ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.280 by root, Sat Mar 14 04:45:39 2009 UTC vs.
Revision 1.348 by root, Fri Oct 15 22:48:25 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
77# endif 79# endif
78# endif 80# endif
79 81
82# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
83# else 86# else
87# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
86# endif 98# endif
87 99
100# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 103# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 104# else
105# undef EV_USE_POLL
100# define EV_USE_POLL 0 106# define EV_USE_POLL 0
101# endif
102# endif 107# endif
103 108
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
107# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
110# endif 116# endif
111 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
118# endif 125# endif
119 126
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
123# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
126# endif 134# endif
127 135
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
134# endif 143# endif
135 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 147# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
142# endif 161# endif
143 162
144#endif 163#endif
145 164
146#include <math.h> 165#include <math.h>
147#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
148#include <fcntl.h> 168#include <fcntl.h>
149#include <stddef.h> 169#include <stddef.h>
150 170
151#include <stdio.h> 171#include <stdio.h>
152 172
153#include <assert.h> 173#include <assert.h>
154#include <errno.h> 174#include <errno.h>
155#include <sys/types.h> 175#include <sys/types.h>
156#include <time.h> 176#include <time.h>
177#include <limits.h>
157 178
158#include <signal.h> 179#include <signal.h>
159 180
160#ifdef EV_H 181#ifdef EV_H
161# include EV_H 182# include EV_H
172# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
173# include <windows.h> 194# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
176# endif 197# endif
198# undef EV_AVOID_STDIO
177#endif 199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
178 208
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
180 238
181#ifndef EV_USE_CLOCK_SYSCALL 239#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 240# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 242# else
185# define EV_USE_CLOCK_SYSCALL 0 243# define EV_USE_CLOCK_SYSCALL 0
186# endif 244# endif
187#endif 245#endif
188 246
189#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 249# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 250# else
193# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
194# endif 252# endif
195#endif 253#endif
196 254
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 257#endif
200 258
201#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 260# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 261# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 262# else
205# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
206# endif 264# endif
207#endif 265#endif
208 266
209#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 269#endif
212 270
213#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
214# ifdef _WIN32 272# ifdef _WIN32
215# define EV_USE_POLL 0 273# define EV_USE_POLL 0
216# else 274# else
217# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 276# endif
219#endif 277#endif
220 278
221#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 282# else
225# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
226# endif 284# endif
227#endif 285#endif
228 286
234# define EV_USE_PORT 0 292# define EV_USE_PORT 0
235#endif 293#endif
236 294
237#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 297# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 298# else
241# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
242# endif 300# endif
243#endif 301#endif
244 302
245#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 305#endif
252 306
253#ifndef EV_INOTIFY_HASHSIZE 307#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 309#endif
260 310
261#ifndef EV_USE_EVENTFD 311#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 313# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 314# else
265# define EV_USE_EVENTFD 0 315# define EV_USE_EVENTFD 0
316# endif
317#endif
318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
266# endif 324# endif
267#endif 325#endif
268 326
269#if 0 /* debugging */ 327#if 0 /* debugging */
270# define EV_VERIFY 3 328# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 329# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 330# define EV_HEAP_CACHE_AT 1
273#endif 331#endif
274 332
275#ifndef EV_VERIFY 333#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 335#endif
278 336
279#ifndef EV_USE_4HEAP 337#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 338# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 339#endif
282 340
283#ifndef EV_HEAP_CACHE_AT 341#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
285#endif 357#endif
286 358
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
288 366
289#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
292#endif 370#endif
320 398
321#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 400# include <winsock.h>
323#endif 401#endif
324 402
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 403#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
337# ifdef __cplusplus 416# ifdef __cplusplus
338extern "C" { 417extern "C" {
339# endif 418# endif
340int eventfd (unsigned int initval, int flags); 419int (eventfd) (unsigned int initval, int flags);
341# ifdef __cplusplus 420# ifdef __cplusplus
342} 421}
343# endif 422# endif
344#endif 423#endif
345 424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
346/**/ 453/**/
347 454
348#if EV_VERIFY >= 3 455#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 456# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 457#else
351# define EV_FREQUENT_CHECK do { } while (0) 458# define EV_FREQUENT_CHECK do { } while (0)
352#endif 459#endif
353 460
354/* 461/*
361 */ 468 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363 470
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 471#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 472#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 473
474#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
475#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
367 476
368#if __GNUC__ >= 4 477#if __GNUC__ >= 4
369# define expect(expr,value) __builtin_expect ((expr),(value)) 478# define expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline)) 479# define noinline __attribute__ ((noinline))
371#else 480#else
378 487
379#define expect_false(expr) expect ((expr) != 0, 0) 488#define expect_false(expr) expect ((expr) != 0, 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 489#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline 490#define inline_size static inline
382 491
383#if EV_MINIMAL 492#if EV_FEATURE_CODE
493# define inline_speed static inline
494#else
384# define inline_speed static noinline 495# define inline_speed static noinline
496#endif
497
498#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499
500#if EV_MINPRI == EV_MAXPRI
501# define ABSPRI(w) (((W)w), 0)
385#else 502#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 503# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504#endif
391 505
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 506#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 507#define EMPTY2(a,b) /* used to suppress some warnings */
394 508
395typedef ev_watcher *W; 509typedef ev_watcher *W;
399#define ev_active(w) ((W)(w))->active 513#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 514#define ev_at(w) ((WT)(w))->at
401 515
402#if EV_USE_REALTIME 516#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 517/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 518/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 519static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 520#endif
407 521
408#if EV_USE_MONOTONIC 522#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 523static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 524#endif
411 525
526#ifndef EV_FD_TO_WIN32_HANDLE
527# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528#endif
529#ifndef EV_WIN32_HANDLE_TO_FD
530# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531#endif
532#ifndef EV_WIN32_CLOSE_FD
533# define EV_WIN32_CLOSE_FD(fd) close (fd)
534#endif
535
412#ifdef _WIN32 536#ifdef _WIN32
413# include "ev_win32.c" 537# include "ev_win32.c"
414#endif 538#endif
415 539
416/*****************************************************************************/ 540/*****************************************************************************/
541
542#if EV_AVOID_STDIO
543static void noinline
544ev_printerr (const char *msg)
545{
546 write (STDERR_FILENO, msg, strlen (msg));
547}
548#endif
417 549
418static void (*syserr_cb)(const char *msg); 550static void (*syserr_cb)(const char *msg);
419 551
420void 552void
421ev_set_syserr_cb (void (*cb)(const char *msg)) 553ev_set_syserr_cb (void (*cb)(const char *msg))
431 563
432 if (syserr_cb) 564 if (syserr_cb)
433 syserr_cb (msg); 565 syserr_cb (msg);
434 else 566 else
435 { 567 {
568#if EV_AVOID_STDIO
569 const char *err = strerror (errno);
570
571 ev_printerr (msg);
572 ev_printerr (": ");
573 ev_printerr (err);
574 ev_printerr ("\n");
575#else
436 perror (msg); 576 perror (msg);
577#endif
437 abort (); 578 abort ();
438 } 579 }
439} 580}
440 581
441static void * 582static void *
442ev_realloc_emul (void *ptr, long size) 583ev_realloc_emul (void *ptr, long size)
443{ 584{
585#if __GLIBC__
586 return realloc (ptr, size);
587#else
444 /* some systems, notably openbsd and darwin, fail to properly 588 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 589 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 590 * the single unix specification, so work around them here.
447 */ 591 */
448 592
449 if (size) 593 if (size)
450 return realloc (ptr, size); 594 return realloc (ptr, size);
451 595
452 free (ptr); 596 free (ptr);
453 return 0; 597 return 0;
598#endif
454} 599}
455 600
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 601static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457 602
458void 603void
466{ 611{
467 ptr = alloc (ptr, size); 612 ptr = alloc (ptr, size);
468 613
469 if (!ptr && size) 614 if (!ptr && size)
470 { 615 {
616#if EV_AVOID_STDIO
617 ev_printerr ("libev: memory allocation failed, aborting.\n");
618#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 619 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620#endif
472 abort (); 621 abort ();
473 } 622 }
474 623
475 return ptr; 624 return ptr;
476} 625}
478#define ev_malloc(size) ev_realloc (0, (size)) 627#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 628#define ev_free(ptr) ev_realloc ((ptr), 0)
480 629
481/*****************************************************************************/ 630/*****************************************************************************/
482 631
632/* set in reify when reification needed */
633#define EV_ANFD_REIFY 1
634
635/* file descriptor info structure */
483typedef struct 636typedef struct
484{ 637{
485 WL head; 638 WL head;
486 unsigned char events; 639 unsigned char events; /* the events watched for */
487 unsigned char reify; 640 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 641 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 642 unsigned char unused;
490#if EV_USE_EPOLL 643#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 644 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 645#endif
493#if EV_SELECT_IS_WINSOCKET 646#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle; 647 SOCKET handle;
495#endif 648#endif
496} ANFD; 649} ANFD;
497 650
651/* stores the pending event set for a given watcher */
498typedef struct 652typedef struct
499{ 653{
500 W w; 654 W w;
501 int events; 655 int events; /* the pending event set for the given watcher */
502} ANPENDING; 656} ANPENDING;
503 657
504#if EV_USE_INOTIFY 658#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 659/* hash table entry per inotify-id */
506typedef struct 660typedef struct
509} ANFS; 663} ANFS;
510#endif 664#endif
511 665
512/* Heap Entry */ 666/* Heap Entry */
513#if EV_HEAP_CACHE_AT 667#if EV_HEAP_CACHE_AT
668 /* a heap element */
514 typedef struct { 669 typedef struct {
515 ev_tstamp at; 670 ev_tstamp at;
516 WT w; 671 WT w;
517 } ANHE; 672 } ANHE;
518 673
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 674 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 675 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 676 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 677#else
678 /* a heap element */
523 typedef WT ANHE; 679 typedef WT ANHE;
524 680
525 #define ANHE_w(he) (he) 681 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 682 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 683 #define ANHE_at_cache(he)
551 707
552 static int ev_default_loop_ptr; 708 static int ev_default_loop_ptr;
553 709
554#endif 710#endif
555 711
712#if EV_FEATURE_API
713# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715# define EV_INVOKE_PENDING invoke_cb (EV_A)
716#else
717# define EV_RELEASE_CB (void)0
718# define EV_ACQUIRE_CB (void)0
719# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720#endif
721
722#define EVUNLOOP_RECURSE 0x80
723
556/*****************************************************************************/ 724/*****************************************************************************/
557 725
726#ifndef EV_HAVE_EV_TIME
558ev_tstamp 727ev_tstamp
559ev_time (void) 728ev_time (void)
560{ 729{
561#if EV_USE_REALTIME 730#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 731 if (expect_true (have_realtime))
569 738
570 struct timeval tv; 739 struct timeval tv;
571 gettimeofday (&tv, 0); 740 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 741 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 742}
743#endif
574 744
575ev_tstamp inline_size 745inline_size ev_tstamp
576get_clock (void) 746get_clock (void)
577{ 747{
578#if EV_USE_MONOTONIC 748#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 749 if (expect_true (have_monotonic))
580 { 750 {
601 if (delay > 0.) 771 if (delay > 0.)
602 { 772 {
603#if EV_USE_NANOSLEEP 773#if EV_USE_NANOSLEEP
604 struct timespec ts; 774 struct timespec ts;
605 775
606 ts.tv_sec = (time_t)delay; 776 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 777 nanosleep (&ts, 0);
610#elif defined(_WIN32) 778#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3)); 779 Sleep ((unsigned long)(delay * 1e3));
612#else 780#else
613 struct timeval tv; 781 struct timeval tv;
614 782
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 783 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 784 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 785 /* by older ones */
786 EV_TS_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 787 select (0, 0, 0, 0, &tv);
622#endif 788#endif
623 } 789 }
624} 790}
625 791
626/*****************************************************************************/ 792/*****************************************************************************/
627 793
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 794#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 795
630int inline_size 796/* find a suitable new size for the given array, */
797/* hopefully by rounding to a nice-to-malloc size */
798inline_size int
631array_nextsize (int elem, int cur, int cnt) 799array_nextsize (int elem, int cur, int cnt)
632{ 800{
633 int ncur = cur + 1; 801 int ncur = cur + 1;
634 802
635 do 803 do
680#define array_free(stem, idx) \ 848#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 849 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 850
683/*****************************************************************************/ 851/*****************************************************************************/
684 852
853/* dummy callback for pending events */
854static void noinline
855pendingcb (EV_P_ ev_prepare *w, int revents)
856{
857}
858
685void noinline 859void noinline
686ev_feed_event (EV_P_ void *w, int revents) 860ev_feed_event (EV_P_ void *w, int revents)
687{ 861{
688 W w_ = (W)w; 862 W w_ = (W)w;
689 int pri = ABSPRI (w_); 863 int pri = ABSPRI (w_);
697 pendings [pri][w_->pending - 1].w = w_; 871 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 872 pendings [pri][w_->pending - 1].events = revents;
699 } 873 }
700} 874}
701 875
702void inline_speed 876inline_speed void
877feed_reverse (EV_P_ W w)
878{
879 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880 rfeeds [rfeedcnt++] = w;
881}
882
883inline_size void
884feed_reverse_done (EV_P_ int revents)
885{
886 do
887 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888 while (rfeedcnt);
889}
890
891inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 892queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 893{
705 int i; 894 int i;
706 895
707 for (i = 0; i < eventcnt; ++i) 896 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 897 ev_feed_event (EV_A_ events [i], type);
709} 898}
710 899
711/*****************************************************************************/ 900/*****************************************************************************/
712 901
713void inline_speed 902inline_speed void
714fd_event (EV_P_ int fd, int revents) 903fd_event_nocheck (EV_P_ int fd, int revents)
715{ 904{
716 ANFD *anfd = anfds + fd; 905 ANFD *anfd = anfds + fd;
717 ev_io *w; 906 ev_io *w;
718 907
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 912 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 913 ev_feed_event (EV_A_ (W)w, ev);
725 } 914 }
726} 915}
727 916
917/* do not submit kernel events for fds that have reify set */
918/* because that means they changed while we were polling for new events */
919inline_speed void
920fd_event (EV_P_ int fd, int revents)
921{
922 ANFD *anfd = anfds + fd;
923
924 if (expect_true (!anfd->reify))
925 fd_event_nocheck (EV_A_ fd, revents);
926}
927
728void 928void
729ev_feed_fd_event (EV_P_ int fd, int revents) 929ev_feed_fd_event (EV_P_ int fd, int revents)
730{ 930{
731 if (fd >= 0 && fd < anfdmax) 931 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 932 fd_event_nocheck (EV_A_ fd, revents);
733} 933}
734 934
735void inline_size 935/* make sure the external fd watch events are in-sync */
936/* with the kernel/libev internal state */
937inline_size void
736fd_reify (EV_P) 938fd_reify (EV_P)
737{ 939{
738 int i; 940 int i;
739 941
740 for (i = 0; i < fdchangecnt; ++i) 942 for (i = 0; i < fdchangecnt; ++i)
750 952
751#if EV_SELECT_IS_WINSOCKET 953#if EV_SELECT_IS_WINSOCKET
752 if (events) 954 if (events)
753 { 955 {
754 unsigned long arg; 956 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 957 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
758 anfd->handle = _get_osfhandle (fd);
759 #endif
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 958 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
761 } 959 }
762#endif 960#endif
763 961
764 { 962 {
766 unsigned char o_reify = anfd->reify; 964 unsigned char o_reify = anfd->reify;
767 965
768 anfd->reify = 0; 966 anfd->reify = 0;
769 anfd->events = events; 967 anfd->events = events;
770 968
771 if (o_events != events || o_reify & EV_IOFDSET) 969 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 970 backend_modify (EV_A_ fd, o_events, events);
773 } 971 }
774 } 972 }
775 973
776 fdchangecnt = 0; 974 fdchangecnt = 0;
777} 975}
778 976
779void inline_size 977/* something about the given fd changed */
978inline_size void
780fd_change (EV_P_ int fd, int flags) 979fd_change (EV_P_ int fd, int flags)
781{ 980{
782 unsigned char reify = anfds [fd].reify; 981 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 982 anfds [fd].reify |= flags;
784 983
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 987 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 988 fdchanges [fdchangecnt - 1] = fd;
790 } 989 }
791} 990}
792 991
793void inline_speed 992/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
993inline_speed void
794fd_kill (EV_P_ int fd) 994fd_kill (EV_P_ int fd)
795{ 995{
796 ev_io *w; 996 ev_io *w;
797 997
798 while ((w = (ev_io *)anfds [fd].head)) 998 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 1000 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1001 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 1002 }
803} 1003}
804 1004
805int inline_size 1005/* check whether the given fd is actually valid, for error recovery */
1006inline_size int
806fd_valid (int fd) 1007fd_valid (int fd)
807{ 1008{
808#ifdef _WIN32 1009#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 1010 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 1011#else
811 return fcntl (fd, F_GETFD) != -1; 1012 return fcntl (fd, F_GETFD) != -1;
812#endif 1013#endif
813} 1014}
814 1015
832 1033
833 for (fd = anfdmax; fd--; ) 1034 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 1035 if (anfds [fd].events)
835 { 1036 {
836 fd_kill (EV_A_ fd); 1037 fd_kill (EV_A_ fd);
837 return; 1038 break;
838 } 1039 }
839} 1040}
840 1041
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 1042/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 1043static void noinline
847 for (fd = 0; fd < anfdmax; ++fd) 1048 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 1049 if (anfds [fd].events)
849 { 1050 {
850 anfds [fd].events = 0; 1051 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 1052 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1053 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 1054 }
854} 1055}
855 1056
1057/* used to prepare libev internal fd's */
1058/* this is not fork-safe */
1059inline_speed void
1060fd_intern (int fd)
1061{
1062#ifdef _WIN32
1063 unsigned long arg = 1;
1064 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1065#else
1066 fcntl (fd, F_SETFD, FD_CLOEXEC);
1067 fcntl (fd, F_SETFL, O_NONBLOCK);
1068#endif
1069}
1070
856/*****************************************************************************/ 1071/*****************************************************************************/
857 1072
858/* 1073/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not 1074 * the heap functions want a real array index. array index 0 is guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1075 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree. 1076 * the branching factor of the d-tree.
862 */ 1077 */
863 1078
864/* 1079/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1088#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1089#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 1090#define UPHEAP_DONE(p,k) ((p) == (k))
876 1091
877/* away from the root */ 1092/* away from the root */
878void inline_speed 1093inline_speed void
879downheap (ANHE *heap, int N, int k) 1094downheap (ANHE *heap, int N, int k)
880{ 1095{
881 ANHE he = heap [k]; 1096 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 1097 ANHE *E = heap + N + HEAP0;
883 1098
923#define HEAP0 1 1138#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 1139#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 1140#define UPHEAP_DONE(p,k) (!(p))
926 1141
927/* away from the root */ 1142/* away from the root */
928void inline_speed 1143inline_speed void
929downheap (ANHE *heap, int N, int k) 1144downheap (ANHE *heap, int N, int k)
930{ 1145{
931 ANHE he = heap [k]; 1146 ANHE he = heap [k];
932 1147
933 for (;;) 1148 for (;;)
934 { 1149 {
935 int c = k << 1; 1150 int c = k << 1;
936 1151
937 if (c > N + HEAP0 - 1) 1152 if (c >= N + HEAP0)
938 break; 1153 break;
939 1154
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1155 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 1156 ? 1 : 0;
942 1157
953 ev_active (ANHE_w (he)) = k; 1168 ev_active (ANHE_w (he)) = k;
954} 1169}
955#endif 1170#endif
956 1171
957/* towards the root */ 1172/* towards the root */
958void inline_speed 1173inline_speed void
959upheap (ANHE *heap, int k) 1174upheap (ANHE *heap, int k)
960{ 1175{
961 ANHE he = heap [k]; 1176 ANHE he = heap [k];
962 1177
963 for (;;) 1178 for (;;)
974 1189
975 heap [k] = he; 1190 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1191 ev_active (ANHE_w (he)) = k;
977} 1192}
978 1193
979void inline_size 1194/* move an element suitably so it is in a correct place */
1195inline_size void
980adjustheap (ANHE *heap, int N, int k) 1196adjustheap (ANHE *heap, int N, int k)
981{ 1197{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1198 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 1199 upheap (heap, k);
984 else 1200 else
985 downheap (heap, N, k); 1201 downheap (heap, N, k);
986} 1202}
987 1203
988/* rebuild the heap: this function is used only once and executed rarely */ 1204/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1205inline_size void
990reheap (ANHE *heap, int N) 1206reheap (ANHE *heap, int N)
991{ 1207{
992 int i; 1208 int i;
993 1209
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1210 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1213 upheap (heap, i + HEAP0);
998} 1214}
999 1215
1000/*****************************************************************************/ 1216/*****************************************************************************/
1001 1217
1218/* associate signal watchers to a signal signal */
1002typedef struct 1219typedef struct
1003{ 1220{
1221 EV_ATOMIC_T pending;
1222#if EV_MULTIPLICITY
1223 EV_P;
1224#endif
1004 WL head; 1225 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 1226} ANSIG;
1007 1227
1008static ANSIG *signals; 1228static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 1229
1013/*****************************************************************************/ 1230/*****************************************************************************/
1014 1231
1015void inline_speed 1232#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 1233
1027static void noinline 1234static void noinline
1028evpipe_init (EV_P) 1235evpipe_init (EV_P)
1029{ 1236{
1030 if (!ev_is_active (&pipeev)) 1237 if (!ev_is_active (&pipe_w))
1031 { 1238 {
1032#if EV_USE_EVENTFD 1239# if EV_USE_EVENTFD
1240 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1241 if (evfd < 0 && errno == EINVAL)
1033 if ((evfd = eventfd (0, 0)) >= 0) 1242 evfd = eventfd (0, 0);
1243
1244 if (evfd >= 0)
1034 { 1245 {
1035 evpipe [0] = -1; 1246 evpipe [0] = -1;
1036 fd_intern (evfd); 1247 fd_intern (evfd); /* doing it twice doesn't hurt */
1037 ev_io_set (&pipeev, evfd, EV_READ); 1248 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1249 }
1039 else 1250 else
1040#endif 1251# endif
1041 { 1252 {
1042 while (pipe (evpipe)) 1253 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1254 ev_syserr ("(libev) error creating signal/async pipe");
1044 1255
1045 fd_intern (evpipe [0]); 1256 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1257 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1258 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1259 }
1049 1260
1050 ev_io_start (EV_A_ &pipeev); 1261 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1262 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1263 }
1053} 1264}
1054 1265
1055void inline_size 1266inline_size void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1267evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1268{
1058 if (!*flag) 1269 if (!*flag)
1059 { 1270 {
1060 int old_errno = errno; /* save errno because write might clobber it */ 1271 int old_errno = errno; /* save errno because write might clobber it */
1272 char dummy;
1061 1273
1062 *flag = 1; 1274 *flag = 1;
1063 1275
1064#if EV_USE_EVENTFD 1276#if EV_USE_EVENTFD
1065 if (evfd >= 0) 1277 if (evfd >= 0)
1067 uint64_t counter = 1; 1279 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t)); 1280 write (evfd, &counter, sizeof (uint64_t));
1069 } 1281 }
1070 else 1282 else
1071#endif 1283#endif
1284 /* win32 people keep sending patches that change this write() to send() */
1285 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1286 /* so when you think this write should be a send instead, please find out */
1287 /* where your send() is from - it's definitely not the microsoft send, and */
1288 /* tell me. thank you. */
1072 write (evpipe [1], &old_errno, 1); 1289 write (evpipe [1], &dummy, 1);
1073 1290
1074 errno = old_errno; 1291 errno = old_errno;
1075 } 1292 }
1076} 1293}
1077 1294
1295/* called whenever the libev signal pipe */
1296/* got some events (signal, async) */
1078static void 1297static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1298pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1299{
1300 int i;
1301
1081#if EV_USE_EVENTFD 1302#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1303 if (evfd >= 0)
1083 { 1304 {
1084 uint64_t counter; 1305 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t)); 1306 read (evfd, &counter, sizeof (uint64_t));
1086 } 1307 }
1087 else 1308 else
1088#endif 1309#endif
1089 { 1310 {
1090 char dummy; 1311 char dummy;
1312 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1091 read (evpipe [0], &dummy, 1); 1313 read (evpipe [0], &dummy, 1);
1092 } 1314 }
1093 1315
1094 if (gotsig && ev_is_default_loop (EV_A)) 1316 if (sig_pending)
1095 { 1317 {
1096 int signum; 1318 sig_pending = 0;
1097 gotsig = 0;
1098 1319
1099 for (signum = signalmax; signum--; ) 1320 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 1321 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 1322 ev_feed_signal_event (EV_A_ i + 1);
1102 } 1323 }
1103 1324
1104#if EV_ASYNC_ENABLE 1325#if EV_ASYNC_ENABLE
1105 if (gotasync) 1326 if (async_pending)
1106 { 1327 {
1107 int i; 1328 async_pending = 0;
1108 gotasync = 0;
1109 1329
1110 for (i = asynccnt; i--; ) 1330 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 1331 if (asyncs [i]->sent)
1112 { 1332 {
1113 asyncs [i]->sent = 0; 1333 asyncs [i]->sent = 0;
1121 1341
1122static void 1342static void
1123ev_sighandler (int signum) 1343ev_sighandler (int signum)
1124{ 1344{
1125#if EV_MULTIPLICITY 1345#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 1346 EV_P = signals [signum - 1].loop;
1127#endif 1347#endif
1128 1348
1129#if _WIN32 1349#ifdef _WIN32
1130 signal (signum, ev_sighandler); 1350 signal (signum, ev_sighandler);
1131#endif 1351#endif
1132 1352
1133 signals [signum - 1].gotsig = 1; 1353 signals [signum - 1].pending = 1;
1134 evpipe_write (EV_A_ &gotsig); 1354 evpipe_write (EV_A_ &sig_pending);
1135} 1355}
1136 1356
1137void noinline 1357void noinline
1138ev_feed_signal_event (EV_P_ int signum) 1358ev_feed_signal_event (EV_P_ int signum)
1139{ 1359{
1140 WL w; 1360 WL w;
1141 1361
1362 if (expect_false (signum <= 0 || signum > EV_NSIG))
1363 return;
1364
1365 --signum;
1366
1142#if EV_MULTIPLICITY 1367#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1368 /* it is permissible to try to feed a signal to the wrong loop */
1144#endif 1369 /* or, likely more useful, feeding a signal nobody is waiting for */
1145 1370
1146 --signum; 1371 if (expect_false (signals [signum].loop != EV_A))
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 1372 return;
1373#endif
1150 1374
1151 signals [signum].gotsig = 0; 1375 signals [signum].pending = 0;
1152 1376
1153 for (w = signals [signum].head; w; w = w->next) 1377 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1378 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 1379}
1156 1380
1381#if EV_USE_SIGNALFD
1382static void
1383sigfdcb (EV_P_ ev_io *iow, int revents)
1384{
1385 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1386
1387 for (;;)
1388 {
1389 ssize_t res = read (sigfd, si, sizeof (si));
1390
1391 /* not ISO-C, as res might be -1, but works with SuS */
1392 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1393 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1394
1395 if (res < (ssize_t)sizeof (si))
1396 break;
1397 }
1398}
1399#endif
1400
1401#endif
1402
1157/*****************************************************************************/ 1403/*****************************************************************************/
1158 1404
1405#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 1406static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 1407
1163static ev_signal childev; 1408static ev_signal childev;
1164 1409
1165#ifndef WIFCONTINUED 1410#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 1411# define WIFCONTINUED(status) 0
1167#endif 1412#endif
1168 1413
1169void inline_speed 1414/* handle a single child status event */
1415inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 1416child_reap (EV_P_ int chain, int pid, int status)
1171{ 1417{
1172 ev_child *w; 1418 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1419 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 1420
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1421 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 1422 {
1177 if ((w->pid == pid || !w->pid) 1423 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 1424 && (!traced || (w->flags & 1)))
1179 { 1425 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1426 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 1433
1188#ifndef WCONTINUED 1434#ifndef WCONTINUED
1189# define WCONTINUED 0 1435# define WCONTINUED 0
1190#endif 1436#endif
1191 1437
1438/* called on sigchld etc., calls waitpid */
1192static void 1439static void
1193childcb (EV_P_ ev_signal *sw, int revents) 1440childcb (EV_P_ ev_signal *sw, int revents)
1194{ 1441{
1195 int pid, status; 1442 int pid, status;
1196 1443
1204 /* make sure we are called again until all children have been reaped */ 1451 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 1452 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1453 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 1454
1208 child_reap (EV_A_ pid, pid, status); 1455 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 1456 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1457 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 1458}
1212 1459
1213#endif 1460#endif
1214 1461
1281#ifdef __APPLE__ 1528#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 1529 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 1530 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 1531 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 1532#endif
1533#ifdef __FreeBSD__
1534 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1535#endif
1286 1536
1287 return flags; 1537 return flags;
1288} 1538}
1289 1539
1290unsigned int 1540unsigned int
1303ev_backend (EV_P) 1553ev_backend (EV_P)
1304{ 1554{
1305 return backend; 1555 return backend;
1306} 1556}
1307 1557
1558#if EV_FEATURE_API
1308unsigned int 1559unsigned int
1309ev_loop_count (EV_P) 1560ev_iteration (EV_P)
1310{ 1561{
1311 return loop_count; 1562 return loop_count;
1312} 1563}
1313 1564
1565unsigned int
1566ev_depth (EV_P)
1567{
1568 return loop_depth;
1569}
1570
1314void 1571void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1572ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{ 1573{
1317 io_blocktime = interval; 1574 io_blocktime = interval;
1318} 1575}
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1578ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{ 1579{
1323 timeout_blocktime = interval; 1580 timeout_blocktime = interval;
1324} 1581}
1325 1582
1583void
1584ev_set_userdata (EV_P_ void *data)
1585{
1586 userdata = data;
1587}
1588
1589void *
1590ev_userdata (EV_P)
1591{
1592 return userdata;
1593}
1594
1595void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1596{
1597 invoke_cb = invoke_pending_cb;
1598}
1599
1600void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1601{
1602 release_cb = release;
1603 acquire_cb = acquire;
1604}
1605#endif
1606
1607/* initialise a loop structure, must be zero-initialised */
1326static void noinline 1608static void noinline
1327loop_init (EV_P_ unsigned int flags) 1609loop_init (EV_P_ unsigned int flags)
1328{ 1610{
1329 if (!backend) 1611 if (!backend)
1330 { 1612 {
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1628 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 1629 have_monotonic = 1;
1348 } 1630 }
1349#endif 1631#endif
1350 1632
1633 /* pid check not overridable via env */
1634#ifndef _WIN32
1635 if (flags & EVFLAG_FORKCHECK)
1636 curpid = getpid ();
1637#endif
1638
1639 if (!(flags & EVFLAG_NOENV)
1640 && !enable_secure ()
1641 && getenv ("LIBEV_FLAGS"))
1642 flags = atoi (getenv ("LIBEV_FLAGS"));
1643
1351 ev_rt_now = ev_time (); 1644 ev_rt_now = ev_time ();
1352 mn_now = get_clock (); 1645 mn_now = get_clock ();
1353 now_floor = mn_now; 1646 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now; 1647 rtmn_diff = ev_rt_now - mn_now;
1648#if EV_FEATURE_API
1649 invoke_cb = ev_invoke_pending;
1650#endif
1355 1651
1356 io_blocktime = 0.; 1652 io_blocktime = 0.;
1357 timeout_blocktime = 0.; 1653 timeout_blocktime = 0.;
1358 backend = 0; 1654 backend = 0;
1359 backend_fd = -1; 1655 backend_fd = -1;
1360 gotasync = 0; 1656 sig_pending = 0;
1657#if EV_ASYNC_ENABLE
1658 async_pending = 0;
1659#endif
1361#if EV_USE_INOTIFY 1660#if EV_USE_INOTIFY
1362 fs_fd = -2; 1661 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1363#endif 1662#endif
1364 1663#if EV_USE_SIGNALFD
1365 /* pid check not overridable via env */ 1664 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif 1665#endif
1370
1371 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 1666
1376 if (!(flags & 0x0000ffffU)) 1667 if (!(flags & 0x0000ffffU))
1377 flags |= ev_recommended_backends (); 1668 flags |= ev_recommended_backends ();
1378 1669
1379#if EV_USE_PORT 1670#if EV_USE_PORT
1390#endif 1681#endif
1391#if EV_USE_SELECT 1682#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1683 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 1684#endif
1394 1685
1686 ev_prepare_init (&pending_w, pendingcb);
1687
1688#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 1689 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 1690 ev_set_priority (&pipe_w, EV_MAXPRI);
1691#endif
1397 } 1692 }
1398} 1693}
1399 1694
1695/* free up a loop structure */
1400static void noinline 1696static void noinline
1401loop_destroy (EV_P) 1697loop_destroy (EV_P)
1402{ 1698{
1403 int i; 1699 int i;
1404 1700
1405 if (ev_is_active (&pipeev)) 1701 if (ev_is_active (&pipe_w))
1406 { 1702 {
1407 ev_ref (EV_A); /* signal watcher */ 1703 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 1704 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 1705
1410#if EV_USE_EVENTFD 1706#if EV_USE_EVENTFD
1411 if (evfd >= 0) 1707 if (evfd >= 0)
1412 close (evfd); 1708 close (evfd);
1413#endif 1709#endif
1414 1710
1415 if (evpipe [0] >= 0) 1711 if (evpipe [0] >= 0)
1416 { 1712 {
1417 close (evpipe [0]); 1713 EV_WIN32_CLOSE_FD (evpipe [0]);
1418 close (evpipe [1]); 1714 EV_WIN32_CLOSE_FD (evpipe [1]);
1419 } 1715 }
1420 } 1716 }
1717
1718#if EV_USE_SIGNALFD
1719 if (ev_is_active (&sigfd_w))
1720 close (sigfd);
1721#endif
1421 1722
1422#if EV_USE_INOTIFY 1723#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 1724 if (fs_fd >= 0)
1424 close (fs_fd); 1725 close (fs_fd);
1425#endif 1726#endif
1449#if EV_IDLE_ENABLE 1750#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 1751 array_free (idle, [i]);
1451#endif 1752#endif
1452 } 1753 }
1453 1754
1454 ev_free (anfds); anfdmax = 0; 1755 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 1756
1456 /* have to use the microsoft-never-gets-it-right macro */ 1757 /* have to use the microsoft-never-gets-it-right macro */
1758 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 1759 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 1760 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 1761#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 1762 array_free (periodic, EMPTY);
1461#endif 1763#endif
1470 1772
1471 backend = 0; 1773 backend = 0;
1472} 1774}
1473 1775
1474#if EV_USE_INOTIFY 1776#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 1777inline_size void infy_fork (EV_P);
1476#endif 1778#endif
1477 1779
1478void inline_size 1780inline_size void
1479loop_fork (EV_P) 1781loop_fork (EV_P)
1480{ 1782{
1481#if EV_USE_PORT 1783#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1784 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 1785#endif
1489#endif 1791#endif
1490#if EV_USE_INOTIFY 1792#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 1793 infy_fork (EV_A);
1492#endif 1794#endif
1493 1795
1494 if (ev_is_active (&pipeev)) 1796 if (ev_is_active (&pipe_w))
1495 { 1797 {
1496 /* this "locks" the handlers against writing to the pipe */ 1798 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */ 1799 /* while we modify the fd vars */
1498 gotsig = 1; 1800 sig_pending = 1;
1499#if EV_ASYNC_ENABLE 1801#if EV_ASYNC_ENABLE
1500 gotasync = 1; 1802 async_pending = 1;
1501#endif 1803#endif
1502 1804
1503 ev_ref (EV_A); 1805 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 1806 ev_io_stop (EV_A_ &pipe_w);
1505 1807
1506#if EV_USE_EVENTFD 1808#if EV_USE_EVENTFD
1507 if (evfd >= 0) 1809 if (evfd >= 0)
1508 close (evfd); 1810 close (evfd);
1509#endif 1811#endif
1510 1812
1511 if (evpipe [0] >= 0) 1813 if (evpipe [0] >= 0)
1512 { 1814 {
1513 close (evpipe [0]); 1815 EV_WIN32_CLOSE_FD (evpipe [0]);
1514 close (evpipe [1]); 1816 EV_WIN32_CLOSE_FD (evpipe [1]);
1515 } 1817 }
1516 1818
1819#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1517 evpipe_init (EV_A); 1820 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 1821 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 1822 pipecb (EV_A_ &pipe_w, EV_READ);
1823#endif
1520 } 1824 }
1521 1825
1522 postfork = 0; 1826 postfork = 0;
1523} 1827}
1524 1828
1525#if EV_MULTIPLICITY 1829#if EV_MULTIPLICITY
1526 1830
1527struct ev_loop * 1831struct ev_loop *
1528ev_loop_new (unsigned int flags) 1832ev_loop_new (unsigned int flags)
1529{ 1833{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1834 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 1835
1532 memset (loop, 0, sizeof (struct ev_loop)); 1836 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 1837 loop_init (EV_A_ flags);
1535 1838
1536 if (ev_backend (EV_A)) 1839 if (ev_backend (EV_A))
1537 return loop; 1840 return EV_A;
1538 1841
1539 return 0; 1842 return 0;
1540} 1843}
1541 1844
1542void 1845void
1549void 1852void
1550ev_loop_fork (EV_P) 1853ev_loop_fork (EV_P)
1551{ 1854{
1552 postfork = 1; /* must be in line with ev_default_fork */ 1855 postfork = 1; /* must be in line with ev_default_fork */
1553} 1856}
1857#endif /* multiplicity */
1554 1858
1555#if EV_VERIFY 1859#if EV_VERIFY
1556static void noinline 1860static void noinline
1557verify_watcher (EV_P_ W w) 1861verify_watcher (EV_P_ W w)
1558{ 1862{
1586 verify_watcher (EV_A_ ws [cnt]); 1890 verify_watcher (EV_A_ ws [cnt]);
1587 } 1891 }
1588} 1892}
1589#endif 1893#endif
1590 1894
1895#if EV_FEATURE_API
1591void 1896void
1592ev_loop_verify (EV_P) 1897ev_verify (EV_P)
1593{ 1898{
1594#if EV_VERIFY 1899#if EV_VERIFY
1595 int i; 1900 int i;
1596 WL w; 1901 WL w;
1597 1902
1636#if EV_ASYNC_ENABLE 1941#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 1942 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 1943 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 1944#endif
1640 1945
1946#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 1947 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 1948 array_verify (EV_A_ (W *)prepares, preparecnt);
1949#endif
1643 1950
1951#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 1952 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 1953 array_verify (EV_A_ (W *)checks, checkcnt);
1954#endif
1646 1955
1647# if 0 1956# if 0
1957#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1958 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1959 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1960#endif
1650# endif 1961# endif
1651#endif 1962#endif
1652} 1963}
1653 1964#endif
1654#endif /* multiplicity */
1655 1965
1656#if EV_MULTIPLICITY 1966#if EV_MULTIPLICITY
1657struct ev_loop * 1967struct ev_loop *
1658ev_default_loop_init (unsigned int flags) 1968ev_default_loop_init (unsigned int flags)
1659#else 1969#else
1662#endif 1972#endif
1663{ 1973{
1664 if (!ev_default_loop_ptr) 1974 if (!ev_default_loop_ptr)
1665 { 1975 {
1666#if EV_MULTIPLICITY 1976#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1977 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 1978#else
1669 ev_default_loop_ptr = 1; 1979 ev_default_loop_ptr = 1;
1670#endif 1980#endif
1671 1981
1672 loop_init (EV_A_ flags); 1982 loop_init (EV_A_ flags);
1673 1983
1674 if (ev_backend (EV_A)) 1984 if (ev_backend (EV_A))
1675 { 1985 {
1676#ifndef _WIN32 1986#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 1987 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 1988 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 1989 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1990 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 1991#endif
1689 1999
1690void 2000void
1691ev_default_destroy (void) 2001ev_default_destroy (void)
1692{ 2002{
1693#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
1694 struct ev_loop *loop = ev_default_loop_ptr; 2004 EV_P = ev_default_loop_ptr;
1695#endif 2005#endif
1696 2006
1697 ev_default_loop_ptr = 0; 2007 ev_default_loop_ptr = 0;
1698 2008
1699#ifndef _WIN32 2009#if EV_CHILD_ENABLE
1700 ev_ref (EV_A); /* child watcher */ 2010 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev); 2011 ev_signal_stop (EV_A_ &childev);
1702#endif 2012#endif
1703 2013
1704 loop_destroy (EV_A); 2014 loop_destroy (EV_A);
1706 2016
1707void 2017void
1708ev_default_fork (void) 2018ev_default_fork (void)
1709{ 2019{
1710#if EV_MULTIPLICITY 2020#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr; 2021 EV_P = ev_default_loop_ptr;
1712#endif 2022#endif
1713 2023
1714 postfork = 1; /* must be in line with ev_loop_fork */ 2024 postfork = 1; /* must be in line with ev_loop_fork */
1715} 2025}
1716 2026
1720ev_invoke (EV_P_ void *w, int revents) 2030ev_invoke (EV_P_ void *w, int revents)
1721{ 2031{
1722 EV_CB_INVOKE ((W)w, revents); 2032 EV_CB_INVOKE ((W)w, revents);
1723} 2033}
1724 2034
1725void inline_speed 2035unsigned int
1726call_pending (EV_P) 2036ev_pending_count (EV_P)
2037{
2038 int pri;
2039 unsigned int count = 0;
2040
2041 for (pri = NUMPRI; pri--; )
2042 count += pendingcnt [pri];
2043
2044 return count;
2045}
2046
2047void noinline
2048ev_invoke_pending (EV_P)
1727{ 2049{
1728 int pri; 2050 int pri;
1729 2051
1730 for (pri = NUMPRI; pri--; ) 2052 for (pri = NUMPRI; pri--; )
1731 while (pendingcnt [pri]) 2053 while (pendingcnt [pri])
1732 { 2054 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2055 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734 2056
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 2057 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2058 /* ^ this is no longer true, as pending_w could be here */
1738 2059
1739 p->w->pending = 0; 2060 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 2061 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 2062 EV_FREQUENT_CHECK;
1742 }
1743 } 2063 }
1744} 2064}
1745 2065
1746#if EV_IDLE_ENABLE 2066#if EV_IDLE_ENABLE
1747void inline_size 2067/* make idle watchers pending. this handles the "call-idle */
2068/* only when higher priorities are idle" logic */
2069inline_size void
1748idle_reify (EV_P) 2070idle_reify (EV_P)
1749{ 2071{
1750 if (expect_false (idleall)) 2072 if (expect_false (idleall))
1751 { 2073 {
1752 int pri; 2074 int pri;
1764 } 2086 }
1765 } 2087 }
1766} 2088}
1767#endif 2089#endif
1768 2090
1769void inline_size 2091/* make timers pending */
2092inline_size void
1770timers_reify (EV_P) 2093timers_reify (EV_P)
1771{ 2094{
1772 EV_FREQUENT_CHECK; 2095 EV_FREQUENT_CHECK;
1773 2096
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2097 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 2098 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2099 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 2100 {
2101 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2102
2103 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2104
2105 /* first reschedule or stop timer */
2106 if (w->repeat)
2107 {
1783 ev_at (w) += w->repeat; 2108 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 2109 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 2110 ev_at (w) = mn_now;
1786 2111
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2112 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 2113
1789 ANHE_at_cache (timers [HEAP0]); 2114 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 2115 downheap (timers, timercnt, HEAP0);
2116 }
2117 else
2118 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2119
2120 EV_FREQUENT_CHECK;
2121 feed_reverse (EV_A_ (W)w);
1791 } 2122 }
1792 else 2123 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 2124
1795 EV_FREQUENT_CHECK; 2125 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 2126 }
1798} 2127}
1799 2128
1800#if EV_PERIODIC_ENABLE 2129#if EV_PERIODIC_ENABLE
1801void inline_size 2130/* make periodics pending */
2131inline_size void
1802periodics_reify (EV_P) 2132periodics_reify (EV_P)
1803{ 2133{
1804 EV_FREQUENT_CHECK; 2134 EV_FREQUENT_CHECK;
1805 2135
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2136 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 2137 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2138 int feed_count = 0;
1809 2139
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2140 do
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 2141 {
2142 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2143
2144 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2145
2146 /* first reschedule or stop timer */
2147 if (w->reschedule_cb)
2148 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2149 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 2150
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2151 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 2152
1819 ANHE_at_cache (periodics [HEAP0]); 2153 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 2154 downheap (periodics, periodiccnt, HEAP0);
2155 }
2156 else if (w->interval)
2157 {
2158 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2159 /* if next trigger time is not sufficiently in the future, put it there */
2160 /* this might happen because of floating point inexactness */
2161 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2162 {
2163 ev_at (w) += w->interval;
2164
2165 /* if interval is unreasonably low we might still have a time in the past */
2166 /* so correct this. this will make the periodic very inexact, but the user */
2167 /* has effectively asked to get triggered more often than possible */
2168 if (ev_at (w) < ev_rt_now)
2169 ev_at (w) = ev_rt_now;
2170 }
2171
2172 ANHE_at_cache (periodics [HEAP0]);
2173 downheap (periodics, periodiccnt, HEAP0);
2174 }
2175 else
2176 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2177
2178 EV_FREQUENT_CHECK;
2179 feed_reverse (EV_A_ (W)w);
1821 } 2180 }
1822 else if (w->interval) 2181 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 2182
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2183 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 2184 }
1847} 2185}
1848 2186
2187/* simply recalculate all periodics */
2188/* TODO: maybe ensure that at least one event happens when jumping forward? */
1849static void noinline 2189static void noinline
1850periodics_reschedule (EV_P) 2190periodics_reschedule (EV_P)
1851{ 2191{
1852 int i; 2192 int i;
1853 2193
1866 2206
1867 reheap (periodics, periodiccnt); 2207 reheap (periodics, periodiccnt);
1868} 2208}
1869#endif 2209#endif
1870 2210
1871void inline_speed 2211/* adjust all timers by a given offset */
2212static void noinline
2213timers_reschedule (EV_P_ ev_tstamp adjust)
2214{
2215 int i;
2216
2217 for (i = 0; i < timercnt; ++i)
2218 {
2219 ANHE *he = timers + i + HEAP0;
2220 ANHE_w (*he)->at += adjust;
2221 ANHE_at_cache (*he);
2222 }
2223}
2224
2225/* fetch new monotonic and realtime times from the kernel */
2226/* also detect if there was a timejump, and act accordingly */
2227inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 2228time_update (EV_P_ ev_tstamp max_block)
1873{ 2229{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 2230#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 2231 if (expect_true (have_monotonic))
1878 { 2232 {
2233 int i;
1879 ev_tstamp odiff = rtmn_diff; 2234 ev_tstamp odiff = rtmn_diff;
1880 2235
1881 mn_now = get_clock (); 2236 mn_now = get_clock ();
1882 2237
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2238 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1909 ev_rt_now = ev_time (); 2264 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2265 mn_now = get_clock ();
1911 now_floor = mn_now; 2266 now_floor = mn_now;
1912 } 2267 }
1913 2268
2269 /* no timer adjustment, as the monotonic clock doesn't jump */
2270 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2271# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2272 periodics_reschedule (EV_A);
1916# endif 2273# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2274 }
1920 else 2275 else
1921#endif 2276#endif
1922 { 2277 {
1923 ev_rt_now = ev_time (); 2278 ev_rt_now = ev_time ();
1924 2279
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2280 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 2281 {
2282 /* adjust timers. this is easy, as the offset is the same for all of them */
2283 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 2284#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 2285 periodics_reschedule (EV_A);
1929#endif 2286#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 2287 }
1938 2288
1939 mn_now = ev_rt_now; 2289 mn_now = ev_rt_now;
1940 } 2290 }
1941} 2291}
1942 2292
1943void 2293void
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 2294ev_loop (EV_P_ int flags)
1965{ 2295{
2296#if EV_FEATURE_API
2297 ++loop_depth;
2298#endif
2299
2300 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2301
1966 loop_done = EVUNLOOP_CANCEL; 2302 loop_done = EVUNLOOP_CANCEL;
1967 2303
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2304 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 2305
1970 do 2306 do
1971 { 2307 {
1972#if EV_VERIFY >= 2 2308#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 2309 ev_verify (EV_A);
1974#endif 2310#endif
1975 2311
1976#ifndef _WIN32 2312#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 2313 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 2314 if (expect_false (getpid () != curpid))
1986 /* we might have forked, so queue fork handlers */ 2322 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 2323 if (expect_false (postfork))
1988 if (forkcnt) 2324 if (forkcnt)
1989 { 2325 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2326 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 2327 EV_INVOKE_PENDING;
1992 } 2328 }
1993#endif 2329#endif
1994 2330
2331#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 2332 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 2333 if (expect_false (preparecnt))
1997 { 2334 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2335 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 2336 EV_INVOKE_PENDING;
2000 } 2337 }
2338#endif
2001 2339
2002 if (expect_false (!activecnt)) 2340 if (expect_false (loop_done))
2003 break; 2341 break;
2004 2342
2005 /* we might have forked, so reify kernel state if necessary */ 2343 /* we might have forked, so reify kernel state if necessary */
2006 if (expect_false (postfork)) 2344 if (expect_false (postfork))
2007 loop_fork (EV_A); 2345 loop_fork (EV_A);
2014 ev_tstamp waittime = 0.; 2352 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.; 2353 ev_tstamp sleeptime = 0.;
2016 2354
2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2355 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2018 { 2356 {
2357 /* remember old timestamp for io_blocktime calculation */
2358 ev_tstamp prev_mn_now = mn_now;
2359
2019 /* update time to cancel out callback processing overhead */ 2360 /* update time to cancel out callback processing overhead */
2020 time_update (EV_A_ 1e100); 2361 time_update (EV_A_ 1e100);
2021 2362
2022 waittime = MAX_BLOCKTIME; 2363 waittime = MAX_BLOCKTIME;
2023 2364
2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2374 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2034 if (waittime > to) waittime = to; 2375 if (waittime > to) waittime = to;
2035 } 2376 }
2036#endif 2377#endif
2037 2378
2379 /* don't let timeouts decrease the waittime below timeout_blocktime */
2038 if (expect_false (waittime < timeout_blocktime)) 2380 if (expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime; 2381 waittime = timeout_blocktime;
2040 2382
2041 sleeptime = waittime - backend_fudge; 2383 /* extra check because io_blocktime is commonly 0 */
2042
2043 if (expect_true (sleeptime > io_blocktime)) 2384 if (expect_false (io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 { 2385 {
2386 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2387
2388 if (sleeptime > waittime - backend_fudge)
2389 sleeptime = waittime - backend_fudge;
2390
2391 if (expect_true (sleeptime > 0.))
2392 {
2048 ev_sleep (sleeptime); 2393 ev_sleep (sleeptime);
2049 waittime -= sleeptime; 2394 waittime -= sleeptime;
2395 }
2050 } 2396 }
2051 } 2397 }
2052 2398
2399#if EV_FEATURE_API
2053 ++loop_count; 2400 ++loop_count;
2401#endif
2402 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2054 backend_poll (EV_A_ waittime); 2403 backend_poll (EV_A_ waittime);
2404 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2055 2405
2056 /* update ev_rt_now, do magic */ 2406 /* update ev_rt_now, do magic */
2057 time_update (EV_A_ waittime + sleeptime); 2407 time_update (EV_A_ waittime + sleeptime);
2058 } 2408 }
2059 2409
2066#if EV_IDLE_ENABLE 2416#if EV_IDLE_ENABLE
2067 /* queue idle watchers unless other events are pending */ 2417 /* queue idle watchers unless other events are pending */
2068 idle_reify (EV_A); 2418 idle_reify (EV_A);
2069#endif 2419#endif
2070 2420
2421#if EV_CHECK_ENABLE
2071 /* queue check watchers, to be executed first */ 2422 /* queue check watchers, to be executed first */
2072 if (expect_false (checkcnt)) 2423 if (expect_false (checkcnt))
2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2424 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2425#endif
2074 2426
2075 call_pending (EV_A); 2427 EV_INVOKE_PENDING;
2076 } 2428 }
2077 while (expect_true ( 2429 while (expect_true (
2078 activecnt 2430 activecnt
2079 && !loop_done 2431 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2432 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2081 )); 2433 ));
2082 2434
2083 if (loop_done == EVUNLOOP_ONE) 2435 if (loop_done == EVUNLOOP_ONE)
2084 loop_done = EVUNLOOP_CANCEL; 2436 loop_done = EVUNLOOP_CANCEL;
2437
2438#if EV_FEATURE_API
2439 --loop_depth;
2440#endif
2085} 2441}
2086 2442
2087void 2443void
2088ev_unloop (EV_P_ int how) 2444ev_unloop (EV_P_ int how)
2089{ 2445{
2090 loop_done = how; 2446 loop_done = how;
2091} 2447}
2092 2448
2449void
2450ev_ref (EV_P)
2451{
2452 ++activecnt;
2453}
2454
2455void
2456ev_unref (EV_P)
2457{
2458 --activecnt;
2459}
2460
2461void
2462ev_now_update (EV_P)
2463{
2464 time_update (EV_A_ 1e100);
2465}
2466
2467void
2468ev_suspend (EV_P)
2469{
2470 ev_now_update (EV_A);
2471}
2472
2473void
2474ev_resume (EV_P)
2475{
2476 ev_tstamp mn_prev = mn_now;
2477
2478 ev_now_update (EV_A);
2479 timers_reschedule (EV_A_ mn_now - mn_prev);
2480#if EV_PERIODIC_ENABLE
2481 /* TODO: really do this? */
2482 periodics_reschedule (EV_A);
2483#endif
2484}
2485
2093/*****************************************************************************/ 2486/*****************************************************************************/
2487/* singly-linked list management, used when the expected list length is short */
2094 2488
2095void inline_size 2489inline_size void
2096wlist_add (WL *head, WL elem) 2490wlist_add (WL *head, WL elem)
2097{ 2491{
2098 elem->next = *head; 2492 elem->next = *head;
2099 *head = elem; 2493 *head = elem;
2100} 2494}
2101 2495
2102void inline_size 2496inline_size void
2103wlist_del (WL *head, WL elem) 2497wlist_del (WL *head, WL elem)
2104{ 2498{
2105 while (*head) 2499 while (*head)
2106 { 2500 {
2107 if (*head == elem) 2501 if (expect_true (*head == elem))
2108 { 2502 {
2109 *head = elem->next; 2503 *head = elem->next;
2110 return; 2504 break;
2111 } 2505 }
2112 2506
2113 head = &(*head)->next; 2507 head = &(*head)->next;
2114 } 2508 }
2115} 2509}
2116 2510
2117void inline_speed 2511/* internal, faster, version of ev_clear_pending */
2512inline_speed void
2118clear_pending (EV_P_ W w) 2513clear_pending (EV_P_ W w)
2119{ 2514{
2120 if (w->pending) 2515 if (w->pending)
2121 { 2516 {
2122 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2517 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2123 w->pending = 0; 2518 w->pending = 0;
2124 } 2519 }
2125} 2520}
2126 2521
2127int 2522int
2131 int pending = w_->pending; 2526 int pending = w_->pending;
2132 2527
2133 if (expect_true (pending)) 2528 if (expect_true (pending))
2134 { 2529 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2530 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2531 p->w = (W)&pending_w;
2136 w_->pending = 0; 2532 w_->pending = 0;
2137 p->w = 0;
2138 return p->events; 2533 return p->events;
2139 } 2534 }
2140 else 2535 else
2141 return 0; 2536 return 0;
2142} 2537}
2143 2538
2144void inline_size 2539inline_size void
2145pri_adjust (EV_P_ W w) 2540pri_adjust (EV_P_ W w)
2146{ 2541{
2147 int pri = w->priority; 2542 int pri = ev_priority (w);
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2543 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2544 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri; 2545 ev_set_priority (w, pri);
2151} 2546}
2152 2547
2153void inline_speed 2548inline_speed void
2154ev_start (EV_P_ W w, int active) 2549ev_start (EV_P_ W w, int active)
2155{ 2550{
2156 pri_adjust (EV_A_ w); 2551 pri_adjust (EV_A_ w);
2157 w->active = active; 2552 w->active = active;
2158 ev_ref (EV_A); 2553 ev_ref (EV_A);
2159} 2554}
2160 2555
2161void inline_size 2556inline_size void
2162ev_stop (EV_P_ W w) 2557ev_stop (EV_P_ W w)
2163{ 2558{
2164 ev_unref (EV_A); 2559 ev_unref (EV_A);
2165 w->active = 0; 2560 w->active = 0;
2166} 2561}
2174 2569
2175 if (expect_false (ev_is_active (w))) 2570 if (expect_false (ev_is_active (w)))
2176 return; 2571 return;
2177 2572
2178 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2573 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2574 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2180 2575
2181 EV_FREQUENT_CHECK; 2576 EV_FREQUENT_CHECK;
2182 2577
2183 ev_start (EV_A_ (W)w, 1); 2578 ev_start (EV_A_ (W)w, 1);
2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2579 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2185 wlist_add (&anfds[fd].head, (WL)w); 2580 wlist_add (&anfds[fd].head, (WL)w);
2186 2581
2187 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2582 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2188 w->events &= ~EV_IOFDSET; 2583 w->events &= ~EV__IOFDSET;
2189 2584
2190 EV_FREQUENT_CHECK; 2585 EV_FREQUENT_CHECK;
2191} 2586}
2192 2587
2193void noinline 2588void noinline
2254 timers [active] = timers [timercnt + HEAP0]; 2649 timers [active] = timers [timercnt + HEAP0];
2255 adjustheap (timers, timercnt, active); 2650 adjustheap (timers, timercnt, active);
2256 } 2651 }
2257 } 2652 }
2258 2653
2259 EV_FREQUENT_CHECK;
2260
2261 ev_at (w) -= mn_now; 2654 ev_at (w) -= mn_now;
2262 2655
2263 ev_stop (EV_A_ (W)w); 2656 ev_stop (EV_A_ (W)w);
2657
2658 EV_FREQUENT_CHECK;
2264} 2659}
2265 2660
2266void noinline 2661void noinline
2267ev_timer_again (EV_P_ ev_timer *w) 2662ev_timer_again (EV_P_ ev_timer *w)
2268{ 2663{
2286 } 2681 }
2287 2682
2288 EV_FREQUENT_CHECK; 2683 EV_FREQUENT_CHECK;
2289} 2684}
2290 2685
2686ev_tstamp
2687ev_timer_remaining (EV_P_ ev_timer *w)
2688{
2689 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2690}
2691
2291#if EV_PERIODIC_ENABLE 2692#if EV_PERIODIC_ENABLE
2292void noinline 2693void noinline
2293ev_periodic_start (EV_P_ ev_periodic *w) 2694ev_periodic_start (EV_P_ ev_periodic *w)
2294{ 2695{
2295 if (expect_false (ev_is_active (w))) 2696 if (expect_false (ev_is_active (w)))
2341 periodics [active] = periodics [periodiccnt + HEAP0]; 2742 periodics [active] = periodics [periodiccnt + HEAP0];
2342 adjustheap (periodics, periodiccnt, active); 2743 adjustheap (periodics, periodiccnt, active);
2343 } 2744 }
2344 } 2745 }
2345 2746
2346 EV_FREQUENT_CHECK;
2347
2348 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2349} 2750}
2350 2751
2351void noinline 2752void noinline
2352ev_periodic_again (EV_P_ ev_periodic *w) 2753ev_periodic_again (EV_P_ ev_periodic *w)
2353{ 2754{
2359 2760
2360#ifndef SA_RESTART 2761#ifndef SA_RESTART
2361# define SA_RESTART 0 2762# define SA_RESTART 0
2362#endif 2763#endif
2363 2764
2765#if EV_SIGNAL_ENABLE
2766
2364void noinline 2767void noinline
2365ev_signal_start (EV_P_ ev_signal *w) 2768ev_signal_start (EV_P_ ev_signal *w)
2366{ 2769{
2367#if EV_MULTIPLICITY
2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2369#endif
2370 if (expect_false (ev_is_active (w))) 2770 if (expect_false (ev_is_active (w)))
2371 return; 2771 return;
2372 2772
2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 2773 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2374 2774
2375 evpipe_init (EV_A); 2775#if EV_MULTIPLICITY
2776 assert (("libev: a signal must not be attached to two different loops",
2777 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2376 2778
2377 EV_FREQUENT_CHECK; 2779 signals [w->signum - 1].loop = EV_A;
2780#endif
2378 2781
2782 EV_FREQUENT_CHECK;
2783
2784#if EV_USE_SIGNALFD
2785 if (sigfd == -2)
2379 { 2786 {
2380#ifndef _WIN32 2787 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2381 sigset_t full, prev; 2788 if (sigfd < 0 && errno == EINVAL)
2382 sigfillset (&full); 2789 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2383 sigprocmask (SIG_SETMASK, &full, &prev);
2384#endif
2385 2790
2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2791 if (sigfd >= 0)
2792 {
2793 fd_intern (sigfd); /* doing it twice will not hurt */
2387 2794
2388#ifndef _WIN32 2795 sigemptyset (&sigfd_set);
2389 sigprocmask (SIG_SETMASK, &prev, 0); 2796
2390#endif 2797 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2798 ev_set_priority (&sigfd_w, EV_MAXPRI);
2799 ev_io_start (EV_A_ &sigfd_w);
2800 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2801 }
2391 } 2802 }
2803
2804 if (sigfd >= 0)
2805 {
2806 /* TODO: check .head */
2807 sigaddset (&sigfd_set, w->signum);
2808 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2809
2810 signalfd (sigfd, &sigfd_set, 0);
2811 }
2812#endif
2392 2813
2393 ev_start (EV_A_ (W)w, 1); 2814 ev_start (EV_A_ (W)w, 1);
2394 wlist_add (&signals [w->signum - 1].head, (WL)w); 2815 wlist_add (&signals [w->signum - 1].head, (WL)w);
2395 2816
2396 if (!((WL)w)->next) 2817 if (!((WL)w)->next)
2818# if EV_USE_SIGNALFD
2819 if (sigfd < 0) /*TODO*/
2820# endif
2397 { 2821 {
2398#if _WIN32 2822# ifdef _WIN32
2823 evpipe_init (EV_A);
2824
2399 signal (w->signum, ev_sighandler); 2825 signal (w->signum, ev_sighandler);
2400#else 2826# else
2401 struct sigaction sa; 2827 struct sigaction sa;
2828
2829 evpipe_init (EV_A);
2830
2402 sa.sa_handler = ev_sighandler; 2831 sa.sa_handler = ev_sighandler;
2403 sigfillset (&sa.sa_mask); 2832 sigfillset (&sa.sa_mask);
2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2833 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2405 sigaction (w->signum, &sa, 0); 2834 sigaction (w->signum, &sa, 0);
2835
2836 sigemptyset (&sa.sa_mask);
2837 sigaddset (&sa.sa_mask, w->signum);
2838 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2406#endif 2839#endif
2407 } 2840 }
2408 2841
2409 EV_FREQUENT_CHECK; 2842 EV_FREQUENT_CHECK;
2410} 2843}
2411 2844
2412void noinline 2845void noinline
2420 2853
2421 wlist_del (&signals [w->signum - 1].head, (WL)w); 2854 wlist_del (&signals [w->signum - 1].head, (WL)w);
2422 ev_stop (EV_A_ (W)w); 2855 ev_stop (EV_A_ (W)w);
2423 2856
2424 if (!signals [w->signum - 1].head) 2857 if (!signals [w->signum - 1].head)
2858 {
2859#if EV_MULTIPLICITY
2860 signals [w->signum - 1].loop = 0; /* unattach from signal */
2861#endif
2862#if EV_USE_SIGNALFD
2863 if (sigfd >= 0)
2864 {
2865 sigset_t ss;
2866
2867 sigemptyset (&ss);
2868 sigaddset (&ss, w->signum);
2869 sigdelset (&sigfd_set, w->signum);
2870
2871 signalfd (sigfd, &sigfd_set, 0);
2872 sigprocmask (SIG_UNBLOCK, &ss, 0);
2873 }
2874 else
2875#endif
2425 signal (w->signum, SIG_DFL); 2876 signal (w->signum, SIG_DFL);
2877 }
2426 2878
2427 EV_FREQUENT_CHECK; 2879 EV_FREQUENT_CHECK;
2428} 2880}
2881
2882#endif
2883
2884#if EV_CHILD_ENABLE
2429 2885
2430void 2886void
2431ev_child_start (EV_P_ ev_child *w) 2887ev_child_start (EV_P_ ev_child *w)
2432{ 2888{
2433#if EV_MULTIPLICITY 2889#if EV_MULTIPLICITY
2437 return; 2893 return;
2438 2894
2439 EV_FREQUENT_CHECK; 2895 EV_FREQUENT_CHECK;
2440 2896
2441 ev_start (EV_A_ (W)w, 1); 2897 ev_start (EV_A_ (W)w, 1);
2442 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2898 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2443 2899
2444 EV_FREQUENT_CHECK; 2900 EV_FREQUENT_CHECK;
2445} 2901}
2446 2902
2447void 2903void
2451 if (expect_false (!ev_is_active (w))) 2907 if (expect_false (!ev_is_active (w)))
2452 return; 2908 return;
2453 2909
2454 EV_FREQUENT_CHECK; 2910 EV_FREQUENT_CHECK;
2455 2911
2456 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2912 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2457 ev_stop (EV_A_ (W)w); 2913 ev_stop (EV_A_ (W)w);
2458 2914
2459 EV_FREQUENT_CHECK; 2915 EV_FREQUENT_CHECK;
2460} 2916}
2917
2918#endif
2461 2919
2462#if EV_STAT_ENABLE 2920#if EV_STAT_ENABLE
2463 2921
2464# ifdef _WIN32 2922# ifdef _WIN32
2465# undef lstat 2923# undef lstat
2471#define MIN_STAT_INTERVAL 0.1074891 2929#define MIN_STAT_INTERVAL 0.1074891
2472 2930
2473static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2931static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2474 2932
2475#if EV_USE_INOTIFY 2933#if EV_USE_INOTIFY
2476# define EV_INOTIFY_BUFSIZE 8192 2934
2935/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2936# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2477 2937
2478static void noinline 2938static void noinline
2479infy_add (EV_P_ ev_stat *w) 2939infy_add (EV_P_ ev_stat *w)
2480{ 2940{
2481 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2941 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2482 2942
2483 if (w->wd < 0) 2943 if (w->wd >= 0)
2944 {
2945 struct statfs sfs;
2946
2947 /* now local changes will be tracked by inotify, but remote changes won't */
2948 /* unless the filesystem is known to be local, we therefore still poll */
2949 /* also do poll on <2.6.25, but with normal frequency */
2950
2951 if (!fs_2625)
2952 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2953 else if (!statfs (w->path, &sfs)
2954 && (sfs.f_type == 0x1373 /* devfs */
2955 || sfs.f_type == 0xEF53 /* ext2/3 */
2956 || sfs.f_type == 0x3153464a /* jfs */
2957 || sfs.f_type == 0x52654973 /* reiser3 */
2958 || sfs.f_type == 0x01021994 /* tempfs */
2959 || sfs.f_type == 0x58465342 /* xfs */))
2960 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2961 else
2962 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2484 { 2963 }
2964 else
2965 {
2966 /* can't use inotify, continue to stat */
2485 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 2967 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2486 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2487 2968
2488 /* monitor some parent directory for speedup hints */ 2969 /* if path is not there, monitor some parent directory for speedup hints */
2489 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 2970 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2490 /* but an efficiency issue only */ 2971 /* but an efficiency issue only */
2491 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2972 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2492 { 2973 {
2493 char path [4096]; 2974 char path [4096];
2509 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2990 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2510 } 2991 }
2511 } 2992 }
2512 2993
2513 if (w->wd >= 0) 2994 if (w->wd >= 0)
2514 {
2515 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2995 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2516 2996
2517 /* now local changes will be tracked by inotify, but remote changes won't */ 2997 /* now re-arm timer, if required */
2518 /* unless the filesystem it known to be local, we therefore still poll */ 2998 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2519 /* also do poll on <2.6.25, but with normal frequency */
2520 struct statfs sfs;
2521
2522 if (fs_2625 && !statfs (w->path, &sfs))
2523 if (sfs.f_type == 0x1373 /* devfs */
2524 || sfs.f_type == 0xEF53 /* ext2/3 */
2525 || sfs.f_type == 0x3153464a /* jfs */
2526 || sfs.f_type == 0x52654973 /* reiser3 */
2527 || sfs.f_type == 0x01021994 /* tempfs */
2528 || sfs.f_type == 0x58465342 /* xfs */)
2529 return;
2530
2531 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2532 ev_timer_again (EV_A_ &w->timer); 2999 ev_timer_again (EV_A_ &w->timer);
2533 } 3000 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2534} 3001}
2535 3002
2536static void noinline 3003static void noinline
2537infy_del (EV_P_ ev_stat *w) 3004infy_del (EV_P_ ev_stat *w)
2538{ 3005{
2541 3008
2542 if (wd < 0) 3009 if (wd < 0)
2543 return; 3010 return;
2544 3011
2545 w->wd = -2; 3012 w->wd = -2;
2546 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3013 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2547 wlist_del (&fs_hash [slot].head, (WL)w); 3014 wlist_del (&fs_hash [slot].head, (WL)w);
2548 3015
2549 /* remove this watcher, if others are watching it, they will rearm */ 3016 /* remove this watcher, if others are watching it, they will rearm */
2550 inotify_rm_watch (fs_fd, wd); 3017 inotify_rm_watch (fs_fd, wd);
2551} 3018}
2553static void noinline 3020static void noinline
2554infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3021infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2555{ 3022{
2556 if (slot < 0) 3023 if (slot < 0)
2557 /* overflow, need to check for all hash slots */ 3024 /* overflow, need to check for all hash slots */
2558 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3025 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2559 infy_wd (EV_A_ slot, wd, ev); 3026 infy_wd (EV_A_ slot, wd, ev);
2560 else 3027 else
2561 { 3028 {
2562 WL w_; 3029 WL w_;
2563 3030
2564 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3031 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2565 { 3032 {
2566 ev_stat *w = (ev_stat *)w_; 3033 ev_stat *w = (ev_stat *)w_;
2567 w_ = w_->next; /* lets us remove this watcher and all before it */ 3034 w_ = w_->next; /* lets us remove this watcher and all before it */
2568 3035
2569 if (w->wd == wd || wd == -1) 3036 if (w->wd == wd || wd == -1)
2570 { 3037 {
2571 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3038 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2572 { 3039 {
2573 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3040 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2574 w->wd = -1; 3041 w->wd = -1;
2575 infy_add (EV_A_ w); /* re-add, no matter what */ 3042 infy_add (EV_A_ w); /* re-add, no matter what */
2576 } 3043 }
2577 3044
2578 stat_timer_cb (EV_A_ &w->timer, 0); 3045 stat_timer_cb (EV_A_ &w->timer, 0);
2583 3050
2584static void 3051static void
2585infy_cb (EV_P_ ev_io *w, int revents) 3052infy_cb (EV_P_ ev_io *w, int revents)
2586{ 3053{
2587 char buf [EV_INOTIFY_BUFSIZE]; 3054 char buf [EV_INOTIFY_BUFSIZE];
2588 struct inotify_event *ev = (struct inotify_event *)buf;
2589 int ofs; 3055 int ofs;
2590 int len = read (fs_fd, buf, sizeof (buf)); 3056 int len = read (fs_fd, buf, sizeof (buf));
2591 3057
2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3058 for (ofs = 0; ofs < len; )
3059 {
3060 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2593 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3061 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3062 ofs += sizeof (struct inotify_event) + ev->len;
3063 }
2594} 3064}
2595 3065
2596void inline_size 3066inline_size unsigned int
3067ev_linux_version (void)
3068{
3069 struct utsname buf;
3070 unsigned int v;
3071 int i;
3072 char *p = buf.release;
3073
3074 if (uname (&buf))
3075 return 0;
3076
3077 for (i = 3+1; --i; )
3078 {
3079 unsigned int c = 0;
3080
3081 for (;;)
3082 {
3083 if (*p >= '0' && *p <= '9')
3084 c = c * 10 + *p++ - '0';
3085 else
3086 {
3087 p += *p == '.';
3088 break;
3089 }
3090 }
3091
3092 v = (v << 8) | c;
3093 }
3094
3095 return v;
3096}
3097
3098inline_size void
2597check_2625 (EV_P) 3099ev_check_2625 (EV_P)
2598{ 3100{
2599 /* kernels < 2.6.25 are borked 3101 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3102 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */ 3103 */
2602 struct utsname buf; 3104 if (ev_linux_version () < 0x020619)
2603 int major, minor, micro;
2604
2605 if (uname (&buf))
2606 return; 3105 return;
2607 3106
2608 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2609 return;
2610
2611 if (major < 2
2612 || (major == 2 && minor < 6)
2613 || (major == 2 && minor == 6 && micro < 25))
2614 return;
2615
2616 fs_2625 = 1; 3107 fs_2625 = 1;
2617} 3108}
2618 3109
2619void inline_size 3110inline_size int
3111infy_newfd (void)
3112{
3113#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3114 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3115 if (fd >= 0)
3116 return fd;
3117#endif
3118 return inotify_init ();
3119}
3120
3121inline_size void
2620infy_init (EV_P) 3122infy_init (EV_P)
2621{ 3123{
2622 if (fs_fd != -2) 3124 if (fs_fd != -2)
2623 return; 3125 return;
2624 3126
2625 fs_fd = -1; 3127 fs_fd = -1;
2626 3128
2627 check_2625 (EV_A); 3129 ev_check_2625 (EV_A);
2628 3130
2629 fs_fd = inotify_init (); 3131 fs_fd = infy_newfd ();
2630 3132
2631 if (fs_fd >= 0) 3133 if (fs_fd >= 0)
2632 { 3134 {
3135 fd_intern (fs_fd);
2633 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3136 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2634 ev_set_priority (&fs_w, EV_MAXPRI); 3137 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w); 3138 ev_io_start (EV_A_ &fs_w);
3139 ev_unref (EV_A);
2636 } 3140 }
2637} 3141}
2638 3142
2639void inline_size 3143inline_size void
2640infy_fork (EV_P) 3144infy_fork (EV_P)
2641{ 3145{
2642 int slot; 3146 int slot;
2643 3147
2644 if (fs_fd < 0) 3148 if (fs_fd < 0)
2645 return; 3149 return;
2646 3150
3151 ev_ref (EV_A);
3152 ev_io_stop (EV_A_ &fs_w);
2647 close (fs_fd); 3153 close (fs_fd);
2648 fs_fd = inotify_init (); 3154 fs_fd = infy_newfd ();
2649 3155
3156 if (fs_fd >= 0)
3157 {
3158 fd_intern (fs_fd);
3159 ev_io_set (&fs_w, fs_fd, EV_READ);
3160 ev_io_start (EV_A_ &fs_w);
3161 ev_unref (EV_A);
3162 }
3163
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3164 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2651 { 3165 {
2652 WL w_ = fs_hash [slot].head; 3166 WL w_ = fs_hash [slot].head;
2653 fs_hash [slot].head = 0; 3167 fs_hash [slot].head = 0;
2654 3168
2655 while (w_) 3169 while (w_)
2660 w->wd = -1; 3174 w->wd = -1;
2661 3175
2662 if (fs_fd >= 0) 3176 if (fs_fd >= 0)
2663 infy_add (EV_A_ w); /* re-add, no matter what */ 3177 infy_add (EV_A_ w); /* re-add, no matter what */
2664 else 3178 else
3179 {
3180 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3181 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2665 ev_timer_again (EV_A_ &w->timer); 3182 ev_timer_again (EV_A_ &w->timer);
3183 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3184 }
2666 } 3185 }
2667 } 3186 }
2668} 3187}
2669 3188
2670#endif 3189#endif
2687static void noinline 3206static void noinline
2688stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3207stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2689{ 3208{
2690 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3209 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2691 3210
2692 /* we copy this here each the time so that */ 3211 ev_statdata prev = w->attr;
2693 /* prev has the old value when the callback gets invoked */
2694 w->prev = w->attr;
2695 ev_stat_stat (EV_A_ w); 3212 ev_stat_stat (EV_A_ w);
2696 3213
2697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3214 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2698 if ( 3215 if (
2699 w->prev.st_dev != w->attr.st_dev 3216 prev.st_dev != w->attr.st_dev
2700 || w->prev.st_ino != w->attr.st_ino 3217 || prev.st_ino != w->attr.st_ino
2701 || w->prev.st_mode != w->attr.st_mode 3218 || prev.st_mode != w->attr.st_mode
2702 || w->prev.st_nlink != w->attr.st_nlink 3219 || prev.st_nlink != w->attr.st_nlink
2703 || w->prev.st_uid != w->attr.st_uid 3220 || prev.st_uid != w->attr.st_uid
2704 || w->prev.st_gid != w->attr.st_gid 3221 || prev.st_gid != w->attr.st_gid
2705 || w->prev.st_rdev != w->attr.st_rdev 3222 || prev.st_rdev != w->attr.st_rdev
2706 || w->prev.st_size != w->attr.st_size 3223 || prev.st_size != w->attr.st_size
2707 || w->prev.st_atime != w->attr.st_atime 3224 || prev.st_atime != w->attr.st_atime
2708 || w->prev.st_mtime != w->attr.st_mtime 3225 || prev.st_mtime != w->attr.st_mtime
2709 || w->prev.st_ctime != w->attr.st_ctime 3226 || prev.st_ctime != w->attr.st_ctime
2710 ) { 3227 ) {
3228 /* we only update w->prev on actual differences */
3229 /* in case we test more often than invoke the callback, */
3230 /* to ensure that prev is always different to attr */
3231 w->prev = prev;
3232
2711 #if EV_USE_INOTIFY 3233 #if EV_USE_INOTIFY
2712 if (fs_fd >= 0) 3234 if (fs_fd >= 0)
2713 { 3235 {
2714 infy_del (EV_A_ w); 3236 infy_del (EV_A_ w);
2715 infy_add (EV_A_ w); 3237 infy_add (EV_A_ w);
2740 3262
2741 if (fs_fd >= 0) 3263 if (fs_fd >= 0)
2742 infy_add (EV_A_ w); 3264 infy_add (EV_A_ w);
2743 else 3265 else
2744#endif 3266#endif
3267 {
2745 ev_timer_again (EV_A_ &w->timer); 3268 ev_timer_again (EV_A_ &w->timer);
3269 ev_unref (EV_A);
3270 }
2746 3271
2747 ev_start (EV_A_ (W)w, 1); 3272 ev_start (EV_A_ (W)w, 1);
2748 3273
2749 EV_FREQUENT_CHECK; 3274 EV_FREQUENT_CHECK;
2750} 3275}
2759 EV_FREQUENT_CHECK; 3284 EV_FREQUENT_CHECK;
2760 3285
2761#if EV_USE_INOTIFY 3286#if EV_USE_INOTIFY
2762 infy_del (EV_A_ w); 3287 infy_del (EV_A_ w);
2763#endif 3288#endif
3289
3290 if (ev_is_active (&w->timer))
3291 {
3292 ev_ref (EV_A);
2764 ev_timer_stop (EV_A_ &w->timer); 3293 ev_timer_stop (EV_A_ &w->timer);
3294 }
2765 3295
2766 ev_stop (EV_A_ (W)w); 3296 ev_stop (EV_A_ (W)w);
2767 3297
2768 EV_FREQUENT_CHECK; 3298 EV_FREQUENT_CHECK;
2769} 3299}
2814 3344
2815 EV_FREQUENT_CHECK; 3345 EV_FREQUENT_CHECK;
2816} 3346}
2817#endif 3347#endif
2818 3348
3349#if EV_PREPARE_ENABLE
2819void 3350void
2820ev_prepare_start (EV_P_ ev_prepare *w) 3351ev_prepare_start (EV_P_ ev_prepare *w)
2821{ 3352{
2822 if (expect_false (ev_is_active (w))) 3353 if (expect_false (ev_is_active (w)))
2823 return; 3354 return;
2849 3380
2850 ev_stop (EV_A_ (W)w); 3381 ev_stop (EV_A_ (W)w);
2851 3382
2852 EV_FREQUENT_CHECK; 3383 EV_FREQUENT_CHECK;
2853} 3384}
3385#endif
2854 3386
3387#if EV_CHECK_ENABLE
2855void 3388void
2856ev_check_start (EV_P_ ev_check *w) 3389ev_check_start (EV_P_ ev_check *w)
2857{ 3390{
2858 if (expect_false (ev_is_active (w))) 3391 if (expect_false (ev_is_active (w)))
2859 return; 3392 return;
2885 3418
2886 ev_stop (EV_A_ (W)w); 3419 ev_stop (EV_A_ (W)w);
2887 3420
2888 EV_FREQUENT_CHECK; 3421 EV_FREQUENT_CHECK;
2889} 3422}
3423#endif
2890 3424
2891#if EV_EMBED_ENABLE 3425#if EV_EMBED_ENABLE
2892void noinline 3426void noinline
2893ev_embed_sweep (EV_P_ ev_embed *w) 3427ev_embed_sweep (EV_P_ ev_embed *w)
2894{ 3428{
2910embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3444embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2911{ 3445{
2912 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3446 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2913 3447
2914 { 3448 {
2915 struct ev_loop *loop = w->other; 3449 EV_P = w->other;
2916 3450
2917 while (fdchangecnt) 3451 while (fdchangecnt)
2918 { 3452 {
2919 fd_reify (EV_A); 3453 fd_reify (EV_A);
2920 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3454 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3462 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929 3463
2930 ev_embed_stop (EV_A_ w); 3464 ev_embed_stop (EV_A_ w);
2931 3465
2932 { 3466 {
2933 struct ev_loop *loop = w->other; 3467 EV_P = w->other;
2934 3468
2935 ev_loop_fork (EV_A); 3469 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3470 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2937 } 3471 }
2938 3472
2952{ 3486{
2953 if (expect_false (ev_is_active (w))) 3487 if (expect_false (ev_is_active (w)))
2954 return; 3488 return;
2955 3489
2956 { 3490 {
2957 struct ev_loop *loop = w->other; 3491 EV_P = w->other;
2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3492 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3493 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2960 } 3494 }
2961 3495
2962 EV_FREQUENT_CHECK; 3496 EV_FREQUENT_CHECK;
2989 3523
2990 ev_io_stop (EV_A_ &w->io); 3524 ev_io_stop (EV_A_ &w->io);
2991 ev_prepare_stop (EV_A_ &w->prepare); 3525 ev_prepare_stop (EV_A_ &w->prepare);
2992 ev_fork_stop (EV_A_ &w->fork); 3526 ev_fork_stop (EV_A_ &w->fork);
2993 3527
3528 ev_stop (EV_A_ (W)w);
3529
2994 EV_FREQUENT_CHECK; 3530 EV_FREQUENT_CHECK;
2995} 3531}
2996#endif 3532#endif
2997 3533
2998#if EV_FORK_ENABLE 3534#if EV_FORK_ENABLE
3074 3610
3075void 3611void
3076ev_async_send (EV_P_ ev_async *w) 3612ev_async_send (EV_P_ ev_async *w)
3077{ 3613{
3078 w->sent = 1; 3614 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync); 3615 evpipe_write (EV_A_ &async_pending);
3080} 3616}
3081#endif 3617#endif
3082 3618
3083/*****************************************************************************/ 3619/*****************************************************************************/
3084 3620
3124{ 3660{
3125 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3661 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3126 3662
3127 if (expect_false (!once)) 3663 if (expect_false (!once))
3128 { 3664 {
3129 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3665 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3130 return; 3666 return;
3131 } 3667 }
3132 3668
3133 once->cb = cb; 3669 once->cb = cb;
3134 once->arg = arg; 3670 once->arg = arg;
3146 ev_timer_set (&once->to, timeout, 0.); 3682 ev_timer_set (&once->to, timeout, 0.);
3147 ev_timer_start (EV_A_ &once->to); 3683 ev_timer_start (EV_A_ &once->to);
3148 } 3684 }
3149} 3685}
3150 3686
3687/*****************************************************************************/
3688
3689#if EV_WALK_ENABLE
3690void
3691ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3692{
3693 int i, j;
3694 ev_watcher_list *wl, *wn;
3695
3696 if (types & (EV_IO | EV_EMBED))
3697 for (i = 0; i < anfdmax; ++i)
3698 for (wl = anfds [i].head; wl; )
3699 {
3700 wn = wl->next;
3701
3702#if EV_EMBED_ENABLE
3703 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3704 {
3705 if (types & EV_EMBED)
3706 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3707 }
3708 else
3709#endif
3710#if EV_USE_INOTIFY
3711 if (ev_cb ((ev_io *)wl) == infy_cb)
3712 ;
3713 else
3714#endif
3715 if ((ev_io *)wl != &pipe_w)
3716 if (types & EV_IO)
3717 cb (EV_A_ EV_IO, wl);
3718
3719 wl = wn;
3720 }
3721
3722 if (types & (EV_TIMER | EV_STAT))
3723 for (i = timercnt + HEAP0; i-- > HEAP0; )
3724#if EV_STAT_ENABLE
3725 /*TODO: timer is not always active*/
3726 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3727 {
3728 if (types & EV_STAT)
3729 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3730 }
3731 else
3732#endif
3733 if (types & EV_TIMER)
3734 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3735
3736#if EV_PERIODIC_ENABLE
3737 if (types & EV_PERIODIC)
3738 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3739 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3740#endif
3741
3742#if EV_IDLE_ENABLE
3743 if (types & EV_IDLE)
3744 for (j = NUMPRI; i--; )
3745 for (i = idlecnt [j]; i--; )
3746 cb (EV_A_ EV_IDLE, idles [j][i]);
3747#endif
3748
3749#if EV_FORK_ENABLE
3750 if (types & EV_FORK)
3751 for (i = forkcnt; i--; )
3752 if (ev_cb (forks [i]) != embed_fork_cb)
3753 cb (EV_A_ EV_FORK, forks [i]);
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757 if (types & EV_ASYNC)
3758 for (i = asynccnt; i--; )
3759 cb (EV_A_ EV_ASYNC, asyncs [i]);
3760#endif
3761
3762#if EV_PREPARE_ENABLE
3763 if (types & EV_PREPARE)
3764 for (i = preparecnt; i--; )
3765# if EV_EMBED_ENABLE
3766 if (ev_cb (prepares [i]) != embed_prepare_cb)
3767# endif
3768 cb (EV_A_ EV_PREPARE, prepares [i]);
3769#endif
3770
3771#if EV_CHECK_ENABLE
3772 if (types & EV_CHECK)
3773 for (i = checkcnt; i--; )
3774 cb (EV_A_ EV_CHECK, checks [i]);
3775#endif
3776
3777#if EV_SIGNAL_ENABLE
3778 if (types & EV_SIGNAL)
3779 for (i = 0; i < EV_NSIG - 1; ++i)
3780 for (wl = signals [i].head; wl; )
3781 {
3782 wn = wl->next;
3783 cb (EV_A_ EV_SIGNAL, wl);
3784 wl = wn;
3785 }
3786#endif
3787
3788#if EV_CHILD_ENABLE
3789 if (types & EV_CHILD)
3790 for (i = (EV_PID_HASHSIZE); i--; )
3791 for (wl = childs [i]; wl; )
3792 {
3793 wn = wl->next;
3794 cb (EV_A_ EV_CHILD, wl);
3795 wl = wn;
3796 }
3797#endif
3798/* EV_STAT 0x00001000 /* stat data changed */
3799/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3800}
3801#endif
3802
3151#if EV_MULTIPLICITY 3803#if EV_MULTIPLICITY
3152 #include "ev_wrap.h" 3804 #include "ev_wrap.h"
3153#endif 3805#endif
3154 3806
3155#ifdef __cplusplus 3807#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines