ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC vs.
Revision 1.351 by root, Sat Oct 16 06:46:55 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
63# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
65# endif 79# endif
66# endif 80# endif
67 81
82# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
71# else 86# else
87# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
74# endif 98# endif
75 99
100# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 103# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 104# else
105# undef EV_USE_POLL
88# define EV_USE_POLL 0 106# define EV_USE_POLL 0
89# endif
90# endif 107# endif
91 108
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
95# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
98# endif 116# endif
99 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
106# endif 125# endif
107 126
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
111# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
114# endif 134# endif
115 135
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
122# endif 143# endif
123 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 147# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
130# endif 152# endif
131 153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
132#endif 163#endif
133 164
134#include <math.h> 165#include <math.h>
135#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
136#include <fcntl.h> 168#include <fcntl.h>
137#include <stddef.h> 169#include <stddef.h>
138 170
139#include <stdio.h> 171#include <stdio.h>
140 172
141#include <assert.h> 173#include <assert.h>
142#include <errno.h> 174#include <errno.h>
143#include <sys/types.h> 175#include <sys/types.h>
144#include <time.h> 176#include <time.h>
177#include <limits.h>
145 178
146#include <signal.h> 179#include <signal.h>
147 180
148#ifdef EV_H 181#ifdef EV_H
149# include EV_H 182# include EV_H
154#ifndef _WIN32 187#ifndef _WIN32
155# include <sys/time.h> 188# include <sys/time.h>
156# include <sys/wait.h> 189# include <sys/wait.h>
157# include <unistd.h> 190# include <unistd.h>
158#else 191#else
192# include <io.h>
159# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 194# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
163# endif 197# endif
198# undef EV_AVOID_STDIO
164#endif 199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
165 208
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 209/* this block tries to deduce configuration from header-defined symbols and defaults */
167 210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
244# endif
245#endif
246
168#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
169# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
170#endif 253#endif
171 254
172#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 257#endif
175 258
176#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
177# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
264# endif
178#endif 265#endif
179 266
180#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 269#endif
183 270
184#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
185# ifdef _WIN32 272# ifdef _WIN32
186# define EV_USE_POLL 0 273# define EV_USE_POLL 0
187# else 274# else
188# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 276# endif
190#endif 277#endif
191 278
192#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 282# else
196# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
197# endif 284# endif
198#endif 285#endif
199 286
205# define EV_USE_PORT 0 292# define EV_USE_PORT 0
206#endif 293#endif
207 294
208#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 297# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 298# else
212# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
213# endif 300# endif
214#endif 301#endif
215 302
216#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 305#endif
223 306
224#ifndef EV_INOTIFY_HASHSIZE 307#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 309#endif
231 310
232#ifndef EV_USE_EVENTFD 311#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 313# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 314# else
236# define EV_USE_EVENTFD 0 315# define EV_USE_EVENTFD 0
237# endif 316# endif
238#endif 317#endif
239 318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
324# endif
325#endif
326
327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
240#ifndef EV_USE_4HEAP 337#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 338# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 339#endif
243 340
244#ifndef EV_HEAP_CACHE_AT 341#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
246#endif 357#endif
247 358
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
249 366
250#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
253#endif 370#endif
267# include <sys/select.h> 384# include <sys/select.h>
268# endif 385# endif
269#endif 386#endif
270 387
271#if EV_USE_INOTIFY 388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
272# include <sys/inotify.h> 391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
273#endif 397#endif
274 398
275#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 400# include <winsock.h>
277#endif 401#endif
278 402
279#if EV_USE_EVENTFD 403#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
282# ifdef __cplusplus 416# ifdef __cplusplus
283extern "C" { 417extern "C" {
284# endif 418# endif
285int eventfd (unsigned int initval, int flags); 419int (eventfd) (unsigned int initval, int flags);
286# ifdef __cplusplus 420# ifdef __cplusplus
287} 421}
288# endif 422# endif
289#endif 423#endif
290 424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
291/**/ 453/**/
454
455#if EV_VERIFY >= 3
456# define EV_FREQUENT_CHECK ev_verify (EV_A)
457#else
458# define EV_FREQUENT_CHECK do { } while (0)
459#endif
292 460
293/* 461/*
294 * This is used to avoid floating point rounding problems. 462 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 463 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 464 * to ensure progress, time-wise, even when rounding
300 */ 468 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302 470
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 471#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 472#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 473
474#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
475#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
306 476
307#if __GNUC__ >= 4 477#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value)) 478# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline)) 479# define noinline __attribute__ ((noinline))
310#else 480#else
317 487
318#define expect_false(expr) expect ((expr) != 0, 0) 488#define expect_false(expr) expect ((expr) != 0, 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 489#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline 490#define inline_size static inline
321 491
322#if EV_MINIMAL 492#if EV_FEATURE_CODE
493# define inline_speed static inline
494#else
323# define inline_speed static noinline 495# define inline_speed static noinline
496#endif
497
498#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499
500#if EV_MINPRI == EV_MAXPRI
501# define ABSPRI(w) (((W)w), 0)
324#else 502#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 503# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504#endif
330 505
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 506#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 507#define EMPTY2(a,b) /* used to suppress some warnings */
333 508
334typedef ev_watcher *W; 509typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 511typedef ev_watcher_time *WT;
337 512
338#define ev_active(w) ((W)(w))->active 513#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 514#define ev_at(w) ((WT)(w))->at
340 515
516#if EV_USE_REALTIME
517/* sig_atomic_t is used to avoid per-thread variables or locking but still */
518/* giving it a reasonably high chance of working on typical architectures */
519static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
520#endif
521
341#if EV_USE_MONOTONIC 522#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 523static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
524#endif
525
526#ifndef EV_FD_TO_WIN32_HANDLE
527# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528#endif
529#ifndef EV_WIN32_HANDLE_TO_FD
530# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531#endif
532#ifndef EV_WIN32_CLOSE_FD
533# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 534#endif
346 535
347#ifdef _WIN32 536#ifdef _WIN32
348# include "ev_win32.c" 537# include "ev_win32.c"
349#endif 538#endif
350 539
351/*****************************************************************************/ 540/*****************************************************************************/
352 541
542#if EV_AVOID_STDIO
543static void noinline
544ev_printerr (const char *msg)
545{
546 write (STDERR_FILENO, msg, strlen (msg));
547}
548#endif
549
353static void (*syserr_cb)(const char *msg); 550static void (*syserr_cb)(const char *msg);
354 551
355void 552void
356ev_set_syserr_cb (void (*cb)(const char *msg)) 553ev_set_syserr_cb (void (*cb)(const char *msg))
357{ 554{
358 syserr_cb = cb; 555 syserr_cb = cb;
359} 556}
360 557
361static void noinline 558static void noinline
362syserr (const char *msg) 559ev_syserr (const char *msg)
363{ 560{
364 if (!msg) 561 if (!msg)
365 msg = "(libev) system error"; 562 msg = "(libev) system error";
366 563
367 if (syserr_cb) 564 if (syserr_cb)
368 syserr_cb (msg); 565 syserr_cb (msg);
369 else 566 else
370 { 567 {
568#if EV_AVOID_STDIO
569 const char *err = strerror (errno);
570
571 ev_printerr (msg);
572 ev_printerr (": ");
573 ev_printerr (err);
574 ev_printerr ("\n");
575#else
371 perror (msg); 576 perror (msg);
577#endif
372 abort (); 578 abort ();
373 } 579 }
374} 580}
375 581
376static void * 582static void *
377ev_realloc_emul (void *ptr, long size) 583ev_realloc_emul (void *ptr, long size)
378{ 584{
585#if __GLIBC__
586 return realloc (ptr, size);
587#else
379 /* some systems, notably openbsd and darwin, fail to properly 588 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 589 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 590 * the single unix specification, so work around them here.
382 */ 591 */
383 592
384 if (size) 593 if (size)
385 return realloc (ptr, size); 594 return realloc (ptr, size);
386 595
387 free (ptr); 596 free (ptr);
388 return 0; 597 return 0;
598#endif
389} 599}
390 600
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 601static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
392 602
393void 603void
401{ 611{
402 ptr = alloc (ptr, size); 612 ptr = alloc (ptr, size);
403 613
404 if (!ptr && size) 614 if (!ptr && size)
405 { 615 {
616#if EV_AVOID_STDIO
617 ev_printerr ("libev: memory allocation failed, aborting.\n");
618#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 619 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620#endif
407 abort (); 621 abort ();
408 } 622 }
409 623
410 return ptr; 624 return ptr;
411} 625}
413#define ev_malloc(size) ev_realloc (0, (size)) 627#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 628#define ev_free(ptr) ev_realloc ((ptr), 0)
415 629
416/*****************************************************************************/ 630/*****************************************************************************/
417 631
632/* set in reify when reification needed */
633#define EV_ANFD_REIFY 1
634
635/* file descriptor info structure */
418typedef struct 636typedef struct
419{ 637{
420 WL head; 638 WL head;
421 unsigned char events; 639 unsigned char events; /* the events watched for */
640 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
641 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 642 unsigned char unused;
643#if EV_USE_EPOLL
644 unsigned int egen; /* generation counter to counter epoll bugs */
645#endif
423#if EV_SELECT_IS_WINSOCKET 646#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 647 SOCKET handle;
425#endif 648#endif
426} ANFD; 649} ANFD;
427 650
651/* stores the pending event set for a given watcher */
428typedef struct 652typedef struct
429{ 653{
430 W w; 654 W w;
431 int events; 655 int events; /* the pending event set for the given watcher */
432} ANPENDING; 656} ANPENDING;
433 657
434#if EV_USE_INOTIFY 658#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 659/* hash table entry per inotify-id */
436typedef struct 660typedef struct
439} ANFS; 663} ANFS;
440#endif 664#endif
441 665
442/* Heap Entry */ 666/* Heap Entry */
443#if EV_HEAP_CACHE_AT 667#if EV_HEAP_CACHE_AT
668 /* a heap element */
444 typedef struct { 669 typedef struct {
445 ev_tstamp at; 670 ev_tstamp at;
446 WT w; 671 WT w;
447 } ANHE; 672 } ANHE;
448 673
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 674 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 675 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 676 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 677#else
678 /* a heap element */
453 typedef WT ANHE; 679 typedef WT ANHE;
454 680
455 #define ANHE_w(he) (he) 681 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 682 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 683 #define ANHE_at_cache(he)
458#endif 684#endif
459 685
460#if EV_MULTIPLICITY 686#if EV_MULTIPLICITY
461 687
462 struct ev_loop 688 struct ev_loop
481 707
482 static int ev_default_loop_ptr; 708 static int ev_default_loop_ptr;
483 709
484#endif 710#endif
485 711
712#if EV_FEATURE_API
713# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715# define EV_INVOKE_PENDING invoke_cb (EV_A)
716#else
717# define EV_RELEASE_CB (void)0
718# define EV_ACQUIRE_CB (void)0
719# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720#endif
721
722#define EVUNLOOP_RECURSE 0x80
723
486/*****************************************************************************/ 724/*****************************************************************************/
487 725
726#ifndef EV_HAVE_EV_TIME
488ev_tstamp 727ev_tstamp
489ev_time (void) 728ev_time (void)
490{ 729{
491#if EV_USE_REALTIME 730#if EV_USE_REALTIME
731 if (expect_true (have_realtime))
732 {
492 struct timespec ts; 733 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 734 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 735 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 736 }
737#endif
738
496 struct timeval tv; 739 struct timeval tv;
497 gettimeofday (&tv, 0); 740 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 741 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 742}
743#endif
501 744
502ev_tstamp inline_size 745inline_size ev_tstamp
503get_clock (void) 746get_clock (void)
504{ 747{
505#if EV_USE_MONOTONIC 748#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 749 if (expect_true (have_monotonic))
507 { 750 {
528 if (delay > 0.) 771 if (delay > 0.)
529 { 772 {
530#if EV_USE_NANOSLEEP 773#if EV_USE_NANOSLEEP
531 struct timespec ts; 774 struct timespec ts;
532 775
533 ts.tv_sec = (time_t)delay; 776 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 777 nanosleep (&ts, 0);
537#elif defined(_WIN32) 778#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3)); 779 Sleep ((unsigned long)(delay * 1e3));
539#else 780#else
540 struct timeval tv; 781 struct timeval tv;
541 782
542 tv.tv_sec = (time_t)delay; 783 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 784 /* something not guaranteed by newer posix versions, but guaranteed */
544 785 /* by older ones */
786 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 787 select (0, 0, 0, 0, &tv);
546#endif 788#endif
547 } 789 }
548} 790}
549 791
550/*****************************************************************************/ 792/*****************************************************************************/
551 793
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 794#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 795
554int inline_size 796/* find a suitable new size for the given array, */
797/* hopefully by rounding to a nice-to-malloc size */
798inline_size int
555array_nextsize (int elem, int cur, int cnt) 799array_nextsize (int elem, int cur, int cnt)
556{ 800{
557 int ncur = cur + 1; 801 int ncur = cur + 1;
558 802
559 do 803 do
576array_realloc (int elem, void *base, int *cur, int cnt) 820array_realloc (int elem, void *base, int *cur, int cnt)
577{ 821{
578 *cur = array_nextsize (elem, *cur, cnt); 822 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 823 return ev_realloc (base, elem * *cur);
580} 824}
825
826#define array_init_zero(base,count) \
827 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 828
582#define array_needsize(type,base,cur,cnt,init) \ 829#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 830 if (expect_false ((cnt) > (cur))) \
584 { \ 831 { \
585 int ocur_ = (cur); \ 832 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 844 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 845 }
599#endif 846#endif
600 847
601#define array_free(stem, idx) \ 848#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 849 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 850
604/*****************************************************************************/ 851/*****************************************************************************/
852
853/* dummy callback for pending events */
854static void noinline
855pendingcb (EV_P_ ev_prepare *w, int revents)
856{
857}
605 858
606void noinline 859void noinline
607ev_feed_event (EV_P_ void *w, int revents) 860ev_feed_event (EV_P_ void *w, int revents)
608{ 861{
609 W w_ = (W)w; 862 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 871 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 872 pendings [pri][w_->pending - 1].events = revents;
620 } 873 }
621} 874}
622 875
623void inline_speed 876inline_speed void
877feed_reverse (EV_P_ W w)
878{
879 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880 rfeeds [rfeedcnt++] = w;
881}
882
883inline_size void
884feed_reverse_done (EV_P_ int revents)
885{
886 do
887 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888 while (rfeedcnt);
889}
890
891inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 892queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 893{
626 int i; 894 int i;
627 895
628 for (i = 0; i < eventcnt; ++i) 896 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 897 ev_feed_event (EV_A_ events [i], type);
630} 898}
631 899
632/*****************************************************************************/ 900/*****************************************************************************/
633 901
634void inline_size 902inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 903fd_event_nocheck (EV_P_ int fd, int revents)
649{ 904{
650 ANFD *anfd = anfds + fd; 905 ANFD *anfd = anfds + fd;
651 ev_io *w; 906 ev_io *w;
652 907
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 912 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 913 ev_feed_event (EV_A_ (W)w, ev);
659 } 914 }
660} 915}
661 916
917/* do not submit kernel events for fds that have reify set */
918/* because that means they changed while we were polling for new events */
919inline_speed void
920fd_event (EV_P_ int fd, int revents)
921{
922 ANFD *anfd = anfds + fd;
923
924 if (expect_true (!anfd->reify))
925 fd_event_nocheck (EV_A_ fd, revents);
926}
927
662void 928void
663ev_feed_fd_event (EV_P_ int fd, int revents) 929ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 930{
665 if (fd >= 0 && fd < anfdmax) 931 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 932 fd_event_nocheck (EV_A_ fd, revents);
667} 933}
668 934
669void inline_size 935/* make sure the external fd watch events are in-sync */
936/* with the kernel/libev internal state */
937inline_size void
670fd_reify (EV_P) 938fd_reify (EV_P)
671{ 939{
672 int i; 940 int i;
673 941
674 for (i = 0; i < fdchangecnt; ++i) 942 for (i = 0; i < fdchangecnt; ++i)
675 { 943 {
676 int fd = fdchanges [i]; 944 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 945 ANFD *anfd = anfds + fd;
678 ev_io *w; 946 ev_io *w;
679 947
680 unsigned char events = 0; 948 unsigned char o_events = anfd->events;
949 unsigned char o_reify = anfd->reify;
681 950
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 951 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 952
685#if EV_SELECT_IS_WINSOCKET 953#if EV_SELECT_IS_WINSOCKET
686 if (events) 954 if (o_reify & EV__IOFDSET)
687 { 955 {
688 unsigned long argp; 956 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 957 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 958 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 959 }
696#endif 960#endif
697 961
962 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
698 { 963 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events; 964 anfd->events = 0;
704 965
705 if (o_events != events || o_reify & EV_IOFDSET) 966 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
967 anfd->events |= (unsigned char)w->events;
968
969 if (o_events != anfd->events)
970 o_reify = EV__IOFDSET; /* actually |= */
971 }
972
973 if (o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 974 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 975 }
709 976
710 fdchangecnt = 0; 977 fdchangecnt = 0;
711} 978}
712 979
713void inline_size 980/* something about the given fd changed */
981inline_size void
714fd_change (EV_P_ int fd, int flags) 982fd_change (EV_P_ int fd, int flags)
715{ 983{
716 unsigned char reify = anfds [fd].reify; 984 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 985 anfds [fd].reify |= flags;
718 986
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 990 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 991 fdchanges [fdchangecnt - 1] = fd;
724 } 992 }
725} 993}
726 994
727void inline_speed 995/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
996inline_speed void
728fd_kill (EV_P_ int fd) 997fd_kill (EV_P_ int fd)
729{ 998{
730 ev_io *w; 999 ev_io *w;
731 1000
732 while ((w = (ev_io *)anfds [fd].head)) 1001 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 1003 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1004 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 1005 }
737} 1006}
738 1007
739int inline_size 1008/* check whether the given fd is actually valid, for error recovery */
1009inline_size int
740fd_valid (int fd) 1010fd_valid (int fd)
741{ 1011{
742#ifdef _WIN32 1012#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 1013 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 1014#else
745 return fcntl (fd, F_GETFD) != -1; 1015 return fcntl (fd, F_GETFD) != -1;
746#endif 1016#endif
747} 1017}
748 1018
752{ 1022{
753 int fd; 1023 int fd;
754 1024
755 for (fd = 0; fd < anfdmax; ++fd) 1025 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1026 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1027 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1028 fd_kill (EV_A_ fd);
759} 1029}
760 1030
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1031/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1032static void noinline
766 1036
767 for (fd = anfdmax; fd--; ) 1037 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1038 if (anfds [fd].events)
769 { 1039 {
770 fd_kill (EV_A_ fd); 1040 fd_kill (EV_A_ fd);
771 return; 1041 break;
772 } 1042 }
773} 1043}
774 1044
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1045/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1046static void noinline
780 1050
781 for (fd = 0; fd < anfdmax; ++fd) 1051 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1052 if (anfds [fd].events)
783 { 1053 {
784 anfds [fd].events = 0; 1054 anfds [fd].events = 0;
1055 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1056 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1057 }
787} 1058}
788 1059
1060/* used to prepare libev internal fd's */
1061/* this is not fork-safe */
1062inline_speed void
1063fd_intern (int fd)
1064{
1065#ifdef _WIN32
1066 unsigned long arg = 1;
1067 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1068#else
1069 fcntl (fd, F_SETFD, FD_CLOEXEC);
1070 fcntl (fd, F_SETFL, O_NONBLOCK);
1071#endif
1072}
1073
789/*****************************************************************************/ 1074/*****************************************************************************/
790 1075
791/* 1076/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 1077 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1078 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 1079 * the branching factor of the d-tree.
795 */ 1080 */
796 1081
797/* 1082/*
803#if EV_USE_4HEAP 1088#if EV_USE_4HEAP
804 1089
805#define DHEAP 4 1090#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1091#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1092#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808 1093#define UPHEAP_DONE(p,k) ((p) == (k))
809/* towards the root */
810void inline_speed
811upheap (ANHE *heap, int k)
812{
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829}
830 1094
831/* away from the root */ 1095/* away from the root */
832void inline_speed 1096inline_speed void
833downheap (ANHE *heap, int N, int k) 1097downheap (ANHE *heap, int N, int k)
834{ 1098{
835 ANHE he = heap [k]; 1099 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0; 1100 ANHE *E = heap + N + HEAP0;
837 1101
838 for (;;) 1102 for (;;)
839 { 1103 {
840 ev_tstamp minat; 1104 ev_tstamp minat;
841 ANHE *minpos; 1105 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1106 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
843 1107
844 // find minimum child 1108 /* find minimum child */
845 if (expect_true (pos + DHEAP - 1 < E)) 1109 if (expect_true (pos + DHEAP - 1 < E))
846 { 1110 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1111 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1112 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1113 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 1134
871 heap [k] = he; 1135 heap [k] = he;
872 ev_active (ANHE_w (he)) = k; 1136 ev_active (ANHE_w (he)) = k;
873} 1137}
874 1138
875#else // 4HEAP 1139#else /* 4HEAP */
876 1140
877#define HEAP0 1 1141#define HEAP0 1
878#define HPARENT(k) ((k) >> 1) 1142#define HPARENT(k) ((k) >> 1)
1143#define UPHEAP_DONE(p,k) (!(p))
879 1144
880/* towards the root */ 1145/* away from the root */
881void inline_speed 1146inline_speed void
882upheap (ANHE *heap, int k) 1147downheap (ANHE *heap, int N, int k)
883{ 1148{
884 ANHE he = heap [k]; 1149 ANHE he = heap [k];
885 1150
886 for (;;) 1151 for (;;)
887 { 1152 {
888 int p = HPARENT (k); 1153 int c = k << 1;
889 1154
890 /* maybe we could use a dummy element at heap [0]? */ 1155 if (c >= N + HEAP0)
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break; 1156 break;
893 1157
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1158 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0; 1159 ? 1 : 0;
918 1160
919 if (ANHE_at (he) <= ANHE_at (heap [c])) 1161 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break; 1162 break;
921 1163
928 heap [k] = he; 1170 heap [k] = he;
929 ev_active (ANHE_w (he)) = k; 1171 ev_active (ANHE_w (he)) = k;
930} 1172}
931#endif 1173#endif
932 1174
933void inline_size 1175/* towards the root */
1176inline_speed void
1177upheap (ANHE *heap, int k)
1178{
1179 ANHE he = heap [k];
1180
1181 for (;;)
1182 {
1183 int p = HPARENT (k);
1184
1185 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1186 break;
1187
1188 heap [k] = heap [p];
1189 ev_active (ANHE_w (heap [k])) = k;
1190 k = p;
1191 }
1192
1193 heap [k] = he;
1194 ev_active (ANHE_w (he)) = k;
1195}
1196
1197/* move an element suitably so it is in a correct place */
1198inline_size void
934adjustheap (ANHE *heap, int N, int k) 1199adjustheap (ANHE *heap, int N, int k)
935{ 1200{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1201 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
937 upheap (heap, k); 1202 upheap (heap, k);
938 else 1203 else
939 downheap (heap, N, k); 1204 downheap (heap, N, k);
940} 1205}
941 1206
1207/* rebuild the heap: this function is used only once and executed rarely */
1208inline_size void
1209reheap (ANHE *heap, int N)
1210{
1211 int i;
1212
1213 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1214 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1215 for (i = 0; i < N; ++i)
1216 upheap (heap, i + HEAP0);
1217}
1218
942/*****************************************************************************/ 1219/*****************************************************************************/
943 1220
1221/* associate signal watchers to a signal signal */
944typedef struct 1222typedef struct
945{ 1223{
1224 EV_ATOMIC_T pending;
1225#if EV_MULTIPLICITY
1226 EV_P;
1227#endif
946 WL head; 1228 WL head;
947 EV_ATOMIC_T gotsig;
948} ANSIG; 1229} ANSIG;
949 1230
950static ANSIG *signals; 1231static ANSIG signals [EV_NSIG - 1];
951static int signalmax;
952
953static EV_ATOMIC_T gotsig;
954
955void inline_size
956signals_init (ANSIG *base, int count)
957{
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965}
966 1232
967/*****************************************************************************/ 1233/*****************************************************************************/
968 1234
969void inline_speed 1235#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
970fd_intern (int fd)
971{
972#ifdef _WIN32
973 int arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
975#else
976 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK);
978#endif
979}
980 1236
981static void noinline 1237static void noinline
982evpipe_init (EV_P) 1238evpipe_init (EV_P)
983{ 1239{
984 if (!ev_is_active (&pipeev)) 1240 if (!ev_is_active (&pipe_w))
985 { 1241 {
986#if EV_USE_EVENTFD 1242# if EV_USE_EVENTFD
1243 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1244 if (evfd < 0 && errno == EINVAL)
987 if ((evfd = eventfd (0, 0)) >= 0) 1245 evfd = eventfd (0, 0);
1246
1247 if (evfd >= 0)
988 { 1248 {
989 evpipe [0] = -1; 1249 evpipe [0] = -1;
990 fd_intern (evfd); 1250 fd_intern (evfd); /* doing it twice doesn't hurt */
991 ev_io_set (&pipeev, evfd, EV_READ); 1251 ev_io_set (&pipe_w, evfd, EV_READ);
992 } 1252 }
993 else 1253 else
994#endif 1254# endif
995 { 1255 {
996 while (pipe (evpipe)) 1256 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe"); 1257 ev_syserr ("(libev) error creating signal/async pipe");
998 1258
999 fd_intern (evpipe [0]); 1259 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]); 1260 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ); 1261 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1002 } 1262 }
1003 1263
1004 ev_io_start (EV_A_ &pipeev); 1264 ev_io_start (EV_A_ &pipe_w);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */ 1265 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 } 1266 }
1007} 1267}
1008 1268
1009void inline_size 1269inline_size void
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1270evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{ 1271{
1012 if (!*flag) 1272 if (!*flag)
1013 { 1273 {
1014 int old_errno = errno; /* save errno because write might clobber it */ 1274 int old_errno = errno; /* save errno because write might clobber it */
1275 char dummy;
1015 1276
1016 *flag = 1; 1277 *flag = 1;
1017 1278
1018#if EV_USE_EVENTFD 1279#if EV_USE_EVENTFD
1019 if (evfd >= 0) 1280 if (evfd >= 0)
1021 uint64_t counter = 1; 1282 uint64_t counter = 1;
1022 write (evfd, &counter, sizeof (uint64_t)); 1283 write (evfd, &counter, sizeof (uint64_t));
1023 } 1284 }
1024 else 1285 else
1025#endif 1286#endif
1287 /* win32 people keep sending patches that change this write() to send() */
1288 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1289 /* so when you think this write should be a send instead, please find out */
1290 /* where your send() is from - it's definitely not the microsoft send, and */
1291 /* tell me. thank you. */
1026 write (evpipe [1], &old_errno, 1); 1292 write (evpipe [1], &dummy, 1);
1027 1293
1028 errno = old_errno; 1294 errno = old_errno;
1029 } 1295 }
1030} 1296}
1031 1297
1298/* called whenever the libev signal pipe */
1299/* got some events (signal, async) */
1032static void 1300static void
1033pipecb (EV_P_ ev_io *iow, int revents) 1301pipecb (EV_P_ ev_io *iow, int revents)
1034{ 1302{
1303 int i;
1304
1035#if EV_USE_EVENTFD 1305#if EV_USE_EVENTFD
1036 if (evfd >= 0) 1306 if (evfd >= 0)
1037 { 1307 {
1038 uint64_t counter; 1308 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t)); 1309 read (evfd, &counter, sizeof (uint64_t));
1040 } 1310 }
1041 else 1311 else
1042#endif 1312#endif
1043 { 1313 {
1044 char dummy; 1314 char dummy;
1315 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1045 read (evpipe [0], &dummy, 1); 1316 read (evpipe [0], &dummy, 1);
1046 } 1317 }
1047 1318
1048 if (gotsig && ev_is_default_loop (EV_A)) 1319 if (sig_pending)
1049 { 1320 {
1050 int signum; 1321 sig_pending = 0;
1051 gotsig = 0;
1052 1322
1053 for (signum = signalmax; signum--; ) 1323 for (i = EV_NSIG - 1; i--; )
1054 if (signals [signum].gotsig) 1324 if (expect_false (signals [i].pending))
1055 ev_feed_signal_event (EV_A_ signum + 1); 1325 ev_feed_signal_event (EV_A_ i + 1);
1056 } 1326 }
1057 1327
1058#if EV_ASYNC_ENABLE 1328#if EV_ASYNC_ENABLE
1059 if (gotasync) 1329 if (async_pending)
1060 { 1330 {
1061 int i; 1331 async_pending = 0;
1062 gotasync = 0;
1063 1332
1064 for (i = asynccnt; i--; ) 1333 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent) 1334 if (asyncs [i]->sent)
1066 { 1335 {
1067 asyncs [i]->sent = 0; 1336 asyncs [i]->sent = 0;
1075 1344
1076static void 1345static void
1077ev_sighandler (int signum) 1346ev_sighandler (int signum)
1078{ 1347{
1079#if EV_MULTIPLICITY 1348#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct; 1349 EV_P = signals [signum - 1].loop;
1081#endif 1350#endif
1082 1351
1083#if _WIN32 1352#ifdef _WIN32
1084 signal (signum, ev_sighandler); 1353 signal (signum, ev_sighandler);
1085#endif 1354#endif
1086 1355
1087 signals [signum - 1].gotsig = 1; 1356 signals [signum - 1].pending = 1;
1088 evpipe_write (EV_A_ &gotsig); 1357 evpipe_write (EV_A_ &sig_pending);
1089} 1358}
1090 1359
1091void noinline 1360void noinline
1092ev_feed_signal_event (EV_P_ int signum) 1361ev_feed_signal_event (EV_P_ int signum)
1093{ 1362{
1094 WL w; 1363 WL w;
1095 1364
1365 if (expect_false (signum <= 0 || signum > EV_NSIG))
1366 return;
1367
1368 --signum;
1369
1096#if EV_MULTIPLICITY 1370#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1371 /* it is permissible to try to feed a signal to the wrong loop */
1098#endif 1372 /* or, likely more useful, feeding a signal nobody is waiting for */
1099 1373
1100 --signum; 1374 if (expect_false (signals [signum].loop != EV_A))
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return; 1375 return;
1376#endif
1104 1377
1105 signals [signum].gotsig = 0; 1378 signals [signum].pending = 0;
1106 1379
1107 for (w = signals [signum].head; w; w = w->next) 1380 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1381 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109} 1382}
1110 1383
1384#if EV_USE_SIGNALFD
1385static void
1386sigfdcb (EV_P_ ev_io *iow, int revents)
1387{
1388 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1389
1390 for (;;)
1391 {
1392 ssize_t res = read (sigfd, si, sizeof (si));
1393
1394 /* not ISO-C, as res might be -1, but works with SuS */
1395 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1396 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1397
1398 if (res < (ssize_t)sizeof (si))
1399 break;
1400 }
1401}
1402#endif
1403
1404#endif
1405
1111/*****************************************************************************/ 1406/*****************************************************************************/
1112 1407
1408#if EV_CHILD_ENABLE
1113static WL childs [EV_PID_HASHSIZE]; 1409static WL childs [EV_PID_HASHSIZE];
1114
1115#ifndef _WIN32
1116 1410
1117static ev_signal childev; 1411static ev_signal childev;
1118 1412
1119#ifndef WIFCONTINUED 1413#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0 1414# define WIFCONTINUED(status) 0
1121#endif 1415#endif
1122 1416
1123void inline_speed 1417/* handle a single child status event */
1418inline_speed void
1124child_reap (EV_P_ int chain, int pid, int status) 1419child_reap (EV_P_ int chain, int pid, int status)
1125{ 1420{
1126 ev_child *w; 1421 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1422 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128 1423
1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1424 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1130 { 1425 {
1131 if ((w->pid == pid || !w->pid) 1426 if ((w->pid == pid || !w->pid)
1132 && (!traced || (w->flags & 1))) 1427 && (!traced || (w->flags & 1)))
1133 { 1428 {
1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1429 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1141 1436
1142#ifndef WCONTINUED 1437#ifndef WCONTINUED
1143# define WCONTINUED 0 1438# define WCONTINUED 0
1144#endif 1439#endif
1145 1440
1441/* called on sigchld etc., calls waitpid */
1146static void 1442static void
1147childcb (EV_P_ ev_signal *sw, int revents) 1443childcb (EV_P_ ev_signal *sw, int revents)
1148{ 1444{
1149 int pid, status; 1445 int pid, status;
1150 1446
1158 /* make sure we are called again until all children have been reaped */ 1454 /* make sure we are called again until all children have been reaped */
1159 /* we need to do it this way so that the callback gets called before we continue */ 1455 /* we need to do it this way so that the callback gets called before we continue */
1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1456 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1161 1457
1162 child_reap (EV_A_ pid, pid, status); 1458 child_reap (EV_A_ pid, pid, status);
1163 if (EV_PID_HASHSIZE > 1) 1459 if ((EV_PID_HASHSIZE) > 1)
1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1460 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1165} 1461}
1166 1462
1167#endif 1463#endif
1168 1464
1231 /* kqueue is borked on everything but netbsd apparently */ 1527 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */ 1528 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE; 1529 flags &= ~EVBACKEND_KQUEUE;
1234#endif 1530#endif
1235#ifdef __APPLE__ 1531#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation 1532 /* only select works correctly on that "unix-certified" platform */
1237 flags &= ~EVBACKEND_POLL; 1533 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1534 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1535#endif
1536#ifdef __FreeBSD__
1537 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1238#endif 1538#endif
1239 1539
1240 return flags; 1540 return flags;
1241} 1541}
1242 1542
1256ev_backend (EV_P) 1556ev_backend (EV_P)
1257{ 1557{
1258 return backend; 1558 return backend;
1259} 1559}
1260 1560
1561#if EV_FEATURE_API
1261unsigned int 1562unsigned int
1262ev_loop_count (EV_P) 1563ev_iteration (EV_P)
1263{ 1564{
1264 return loop_count; 1565 return loop_count;
1265} 1566}
1266 1567
1568unsigned int
1569ev_depth (EV_P)
1570{
1571 return loop_depth;
1572}
1573
1267void 1574void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1575ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{ 1576{
1270 io_blocktime = interval; 1577 io_blocktime = interval;
1271} 1578}
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1581ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{ 1582{
1276 timeout_blocktime = interval; 1583 timeout_blocktime = interval;
1277} 1584}
1278 1585
1586void
1587ev_set_userdata (EV_P_ void *data)
1588{
1589 userdata = data;
1590}
1591
1592void *
1593ev_userdata (EV_P)
1594{
1595 return userdata;
1596}
1597
1598void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1599{
1600 invoke_cb = invoke_pending_cb;
1601}
1602
1603void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1604{
1605 release_cb = release;
1606 acquire_cb = acquire;
1607}
1608#endif
1609
1610/* initialise a loop structure, must be zero-initialised */
1279static void noinline 1611static void noinline
1280loop_init (EV_P_ unsigned int flags) 1612loop_init (EV_P_ unsigned int flags)
1281{ 1613{
1282 if (!backend) 1614 if (!backend)
1283 { 1615 {
1616#if EV_USE_REALTIME
1617 if (!have_realtime)
1618 {
1619 struct timespec ts;
1620
1621 if (!clock_gettime (CLOCK_REALTIME, &ts))
1622 have_realtime = 1;
1623 }
1624#endif
1625
1284#if EV_USE_MONOTONIC 1626#if EV_USE_MONOTONIC
1627 if (!have_monotonic)
1285 { 1628 {
1286 struct timespec ts; 1629 struct timespec ts;
1630
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1631 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1; 1632 have_monotonic = 1;
1289 } 1633 }
1290#endif 1634#endif
1635
1636 /* pid check not overridable via env */
1637#ifndef _WIN32
1638 if (flags & EVFLAG_FORKCHECK)
1639 curpid = getpid ();
1640#endif
1641
1642 if (!(flags & EVFLAG_NOENV)
1643 && !enable_secure ()
1644 && getenv ("LIBEV_FLAGS"))
1645 flags = atoi (getenv ("LIBEV_FLAGS"));
1291 1646
1292 ev_rt_now = ev_time (); 1647 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1648 mn_now = get_clock ();
1294 now_floor = mn_now; 1649 now_floor = mn_now;
1295 rtmn_diff = ev_rt_now - mn_now; 1650 rtmn_diff = ev_rt_now - mn_now;
1651#if EV_FEATURE_API
1652 invoke_cb = ev_invoke_pending;
1653#endif
1296 1654
1297 io_blocktime = 0.; 1655 io_blocktime = 0.;
1298 timeout_blocktime = 0.; 1656 timeout_blocktime = 0.;
1299 backend = 0; 1657 backend = 0;
1300 backend_fd = -1; 1658 backend_fd = -1;
1301 gotasync = 0; 1659 sig_pending = 0;
1660#if EV_ASYNC_ENABLE
1661 async_pending = 0;
1662#endif
1302#if EV_USE_INOTIFY 1663#if EV_USE_INOTIFY
1303 fs_fd = -2; 1664 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1304#endif 1665#endif
1305 1666#if EV_USE_SIGNALFD
1306 /* pid check not overridable via env */ 1667 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1307#ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK)
1309 curpid = getpid ();
1310#endif 1668#endif
1311
1312 if (!(flags & EVFLAG_NOENV)
1313 && !enable_secure ()
1314 && getenv ("LIBEV_FLAGS"))
1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1316 1669
1317 if (!(flags & 0x0000ffffU)) 1670 if (!(flags & 0x0000ffffU))
1318 flags |= ev_recommended_backends (); 1671 flags |= ev_recommended_backends ();
1319 1672
1320#if EV_USE_PORT 1673#if EV_USE_PORT
1331#endif 1684#endif
1332#if EV_USE_SELECT 1685#if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1686 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1334#endif 1687#endif
1335 1688
1689 ev_prepare_init (&pending_w, pendingcb);
1690
1691#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1336 ev_init (&pipeev, pipecb); 1692 ev_init (&pipe_w, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI); 1693 ev_set_priority (&pipe_w, EV_MAXPRI);
1694#endif
1338 } 1695 }
1339} 1696}
1340 1697
1698/* free up a loop structure */
1341static void noinline 1699static void noinline
1342loop_destroy (EV_P) 1700loop_destroy (EV_P)
1343{ 1701{
1344 int i; 1702 int i;
1345 1703
1346 if (ev_is_active (&pipeev)) 1704 if (ev_is_active (&pipe_w))
1347 { 1705 {
1348 ev_ref (EV_A); /* signal watcher */ 1706 /*ev_ref (EV_A);*/
1349 ev_io_stop (EV_A_ &pipeev); 1707 /*ev_io_stop (EV_A_ &pipe_w);*/
1350 1708
1351#if EV_USE_EVENTFD 1709#if EV_USE_EVENTFD
1352 if (evfd >= 0) 1710 if (evfd >= 0)
1353 close (evfd); 1711 close (evfd);
1354#endif 1712#endif
1355 1713
1356 if (evpipe [0] >= 0) 1714 if (evpipe [0] >= 0)
1357 { 1715 {
1358 close (evpipe [0]); 1716 EV_WIN32_CLOSE_FD (evpipe [0]);
1359 close (evpipe [1]); 1717 EV_WIN32_CLOSE_FD (evpipe [1]);
1360 } 1718 }
1361 } 1719 }
1720
1721#if EV_USE_SIGNALFD
1722 if (ev_is_active (&sigfd_w))
1723 close (sigfd);
1724#endif
1362 1725
1363#if EV_USE_INOTIFY 1726#if EV_USE_INOTIFY
1364 if (fs_fd >= 0) 1727 if (fs_fd >= 0)
1365 close (fs_fd); 1728 close (fs_fd);
1366#endif 1729#endif
1390#if EV_IDLE_ENABLE 1753#if EV_IDLE_ENABLE
1391 array_free (idle, [i]); 1754 array_free (idle, [i]);
1392#endif 1755#endif
1393 } 1756 }
1394 1757
1395 ev_free (anfds); anfdmax = 0; 1758 ev_free (anfds); anfds = 0; anfdmax = 0;
1396 1759
1397 /* have to use the microsoft-never-gets-it-right macro */ 1760 /* have to use the microsoft-never-gets-it-right macro */
1761 array_free (rfeed, EMPTY);
1398 array_free (fdchange, EMPTY); 1762 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY); 1763 array_free (timer, EMPTY);
1400#if EV_PERIODIC_ENABLE 1764#if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY); 1765 array_free (periodic, EMPTY);
1402#endif 1766#endif
1411 1775
1412 backend = 0; 1776 backend = 0;
1413} 1777}
1414 1778
1415#if EV_USE_INOTIFY 1779#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P); 1780inline_size void infy_fork (EV_P);
1417#endif 1781#endif
1418 1782
1419void inline_size 1783inline_size void
1420loop_fork (EV_P) 1784loop_fork (EV_P)
1421{ 1785{
1422#if EV_USE_PORT 1786#if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1787 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424#endif 1788#endif
1430#endif 1794#endif
1431#if EV_USE_INOTIFY 1795#if EV_USE_INOTIFY
1432 infy_fork (EV_A); 1796 infy_fork (EV_A);
1433#endif 1797#endif
1434 1798
1435 if (ev_is_active (&pipeev)) 1799 if (ev_is_active (&pipe_w))
1436 { 1800 {
1437 /* this "locks" the handlers against writing to the pipe */ 1801 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */ 1802 /* while we modify the fd vars */
1439 gotsig = 1; 1803 sig_pending = 1;
1440#if EV_ASYNC_ENABLE 1804#if EV_ASYNC_ENABLE
1441 gotasync = 1; 1805 async_pending = 1;
1442#endif 1806#endif
1443 1807
1444 ev_ref (EV_A); 1808 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev); 1809 ev_io_stop (EV_A_ &pipe_w);
1446 1810
1447#if EV_USE_EVENTFD 1811#if EV_USE_EVENTFD
1448 if (evfd >= 0) 1812 if (evfd >= 0)
1449 close (evfd); 1813 close (evfd);
1450#endif 1814#endif
1451 1815
1452 if (evpipe [0] >= 0) 1816 if (evpipe [0] >= 0)
1453 { 1817 {
1454 close (evpipe [0]); 1818 EV_WIN32_CLOSE_FD (evpipe [0]);
1455 close (evpipe [1]); 1819 EV_WIN32_CLOSE_FD (evpipe [1]);
1456 } 1820 }
1457 1821
1822#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1458 evpipe_init (EV_A); 1823 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */ 1824 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ); 1825 pipecb (EV_A_ &pipe_w, EV_READ);
1826#endif
1461 } 1827 }
1462 1828
1463 postfork = 0; 1829 postfork = 0;
1464} 1830}
1465 1831
1466#if EV_MULTIPLICITY 1832#if EV_MULTIPLICITY
1833
1467struct ev_loop * 1834struct ev_loop *
1468ev_loop_new (unsigned int flags) 1835ev_loop_new (unsigned int flags)
1469{ 1836{
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1837 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471 1838
1472 memset (loop, 0, sizeof (struct ev_loop)); 1839 memset (EV_A, 0, sizeof (struct ev_loop));
1473
1474 loop_init (EV_A_ flags); 1840 loop_init (EV_A_ flags);
1475 1841
1476 if (ev_backend (EV_A)) 1842 if (ev_backend (EV_A))
1477 return loop; 1843 return EV_A;
1478 1844
1479 return 0; 1845 return 0;
1480} 1846}
1481 1847
1482void 1848void
1488 1854
1489void 1855void
1490ev_loop_fork (EV_P) 1856ev_loop_fork (EV_P)
1491{ 1857{
1492 postfork = 1; /* must be in line with ev_default_fork */ 1858 postfork = 1; /* must be in line with ev_default_fork */
1859}
1860#endif /* multiplicity */
1861
1862#if EV_VERIFY
1863static void noinline
1864verify_watcher (EV_P_ W w)
1865{
1866 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1867
1868 if (w->pending)
1869 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1870}
1871
1872static void noinline
1873verify_heap (EV_P_ ANHE *heap, int N)
1874{
1875 int i;
1876
1877 for (i = HEAP0; i < N + HEAP0; ++i)
1878 {
1879 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1880 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1881 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1882
1883 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1884 }
1885}
1886
1887static void noinline
1888array_verify (EV_P_ W *ws, int cnt)
1889{
1890 while (cnt--)
1891 {
1892 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1893 verify_watcher (EV_A_ ws [cnt]);
1894 }
1895}
1896#endif
1897
1898#if EV_FEATURE_API
1899void
1900ev_verify (EV_P)
1901{
1902#if EV_VERIFY
1903 int i;
1904 WL w;
1905
1906 assert (activecnt >= -1);
1907
1908 assert (fdchangemax >= fdchangecnt);
1909 for (i = 0; i < fdchangecnt; ++i)
1910 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1911
1912 assert (anfdmax >= 0);
1913 for (i = 0; i < anfdmax; ++i)
1914 for (w = anfds [i].head; w; w = w->next)
1915 {
1916 verify_watcher (EV_A_ (W)w);
1917 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1918 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1919 }
1920
1921 assert (timermax >= timercnt);
1922 verify_heap (EV_A_ timers, timercnt);
1923
1924#if EV_PERIODIC_ENABLE
1925 assert (periodicmax >= periodiccnt);
1926 verify_heap (EV_A_ periodics, periodiccnt);
1927#endif
1928
1929 for (i = NUMPRI; i--; )
1930 {
1931 assert (pendingmax [i] >= pendingcnt [i]);
1932#if EV_IDLE_ENABLE
1933 assert (idleall >= 0);
1934 assert (idlemax [i] >= idlecnt [i]);
1935 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1936#endif
1937 }
1938
1939#if EV_FORK_ENABLE
1940 assert (forkmax >= forkcnt);
1941 array_verify (EV_A_ (W *)forks, forkcnt);
1942#endif
1943
1944#if EV_ASYNC_ENABLE
1945 assert (asyncmax >= asynccnt);
1946 array_verify (EV_A_ (W *)asyncs, asynccnt);
1947#endif
1948
1949#if EV_PREPARE_ENABLE
1950 assert (preparemax >= preparecnt);
1951 array_verify (EV_A_ (W *)prepares, preparecnt);
1952#endif
1953
1954#if EV_CHECK_ENABLE
1955 assert (checkmax >= checkcnt);
1956 array_verify (EV_A_ (W *)checks, checkcnt);
1957#endif
1958
1959# if 0
1960#if EV_CHILD_ENABLE
1961 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1962 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1963#endif
1964# endif
1965#endif
1493} 1966}
1494#endif 1967#endif
1495 1968
1496#if EV_MULTIPLICITY 1969#if EV_MULTIPLICITY
1497struct ev_loop * 1970struct ev_loop *
1502#endif 1975#endif
1503{ 1976{
1504 if (!ev_default_loop_ptr) 1977 if (!ev_default_loop_ptr)
1505 { 1978 {
1506#if EV_MULTIPLICITY 1979#if EV_MULTIPLICITY
1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1980 EV_P = ev_default_loop_ptr = &default_loop_struct;
1508#else 1981#else
1509 ev_default_loop_ptr = 1; 1982 ev_default_loop_ptr = 1;
1510#endif 1983#endif
1511 1984
1512 loop_init (EV_A_ flags); 1985 loop_init (EV_A_ flags);
1513 1986
1514 if (ev_backend (EV_A)) 1987 if (ev_backend (EV_A))
1515 { 1988 {
1516#ifndef _WIN32 1989#if EV_CHILD_ENABLE
1517 ev_signal_init (&childev, childcb, SIGCHLD); 1990 ev_signal_init (&childev, childcb, SIGCHLD);
1518 ev_set_priority (&childev, EV_MAXPRI); 1991 ev_set_priority (&childev, EV_MAXPRI);
1519 ev_signal_start (EV_A_ &childev); 1992 ev_signal_start (EV_A_ &childev);
1520 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1993 ev_unref (EV_A); /* child watcher should not keep loop alive */
1521#endif 1994#endif
1529 2002
1530void 2003void
1531ev_default_destroy (void) 2004ev_default_destroy (void)
1532{ 2005{
1533#if EV_MULTIPLICITY 2006#if EV_MULTIPLICITY
1534 struct ev_loop *loop = ev_default_loop_ptr; 2007 EV_P = ev_default_loop_ptr;
1535#endif 2008#endif
1536 2009
1537#ifndef _WIN32 2010 ev_default_loop_ptr = 0;
2011
2012#if EV_CHILD_ENABLE
1538 ev_ref (EV_A); /* child watcher */ 2013 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev); 2014 ev_signal_stop (EV_A_ &childev);
1540#endif 2015#endif
1541 2016
1542 loop_destroy (EV_A); 2017 loop_destroy (EV_A);
1544 2019
1545void 2020void
1546ev_default_fork (void) 2021ev_default_fork (void)
1547{ 2022{
1548#if EV_MULTIPLICITY 2023#if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr; 2024 EV_P = ev_default_loop_ptr;
1550#endif 2025#endif
1551 2026
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */ 2027 postfork = 1; /* must be in line with ev_loop_fork */
1554} 2028}
1555 2029
1556/*****************************************************************************/ 2030/*****************************************************************************/
1557 2031
1558void 2032void
1559ev_invoke (EV_P_ void *w, int revents) 2033ev_invoke (EV_P_ void *w, int revents)
1560{ 2034{
1561 EV_CB_INVOKE ((W)w, revents); 2035 EV_CB_INVOKE ((W)w, revents);
1562} 2036}
1563 2037
1564void inline_speed 2038unsigned int
1565call_pending (EV_P) 2039ev_pending_count (EV_P)
2040{
2041 int pri;
2042 unsigned int count = 0;
2043
2044 for (pri = NUMPRI; pri--; )
2045 count += pendingcnt [pri];
2046
2047 return count;
2048}
2049
2050void noinline
2051ev_invoke_pending (EV_P)
1566{ 2052{
1567 int pri; 2053 int pri;
1568 2054
1569 for (pri = NUMPRI; pri--; ) 2055 for (pri = NUMPRI; pri--; )
1570 while (pendingcnt [pri]) 2056 while (pendingcnt [pri])
1571 { 2057 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2058 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573 2059
1574 if (expect_true (p->w))
1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2060 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2061 /* ^ this is no longer true, as pending_w could be here */
1577 2062
1578 p->w->pending = 0; 2063 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events); 2064 EV_CB_INVOKE (p->w, p->events);
1580 } 2065 EV_FREQUENT_CHECK;
1581 } 2066 }
1582} 2067}
1583 2068
1584#if EV_IDLE_ENABLE 2069#if EV_IDLE_ENABLE
1585void inline_size 2070/* make idle watchers pending. this handles the "call-idle */
2071/* only when higher priorities are idle" logic */
2072inline_size void
1586idle_reify (EV_P) 2073idle_reify (EV_P)
1587{ 2074{
1588 if (expect_false (idleall)) 2075 if (expect_false (idleall))
1589 { 2076 {
1590 int pri; 2077 int pri;
1602 } 2089 }
1603 } 2090 }
1604} 2091}
1605#endif 2092#endif
1606 2093
1607void inline_size 2094/* make timers pending */
2095inline_size void
1608timers_reify (EV_P) 2096timers_reify (EV_P)
1609{ 2097{
2098 EV_FREQUENT_CHECK;
2099
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2100 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 { 2101 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2102 do
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 { 2103 {
2104 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2105
2106 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2107
2108 /* first reschedule or stop timer */
2109 if (w->repeat)
2110 {
1619 ev_at (w) += w->repeat; 2111 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now) 2112 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now; 2113 ev_at (w) = mn_now;
1622 2114
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2115 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624 2116
1625 ANHE_at_set (timers [HEAP0]); 2117 ANHE_at_cache (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0); 2118 downheap (timers, timercnt, HEAP0);
2119 }
2120 else
2121 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2122
2123 EV_FREQUENT_CHECK;
2124 feed_reverse (EV_A_ (W)w);
1627 } 2125 }
1628 else 2126 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630 2127
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2128 feed_reverse_done (EV_A_ EV_TIMER);
1632 } 2129 }
1633} 2130}
1634 2131
1635#if EV_PERIODIC_ENABLE 2132#if EV_PERIODIC_ENABLE
1636void inline_size 2133/* make periodics pending */
2134inline_size void
1637periodics_reify (EV_P) 2135periodics_reify (EV_P)
1638{ 2136{
2137 EV_FREQUENT_CHECK;
2138
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2139 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 { 2140 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2141 int feed_count = 0;
1642 2142
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2143 do
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 { 2144 {
2145 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2146
2147 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2148
2149 /* first reschedule or stop timer */
2150 if (w->reschedule_cb)
2151 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2152 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649 2153
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2154 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651 2155
1652 ANHE_at_set (periodics [HEAP0]); 2156 ANHE_at_cache (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0); 2157 downheap (periodics, periodiccnt, HEAP0);
2158 }
2159 else if (w->interval)
2160 {
2161 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2162 /* if next trigger time is not sufficiently in the future, put it there */
2163 /* this might happen because of floating point inexactness */
2164 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2165 {
2166 ev_at (w) += w->interval;
2167
2168 /* if interval is unreasonably low we might still have a time in the past */
2169 /* so correct this. this will make the periodic very inexact, but the user */
2170 /* has effectively asked to get triggered more often than possible */
2171 if (ev_at (w) < ev_rt_now)
2172 ev_at (w) = ev_rt_now;
2173 }
2174
2175 ANHE_at_cache (periodics [HEAP0]);
2176 downheap (periodics, periodiccnt, HEAP0);
2177 }
2178 else
2179 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2180
2181 EV_FREQUENT_CHECK;
2182 feed_reverse (EV_A_ (W)w);
1654 } 2183 }
1655 else if (w->interval) 2184 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663 2185
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2186 feed_reverse_done (EV_A_ EV_PERIODIC);
1678 } 2187 }
1679} 2188}
1680 2189
2190/* simply recalculate all periodics */
2191/* TODO: maybe ensure that at least one event happens when jumping forward? */
1681static void noinline 2192static void noinline
1682periodics_reschedule (EV_P) 2193periodics_reschedule (EV_P)
1683{ 2194{
1684 int i; 2195 int i;
1685 2196
1691 if (w->reschedule_cb) 2202 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2203 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 2204 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2205 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 2206
1696 ANHE_at_set (periodics [i]); 2207 ANHE_at_cache (periodics [i]);
1697 } 2208 }
1698 2209
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2210 reheap (periodics, periodiccnt);
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2211}
2212#endif
2213
2214/* adjust all timers by a given offset */
2215static void noinline
2216timers_reschedule (EV_P_ ev_tstamp adjust)
2217{
2218 int i;
2219
1701 for (i = 0; i < periodiccnt; ++i) 2220 for (i = 0; i < timercnt; ++i)
1702 upheap (periodics, i + HEAP0); 2221 {
2222 ANHE *he = timers + i + HEAP0;
2223 ANHE_w (*he)->at += adjust;
2224 ANHE_at_cache (*he);
2225 }
1703} 2226}
1704#endif
1705 2227
1706void inline_speed 2228/* fetch new monotonic and realtime times from the kernel */
2229/* also detect if there was a timejump, and act accordingly */
2230inline_speed void
1707time_update (EV_P_ ev_tstamp max_block) 2231time_update (EV_P_ ev_tstamp max_block)
1708{ 2232{
1709 int i;
1710
1711#if EV_USE_MONOTONIC 2233#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic)) 2234 if (expect_true (have_monotonic))
1713 { 2235 {
2236 int i;
1714 ev_tstamp odiff = rtmn_diff; 2237 ev_tstamp odiff = rtmn_diff;
1715 2238
1716 mn_now = get_clock (); 2239 mn_now = get_clock ();
1717 2240
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2241 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1744 ev_rt_now = ev_time (); 2267 ev_rt_now = ev_time ();
1745 mn_now = get_clock (); 2268 mn_now = get_clock ();
1746 now_floor = mn_now; 2269 now_floor = mn_now;
1747 } 2270 }
1748 2271
2272 /* no timer adjustment, as the monotonic clock doesn't jump */
2273 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1749# if EV_PERIODIC_ENABLE 2274# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2275 periodics_reschedule (EV_A);
1751# endif 2276# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 } 2277 }
1755 else 2278 else
1756#endif 2279#endif
1757 { 2280 {
1758 ev_rt_now = ev_time (); 2281 ev_rt_now = ev_time ();
1759 2282
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2283 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 { 2284 {
2285 /* adjust timers. this is easy, as the offset is the same for all of them */
2286 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1762#if EV_PERIODIC_ENABLE 2287#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A); 2288 periodics_reschedule (EV_A);
1764#endif 2289#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 } 2290 }
1773 2291
1774 mn_now = ev_rt_now; 2292 mn_now = ev_rt_now;
1775 } 2293 }
1776} 2294}
1777 2295
1778void 2296void
1779ev_ref (EV_P)
1780{
1781 ++activecnt;
1782}
1783
1784void
1785ev_unref (EV_P)
1786{
1787 --activecnt;
1788}
1789
1790static int loop_done;
1791
1792void
1793ev_loop (EV_P_ int flags) 2297ev_loop (EV_P_ int flags)
1794{ 2298{
2299#if EV_FEATURE_API
2300 ++loop_depth;
2301#endif
2302
2303 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2304
1795 loop_done = EVUNLOOP_CANCEL; 2305 loop_done = EVUNLOOP_CANCEL;
1796 2306
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2307 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1798 2308
1799 do 2309 do
1800 { 2310 {
2311#if EV_VERIFY >= 2
2312 ev_verify (EV_A);
2313#endif
2314
1801#ifndef _WIN32 2315#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */ 2316 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid)) 2317 if (expect_false (getpid () != curpid))
1804 { 2318 {
1805 curpid = getpid (); 2319 curpid = getpid ();
1811 /* we might have forked, so queue fork handlers */ 2325 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork)) 2326 if (expect_false (postfork))
1813 if (forkcnt) 2327 if (forkcnt)
1814 { 2328 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2329 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A); 2330 EV_INVOKE_PENDING;
1817 } 2331 }
1818#endif 2332#endif
1819 2333
2334#if EV_PREPARE_ENABLE
1820 /* queue prepare watchers (and execute them) */ 2335 /* queue prepare watchers (and execute them) */
1821 if (expect_false (preparecnt)) 2336 if (expect_false (preparecnt))
1822 { 2337 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2338 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A); 2339 EV_INVOKE_PENDING;
1825 } 2340 }
2341#endif
1826 2342
1827 if (expect_false (!activecnt)) 2343 if (expect_false (loop_done))
1828 break; 2344 break;
1829 2345
1830 /* we might have forked, so reify kernel state if necessary */ 2346 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork)) 2347 if (expect_false (postfork))
1832 loop_fork (EV_A); 2348 loop_fork (EV_A);
1839 ev_tstamp waittime = 0.; 2355 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.; 2356 ev_tstamp sleeptime = 0.;
1841 2357
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2358 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1843 { 2359 {
2360 /* remember old timestamp for io_blocktime calculation */
2361 ev_tstamp prev_mn_now = mn_now;
2362
1844 /* update time to cancel out callback processing overhead */ 2363 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100); 2364 time_update (EV_A_ 1e100);
1846 2365
1847 waittime = MAX_BLOCKTIME; 2366 waittime = MAX_BLOCKTIME;
1848 2367
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1859 if (waittime > to) waittime = to; 2378 if (waittime > to) waittime = to;
1860 } 2379 }
1861#endif 2380#endif
1862 2381
2382 /* don't let timeouts decrease the waittime below timeout_blocktime */
1863 if (expect_false (waittime < timeout_blocktime)) 2383 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime; 2384 waittime = timeout_blocktime;
1865 2385
1866 sleeptime = waittime - backend_fudge; 2386 /* extra check because io_blocktime is commonly 0 */
1867
1868 if (expect_true (sleeptime > io_blocktime)) 2387 if (expect_false (io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 { 2388 {
2389 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2390
2391 if (sleeptime > waittime - backend_fudge)
2392 sleeptime = waittime - backend_fudge;
2393
2394 if (expect_true (sleeptime > 0.))
2395 {
1873 ev_sleep (sleeptime); 2396 ev_sleep (sleeptime);
1874 waittime -= sleeptime; 2397 waittime -= sleeptime;
2398 }
1875 } 2399 }
1876 } 2400 }
1877 2401
2402#if EV_FEATURE_API
1878 ++loop_count; 2403 ++loop_count;
2404#endif
2405 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1879 backend_poll (EV_A_ waittime); 2406 backend_poll (EV_A_ waittime);
2407 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1880 2408
1881 /* update ev_rt_now, do magic */ 2409 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime); 2410 time_update (EV_A_ waittime + sleeptime);
1883 } 2411 }
1884 2412
1891#if EV_IDLE_ENABLE 2419#if EV_IDLE_ENABLE
1892 /* queue idle watchers unless other events are pending */ 2420 /* queue idle watchers unless other events are pending */
1893 idle_reify (EV_A); 2421 idle_reify (EV_A);
1894#endif 2422#endif
1895 2423
2424#if EV_CHECK_ENABLE
1896 /* queue check watchers, to be executed first */ 2425 /* queue check watchers, to be executed first */
1897 if (expect_false (checkcnt)) 2426 if (expect_false (checkcnt))
1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2427 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2428#endif
1899 2429
1900 call_pending (EV_A); 2430 EV_INVOKE_PENDING;
1901 } 2431 }
1902 while (expect_true ( 2432 while (expect_true (
1903 activecnt 2433 activecnt
1904 && !loop_done 2434 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2435 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 )); 2436 ));
1907 2437
1908 if (loop_done == EVUNLOOP_ONE) 2438 if (loop_done == EVUNLOOP_ONE)
1909 loop_done = EVUNLOOP_CANCEL; 2439 loop_done = EVUNLOOP_CANCEL;
2440
2441#if EV_FEATURE_API
2442 --loop_depth;
2443#endif
1910} 2444}
1911 2445
1912void 2446void
1913ev_unloop (EV_P_ int how) 2447ev_unloop (EV_P_ int how)
1914{ 2448{
1915 loop_done = how; 2449 loop_done = how;
1916} 2450}
1917 2451
2452void
2453ev_ref (EV_P)
2454{
2455 ++activecnt;
2456}
2457
2458void
2459ev_unref (EV_P)
2460{
2461 --activecnt;
2462}
2463
2464void
2465ev_now_update (EV_P)
2466{
2467 time_update (EV_A_ 1e100);
2468}
2469
2470void
2471ev_suspend (EV_P)
2472{
2473 ev_now_update (EV_A);
2474}
2475
2476void
2477ev_resume (EV_P)
2478{
2479 ev_tstamp mn_prev = mn_now;
2480
2481 ev_now_update (EV_A);
2482 timers_reschedule (EV_A_ mn_now - mn_prev);
2483#if EV_PERIODIC_ENABLE
2484 /* TODO: really do this? */
2485 periodics_reschedule (EV_A);
2486#endif
2487}
2488
1918/*****************************************************************************/ 2489/*****************************************************************************/
2490/* singly-linked list management, used when the expected list length is short */
1919 2491
1920void inline_size 2492inline_size void
1921wlist_add (WL *head, WL elem) 2493wlist_add (WL *head, WL elem)
1922{ 2494{
1923 elem->next = *head; 2495 elem->next = *head;
1924 *head = elem; 2496 *head = elem;
1925} 2497}
1926 2498
1927void inline_size 2499inline_size void
1928wlist_del (WL *head, WL elem) 2500wlist_del (WL *head, WL elem)
1929{ 2501{
1930 while (*head) 2502 while (*head)
1931 { 2503 {
1932 if (*head == elem) 2504 if (expect_true (*head == elem))
1933 { 2505 {
1934 *head = elem->next; 2506 *head = elem->next;
1935 return; 2507 break;
1936 } 2508 }
1937 2509
1938 head = &(*head)->next; 2510 head = &(*head)->next;
1939 } 2511 }
1940} 2512}
1941 2513
1942void inline_speed 2514/* internal, faster, version of ev_clear_pending */
2515inline_speed void
1943clear_pending (EV_P_ W w) 2516clear_pending (EV_P_ W w)
1944{ 2517{
1945 if (w->pending) 2518 if (w->pending)
1946 { 2519 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2520 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1948 w->pending = 0; 2521 w->pending = 0;
1949 } 2522 }
1950} 2523}
1951 2524
1952int 2525int
1956 int pending = w_->pending; 2529 int pending = w_->pending;
1957 2530
1958 if (expect_true (pending)) 2531 if (expect_true (pending))
1959 { 2532 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2533 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2534 p->w = (W)&pending_w;
1961 w_->pending = 0; 2535 w_->pending = 0;
1962 p->w = 0;
1963 return p->events; 2536 return p->events;
1964 } 2537 }
1965 else 2538 else
1966 return 0; 2539 return 0;
1967} 2540}
1968 2541
1969void inline_size 2542inline_size void
1970pri_adjust (EV_P_ W w) 2543pri_adjust (EV_P_ W w)
1971{ 2544{
1972 int pri = w->priority; 2545 int pri = ev_priority (w);
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2546 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2547 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri; 2548 ev_set_priority (w, pri);
1976} 2549}
1977 2550
1978void inline_speed 2551inline_speed void
1979ev_start (EV_P_ W w, int active) 2552ev_start (EV_P_ W w, int active)
1980{ 2553{
1981 pri_adjust (EV_A_ w); 2554 pri_adjust (EV_A_ w);
1982 w->active = active; 2555 w->active = active;
1983 ev_ref (EV_A); 2556 ev_ref (EV_A);
1984} 2557}
1985 2558
1986void inline_size 2559inline_size void
1987ev_stop (EV_P_ W w) 2560ev_stop (EV_P_ W w)
1988{ 2561{
1989 ev_unref (EV_A); 2562 ev_unref (EV_A);
1990 w->active = 0; 2563 w->active = 0;
1991} 2564}
1998 int fd = w->fd; 2571 int fd = w->fd;
1999 2572
2000 if (expect_false (ev_is_active (w))) 2573 if (expect_false (ev_is_active (w)))
2001 return; 2574 return;
2002 2575
2003 assert (("ev_io_start called with negative fd", fd >= 0)); 2576 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2577 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2578
2579 EV_FREQUENT_CHECK;
2004 2580
2005 ev_start (EV_A_ (W)w, 1); 2581 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2582 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2007 wlist_add (&anfds[fd].head, (WL)w); 2583 wlist_add (&anfds[fd].head, (WL)w);
2008 2584
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2585 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2010 w->events &= ~EV_IOFDSET; 2586 w->events &= ~EV__IOFDSET;
2587
2588 EV_FREQUENT_CHECK;
2011} 2589}
2012 2590
2013void noinline 2591void noinline
2014ev_io_stop (EV_P_ ev_io *w) 2592ev_io_stop (EV_P_ ev_io *w)
2015{ 2593{
2016 clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
2018 return; 2596 return;
2019 2597
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2598 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2599
2600 EV_FREQUENT_CHECK;
2021 2601
2022 wlist_del (&anfds[w->fd].head, (WL)w); 2602 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w); 2603 ev_stop (EV_A_ (W)w);
2024 2604
2025 fd_change (EV_A_ w->fd, 1); 2605 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2606
2607 EV_FREQUENT_CHECK;
2026} 2608}
2027 2609
2028void noinline 2610void noinline
2029ev_timer_start (EV_P_ ev_timer *w) 2611ev_timer_start (EV_P_ ev_timer *w)
2030{ 2612{
2031 if (expect_false (ev_is_active (w))) 2613 if (expect_false (ev_is_active (w)))
2032 return; 2614 return;
2033 2615
2034 ev_at (w) += mn_now; 2616 ev_at (w) += mn_now;
2035 2617
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2618 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037 2619
2620 EV_FREQUENT_CHECK;
2621
2622 ++timercnt;
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2623 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2624 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w; 2625 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]); 2626 ANHE_at_cache (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w)); 2627 upheap (timers, ev_active (w));
2043 2628
2629 EV_FREQUENT_CHECK;
2630
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2631 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045} 2632}
2046 2633
2047void noinline 2634void noinline
2048ev_timer_stop (EV_P_ ev_timer *w) 2635ev_timer_stop (EV_P_ ev_timer *w)
2049{ 2636{
2050 clear_pending (EV_A_ (W)w); 2637 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 2638 if (expect_false (!ev_is_active (w)))
2052 return; 2639 return;
2053 2640
2641 EV_FREQUENT_CHECK;
2642
2054 { 2643 {
2055 int active = ev_active (w); 2644 int active = ev_active (w);
2056 2645
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2646 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058 2647
2648 --timercnt;
2649
2059 if (expect_true (active < timercnt + HEAP0 - 1)) 2650 if (expect_true (active < timercnt + HEAP0))
2060 { 2651 {
2061 timers [active] = timers [timercnt + HEAP0 - 1]; 2652 timers [active] = timers [timercnt + HEAP0];
2062 adjustheap (timers, timercnt, active); 2653 adjustheap (timers, timercnt, active);
2063 } 2654 }
2064
2065 --timercnt;
2066 } 2655 }
2067 2656
2068 ev_at (w) -= mn_now; 2657 ev_at (w) -= mn_now;
2069 2658
2070 ev_stop (EV_A_ (W)w); 2659 ev_stop (EV_A_ (W)w);
2660
2661 EV_FREQUENT_CHECK;
2071} 2662}
2072 2663
2073void noinline 2664void noinline
2074ev_timer_again (EV_P_ ev_timer *w) 2665ev_timer_again (EV_P_ ev_timer *w)
2075{ 2666{
2667 EV_FREQUENT_CHECK;
2668
2076 if (ev_is_active (w)) 2669 if (ev_is_active (w))
2077 { 2670 {
2078 if (w->repeat) 2671 if (w->repeat)
2079 { 2672 {
2080 ev_at (w) = mn_now + w->repeat; 2673 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]); 2674 ANHE_at_cache (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w)); 2675 adjustheap (timers, timercnt, ev_active (w));
2083 } 2676 }
2084 else 2677 else
2085 ev_timer_stop (EV_A_ w); 2678 ev_timer_stop (EV_A_ w);
2086 } 2679 }
2087 else if (w->repeat) 2680 else if (w->repeat)
2088 { 2681 {
2089 ev_at (w) = w->repeat; 2682 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w); 2683 ev_timer_start (EV_A_ w);
2091 } 2684 }
2685
2686 EV_FREQUENT_CHECK;
2687}
2688
2689ev_tstamp
2690ev_timer_remaining (EV_P_ ev_timer *w)
2691{
2692 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2092} 2693}
2093 2694
2094#if EV_PERIODIC_ENABLE 2695#if EV_PERIODIC_ENABLE
2095void noinline 2696void noinline
2096ev_periodic_start (EV_P_ ev_periodic *w) 2697ev_periodic_start (EV_P_ ev_periodic *w)
2100 2701
2101 if (w->reschedule_cb) 2702 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2703 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval) 2704 else if (w->interval)
2104 { 2705 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2706 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */ 2707 /* this formula differs from the one in periodic_reify because we do not always round up */
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2708 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 } 2709 }
2109 else 2710 else
2110 ev_at (w) = w->offset; 2711 ev_at (w) = w->offset;
2111 2712
2713 EV_FREQUENT_CHECK;
2714
2715 ++periodiccnt;
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2716 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2717 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2718 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]); 2719 ANHE_at_cache (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w)); 2720 upheap (periodics, ev_active (w));
2117 2721
2722 EV_FREQUENT_CHECK;
2723
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2724 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119} 2725}
2120 2726
2121void noinline 2727void noinline
2122ev_periodic_stop (EV_P_ ev_periodic *w) 2728ev_periodic_stop (EV_P_ ev_periodic *w)
2123{ 2729{
2124 clear_pending (EV_A_ (W)w); 2730 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2731 if (expect_false (!ev_is_active (w)))
2126 return; 2732 return;
2127 2733
2734 EV_FREQUENT_CHECK;
2735
2128 { 2736 {
2129 int active = ev_active (w); 2737 int active = ev_active (w);
2130 2738
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2739 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132 2740
2741 --periodiccnt;
2742
2133 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2743 if (expect_true (active < periodiccnt + HEAP0))
2134 { 2744 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2745 periodics [active] = periodics [periodiccnt + HEAP0];
2136 adjustheap (periodics, periodiccnt, active); 2746 adjustheap (periodics, periodiccnt, active);
2137 } 2747 }
2138
2139 --periodiccnt;
2140 } 2748 }
2141 2749
2142 ev_stop (EV_A_ (W)w); 2750 ev_stop (EV_A_ (W)w);
2751
2752 EV_FREQUENT_CHECK;
2143} 2753}
2144 2754
2145void noinline 2755void noinline
2146ev_periodic_again (EV_P_ ev_periodic *w) 2756ev_periodic_again (EV_P_ ev_periodic *w)
2147{ 2757{
2153 2763
2154#ifndef SA_RESTART 2764#ifndef SA_RESTART
2155# define SA_RESTART 0 2765# define SA_RESTART 0
2156#endif 2766#endif
2157 2767
2768#if EV_SIGNAL_ENABLE
2769
2158void noinline 2770void noinline
2159ev_signal_start (EV_P_ ev_signal *w) 2771ev_signal_start (EV_P_ ev_signal *w)
2160{ 2772{
2161#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif
2164 if (expect_false (ev_is_active (w))) 2773 if (expect_false (ev_is_active (w)))
2165 return; 2774 return;
2166 2775
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2776 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2168 2777
2169 evpipe_init (EV_A); 2778#if EV_MULTIPLICITY
2779 assert (("libev: a signal must not be attached to two different loops",
2780 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2170 2781
2782 signals [w->signum - 1].loop = EV_A;
2783#endif
2784
2785 EV_FREQUENT_CHECK;
2786
2787#if EV_USE_SIGNALFD
2788 if (sigfd == -2)
2171 { 2789 {
2172#ifndef _WIN32 2790 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2173 sigset_t full, prev; 2791 if (sigfd < 0 && errno == EINVAL)
2174 sigfillset (&full); 2792 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177 2793
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2794 if (sigfd >= 0)
2795 {
2796 fd_intern (sigfd); /* doing it twice will not hurt */
2179 2797
2180#ifndef _WIN32 2798 sigemptyset (&sigfd_set);
2181 sigprocmask (SIG_SETMASK, &prev, 0); 2799
2182#endif 2800 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2801 ev_set_priority (&sigfd_w, EV_MAXPRI);
2802 ev_io_start (EV_A_ &sigfd_w);
2803 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2804 }
2183 } 2805 }
2806
2807 if (sigfd >= 0)
2808 {
2809 /* TODO: check .head */
2810 sigaddset (&sigfd_set, w->signum);
2811 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2812
2813 signalfd (sigfd, &sigfd_set, 0);
2814 }
2815#endif
2184 2816
2185 ev_start (EV_A_ (W)w, 1); 2817 ev_start (EV_A_ (W)w, 1);
2186 wlist_add (&signals [w->signum - 1].head, (WL)w); 2818 wlist_add (&signals [w->signum - 1].head, (WL)w);
2187 2819
2188 if (!((WL)w)->next) 2820 if (!((WL)w)->next)
2821# if EV_USE_SIGNALFD
2822 if (sigfd < 0) /*TODO*/
2823# endif
2189 { 2824 {
2190#if _WIN32 2825# ifdef _WIN32
2826 evpipe_init (EV_A);
2827
2191 signal (w->signum, ev_sighandler); 2828 signal (w->signum, ev_sighandler);
2192#else 2829# else
2193 struct sigaction sa; 2830 struct sigaction sa;
2831
2832 evpipe_init (EV_A);
2833
2194 sa.sa_handler = ev_sighandler; 2834 sa.sa_handler = ev_sighandler;
2195 sigfillset (&sa.sa_mask); 2835 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2836 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0); 2837 sigaction (w->signum, &sa, 0);
2838
2839 sigemptyset (&sa.sa_mask);
2840 sigaddset (&sa.sa_mask, w->signum);
2841 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2198#endif 2842#endif
2199 } 2843 }
2844
2845 EV_FREQUENT_CHECK;
2200} 2846}
2201 2847
2202void noinline 2848void noinline
2203ev_signal_stop (EV_P_ ev_signal *w) 2849ev_signal_stop (EV_P_ ev_signal *w)
2204{ 2850{
2205 clear_pending (EV_A_ (W)w); 2851 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2852 if (expect_false (!ev_is_active (w)))
2207 return; 2853 return;
2208 2854
2855 EV_FREQUENT_CHECK;
2856
2209 wlist_del (&signals [w->signum - 1].head, (WL)w); 2857 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w); 2858 ev_stop (EV_A_ (W)w);
2211 2859
2212 if (!signals [w->signum - 1].head) 2860 if (!signals [w->signum - 1].head)
2861 {
2862#if EV_MULTIPLICITY
2863 signals [w->signum - 1].loop = 0; /* unattach from signal */
2864#endif
2865#if EV_USE_SIGNALFD
2866 if (sigfd >= 0)
2867 {
2868 sigset_t ss;
2869
2870 sigemptyset (&ss);
2871 sigaddset (&ss, w->signum);
2872 sigdelset (&sigfd_set, w->signum);
2873
2874 signalfd (sigfd, &sigfd_set, 0);
2875 sigprocmask (SIG_UNBLOCK, &ss, 0);
2876 }
2877 else
2878#endif
2213 signal (w->signum, SIG_DFL); 2879 signal (w->signum, SIG_DFL);
2880 }
2881
2882 EV_FREQUENT_CHECK;
2214} 2883}
2884
2885#endif
2886
2887#if EV_CHILD_ENABLE
2215 2888
2216void 2889void
2217ev_child_start (EV_P_ ev_child *w) 2890ev_child_start (EV_P_ ev_child *w)
2218{ 2891{
2219#if EV_MULTIPLICITY 2892#if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2893 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221#endif 2894#endif
2222 if (expect_false (ev_is_active (w))) 2895 if (expect_false (ev_is_active (w)))
2223 return; 2896 return;
2224 2897
2898 EV_FREQUENT_CHECK;
2899
2225 ev_start (EV_A_ (W)w, 1); 2900 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2901 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2902
2903 EV_FREQUENT_CHECK;
2227} 2904}
2228 2905
2229void 2906void
2230ev_child_stop (EV_P_ ev_child *w) 2907ev_child_stop (EV_P_ ev_child *w)
2231{ 2908{
2232 clear_pending (EV_A_ (W)w); 2909 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w))) 2910 if (expect_false (!ev_is_active (w)))
2234 return; 2911 return;
2235 2912
2913 EV_FREQUENT_CHECK;
2914
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2915 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w); 2916 ev_stop (EV_A_ (W)w);
2917
2918 EV_FREQUENT_CHECK;
2238} 2919}
2920
2921#endif
2239 2922
2240#if EV_STAT_ENABLE 2923#if EV_STAT_ENABLE
2241 2924
2242# ifdef _WIN32 2925# ifdef _WIN32
2243# undef lstat 2926# undef lstat
2244# define lstat(a,b) _stati64 (a,b) 2927# define lstat(a,b) _stati64 (a,b)
2245# endif 2928# endif
2246 2929
2247#define DEF_STAT_INTERVAL 5.0074891 2930#define DEF_STAT_INTERVAL 5.0074891
2931#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2248#define MIN_STAT_INTERVAL 0.1074891 2932#define MIN_STAT_INTERVAL 0.1074891
2249 2933
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2934static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251 2935
2252#if EV_USE_INOTIFY 2936#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192 2937
2938/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2939# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2254 2940
2255static void noinline 2941static void noinline
2256infy_add (EV_P_ ev_stat *w) 2942infy_add (EV_P_ ev_stat *w)
2257{ 2943{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259 2945
2260 if (w->wd < 0) 2946 if (w->wd >= 0)
2947 {
2948 struct statfs sfs;
2949
2950 /* now local changes will be tracked by inotify, but remote changes won't */
2951 /* unless the filesystem is known to be local, we therefore still poll */
2952 /* also do poll on <2.6.25, but with normal frequency */
2953
2954 if (!fs_2625)
2955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2956 else if (!statfs (w->path, &sfs)
2957 && (sfs.f_type == 0x1373 /* devfs */
2958 || sfs.f_type == 0xEF53 /* ext2/3 */
2959 || sfs.f_type == 0x3153464a /* jfs */
2960 || sfs.f_type == 0x52654973 /* reiser3 */
2961 || sfs.f_type == 0x01021994 /* tempfs */
2962 || sfs.f_type == 0x58465342 /* xfs */))
2963 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2964 else
2965 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2261 { 2966 }
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2967 else
2968 {
2969 /* can't use inotify, continue to stat */
2970 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2263 2971
2264 /* monitor some parent directory for speedup hints */ 2972 /* if path is not there, monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2973 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2266 /* but an efficiency issue only */ 2974 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2975 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 { 2976 {
2269 char path [4096]; 2977 char path [4096];
2270 strcpy (path, w->path); 2978 strcpy (path, w->path);
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2982 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2983 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276 2984
2277 char *pend = strrchr (path, '/'); 2985 char *pend = strrchr (path, '/');
2278 2986
2279 if (!pend) 2987 if (!pend || pend == path)
2280 break; /* whoops, no '/', complain to your admin */ 2988 break;
2281 2989
2282 *pend = 0; 2990 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask); 2991 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 } 2992 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2993 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 } 2994 }
2287 } 2995 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290 2996
2291 if (w->wd >= 0) 2997 if (w->wd >= 0)
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2998 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2999
3000 /* now re-arm timer, if required */
3001 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3002 ev_timer_again (EV_A_ &w->timer);
3003 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2293} 3004}
2294 3005
2295static void noinline 3006static void noinline
2296infy_del (EV_P_ ev_stat *w) 3007infy_del (EV_P_ ev_stat *w)
2297{ 3008{
2300 3011
2301 if (wd < 0) 3012 if (wd < 0)
2302 return; 3013 return;
2303 3014
2304 w->wd = -2; 3015 w->wd = -2;
2305 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3016 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2306 wlist_del (&fs_hash [slot].head, (WL)w); 3017 wlist_del (&fs_hash [slot].head, (WL)w);
2307 3018
2308 /* remove this watcher, if others are watching it, they will rearm */ 3019 /* remove this watcher, if others are watching it, they will rearm */
2309 inotify_rm_watch (fs_fd, wd); 3020 inotify_rm_watch (fs_fd, wd);
2310} 3021}
2311 3022
2312static void noinline 3023static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3024infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{ 3025{
2315 if (slot < 0) 3026 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */ 3027 /* overflow, need to check for all hash slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3028 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2318 infy_wd (EV_A_ slot, wd, ev); 3029 infy_wd (EV_A_ slot, wd, ev);
2319 else 3030 else
2320 { 3031 {
2321 WL w_; 3032 WL w_;
2322 3033
2323 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3034 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2324 { 3035 {
2325 ev_stat *w = (ev_stat *)w_; 3036 ev_stat *w = (ev_stat *)w_;
2326 w_ = w_->next; /* lets us remove this watcher and all before it */ 3037 w_ = w_->next; /* lets us remove this watcher and all before it */
2327 3038
2328 if (w->wd == wd || wd == -1) 3039 if (w->wd == wd || wd == -1)
2329 { 3040 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3041 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 { 3042 {
3043 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2332 w->wd = -1; 3044 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 3045 infy_add (EV_A_ w); /* re-add, no matter what */
2334 } 3046 }
2335 3047
2336 stat_timer_cb (EV_A_ &w->timer, 0); 3048 stat_timer_cb (EV_A_ &w->timer, 0);
2341 3053
2342static void 3054static void
2343infy_cb (EV_P_ ev_io *w, int revents) 3055infy_cb (EV_P_ ev_io *w, int revents)
2344{ 3056{
2345 char buf [EV_INOTIFY_BUFSIZE]; 3057 char buf [EV_INOTIFY_BUFSIZE];
2346 struct inotify_event *ev = (struct inotify_event *)buf;
2347 int ofs; 3058 int ofs;
2348 int len = read (fs_fd, buf, sizeof (buf)); 3059 int len = read (fs_fd, buf, sizeof (buf));
2349 3060
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3061 for (ofs = 0; ofs < len; )
3062 {
3063 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3064 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3065 ofs += sizeof (struct inotify_event) + ev->len;
3066 }
2352} 3067}
2353 3068
2354void inline_size 3069inline_size unsigned int
3070ev_linux_version (void)
3071{
3072 struct utsname buf;
3073 unsigned int v;
3074 int i;
3075 char *p = buf.release;
3076
3077 if (uname (&buf))
3078 return 0;
3079
3080 for (i = 3+1; --i; )
3081 {
3082 unsigned int c = 0;
3083
3084 for (;;)
3085 {
3086 if (*p >= '0' && *p <= '9')
3087 c = c * 10 + *p++ - '0';
3088 else
3089 {
3090 p += *p == '.';
3091 break;
3092 }
3093 }
3094
3095 v = (v << 8) | c;
3096 }
3097
3098 return v;
3099}
3100
3101inline_size void
3102ev_check_2625 (EV_P)
3103{
3104 /* kernels < 2.6.25 are borked
3105 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3106 */
3107 if (ev_linux_version () < 0x020619)
3108 return;
3109
3110 fs_2625 = 1;
3111}
3112
3113inline_size int
3114infy_newfd (void)
3115{
3116#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3117 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3118 if (fd >= 0)
3119 return fd;
3120#endif
3121 return inotify_init ();
3122}
3123
3124inline_size void
2355infy_init (EV_P) 3125infy_init (EV_P)
2356{ 3126{
2357 if (fs_fd != -2) 3127 if (fs_fd != -2)
2358 return; 3128 return;
2359 3129
3130 fs_fd = -1;
3131
3132 ev_check_2625 (EV_A);
3133
2360 fs_fd = inotify_init (); 3134 fs_fd = infy_newfd ();
2361 3135
2362 if (fs_fd >= 0) 3136 if (fs_fd >= 0)
2363 { 3137 {
3138 fd_intern (fs_fd);
2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3139 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2365 ev_set_priority (&fs_w, EV_MAXPRI); 3140 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w); 3141 ev_io_start (EV_A_ &fs_w);
3142 ev_unref (EV_A);
2367 } 3143 }
2368} 3144}
2369 3145
2370void inline_size 3146inline_size void
2371infy_fork (EV_P) 3147infy_fork (EV_P)
2372{ 3148{
2373 int slot; 3149 int slot;
2374 3150
2375 if (fs_fd < 0) 3151 if (fs_fd < 0)
2376 return; 3152 return;
2377 3153
3154 ev_ref (EV_A);
3155 ev_io_stop (EV_A_ &fs_w);
2378 close (fs_fd); 3156 close (fs_fd);
2379 fs_fd = inotify_init (); 3157 fs_fd = infy_newfd ();
2380 3158
3159 if (fs_fd >= 0)
3160 {
3161 fd_intern (fs_fd);
3162 ev_io_set (&fs_w, fs_fd, EV_READ);
3163 ev_io_start (EV_A_ &fs_w);
3164 ev_unref (EV_A);
3165 }
3166
2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3167 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2382 { 3168 {
2383 WL w_ = fs_hash [slot].head; 3169 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0; 3170 fs_hash [slot].head = 0;
2385 3171
2386 while (w_) 3172 while (w_)
2391 w->wd = -1; 3177 w->wd = -1;
2392 3178
2393 if (fs_fd >= 0) 3179 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */ 3180 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else 3181 else
3182 {
3183 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3184 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2396 ev_timer_start (EV_A_ &w->timer); 3185 ev_timer_again (EV_A_ &w->timer);
3186 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3187 }
2397 } 3188 }
2398
2399 } 3189 }
2400} 3190}
2401 3191
3192#endif
3193
3194#ifdef _WIN32
3195# define EV_LSTAT(p,b) _stati64 (p, b)
3196#else
3197# define EV_LSTAT(p,b) lstat (p, b)
2402#endif 3198#endif
2403 3199
2404void 3200void
2405ev_stat_stat (EV_P_ ev_stat *w) 3201ev_stat_stat (EV_P_ ev_stat *w)
2406{ 3202{
2413static void noinline 3209static void noinline
2414stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3210stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2415{ 3211{
2416 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3212 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2417 3213
2418 /* we copy this here each the time so that */ 3214 ev_statdata prev = w->attr;
2419 /* prev has the old value when the callback gets invoked */
2420 w->prev = w->attr;
2421 ev_stat_stat (EV_A_ w); 3215 ev_stat_stat (EV_A_ w);
2422 3216
2423 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3217 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2424 if ( 3218 if (
2425 w->prev.st_dev != w->attr.st_dev 3219 prev.st_dev != w->attr.st_dev
2426 || w->prev.st_ino != w->attr.st_ino 3220 || prev.st_ino != w->attr.st_ino
2427 || w->prev.st_mode != w->attr.st_mode 3221 || prev.st_mode != w->attr.st_mode
2428 || w->prev.st_nlink != w->attr.st_nlink 3222 || prev.st_nlink != w->attr.st_nlink
2429 || w->prev.st_uid != w->attr.st_uid 3223 || prev.st_uid != w->attr.st_uid
2430 || w->prev.st_gid != w->attr.st_gid 3224 || prev.st_gid != w->attr.st_gid
2431 || w->prev.st_rdev != w->attr.st_rdev 3225 || prev.st_rdev != w->attr.st_rdev
2432 || w->prev.st_size != w->attr.st_size 3226 || prev.st_size != w->attr.st_size
2433 || w->prev.st_atime != w->attr.st_atime 3227 || prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime 3228 || prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime 3229 || prev.st_ctime != w->attr.st_ctime
2436 ) { 3230 ) {
3231 /* we only update w->prev on actual differences */
3232 /* in case we test more often than invoke the callback, */
3233 /* to ensure that prev is always different to attr */
3234 w->prev = prev;
3235
2437 #if EV_USE_INOTIFY 3236 #if EV_USE_INOTIFY
3237 if (fs_fd >= 0)
3238 {
2438 infy_del (EV_A_ w); 3239 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w); 3240 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */ 3241 ev_stat_stat (EV_A_ w); /* avoid race... */
3242 }
2441 #endif 3243 #endif
2442 3244
2443 ev_feed_event (EV_A_ w, EV_STAT); 3245 ev_feed_event (EV_A_ w, EV_STAT);
2444 } 3246 }
2445} 3247}
2448ev_stat_start (EV_P_ ev_stat *w) 3250ev_stat_start (EV_P_ ev_stat *w)
2449{ 3251{
2450 if (expect_false (ev_is_active (w))) 3252 if (expect_false (ev_is_active (w)))
2451 return; 3253 return;
2452 3254
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w); 3255 ev_stat_stat (EV_A_ w);
2458 3256
3257 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2459 if (w->interval < MIN_STAT_INTERVAL) 3258 w->interval = MIN_STAT_INTERVAL;
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461 3259
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3260 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2463 ev_set_priority (&w->timer, ev_priority (w)); 3261 ev_set_priority (&w->timer, ev_priority (w));
2464 3262
2465#if EV_USE_INOTIFY 3263#if EV_USE_INOTIFY
2466 infy_init (EV_A); 3264 infy_init (EV_A);
2467 3265
2468 if (fs_fd >= 0) 3266 if (fs_fd >= 0)
2469 infy_add (EV_A_ w); 3267 infy_add (EV_A_ w);
2470 else 3268 else
2471#endif 3269#endif
3270 {
2472 ev_timer_start (EV_A_ &w->timer); 3271 ev_timer_again (EV_A_ &w->timer);
3272 ev_unref (EV_A);
3273 }
2473 3274
2474 ev_start (EV_A_ (W)w, 1); 3275 ev_start (EV_A_ (W)w, 1);
3276
3277 EV_FREQUENT_CHECK;
2475} 3278}
2476 3279
2477void 3280void
2478ev_stat_stop (EV_P_ ev_stat *w) 3281ev_stat_stop (EV_P_ ev_stat *w)
2479{ 3282{
2480 clear_pending (EV_A_ (W)w); 3283 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 3284 if (expect_false (!ev_is_active (w)))
2482 return; 3285 return;
2483 3286
3287 EV_FREQUENT_CHECK;
3288
2484#if EV_USE_INOTIFY 3289#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w); 3290 infy_del (EV_A_ w);
2486#endif 3291#endif
3292
3293 if (ev_is_active (&w->timer))
3294 {
3295 ev_ref (EV_A);
2487 ev_timer_stop (EV_A_ &w->timer); 3296 ev_timer_stop (EV_A_ &w->timer);
3297 }
2488 3298
2489 ev_stop (EV_A_ (W)w); 3299 ev_stop (EV_A_ (W)w);
3300
3301 EV_FREQUENT_CHECK;
2490} 3302}
2491#endif 3303#endif
2492 3304
2493#if EV_IDLE_ENABLE 3305#if EV_IDLE_ENABLE
2494void 3306void
2496{ 3308{
2497 if (expect_false (ev_is_active (w))) 3309 if (expect_false (ev_is_active (w)))
2498 return; 3310 return;
2499 3311
2500 pri_adjust (EV_A_ (W)w); 3312 pri_adjust (EV_A_ (W)w);
3313
3314 EV_FREQUENT_CHECK;
2501 3315
2502 { 3316 {
2503 int active = ++idlecnt [ABSPRI (w)]; 3317 int active = ++idlecnt [ABSPRI (w)];
2504 3318
2505 ++idleall; 3319 ++idleall;
2506 ev_start (EV_A_ (W)w, active); 3320 ev_start (EV_A_ (W)w, active);
2507 3321
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3322 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w; 3323 idles [ABSPRI (w)][active - 1] = w;
2510 } 3324 }
3325
3326 EV_FREQUENT_CHECK;
2511} 3327}
2512 3328
2513void 3329void
2514ev_idle_stop (EV_P_ ev_idle *w) 3330ev_idle_stop (EV_P_ ev_idle *w)
2515{ 3331{
2516 clear_pending (EV_A_ (W)w); 3332 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w))) 3333 if (expect_false (!ev_is_active (w)))
2518 return; 3334 return;
2519 3335
3336 EV_FREQUENT_CHECK;
3337
2520 { 3338 {
2521 int active = ev_active (w); 3339 int active = ev_active (w);
2522 3340
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3342 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525 3343
2526 ev_stop (EV_A_ (W)w); 3344 ev_stop (EV_A_ (W)w);
2527 --idleall; 3345 --idleall;
2528 } 3346 }
2529}
2530#endif
2531 3347
3348 EV_FREQUENT_CHECK;
3349}
3350#endif
3351
3352#if EV_PREPARE_ENABLE
2532void 3353void
2533ev_prepare_start (EV_P_ ev_prepare *w) 3354ev_prepare_start (EV_P_ ev_prepare *w)
2534{ 3355{
2535 if (expect_false (ev_is_active (w))) 3356 if (expect_false (ev_is_active (w)))
2536 return; 3357 return;
3358
3359 EV_FREQUENT_CHECK;
2537 3360
2538 ev_start (EV_A_ (W)w, ++preparecnt); 3361 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3362 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w; 3363 prepares [preparecnt - 1] = w;
3364
3365 EV_FREQUENT_CHECK;
2541} 3366}
2542 3367
2543void 3368void
2544ev_prepare_stop (EV_P_ ev_prepare *w) 3369ev_prepare_stop (EV_P_ ev_prepare *w)
2545{ 3370{
2546 clear_pending (EV_A_ (W)w); 3371 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 3372 if (expect_false (!ev_is_active (w)))
2548 return; 3373 return;
2549 3374
3375 EV_FREQUENT_CHECK;
3376
2550 { 3377 {
2551 int active = ev_active (w); 3378 int active = ev_active (w);
2552 3379
2553 prepares [active - 1] = prepares [--preparecnt]; 3380 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active; 3381 ev_active (prepares [active - 1]) = active;
2555 } 3382 }
2556 3383
2557 ev_stop (EV_A_ (W)w); 3384 ev_stop (EV_A_ (W)w);
2558}
2559 3385
3386 EV_FREQUENT_CHECK;
3387}
3388#endif
3389
3390#if EV_CHECK_ENABLE
2560void 3391void
2561ev_check_start (EV_P_ ev_check *w) 3392ev_check_start (EV_P_ ev_check *w)
2562{ 3393{
2563 if (expect_false (ev_is_active (w))) 3394 if (expect_false (ev_is_active (w)))
2564 return; 3395 return;
3396
3397 EV_FREQUENT_CHECK;
2565 3398
2566 ev_start (EV_A_ (W)w, ++checkcnt); 3399 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3400 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w; 3401 checks [checkcnt - 1] = w;
3402
3403 EV_FREQUENT_CHECK;
2569} 3404}
2570 3405
2571void 3406void
2572ev_check_stop (EV_P_ ev_check *w) 3407ev_check_stop (EV_P_ ev_check *w)
2573{ 3408{
2574 clear_pending (EV_A_ (W)w); 3409 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w))) 3410 if (expect_false (!ev_is_active (w)))
2576 return; 3411 return;
2577 3412
3413 EV_FREQUENT_CHECK;
3414
2578 { 3415 {
2579 int active = ev_active (w); 3416 int active = ev_active (w);
2580 3417
2581 checks [active - 1] = checks [--checkcnt]; 3418 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active; 3419 ev_active (checks [active - 1]) = active;
2583 } 3420 }
2584 3421
2585 ev_stop (EV_A_ (W)w); 3422 ev_stop (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
2586} 3425}
3426#endif
2587 3427
2588#if EV_EMBED_ENABLE 3428#if EV_EMBED_ENABLE
2589void noinline 3429void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w) 3430ev_embed_sweep (EV_P_ ev_embed *w)
2591{ 3431{
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{ 3448{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610 3450
2611 { 3451 {
2612 struct ev_loop *loop = w->other; 3452 EV_P = w->other;
2613 3453
2614 while (fdchangecnt) 3454 while (fdchangecnt)
2615 { 3455 {
2616 fd_reify (EV_A); 3456 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3457 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 } 3458 }
2619 } 3459 }
2620} 3460}
2621 3461
3462static void
3463embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3464{
3465 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3466
3467 ev_embed_stop (EV_A_ w);
3468
3469 {
3470 EV_P = w->other;
3471
3472 ev_loop_fork (EV_A);
3473 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3474 }
3475
3476 ev_embed_start (EV_A_ w);
3477}
3478
2622#if 0 3479#if 0
2623static void 3480static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3481embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625{ 3482{
2626 ev_idle_stop (EV_A_ idle); 3483 ev_idle_stop (EV_A_ idle);
2632{ 3489{
2633 if (expect_false (ev_is_active (w))) 3490 if (expect_false (ev_is_active (w)))
2634 return; 3491 return;
2635 3492
2636 { 3493 {
2637 struct ev_loop *loop = w->other; 3494 EV_P = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3495 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3496 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 } 3497 }
3498
3499 EV_FREQUENT_CHECK;
2641 3500
2642 ev_set_priority (&w->io, ev_priority (w)); 3501 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io); 3502 ev_io_start (EV_A_ &w->io);
2644 3503
2645 ev_prepare_init (&w->prepare, embed_prepare_cb); 3504 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI); 3505 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare); 3506 ev_prepare_start (EV_A_ &w->prepare);
2648 3507
3508 ev_fork_init (&w->fork, embed_fork_cb);
3509 ev_fork_start (EV_A_ &w->fork);
3510
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3511 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650 3512
2651 ev_start (EV_A_ (W)w, 1); 3513 ev_start (EV_A_ (W)w, 1);
3514
3515 EV_FREQUENT_CHECK;
2652} 3516}
2653 3517
2654void 3518void
2655ev_embed_stop (EV_P_ ev_embed *w) 3519ev_embed_stop (EV_P_ ev_embed *w)
2656{ 3520{
2657 clear_pending (EV_A_ (W)w); 3521 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w))) 3522 if (expect_false (!ev_is_active (w)))
2659 return; 3523 return;
2660 3524
3525 EV_FREQUENT_CHECK;
3526
2661 ev_io_stop (EV_A_ &w->io); 3527 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare); 3528 ev_prepare_stop (EV_A_ &w->prepare);
3529 ev_fork_stop (EV_A_ &w->fork);
2663 3530
2664 ev_stop (EV_A_ (W)w); 3531 ev_stop (EV_A_ (W)w);
3532
3533 EV_FREQUENT_CHECK;
2665} 3534}
2666#endif 3535#endif
2667 3536
2668#if EV_FORK_ENABLE 3537#if EV_FORK_ENABLE
2669void 3538void
2670ev_fork_start (EV_P_ ev_fork *w) 3539ev_fork_start (EV_P_ ev_fork *w)
2671{ 3540{
2672 if (expect_false (ev_is_active (w))) 3541 if (expect_false (ev_is_active (w)))
2673 return; 3542 return;
3543
3544 EV_FREQUENT_CHECK;
2674 3545
2675 ev_start (EV_A_ (W)w, ++forkcnt); 3546 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3547 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w; 3548 forks [forkcnt - 1] = w;
3549
3550 EV_FREQUENT_CHECK;
2678} 3551}
2679 3552
2680void 3553void
2681ev_fork_stop (EV_P_ ev_fork *w) 3554ev_fork_stop (EV_P_ ev_fork *w)
2682{ 3555{
2683 clear_pending (EV_A_ (W)w); 3556 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 3557 if (expect_false (!ev_is_active (w)))
2685 return; 3558 return;
2686 3559
3560 EV_FREQUENT_CHECK;
3561
2687 { 3562 {
2688 int active = ev_active (w); 3563 int active = ev_active (w);
2689 3564
2690 forks [active - 1] = forks [--forkcnt]; 3565 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active; 3566 ev_active (forks [active - 1]) = active;
2692 } 3567 }
2693 3568
2694 ev_stop (EV_A_ (W)w); 3569 ev_stop (EV_A_ (W)w);
3570
3571 EV_FREQUENT_CHECK;
2695} 3572}
2696#endif 3573#endif
2697 3574
2698#if EV_ASYNC_ENABLE 3575#if EV_ASYNC_ENABLE
2699void 3576void
2701{ 3578{
2702 if (expect_false (ev_is_active (w))) 3579 if (expect_false (ev_is_active (w)))
2703 return; 3580 return;
2704 3581
2705 evpipe_init (EV_A); 3582 evpipe_init (EV_A);
3583
3584 EV_FREQUENT_CHECK;
2706 3585
2707 ev_start (EV_A_ (W)w, ++asynccnt); 3586 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3587 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w; 3588 asyncs [asynccnt - 1] = w;
3589
3590 EV_FREQUENT_CHECK;
2710} 3591}
2711 3592
2712void 3593void
2713ev_async_stop (EV_P_ ev_async *w) 3594ev_async_stop (EV_P_ ev_async *w)
2714{ 3595{
2715 clear_pending (EV_A_ (W)w); 3596 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w))) 3597 if (expect_false (!ev_is_active (w)))
2717 return; 3598 return;
2718 3599
3600 EV_FREQUENT_CHECK;
3601
2719 { 3602 {
2720 int active = ev_active (w); 3603 int active = ev_active (w);
2721 3604
2722 asyncs [active - 1] = asyncs [--asynccnt]; 3605 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active; 3606 ev_active (asyncs [active - 1]) = active;
2724 } 3607 }
2725 3608
2726 ev_stop (EV_A_ (W)w); 3609 ev_stop (EV_A_ (W)w);
3610
3611 EV_FREQUENT_CHECK;
2727} 3612}
2728 3613
2729void 3614void
2730ev_async_send (EV_P_ ev_async *w) 3615ev_async_send (EV_P_ ev_async *w)
2731{ 3616{
2732 w->sent = 1; 3617 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync); 3618 evpipe_write (EV_A_ &async_pending);
2734} 3619}
2735#endif 3620#endif
2736 3621
2737/*****************************************************************************/ 3622/*****************************************************************************/
2738 3623
2748once_cb (EV_P_ struct ev_once *once, int revents) 3633once_cb (EV_P_ struct ev_once *once, int revents)
2749{ 3634{
2750 void (*cb)(int revents, void *arg) = once->cb; 3635 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg; 3636 void *arg = once->arg;
2752 3637
2753 ev_io_stop (EV_A_ &once->io); 3638 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to); 3639 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once); 3640 ev_free (once);
2756 3641
2757 cb (revents, arg); 3642 cb (revents, arg);
2758} 3643}
2759 3644
2760static void 3645static void
2761once_cb_io (EV_P_ ev_io *w, int revents) 3646once_cb_io (EV_P_ ev_io *w, int revents)
2762{ 3647{
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3648 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3649
3650 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2764} 3651}
2765 3652
2766static void 3653static void
2767once_cb_to (EV_P_ ev_timer *w, int revents) 3654once_cb_to (EV_P_ ev_timer *w, int revents)
2768{ 3655{
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3656 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3657
3658 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2770} 3659}
2771 3660
2772void 3661void
2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3662ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2774{ 3663{
2775 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3664 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2776 3665
2777 if (expect_false (!once)) 3666 if (expect_false (!once))
2778 { 3667 {
2779 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3668 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2780 return; 3669 return;
2781 } 3670 }
2782 3671
2783 once->cb = cb; 3672 once->cb = cb;
2784 once->arg = arg; 3673 once->arg = arg;
2796 ev_timer_set (&once->to, timeout, 0.); 3685 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to); 3686 ev_timer_start (EV_A_ &once->to);
2798 } 3687 }
2799} 3688}
2800 3689
3690/*****************************************************************************/
3691
3692#if EV_WALK_ENABLE
3693void
3694ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3695{
3696 int i, j;
3697 ev_watcher_list *wl, *wn;
3698
3699 if (types & (EV_IO | EV_EMBED))
3700 for (i = 0; i < anfdmax; ++i)
3701 for (wl = anfds [i].head; wl; )
3702 {
3703 wn = wl->next;
3704
3705#if EV_EMBED_ENABLE
3706 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3707 {
3708 if (types & EV_EMBED)
3709 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3710 }
3711 else
3712#endif
3713#if EV_USE_INOTIFY
3714 if (ev_cb ((ev_io *)wl) == infy_cb)
3715 ;
3716 else
3717#endif
3718 if ((ev_io *)wl != &pipe_w)
3719 if (types & EV_IO)
3720 cb (EV_A_ EV_IO, wl);
3721
3722 wl = wn;
3723 }
3724
3725 if (types & (EV_TIMER | EV_STAT))
3726 for (i = timercnt + HEAP0; i-- > HEAP0; )
3727#if EV_STAT_ENABLE
3728 /*TODO: timer is not always active*/
3729 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3730 {
3731 if (types & EV_STAT)
3732 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3733 }
3734 else
3735#endif
3736 if (types & EV_TIMER)
3737 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3738
3739#if EV_PERIODIC_ENABLE
3740 if (types & EV_PERIODIC)
3741 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3742 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3743#endif
3744
3745#if EV_IDLE_ENABLE
3746 if (types & EV_IDLE)
3747 for (j = NUMPRI; i--; )
3748 for (i = idlecnt [j]; i--; )
3749 cb (EV_A_ EV_IDLE, idles [j][i]);
3750#endif
3751
3752#if EV_FORK_ENABLE
3753 if (types & EV_FORK)
3754 for (i = forkcnt; i--; )
3755 if (ev_cb (forks [i]) != embed_fork_cb)
3756 cb (EV_A_ EV_FORK, forks [i]);
3757#endif
3758
3759#if EV_ASYNC_ENABLE
3760 if (types & EV_ASYNC)
3761 for (i = asynccnt; i--; )
3762 cb (EV_A_ EV_ASYNC, asyncs [i]);
3763#endif
3764
3765#if EV_PREPARE_ENABLE
3766 if (types & EV_PREPARE)
3767 for (i = preparecnt; i--; )
3768# if EV_EMBED_ENABLE
3769 if (ev_cb (prepares [i]) != embed_prepare_cb)
3770# endif
3771 cb (EV_A_ EV_PREPARE, prepares [i]);
3772#endif
3773
3774#if EV_CHECK_ENABLE
3775 if (types & EV_CHECK)
3776 for (i = checkcnt; i--; )
3777 cb (EV_A_ EV_CHECK, checks [i]);
3778#endif
3779
3780#if EV_SIGNAL_ENABLE
3781 if (types & EV_SIGNAL)
3782 for (i = 0; i < EV_NSIG - 1; ++i)
3783 for (wl = signals [i].head; wl; )
3784 {
3785 wn = wl->next;
3786 cb (EV_A_ EV_SIGNAL, wl);
3787 wl = wn;
3788 }
3789#endif
3790
3791#if EV_CHILD_ENABLE
3792 if (types & EV_CHILD)
3793 for (i = (EV_PID_HASHSIZE); i--; )
3794 for (wl = childs [i]; wl; )
3795 {
3796 wn = wl->next;
3797 cb (EV_A_ EV_CHILD, wl);
3798 wl = wn;
3799 }
3800#endif
3801/* EV_STAT 0x00001000 /* stat data changed */
3802/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3803}
3804#endif
3805
2801#if EV_MULTIPLICITY 3806#if EV_MULTIPLICITY
2802 #include "ev_wrap.h" 3807 #include "ev_wrap.h"
2803#endif 3808#endif
2804 3809
2805#ifdef __cplusplus 3810#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines