signal_start (EV_A_ &childev); 1989 ev_signal_start (EV_A_ &childev);
1645 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1990 ev_unref (EV_A); /* child watcher should not keep loop alive */
1646#endif 1991#endif
1654 1999
1655void 2000void
1656ev_default_destroy (void) 2001ev_default_destroy (void)
1657{ 2002{
1658#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
1659 struct ev_loop *loop = ev_default_loop_ptr; 2004 EV_P = ev_default_loop_ptr;
1660#endif 2005#endif
1661 2006
1662#ifndef _WIN32 2007 ev_default_loop_ptr = 0;
2008
2009#if EV_CHILD_ENABLE
1663 ev_ref (EV_A); /* child watcher */ 2010 ev_ref (EV_A); /* child watcher */
1664 ev_signal_stop (EV_A_ &childev); 2011 ev_signal_stop (EV_A_ &childev);
1665#endif 2012#endif
1666 2013
1667 loop_destroy (EV_A); 2014 loop_destroy (EV_A);
1669 2016
1670void 2017void
1671ev_default_fork (void) 2018ev_default_fork (void)
1672{ 2019{
1673#if EV_MULTIPLICITY 2020#if EV_MULTIPLICITY
1674 struct ev_loop *loop = ev_default_loop_ptr; 2021 EV_P = ev_default_loop_ptr;
1675#endif 2022#endif
1676 2023
1677 if (backend)
1678 postfork = 1; /* must be in line with ev_loop_fork */ 2024 postfork = 1; /* must be in line with ev_loop_fork */
1679} 2025}
1680 2026
1681/*****************************************************************************/ 2027/*****************************************************************************/
1682 2028
1683void 2029void
1684ev_invoke (EV_P_ void *w, int revents) 2030ev_invoke (EV_P_ void *w, int revents)
1685{ 2031{
1686 EV_CB_INVOKE ((W)w, revents); 2032 EV_CB_INVOKE ((W)w, revents);
1687} 2033}
1688 2034
1689void inline_speed 2035unsigned int
1690call_pending (EV_P) 2036ev_pending_count (EV_P)
2037{
2038 int pri;
2039 unsigned int count = 0;
2040
2041 for (pri = NUMPRI; pri--; )
2042 count += pendingcnt [pri];
2043
2044 return count;
2045}
2046
2047void noinline
2048ev_invoke_pending (EV_P)
1691{ 2049{
1692 int pri; 2050 int pri;
1693 2051
1694 for (pri = NUMPRI; pri--; ) 2052 for (pri = NUMPRI; pri--; )
1695 while (pendingcnt [pri]) 2053 while (pendingcnt [pri])
1696 { 2054 {
1697 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2055 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1698 2056
1699 if (expect_true (p->w))
1700 {
1701 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2057 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2058 /* ^ this is no longer true, as pending_w could be here */
1702 2059
1703 p->w->pending = 0; 2060 p->w->pending = 0;
1704 EV_CB_INVOKE (p->w, p->events); 2061 EV_CB_INVOKE (p->w, p->events);
1705 EV_FREQUENT_CHECK; 2062 EV_FREQUENT_CHECK;
1706 }
1707 } 2063 }
1708} 2064}
1709 2065
1710#if EV_IDLE_ENABLE 2066#if EV_IDLE_ENABLE
1711void inline_size 2067/* make idle watchers pending. this handles the "call-idle */
2068/* only when higher priorities are idle" logic */
2069inline_size void
1712idle_reify (EV_P) 2070idle_reify (EV_P)
1713{ 2071{
1714 if (expect_false (idleall)) 2072 if (expect_false (idleall))
1715 { 2073 {
1716 int pri; 2074 int pri;
1728 } 2086 }
1729 } 2087 }
1730} 2088}
1731#endif 2089#endif
1732 2090
1733void inline_size 2091/* make timers pending */
2092inline_size void
1734timers_reify (EV_P) 2093timers_reify (EV_P)
1735{ 2094{
1736 EV_FREQUENT_CHECK; 2095 EV_FREQUENT_CHECK;
1737 2096
1738 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2097 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1739 { 2098 {
1740 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2099 do
1741
1742 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1743
1744 /* first reschedule or stop timer */
1745 if (w->repeat)
1746 { 2100 {
2101 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2102
2103 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2104
2105 /* first reschedule or stop timer */
2106 if (w->repeat)
2107 {
1747 ev_at (w) += w->repeat; 2108 ev_at (w) += w->repeat;
1748 if (ev_at (w) < mn_now) 2109 if (ev_at (w) < mn_now)
1749 ev_at (w) = mn_now; 2110 ev_at (w) = mn_now;
1750 2111
1751 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2112 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1752 2113
1753 ANHE_at_cache (timers [HEAP0]); 2114 ANHE_at_cache (timers [HEAP0]);
1754 downheap (timers, timercnt, HEAP0); 2115 downheap (timers, timercnt, HEAP0);
2116 }
2117 else
2118 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2119
2120 EV_FREQUENT_CHECK;
2121 feed_reverse (EV_A_ (W)w);
1755 } 2122 }
1756 else 2123 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1757 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1758 2124
1759 EV_FREQUENT_CHECK; 2125 feed_reverse_done (EV_A_ EV_TIMER);
1760 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1761 } 2126 }
1762} 2127}
1763 2128
1764#if EV_PERIODIC_ENABLE 2129#if EV_PERIODIC_ENABLE
1765void inline_size 2130/* make periodics pending */
2131inline_size void
1766periodics_reify (EV_P) 2132periodics_reify (EV_P)
1767{ 2133{
1768 EV_FREQUENT_CHECK; 2134 EV_FREQUENT_CHECK;
1769 2135
1770 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2136 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1771 { 2137 {
1772 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2138 int feed_count = 0;
1773 2139
1774 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2140 do
1775
1776 /* first reschedule or stop timer */
1777 if (w->reschedule_cb)
1778 { 2141 {
2142 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2143
2144 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2145
2146 /* first reschedule or stop timer */
2147 if (w->reschedule_cb)
2148 {
1779 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2149 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780 2150
1781 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2151 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1782 2152
1783 ANHE_at_cache (periodics [HEAP0]); 2153 ANHE_at_cache (periodics [HEAP0]);
1784 downheap (periodics, periodiccnt, HEAP0); 2154 downheap (periodics, periodiccnt, HEAP0);
2155 }
2156 else if (w->interval)
2157 {
2158 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2159 /* if next trigger time is not sufficiently in the future, put it there */
2160 /* this might happen because of floating point inexactness */
2161 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2162 {
2163 ev_at (w) += w->interval;
2164
2165 /* if interval is unreasonably low we might still have a time in the past */
2166 /* so correct this. this will make the periodic very inexact, but the user */
2167 /* has effectively asked to get triggered more often than possible */
2168 if (ev_at (w) < ev_rt_now)
2169 ev_at (w) = ev_rt_now;
2170 }
2171
2172 ANHE_at_cache (periodics [HEAP0]);
2173 downheap (periodics, periodiccnt, HEAP0);
2174 }
2175 else
2176 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2177
2178 EV_FREQUENT_CHECK;
2179 feed_reverse (EV_A_ (W)w);
1785 } 2180 }
1786 else if (w->interval) 2181 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1787 {
1788 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 /* if next trigger time is not sufficiently in the future, put it there */
1790 /* this might happen because of floating point inexactness */
1791 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1792 {
1793 ev_at (w) += w->interval;
1794 2182
1795 /* if interval is unreasonably low we might still have a time in the past */
1796 /* so correct this. this will make the periodic very inexact, but the user */
1797 /* has effectively asked to get triggered more often than possible */
1798 if (ev_at (w) < ev_rt_now)
1799 ev_at (w) = ev_rt_now;
1800 }
1801
1802 ANHE_at_cache (periodics [HEAP0]);
1803 downheap (periodics, periodiccnt, HEAP0);
1804 }
1805 else
1806 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1807
1808 EV_FREQUENT_CHECK;
1809 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2183 feed_reverse_done (EV_A_ EV_PERIODIC);
1810 } 2184 }
1811} 2185}
1812 2186
2187/* simply recalculate all periodics */
2188/* TODO: maybe ensure that at least one event happens when jumping forward? */
1813static void noinline 2189static void noinline
1814periodics_reschedule (EV_P) 2190periodics_reschedule (EV_P)
1815{ 2191{
1816 int i; 2192 int i;
1817 2193
1830 2206
1831 reheap (periodics, periodiccnt); 2207 reheap (periodics, periodiccnt);
1832} 2208}
1833#endif 2209#endif
1834 2210
1835void inline_speed 2211/* adjust all timers by a given offset */
2212static void noinline
2213timers_reschedule (EV_P_ ev_tstamp adjust)
2214{
2215 int i;
2216
2217 for (i = 0; i < timercnt; ++i)
2218 {
2219 ANHE *he = timers + i + HEAP0;
2220 ANHE_w (*he)->at += adjust;
2221 ANHE_at_cache (*he);
2222 }
2223}
2224
2225/* fetch new monotonic and realtime times from the kernel */
2226/* also detect if there was a timejump, and act accordingly */
2227inline_speed void
1836time_update (EV_P_ ev_tstamp max_block) 2228time_update (EV_P_ ev_tstamp max_block)
1837{ 2229{
1838 int i;
1839
1840#if EV_USE_MONOTONIC 2230#if EV_USE_MONOTONIC
1841 if (expect_true (have_monotonic)) 2231 if (expect_true (have_monotonic))
1842 { 2232 {
2233 int i;
1843 ev_tstamp odiff = rtmn_diff; 2234 ev_tstamp odiff = rtmn_diff;
1844 2235
1845 mn_now = get_clock (); 2236 mn_now = get_clock ();
1846 2237
1847 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2238 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1873 ev_rt_now = ev_time (); 2264 ev_rt_now = ev_time ();
1874 mn_now = get_clock (); 2265 mn_now = get_clock ();
1875 now_floor = mn_now; 2266 now_floor = mn_now;
1876 } 2267 }
1877 2268
2269 /* no timer adjustment, as the monotonic clock doesn't jump */
2270 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878# if EV_PERIODIC_ENABLE 2271# if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A); 2272 periodics_reschedule (EV_A);
1880# endif 2273# endif
1881 /* no timer adjustment, as the monotonic clock doesn't jump */
1882 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1883 } 2274 }
1884 else 2275 else
1885#endif 2276#endif
1886 { 2277 {
1887 ev_rt_now = ev_time (); 2278 ev_rt_now = ev_time ();
1888 2279
1889 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2280 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1890 { 2281 {
2282 /* adjust timers. this is easy, as the offset is the same for all of them */
2283 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1891#if EV_PERIODIC_ENABLE 2284#if EV_PERIODIC_ENABLE
1892 periodics_reschedule (EV_A); 2285 periodics_reschedule (EV_A);
1893#endif 2286#endif
1894 /* adjust timers. this is easy, as the offset is the same for all of them */
1895 for (i = 0; i < timercnt; ++i)
1896 {
1897 ANHE *he = timers + i + HEAP0;
1898 ANHE_w (*he)->at += ev_rt_now - mn_now;
1899 ANHE_at_cache (*he);
1900 }
1901 } 2287 }
1902 2288
1903 mn_now = ev_rt_now; 2289 mn_now = ev_rt_now;
1904 } 2290 }
1905} 2291}
1906 2292
1907void 2293void
1908ev_ref (EV_P)
1909{
1910 ++activecnt;
1911}
1912
1913void
1914ev_unref (EV_P)
1915{
1916 --activecnt;
1917}
1918
1919void
1920ev_now_update (EV_P)
1921{
1922 time_update (EV_A_ 1e100);
1923}
1924
1925static int loop_done;
1926
1927void
1928ev_loop (EV_P_ int flags) 2294ev_loop (EV_P_ int flags)
1929{ 2295{
2296#if EV_FEATURE_API
2297 ++loop_depth;
2298#endif
2299
2300 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2301
1930 loop_done = EVUNLOOP_CANCEL; 2302 loop_done = EVUNLOOP_CANCEL;
1931 2303
1932 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2304 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1933 2305
1934 do 2306 do
1935 { 2307 {
1936#if EV_VERIFY >= 2 2308#if EV_VERIFY >= 2
1937 ev_loop_verify (EV_A); 2309 ev_verify (EV_A);
1938#endif 2310#endif
1939 2311
1940#ifndef _WIN32 2312#ifndef _WIN32
1941 if (expect_false (curpid)) /* penalise the forking check even more */ 2313 if (expect_false (curpid)) /* penalise the forking check even more */
1942 if (expect_false (getpid () != curpid)) 2314 if (expect_false (getpid () != curpid))
1950 /* we might have forked, so queue fork handlers */ 2322 /* we might have forked, so queue fork handlers */
1951 if (expect_false (postfork)) 2323 if (expect_false (postfork))
1952 if (forkcnt) 2324 if (forkcnt)
1953 { 2325 {
1954 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2326 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1955 call_pending (EV_A); 2327 EV_INVOKE_PENDING;
1956 } 2328 }
1957#endif 2329#endif
1958 2330
2331#if EV_PREPARE_ENABLE
1959 /* queue prepare watchers (and execute them) */ 2332 /* queue prepare watchers (and execute them) */
1960 if (expect_false (preparecnt)) 2333 if (expect_false (preparecnt))
1961 { 2334 {
1962 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2335 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1963 call_pending (EV_A); 2336 EV_INVOKE_PENDING;
1964 } 2337 }
2338#endif
1965 2339
1966 if (expect_false (!activecnt)) 2340 if (expect_false (loop_done))
1967 break; 2341 break;
1968 2342
1969 /* we might have forked, so reify kernel state if necessary */ 2343 /* we might have forked, so reify kernel state if necessary */
1970 if (expect_false (postfork)) 2344 if (expect_false (postfork))
1971 loop_fork (EV_A); 2345 loop_fork (EV_A);
1978 ev_tstamp waittime = 0.; 2352 ev_tstamp waittime = 0.;
1979 ev_tstamp sleeptime = 0.; 2353 ev_tstamp sleeptime = 0.;
1980 2354
1981 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2355 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1982 { 2356 {
2357 /* remember old timestamp for io_blocktime calculation */
2358 ev_tstamp prev_mn_now = mn_now;
2359
1983 /* update time to cancel out callback processing overhead */ 2360 /* update time to cancel out callback processing overhead */
1984 time_update (EV_A_ 1e100); 2361 time_update (EV_A_ 1e100);
1985 2362
1986 waittime = MAX_BLOCKTIME; 2363 waittime = MAX_BLOCKTIME;
1987 2364
1997 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2374 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1998 if (waittime > to) waittime = to; 2375 if (waittime > to) waittime = to;
1999 } 2376 }
2000#endif 2377#endif
2001 2378
2379 /* don't let timeouts decrease the waittime below timeout_blocktime */
2002 if (expect_false (waittime < timeout_blocktime)) 2380 if (expect_false (waittime < timeout_blocktime))
2003 waittime = timeout_blocktime; 2381 waittime = timeout_blocktime;
2004 2382
2005 sleeptime = waittime - backend_fudge; 2383 /* extra check because io_blocktime is commonly 0 */
2006
2007 if (expect_true (sleeptime > io_blocktime)) 2384 if (expect_false (io_blocktime))
2008 sleeptime = io_blocktime;
2009
2010 if (sleeptime)
2011 { 2385 {
2386 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2387
2388 if (sleeptime > waittime - backend_fudge)
2389 sleeptime = waittime - backend_fudge;
2390
2391 if (expect_true (sleeptime > 0.))
2392 {
2012 ev_sleep (sleeptime); 2393 ev_sleep (sleeptime);
2013 waittime -= sleeptime; 2394 waittime -= sleeptime;
2395 }
2014 } 2396 }
2015 } 2397 }
2016 2398
2399#if EV_FEATURE_API
2017 ++loop_count; 2400 ++loop_count;
2401#endif
2402 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2018 backend_poll (EV_A_ waittime); 2403 backend_poll (EV_A_ waittime);
2404 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2019 2405
2020 /* update ev_rt_now, do magic */ 2406 /* update ev_rt_now, do magic */
2021 time_update (EV_A_ waittime + sleeptime); 2407 time_update (EV_A_ waittime + sleeptime);
2022 } 2408 }
2023 2409
2030#if EV_IDLE_ENABLE 2416#if EV_IDLE_ENABLE
2031 /* queue idle watchers unless other events are pending */ 2417 /* queue idle watchers unless other events are pending */
2032 idle_reify (EV_A); 2418 idle_reify (EV_A);
2033#endif 2419#endif
2034 2420
2421#if EV_CHECK_ENABLE
2035 /* queue check watchers, to be executed first */ 2422 /* queue check watchers, to be executed first */
2036 if (expect_false (checkcnt)) 2423 if (expect_false (checkcnt))
2037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2424 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2425#endif
2038 2426
2039 call_pending (EV_A); 2427 EV_INVOKE_PENDING;
2040 } 2428 }
2041 while (expect_true ( 2429 while (expect_true (
2042 activecnt 2430 activecnt
2043 && !loop_done 2431 && !loop_done
2044 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2432 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2045 )); 2433 ));
2046 2434
2047 if (loop_done == EVUNLOOP_ONE) 2435 if (loop_done == EVUNLOOP_ONE)
2048 loop_done = EVUNLOOP_CANCEL; 2436 loop_done = EVUNLOOP_CANCEL;
2437
2438#if EV_FEATURE_API
2439 --loop_depth;
2440#endif
2049} 2441}
2050 2442
2051void 2443void
2052ev_unloop (EV_P_ int how) 2444ev_unloop (EV_P_ int how)
2053{ 2445{
2054 loop_done = how; 2446 loop_done = how;
2055} 2447}
2056 2448
2449void
2450ev_ref (EV_P)
2451{
2452 ++activecnt;
2453}
2454
2455void
2456ev_unref (EV_P)
2457{
2458 --activecnt;
2459}
2460
2461void
2462ev_now_update (EV_P)
2463{
2464 time_update (EV_A_ 1e100);
2465}
2466
2467void
2468ev_suspend (EV_P)
2469{
2470 ev_now_update (EV_A);
2471}
2472
2473void
2474ev_resume (EV_P)
2475{
2476 ev_tstamp mn_prev = mn_now;
2477
2478 ev_now_update (EV_A);
2479 timers_reschedule (EV_A_ mn_now - mn_prev);
2480#if EV_PERIODIC_ENABLE
2481 /* TODO: really do this? */
2482 periodics_reschedule (EV_A);
2483#endif
2484}
2485
2057/*****************************************************************************/ 2486/*****************************************************************************/
2487/* singly-linked list management, used when the expected list length is short */
2058 2488
2059void inline_size 2489inline_size void
2060wlist_add (WL *head, WL elem) 2490wlist_add (WL *head, WL elem)
2061{ 2491{
2062 elem->next = *head; 2492 elem->next = *head;
2063 *head = elem; 2493 *head = elem;
2064} 2494}
2065 2495
2066void inline_size 2496inline_size void
2067wlist_del (WL *head, WL elem) 2497wlist_del (WL *head, WL elem)
2068{ 2498{
2069 while (*head) 2499 while (*head)
2070 { 2500 {
2071 if (*head == elem) 2501 if (expect_true (*head == elem))
2072 { 2502 {
2073 *head = elem->next; 2503 *head = elem->next;
2074 return; 2504 break;
2075 } 2505 }
2076 2506
2077 head = &(*head)->next; 2507 head = &(*head)->next;
2078 } 2508 }
2079} 2509}
2080 2510
2081void inline_speed 2511/* internal, faster, version of ev_clear_pending */
2512inline_speed void
2082clear_pending (EV_P_ W w) 2513clear_pending (EV_P_ W w)
2083{ 2514{
2084 if (w->pending) 2515 if (w->pending)
2085 { 2516 {
2086 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2517 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2087 w->pending = 0; 2518 w->pending = 0;
2088 } 2519 }
2089} 2520}
2090 2521
2091int 2522int
2095 int pending = w_->pending; 2526 int pending = w_->pending;
2096 2527
2097 if (expect_true (pending)) 2528 if (expect_true (pending))
2098 { 2529 {
2099 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2530 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2531 p->w = (W)&pending_w;
2100 w_->pending = 0; 2532 w_->pending = 0;
2101 p->w = 0;
2102 return p->events; 2533 return p->events;
2103 } 2534 }
2104 else 2535 else
2105 return 0; 2536 return 0;
2106} 2537}
2107 2538
2108void inline_size 2539inline_size void
2109pri_adjust (EV_P_ W w) 2540pri_adjust (EV_P_ W w)
2110{ 2541{
2111 int pri = w->priority; 2542 int pri = ev_priority (w);
2112 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2543 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2113 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2544 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2114 w->priority = pri; 2545 ev_set_priority (w, pri);
2115} 2546}
2116 2547
2117void inline_speed 2548inline_speed void
2118ev_start (EV_P_ W w, int active) 2549ev_start (EV_P_ W w, int active)
2119{ 2550{
2120 pri_adjust (EV_A_ w); 2551 pri_adjust (EV_A_ w);
2121 w->active = active; 2552 w->active = active;
2122 ev_ref (EV_A); 2553 ev_ref (EV_A);
2123} 2554}
2124 2555
2125void inline_size 2556inline_size void
2126ev_stop (EV_P_ W w) 2557ev_stop (EV_P_ W w)
2127{ 2558{
2128 ev_unref (EV_A); 2559 ev_unref (EV_A);
2129 w->active = 0; 2560 w->active = 0;
2130} 2561}
2137 int fd = w->fd; 2568 int fd = w->fd;
2138 2569
2139 if (expect_false (ev_is_active (w))) 2570 if (expect_false (ev_is_active (w)))
2140 return; 2571 return;
2141 2572
2142 assert (("ev_io_start called with negative fd", fd >= 0)); 2573 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2574 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2143 2575
2144 EV_FREQUENT_CHECK; 2576 EV_FREQUENT_CHECK;
2145 2577
2146 ev_start (EV_A_ (W)w, 1); 2578 ev_start (EV_A_ (W)w, 1);
2147 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2579 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2148 wlist_add (&anfds[fd].head, (WL)w); 2580 wlist_add (&anfds[fd].head, (WL)w);
2149 2581
2150 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2582 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2151 w->events &= ~EV_IOFDSET; 2583 w->events &= ~EV__IOFDSET;
2152 2584
2153 EV_FREQUENT_CHECK; 2585 EV_FREQUENT_CHECK;
2154} 2586}
2155 2587
2156void noinline 2588void noinline
2158{ 2590{
2159 clear_pending (EV_A_ (W)w); 2591 clear_pending (EV_A_ (W)w);
2160 if (expect_false (!ev_is_active (w))) 2592 if (expect_false (!ev_is_active (w)))
2161 return; 2593 return;
2162 2594
2163 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2595 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2164 2596
2165 EV_FREQUENT_CHECK; 2597 EV_FREQUENT_CHECK;
2166 2598
2167 wlist_del (&anfds[w->fd].head, (WL)w); 2599 wlist_del (&anfds[w->fd].head, (WL)w);
2168 ev_stop (EV_A_ (W)w); 2600 ev_stop (EV_A_ (W)w);
2178 if (expect_false (ev_is_active (w))) 2610 if (expect_false (ev_is_active (w)))
2179 return; 2611 return;
2180 2612
2181 ev_at (w) += mn_now; 2613 ev_at (w) += mn_now;
2182 2614
2183 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2615 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2184 2616
2185 EV_FREQUENT_CHECK; 2617 EV_FREQUENT_CHECK;
2186 2618
2187 ++timercnt; 2619 ++timercnt;
2188 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2620 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2191 ANHE_at_cache (timers [ev_active (w)]); 2623 ANHE_at_cache (timers [ev_active (w)]);
2192 upheap (timers, ev_active (w)); 2624 upheap (timers, ev_active (w));
2193 2625
2194 EV_FREQUENT_CHECK; 2626 EV_FREQUENT_CHECK;
2195 2627
2196 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2628 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2197} 2629}
2198 2630
2199void noinline 2631void noinline
2200ev_timer_stop (EV_P_ ev_timer *w) 2632ev_timer_stop (EV_P_ ev_timer *w)
2201{ 2633{
2206 EV_FREQUENT_CHECK; 2638 EV_FREQUENT_CHECK;
2207 2639
2208 { 2640 {
2209 int active = ev_active (w); 2641 int active = ev_active (w);
2210 2642
2211 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2643 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2212 2644
2213 --timercnt; 2645 --timercnt;
2214 2646
2215 if (expect_true (active < timercnt + HEAP0)) 2647 if (expect_true (active < timercnt + HEAP0))
2216 { 2648 {
2217 timers [active] = timers [timercnt + HEAP0]; 2649 timers [active] = timers [timercnt + HEAP0];
2218 adjustheap (timers, timercnt, active); 2650 adjustheap (timers, timercnt, active);
2219 } 2651 }
2220 } 2652 }
2221 2653
2222 EV_FREQUENT_CHECK;
2223
2224 ev_at (w) -= mn_now; 2654 ev_at (w) -= mn_now;
2225 2655
2226 ev_stop (EV_A_ (W)w); 2656 ev_stop (EV_A_ (W)w);
2657
2658 EV_FREQUENT_CHECK;
2227} 2659}
2228 2660
2229void noinline 2661void noinline
2230ev_timer_again (EV_P_ ev_timer *w) 2662ev_timer_again (EV_P_ ev_timer *w)
2231{ 2663{
2249 } 2681 }
2250 2682
2251 EV_FREQUENT_CHECK; 2683 EV_FREQUENT_CHECK;
2252} 2684}
2253 2685
2686ev_tstamp
2687ev_timer_remaining (EV_P_ ev_timer *w)
2688{
2689 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2690}
2691
2254#if EV_PERIODIC_ENABLE 2692#if EV_PERIODIC_ENABLE
2255void noinline 2693void noinline
2256ev_periodic_start (EV_P_ ev_periodic *w) 2694ev_periodic_start (EV_P_ ev_periodic *w)
2257{ 2695{
2258 if (expect_false (ev_is_active (w))) 2696 if (expect_false (ev_is_active (w)))
2260 2698
2261 if (w->reschedule_cb) 2699 if (w->reschedule_cb)
2262 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2700 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2263 else if (w->interval) 2701 else if (w->interval)
2264 { 2702 {
2265 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2703 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2266 /* this formula differs from the one in periodic_reify because we do not always round up */ 2704 /* this formula differs from the one in periodic_reify because we do not always round up */
2267 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2705 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2268 } 2706 }
2269 else 2707 else
2270 ev_at (w) = w->offset; 2708 ev_at (w) = w->offset;
2278 ANHE_at_cache (periodics [ev_active (w)]); 2716 ANHE_at_cache (periodics [ev_active (w)]);
2279 upheap (periodics, ev_active (w)); 2717 upheap (periodics, ev_active (w));
2280 2718
2281 EV_FREQUENT_CHECK; 2719 EV_FREQUENT_CHECK;
2282 2720
2283 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2721 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2284} 2722}
2285 2723
2286void noinline 2724void noinline
2287ev_periodic_stop (EV_P_ ev_periodic *w) 2725ev_periodic_stop (EV_P_ ev_periodic *w)
2288{ 2726{
2293 EV_FREQUENT_CHECK; 2731 EV_FREQUENT_CHECK;
2294 2732
2295 { 2733 {
2296 int active = ev_active (w); 2734 int active = ev_active (w);
2297 2735
2298 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2736 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2299 2737
2300 --periodiccnt; 2738 --periodiccnt;
2301 2739
2302 if (expect_true (active < periodiccnt + HEAP0)) 2740 if (expect_true (active < periodiccnt + HEAP0))
2303 { 2741 {
2304 periodics [active] = periodics [periodiccnt + HEAP0]; 2742 periodics [active] = periodics [periodiccnt + HEAP0];
2305 adjustheap (periodics, periodiccnt, active); 2743 adjustheap (periodics, periodiccnt, active);
2306 } 2744 }
2307 } 2745 }
2308 2746
2309 EV_FREQUENT_CHECK;
2310
2311 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2312} 2750}
2313 2751
2314void noinline 2752void noinline
2315ev_periodic_again (EV_P_ ev_periodic *w) 2753ev_periodic_again (EV_P_ ev_periodic *w)
2316{ 2754{
2322 2760
2323#ifndef SA_RESTART 2761#ifndef SA_RESTART
2324# define SA_RESTART 0 2762# define SA_RESTART 0
2325#endif 2763#endif
2326 2764
2765#if EV_SIGNAL_ENABLE
2766
2327void noinline 2767void noinline
2328ev_signal_start (EV_P_ ev_signal *w) 2768ev_signal_start (EV_P_ ev_signal *w)
2329{ 2769{
2330#if EV_MULTIPLICITY
2331 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2332#endif
2333 if (expect_false (ev_is_active (w))) 2770 if (expect_false (ev_is_active (w)))
2334 return; 2771 return;
2335 2772
2336 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2773 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2337 2774
2338 evpipe_init (EV_A); 2775#if EV_MULTIPLICITY
2776 assert (("libev: a signal must not be attached to two different loops",
2777 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2339 2778
2340 EV_FREQUENT_CHECK; 2779 signals [w->signum - 1].loop = EV_A;
2780#endif
2341 2781
2782 EV_FREQUENT_CHECK;
2783
2784#if EV_USE_SIGNALFD
2785 if (sigfd == -2)
2342 { 2786 {
2343#ifndef _WIN32 2787 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2344 sigset_t full, prev; 2788 if (sigfd < 0 && errno == EINVAL)
2345 sigfillset (&full); 2789 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2346 sigprocmask (SIG_SETMASK, &full, &prev);
2347#endif
2348 2790
2349 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2791 if (sigfd >= 0)
2792 {
2793 fd_intern (sigfd); /* doing it twice will not hurt */
2350 2794
2351#ifndef _WIN32 2795 sigemptyset (&sigfd_set);
2352 sigprocmask (SIG_SETMASK, &prev, 0); 2796
2353#endif 2797 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2798 ev_set_priority (&sigfd_w, EV_MAXPRI);
2799 ev_io_start (EV_A_ &sigfd_w);
2800 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2801 }
2354 } 2802 }
2803
2804 if (sigfd >= 0)
2805 {
2806 /* TODO: check .head */
2807 sigaddset (&sigfd_set, w->signum);
2808 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2809
2810 signalfd (sigfd, &sigfd_set, 0);
2811 }
2812#endif
2355 2813
2356 ev_start (EV_A_ (W)w, 1); 2814 ev_start (EV_A_ (W)w, 1);
2357 wlist_add (&signals [w->signum - 1].head, (WL)w); 2815 wlist_add (&signals [w->signum - 1].head, (WL)w);
2358 2816
2359 if (!((WL)w)->next) 2817 if (!((WL)w)->next)
2818# if EV_USE_SIGNALFD
2819 if (sigfd < 0) /*TODO*/
2820# endif
2360 { 2821 {
2361#if _WIN32 2822# ifdef _WIN32
2823 evpipe_init (EV_A);
2824
2362 signal (w->signum, ev_sighandler); 2825 signal (w->signum, ev_sighandler);
2363#else 2826# else
2364 struct sigaction sa; 2827 struct sigaction sa;
2828
2829 evpipe_init (EV_A);
2830
2365 sa.sa_handler = ev_sighandler; 2831 sa.sa_handler = ev_sighandler;
2366 sigfillset (&sa.sa_mask); 2832 sigfillset (&sa.sa_mask);
2367 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2833 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2368 sigaction (w->signum, &sa, 0); 2834 sigaction (w->signum, &sa, 0);
2835
2836 sigemptyset (&sa.sa_mask);
2837 sigaddset (&sa.sa_mask, w->signum);
2838 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2369#endif 2839#endif
2370 } 2840 }
2371 2841
2372 EV_FREQUENT_CHECK; 2842 EV_FREQUENT_CHECK;
2373} 2843}
2374 2844
2375void noinline 2845void noinline
2383 2853
2384 wlist_del (&signals [w->signum - 1].head, (WL)w); 2854 wlist_del (&signals [w->signum - 1].head, (WL)w);
2385 ev_stop (EV_A_ (W)w); 2855 ev_stop (EV_A_ (W)w);
2386 2856
2387 if (!signals [w->signum - 1].head) 2857 if (!signals [w->signum - 1].head)
2858 {
2859#if EV_MULTIPLICITY
2860 signals [w->signum - 1].loop = 0; /* unattach from signal */
2861#endif
2862#if EV_USE_SIGNALFD
2863 if (sigfd >= 0)
2864 {
2865 sigset_t ss;
2866
2867 sigemptyset (&ss);
2868 sigaddset (&ss, w->signum);
2869 sigdelset (&sigfd_set, w->signum);
2870
2871 signalfd (sigfd, &sigfd_set, 0);
2872 sigprocmask (SIG_UNBLOCK, &ss, 0);
2873 }
2874 else
2875#endif
2388 signal (w->signum, SIG_DFL); 2876 signal (w->signum, SIG_DFL);
2877 }
2389 2878
2390 EV_FREQUENT_CHECK; 2879 EV_FREQUENT_CHECK;
2391} 2880}
2881
2882#endif
2883
2884#if EV_CHILD_ENABLE
2392 2885
2393void 2886void
2394ev_child_start (EV_P_ ev_child *w) 2887ev_child_start (EV_P_ ev_child *w)
2395{ 2888{
2396#if EV_MULTIPLICITY 2889#if EV_MULTIPLICITY
2397 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2890 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2398#endif 2891#endif
2399 if (expect_false (ev_is_active (w))) 2892 if (expect_false (ev_is_active (w)))
2400 return; 2893 return;
2401 2894
2402 EV_FREQUENT_CHECK; 2895 EV_FREQUENT_CHECK;
2403 2896
2404 ev_start (EV_A_ (W)w, 1); 2897 ev_start (EV_A_ (W)w, 1);
2405 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2898 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2406 2899
2407 EV_FREQUENT_CHECK; 2900 EV_FREQUENT_CHECK;
2408} 2901}
2409 2902
2410void 2903void
2414 if (expect_false (!ev_is_active (w))) 2907 if (expect_false (!ev_is_active (w)))
2415 return; 2908 return;
2416 2909
2417 EV_FREQUENT_CHECK; 2910 EV_FREQUENT_CHECK;
2418 2911
2419 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2912 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2420 ev_stop (EV_A_ (W)w); 2913 ev_stop (EV_A_ (W)w);
2421 2914
2422 EV_FREQUENT_CHECK; 2915 EV_FREQUENT_CHECK;
2423} 2916}
2917
2918#endif
2424 2919
2425#if EV_STAT_ENABLE 2920#if EV_STAT_ENABLE
2426 2921
2427# ifdef _WIN32 2922# ifdef _WIN32
2428# undef lstat 2923# undef lstat
2429# define lstat(a,b) _stati64 (a,b) 2924# define lstat(a,b) _stati64 (a,b)
2430# endif 2925# endif
2431 2926
2432#define DEF_STAT_INTERVAL 5.0074891 2927#define DEF_STAT_INTERVAL 5.0074891
2928#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2433#define MIN_STAT_INTERVAL 0.1074891 2929#define MIN_STAT_INTERVAL 0.1074891
2434 2930
2435static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2931static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2436 2932
2437#if EV_USE_INOTIFY 2933#if EV_USE_INOTIFY
2438# define EV_INOTIFY_BUFSIZE 8192 2934
2935/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2936# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2439 2937
2440static void noinline 2938static void noinline
2441infy_add (EV_P_ ev_stat *w) 2939infy_add (EV_P_ ev_stat *w)
2442{ 2940{
2443 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2941 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2444 2942
2445 if (w->wd < 0) 2943 if (w->wd >= 0)
2944 {
2945 struct statfs sfs;
2946
2947 /* now local changes will be tracked by inotify, but remote changes won't */
2948 /* unless the filesystem is known to be local, we therefore still poll */
2949 /* also do poll on <2.6.25, but with normal frequency */
2950
2951 if (!fs_2625)
2952 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2953 else if (!statfs (w->path, &sfs)
2954 && (sfs.f_type == 0x1373 /* devfs */
2955 || sfs.f_type == 0xEF53 /* ext2/3 */
2956 || sfs.f_type == 0x3153464a /* jfs */
2957 || sfs.f_type == 0x52654973 /* reiser3 */
2958 || sfs.f_type == 0x01021994 /* tempfs */
2959 || sfs.f_type == 0x58465342 /* xfs */))
2960 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2961 else
2962 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2446 { 2963 }
2447 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2964 else
2965 {
2966 /* can't use inotify, continue to stat */
2967 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2448 2968
2449 /* monitor some parent directory for speedup hints */ 2969 /* if path is not there, monitor some parent directory for speedup hints */
2450 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2970 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2451 /* but an efficiency issue only */ 2971 /* but an efficiency issue only */
2452 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2972 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2453 { 2973 {
2454 char path [4096]; 2974 char path [4096];
2455 strcpy (path, w->path); 2975 strcpy (path, w->path);
2459 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2979 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2460 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2980 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2461 2981
2462 char *pend = strrchr (path, '/'); 2982 char *pend = strrchr (path, '/');
2463 2983
2464 if (!pend) 2984 if (!pend || pend == path)
2465 break; /* whoops, no '/', complain to your admin */ 2985 break;
2466 2986
2467 *pend = 0; 2987 *pend = 0;
2468 w->wd = inotify_add_watch (fs_fd, path, mask); 2988 w->wd = inotify_add_watch (fs_fd, path, mask);
2469 } 2989 }
2470 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2990 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2471 } 2991 }
2472 } 2992 }
2473 else
2474 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2475 2993
2476 if (w->wd >= 0) 2994 if (w->wd >= 0)
2477 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2995 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2996
2997 /* now re-arm timer, if required */
2998 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2999 ev_timer_again (EV_A_ &w->timer);
3000 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2478} 3001}
2479 3002
2480static void noinline 3003static void noinline
2481infy_del (EV_P_ ev_stat *w) 3004infy_del (EV_P_ ev_stat *w)
2482{ 3005{
2485 3008
2486 if (wd < 0) 3009 if (wd < 0)
2487 return; 3010 return;
2488 3011
2489 w->wd = -2; 3012 w->wd = -2;
2490 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3013 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2491 wlist_del (&fs_hash [slot].head, (WL)w); 3014 wlist_del (&fs_hash [slot].head, (WL)w);
2492 3015
2493 /* remove this watcher, if others are watching it, they will rearm */ 3016 /* remove this watcher, if others are watching it, they will rearm */
2494 inotify_rm_watch (fs_fd, wd); 3017 inotify_rm_watch (fs_fd, wd);
2495} 3018}
2496 3019
2497static void noinline 3020static void noinline
2498infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3021infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2499{ 3022{
2500 if (slot < 0) 3023 if (slot < 0)
2501 /* overflow, need to check for all hahs slots */ 3024 /* overflow, need to check for all hash slots */
2502 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3025 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2503 infy_wd (EV_A_ slot, wd, ev); 3026 infy_wd (EV_A_ slot, wd, ev);
2504 else 3027 else
2505 { 3028 {
2506 WL w_; 3029 WL w_;
2507 3030
2508 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3031 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2509 { 3032 {
2510 ev_stat *w = (ev_stat *)w_; 3033 ev_stat *w = (ev_stat *)w_;
2511 w_ = w_->next; /* lets us remove this watcher and all before it */ 3034 w_ = w_->next; /* lets us remove this watcher and all before it */
2512 3035
2513 if (w->wd == wd || wd == -1) 3036 if (w->wd == wd || wd == -1)
2514 { 3037 {
2515 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3038 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2516 { 3039 {
3040 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2517 w->wd = -1; 3041 w->wd = -1;
2518 infy_add (EV_A_ w); /* re-add, no matter what */ 3042 infy_add (EV_A_ w); /* re-add, no matter what */
2519 } 3043 }
2520 3044
2521 stat_timer_cb (EV_A_ &w->timer, 0); 3045 stat_timer_cb (EV_A_ &w->timer, 0);
2526 3050
2527static void 3051static void
2528infy_cb (EV_P_ ev_io *w, int revents) 3052infy_cb (EV_P_ ev_io *w, int revents)
2529{ 3053{
2530 char buf [EV_INOTIFY_BUFSIZE]; 3054 char buf [EV_INOTIFY_BUFSIZE];
2531 struct inotify_event *ev = (struct inotify_event *)buf;
2532 int ofs; 3055 int ofs;
2533 int len = read (fs_fd, buf, sizeof (buf)); 3056 int len = read (fs_fd, buf, sizeof (buf));
2534 3057
2535 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3058 for (ofs = 0; ofs < len; )
3059 {
3060 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2536 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3061 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3062 ofs += sizeof (struct inotify_event) + ev->len;
3063 }
2537} 3064}
2538 3065
2539void inline_size 3066inline_size unsigned int
3067ev_linux_version (void)
3068{
3069 struct utsname buf;
3070 unsigned int v;
3071 int i;
3072 char *p = buf.release;
3073
3074 if (uname (&buf))
3075 return 0;
3076
3077 for (i = 3+1; --i; )
3078 {
3079 unsigned int c = 0;
3080
3081 for (;;)
3082 {
3083 if (*p >= '0' && *p <= '9')
3084 c = c * 10 + *p++ - '0';
3085 else
3086 {
3087 p += *p == '.';
3088 break;
3089 }
3090 }
3091
3092 v = (v << 8) | c;
3093 }
3094
3095 return v;
3096}
3097
3098inline_size void
3099ev_check_2625 (EV_P)
3100{
3101 /* kernels < 2.6.25 are borked
3102 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3103 */
3104 if (ev_linux_version () < 0x020619)
3105 return;
3106
3107 fs_2625 = 1;
3108}
3109
3110inline_size int
3111infy_newfd (void)
3112{
3113#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3114 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3115 if (fd >= 0)
3116 return fd;
3117#endif
3118 return inotify_init ();
3119}
3120
3121inline_size void
2540infy_init (EV_P) 3122infy_init (EV_P)
2541{ 3123{
2542 if (fs_fd != -2) 3124 if (fs_fd != -2)
2543 return; 3125 return;
2544 3126
3127 fs_fd = -1;
3128
3129 ev_check_2625 (EV_A);
3130
2545 fs_fd = inotify_init (); 3131 fs_fd = infy_newfd ();
2546 3132
2547 if (fs_fd >= 0) 3133 if (fs_fd >= 0)
2548 { 3134 {
3135 fd_intern (fs_fd);
2549 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3136 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2550 ev_set_priority (&fs_w, EV_MAXPRI); 3137 ev_set_priority (&fs_w, EV_MAXPRI);
2551 ev_io_start (EV_A_ &fs_w); 3138 ev_io_start (EV_A_ &fs_w);
3139 ev_unref (EV_A);
2552 } 3140 }
2553} 3141}
2554 3142
2555void inline_size 3143inline_size void
2556infy_fork (EV_P) 3144infy_fork (EV_P)
2557{ 3145{
2558 int slot; 3146 int slot;
2559 3147
2560 if (fs_fd < 0) 3148 if (fs_fd < 0)
2561 return; 3149 return;
2562 3150
3151 ev_ref (EV_A);
3152 ev_io_stop (EV_A_ &fs_w);
2563 close (fs_fd); 3153 close (fs_fd);
2564 fs_fd = inotify_init (); 3154 fs_fd = infy_newfd ();
2565 3155
3156 if (fs_fd >= 0)
3157 {
3158 fd_intern (fs_fd);
3159 ev_io_set (&fs_w, fs_fd, EV_READ);
3160 ev_io_start (EV_A_ &fs_w);
3161 ev_unref (EV_A);
3162 }
3163
2566 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3164 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2567 { 3165 {
2568 WL w_ = fs_hash [slot].head; 3166 WL w_ = fs_hash [slot].head;
2569 fs_hash [slot].head = 0; 3167 fs_hash [slot].head = 0;
2570 3168
2571 while (w_) 3169 while (w_)
2576 w->wd = -1; 3174 w->wd = -1;
2577 3175
2578 if (fs_fd >= 0) 3176 if (fs_fd >= 0)
2579 infy_add (EV_A_ w); /* re-add, no matter what */ 3177 infy_add (EV_A_ w); /* re-add, no matter what */
2580 else 3178 else
3179 {
3180 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3181 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2581 ev_timer_start (EV_A_ &w->timer); 3182 ev_timer_again (EV_A_ &w->timer);
3183 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3184 }
2582 } 3185 }
2583
2584 } 3186 }
2585} 3187}
2586 3188
2587#endif 3189#endif
2588 3190
2604static void noinline 3206static void noinline
2605stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3207stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2606{ 3208{
2607 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3209 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2608 3210
2609 /* we copy this here each the time so that */ 3211 ev_statdata prev = w->attr;
2610 /* prev has the old value when the callback gets invoked */
2611 w->prev = w->attr;
2612 ev_stat_stat (EV_A_ w); 3212 ev_stat_stat (EV_A_ w);
2613 3213
2614 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3214 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2615 if ( 3215 if (
2616 w->prev.st_dev != w->attr.st_dev 3216 prev.st_dev != w->attr.st_dev
2617 || w->prev.st_ino != w->attr.st_ino 3217 || prev.st_ino != w->attr.st_ino
2618 || w->prev.st_mode != w->attr.st_mode 3218 || prev.st_mode != w->attr.st_mode
2619 || w->prev.st_nlink != w->attr.st_nlink 3219 || prev.st_nlink != w->attr.st_nlink
2620 || w->prev.st_uid != w->attr.st_uid 3220 || prev.st_uid != w->attr.st_uid
2621 || w->prev.st_gid != w->attr.st_gid 3221 || prev.st_gid != w->attr.st_gid
2622 || w->prev.st_rdev != w->attr.st_rdev 3222 || prev.st_rdev != w->attr.st_rdev
2623 || w->prev.st_size != w->attr.st_size 3223 || prev.st_size != w->attr.st_size
2624 || w->prev.st_atime != w->attr.st_atime 3224 || prev.st_atime != w->attr.st_atime
2625 || w->prev.st_mtime != w->attr.st_mtime 3225 || prev.st_mtime != w->attr.st_mtime
2626 || w->prev.st_ctime != w->attr.st_ctime 3226 || prev.st_ctime != w->attr.st_ctime
2627 ) { 3227 ) {
3228 /* we only update w->prev on actual differences */
3229 /* in case we test more often than invoke the callback, */
3230 /* to ensure that prev is always different to attr */
3231 w->prev = prev;
3232
2628 #if EV_USE_INOTIFY 3233 #if EV_USE_INOTIFY
3234 if (fs_fd >= 0)
3235 {
2629 infy_del (EV_A_ w); 3236 infy_del (EV_A_ w);
2630 infy_add (EV_A_ w); 3237 infy_add (EV_A_ w);
2631 ev_stat_stat (EV_A_ w); /* avoid race... */ 3238 ev_stat_stat (EV_A_ w); /* avoid race... */
3239 }
2632 #endif 3240 #endif
2633 3241
2634 ev_feed_event (EV_A_ w, EV_STAT); 3242 ev_feed_event (EV_A_ w, EV_STAT);
2635 } 3243 }
2636} 3244}
2639ev_stat_start (EV_P_ ev_stat *w) 3247ev_stat_start (EV_P_ ev_stat *w)
2640{ 3248{
2641 if (expect_false (ev_is_active (w))) 3249 if (expect_false (ev_is_active (w)))
2642 return; 3250 return;
2643 3251
2644 /* since we use memcmp, we need to clear any padding data etc. */
2645 memset (&w->prev, 0, sizeof (ev_statdata));
2646 memset (&w->attr, 0, sizeof (ev_statdata));
2647
2648 ev_stat_stat (EV_A_ w); 3252 ev_stat_stat (EV_A_ w);
2649 3253
3254 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2650 if (w->interval < MIN_STAT_INTERVAL) 3255 w->interval = MIN_STAT_INTERVAL;
2651 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2652 3256
2653 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3257 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2654 ev_set_priority (&w->timer, ev_priority (w)); 3258 ev_set_priority (&w->timer, ev_priority (w));
2655 3259
2656#if EV_USE_INOTIFY 3260#if EV_USE_INOTIFY
2657 infy_init (EV_A); 3261 infy_init (EV_A);
2658 3262
2659 if (fs_fd >= 0) 3263 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); 3264 infy_add (EV_A_ w);
2661 else 3265 else
2662#endif 3266#endif
3267 {
2663 ev_timer_start (EV_A_ &w->timer); 3268 ev_timer_again (EV_A_ &w->timer);
3269 ev_unref (EV_A);
3270 }
2664 3271
2665 ev_start (EV_A_ (W)w, 1); 3272 ev_start (EV_A_ (W)w, 1);
2666 3273
2667 EV_FREQUENT_CHECK; 3274 EV_FREQUENT_CHECK;
2668} 3275}
2677 EV_FREQUENT_CHECK; 3284 EV_FREQUENT_CHECK;
2678 3285
2679#if EV_USE_INOTIFY 3286#if EV_USE_INOTIFY
2680 infy_del (EV_A_ w); 3287 infy_del (EV_A_ w);
2681#endif 3288#endif
3289
3290 if (ev_is_active (&w->timer))
3291 {
3292 ev_ref (EV_A);
2682 ev_timer_stop (EV_A_ &w->timer); 3293 ev_timer_stop (EV_A_ &w->timer);
3294 }
2683 3295
2684 ev_stop (EV_A_ (W)w); 3296 ev_stop (EV_A_ (W)w);
2685 3297
2686 EV_FREQUENT_CHECK; 3298 EV_FREQUENT_CHECK;
2687} 3299}
2732 3344
2733 EV_FREQUENT_CHECK; 3345 EV_FREQUENT_CHECK;
2734} 3346}
2735#endif 3347#endif
2736 3348
3349#if EV_PREPARE_ENABLE
2737void 3350void
2738ev_prepare_start (EV_P_ ev_prepare *w) 3351ev_prepare_start (EV_P_ ev_prepare *w)
2739{ 3352{
2740 if (expect_false (ev_is_active (w))) 3353 if (expect_false (ev_is_active (w)))
2741 return; 3354 return;
2767 3380
2768 ev_stop (EV_A_ (W)w); 3381 ev_stop (EV_A_ (W)w);
2769 3382
2770 EV_FREQUENT_CHECK; 3383 EV_FREQUENT_CHECK;
2771} 3384}
3385#endif
2772 3386
3387#if EV_CHECK_ENABLE
2773void 3388void
2774ev_check_start (EV_P_ ev_check *w) 3389ev_check_start (EV_P_ ev_check *w)
2775{ 3390{
2776 if (expect_false (ev_is_active (w))) 3391 if (expect_false (ev_is_active (w)))
2777 return; 3392 return;
2803 3418
2804 ev_stop (EV_A_ (W)w); 3419 ev_stop (EV_A_ (W)w);
2805 3420
2806 EV_FREQUENT_CHECK; 3421 EV_FREQUENT_CHECK;
2807} 3422}
3423#endif
2808 3424
2809#if EV_EMBED_ENABLE 3425#if EV_EMBED_ENABLE
2810void noinline 3426void noinline
2811ev_embed_sweep (EV_P_ ev_embed *w) 3427ev_embed_sweep (EV_P_ ev_embed *w)
2812{ 3428{
2828embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3444embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2829{ 3445{
2830 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3446 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2831 3447
2832 { 3448 {
2833 struct ev_loop *loop = w->other; 3449 EV_P = w->other;
2834 3450
2835 while (fdchangecnt) 3451 while (fdchangecnt)
2836 { 3452 {
2837 fd_reify (EV_A); 3453 fd_reify (EV_A);
2838 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3454 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2843static void 3459static void
2844embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 3460embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2845{ 3461{
2846 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3462 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2847 3463
3464 ev_embed_stop (EV_A_ w);
3465
2848 { 3466 {
2849 struct ev_loop *loop = w->other; 3467 EV_P = w->other;
2850 3468
2851 ev_loop_fork (EV_A); 3469 ev_loop_fork (EV_A);
3470 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2852 } 3471 }
3472
3473 ev_embed_start (EV_A_ w);
2853} 3474}
2854 3475
2855#if 0 3476#if 0
2856static void 3477static void
2857embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3478embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2865{ 3486{
2866 if (expect_false (ev_is_active (w))) 3487 if (expect_false (ev_is_active (w)))
2867 return; 3488 return;
2868 3489
2869 { 3490 {
2870 struct ev_loop *loop = w->other; 3491 EV_P = w->other;
2871 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3492 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2872 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3493 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2873 } 3494 }
2874 3495
2875 EV_FREQUENT_CHECK; 3496 EV_FREQUENT_CHECK;
2876 3497
2902 3523
2903 ev_io_stop (EV_A_ &w->io); 3524 ev_io_stop (EV_A_ &w->io);
2904 ev_prepare_stop (EV_A_ &w->prepare); 3525 ev_prepare_stop (EV_A_ &w->prepare);
2905 ev_fork_stop (EV_A_ &w->fork); 3526 ev_fork_stop (EV_A_ &w->fork);
2906 3527
3528 ev_stop (EV_A_ (W)w);
3529
2907 EV_FREQUENT_CHECK; 3530 EV_FREQUENT_CHECK;
2908} 3531}
2909#endif 3532#endif
2910 3533
2911#if EV_FORK_ENABLE 3534#if EV_FORK_ENABLE
2987 3610
2988void 3611void
2989ev_async_send (EV_P_ ev_async *w) 3612ev_async_send (EV_P_ ev_async *w)
2990{ 3613{
2991 w->sent = 1; 3614 w->sent = 1;
2992 evpipe_write (EV_A_ &gotasync); 3615 evpipe_write (EV_A_ &async_pending);
2993} 3616}
2994#endif 3617#endif
2995 3618
2996/*****************************************************************************/ 3619/*****************************************************************************/
2997 3620
3037{ 3660{
3038 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3661 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3039 3662
3040 if (expect_false (!once)) 3663 if (expect_false (!once))
3041 { 3664 {
3042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3665 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3043 return; 3666 return;
3044 } 3667 }
3045 3668
3046 once->cb = cb; 3669 once->cb = cb;
3047 once->arg = arg; 3670 once->arg = arg;
3059 ev_timer_set (&once->to, timeout, 0.); 3682 ev_timer_set (&once->to, timeout, 0.);
3060 ev_timer_start (EV_A_ &once->to); 3683 ev_timer_start (EV_A_ &once->to);
3061 } 3684 }
3062} 3685}
3063 3686
3687/*****************************************************************************/
3688
3689#if EV_WALK_ENABLE
3690void
3691ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3692{
3693 int i, j;
3694 ev_watcher_list *wl, *wn;
3695
3696 if (types & (EV_IO | EV_EMBED))
3697 for (i = 0; i < anfdmax; ++i)
3698 for (wl = anfds [i].head; wl; )
3699 {
3700 wn = wl->next;
3701
3702#if EV_EMBED_ENABLE
3703 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3704 {
3705 if (types & EV_EMBED)
3706 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3707 }
3708 else
3709#endif
3710#if EV_USE_INOTIFY
3711 if (ev_cb ((ev_io *)wl) == infy_cb)
3712 ;
3713 else
3714#endif
3715 if ((ev_io *)wl != &pipe_w)
3716 if (types & EV_IO)
3717 cb (EV_A_ EV_IO, wl);
3718
3719 wl = wn;
3720 }
3721
3722 if (types & (EV_TIMER | EV_STAT))
3723 for (i = timercnt + HEAP0; i-- > HEAP0; )
3724#if EV_STAT_ENABLE
3725 /*TODO: timer is not always active*/
3726 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3727 {
3728 if (types & EV_STAT)
3729 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3730 }
3731 else
3732#endif
3733 if (types & EV_TIMER)
3734 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3735
3736#if EV_PERIODIC_ENABLE
3737 if (types & EV_PERIODIC)
3738 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3739 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3740#endif
3741
3742#if EV_IDLE_ENABLE
3743 if (types & EV_IDLE)
3744 for (j = NUMPRI; i--; )
3745 for (i = idlecnt [j]; i--; )
3746 cb (EV_A_ EV_IDLE, idles [j][i]);
3747#endif
3748
3749#if EV_FORK_ENABLE
3750 if (types & EV_FORK)
3751 for (i = forkcnt; i--; )
3752 if (ev_cb (forks [i]) != embed_fork_cb)
3753 cb (EV_A_ EV_FORK, forks [i]);
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757 if (types & EV_ASYNC)
3758 for (i = asynccnt; i--; )
3759 cb (EV_A_ EV_ASYNC, asyncs [i]);
3760#endif
3761
3762#if EV_PREPARE_ENABLE
3763 if (types & EV_PREPARE)
3764 for (i = preparecnt; i--; )
3765# if EV_EMBED_ENABLE
3766 if (ev_cb (prepares [i]) != embed_prepare_cb)
3767# endif
3768 cb (EV_A_ EV_PREPARE, prepares [i]);
3769#endif
3770
3771#if EV_CHECK_ENABLE
3772 if (types & EV_CHECK)
3773 for (i = checkcnt; i--; )
3774 cb (EV_A_ EV_CHECK, checks [i]);
3775#endif
3776
3777#if EV_SIGNAL_ENABLE
3778 if (types & EV_SIGNAL)
3779 for (i = 0; i < EV_NSIG - 1; ++i)
3780 for (wl = signals [i].head; wl; )
3781 {
3782 wn = wl->next;
3783 cb (EV_A_ EV_SIGNAL, wl);
3784 wl = wn;
3785 }
3786#endif
3787
3788#if EV_CHILD_ENABLE
3789 if (types & EV_CHILD)
3790 for (i = (EV_PID_HASHSIZE); i--; )
3791 for (wl = childs [i]; wl; )
3792 {
3793 wn = wl->next;
3794 cb (EV_A_ EV_CHILD, wl);
3795 wl = wn;
3796 }
3797#endif
3798/* EV_STAT 0x00001000 /* stat data changed */
3799/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3800}
3801#endif
3802
3064#if EV_MULTIPLICITY 3803#if EV_MULTIPLICITY
3065 #include "ev_wrap.h" 3804 #include "ev_wrap.h"
3066#endif 3805#endif
3067 3806
3068#ifdef __cplusplus 3807#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines