ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.161 by root, Sat Dec 1 23:43:45 2007 UTC vs.
Revision 1.351 by root, Sat Oct 16 06:46:55 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 83# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 85# endif
86# else
87# undef EV_USE_NANOSLEEP
88# define EV_USE_NANOSLEEP 0
65# endif 89# endif
66 90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 92# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 93# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
98# endif
99
100# if HAVE_POLL && HAVE_POLL_H
101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
103# endif
104# else
105# undef EV_USE_POLL
106# define EV_USE_POLL 0
73# endif 107# endif
74 108
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
78# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
81# endif 116# endif
82 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
89# endif 125# endif
90 126
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
94# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
97# endif 134# endif
98 135
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
105# endif 143# endif
106 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
107#endif 163#endif
108 164
109#include <math.h> 165#include <math.h>
110#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
111#include <fcntl.h> 168#include <fcntl.h>
112#include <stddef.h> 169#include <stddef.h>
113 170
114#include <stdio.h> 171#include <stdio.h>
115 172
116#include <assert.h> 173#include <assert.h>
117#include <errno.h> 174#include <errno.h>
118#include <sys/types.h> 175#include <sys/types.h>
119#include <time.h> 176#include <time.h>
177#include <limits.h>
120 178
121#include <signal.h> 179#include <signal.h>
122 180
123#ifdef EV_H 181#ifdef EV_H
124# include EV_H 182# include EV_H
129#ifndef _WIN32 187#ifndef _WIN32
130# include <sys/time.h> 188# include <sys/time.h>
131# include <sys/wait.h> 189# include <sys/wait.h>
132# include <unistd.h> 190# include <unistd.h>
133#else 191#else
192# include <io.h>
134# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 194# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
138# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
208
209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
139#endif 244# endif
140 245#endif
141/**/
142 246
143#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
144# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
145#endif 253#endif
146 254
147#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
257#endif
258
259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
263# define EV_USE_NANOSLEEP 0
264# endif
149#endif 265#endif
150 266
151#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 269#endif
154 270
155#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
156# ifdef _WIN32 272# ifdef _WIN32
157# define EV_USE_POLL 0 273# define EV_USE_POLL 0
158# else 274# else
159# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 276# endif
161#endif 277#endif
162 278
163#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
282# else
164# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
284# endif
165#endif 285#endif
166 286
167#ifndef EV_USE_KQUEUE 287#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 288# define EV_USE_KQUEUE 0
169#endif 289#endif
171#ifndef EV_USE_PORT 291#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 292# define EV_USE_PORT 0
173#endif 293#endif
174 294
175#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_INOTIFY EV_FEATURE_OS
298# else
176# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
300# endif
177#endif 301#endif
178 302
179#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 305#endif
306
307#ifndef EV_INOTIFY_HASHSIZE
308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309#endif
310
311#ifndef EV_USE_EVENTFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 314# else
183# define EV_PID_HASHSIZE 16 315# define EV_USE_EVENTFD 0
184# endif 316# endif
185#endif 317#endif
186 318
187#ifndef EV_INOTIFY_HASHSIZE 319#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 321# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 322# else
191# define EV_INOTIFY_HASHSIZE 16 323# define EV_USE_SIGNALFD 0
192# endif 324# endif
193#endif 325#endif
194 326
195/**/ 327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
196 366
197#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
200#endif 370#endif
202#ifndef CLOCK_REALTIME 372#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 373# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 374# define EV_USE_REALTIME 0
205#endif 375#endif
206 376
377#if !EV_STAT_ENABLE
378# undef EV_USE_INOTIFY
379# define EV_USE_INOTIFY 0
380#endif
381
382#if !EV_USE_NANOSLEEP
383# ifndef _WIN32
384# include <sys/select.h>
385# endif
386#endif
387
388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
397#endif
398
207#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 400# include <winsock.h>
209#endif 401#endif
210 402
211#if !EV_STAT_ENABLE 403#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
213#endif 408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
416# ifdef __cplusplus
417extern "C" {
418# endif
419int (eventfd) (unsigned int initval, int flags);
420# ifdef __cplusplus
421}
422# endif
423#endif
214 424
215#if EV_USE_INOTIFY 425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
217#endif 451#endif
218 452
219/**/ 453/**/
454
455#if EV_VERIFY >= 3
456# define EV_FREQUENT_CHECK ev_verify (EV_A)
457#else
458# define EV_FREQUENT_CHECK do { } while (0)
459#endif
460
461/*
462 * This is used to avoid floating point rounding problems.
463 * It is added to ev_rt_now when scheduling periodics
464 * to ensure progress, time-wise, even when rounding
465 * errors are against us.
466 * This value is good at least till the year 4000.
467 * Better solutions welcome.
468 */
469#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 470
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 471#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 472#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 473
474#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
475#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
476
225#if __GNUC__ >= 3 477#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 478# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 479# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 480#else
236# define expect(expr,value) (expr) 481# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 482# define noinline
483# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
484# define inline
485# endif
240#endif 486#endif
241 487
242#define expect_false(expr) expect ((expr) != 0, 0) 488#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 489#define expect_true(expr) expect ((expr) != 0, 1)
490#define inline_size static inline
244 491
492#if EV_FEATURE_CODE
493# define inline_speed static inline
494#else
495# define inline_speed static noinline
496#endif
497
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 498#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499
500#if EV_MINPRI == EV_MAXPRI
501# define ABSPRI(w) (((W)w), 0)
502#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 503# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504#endif
247 505
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 506#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 507#define EMPTY2(a,b) /* used to suppress some warnings */
250 508
251typedef ev_watcher *W; 509typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 510typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 511typedef ev_watcher_time *WT;
254 512
513#define ev_active(w) ((W)(w))->active
514#define ev_at(w) ((WT)(w))->at
515
516#if EV_USE_REALTIME
517/* sig_atomic_t is used to avoid per-thread variables or locking but still */
518/* giving it a reasonably high chance of working on typical architectures */
519static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
520#endif
521
522#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 523static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
524#endif
525
526#ifndef EV_FD_TO_WIN32_HANDLE
527# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528#endif
529#ifndef EV_WIN32_HANDLE_TO_FD
530# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531#endif
532#ifndef EV_WIN32_CLOSE_FD
533# define EV_WIN32_CLOSE_FD(fd) close (fd)
534#endif
256 535
257#ifdef _WIN32 536#ifdef _WIN32
258# include "ev_win32.c" 537# include "ev_win32.c"
259#endif 538#endif
260 539
261/*****************************************************************************/ 540/*****************************************************************************/
262 541
542#if EV_AVOID_STDIO
543static void noinline
544ev_printerr (const char *msg)
545{
546 write (STDERR_FILENO, msg, strlen (msg));
547}
548#endif
549
263static void (*syserr_cb)(const char *msg); 550static void (*syserr_cb)(const char *msg);
264 551
265void 552void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 553ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 554{
268 syserr_cb = cb; 555 syserr_cb = cb;
269} 556}
270 557
271static void noinline 558static void noinline
272syserr (const char *msg) 559ev_syserr (const char *msg)
273{ 560{
274 if (!msg) 561 if (!msg)
275 msg = "(libev) system error"; 562 msg = "(libev) system error";
276 563
277 if (syserr_cb) 564 if (syserr_cb)
278 syserr_cb (msg); 565 syserr_cb (msg);
279 else 566 else
280 { 567 {
568#if EV_AVOID_STDIO
569 const char *err = strerror (errno);
570
571 ev_printerr (msg);
572 ev_printerr (": ");
573 ev_printerr (err);
574 ev_printerr ("\n");
575#else
281 perror (msg); 576 perror (msg);
577#endif
282 abort (); 578 abort ();
283 } 579 }
284} 580}
285 581
582static void *
583ev_realloc_emul (void *ptr, long size)
584{
585#if __GLIBC__
586 return realloc (ptr, size);
587#else
588 /* some systems, notably openbsd and darwin, fail to properly
589 * implement realloc (x, 0) (as required by both ansi c-89 and
590 * the single unix specification, so work around them here.
591 */
592
593 if (size)
594 return realloc (ptr, size);
595
596 free (ptr);
597 return 0;
598#endif
599}
600
286static void *(*alloc)(void *ptr, long size); 601static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 602
288void 603void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 604ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 605{
291 alloc = cb; 606 alloc = cb;
292} 607}
293 608
294inline_speed void * 609inline_speed void *
295ev_realloc (void *ptr, long size) 610ev_realloc (void *ptr, long size)
296{ 611{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 612 ptr = alloc (ptr, size);
298 613
299 if (!ptr && size) 614 if (!ptr && size)
300 { 615 {
616#if EV_AVOID_STDIO
617 ev_printerr ("libev: memory allocation failed, aborting.\n");
618#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 619 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620#endif
302 abort (); 621 abort ();
303 } 622 }
304 623
305 return ptr; 624 return ptr;
306} 625}
308#define ev_malloc(size) ev_realloc (0, (size)) 627#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 628#define ev_free(ptr) ev_realloc ((ptr), 0)
310 629
311/*****************************************************************************/ 630/*****************************************************************************/
312 631
632/* set in reify when reification needed */
633#define EV_ANFD_REIFY 1
634
635/* file descriptor info structure */
313typedef struct 636typedef struct
314{ 637{
315 WL head; 638 WL head;
316 unsigned char events; 639 unsigned char events; /* the events watched for */
640 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
641 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 642 unsigned char unused;
643#if EV_USE_EPOLL
644 unsigned int egen; /* generation counter to counter epoll bugs */
645#endif
318#if EV_SELECT_IS_WINSOCKET 646#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 647 SOCKET handle;
320#endif 648#endif
321} ANFD; 649} ANFD;
322 650
651/* stores the pending event set for a given watcher */
323typedef struct 652typedef struct
324{ 653{
325 W w; 654 W w;
326 int events; 655 int events; /* the pending event set for the given watcher */
327} ANPENDING; 656} ANPENDING;
328 657
329#if EV_USE_INOTIFY 658#if EV_USE_INOTIFY
659/* hash table entry per inotify-id */
330typedef struct 660typedef struct
331{ 661{
332 WL head; 662 WL head;
333} ANFS; 663} ANFS;
664#endif
665
666/* Heap Entry */
667#if EV_HEAP_CACHE_AT
668 /* a heap element */
669 typedef struct {
670 ev_tstamp at;
671 WT w;
672 } ANHE;
673
674 #define ANHE_w(he) (he).w /* access watcher, read-write */
675 #define ANHE_at(he) (he).at /* access cached at, read-only */
676 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
677#else
678 /* a heap element */
679 typedef WT ANHE;
680
681 #define ANHE_w(he) (he)
682 #define ANHE_at(he) (he)->at
683 #define ANHE_at_cache(he)
334#endif 684#endif
335 685
336#if EV_MULTIPLICITY 686#if EV_MULTIPLICITY
337 687
338 struct ev_loop 688 struct ev_loop
357 707
358 static int ev_default_loop_ptr; 708 static int ev_default_loop_ptr;
359 709
360#endif 710#endif
361 711
712#if EV_FEATURE_API
713# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715# define EV_INVOKE_PENDING invoke_cb (EV_A)
716#else
717# define EV_RELEASE_CB (void)0
718# define EV_ACQUIRE_CB (void)0
719# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720#endif
721
722#define EVUNLOOP_RECURSE 0x80
723
362/*****************************************************************************/ 724/*****************************************************************************/
363 725
726#ifndef EV_HAVE_EV_TIME
364ev_tstamp 727ev_tstamp
365ev_time (void) 728ev_time (void)
366{ 729{
367#if EV_USE_REALTIME 730#if EV_USE_REALTIME
731 if (expect_true (have_realtime))
732 {
368 struct timespec ts; 733 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 734 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 735 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 736 }
737#endif
738
372 struct timeval tv; 739 struct timeval tv;
373 gettimeofday (&tv, 0); 740 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 741 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 742}
743#endif
377 744
378ev_tstamp inline_size 745inline_size ev_tstamp
379get_clock (void) 746get_clock (void)
380{ 747{
381#if EV_USE_MONOTONIC 748#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 749 if (expect_true (have_monotonic))
383 { 750 {
396{ 763{
397 return ev_rt_now; 764 return ev_rt_now;
398} 765}
399#endif 766#endif
400 767
401#define array_roundsize(type,n) (((n) | 4) & ~3) 768void
769ev_sleep (ev_tstamp delay)
770{
771 if (delay > 0.)
772 {
773#if EV_USE_NANOSLEEP
774 struct timespec ts;
775
776 EV_TS_SET (ts, delay);
777 nanosleep (&ts, 0);
778#elif defined(_WIN32)
779 Sleep ((unsigned long)(delay * 1e3));
780#else
781 struct timeval tv;
782
783 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
784 /* something not guaranteed by newer posix versions, but guaranteed */
785 /* by older ones */
786 EV_TV_SET (tv, delay);
787 select (0, 0, 0, 0, &tv);
788#endif
789 }
790}
791
792/*****************************************************************************/
793
794#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
795
796/* find a suitable new size for the given array, */
797/* hopefully by rounding to a nice-to-malloc size */
798inline_size int
799array_nextsize (int elem, int cur, int cnt)
800{
801 int ncur = cur + 1;
802
803 do
804 ncur <<= 1;
805 while (cnt > ncur);
806
807 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
808 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
809 {
810 ncur *= elem;
811 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
812 ncur = ncur - sizeof (void *) * 4;
813 ncur /= elem;
814 }
815
816 return ncur;
817}
818
819static noinline void *
820array_realloc (int elem, void *base, int *cur, int cnt)
821{
822 *cur = array_nextsize (elem, *cur, cnt);
823 return ev_realloc (base, elem * *cur);
824}
825
826#define array_init_zero(base,count) \
827 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 828
403#define array_needsize(type,base,cur,cnt,init) \ 829#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 830 if (expect_false ((cnt) > (cur))) \
405 { \ 831 { \
406 int newcnt = cur; \ 832 int ocur_ = (cur); \
407 do \ 833 (base) = (type *)array_realloc \
408 { \ 834 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 835 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 836 }
417 837
838#if 0
418#define array_slim(type,stem) \ 839#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 840 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 841 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 842 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 843 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 844 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 845 }
846#endif
425 847
426#define array_free(stem, idx) \ 848#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 849 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 850
429/*****************************************************************************/ 851/*****************************************************************************/
852
853/* dummy callback for pending events */
854static void noinline
855pendingcb (EV_P_ ev_prepare *w, int revents)
856{
857}
430 858
431void noinline 859void noinline
432ev_feed_event (EV_P_ void *w, int revents) 860ev_feed_event (EV_P_ void *w, int revents)
433{ 861{
434 W w_ = (W)w; 862 W w_ = (W)w;
863 int pri = ABSPRI (w_);
435 864
436 if (expect_false (w_->pending)) 865 if (expect_false (w_->pending))
866 pendings [pri][w_->pending - 1].events |= revents;
867 else
437 { 868 {
869 w_->pending = ++pendingcnt [pri];
870 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
871 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 872 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 873 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 874}
447 875
448void inline_size 876inline_speed void
877feed_reverse (EV_P_ W w)
878{
879 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880 rfeeds [rfeedcnt++] = w;
881}
882
883inline_size void
884feed_reverse_done (EV_P_ int revents)
885{
886 do
887 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888 while (rfeedcnt);
889}
890
891inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 892queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 893{
451 int i; 894 int i;
452 895
453 for (i = 0; i < eventcnt; ++i) 896 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 897 ev_feed_event (EV_A_ events [i], type);
455} 898}
456 899
457/*****************************************************************************/ 900/*****************************************************************************/
458 901
459void inline_size 902inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 903fd_event_nocheck (EV_P_ int fd, int revents)
474{ 904{
475 ANFD *anfd = anfds + fd; 905 ANFD *anfd = anfds + fd;
476 ev_io *w; 906 ev_io *w;
477 907
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 912 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 913 ev_feed_event (EV_A_ (W)w, ev);
484 } 914 }
485} 915}
486 916
917/* do not submit kernel events for fds that have reify set */
918/* because that means they changed while we were polling for new events */
919inline_speed void
920fd_event (EV_P_ int fd, int revents)
921{
922 ANFD *anfd = anfds + fd;
923
924 if (expect_true (!anfd->reify))
925 fd_event_nocheck (EV_A_ fd, revents);
926}
927
487void 928void
488ev_feed_fd_event (EV_P_ int fd, int revents) 929ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 930{
931 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 932 fd_event_nocheck (EV_A_ fd, revents);
491} 933}
492 934
493void inline_size 935/* make sure the external fd watch events are in-sync */
936/* with the kernel/libev internal state */
937inline_size void
494fd_reify (EV_P) 938fd_reify (EV_P)
495{ 939{
496 int i; 940 int i;
497 941
498 for (i = 0; i < fdchangecnt; ++i) 942 for (i = 0; i < fdchangecnt; ++i)
499 { 943 {
500 int fd = fdchanges [i]; 944 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 945 ANFD *anfd = anfds + fd;
502 ev_io *w; 946 ev_io *w;
503 947
504 int events = 0; 948 unsigned char o_events = anfd->events;
949 unsigned char o_reify = anfd->reify;
505 950
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 951 anfd->reify = 0;
507 events |= w->events;
508 952
509#if EV_SELECT_IS_WINSOCKET 953#if EV_SELECT_IS_WINSOCKET
510 if (events) 954 if (o_reify & EV__IOFDSET)
511 { 955 {
512 unsigned long argp; 956 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 957 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 958 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 959 }
516#endif 960#endif
517 961
518 anfd->reify = 0; 962 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
963 {
964 anfd->events = 0;
519 965
966 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
967 anfd->events |= (unsigned char)w->events;
968
969 if (o_events != anfd->events)
970 o_reify = EV__IOFDSET; /* actually |= */
971 }
972
973 if (o_reify & EV__IOFDSET)
520 backend_modify (EV_A_ fd, anfd->events, events); 974 backend_modify (EV_A_ fd, o_events, anfd->events);
521 anfd->events = events;
522 } 975 }
523 976
524 fdchangecnt = 0; 977 fdchangecnt = 0;
525} 978}
526 979
527void inline_size 980/* something about the given fd changed */
981inline_size void
528fd_change (EV_P_ int fd) 982fd_change (EV_P_ int fd, int flags)
529{ 983{
530 if (expect_false (anfds [fd].reify)) 984 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 985 anfds [fd].reify |= flags;
534 986
987 if (expect_true (!reify))
988 {
535 ++fdchangecnt; 989 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 990 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 991 fdchanges [fdchangecnt - 1] = fd;
992 }
538} 993}
539 994
540void inline_speed 995/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
996inline_speed void
541fd_kill (EV_P_ int fd) 997fd_kill (EV_P_ int fd)
542{ 998{
543 ev_io *w; 999 ev_io *w;
544 1000
545 while ((w = (ev_io *)anfds [fd].head)) 1001 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 1003 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1004 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 1005 }
550} 1006}
551 1007
552int inline_size 1008/* check whether the given fd is actually valid, for error recovery */
1009inline_size int
553fd_valid (int fd) 1010fd_valid (int fd)
554{ 1011{
555#ifdef _WIN32 1012#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 1013 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 1014#else
558 return fcntl (fd, F_GETFD) != -1; 1015 return fcntl (fd, F_GETFD) != -1;
559#endif 1016#endif
560} 1017}
561 1018
565{ 1022{
566 int fd; 1023 int fd;
567 1024
568 for (fd = 0; fd < anfdmax; ++fd) 1025 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 1026 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 1027 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 1028 fd_kill (EV_A_ fd);
572} 1029}
573 1030
574/* called on ENOMEM in select/poll to kill some fds and retry */ 1031/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 1032static void noinline
579 1036
580 for (fd = anfdmax; fd--; ) 1037 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 1038 if (anfds [fd].events)
582 { 1039 {
583 fd_kill (EV_A_ fd); 1040 fd_kill (EV_A_ fd);
584 return; 1041 break;
585 } 1042 }
586} 1043}
587 1044
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1045/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1046static void noinline
593 1050
594 for (fd = 0; fd < anfdmax; ++fd) 1051 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 1052 if (anfds [fd].events)
596 { 1053 {
597 anfds [fd].events = 0; 1054 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 1055 anfds [fd].emask = 0;
1056 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
599 } 1057 }
600} 1058}
601 1059
602/*****************************************************************************/ 1060/* used to prepare libev internal fd's */
603 1061/* this is not fork-safe */
604void inline_speed 1062inline_speed void
605upheap (WT *heap, int k)
606{
607 WT w = heap [k];
608
609 while (k && heap [k >> 1]->at > w->at)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 }
615
616 heap [k] = w;
617 ((W)heap [k])->active = k + 1;
618
619}
620
621void inline_speed
622downheap (WT *heap, int N, int k)
623{
624 WT w = heap [k];
625
626 while (k < (N >> 1))
627 {
628 int j = k << 1;
629
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break;
635
636 heap [k] = heap [j];
637 ((W)heap [k])->active = k + 1;
638 k = j;
639 }
640
641 heap [k] = w;
642 ((W)heap [k])->active = k + 1;
643}
644
645void inline_size
646adjustheap (WT *heap, int N, int k)
647{
648 upheap (heap, k);
649 downheap (heap, N, k);
650}
651
652/*****************************************************************************/
653
654typedef struct
655{
656 WL head;
657 sig_atomic_t volatile gotsig;
658} ANSIG;
659
660static ANSIG *signals;
661static int signalmax;
662
663static int sigpipe [2];
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666
667void inline_size
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674
675 ++base;
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1063fd_intern (int fd)
732{ 1064{
733#ifdef _WIN32 1065#ifdef _WIN32
734 int arg = 1; 1066 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1067 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
736#else 1068#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1069 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1070 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1071#endif
740} 1072}
741 1073
1074/*****************************************************************************/
1075
1076/*
1077 * the heap functions want a real array index. array index 0 is guaranteed to not
1078 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1079 * the branching factor of the d-tree.
1080 */
1081
1082/*
1083 * at the moment we allow libev the luxury of two heaps,
1084 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1085 * which is more cache-efficient.
1086 * the difference is about 5% with 50000+ watchers.
1087 */
1088#if EV_USE_4HEAP
1089
1090#define DHEAP 4
1091#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1092#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1093#define UPHEAP_DONE(p,k) ((p) == (k))
1094
1095/* away from the root */
1096inline_speed void
1097downheap (ANHE *heap, int N, int k)
1098{
1099 ANHE he = heap [k];
1100 ANHE *E = heap + N + HEAP0;
1101
1102 for (;;)
1103 {
1104 ev_tstamp minat;
1105 ANHE *minpos;
1106 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1107
1108 /* find minimum child */
1109 if (expect_true (pos + DHEAP - 1 < E))
1110 {
1111 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1112 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1113 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1114 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1115 }
1116 else if (pos < E)
1117 {
1118 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1119 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1120 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1121 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1122 }
1123 else
1124 break;
1125
1126 if (ANHE_at (he) <= minat)
1127 break;
1128
1129 heap [k] = *minpos;
1130 ev_active (ANHE_w (*minpos)) = k;
1131
1132 k = minpos - heap;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139#else /* 4HEAP */
1140
1141#define HEAP0 1
1142#define HPARENT(k) ((k) >> 1)
1143#define UPHEAP_DONE(p,k) (!(p))
1144
1145/* away from the root */
1146inline_speed void
1147downheap (ANHE *heap, int N, int k)
1148{
1149 ANHE he = heap [k];
1150
1151 for (;;)
1152 {
1153 int c = k << 1;
1154
1155 if (c >= N + HEAP0)
1156 break;
1157
1158 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1159 ? 1 : 0;
1160
1161 if (ANHE_at (he) <= ANHE_at (heap [c]))
1162 break;
1163
1164 heap [k] = heap [c];
1165 ev_active (ANHE_w (heap [k])) = k;
1166
1167 k = c;
1168 }
1169
1170 heap [k] = he;
1171 ev_active (ANHE_w (he)) = k;
1172}
1173#endif
1174
1175/* towards the root */
1176inline_speed void
1177upheap (ANHE *heap, int k)
1178{
1179 ANHE he = heap [k];
1180
1181 for (;;)
1182 {
1183 int p = HPARENT (k);
1184
1185 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1186 break;
1187
1188 heap [k] = heap [p];
1189 ev_active (ANHE_w (heap [k])) = k;
1190 k = p;
1191 }
1192
1193 heap [k] = he;
1194 ev_active (ANHE_w (he)) = k;
1195}
1196
1197/* move an element suitably so it is in a correct place */
1198inline_size void
1199adjustheap (ANHE *heap, int N, int k)
1200{
1201 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1202 upheap (heap, k);
1203 else
1204 downheap (heap, N, k);
1205}
1206
1207/* rebuild the heap: this function is used only once and executed rarely */
1208inline_size void
1209reheap (ANHE *heap, int N)
1210{
1211 int i;
1212
1213 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1214 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1215 for (i = 0; i < N; ++i)
1216 upheap (heap, i + HEAP0);
1217}
1218
1219/*****************************************************************************/
1220
1221/* associate signal watchers to a signal signal */
1222typedef struct
1223{
1224 EV_ATOMIC_T pending;
1225#if EV_MULTIPLICITY
1226 EV_P;
1227#endif
1228 WL head;
1229} ANSIG;
1230
1231static ANSIG signals [EV_NSIG - 1];
1232
1233/*****************************************************************************/
1234
1235#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1236
742static void noinline 1237static void noinline
743siginit (EV_P) 1238evpipe_init (EV_P)
744{ 1239{
1240 if (!ev_is_active (&pipe_w))
1241 {
1242# if EV_USE_EVENTFD
1243 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1244 if (evfd < 0 && errno == EINVAL)
1245 evfd = eventfd (0, 0);
1246
1247 if (evfd >= 0)
1248 {
1249 evpipe [0] = -1;
1250 fd_intern (evfd); /* doing it twice doesn't hurt */
1251 ev_io_set (&pipe_w, evfd, EV_READ);
1252 }
1253 else
1254# endif
1255 {
1256 while (pipe (evpipe))
1257 ev_syserr ("(libev) error creating signal/async pipe");
1258
745 fd_intern (sigpipe [0]); 1259 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1260 fd_intern (evpipe [1]);
1261 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1262 }
747 1263
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1264 ev_io_start (EV_A_ &pipe_w);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1265 ev_unref (EV_A); /* watcher should not keep loop alive */
1266 }
1267}
1268
1269inline_size void
1270evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1271{
1272 if (!*flag)
1273 {
1274 int old_errno = errno; /* save errno because write might clobber it */
1275 char dummy;
1276
1277 *flag = 1;
1278
1279#if EV_USE_EVENTFD
1280 if (evfd >= 0)
1281 {
1282 uint64_t counter = 1;
1283 write (evfd, &counter, sizeof (uint64_t));
1284 }
1285 else
1286#endif
1287 /* win32 people keep sending patches that change this write() to send() */
1288 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1289 /* so when you think this write should be a send instead, please find out */
1290 /* where your send() is from - it's definitely not the microsoft send, and */
1291 /* tell me. thank you. */
1292 write (evpipe [1], &dummy, 1);
1293
1294 errno = old_errno;
1295 }
1296}
1297
1298/* called whenever the libev signal pipe */
1299/* got some events (signal, async) */
1300static void
1301pipecb (EV_P_ ev_io *iow, int revents)
1302{
1303 int i;
1304
1305#if EV_USE_EVENTFD
1306 if (evfd >= 0)
1307 {
1308 uint64_t counter;
1309 read (evfd, &counter, sizeof (uint64_t));
1310 }
1311 else
1312#endif
1313 {
1314 char dummy;
1315 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1316 read (evpipe [0], &dummy, 1);
1317 }
1318
1319 if (sig_pending)
1320 {
1321 sig_pending = 0;
1322
1323 for (i = EV_NSIG - 1; i--; )
1324 if (expect_false (signals [i].pending))
1325 ev_feed_signal_event (EV_A_ i + 1);
1326 }
1327
1328#if EV_ASYNC_ENABLE
1329 if (async_pending)
1330 {
1331 async_pending = 0;
1332
1333 for (i = asynccnt; i--; )
1334 if (asyncs [i]->sent)
1335 {
1336 asyncs [i]->sent = 0;
1337 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1338 }
1339 }
1340#endif
751} 1341}
752 1342
753/*****************************************************************************/ 1343/*****************************************************************************/
754 1344
755static ev_child *childs [EV_PID_HASHSIZE]; 1345static void
1346ev_sighandler (int signum)
1347{
1348#if EV_MULTIPLICITY
1349 EV_P = signals [signum - 1].loop;
1350#endif
756 1351
757#ifndef _WIN32 1352#ifdef _WIN32
1353 signal (signum, ev_sighandler);
1354#endif
1355
1356 signals [signum - 1].pending = 1;
1357 evpipe_write (EV_A_ &sig_pending);
1358}
1359
1360void noinline
1361ev_feed_signal_event (EV_P_ int signum)
1362{
1363 WL w;
1364
1365 if (expect_false (signum <= 0 || signum > EV_NSIG))
1366 return;
1367
1368 --signum;
1369
1370#if EV_MULTIPLICITY
1371 /* it is permissible to try to feed a signal to the wrong loop */
1372 /* or, likely more useful, feeding a signal nobody is waiting for */
1373
1374 if (expect_false (signals [signum].loop != EV_A))
1375 return;
1376#endif
1377
1378 signals [signum].pending = 0;
1379
1380 for (w = signals [signum].head; w; w = w->next)
1381 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1382}
1383
1384#if EV_USE_SIGNALFD
1385static void
1386sigfdcb (EV_P_ ev_io *iow, int revents)
1387{
1388 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1389
1390 for (;;)
1391 {
1392 ssize_t res = read (sigfd, si, sizeof (si));
1393
1394 /* not ISO-C, as res might be -1, but works with SuS */
1395 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1396 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1397
1398 if (res < (ssize_t)sizeof (si))
1399 break;
1400 }
1401}
1402#endif
1403
1404#endif
1405
1406/*****************************************************************************/
1407
1408#if EV_CHILD_ENABLE
1409static WL childs [EV_PID_HASHSIZE];
758 1410
759static ev_signal childev; 1411static ev_signal childev;
760 1412
761void inline_speed 1413#ifndef WIFCONTINUED
1414# define WIFCONTINUED(status) 0
1415#endif
1416
1417/* handle a single child status event */
1418inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1419child_reap (EV_P_ int chain, int pid, int status)
763{ 1420{
764 ev_child *w; 1421 ev_child *w;
1422 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1423
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1424 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1425 {
767 if (w->pid == pid || !w->pid) 1426 if ((w->pid == pid || !w->pid)
1427 && (!traced || (w->flags & 1)))
768 { 1428 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1429 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1430 w->rpid = pid;
771 w->rstatus = status; 1431 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1432 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1433 }
1434 }
774} 1435}
775 1436
776#ifndef WCONTINUED 1437#ifndef WCONTINUED
777# define WCONTINUED 0 1438# define WCONTINUED 0
778#endif 1439#endif
779 1440
1441/* called on sigchld etc., calls waitpid */
780static void 1442static void
781childcb (EV_P_ ev_signal *sw, int revents) 1443childcb (EV_P_ ev_signal *sw, int revents)
782{ 1444{
783 int pid, status; 1445 int pid, status;
784 1446
787 if (!WCONTINUED 1449 if (!WCONTINUED
788 || errno != EINVAL 1450 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1451 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1452 return;
791 1453
792 /* make sure we are called again until all childs have been reaped */ 1454 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1455 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1456 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1457
796 child_reap (EV_A_ sw, pid, pid, status); 1458 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1459 if ((EV_PID_HASHSIZE) > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1460 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1461}
800 1462
801#endif 1463#endif
802 1464
803/*****************************************************************************/ 1465/*****************************************************************************/
865 /* kqueue is borked on everything but netbsd apparently */ 1527 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1528 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1529 flags &= ~EVBACKEND_KQUEUE;
868#endif 1530#endif
869#ifdef __APPLE__ 1531#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1532 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1533 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1534 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1535#endif
1536#ifdef __FreeBSD__
1537 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
872#endif 1538#endif
873 1539
874 return flags; 1540 return flags;
875} 1541}
876 1542
877unsigned int 1543unsigned int
878ev_embeddable_backends (void) 1544ev_embeddable_backends (void)
879{ 1545{
880 return EVBACKEND_EPOLL 1546 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1547
882 | EVBACKEND_PORT; 1548 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1549 /* please fix it and tell me how to detect the fix */
1550 flags &= ~EVBACKEND_EPOLL;
1551
1552 return flags;
883} 1553}
884 1554
885unsigned int 1555unsigned int
886ev_backend (EV_P) 1556ev_backend (EV_P)
887{ 1557{
888 return backend; 1558 return backend;
889} 1559}
890 1560
1561#if EV_FEATURE_API
1562unsigned int
1563ev_iteration (EV_P)
1564{
1565 return loop_count;
1566}
1567
1568unsigned int
1569ev_depth (EV_P)
1570{
1571 return loop_depth;
1572}
1573
1574void
1575ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1576{
1577 io_blocktime = interval;
1578}
1579
1580void
1581ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1582{
1583 timeout_blocktime = interval;
1584}
1585
1586void
1587ev_set_userdata (EV_P_ void *data)
1588{
1589 userdata = data;
1590}
1591
1592void *
1593ev_userdata (EV_P)
1594{
1595 return userdata;
1596}
1597
1598void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1599{
1600 invoke_cb = invoke_pending_cb;
1601}
1602
1603void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1604{
1605 release_cb = release;
1606 acquire_cb = acquire;
1607}
1608#endif
1609
1610/* initialise a loop structure, must be zero-initialised */
891static void noinline 1611static void noinline
892loop_init (EV_P_ unsigned int flags) 1612loop_init (EV_P_ unsigned int flags)
893{ 1613{
894 if (!backend) 1614 if (!backend)
895 { 1615 {
1616#if EV_USE_REALTIME
1617 if (!have_realtime)
1618 {
1619 struct timespec ts;
1620
1621 if (!clock_gettime (CLOCK_REALTIME, &ts))
1622 have_realtime = 1;
1623 }
1624#endif
1625
896#if EV_USE_MONOTONIC 1626#if EV_USE_MONOTONIC
1627 if (!have_monotonic)
897 { 1628 {
898 struct timespec ts; 1629 struct timespec ts;
1630
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1631 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1632 have_monotonic = 1;
901 } 1633 }
902#endif 1634#endif
903
904 ev_rt_now = ev_time ();
905 mn_now = get_clock ();
906 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now;
908 1635
909 /* pid check not overridable via env */ 1636 /* pid check not overridable via env */
910#ifndef _WIN32 1637#ifndef _WIN32
911 if (flags & EVFLAG_FORKCHECK) 1638 if (flags & EVFLAG_FORKCHECK)
912 curpid = getpid (); 1639 curpid = getpid ();
915 if (!(flags & EVFLAG_NOENV) 1642 if (!(flags & EVFLAG_NOENV)
916 && !enable_secure () 1643 && !enable_secure ()
917 && getenv ("LIBEV_FLAGS")) 1644 && getenv ("LIBEV_FLAGS"))
918 flags = atoi (getenv ("LIBEV_FLAGS")); 1645 flags = atoi (getenv ("LIBEV_FLAGS"));
919 1646
1647 ev_rt_now = ev_time ();
1648 mn_now = get_clock ();
1649 now_floor = mn_now;
1650 rtmn_diff = ev_rt_now - mn_now;
1651#if EV_FEATURE_API
1652 invoke_cb = ev_invoke_pending;
1653#endif
1654
1655 io_blocktime = 0.;
1656 timeout_blocktime = 0.;
1657 backend = 0;
1658 backend_fd = -1;
1659 sig_pending = 0;
1660#if EV_ASYNC_ENABLE
1661 async_pending = 0;
1662#endif
1663#if EV_USE_INOTIFY
1664 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1665#endif
1666#if EV_USE_SIGNALFD
1667 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1668#endif
1669
920 if (!(flags & 0x0000ffffUL)) 1670 if (!(flags & 0x0000ffffU))
921 flags |= ev_recommended_backends (); 1671 flags |= ev_recommended_backends ();
922
923 backend = 0;
924 backend_fd = -1;
925#if EV_USE_INOTIFY
926 fs_fd = -2;
927#endif
928 1672
929#if EV_USE_PORT 1673#if EV_USE_PORT
930 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1674 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
931#endif 1675#endif
932#if EV_USE_KQUEUE 1676#if EV_USE_KQUEUE
940#endif 1684#endif
941#if EV_USE_SELECT 1685#if EV_USE_SELECT
942 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1686 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
943#endif 1687#endif
944 1688
1689 ev_prepare_init (&pending_w, pendingcb);
1690
1691#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
945 ev_init (&sigev, sigcb); 1692 ev_init (&pipe_w, pipecb);
946 ev_set_priority (&sigev, EV_MAXPRI); 1693 ev_set_priority (&pipe_w, EV_MAXPRI);
1694#endif
947 } 1695 }
948} 1696}
949 1697
1698/* free up a loop structure */
950static void noinline 1699static void noinline
951loop_destroy (EV_P) 1700loop_destroy (EV_P)
952{ 1701{
953 int i; 1702 int i;
1703
1704 if (ev_is_active (&pipe_w))
1705 {
1706 /*ev_ref (EV_A);*/
1707 /*ev_io_stop (EV_A_ &pipe_w);*/
1708
1709#if EV_USE_EVENTFD
1710 if (evfd >= 0)
1711 close (evfd);
1712#endif
1713
1714 if (evpipe [0] >= 0)
1715 {
1716 EV_WIN32_CLOSE_FD (evpipe [0]);
1717 EV_WIN32_CLOSE_FD (evpipe [1]);
1718 }
1719 }
1720
1721#if EV_USE_SIGNALFD
1722 if (ev_is_active (&sigfd_w))
1723 close (sigfd);
1724#endif
954 1725
955#if EV_USE_INOTIFY 1726#if EV_USE_INOTIFY
956 if (fs_fd >= 0) 1727 if (fs_fd >= 0)
957 close (fs_fd); 1728 close (fs_fd);
958#endif 1729#endif
975#if EV_USE_SELECT 1746#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1747 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1748#endif
978 1749
979 for (i = NUMPRI; i--; ) 1750 for (i = NUMPRI; i--; )
1751 {
980 array_free (pending, [i]); 1752 array_free (pending, [i]);
1753#if EV_IDLE_ENABLE
1754 array_free (idle, [i]);
1755#endif
1756 }
1757
1758 ev_free (anfds); anfds = 0; anfdmax = 0;
981 1759
982 /* have to use the microsoft-never-gets-it-right macro */ 1760 /* have to use the microsoft-never-gets-it-right macro */
1761 array_free (rfeed, EMPTY);
983 array_free (fdchange, EMPTY0); 1762 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1763 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1764#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1765 array_free (periodic, EMPTY);
987#endif 1766#endif
1767#if EV_FORK_ENABLE
988 array_free (idle, EMPTY0); 1768 array_free (fork, EMPTY);
1769#endif
989 array_free (prepare, EMPTY0); 1770 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1771 array_free (check, EMPTY);
1772#if EV_ASYNC_ENABLE
1773 array_free (async, EMPTY);
1774#endif
991 1775
992 backend = 0; 1776 backend = 0;
993} 1777}
994 1778
1779#if EV_USE_INOTIFY
995void inline_size infy_fork (EV_P); 1780inline_size void infy_fork (EV_P);
1781#endif
996 1782
997void inline_size 1783inline_size void
998loop_fork (EV_P) 1784loop_fork (EV_P)
999{ 1785{
1000#if EV_USE_PORT 1786#if EV_USE_PORT
1001 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1787 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1002#endif 1788#endif
1008#endif 1794#endif
1009#if EV_USE_INOTIFY 1795#if EV_USE_INOTIFY
1010 infy_fork (EV_A); 1796 infy_fork (EV_A);
1011#endif 1797#endif
1012 1798
1013 if (ev_is_active (&sigev)) 1799 if (ev_is_active (&pipe_w))
1014 { 1800 {
1015 /* default loop */ 1801 /* this "locks" the handlers against writing to the pipe */
1802 /* while we modify the fd vars */
1803 sig_pending = 1;
1804#if EV_ASYNC_ENABLE
1805 async_pending = 1;
1806#endif
1016 1807
1017 ev_ref (EV_A); 1808 ev_ref (EV_A);
1018 ev_io_stop (EV_A_ &sigev); 1809 ev_io_stop (EV_A_ &pipe_w);
1019 close (sigpipe [0]);
1020 close (sigpipe [1]);
1021 1810
1022 while (pipe (sigpipe)) 1811#if EV_USE_EVENTFD
1023 syserr ("(libev) error creating pipe"); 1812 if (evfd >= 0)
1813 close (evfd);
1814#endif
1024 1815
1816 if (evpipe [0] >= 0)
1817 {
1818 EV_WIN32_CLOSE_FD (evpipe [0]);
1819 EV_WIN32_CLOSE_FD (evpipe [1]);
1820 }
1821
1822#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1025 siginit (EV_A); 1823 evpipe_init (EV_A);
1824 /* now iterate over everything, in case we missed something */
1825 pipecb (EV_A_ &pipe_w, EV_READ);
1826#endif
1026 } 1827 }
1027 1828
1028 postfork = 0; 1829 postfork = 0;
1029} 1830}
1030 1831
1031#if EV_MULTIPLICITY 1832#if EV_MULTIPLICITY
1833
1032struct ev_loop * 1834struct ev_loop *
1033ev_loop_new (unsigned int flags) 1835ev_loop_new (unsigned int flags)
1034{ 1836{
1035 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1837 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1036 1838
1037 memset (loop, 0, sizeof (struct ev_loop)); 1839 memset (EV_A, 0, sizeof (struct ev_loop));
1038
1039 loop_init (EV_A_ flags); 1840 loop_init (EV_A_ flags);
1040 1841
1041 if (ev_backend (EV_A)) 1842 if (ev_backend (EV_A))
1042 return loop; 1843 return EV_A;
1043 1844
1044 return 0; 1845 return 0;
1045} 1846}
1046 1847
1047void 1848void
1052} 1853}
1053 1854
1054void 1855void
1055ev_loop_fork (EV_P) 1856ev_loop_fork (EV_P)
1056{ 1857{
1057 postfork = 1; 1858 postfork = 1; /* must be in line with ev_default_fork */
1058} 1859}
1860#endif /* multiplicity */
1059 1861
1862#if EV_VERIFY
1863static void noinline
1864verify_watcher (EV_P_ W w)
1865{
1866 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1867
1868 if (w->pending)
1869 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1870}
1871
1872static void noinline
1873verify_heap (EV_P_ ANHE *heap, int N)
1874{
1875 int i;
1876
1877 for (i = HEAP0; i < N + HEAP0; ++i)
1878 {
1879 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1880 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1881 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1882
1883 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1884 }
1885}
1886
1887static void noinline
1888array_verify (EV_P_ W *ws, int cnt)
1889{
1890 while (cnt--)
1891 {
1892 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1893 verify_watcher (EV_A_ ws [cnt]);
1894 }
1895}
1896#endif
1897
1898#if EV_FEATURE_API
1899void
1900ev_verify (EV_P)
1901{
1902#if EV_VERIFY
1903 int i;
1904 WL w;
1905
1906 assert (activecnt >= -1);
1907
1908 assert (fdchangemax >= fdchangecnt);
1909 for (i = 0; i < fdchangecnt; ++i)
1910 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1911
1912 assert (anfdmax >= 0);
1913 for (i = 0; i < anfdmax; ++i)
1914 for (w = anfds [i].head; w; w = w->next)
1915 {
1916 verify_watcher (EV_A_ (W)w);
1917 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1918 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1919 }
1920
1921 assert (timermax >= timercnt);
1922 verify_heap (EV_A_ timers, timercnt);
1923
1924#if EV_PERIODIC_ENABLE
1925 assert (periodicmax >= periodiccnt);
1926 verify_heap (EV_A_ periodics, periodiccnt);
1927#endif
1928
1929 for (i = NUMPRI; i--; )
1930 {
1931 assert (pendingmax [i] >= pendingcnt [i]);
1932#if EV_IDLE_ENABLE
1933 assert (idleall >= 0);
1934 assert (idlemax [i] >= idlecnt [i]);
1935 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1936#endif
1937 }
1938
1939#if EV_FORK_ENABLE
1940 assert (forkmax >= forkcnt);
1941 array_verify (EV_A_ (W *)forks, forkcnt);
1942#endif
1943
1944#if EV_ASYNC_ENABLE
1945 assert (asyncmax >= asynccnt);
1946 array_verify (EV_A_ (W *)asyncs, asynccnt);
1947#endif
1948
1949#if EV_PREPARE_ENABLE
1950 assert (preparemax >= preparecnt);
1951 array_verify (EV_A_ (W *)prepares, preparecnt);
1952#endif
1953
1954#if EV_CHECK_ENABLE
1955 assert (checkmax >= checkcnt);
1956 array_verify (EV_A_ (W *)checks, checkcnt);
1957#endif
1958
1959# if 0
1960#if EV_CHILD_ENABLE
1961 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1962 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1963#endif
1964# endif
1965#endif
1966}
1060#endif 1967#endif
1061 1968
1062#if EV_MULTIPLICITY 1969#if EV_MULTIPLICITY
1063struct ev_loop * 1970struct ev_loop *
1064ev_default_loop_init (unsigned int flags) 1971ev_default_loop_init (unsigned int flags)
1065#else 1972#else
1066int 1973int
1067ev_default_loop (unsigned int flags) 1974ev_default_loop (unsigned int flags)
1068#endif 1975#endif
1069{ 1976{
1070 if (sigpipe [0] == sigpipe [1])
1071 if (pipe (sigpipe))
1072 return 0;
1073
1074 if (!ev_default_loop_ptr) 1977 if (!ev_default_loop_ptr)
1075 { 1978 {
1076#if EV_MULTIPLICITY 1979#if EV_MULTIPLICITY
1077 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1980 EV_P = ev_default_loop_ptr = &default_loop_struct;
1078#else 1981#else
1079 ev_default_loop_ptr = 1; 1982 ev_default_loop_ptr = 1;
1080#endif 1983#endif
1081 1984
1082 loop_init (EV_A_ flags); 1985 loop_init (EV_A_ flags);
1083 1986
1084 if (ev_backend (EV_A)) 1987 if (ev_backend (EV_A))
1085 { 1988 {
1086 siginit (EV_A); 1989#if EV_CHILD_ENABLE
1087
1088#ifndef _WIN32
1089 ev_signal_init (&childev, childcb, SIGCHLD); 1990 ev_signal_init (&childev, childcb, SIGCHLD);
1090 ev_set_priority (&childev, EV_MAXPRI); 1991 ev_set_priority (&childev, EV_MAXPRI);
1091 ev_signal_start (EV_A_ &childev); 1992 ev_signal_start (EV_A_ &childev);
1092 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1993 ev_unref (EV_A); /* child watcher should not keep loop alive */
1093#endif 1994#endif
1101 2002
1102void 2003void
1103ev_default_destroy (void) 2004ev_default_destroy (void)
1104{ 2005{
1105#if EV_MULTIPLICITY 2006#if EV_MULTIPLICITY
1106 struct ev_loop *loop = ev_default_loop_ptr; 2007 EV_P = ev_default_loop_ptr;
1107#endif 2008#endif
1108 2009
1109#ifndef _WIN32 2010 ev_default_loop_ptr = 0;
2011
2012#if EV_CHILD_ENABLE
1110 ev_ref (EV_A); /* child watcher */ 2013 ev_ref (EV_A); /* child watcher */
1111 ev_signal_stop (EV_A_ &childev); 2014 ev_signal_stop (EV_A_ &childev);
1112#endif 2015#endif
1113 2016
1114 ev_ref (EV_A); /* signal watcher */
1115 ev_io_stop (EV_A_ &sigev);
1116
1117 close (sigpipe [0]); sigpipe [0] = 0;
1118 close (sigpipe [1]); sigpipe [1] = 0;
1119
1120 loop_destroy (EV_A); 2017 loop_destroy (EV_A);
1121} 2018}
1122 2019
1123void 2020void
1124ev_default_fork (void) 2021ev_default_fork (void)
1125{ 2022{
1126#if EV_MULTIPLICITY 2023#if EV_MULTIPLICITY
1127 struct ev_loop *loop = ev_default_loop_ptr; 2024 EV_P = ev_default_loop_ptr;
1128#endif 2025#endif
1129 2026
1130 if (backend) 2027 postfork = 1; /* must be in line with ev_loop_fork */
1131 postfork = 1;
1132} 2028}
1133 2029
1134/*****************************************************************************/ 2030/*****************************************************************************/
1135 2031
1136int inline_size 2032void
1137any_pending (EV_P) 2033ev_invoke (EV_P_ void *w, int revents)
2034{
2035 EV_CB_INVOKE ((W)w, revents);
2036}
2037
2038unsigned int
2039ev_pending_count (EV_P)
1138{ 2040{
1139 int pri; 2041 int pri;
2042 unsigned int count = 0;
1140 2043
1141 for (pri = NUMPRI; pri--; ) 2044 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri]) 2045 count += pendingcnt [pri];
1143 return 1;
1144 2046
1145 return 0; 2047 return count;
1146} 2048}
1147 2049
1148void inline_speed 2050void noinline
1149call_pending (EV_P) 2051ev_invoke_pending (EV_P)
1150{ 2052{
1151 int pri; 2053 int pri;
1152 2054
1153 for (pri = NUMPRI; pri--; ) 2055 for (pri = NUMPRI; pri--; )
1154 while (pendingcnt [pri]) 2056 while (pendingcnt [pri])
1155 { 2057 {
1156 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2058 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1157 2059
1158 if (expect_true (p->w))
1159 {
1160 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2060 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2061 /* ^ this is no longer true, as pending_w could be here */
1161 2062
1162 p->w->pending = 0; 2063 p->w->pending = 0;
1163 EV_CB_INVOKE (p->w, p->events); 2064 EV_CB_INVOKE (p->w, p->events);
1164 } 2065 EV_FREQUENT_CHECK;
1165 } 2066 }
1166} 2067}
1167 2068
1168void inline_size 2069#if EV_IDLE_ENABLE
2070/* make idle watchers pending. this handles the "call-idle */
2071/* only when higher priorities are idle" logic */
2072inline_size void
2073idle_reify (EV_P)
2074{
2075 if (expect_false (idleall))
2076 {
2077 int pri;
2078
2079 for (pri = NUMPRI; pri--; )
2080 {
2081 if (pendingcnt [pri])
2082 break;
2083
2084 if (idlecnt [pri])
2085 {
2086 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2087 break;
2088 }
2089 }
2090 }
2091}
2092#endif
2093
2094/* make timers pending */
2095inline_size void
1169timers_reify (EV_P) 2096timers_reify (EV_P)
1170{ 2097{
2098 EV_FREQUENT_CHECK;
2099
1171 while (timercnt && ((WT)timers [0])->at <= mn_now) 2100 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1172 { 2101 {
1173 ev_timer *w = timers [0]; 2102 do
1174
1175 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1176
1177 /* first reschedule or stop timer */
1178 if (w->repeat)
1179 { 2103 {
2104 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2105
2106 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2107
2108 /* first reschedule or stop timer */
2109 if (w->repeat)
2110 {
2111 ev_at (w) += w->repeat;
2112 if (ev_at (w) < mn_now)
2113 ev_at (w) = mn_now;
2114
1180 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2115 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1181 2116
1182 ((WT)w)->at += w->repeat; 2117 ANHE_at_cache (timers [HEAP0]);
1183 if (((WT)w)->at < mn_now)
1184 ((WT)w)->at = mn_now;
1185
1186 downheap ((WT *)timers, timercnt, 0); 2118 downheap (timers, timercnt, HEAP0);
2119 }
2120 else
2121 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2122
2123 EV_FREQUENT_CHECK;
2124 feed_reverse (EV_A_ (W)w);
1187 } 2125 }
1188 else 2126 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1189 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1190 2127
1191 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2128 feed_reverse_done (EV_A_ EV_TIMER);
1192 } 2129 }
1193} 2130}
1194 2131
1195#if EV_PERIODIC_ENABLE 2132#if EV_PERIODIC_ENABLE
1196void inline_size 2133/* make periodics pending */
2134inline_size void
1197periodics_reify (EV_P) 2135periodics_reify (EV_P)
1198{ 2136{
2137 EV_FREQUENT_CHECK;
2138
1199 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2139 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1200 { 2140 {
1201 ev_periodic *w = periodics [0]; 2141 int feed_count = 0;
1202 2142
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2143 do
1204
1205 /* first reschedule or stop timer */
1206 if (w->reschedule_cb)
1207 { 2144 {
2145 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2146
2147 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2148
2149 /* first reschedule or stop timer */
2150 if (w->reschedule_cb)
2151 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2152 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2153
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2154 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2155
2156 ANHE_at_cache (periodics [HEAP0]);
1210 downheap ((WT *)periodics, periodiccnt, 0); 2157 downheap (periodics, periodiccnt, HEAP0);
2158 }
2159 else if (w->interval)
2160 {
2161 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2162 /* if next trigger time is not sufficiently in the future, put it there */
2163 /* this might happen because of floating point inexactness */
2164 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2165 {
2166 ev_at (w) += w->interval;
2167
2168 /* if interval is unreasonably low we might still have a time in the past */
2169 /* so correct this. this will make the periodic very inexact, but the user */
2170 /* has effectively asked to get triggered more often than possible */
2171 if (ev_at (w) < ev_rt_now)
2172 ev_at (w) = ev_rt_now;
2173 }
2174
2175 ANHE_at_cache (periodics [HEAP0]);
2176 downheap (periodics, periodiccnt, HEAP0);
2177 }
2178 else
2179 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2180
2181 EV_FREQUENT_CHECK;
2182 feed_reverse (EV_A_ (W)w);
1211 } 2183 }
1212 else if (w->interval) 2184 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1213 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0);
1217 }
1218 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1220 2185
1221 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2186 feed_reverse_done (EV_A_ EV_PERIODIC);
1222 } 2187 }
1223} 2188}
1224 2189
2190/* simply recalculate all periodics */
2191/* TODO: maybe ensure that at least one event happens when jumping forward? */
1225static void noinline 2192static void noinline
1226periodics_reschedule (EV_P) 2193periodics_reschedule (EV_P)
1227{ 2194{
1228 int i; 2195 int i;
1229 2196
1230 /* adjust periodics after time jump */ 2197 /* adjust periodics after time jump */
1231 for (i = 0; i < periodiccnt; ++i) 2198 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1232 { 2199 {
1233 ev_periodic *w = periodics [i]; 2200 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1234 2201
1235 if (w->reschedule_cb) 2202 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2203 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 2204 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2205 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2206
2207 ANHE_at_cache (periodics [i]);
2208 }
2209
2210 reheap (periodics, periodiccnt);
2211}
2212#endif
2213
2214/* adjust all timers by a given offset */
2215static void noinline
2216timers_reschedule (EV_P_ ev_tstamp adjust)
2217{
2218 int i;
2219
2220 for (i = 0; i < timercnt; ++i)
1239 } 2221 {
1240 2222 ANHE *he = timers + i + HEAP0;
1241 /* now rebuild the heap */ 2223 ANHE_w (*he)->at += adjust;
1242 for (i = periodiccnt >> 1; i--; ) 2224 ANHE_at_cache (*he);
1243 downheap ((WT *)periodics, periodiccnt, i); 2225 }
1244} 2226}
1245#endif
1246 2227
1247int inline_size 2228/* fetch new monotonic and realtime times from the kernel */
1248time_update_monotonic (EV_P) 2229/* also detect if there was a timejump, and act accordingly */
2230inline_speed void
2231time_update (EV_P_ ev_tstamp max_block)
1249{ 2232{
2233#if EV_USE_MONOTONIC
2234 if (expect_true (have_monotonic))
2235 {
2236 int i;
2237 ev_tstamp odiff = rtmn_diff;
2238
1250 mn_now = get_clock (); 2239 mn_now = get_clock ();
1251 2240
2241 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2242 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2243 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 2244 {
1254 ev_rt_now = rtmn_diff + mn_now; 2245 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 2246 return;
1256 } 2247 }
1257 else 2248
1258 {
1259 now_floor = mn_now; 2249 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 2250 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 2251
1265void inline_size 2252 /* loop a few times, before making important decisions.
1266time_update (EV_P) 2253 * on the choice of "4": one iteration isn't enough,
1267{ 2254 * in case we get preempted during the calls to
1268 int i; 2255 * ev_time and get_clock. a second call is almost guaranteed
1269 2256 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 2257 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 2258 * in the unlikely event of having been preempted here.
1272 { 2259 */
1273 if (time_update_monotonic (EV_A)) 2260 for (i = 4; --i; )
1274 { 2261 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 2262 rtmn_diff = ev_rt_now - mn_now;
1288 2263
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2264 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1290 return; /* all is well */ 2265 return; /* all is well */
1291 2266
1292 ev_rt_now = ev_time (); 2267 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 2268 mn_now = get_clock ();
1294 now_floor = mn_now; 2269 now_floor = mn_now;
1295 } 2270 }
1296 2271
2272 /* no timer adjustment, as the monotonic clock doesn't jump */
2273 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297# if EV_PERIODIC_ENABLE 2274# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 2275 periodics_reschedule (EV_A);
1299# endif 2276# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 2277 }
1304 else 2278 else
1305#endif 2279#endif
1306 { 2280 {
1307 ev_rt_now = ev_time (); 2281 ev_rt_now = ev_time ();
1308 2282
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2283 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 2284 {
2285 /* adjust timers. this is easy, as the offset is the same for all of them */
2286 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1311#if EV_PERIODIC_ENABLE 2287#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 2288 periodics_reschedule (EV_A);
1313#endif 2289#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 2290 }
1319 2291
1320 mn_now = ev_rt_now; 2292 mn_now = ev_rt_now;
1321 } 2293 }
1322} 2294}
1323 2295
1324void 2296void
1325ev_ref (EV_P)
1326{
1327 ++activecnt;
1328}
1329
1330void
1331ev_unref (EV_P)
1332{
1333 --activecnt;
1334}
1335
1336static int loop_done;
1337
1338void
1339ev_loop (EV_P_ int flags) 2297ev_loop (EV_P_ int flags)
1340{ 2298{
1341 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2299#if EV_FEATURE_API
1342 ? EVUNLOOP_ONE 2300 ++loop_depth;
1343 : EVUNLOOP_CANCEL; 2301#endif
1344 2302
2303 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2304
2305 loop_done = EVUNLOOP_CANCEL;
2306
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2307 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1346 2308
1347 do 2309 do
1348 { 2310 {
2311#if EV_VERIFY >= 2
2312 ev_verify (EV_A);
2313#endif
2314
1349#ifndef _WIN32 2315#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 2316 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 2317 if (expect_false (getpid () != curpid))
1352 { 2318 {
1353 curpid = getpid (); 2319 curpid = getpid ();
1359 /* we might have forked, so queue fork handlers */ 2325 /* we might have forked, so queue fork handlers */
1360 if (expect_false (postfork)) 2326 if (expect_false (postfork))
1361 if (forkcnt) 2327 if (forkcnt)
1362 { 2328 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2329 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 2330 EV_INVOKE_PENDING;
1365 } 2331 }
1366#endif 2332#endif
1367 2333
2334#if EV_PREPARE_ENABLE
1368 /* queue check watchers (and execute them) */ 2335 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 2336 if (expect_false (preparecnt))
1370 { 2337 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2338 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 2339 EV_INVOKE_PENDING;
1373 } 2340 }
2341#endif
1374 2342
1375 if (expect_false (!activecnt)) 2343 if (expect_false (loop_done))
1376 break; 2344 break;
1377 2345
1378 /* we might have forked, so reify kernel state if necessary */ 2346 /* we might have forked, so reify kernel state if necessary */
1379 if (expect_false (postfork)) 2347 if (expect_false (postfork))
1380 loop_fork (EV_A); 2348 loop_fork (EV_A);
1382 /* update fd-related kernel structures */ 2350 /* update fd-related kernel structures */
1383 fd_reify (EV_A); 2351 fd_reify (EV_A);
1384 2352
1385 /* calculate blocking time */ 2353 /* calculate blocking time */
1386 { 2354 {
1387 ev_tstamp block; 2355 ev_tstamp waittime = 0.;
2356 ev_tstamp sleeptime = 0.;
1388 2357
1389 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 2358 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1390 block = 0.; /* do not block at all */
1391 else
1392 { 2359 {
2360 /* remember old timestamp for io_blocktime calculation */
2361 ev_tstamp prev_mn_now = mn_now;
2362
1393 /* update time to cancel out callback processing overhead */ 2363 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A); 2364 time_update (EV_A_ 1e100);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403 2365
1404 block = MAX_BLOCKTIME; 2366 waittime = MAX_BLOCKTIME;
1405 2367
1406 if (timercnt) 2368 if (timercnt)
1407 { 2369 {
1408 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2370 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1409 if (block > to) block = to; 2371 if (waittime > to) waittime = to;
1410 } 2372 }
1411 2373
1412#if EV_PERIODIC_ENABLE 2374#if EV_PERIODIC_ENABLE
1413 if (periodiccnt) 2375 if (periodiccnt)
1414 { 2376 {
1415 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1416 if (block > to) block = to; 2378 if (waittime > to) waittime = to;
1417 } 2379 }
1418#endif 2380#endif
1419 2381
2382 /* don't let timeouts decrease the waittime below timeout_blocktime */
2383 if (expect_false (waittime < timeout_blocktime))
2384 waittime = timeout_blocktime;
2385
2386 /* extra check because io_blocktime is commonly 0 */
1420 if (expect_false (block < 0.)) block = 0.; 2387 if (expect_false (io_blocktime))
2388 {
2389 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2390
2391 if (sleeptime > waittime - backend_fudge)
2392 sleeptime = waittime - backend_fudge;
2393
2394 if (expect_true (sleeptime > 0.))
2395 {
2396 ev_sleep (sleeptime);
2397 waittime -= sleeptime;
2398 }
2399 }
1421 } 2400 }
1422 2401
2402#if EV_FEATURE_API
2403 ++loop_count;
2404#endif
2405 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1423 backend_poll (EV_A_ block); 2406 backend_poll (EV_A_ waittime);
2407 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2408
2409 /* update ev_rt_now, do magic */
2410 time_update (EV_A_ waittime + sleeptime);
1424 } 2411 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 2412
1429 /* queue pending timers and reschedule them */ 2413 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 2414 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 2415#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 2416 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 2417#endif
1434 2418
2419#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 2420 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 2421 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2422#endif
1438 2423
2424#if EV_CHECK_ENABLE
1439 /* queue check watchers, to be executed first */ 2425 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 2426 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2427 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2428#endif
1442 2429
1443 call_pending (EV_A); 2430 EV_INVOKE_PENDING;
1444
1445 } 2431 }
1446 while (expect_true (activecnt && !loop_done)); 2432 while (expect_true (
2433 activecnt
2434 && !loop_done
2435 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2436 ));
1447 2437
1448 if (loop_done == EVUNLOOP_ONE) 2438 if (loop_done == EVUNLOOP_ONE)
1449 loop_done = EVUNLOOP_CANCEL; 2439 loop_done = EVUNLOOP_CANCEL;
2440
2441#if EV_FEATURE_API
2442 --loop_depth;
2443#endif
1450} 2444}
1451 2445
1452void 2446void
1453ev_unloop (EV_P_ int how) 2447ev_unloop (EV_P_ int how)
1454{ 2448{
1455 loop_done = how; 2449 loop_done = how;
1456} 2450}
1457 2451
2452void
2453ev_ref (EV_P)
2454{
2455 ++activecnt;
2456}
2457
2458void
2459ev_unref (EV_P)
2460{
2461 --activecnt;
2462}
2463
2464void
2465ev_now_update (EV_P)
2466{
2467 time_update (EV_A_ 1e100);
2468}
2469
2470void
2471ev_suspend (EV_P)
2472{
2473 ev_now_update (EV_A);
2474}
2475
2476void
2477ev_resume (EV_P)
2478{
2479 ev_tstamp mn_prev = mn_now;
2480
2481 ev_now_update (EV_A);
2482 timers_reschedule (EV_A_ mn_now - mn_prev);
2483#if EV_PERIODIC_ENABLE
2484 /* TODO: really do this? */
2485 periodics_reschedule (EV_A);
2486#endif
2487}
2488
1458/*****************************************************************************/ 2489/*****************************************************************************/
2490/* singly-linked list management, used when the expected list length is short */
1459 2491
1460void inline_size 2492inline_size void
1461wlist_add (WL *head, WL elem) 2493wlist_add (WL *head, WL elem)
1462{ 2494{
1463 elem->next = *head; 2495 elem->next = *head;
1464 *head = elem; 2496 *head = elem;
1465} 2497}
1466 2498
1467void inline_size 2499inline_size void
1468wlist_del (WL *head, WL elem) 2500wlist_del (WL *head, WL elem)
1469{ 2501{
1470 while (*head) 2502 while (*head)
1471 { 2503 {
1472 if (*head == elem) 2504 if (expect_true (*head == elem))
1473 { 2505 {
1474 *head = elem->next; 2506 *head = elem->next;
1475 return; 2507 break;
1476 } 2508 }
1477 2509
1478 head = &(*head)->next; 2510 head = &(*head)->next;
1479 } 2511 }
1480} 2512}
1481 2513
1482void inline_speed 2514/* internal, faster, version of ev_clear_pending */
2515inline_speed void
1483ev_clear_pending (EV_P_ W w) 2516clear_pending (EV_P_ W w)
1484{ 2517{
1485 if (w->pending) 2518 if (w->pending)
1486 { 2519 {
1487 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2520 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1488 w->pending = 0; 2521 w->pending = 0;
1489 } 2522 }
1490} 2523}
1491 2524
1492void inline_speed 2525int
2526ev_clear_pending (EV_P_ void *w)
2527{
2528 W w_ = (W)w;
2529 int pending = w_->pending;
2530
2531 if (expect_true (pending))
2532 {
2533 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2534 p->w = (W)&pending_w;
2535 w_->pending = 0;
2536 return p->events;
2537 }
2538 else
2539 return 0;
2540}
2541
2542inline_size void
2543pri_adjust (EV_P_ W w)
2544{
2545 int pri = ev_priority (w);
2546 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2547 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2548 ev_set_priority (w, pri);
2549}
2550
2551inline_speed void
1493ev_start (EV_P_ W w, int active) 2552ev_start (EV_P_ W w, int active)
1494{ 2553{
1495 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2554 pri_adjust (EV_A_ w);
1496 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1497
1498 w->active = active; 2555 w->active = active;
1499 ev_ref (EV_A); 2556 ev_ref (EV_A);
1500} 2557}
1501 2558
1502void inline_size 2559inline_size void
1503ev_stop (EV_P_ W w) 2560ev_stop (EV_P_ W w)
1504{ 2561{
1505 ev_unref (EV_A); 2562 ev_unref (EV_A);
1506 w->active = 0; 2563 w->active = 0;
1507} 2564}
1508 2565
1509/*****************************************************************************/ 2566/*****************************************************************************/
1510 2567
1511void 2568void noinline
1512ev_io_start (EV_P_ ev_io *w) 2569ev_io_start (EV_P_ ev_io *w)
1513{ 2570{
1514 int fd = w->fd; 2571 int fd = w->fd;
1515 2572
1516 if (expect_false (ev_is_active (w))) 2573 if (expect_false (ev_is_active (w)))
1517 return; 2574 return;
1518 2575
1519 assert (("ev_io_start called with negative fd", fd >= 0)); 2576 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2577 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2578
2579 EV_FREQUENT_CHECK;
1520 2580
1521 ev_start (EV_A_ (W)w, 1); 2581 ev_start (EV_A_ (W)w, 1);
1522 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2582 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1523 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2583 wlist_add (&anfds[fd].head, (WL)w);
1524 2584
1525 fd_change (EV_A_ fd); 2585 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1526} 2586 w->events &= ~EV__IOFDSET;
1527 2587
1528void 2588 EV_FREQUENT_CHECK;
2589}
2590
2591void noinline
1529ev_io_stop (EV_P_ ev_io *w) 2592ev_io_stop (EV_P_ ev_io *w)
1530{ 2593{
1531 ev_clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
1532 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
1533 return; 2596 return;
1534 2597
1535 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2598 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1536 2599
2600 EV_FREQUENT_CHECK;
2601
1537 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2602 wlist_del (&anfds[w->fd].head, (WL)w);
1538 ev_stop (EV_A_ (W)w); 2603 ev_stop (EV_A_ (W)w);
1539 2604
1540 fd_change (EV_A_ w->fd); 2605 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1541}
1542 2606
1543void 2607 EV_FREQUENT_CHECK;
2608}
2609
2610void noinline
1544ev_timer_start (EV_P_ ev_timer *w) 2611ev_timer_start (EV_P_ ev_timer *w)
1545{ 2612{
1546 if (expect_false (ev_is_active (w))) 2613 if (expect_false (ev_is_active (w)))
1547 return; 2614 return;
1548 2615
1549 ((WT)w)->at += mn_now; 2616 ev_at (w) += mn_now;
1550 2617
1551 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2618 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1552 2619
2620 EV_FREQUENT_CHECK;
2621
2622 ++timercnt;
1553 ev_start (EV_A_ (W)w, ++timercnt); 2623 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1554 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2624 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1555 timers [timercnt - 1] = w; 2625 ANHE_w (timers [ev_active (w)]) = (WT)w;
1556 upheap ((WT *)timers, timercnt - 1); 2626 ANHE_at_cache (timers [ev_active (w)]);
2627 upheap (timers, ev_active (w));
1557 2628
2629 EV_FREQUENT_CHECK;
2630
1558 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2631 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1559} 2632}
1560 2633
1561void 2634void noinline
1562ev_timer_stop (EV_P_ ev_timer *w) 2635ev_timer_stop (EV_P_ ev_timer *w)
1563{ 2636{
1564 ev_clear_pending (EV_A_ (W)w); 2637 clear_pending (EV_A_ (W)w);
1565 if (expect_false (!ev_is_active (w))) 2638 if (expect_false (!ev_is_active (w)))
1566 return; 2639 return;
1567 2640
1568 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2641 EV_FREQUENT_CHECK;
1569 2642
1570 { 2643 {
1571 int active = ((W)w)->active; 2644 int active = ev_active (w);
1572 2645
2646 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2647
2648 --timercnt;
2649
1573 if (expect_true (--active < --timercnt)) 2650 if (expect_true (active < timercnt + HEAP0))
1574 { 2651 {
1575 timers [active] = timers [timercnt]; 2652 timers [active] = timers [timercnt + HEAP0];
1576 adjustheap ((WT *)timers, timercnt, active); 2653 adjustheap (timers, timercnt, active);
1577 } 2654 }
1578 } 2655 }
1579 2656
1580 ((WT)w)->at -= mn_now; 2657 ev_at (w) -= mn_now;
1581 2658
1582 ev_stop (EV_A_ (W)w); 2659 ev_stop (EV_A_ (W)w);
1583}
1584 2660
1585void 2661 EV_FREQUENT_CHECK;
2662}
2663
2664void noinline
1586ev_timer_again (EV_P_ ev_timer *w) 2665ev_timer_again (EV_P_ ev_timer *w)
1587{ 2666{
2667 EV_FREQUENT_CHECK;
2668
1588 if (ev_is_active (w)) 2669 if (ev_is_active (w))
1589 { 2670 {
1590 if (w->repeat) 2671 if (w->repeat)
1591 { 2672 {
1592 ((WT)w)->at = mn_now + w->repeat; 2673 ev_at (w) = mn_now + w->repeat;
2674 ANHE_at_cache (timers [ev_active (w)]);
1593 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2675 adjustheap (timers, timercnt, ev_active (w));
1594 } 2676 }
1595 else 2677 else
1596 ev_timer_stop (EV_A_ w); 2678 ev_timer_stop (EV_A_ w);
1597 } 2679 }
1598 else if (w->repeat) 2680 else if (w->repeat)
1599 { 2681 {
1600 w->at = w->repeat; 2682 ev_at (w) = w->repeat;
1601 ev_timer_start (EV_A_ w); 2683 ev_timer_start (EV_A_ w);
1602 } 2684 }
2685
2686 EV_FREQUENT_CHECK;
2687}
2688
2689ev_tstamp
2690ev_timer_remaining (EV_P_ ev_timer *w)
2691{
2692 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1603} 2693}
1604 2694
1605#if EV_PERIODIC_ENABLE 2695#if EV_PERIODIC_ENABLE
1606void 2696void noinline
1607ev_periodic_start (EV_P_ ev_periodic *w) 2697ev_periodic_start (EV_P_ ev_periodic *w)
1608{ 2698{
1609 if (expect_false (ev_is_active (w))) 2699 if (expect_false (ev_is_active (w)))
1610 return; 2700 return;
1611 2701
1612 if (w->reschedule_cb) 2702 if (w->reschedule_cb)
1613 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2703 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1614 else if (w->interval) 2704 else if (w->interval)
1615 { 2705 {
1616 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2706 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1617 /* this formula differs from the one in periodic_reify because we do not always round up */ 2707 /* this formula differs from the one in periodic_reify because we do not always round up */
1618 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2708 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 } 2709 }
2710 else
2711 ev_at (w) = w->offset;
1620 2712
2713 EV_FREQUENT_CHECK;
2714
2715 ++periodiccnt;
1621 ev_start (EV_A_ (W)w, ++periodiccnt); 2716 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1622 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2717 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1623 periodics [periodiccnt - 1] = w; 2718 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1624 upheap ((WT *)periodics, periodiccnt - 1); 2719 ANHE_at_cache (periodics [ev_active (w)]);
2720 upheap (periodics, ev_active (w));
1625 2721
2722 EV_FREQUENT_CHECK;
2723
1626 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2724 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1627} 2725}
1628 2726
1629void 2727void noinline
1630ev_periodic_stop (EV_P_ ev_periodic *w) 2728ev_periodic_stop (EV_P_ ev_periodic *w)
1631{ 2729{
1632 ev_clear_pending (EV_A_ (W)w); 2730 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 2731 if (expect_false (!ev_is_active (w)))
1634 return; 2732 return;
1635 2733
1636 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2734 EV_FREQUENT_CHECK;
1637 2735
1638 { 2736 {
1639 int active = ((W)w)->active; 2737 int active = ev_active (w);
1640 2738
2739 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2740
2741 --periodiccnt;
2742
1641 if (expect_true (--active < --periodiccnt)) 2743 if (expect_true (active < periodiccnt + HEAP0))
1642 { 2744 {
1643 periodics [active] = periodics [periodiccnt]; 2745 periodics [active] = periodics [periodiccnt + HEAP0];
1644 adjustheap ((WT *)periodics, periodiccnt, active); 2746 adjustheap (periodics, periodiccnt, active);
1645 } 2747 }
1646 } 2748 }
1647 2749
1648 ev_stop (EV_A_ (W)w); 2750 ev_stop (EV_A_ (W)w);
1649}
1650 2751
1651void 2752 EV_FREQUENT_CHECK;
2753}
2754
2755void noinline
1652ev_periodic_again (EV_P_ ev_periodic *w) 2756ev_periodic_again (EV_P_ ev_periodic *w)
1653{ 2757{
1654 /* TODO: use adjustheap and recalculation */ 2758 /* TODO: use adjustheap and recalculation */
1655 ev_periodic_stop (EV_A_ w); 2759 ev_periodic_stop (EV_A_ w);
1656 ev_periodic_start (EV_A_ w); 2760 ev_periodic_start (EV_A_ w);
1659 2763
1660#ifndef SA_RESTART 2764#ifndef SA_RESTART
1661# define SA_RESTART 0 2765# define SA_RESTART 0
1662#endif 2766#endif
1663 2767
1664void 2768#if EV_SIGNAL_ENABLE
2769
2770void noinline
1665ev_signal_start (EV_P_ ev_signal *w) 2771ev_signal_start (EV_P_ ev_signal *w)
1666{ 2772{
1667#if EV_MULTIPLICITY
1668 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1669#endif
1670 if (expect_false (ev_is_active (w))) 2773 if (expect_false (ev_is_active (w)))
1671 return; 2774 return;
1672 2775
1673 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2776 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2777
2778#if EV_MULTIPLICITY
2779 assert (("libev: a signal must not be attached to two different loops",
2780 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2781
2782 signals [w->signum - 1].loop = EV_A;
2783#endif
2784
2785 EV_FREQUENT_CHECK;
2786
2787#if EV_USE_SIGNALFD
2788 if (sigfd == -2)
2789 {
2790 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2791 if (sigfd < 0 && errno == EINVAL)
2792 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2793
2794 if (sigfd >= 0)
2795 {
2796 fd_intern (sigfd); /* doing it twice will not hurt */
2797
2798 sigemptyset (&sigfd_set);
2799
2800 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2801 ev_set_priority (&sigfd_w, EV_MAXPRI);
2802 ev_io_start (EV_A_ &sigfd_w);
2803 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2804 }
2805 }
2806
2807 if (sigfd >= 0)
2808 {
2809 /* TODO: check .head */
2810 sigaddset (&sigfd_set, w->signum);
2811 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2812
2813 signalfd (sigfd, &sigfd_set, 0);
2814 }
2815#endif
1674 2816
1675 ev_start (EV_A_ (W)w, 1); 2817 ev_start (EV_A_ (W)w, 1);
1676 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1677 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2818 wlist_add (&signals [w->signum - 1].head, (WL)w);
1678 2819
1679 if (!((WL)w)->next) 2820 if (!((WL)w)->next)
2821# if EV_USE_SIGNALFD
2822 if (sigfd < 0) /*TODO*/
2823# endif
1680 { 2824 {
1681#if _WIN32 2825# ifdef _WIN32
2826 evpipe_init (EV_A);
2827
1682 signal (w->signum, sighandler); 2828 signal (w->signum, ev_sighandler);
1683#else 2829# else
1684 struct sigaction sa; 2830 struct sigaction sa;
2831
2832 evpipe_init (EV_A);
2833
1685 sa.sa_handler = sighandler; 2834 sa.sa_handler = ev_sighandler;
1686 sigfillset (&sa.sa_mask); 2835 sigfillset (&sa.sa_mask);
1687 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2836 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1688 sigaction (w->signum, &sa, 0); 2837 sigaction (w->signum, &sa, 0);
2838
2839 sigemptyset (&sa.sa_mask);
2840 sigaddset (&sa.sa_mask, w->signum);
2841 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1689#endif 2842#endif
1690 } 2843 }
1691}
1692 2844
1693void 2845 EV_FREQUENT_CHECK;
2846}
2847
2848void noinline
1694ev_signal_stop (EV_P_ ev_signal *w) 2849ev_signal_stop (EV_P_ ev_signal *w)
1695{ 2850{
1696 ev_clear_pending (EV_A_ (W)w); 2851 clear_pending (EV_A_ (W)w);
1697 if (expect_false (!ev_is_active (w))) 2852 if (expect_false (!ev_is_active (w)))
1698 return; 2853 return;
1699 2854
2855 EV_FREQUENT_CHECK;
2856
1700 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2857 wlist_del (&signals [w->signum - 1].head, (WL)w);
1701 ev_stop (EV_A_ (W)w); 2858 ev_stop (EV_A_ (W)w);
1702 2859
1703 if (!signals [w->signum - 1].head) 2860 if (!signals [w->signum - 1].head)
2861 {
2862#if EV_MULTIPLICITY
2863 signals [w->signum - 1].loop = 0; /* unattach from signal */
2864#endif
2865#if EV_USE_SIGNALFD
2866 if (sigfd >= 0)
2867 {
2868 sigset_t ss;
2869
2870 sigemptyset (&ss);
2871 sigaddset (&ss, w->signum);
2872 sigdelset (&sigfd_set, w->signum);
2873
2874 signalfd (sigfd, &sigfd_set, 0);
2875 sigprocmask (SIG_UNBLOCK, &ss, 0);
2876 }
2877 else
2878#endif
1704 signal (w->signum, SIG_DFL); 2879 signal (w->signum, SIG_DFL);
2880 }
2881
2882 EV_FREQUENT_CHECK;
1705} 2883}
2884
2885#endif
2886
2887#if EV_CHILD_ENABLE
1706 2888
1707void 2889void
1708ev_child_start (EV_P_ ev_child *w) 2890ev_child_start (EV_P_ ev_child *w)
1709{ 2891{
1710#if EV_MULTIPLICITY 2892#if EV_MULTIPLICITY
1711 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2893 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1712#endif 2894#endif
1713 if (expect_false (ev_is_active (w))) 2895 if (expect_false (ev_is_active (w)))
1714 return; 2896 return;
1715 2897
2898 EV_FREQUENT_CHECK;
2899
1716 ev_start (EV_A_ (W)w, 1); 2900 ev_start (EV_A_ (W)w, 1);
1717 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2901 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2902
2903 EV_FREQUENT_CHECK;
1718} 2904}
1719 2905
1720void 2906void
1721ev_child_stop (EV_P_ ev_child *w) 2907ev_child_stop (EV_P_ ev_child *w)
1722{ 2908{
1723 ev_clear_pending (EV_A_ (W)w); 2909 clear_pending (EV_A_ (W)w);
1724 if (expect_false (!ev_is_active (w))) 2910 if (expect_false (!ev_is_active (w)))
1725 return; 2911 return;
1726 2912
2913 EV_FREQUENT_CHECK;
2914
1727 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2915 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1728 ev_stop (EV_A_ (W)w); 2916 ev_stop (EV_A_ (W)w);
2917
2918 EV_FREQUENT_CHECK;
1729} 2919}
2920
2921#endif
1730 2922
1731#if EV_STAT_ENABLE 2923#if EV_STAT_ENABLE
1732 2924
1733# ifdef _WIN32 2925# ifdef _WIN32
1734# undef lstat 2926# undef lstat
1735# define lstat(a,b) _stati64 (a,b) 2927# define lstat(a,b) _stati64 (a,b)
1736# endif 2928# endif
1737 2929
1738#define DEF_STAT_INTERVAL 5.0074891 2930#define DEF_STAT_INTERVAL 5.0074891
2931#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1739#define MIN_STAT_INTERVAL 0.1074891 2932#define MIN_STAT_INTERVAL 0.1074891
1740 2933
1741static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2934static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1742 2935
1743#if EV_USE_INOTIFY 2936#if EV_USE_INOTIFY
1744# define EV_INOTIFY_BUFSIZE 8192 2937
2938/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2939# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1745 2940
1746static void noinline 2941static void noinline
1747infy_add (EV_P_ ev_stat *w) 2942infy_add (EV_P_ ev_stat *w)
1748{ 2943{
1749 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1750 2945
1751 if (w->wd < 0) 2946 if (w->wd >= 0)
2947 {
2948 struct statfs sfs;
2949
2950 /* now local changes will be tracked by inotify, but remote changes won't */
2951 /* unless the filesystem is known to be local, we therefore still poll */
2952 /* also do poll on <2.6.25, but with normal frequency */
2953
2954 if (!fs_2625)
2955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2956 else if (!statfs (w->path, &sfs)
2957 && (sfs.f_type == 0x1373 /* devfs */
2958 || sfs.f_type == 0xEF53 /* ext2/3 */
2959 || sfs.f_type == 0x3153464a /* jfs */
2960 || sfs.f_type == 0x52654973 /* reiser3 */
2961 || sfs.f_type == 0x01021994 /* tempfs */
2962 || sfs.f_type == 0x58465342 /* xfs */))
2963 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2964 else
2965 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1752 { 2966 }
1753 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2967 else
2968 {
2969 /* can't use inotify, continue to stat */
2970 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1754 2971
1755 /* monitor some parent directory for speedup hints */ 2972 /* if path is not there, monitor some parent directory for speedup hints */
2973 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2974 /* but an efficiency issue only */
1756 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2975 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1757 { 2976 {
1758 char path [4096]; 2977 char path [4096];
1759 strcpy (path, w->path); 2978 strcpy (path, w->path);
1760 2979
1763 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2982 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1764 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2983 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1765 2984
1766 char *pend = strrchr (path, '/'); 2985 char *pend = strrchr (path, '/');
1767 2986
1768 if (!pend) 2987 if (!pend || pend == path)
1769 break; /* whoops, no '/', complain to your admin */ 2988 break;
1770 2989
1771 *pend = 0; 2990 *pend = 0;
1772 w->wd = inotify_add_watch (fs_fd, path, mask); 2991 w->wd = inotify_add_watch (fs_fd, path, mask);
1773 } 2992 }
1774 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2993 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1775 } 2994 }
1776 } 2995 }
1777 else
1778 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1779 2996
1780 if (w->wd >= 0) 2997 if (w->wd >= 0)
1781 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2998 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2999
3000 /* now re-arm timer, if required */
3001 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3002 ev_timer_again (EV_A_ &w->timer);
3003 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1782} 3004}
1783 3005
1784static void noinline 3006static void noinline
1785infy_del (EV_P_ ev_stat *w) 3007infy_del (EV_P_ ev_stat *w)
1786{ 3008{
1789 3011
1790 if (wd < 0) 3012 if (wd < 0)
1791 return; 3013 return;
1792 3014
1793 w->wd = -2; 3015 w->wd = -2;
1794 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3016 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1795 wlist_del (&fs_hash [slot].head, (WL)w); 3017 wlist_del (&fs_hash [slot].head, (WL)w);
1796 3018
1797 /* remove this watcher, if others are watching it, they will rearm */ 3019 /* remove this watcher, if others are watching it, they will rearm */
1798 inotify_rm_watch (fs_fd, wd); 3020 inotify_rm_watch (fs_fd, wd);
1799} 3021}
1800 3022
1801static void noinline 3023static void noinline
1802infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3024infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1803{ 3025{
1804 if (slot < 0) 3026 if (slot < 0)
1805 /* overflow, need to check for all hahs slots */ 3027 /* overflow, need to check for all hash slots */
1806 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3028 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1807 infy_wd (EV_A_ slot, wd, ev); 3029 infy_wd (EV_A_ slot, wd, ev);
1808 else 3030 else
1809 { 3031 {
1810 WL w_; 3032 WL w_;
1811 3033
1812 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3034 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1813 { 3035 {
1814 ev_stat *w = (ev_stat *)w_; 3036 ev_stat *w = (ev_stat *)w_;
1815 w_ = w_->next; /* lets us remove this watcher and all before it */ 3037 w_ = w_->next; /* lets us remove this watcher and all before it */
1816 3038
1817 if (w->wd == wd || wd == -1) 3039 if (w->wd == wd || wd == -1)
1818 { 3040 {
1819 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3041 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1820 { 3042 {
3043 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1821 w->wd = -1; 3044 w->wd = -1;
1822 infy_add (EV_A_ w); /* re-add, no matter what */ 3045 infy_add (EV_A_ w); /* re-add, no matter what */
1823 } 3046 }
1824 3047
1825 stat_timer_cb (EV_A_ &w->timer, 0); 3048 stat_timer_cb (EV_A_ &w->timer, 0);
1830 3053
1831static void 3054static void
1832infy_cb (EV_P_ ev_io *w, int revents) 3055infy_cb (EV_P_ ev_io *w, int revents)
1833{ 3056{
1834 char buf [EV_INOTIFY_BUFSIZE]; 3057 char buf [EV_INOTIFY_BUFSIZE];
1835 struct inotify_event *ev = (struct inotify_event *)buf;
1836 int ofs; 3058 int ofs;
1837 int len = read (fs_fd, buf, sizeof (buf)); 3059 int len = read (fs_fd, buf, sizeof (buf));
1838 3060
1839 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3061 for (ofs = 0; ofs < len; )
3062 {
3063 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1840 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3064 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3065 ofs += sizeof (struct inotify_event) + ev->len;
3066 }
1841} 3067}
1842 3068
1843void inline_size 3069inline_size unsigned int
3070ev_linux_version (void)
3071{
3072 struct utsname buf;
3073 unsigned int v;
3074 int i;
3075 char *p = buf.release;
3076
3077 if (uname (&buf))
3078 return 0;
3079
3080 for (i = 3+1; --i; )
3081 {
3082 unsigned int c = 0;
3083
3084 for (;;)
3085 {
3086 if (*p >= '0' && *p <= '9')
3087 c = c * 10 + *p++ - '0';
3088 else
3089 {
3090 p += *p == '.';
3091 break;
3092 }
3093 }
3094
3095 v = (v << 8) | c;
3096 }
3097
3098 return v;
3099}
3100
3101inline_size void
3102ev_check_2625 (EV_P)
3103{
3104 /* kernels < 2.6.25 are borked
3105 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3106 */
3107 if (ev_linux_version () < 0x020619)
3108 return;
3109
3110 fs_2625 = 1;
3111}
3112
3113inline_size int
3114infy_newfd (void)
3115{
3116#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3117 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3118 if (fd >= 0)
3119 return fd;
3120#endif
3121 return inotify_init ();
3122}
3123
3124inline_size void
1844infy_init (EV_P) 3125infy_init (EV_P)
1845{ 3126{
1846 if (fs_fd != -2) 3127 if (fs_fd != -2)
1847 return; 3128 return;
1848 3129
3130 fs_fd = -1;
3131
3132 ev_check_2625 (EV_A);
3133
1849 fs_fd = inotify_init (); 3134 fs_fd = infy_newfd ();
1850 3135
1851 if (fs_fd >= 0) 3136 if (fs_fd >= 0)
1852 { 3137 {
3138 fd_intern (fs_fd);
1853 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3139 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1854 ev_set_priority (&fs_w, EV_MAXPRI); 3140 ev_set_priority (&fs_w, EV_MAXPRI);
1855 ev_io_start (EV_A_ &fs_w); 3141 ev_io_start (EV_A_ &fs_w);
3142 ev_unref (EV_A);
1856 } 3143 }
1857} 3144}
1858 3145
1859void inline_size 3146inline_size void
1860infy_fork (EV_P) 3147infy_fork (EV_P)
1861{ 3148{
1862 int slot; 3149 int slot;
1863 3150
1864 if (fs_fd < 0) 3151 if (fs_fd < 0)
1865 return; 3152 return;
1866 3153
3154 ev_ref (EV_A);
3155 ev_io_stop (EV_A_ &fs_w);
1867 close (fs_fd); 3156 close (fs_fd);
1868 fs_fd = inotify_init (); 3157 fs_fd = infy_newfd ();
1869 3158
3159 if (fs_fd >= 0)
3160 {
3161 fd_intern (fs_fd);
3162 ev_io_set (&fs_w, fs_fd, EV_READ);
3163 ev_io_start (EV_A_ &fs_w);
3164 ev_unref (EV_A);
3165 }
3166
1870 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3167 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1871 { 3168 {
1872 WL w_ = fs_hash [slot].head; 3169 WL w_ = fs_hash [slot].head;
1873 fs_hash [slot].head = 0; 3170 fs_hash [slot].head = 0;
1874 3171
1875 while (w_) 3172 while (w_)
1880 w->wd = -1; 3177 w->wd = -1;
1881 3178
1882 if (fs_fd >= 0) 3179 if (fs_fd >= 0)
1883 infy_add (EV_A_ w); /* re-add, no matter what */ 3180 infy_add (EV_A_ w); /* re-add, no matter what */
1884 else 3181 else
3182 {
3183 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3184 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1885 ev_timer_start (EV_A_ &w->timer); 3185 ev_timer_again (EV_A_ &w->timer);
3186 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3187 }
1886 } 3188 }
1887
1888 } 3189 }
1889} 3190}
1890 3191
3192#endif
3193
3194#ifdef _WIN32
3195# define EV_LSTAT(p,b) _stati64 (p, b)
3196#else
3197# define EV_LSTAT(p,b) lstat (p, b)
1891#endif 3198#endif
1892 3199
1893void 3200void
1894ev_stat_stat (EV_P_ ev_stat *w) 3201ev_stat_stat (EV_P_ ev_stat *w)
1895{ 3202{
1902static void noinline 3209static void noinline
1903stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3210stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1904{ 3211{
1905 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3212 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1906 3213
1907 /* we copy this here each the time so that */ 3214 ev_statdata prev = w->attr;
1908 /* prev has the old value when the callback gets invoked */
1909 w->prev = w->attr;
1910 ev_stat_stat (EV_A_ w); 3215 ev_stat_stat (EV_A_ w);
1911 3216
1912 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3217 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1913 if ( 3218 if (
1914 w->prev.st_dev != w->attr.st_dev 3219 prev.st_dev != w->attr.st_dev
1915 || w->prev.st_ino != w->attr.st_ino 3220 || prev.st_ino != w->attr.st_ino
1916 || w->prev.st_mode != w->attr.st_mode 3221 || prev.st_mode != w->attr.st_mode
1917 || w->prev.st_nlink != w->attr.st_nlink 3222 || prev.st_nlink != w->attr.st_nlink
1918 || w->prev.st_uid != w->attr.st_uid 3223 || prev.st_uid != w->attr.st_uid
1919 || w->prev.st_gid != w->attr.st_gid 3224 || prev.st_gid != w->attr.st_gid
1920 || w->prev.st_rdev != w->attr.st_rdev 3225 || prev.st_rdev != w->attr.st_rdev
1921 || w->prev.st_size != w->attr.st_size 3226 || prev.st_size != w->attr.st_size
1922 || w->prev.st_atime != w->attr.st_atime 3227 || prev.st_atime != w->attr.st_atime
1923 || w->prev.st_mtime != w->attr.st_mtime 3228 || prev.st_mtime != w->attr.st_mtime
1924 || w->prev.st_ctime != w->attr.st_ctime 3229 || prev.st_ctime != w->attr.st_ctime
1925 ) { 3230 ) {
3231 /* we only update w->prev on actual differences */
3232 /* in case we test more often than invoke the callback, */
3233 /* to ensure that prev is always different to attr */
3234 w->prev = prev;
3235
1926 #if EV_USE_INOTIFY 3236 #if EV_USE_INOTIFY
3237 if (fs_fd >= 0)
3238 {
1927 infy_del (EV_A_ w); 3239 infy_del (EV_A_ w);
1928 infy_add (EV_A_ w); 3240 infy_add (EV_A_ w);
1929 ev_stat_stat (EV_A_ w); /* avoid race... */ 3241 ev_stat_stat (EV_A_ w); /* avoid race... */
3242 }
1930 #endif 3243 #endif
1931 3244
1932 ev_feed_event (EV_A_ w, EV_STAT); 3245 ev_feed_event (EV_A_ w, EV_STAT);
1933 } 3246 }
1934} 3247}
1937ev_stat_start (EV_P_ ev_stat *w) 3250ev_stat_start (EV_P_ ev_stat *w)
1938{ 3251{
1939 if (expect_false (ev_is_active (w))) 3252 if (expect_false (ev_is_active (w)))
1940 return; 3253 return;
1941 3254
1942 /* since we use memcmp, we need to clear any padding data etc. */
1943 memset (&w->prev, 0, sizeof (ev_statdata));
1944 memset (&w->attr, 0, sizeof (ev_statdata));
1945
1946 ev_stat_stat (EV_A_ w); 3255 ev_stat_stat (EV_A_ w);
1947 3256
3257 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1948 if (w->interval < MIN_STAT_INTERVAL) 3258 w->interval = MIN_STAT_INTERVAL;
1949 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1950 3259
1951 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3260 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1952 ev_set_priority (&w->timer, ev_priority (w)); 3261 ev_set_priority (&w->timer, ev_priority (w));
1953 3262
1954#if EV_USE_INOTIFY 3263#if EV_USE_INOTIFY
1955 infy_init (EV_A); 3264 infy_init (EV_A);
1956 3265
1957 if (fs_fd >= 0) 3266 if (fs_fd >= 0)
1958 infy_add (EV_A_ w); 3267 infy_add (EV_A_ w);
1959 else 3268 else
1960#endif 3269#endif
3270 {
1961 ev_timer_start (EV_A_ &w->timer); 3271 ev_timer_again (EV_A_ &w->timer);
3272 ev_unref (EV_A);
3273 }
1962 3274
1963 ev_start (EV_A_ (W)w, 1); 3275 ev_start (EV_A_ (W)w, 1);
3276
3277 EV_FREQUENT_CHECK;
1964} 3278}
1965 3279
1966void 3280void
1967ev_stat_stop (EV_P_ ev_stat *w) 3281ev_stat_stop (EV_P_ ev_stat *w)
1968{ 3282{
1969 ev_clear_pending (EV_A_ (W)w); 3283 clear_pending (EV_A_ (W)w);
1970 if (expect_false (!ev_is_active (w))) 3284 if (expect_false (!ev_is_active (w)))
1971 return; 3285 return;
1972 3286
3287 EV_FREQUENT_CHECK;
3288
1973#if EV_USE_INOTIFY 3289#if EV_USE_INOTIFY
1974 infy_del (EV_A_ w); 3290 infy_del (EV_A_ w);
1975#endif 3291#endif
3292
3293 if (ev_is_active (&w->timer))
3294 {
3295 ev_ref (EV_A);
1976 ev_timer_stop (EV_A_ &w->timer); 3296 ev_timer_stop (EV_A_ &w->timer);
3297 }
1977 3298
1978 ev_stop (EV_A_ (W)w); 3299 ev_stop (EV_A_ (W)w);
1979}
1980#endif
1981 3300
3301 EV_FREQUENT_CHECK;
3302}
3303#endif
3304
3305#if EV_IDLE_ENABLE
1982void 3306void
1983ev_idle_start (EV_P_ ev_idle *w) 3307ev_idle_start (EV_P_ ev_idle *w)
1984{ 3308{
1985 if (expect_false (ev_is_active (w))) 3309 if (expect_false (ev_is_active (w)))
1986 return; 3310 return;
1987 3311
3312 pri_adjust (EV_A_ (W)w);
3313
3314 EV_FREQUENT_CHECK;
3315
3316 {
3317 int active = ++idlecnt [ABSPRI (w)];
3318
3319 ++idleall;
1988 ev_start (EV_A_ (W)w, ++idlecnt); 3320 ev_start (EV_A_ (W)w, active);
3321
1989 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3322 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1990 idles [idlecnt - 1] = w; 3323 idles [ABSPRI (w)][active - 1] = w;
3324 }
3325
3326 EV_FREQUENT_CHECK;
1991} 3327}
1992 3328
1993void 3329void
1994ev_idle_stop (EV_P_ ev_idle *w) 3330ev_idle_stop (EV_P_ ev_idle *w)
1995{ 3331{
1996 ev_clear_pending (EV_A_ (W)w); 3332 clear_pending (EV_A_ (W)w);
1997 if (expect_false (!ev_is_active (w))) 3333 if (expect_false (!ev_is_active (w)))
1998 return; 3334 return;
1999 3335
3336 EV_FREQUENT_CHECK;
3337
2000 { 3338 {
2001 int active = ((W)w)->active; 3339 int active = ev_active (w);
2002 idles [active - 1] = idles [--idlecnt]; 3340
2003 ((W)idles [active - 1])->active = active; 3341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3342 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3343
3344 ev_stop (EV_A_ (W)w);
3345 --idleall;
2004 } 3346 }
2005 3347
2006 ev_stop (EV_A_ (W)w); 3348 EV_FREQUENT_CHECK;
2007} 3349}
3350#endif
2008 3351
3352#if EV_PREPARE_ENABLE
2009void 3353void
2010ev_prepare_start (EV_P_ ev_prepare *w) 3354ev_prepare_start (EV_P_ ev_prepare *w)
2011{ 3355{
2012 if (expect_false (ev_is_active (w))) 3356 if (expect_false (ev_is_active (w)))
2013 return; 3357 return;
3358
3359 EV_FREQUENT_CHECK;
2014 3360
2015 ev_start (EV_A_ (W)w, ++preparecnt); 3361 ev_start (EV_A_ (W)w, ++preparecnt);
2016 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3362 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2017 prepares [preparecnt - 1] = w; 3363 prepares [preparecnt - 1] = w;
3364
3365 EV_FREQUENT_CHECK;
2018} 3366}
2019 3367
2020void 3368void
2021ev_prepare_stop (EV_P_ ev_prepare *w) 3369ev_prepare_stop (EV_P_ ev_prepare *w)
2022{ 3370{
2023 ev_clear_pending (EV_A_ (W)w); 3371 clear_pending (EV_A_ (W)w);
2024 if (expect_false (!ev_is_active (w))) 3372 if (expect_false (!ev_is_active (w)))
2025 return; 3373 return;
2026 3374
3375 EV_FREQUENT_CHECK;
3376
2027 { 3377 {
2028 int active = ((W)w)->active; 3378 int active = ev_active (w);
3379
2029 prepares [active - 1] = prepares [--preparecnt]; 3380 prepares [active - 1] = prepares [--preparecnt];
2030 ((W)prepares [active - 1])->active = active; 3381 ev_active (prepares [active - 1]) = active;
2031 } 3382 }
2032 3383
2033 ev_stop (EV_A_ (W)w); 3384 ev_stop (EV_A_ (W)w);
2034}
2035 3385
3386 EV_FREQUENT_CHECK;
3387}
3388#endif
3389
3390#if EV_CHECK_ENABLE
2036void 3391void
2037ev_check_start (EV_P_ ev_check *w) 3392ev_check_start (EV_P_ ev_check *w)
2038{ 3393{
2039 if (expect_false (ev_is_active (w))) 3394 if (expect_false (ev_is_active (w)))
2040 return; 3395 return;
3396
3397 EV_FREQUENT_CHECK;
2041 3398
2042 ev_start (EV_A_ (W)w, ++checkcnt); 3399 ev_start (EV_A_ (W)w, ++checkcnt);
2043 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3400 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2044 checks [checkcnt - 1] = w; 3401 checks [checkcnt - 1] = w;
3402
3403 EV_FREQUENT_CHECK;
2045} 3404}
2046 3405
2047void 3406void
2048ev_check_stop (EV_P_ ev_check *w) 3407ev_check_stop (EV_P_ ev_check *w)
2049{ 3408{
2050 ev_clear_pending (EV_A_ (W)w); 3409 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 3410 if (expect_false (!ev_is_active (w)))
2052 return; 3411 return;
2053 3412
3413 EV_FREQUENT_CHECK;
3414
2054 { 3415 {
2055 int active = ((W)w)->active; 3416 int active = ev_active (w);
3417
2056 checks [active - 1] = checks [--checkcnt]; 3418 checks [active - 1] = checks [--checkcnt];
2057 ((W)checks [active - 1])->active = active; 3419 ev_active (checks [active - 1]) = active;
2058 } 3420 }
2059 3421
2060 ev_stop (EV_A_ (W)w); 3422 ev_stop (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
2061} 3425}
3426#endif
2062 3427
2063#if EV_EMBED_ENABLE 3428#if EV_EMBED_ENABLE
2064void noinline 3429void noinline
2065ev_embed_sweep (EV_P_ ev_embed *w) 3430ev_embed_sweep (EV_P_ ev_embed *w)
2066{ 3431{
2067 ev_loop (w->loop, EVLOOP_NONBLOCK); 3432 ev_loop (w->other, EVLOOP_NONBLOCK);
2068} 3433}
2069 3434
2070static void 3435static void
2071embed_cb (EV_P_ ev_io *io, int revents) 3436embed_io_cb (EV_P_ ev_io *io, int revents)
2072{ 3437{
2073 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2074 3439
2075 if (ev_cb (w)) 3440 if (ev_cb (w))
2076 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2077 else 3442 else
2078 ev_embed_sweep (loop, w); 3443 ev_loop (w->other, EVLOOP_NONBLOCK);
2079} 3444}
3445
3446static void
3447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3448{
3449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3450
3451 {
3452 EV_P = w->other;
3453
3454 while (fdchangecnt)
3455 {
3456 fd_reify (EV_A);
3457 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3458 }
3459 }
3460}
3461
3462static void
3463embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3464{
3465 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3466
3467 ev_embed_stop (EV_A_ w);
3468
3469 {
3470 EV_P = w->other;
3471
3472 ev_loop_fork (EV_A);
3473 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3474 }
3475
3476 ev_embed_start (EV_A_ w);
3477}
3478
3479#if 0
3480static void
3481embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3482{
3483 ev_idle_stop (EV_A_ idle);
3484}
3485#endif
2080 3486
2081void 3487void
2082ev_embed_start (EV_P_ ev_embed *w) 3488ev_embed_start (EV_P_ ev_embed *w)
2083{ 3489{
2084 if (expect_false (ev_is_active (w))) 3490 if (expect_false (ev_is_active (w)))
2085 return; 3491 return;
2086 3492
2087 { 3493 {
2088 struct ev_loop *loop = w->loop; 3494 EV_P = w->other;
2089 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3495 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2090 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3496 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2091 } 3497 }
3498
3499 EV_FREQUENT_CHECK;
2092 3500
2093 ev_set_priority (&w->io, ev_priority (w)); 3501 ev_set_priority (&w->io, ev_priority (w));
2094 ev_io_start (EV_A_ &w->io); 3502 ev_io_start (EV_A_ &w->io);
2095 3503
3504 ev_prepare_init (&w->prepare, embed_prepare_cb);
3505 ev_set_priority (&w->prepare, EV_MINPRI);
3506 ev_prepare_start (EV_A_ &w->prepare);
3507
3508 ev_fork_init (&w->fork, embed_fork_cb);
3509 ev_fork_start (EV_A_ &w->fork);
3510
3511 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3512
2096 ev_start (EV_A_ (W)w, 1); 3513 ev_start (EV_A_ (W)w, 1);
3514
3515 EV_FREQUENT_CHECK;
2097} 3516}
2098 3517
2099void 3518void
2100ev_embed_stop (EV_P_ ev_embed *w) 3519ev_embed_stop (EV_P_ ev_embed *w)
2101{ 3520{
2102 ev_clear_pending (EV_A_ (W)w); 3521 clear_pending (EV_A_ (W)w);
2103 if (expect_false (!ev_is_active (w))) 3522 if (expect_false (!ev_is_active (w)))
2104 return; 3523 return;
2105 3524
3525 EV_FREQUENT_CHECK;
3526
2106 ev_io_stop (EV_A_ &w->io); 3527 ev_io_stop (EV_A_ &w->io);
3528 ev_prepare_stop (EV_A_ &w->prepare);
3529 ev_fork_stop (EV_A_ &w->fork);
2107 3530
2108 ev_stop (EV_A_ (W)w); 3531 ev_stop (EV_A_ (W)w);
3532
3533 EV_FREQUENT_CHECK;
2109} 3534}
2110#endif 3535#endif
2111 3536
2112#if EV_FORK_ENABLE 3537#if EV_FORK_ENABLE
2113void 3538void
2114ev_fork_start (EV_P_ ev_fork *w) 3539ev_fork_start (EV_P_ ev_fork *w)
2115{ 3540{
2116 if (expect_false (ev_is_active (w))) 3541 if (expect_false (ev_is_active (w)))
2117 return; 3542 return;
3543
3544 EV_FREQUENT_CHECK;
2118 3545
2119 ev_start (EV_A_ (W)w, ++forkcnt); 3546 ev_start (EV_A_ (W)w, ++forkcnt);
2120 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3547 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2121 forks [forkcnt - 1] = w; 3548 forks [forkcnt - 1] = w;
3549
3550 EV_FREQUENT_CHECK;
2122} 3551}
2123 3552
2124void 3553void
2125ev_fork_stop (EV_P_ ev_fork *w) 3554ev_fork_stop (EV_P_ ev_fork *w)
2126{ 3555{
2127 ev_clear_pending (EV_A_ (W)w); 3556 clear_pending (EV_A_ (W)w);
2128 if (expect_false (!ev_is_active (w))) 3557 if (expect_false (!ev_is_active (w)))
2129 return; 3558 return;
2130 3559
3560 EV_FREQUENT_CHECK;
3561
2131 { 3562 {
2132 int active = ((W)w)->active; 3563 int active = ev_active (w);
3564
2133 forks [active - 1] = forks [--forkcnt]; 3565 forks [active - 1] = forks [--forkcnt];
2134 ((W)forks [active - 1])->active = active; 3566 ev_active (forks [active - 1]) = active;
2135 } 3567 }
2136 3568
2137 ev_stop (EV_A_ (W)w); 3569 ev_stop (EV_A_ (W)w);
3570
3571 EV_FREQUENT_CHECK;
3572}
3573#endif
3574
3575#if EV_ASYNC_ENABLE
3576void
3577ev_async_start (EV_P_ ev_async *w)
3578{
3579 if (expect_false (ev_is_active (w)))
3580 return;
3581
3582 evpipe_init (EV_A);
3583
3584 EV_FREQUENT_CHECK;
3585
3586 ev_start (EV_A_ (W)w, ++asynccnt);
3587 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3588 asyncs [asynccnt - 1] = w;
3589
3590 EV_FREQUENT_CHECK;
3591}
3592
3593void
3594ev_async_stop (EV_P_ ev_async *w)
3595{
3596 clear_pending (EV_A_ (W)w);
3597 if (expect_false (!ev_is_active (w)))
3598 return;
3599
3600 EV_FREQUENT_CHECK;
3601
3602 {
3603 int active = ev_active (w);
3604
3605 asyncs [active - 1] = asyncs [--asynccnt];
3606 ev_active (asyncs [active - 1]) = active;
3607 }
3608
3609 ev_stop (EV_A_ (W)w);
3610
3611 EV_FREQUENT_CHECK;
3612}
3613
3614void
3615ev_async_send (EV_P_ ev_async *w)
3616{
3617 w->sent = 1;
3618 evpipe_write (EV_A_ &async_pending);
2138} 3619}
2139#endif 3620#endif
2140 3621
2141/*****************************************************************************/ 3622/*****************************************************************************/
2142 3623
2152once_cb (EV_P_ struct ev_once *once, int revents) 3633once_cb (EV_P_ struct ev_once *once, int revents)
2153{ 3634{
2154 void (*cb)(int revents, void *arg) = once->cb; 3635 void (*cb)(int revents, void *arg) = once->cb;
2155 void *arg = once->arg; 3636 void *arg = once->arg;
2156 3637
2157 ev_io_stop (EV_A_ &once->io); 3638 ev_io_stop (EV_A_ &once->io);
2158 ev_timer_stop (EV_A_ &once->to); 3639 ev_timer_stop (EV_A_ &once->to);
2159 ev_free (once); 3640 ev_free (once);
2160 3641
2161 cb (revents, arg); 3642 cb (revents, arg);
2162} 3643}
2163 3644
2164static void 3645static void
2165once_cb_io (EV_P_ ev_io *w, int revents) 3646once_cb_io (EV_P_ ev_io *w, int revents)
2166{ 3647{
2167 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3648 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3649
3650 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2168} 3651}
2169 3652
2170static void 3653static void
2171once_cb_to (EV_P_ ev_timer *w, int revents) 3654once_cb_to (EV_P_ ev_timer *w, int revents)
2172{ 3655{
2173 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3656 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3657
3658 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2174} 3659}
2175 3660
2176void 3661void
2177ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3662ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2178{ 3663{
2179 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3664 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2180 3665
2181 if (expect_false (!once)) 3666 if (expect_false (!once))
2182 { 3667 {
2183 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3668 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2184 return; 3669 return;
2185 } 3670 }
2186 3671
2187 once->cb = cb; 3672 once->cb = cb;
2188 once->arg = arg; 3673 once->arg = arg;
2200 ev_timer_set (&once->to, timeout, 0.); 3685 ev_timer_set (&once->to, timeout, 0.);
2201 ev_timer_start (EV_A_ &once->to); 3686 ev_timer_start (EV_A_ &once->to);
2202 } 3687 }
2203} 3688}
2204 3689
3690/*****************************************************************************/
3691
3692#if EV_WALK_ENABLE
3693void
3694ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3695{
3696 int i, j;
3697 ev_watcher_list *wl, *wn;
3698
3699 if (types & (EV_IO | EV_EMBED))
3700 for (i = 0; i < anfdmax; ++i)
3701 for (wl = anfds [i].head; wl; )
3702 {
3703 wn = wl->next;
3704
3705#if EV_EMBED_ENABLE
3706 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3707 {
3708 if (types & EV_EMBED)
3709 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3710 }
3711 else
3712#endif
3713#if EV_USE_INOTIFY
3714 if (ev_cb ((ev_io *)wl) == infy_cb)
3715 ;
3716 else
3717#endif
3718 if ((ev_io *)wl != &pipe_w)
3719 if (types & EV_IO)
3720 cb (EV_A_ EV_IO, wl);
3721
3722 wl = wn;
3723 }
3724
3725 if (types & (EV_TIMER | EV_STAT))
3726 for (i = timercnt + HEAP0; i-- > HEAP0; )
3727#if EV_STAT_ENABLE
3728 /*TODO: timer is not always active*/
3729 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3730 {
3731 if (types & EV_STAT)
3732 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3733 }
3734 else
3735#endif
3736 if (types & EV_TIMER)
3737 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3738
3739#if EV_PERIODIC_ENABLE
3740 if (types & EV_PERIODIC)
3741 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3742 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3743#endif
3744
3745#if EV_IDLE_ENABLE
3746 if (types & EV_IDLE)
3747 for (j = NUMPRI; i--; )
3748 for (i = idlecnt [j]; i--; )
3749 cb (EV_A_ EV_IDLE, idles [j][i]);
3750#endif
3751
3752#if EV_FORK_ENABLE
3753 if (types & EV_FORK)
3754 for (i = forkcnt; i--; )
3755 if (ev_cb (forks [i]) != embed_fork_cb)
3756 cb (EV_A_ EV_FORK, forks [i]);
3757#endif
3758
3759#if EV_ASYNC_ENABLE
3760 if (types & EV_ASYNC)
3761 for (i = asynccnt; i--; )
3762 cb (EV_A_ EV_ASYNC, asyncs [i]);
3763#endif
3764
3765#if EV_PREPARE_ENABLE
3766 if (types & EV_PREPARE)
3767 for (i = preparecnt; i--; )
3768# if EV_EMBED_ENABLE
3769 if (ev_cb (prepares [i]) != embed_prepare_cb)
3770# endif
3771 cb (EV_A_ EV_PREPARE, prepares [i]);
3772#endif
3773
3774#if EV_CHECK_ENABLE
3775 if (types & EV_CHECK)
3776 for (i = checkcnt; i--; )
3777 cb (EV_A_ EV_CHECK, checks [i]);
3778#endif
3779
3780#if EV_SIGNAL_ENABLE
3781 if (types & EV_SIGNAL)
3782 for (i = 0; i < EV_NSIG - 1; ++i)
3783 for (wl = signals [i].head; wl; )
3784 {
3785 wn = wl->next;
3786 cb (EV_A_ EV_SIGNAL, wl);
3787 wl = wn;
3788 }
3789#endif
3790
3791#if EV_CHILD_ENABLE
3792 if (types & EV_CHILD)
3793 for (i = (EV_PID_HASHSIZE); i--; )
3794 for (wl = childs [i]; wl; )
3795 {
3796 wn = wl->next;
3797 cb (EV_A_ EV_CHILD, wl);
3798 wl = wn;
3799 }
3800#endif
3801/* EV_STAT 0x00001000 /* stat data changed */
3802/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3803}
3804#endif
3805
3806#if EV_MULTIPLICITY
3807 #include "ev_wrap.h"
3808#endif
3809
2205#ifdef __cplusplus 3810#ifdef __cplusplus
2206} 3811}
2207#endif 3812#endif
2208 3813

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines