ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.353 by root, Thu Oct 21 12:32:47 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
63# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
65# endif 79# endif
66# endif 80# endif
67 81
82# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
71# else 86# else
87# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
74# endif 98# endif
75 99
100# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 103# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 104# else
105# undef EV_USE_POLL
88# define EV_USE_POLL 0 106# define EV_USE_POLL 0
89# endif
90# endif 107# endif
91 108
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
95# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
98# endif 116# endif
99 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
106# endif 125# endif
107 126
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
111# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
114# endif 134# endif
115 135
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
122# endif 143# endif
123 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 147# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
130# endif 152# endif
131 153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
132#endif 163#endif
133 164
134#include <math.h> 165#include <math.h>
135#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
136#include <fcntl.h> 168#include <fcntl.h>
137#include <stddef.h> 169#include <stddef.h>
138 170
139#include <stdio.h> 171#include <stdio.h>
140 172
141#include <assert.h> 173#include <assert.h>
142#include <errno.h> 174#include <errno.h>
143#include <sys/types.h> 175#include <sys/types.h>
144#include <time.h> 176#include <time.h>
177#include <limits.h>
145 178
146#include <signal.h> 179#include <signal.h>
147 180
148#ifdef EV_H 181#ifdef EV_H
149# include EV_H 182# include EV_H
154#ifndef _WIN32 187#ifndef _WIN32
155# include <sys/time.h> 188# include <sys/time.h>
156# include <sys/wait.h> 189# include <sys/wait.h>
157# include <unistd.h> 190# include <unistd.h>
158#else 191#else
192# include <io.h>
159# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 194# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
163# endif 197# endif
198# undef EV_AVOID_STDIO
164#endif 199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
165 208
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 209/* this block tries to deduce configuration from header-defined symbols and defaults */
167 210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
244# endif
245#endif
246
168#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
169# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
170#endif 253#endif
171 254
172#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 257#endif
175 258
176#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
177# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
264# endif
178#endif 265#endif
179 266
180#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 269#endif
183 270
184#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
185# ifdef _WIN32 272# ifdef _WIN32
186# define EV_USE_POLL 0 273# define EV_USE_POLL 0
187# else 274# else
188# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 276# endif
190#endif 277#endif
191 278
192#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 282# else
196# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
197# endif 284# endif
198#endif 285#endif
199 286
205# define EV_USE_PORT 0 292# define EV_USE_PORT 0
206#endif 293#endif
207 294
208#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 297# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 298# else
212# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
213# endif 300# endif
214#endif 301#endif
215 302
216#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 305#endif
223 306
224#ifndef EV_INOTIFY_HASHSIZE 307#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 309#endif
231 310
232#ifndef EV_USE_EVENTFD 311#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 313# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 314# else
236# define EV_USE_EVENTFD 0 315# define EV_USE_EVENTFD 0
237# endif 316# endif
238#endif 317#endif
239 318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
324# endif
325#endif
326
327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
241 366
242#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
245#endif 370#endif
259# include <sys/select.h> 384# include <sys/select.h>
260# endif 385# endif
261#endif 386#endif
262 387
263#if EV_USE_INOTIFY 388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
264# include <sys/inotify.h> 391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
265#endif 397#endif
266 398
267#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 400# include <winsock.h>
269#endif 401#endif
270 402
271#if EV_USE_EVENTFD 403#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
274# ifdef __cplusplus 416# ifdef __cplusplus
275extern "C" { 417extern "C" {
276# endif 418# endif
277int eventfd (unsigned int initval, int flags); 419int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 420# ifdef __cplusplus
279} 421}
280# endif 422# endif
281#endif 423#endif
282 424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
283/**/ 453/**/
454
455#if EV_VERIFY >= 3
456# define EV_FREQUENT_CHECK ev_verify (EV_A)
457#else
458# define EV_FREQUENT_CHECK do { } while (0)
459#endif
284 460
285/* 461/*
286 * This is used to avoid floating point rounding problems. 462 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 463 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 464 * to ensure progress, time-wise, even when rounding
292 */ 468 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 470
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 471#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 472#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 473
474#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
475#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
298 476
299#if __GNUC__ >= 4 477#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 478# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 479# define noinline __attribute__ ((noinline))
302#else 480#else
309 487
310#define expect_false(expr) expect ((expr) != 0, 0) 488#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 489#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 490#define inline_size static inline
313 491
314#if EV_MINIMAL 492#if EV_FEATURE_CODE
493# define inline_speed static inline
494#else
315# define inline_speed static noinline 495# define inline_speed static noinline
496#endif
497
498#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499
500#if EV_MINPRI == EV_MAXPRI
501# define ABSPRI(w) (((W)w), 0)
316#else 502#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 503# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504#endif
322 505
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 506#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 507#define EMPTY2(a,b) /* used to suppress some warnings */
325 508
326typedef ev_watcher *W; 509typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 510typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 511typedef ev_watcher_time *WT;
329 512
513#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 514#define ev_at(w) ((WT)(w))->at
331 515
516#if EV_USE_REALTIME
517/* sig_atomic_t is used to avoid per-thread variables or locking but still */
518/* giving it a reasonably high chance of working on typical architectures */
519static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
520#endif
521
332#if EV_USE_MONOTONIC 522#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */
335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 523static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
524#endif
525
526#ifndef EV_FD_TO_WIN32_HANDLE
527# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528#endif
529#ifndef EV_WIN32_HANDLE_TO_FD
530# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531#endif
532#ifndef EV_WIN32_CLOSE_FD
533# define EV_WIN32_CLOSE_FD(fd) close (fd)
336#endif 534#endif
337 535
338#ifdef _WIN32 536#ifdef _WIN32
339# include "ev_win32.c" 537# include "ev_win32.c"
340#endif 538#endif
341 539
342/*****************************************************************************/ 540/*****************************************************************************/
343 541
542#if EV_AVOID_STDIO
543static void noinline
544ev_printerr (const char *msg)
545{
546 write (STDERR_FILENO, msg, strlen (msg));
547}
548#endif
549
344static void (*syserr_cb)(const char *msg); 550static void (*syserr_cb)(const char *msg);
345 551
346void 552void
347ev_set_syserr_cb (void (*cb)(const char *msg)) 553ev_set_syserr_cb (void (*cb)(const char *msg))
348{ 554{
349 syserr_cb = cb; 555 syserr_cb = cb;
350} 556}
351 557
352static void noinline 558static void noinline
353syserr (const char *msg) 559ev_syserr (const char *msg)
354{ 560{
355 if (!msg) 561 if (!msg)
356 msg = "(libev) system error"; 562 msg = "(libev) system error";
357 563
358 if (syserr_cb) 564 if (syserr_cb)
359 syserr_cb (msg); 565 syserr_cb (msg);
360 else 566 else
361 { 567 {
568#if EV_AVOID_STDIO
569 const char *err = strerror (errno);
570
571 ev_printerr (msg);
572 ev_printerr (": ");
573 ev_printerr (err);
574 ev_printerr ("\n");
575#else
362 perror (msg); 576 perror (msg);
577#endif
363 abort (); 578 abort ();
364 } 579 }
365} 580}
366 581
367static void * 582static void *
368ev_realloc_emul (void *ptr, long size) 583ev_realloc_emul (void *ptr, long size)
369{ 584{
585#if __GLIBC__
586 return realloc (ptr, size);
587#else
370 /* some systems, notably openbsd and darwin, fail to properly 588 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and 589 * implement realloc (x, 0) (as required by both ansi c-89 and
372 * the single unix specification, so work around them here. 590 * the single unix specification, so work around them here.
373 */ 591 */
374 592
375 if (size) 593 if (size)
376 return realloc (ptr, size); 594 return realloc (ptr, size);
377 595
378 free (ptr); 596 free (ptr);
379 return 0; 597 return 0;
598#endif
380} 599}
381 600
382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 601static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
383 602
384void 603void
392{ 611{
393 ptr = alloc (ptr, size); 612 ptr = alloc (ptr, size);
394 613
395 if (!ptr && size) 614 if (!ptr && size)
396 { 615 {
616#if EV_AVOID_STDIO
617 ev_printerr ("libev: memory allocation failed, aborting.\n");
618#else
397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 619 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620#endif
398 abort (); 621 abort ();
399 } 622 }
400 623
401 return ptr; 624 return ptr;
402} 625}
404#define ev_malloc(size) ev_realloc (0, (size)) 627#define ev_malloc(size) ev_realloc (0, (size))
405#define ev_free(ptr) ev_realloc ((ptr), 0) 628#define ev_free(ptr) ev_realloc ((ptr), 0)
406 629
407/*****************************************************************************/ 630/*****************************************************************************/
408 631
632/* set in reify when reification needed */
633#define EV_ANFD_REIFY 1
634
635/* file descriptor info structure */
409typedef struct 636typedef struct
410{ 637{
411 WL head; 638 WL head;
412 unsigned char events; 639 unsigned char events; /* the events watched for */
640 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
641 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
413 unsigned char reify; 642 unsigned char unused;
643#if EV_USE_EPOLL
644 unsigned int egen; /* generation counter to counter epoll bugs */
645#endif
414#if EV_SELECT_IS_WINSOCKET 646#if EV_SELECT_IS_WINSOCKET
415 SOCKET handle; 647 SOCKET handle;
416#endif 648#endif
417} ANFD; 649} ANFD;
418 650
651/* stores the pending event set for a given watcher */
419typedef struct 652typedef struct
420{ 653{
421 W w; 654 W w;
422 int events; 655 int events; /* the pending event set for the given watcher */
423} ANPENDING; 656} ANPENDING;
424 657
425#if EV_USE_INOTIFY 658#if EV_USE_INOTIFY
659/* hash table entry per inotify-id */
426typedef struct 660typedef struct
427{ 661{
428 WL head; 662 WL head;
429} ANFS; 663} ANFS;
664#endif
665
666/* Heap Entry */
667#if EV_HEAP_CACHE_AT
668 /* a heap element */
669 typedef struct {
670 ev_tstamp at;
671 WT w;
672 } ANHE;
673
674 #define ANHE_w(he) (he).w /* access watcher, read-write */
675 #define ANHE_at(he) (he).at /* access cached at, read-only */
676 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
677#else
678 /* a heap element */
679 typedef WT ANHE;
680
681 #define ANHE_w(he) (he)
682 #define ANHE_at(he) (he)->at
683 #define ANHE_at_cache(he)
430#endif 684#endif
431 685
432#if EV_MULTIPLICITY 686#if EV_MULTIPLICITY
433 687
434 struct ev_loop 688 struct ev_loop
453 707
454 static int ev_default_loop_ptr; 708 static int ev_default_loop_ptr;
455 709
456#endif 710#endif
457 711
712#if EV_FEATURE_API
713# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715# define EV_INVOKE_PENDING invoke_cb (EV_A)
716#else
717# define EV_RELEASE_CB (void)0
718# define EV_ACQUIRE_CB (void)0
719# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720#endif
721
722#define EVBREAK_RECURSE 0x80
723
458/*****************************************************************************/ 724/*****************************************************************************/
459 725
726#ifndef EV_HAVE_EV_TIME
460ev_tstamp 727ev_tstamp
461ev_time (void) 728ev_time (void)
462{ 729{
463#if EV_USE_REALTIME 730#if EV_USE_REALTIME
731 if (expect_true (have_realtime))
732 {
464 struct timespec ts; 733 struct timespec ts;
465 clock_gettime (CLOCK_REALTIME, &ts); 734 clock_gettime (CLOCK_REALTIME, &ts);
466 return ts.tv_sec + ts.tv_nsec * 1e-9; 735 return ts.tv_sec + ts.tv_nsec * 1e-9;
467#else 736 }
737#endif
738
468 struct timeval tv; 739 struct timeval tv;
469 gettimeofday (&tv, 0); 740 gettimeofday (&tv, 0);
470 return tv.tv_sec + tv.tv_usec * 1e-6; 741 return tv.tv_sec + tv.tv_usec * 1e-6;
471#endif
472} 742}
743#endif
473 744
474ev_tstamp inline_size 745inline_size ev_tstamp
475get_clock (void) 746get_clock (void)
476{ 747{
477#if EV_USE_MONOTONIC 748#if EV_USE_MONOTONIC
478 if (expect_true (have_monotonic)) 749 if (expect_true (have_monotonic))
479 { 750 {
500 if (delay > 0.) 771 if (delay > 0.)
501 { 772 {
502#if EV_USE_NANOSLEEP 773#if EV_USE_NANOSLEEP
503 struct timespec ts; 774 struct timespec ts;
504 775
505 ts.tv_sec = (time_t)delay; 776 EV_TS_SET (ts, delay);
506 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
507
508 nanosleep (&ts, 0); 777 nanosleep (&ts, 0);
509#elif defined(_WIN32) 778#elif defined(_WIN32)
510 Sleep ((unsigned long)(delay * 1e3)); 779 Sleep ((unsigned long)(delay * 1e3));
511#else 780#else
512 struct timeval tv; 781 struct timeval tv;
513 782
514 tv.tv_sec = (time_t)delay; 783 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 784 /* something not guaranteed by newer posix versions, but guaranteed */
516 785 /* by older ones */
786 EV_TV_SET (tv, delay);
517 select (0, 0, 0, 0, &tv); 787 select (0, 0, 0, 0, &tv);
518#endif 788#endif
519 } 789 }
520} 790}
521 791
522/*****************************************************************************/ 792/*****************************************************************************/
523 793
524int inline_size 794#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
795
796/* find a suitable new size for the given array, */
797/* hopefully by rounding to a nice-to-malloc size */
798inline_size int
525array_nextsize (int elem, int cur, int cnt) 799array_nextsize (int elem, int cur, int cnt)
526{ 800{
527 int ncur = cur + 1; 801 int ncur = cur + 1;
528 802
529 do 803 do
530 ncur <<= 1; 804 ncur <<= 1;
531 while (cnt > ncur); 805 while (cnt > ncur);
532 806
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 807 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096) 808 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 809 {
536 ncur *= elem; 810 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 811 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 812 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 813 ncur /= elem;
540 } 814 }
541 815
542 return ncur; 816 return ncur;
546array_realloc (int elem, void *base, int *cur, int cnt) 820array_realloc (int elem, void *base, int *cur, int cnt)
547{ 821{
548 *cur = array_nextsize (elem, *cur, cnt); 822 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur); 823 return ev_realloc (base, elem * *cur);
550} 824}
825
826#define array_init_zero(base,count) \
827 memset ((void *)(base), 0, sizeof (*(base)) * (count))
551 828
552#define array_needsize(type,base,cur,cnt,init) \ 829#define array_needsize(type,base,cur,cnt,init) \
553 if (expect_false ((cnt) > (cur))) \ 830 if (expect_false ((cnt) > (cur))) \
554 { \ 831 { \
555 int ocur_ = (cur); \ 832 int ocur_ = (cur); \
567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 844 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
568 } 845 }
569#endif 846#endif
570 847
571#define array_free(stem, idx) \ 848#define array_free(stem, idx) \
572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 849 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
573 850
574/*****************************************************************************/ 851/*****************************************************************************/
852
853/* dummy callback for pending events */
854static void noinline
855pendingcb (EV_P_ ev_prepare *w, int revents)
856{
857}
575 858
576void noinline 859void noinline
577ev_feed_event (EV_P_ void *w, int revents) 860ev_feed_event (EV_P_ void *w, int revents)
578{ 861{
579 W w_ = (W)w; 862 W w_ = (W)w;
588 pendings [pri][w_->pending - 1].w = w_; 871 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents; 872 pendings [pri][w_->pending - 1].events = revents;
590 } 873 }
591} 874}
592 875
593void inline_speed 876inline_speed void
877feed_reverse (EV_P_ W w)
878{
879 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880 rfeeds [rfeedcnt++] = w;
881}
882
883inline_size void
884feed_reverse_done (EV_P_ int revents)
885{
886 do
887 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888 while (rfeedcnt);
889}
890
891inline_speed void
594queue_events (EV_P_ W *events, int eventcnt, int type) 892queue_events (EV_P_ W *events, int eventcnt, int type)
595{ 893{
596 int i; 894 int i;
597 895
598 for (i = 0; i < eventcnt; ++i) 896 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type); 897 ev_feed_event (EV_A_ events [i], type);
600} 898}
601 899
602/*****************************************************************************/ 900/*****************************************************************************/
603 901
604void inline_size 902inline_speed void
605anfds_init (ANFD *base, int count)
606{
607 while (count--)
608 {
609 base->head = 0;
610 base->events = EV_NONE;
611 base->reify = 0;
612
613 ++base;
614 }
615}
616
617void inline_speed
618fd_event (EV_P_ int fd, int revents) 903fd_event_nocheck (EV_P_ int fd, int revents)
619{ 904{
620 ANFD *anfd = anfds + fd; 905 ANFD *anfd = anfds + fd;
621 ev_io *w; 906 ev_io *w;
622 907
623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
627 if (ev) 912 if (ev)
628 ev_feed_event (EV_A_ (W)w, ev); 913 ev_feed_event (EV_A_ (W)w, ev);
629 } 914 }
630} 915}
631 916
917/* do not submit kernel events for fds that have reify set */
918/* because that means they changed while we were polling for new events */
919inline_speed void
920fd_event (EV_P_ int fd, int revents)
921{
922 ANFD *anfd = anfds + fd;
923
924 if (expect_true (!anfd->reify))
925 fd_event_nocheck (EV_A_ fd, revents);
926}
927
632void 928void
633ev_feed_fd_event (EV_P_ int fd, int revents) 929ev_feed_fd_event (EV_P_ int fd, int revents)
634{ 930{
635 if (fd >= 0 && fd < anfdmax) 931 if (fd >= 0 && fd < anfdmax)
636 fd_event (EV_A_ fd, revents); 932 fd_event_nocheck (EV_A_ fd, revents);
637} 933}
638 934
639void inline_size 935/* make sure the external fd watch events are in-sync */
936/* with the kernel/libev internal state */
937inline_size void
640fd_reify (EV_P) 938fd_reify (EV_P)
641{ 939{
642 int i; 940 int i;
643 941
644 for (i = 0; i < fdchangecnt; ++i) 942 for (i = 0; i < fdchangecnt; ++i)
645 { 943 {
646 int fd = fdchanges [i]; 944 int fd = fdchanges [i];
647 ANFD *anfd = anfds + fd; 945 ANFD *anfd = anfds + fd;
648 ev_io *w; 946 ev_io *w;
649 947
650 unsigned char events = 0; 948 unsigned char o_events = anfd->events;
949 unsigned char o_reify = anfd->reify;
651 950
652 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 951 anfd->reify = 0;
653 events |= (unsigned char)w->events;
654 952
655#if EV_SELECT_IS_WINSOCKET 953#if EV_SELECT_IS_WINSOCKET
656 if (events) 954 if (o_reify & EV__IOFDSET)
657 { 955 {
658 unsigned long argp; 956 unsigned long arg;
659 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 957 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else
662 anfd->handle = _get_osfhandle (fd);
663 #endif
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 958 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
665 } 959 }
666#endif 960#endif
667 961
962 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
668 { 963 {
669 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify;
671
672 anfd->reify = 0;
673 anfd->events = events; 964 anfd->events = 0;
674 965
675 if (o_events != events || o_reify & EV_IOFDSET) 966 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
967 anfd->events |= (unsigned char)w->events;
968
969 if (o_events != anfd->events)
970 o_reify = EV__IOFDSET; /* actually |= */
971 }
972
973 if (o_reify & EV__IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events); 974 backend_modify (EV_A_ fd, o_events, anfd->events);
677 }
678 } 975 }
679 976
680 fdchangecnt = 0; 977 fdchangecnt = 0;
681} 978}
682 979
683void inline_size 980/* something about the given fd changed */
981inline_size void
684fd_change (EV_P_ int fd, int flags) 982fd_change (EV_P_ int fd, int flags)
685{ 983{
686 unsigned char reify = anfds [fd].reify; 984 unsigned char reify = anfds [fd].reify;
687 anfds [fd].reify |= flags; 985 anfds [fd].reify |= flags;
688 986
692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 990 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
693 fdchanges [fdchangecnt - 1] = fd; 991 fdchanges [fdchangecnt - 1] = fd;
694 } 992 }
695} 993}
696 994
697void inline_speed 995/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
996inline_speed void
698fd_kill (EV_P_ int fd) 997fd_kill (EV_P_ int fd)
699{ 998{
700 ev_io *w; 999 ev_io *w;
701 1000
702 while ((w = (ev_io *)anfds [fd].head)) 1001 while ((w = (ev_io *)anfds [fd].head))
704 ev_io_stop (EV_A_ w); 1003 ev_io_stop (EV_A_ w);
705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1004 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
706 } 1005 }
707} 1006}
708 1007
709int inline_size 1008/* check whether the given fd is actually valid, for error recovery */
1009inline_size int
710fd_valid (int fd) 1010fd_valid (int fd)
711{ 1011{
712#ifdef _WIN32 1012#ifdef _WIN32
713 return _get_osfhandle (fd) != -1; 1013 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
714#else 1014#else
715 return fcntl (fd, F_GETFD) != -1; 1015 return fcntl (fd, F_GETFD) != -1;
716#endif 1016#endif
717} 1017}
718 1018
722{ 1022{
723 int fd; 1023 int fd;
724 1024
725 for (fd = 0; fd < anfdmax; ++fd) 1025 for (fd = 0; fd < anfdmax; ++fd)
726 if (anfds [fd].events) 1026 if (anfds [fd].events)
727 if (!fd_valid (fd) == -1 && errno == EBADF) 1027 if (!fd_valid (fd) && errno == EBADF)
728 fd_kill (EV_A_ fd); 1028 fd_kill (EV_A_ fd);
729} 1029}
730 1030
731/* called on ENOMEM in select/poll to kill some fds and retry */ 1031/* called on ENOMEM in select/poll to kill some fds and retry */
732static void noinline 1032static void noinline
736 1036
737 for (fd = anfdmax; fd--; ) 1037 for (fd = anfdmax; fd--; )
738 if (anfds [fd].events) 1038 if (anfds [fd].events)
739 { 1039 {
740 fd_kill (EV_A_ fd); 1040 fd_kill (EV_A_ fd);
741 return; 1041 break;
742 } 1042 }
743} 1043}
744 1044
745/* usually called after fork if backend needs to re-arm all fds from scratch */ 1045/* usually called after fork if backend needs to re-arm all fds from scratch */
746static void noinline 1046static void noinline
750 1050
751 for (fd = 0; fd < anfdmax; ++fd) 1051 for (fd = 0; fd < anfdmax; ++fd)
752 if (anfds [fd].events) 1052 if (anfds [fd].events)
753 { 1053 {
754 anfds [fd].events = 0; 1054 anfds [fd].events = 0;
1055 anfds [fd].emask = 0;
755 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1056 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
756 } 1057 }
757} 1058}
758 1059
759/*****************************************************************************/ 1060/* used to prepare libev internal fd's */
760 1061/* this is not fork-safe */
761/* towards the root */ 1062inline_speed void
762void inline_speed
763upheap (WT *heap, int k)
764{
765 WT w = heap [k];
766
767 for (;;)
768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
775 heap [k] = heap [p];
776 ((W)heap [k])->active = k;
777 k = p;
778 }
779
780 heap [k] = w;
781 ((W)heap [k])->active = k;
782}
783
784/* away from the root */
785void inline_speed
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
791 {
792 int c = k << 1;
793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
809 heap [k] = w;
810 ((W)heap [k])->active = k;
811}
812
813void inline_size
814adjustheap (WT *heap, int N, int k)
815{
816 upheap (heap, k);
817 downheap (heap, N, k);
818}
819
820/*****************************************************************************/
821
822typedef struct
823{
824 WL head;
825 EV_ATOMIC_T gotsig;
826} ANSIG;
827
828static ANSIG *signals;
829static int signalmax;
830
831static EV_ATOMIC_T gotsig;
832
833void inline_size
834signals_init (ANSIG *base, int count)
835{
836 while (count--)
837 {
838 base->head = 0;
839 base->gotsig = 0;
840
841 ++base;
842 }
843}
844
845/*****************************************************************************/
846
847void inline_speed
848fd_intern (int fd) 1063fd_intern (int fd)
849{ 1064{
850#ifdef _WIN32 1065#ifdef _WIN32
851 int arg = 1; 1066 unsigned long arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1067 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
853#else 1068#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC); 1069 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK); 1070 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif 1071#endif
857} 1072}
858 1073
1074/*****************************************************************************/
1075
1076/*
1077 * the heap functions want a real array index. array index 0 is guaranteed to not
1078 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1079 * the branching factor of the d-tree.
1080 */
1081
1082/*
1083 * at the moment we allow libev the luxury of two heaps,
1084 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1085 * which is more cache-efficient.
1086 * the difference is about 5% with 50000+ watchers.
1087 */
1088#if EV_USE_4HEAP
1089
1090#define DHEAP 4
1091#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1092#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1093#define UPHEAP_DONE(p,k) ((p) == (k))
1094
1095/* away from the root */
1096inline_speed void
1097downheap (ANHE *heap, int N, int k)
1098{
1099 ANHE he = heap [k];
1100 ANHE *E = heap + N + HEAP0;
1101
1102 for (;;)
1103 {
1104 ev_tstamp minat;
1105 ANHE *minpos;
1106 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1107
1108 /* find minimum child */
1109 if (expect_true (pos + DHEAP - 1 < E))
1110 {
1111 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1112 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1113 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1114 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1115 }
1116 else if (pos < E)
1117 {
1118 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1119 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1120 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1121 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1122 }
1123 else
1124 break;
1125
1126 if (ANHE_at (he) <= minat)
1127 break;
1128
1129 heap [k] = *minpos;
1130 ev_active (ANHE_w (*minpos)) = k;
1131
1132 k = minpos - heap;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139#else /* 4HEAP */
1140
1141#define HEAP0 1
1142#define HPARENT(k) ((k) >> 1)
1143#define UPHEAP_DONE(p,k) (!(p))
1144
1145/* away from the root */
1146inline_speed void
1147downheap (ANHE *heap, int N, int k)
1148{
1149 ANHE he = heap [k];
1150
1151 for (;;)
1152 {
1153 int c = k << 1;
1154
1155 if (c >= N + HEAP0)
1156 break;
1157
1158 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1159 ? 1 : 0;
1160
1161 if (ANHE_at (he) <= ANHE_at (heap [c]))
1162 break;
1163
1164 heap [k] = heap [c];
1165 ev_active (ANHE_w (heap [k])) = k;
1166
1167 k = c;
1168 }
1169
1170 heap [k] = he;
1171 ev_active (ANHE_w (he)) = k;
1172}
1173#endif
1174
1175/* towards the root */
1176inline_speed void
1177upheap (ANHE *heap, int k)
1178{
1179 ANHE he = heap [k];
1180
1181 for (;;)
1182 {
1183 int p = HPARENT (k);
1184
1185 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1186 break;
1187
1188 heap [k] = heap [p];
1189 ev_active (ANHE_w (heap [k])) = k;
1190 k = p;
1191 }
1192
1193 heap [k] = he;
1194 ev_active (ANHE_w (he)) = k;
1195}
1196
1197/* move an element suitably so it is in a correct place */
1198inline_size void
1199adjustheap (ANHE *heap, int N, int k)
1200{
1201 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1202 upheap (heap, k);
1203 else
1204 downheap (heap, N, k);
1205}
1206
1207/* rebuild the heap: this function is used only once and executed rarely */
1208inline_size void
1209reheap (ANHE *heap, int N)
1210{
1211 int i;
1212
1213 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1214 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1215 for (i = 0; i < N; ++i)
1216 upheap (heap, i + HEAP0);
1217}
1218
1219/*****************************************************************************/
1220
1221/* associate signal watchers to a signal signal */
1222typedef struct
1223{
1224 EV_ATOMIC_T pending;
1225#if EV_MULTIPLICITY
1226 EV_P;
1227#endif
1228 WL head;
1229} ANSIG;
1230
1231static ANSIG signals [EV_NSIG - 1];
1232
1233/*****************************************************************************/
1234
1235#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1236
859static void noinline 1237static void noinline
860evpipe_init (EV_P) 1238evpipe_init (EV_P)
861{ 1239{
862 if (!ev_is_active (&pipeev)) 1240 if (!ev_is_active (&pipe_w))
863 { 1241 {
864#if EV_USE_EVENTFD 1242# if EV_USE_EVENTFD
1243 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1244 if (evfd < 0 && errno == EINVAL)
865 if ((evfd = eventfd (0, 0)) >= 0) 1245 evfd = eventfd (0, 0);
1246
1247 if (evfd >= 0)
866 { 1248 {
867 evpipe [0] = -1; 1249 evpipe [0] = -1;
868 fd_intern (evfd); 1250 fd_intern (evfd); /* doing it twice doesn't hurt */
869 ev_io_set (&pipeev, evfd, EV_READ); 1251 ev_io_set (&pipe_w, evfd, EV_READ);
870 } 1252 }
871 else 1253 else
872#endif 1254# endif
873 { 1255 {
874 while (pipe (evpipe)) 1256 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe"); 1257 ev_syserr ("(libev) error creating signal/async pipe");
876 1258
877 fd_intern (evpipe [0]); 1259 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]); 1260 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ); 1261 ev_io_set (&pipe_w, evpipe [0], EV_READ);
880 } 1262 }
881 1263
882 ev_io_start (EV_A_ &pipeev); 1264 ev_io_start (EV_A_ &pipe_w);
883 ev_unref (EV_A); /* watcher should not keep loop alive */ 1265 ev_unref (EV_A); /* watcher should not keep loop alive */
884 } 1266 }
885} 1267}
886 1268
887void inline_size 1269inline_size void
888evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1270evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{ 1271{
890 if (!*flag) 1272 if (!*flag)
891 { 1273 {
892 int old_errno = errno; /* save errno because write might clobber it */ 1274 int old_errno = errno; /* save errno because write might clobber it */
1275 char dummy;
893 1276
894 *flag = 1; 1277 *flag = 1;
895 1278
896#if EV_USE_EVENTFD 1279#if EV_USE_EVENTFD
897 if (evfd >= 0) 1280 if (evfd >= 0)
899 uint64_t counter = 1; 1282 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t)); 1283 write (evfd, &counter, sizeof (uint64_t));
901 } 1284 }
902 else 1285 else
903#endif 1286#endif
1287 /* win32 people keep sending patches that change this write() to send() */
1288 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1289 /* so when you think this write should be a send instead, please find out */
1290 /* where your send() is from - it's definitely not the microsoft send, and */
1291 /* tell me. thank you. */
904 write (evpipe [1], &old_errno, 1); 1292 write (evpipe [1], &dummy, 1);
905 1293
906 errno = old_errno; 1294 errno = old_errno;
907 } 1295 }
908} 1296}
909 1297
1298/* called whenever the libev signal pipe */
1299/* got some events (signal, async) */
910static void 1300static void
911pipecb (EV_P_ ev_io *iow, int revents) 1301pipecb (EV_P_ ev_io *iow, int revents)
912{ 1302{
1303 int i;
1304
913#if EV_USE_EVENTFD 1305#if EV_USE_EVENTFD
914 if (evfd >= 0) 1306 if (evfd >= 0)
915 { 1307 {
916 uint64_t counter = 1; 1308 uint64_t counter;
917 read (evfd, &counter, sizeof (uint64_t)); 1309 read (evfd, &counter, sizeof (uint64_t));
918 } 1310 }
919 else 1311 else
920#endif 1312#endif
921 { 1313 {
922 char dummy; 1314 char dummy;
1315 /* see discussion in evpipe_write when you think this read should be recv in win32 */
923 read (evpipe [0], &dummy, 1); 1316 read (evpipe [0], &dummy, 1);
924 } 1317 }
925 1318
926 if (gotsig && ev_is_default_loop (EV_A)) 1319 if (sig_pending)
927 { 1320 {
928 int signum; 1321 sig_pending = 0;
929 gotsig = 0;
930 1322
931 for (signum = signalmax; signum--; ) 1323 for (i = EV_NSIG - 1; i--; )
932 if (signals [signum].gotsig) 1324 if (expect_false (signals [i].pending))
933 ev_feed_signal_event (EV_A_ signum + 1); 1325 ev_feed_signal_event (EV_A_ i + 1);
934 } 1326 }
935 1327
936#if EV_ASYNC_ENABLE 1328#if EV_ASYNC_ENABLE
937 if (gotasync) 1329 if (async_pending)
938 { 1330 {
939 int i; 1331 async_pending = 0;
940 gotasync = 0;
941 1332
942 for (i = asynccnt; i--; ) 1333 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent) 1334 if (asyncs [i]->sent)
944 { 1335 {
945 asyncs [i]->sent = 0; 1336 asyncs [i]->sent = 0;
953 1344
954static void 1345static void
955ev_sighandler (int signum) 1346ev_sighandler (int signum)
956{ 1347{
957#if EV_MULTIPLICITY 1348#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct; 1349 EV_P = signals [signum - 1].loop;
959#endif 1350#endif
960 1351
961#if _WIN32 1352#ifdef _WIN32
962 signal (signum, ev_sighandler); 1353 signal (signum, ev_sighandler);
963#endif 1354#endif
964 1355
965 signals [signum - 1].gotsig = 1; 1356 signals [signum - 1].pending = 1;
966 evpipe_write (EV_A_ &gotsig); 1357 evpipe_write (EV_A_ &sig_pending);
967} 1358}
968 1359
969void noinline 1360void noinline
970ev_feed_signal_event (EV_P_ int signum) 1361ev_feed_signal_event (EV_P_ int signum)
971{ 1362{
972 WL w; 1363 WL w;
973 1364
1365 if (expect_false (signum <= 0 || signum > EV_NSIG))
1366 return;
1367
1368 --signum;
1369
974#if EV_MULTIPLICITY 1370#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1371 /* it is permissible to try to feed a signal to the wrong loop */
976#endif 1372 /* or, likely more useful, feeding a signal nobody is waiting for */
977 1373
978 --signum; 1374 if (expect_false (signals [signum].loop != EV_A))
979
980 if (signum < 0 || signum >= signalmax)
981 return; 1375 return;
1376#endif
982 1377
983 signals [signum].gotsig = 0; 1378 signals [signum].pending = 0;
984 1379
985 for (w = signals [signum].head; w; w = w->next) 1380 for (w = signals [signum].head; w; w = w->next)
986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1381 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
987} 1382}
988 1383
1384#if EV_USE_SIGNALFD
1385static void
1386sigfdcb (EV_P_ ev_io *iow, int revents)
1387{
1388 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1389
1390 for (;;)
1391 {
1392 ssize_t res = read (sigfd, si, sizeof (si));
1393
1394 /* not ISO-C, as res might be -1, but works with SuS */
1395 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1396 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1397
1398 if (res < (ssize_t)sizeof (si))
1399 break;
1400 }
1401}
1402#endif
1403
1404#endif
1405
989/*****************************************************************************/ 1406/*****************************************************************************/
990 1407
1408#if EV_CHILD_ENABLE
991static WL childs [EV_PID_HASHSIZE]; 1409static WL childs [EV_PID_HASHSIZE];
992
993#ifndef _WIN32
994 1410
995static ev_signal childev; 1411static ev_signal childev;
996 1412
997#ifndef WIFCONTINUED 1413#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0 1414# define WIFCONTINUED(status) 0
999#endif 1415#endif
1000 1416
1001void inline_speed 1417/* handle a single child status event */
1418inline_speed void
1002child_reap (EV_P_ int chain, int pid, int status) 1419child_reap (EV_P_ int chain, int pid, int status)
1003{ 1420{
1004 ev_child *w; 1421 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1422 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006 1423
1007 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1424 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1008 { 1425 {
1009 if ((w->pid == pid || !w->pid) 1426 if ((w->pid == pid || !w->pid)
1010 && (!traced || (w->flags & 1))) 1427 && (!traced || (w->flags & 1)))
1011 { 1428 {
1012 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1429 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1019 1436
1020#ifndef WCONTINUED 1437#ifndef WCONTINUED
1021# define WCONTINUED 0 1438# define WCONTINUED 0
1022#endif 1439#endif
1023 1440
1441/* called on sigchld etc., calls waitpid */
1024static void 1442static void
1025childcb (EV_P_ ev_signal *sw, int revents) 1443childcb (EV_P_ ev_signal *sw, int revents)
1026{ 1444{
1027 int pid, status; 1445 int pid, status;
1028 1446
1036 /* make sure we are called again until all children have been reaped */ 1454 /* make sure we are called again until all children have been reaped */
1037 /* we need to do it this way so that the callback gets called before we continue */ 1455 /* we need to do it this way so that the callback gets called before we continue */
1038 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1456 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1039 1457
1040 child_reap (EV_A_ pid, pid, status); 1458 child_reap (EV_A_ pid, pid, status);
1041 if (EV_PID_HASHSIZE > 1) 1459 if ((EV_PID_HASHSIZE) > 1)
1042 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1460 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1043} 1461}
1044 1462
1045#endif 1463#endif
1046 1464
1109 /* kqueue is borked on everything but netbsd apparently */ 1527 /* kqueue is borked on everything but netbsd apparently */
1110 /* it usually doesn't work correctly on anything but sockets and pipes */ 1528 /* it usually doesn't work correctly on anything but sockets and pipes */
1111 flags &= ~EVBACKEND_KQUEUE; 1529 flags &= ~EVBACKEND_KQUEUE;
1112#endif 1530#endif
1113#ifdef __APPLE__ 1531#ifdef __APPLE__
1114 // flags &= ~EVBACKEND_KQUEUE; for documentation 1532 /* only select works correctly on that "unix-certified" platform */
1115 flags &= ~EVBACKEND_POLL; 1533 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1534 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1535#endif
1536#ifdef __FreeBSD__
1537 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1116#endif 1538#endif
1117 1539
1118 return flags; 1540 return flags;
1119} 1541}
1120 1542
1134ev_backend (EV_P) 1556ev_backend (EV_P)
1135{ 1557{
1136 return backend; 1558 return backend;
1137} 1559}
1138 1560
1561#if EV_FEATURE_API
1139unsigned int 1562unsigned int
1140ev_loop_count (EV_P) 1563ev_iteration (EV_P)
1141{ 1564{
1142 return loop_count; 1565 return loop_count;
1143} 1566}
1144 1567
1568unsigned int
1569ev_depth (EV_P)
1570{
1571 return loop_depth;
1572}
1573
1145void 1574void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1575ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{ 1576{
1148 io_blocktime = interval; 1577 io_blocktime = interval;
1149} 1578}
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1581ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{ 1582{
1154 timeout_blocktime = interval; 1583 timeout_blocktime = interval;
1155} 1584}
1156 1585
1586void
1587ev_set_userdata (EV_P_ void *data)
1588{
1589 userdata = data;
1590}
1591
1592void *
1593ev_userdata (EV_P)
1594{
1595 return userdata;
1596}
1597
1598void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1599{
1600 invoke_cb = invoke_pending_cb;
1601}
1602
1603void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1604{
1605 release_cb = release;
1606 acquire_cb = acquire;
1607}
1608#endif
1609
1610/* initialise a loop structure, must be zero-initialised */
1157static void noinline 1611static void noinline
1158loop_init (EV_P_ unsigned int flags) 1612loop_init (EV_P_ unsigned int flags)
1159{ 1613{
1160 if (!backend) 1614 if (!backend)
1161 { 1615 {
1616#if EV_USE_REALTIME
1617 if (!have_realtime)
1618 {
1619 struct timespec ts;
1620
1621 if (!clock_gettime (CLOCK_REALTIME, &ts))
1622 have_realtime = 1;
1623 }
1624#endif
1625
1162#if EV_USE_MONOTONIC 1626#if EV_USE_MONOTONIC
1627 if (!have_monotonic)
1163 { 1628 {
1164 struct timespec ts; 1629 struct timespec ts;
1630
1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1631 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1166 have_monotonic = 1; 1632 have_monotonic = 1;
1167 } 1633 }
1168#endif 1634#endif
1635
1636 /* pid check not overridable via env */
1637#ifndef _WIN32
1638 if (flags & EVFLAG_FORKCHECK)
1639 curpid = getpid ();
1640#endif
1641
1642 if (!(flags & EVFLAG_NOENV)
1643 && !enable_secure ()
1644 && getenv ("LIBEV_FLAGS"))
1645 flags = atoi (getenv ("LIBEV_FLAGS"));
1169 1646
1170 ev_rt_now = ev_time (); 1647 ev_rt_now = ev_time ();
1171 mn_now = get_clock (); 1648 mn_now = get_clock ();
1172 now_floor = mn_now; 1649 now_floor = mn_now;
1173 rtmn_diff = ev_rt_now - mn_now; 1650 rtmn_diff = ev_rt_now - mn_now;
1651#if EV_FEATURE_API
1652 invoke_cb = ev_invoke_pending;
1653#endif
1174 1654
1175 io_blocktime = 0.; 1655 io_blocktime = 0.;
1176 timeout_blocktime = 0.; 1656 timeout_blocktime = 0.;
1177 backend = 0; 1657 backend = 0;
1178 backend_fd = -1; 1658 backend_fd = -1;
1179 gotasync = 0; 1659 sig_pending = 0;
1660#if EV_ASYNC_ENABLE
1661 async_pending = 0;
1662#endif
1180#if EV_USE_INOTIFY 1663#if EV_USE_INOTIFY
1181 fs_fd = -2; 1664 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1182#endif 1665#endif
1183 1666#if EV_USE_SIGNALFD
1184 /* pid check not overridable via env */ 1667 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1185#ifndef _WIN32
1186 if (flags & EVFLAG_FORKCHECK)
1187 curpid = getpid ();
1188#endif 1668#endif
1189
1190 if (!(flags & EVFLAG_NOENV)
1191 && !enable_secure ()
1192 && getenv ("LIBEV_FLAGS"))
1193 flags = atoi (getenv ("LIBEV_FLAGS"));
1194 1669
1195 if (!(flags & 0x0000ffffU)) 1670 if (!(flags & 0x0000ffffU))
1196 flags |= ev_recommended_backends (); 1671 flags |= ev_recommended_backends ();
1197 1672
1198#if EV_USE_PORT 1673#if EV_USE_PORT
1209#endif 1684#endif
1210#if EV_USE_SELECT 1685#if EV_USE_SELECT
1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1686 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1212#endif 1687#endif
1213 1688
1689 ev_prepare_init (&pending_w, pendingcb);
1690
1691#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1214 ev_init (&pipeev, pipecb); 1692 ev_init (&pipe_w, pipecb);
1215 ev_set_priority (&pipeev, EV_MAXPRI); 1693 ev_set_priority (&pipe_w, EV_MAXPRI);
1694#endif
1216 } 1695 }
1217} 1696}
1218 1697
1698/* free up a loop structure */
1219static void noinline 1699static void noinline
1220loop_destroy (EV_P) 1700loop_destroy (EV_P)
1221{ 1701{
1222 int i; 1702 int i;
1223 1703
1224 if (ev_is_active (&pipeev)) 1704 if (ev_is_active (&pipe_w))
1225 { 1705 {
1226 ev_ref (EV_A); /* signal watcher */ 1706 /*ev_ref (EV_A);*/
1227 ev_io_stop (EV_A_ &pipeev); 1707 /*ev_io_stop (EV_A_ &pipe_w);*/
1228 1708
1229#if EV_USE_EVENTFD 1709#if EV_USE_EVENTFD
1230 if (evfd >= 0) 1710 if (evfd >= 0)
1231 close (evfd); 1711 close (evfd);
1232#endif 1712#endif
1233 1713
1234 if (evpipe [0] >= 0) 1714 if (evpipe [0] >= 0)
1235 { 1715 {
1236 close (evpipe [0]); 1716 EV_WIN32_CLOSE_FD (evpipe [0]);
1237 close (evpipe [1]); 1717 EV_WIN32_CLOSE_FD (evpipe [1]);
1238 } 1718 }
1239 } 1719 }
1720
1721#if EV_USE_SIGNALFD
1722 if (ev_is_active (&sigfd_w))
1723 close (sigfd);
1724#endif
1240 1725
1241#if EV_USE_INOTIFY 1726#if EV_USE_INOTIFY
1242 if (fs_fd >= 0) 1727 if (fs_fd >= 0)
1243 close (fs_fd); 1728 close (fs_fd);
1244#endif 1729#endif
1268#if EV_IDLE_ENABLE 1753#if EV_IDLE_ENABLE
1269 array_free (idle, [i]); 1754 array_free (idle, [i]);
1270#endif 1755#endif
1271 } 1756 }
1272 1757
1273 ev_free (anfds); anfdmax = 0; 1758 ev_free (anfds); anfds = 0; anfdmax = 0;
1274 1759
1275 /* have to use the microsoft-never-gets-it-right macro */ 1760 /* have to use the microsoft-never-gets-it-right macro */
1761 array_free (rfeed, EMPTY);
1276 array_free (fdchange, EMPTY); 1762 array_free (fdchange, EMPTY);
1277 array_free (timer, EMPTY); 1763 array_free (timer, EMPTY);
1278#if EV_PERIODIC_ENABLE 1764#if EV_PERIODIC_ENABLE
1279 array_free (periodic, EMPTY); 1765 array_free (periodic, EMPTY);
1280#endif 1766#endif
1289 1775
1290 backend = 0; 1776 backend = 0;
1291} 1777}
1292 1778
1293#if EV_USE_INOTIFY 1779#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P); 1780inline_size void infy_fork (EV_P);
1295#endif 1781#endif
1296 1782
1297void inline_size 1783inline_size void
1298loop_fork (EV_P) 1784loop_fork (EV_P)
1299{ 1785{
1300#if EV_USE_PORT 1786#if EV_USE_PORT
1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1787 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1302#endif 1788#endif
1308#endif 1794#endif
1309#if EV_USE_INOTIFY 1795#if EV_USE_INOTIFY
1310 infy_fork (EV_A); 1796 infy_fork (EV_A);
1311#endif 1797#endif
1312 1798
1313 if (ev_is_active (&pipeev)) 1799 if (ev_is_active (&pipe_w))
1314 { 1800 {
1315 /* this "locks" the handlers against writing to the pipe */ 1801 /* this "locks" the handlers against writing to the pipe */
1316 /* while we modify the fd vars */ 1802 /* while we modify the fd vars */
1317 gotsig = 1; 1803 sig_pending = 1;
1318#if EV_ASYNC_ENABLE 1804#if EV_ASYNC_ENABLE
1319 gotasync = 1; 1805 async_pending = 1;
1320#endif 1806#endif
1321 1807
1322 ev_ref (EV_A); 1808 ev_ref (EV_A);
1323 ev_io_stop (EV_A_ &pipeev); 1809 ev_io_stop (EV_A_ &pipe_w);
1324 1810
1325#if EV_USE_EVENTFD 1811#if EV_USE_EVENTFD
1326 if (evfd >= 0) 1812 if (evfd >= 0)
1327 close (evfd); 1813 close (evfd);
1328#endif 1814#endif
1329 1815
1330 if (evpipe [0] >= 0) 1816 if (evpipe [0] >= 0)
1331 { 1817 {
1332 close (evpipe [0]); 1818 EV_WIN32_CLOSE_FD (evpipe [0]);
1333 close (evpipe [1]); 1819 EV_WIN32_CLOSE_FD (evpipe [1]);
1334 } 1820 }
1335 1821
1822#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1336 evpipe_init (EV_A); 1823 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */ 1824 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ); 1825 pipecb (EV_A_ &pipe_w, EV_READ);
1826#endif
1339 } 1827 }
1340 1828
1341 postfork = 0; 1829 postfork = 0;
1342} 1830}
1343 1831
1344#if EV_MULTIPLICITY 1832#if EV_MULTIPLICITY
1833
1345struct ev_loop * 1834struct ev_loop *
1346ev_loop_new (unsigned int flags) 1835ev_loop_new (unsigned int flags)
1347{ 1836{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1837 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349 1838
1350 memset (loop, 0, sizeof (struct ev_loop)); 1839 memset (EV_A, 0, sizeof (struct ev_loop));
1351
1352 loop_init (EV_A_ flags); 1840 loop_init (EV_A_ flags);
1353 1841
1354 if (ev_backend (EV_A)) 1842 if (ev_backend (EV_A))
1355 return loop; 1843 return EV_A;
1356 1844
1357 return 0; 1845 return 0;
1358} 1846}
1359 1847
1360void 1848void
1367void 1855void
1368ev_loop_fork (EV_P) 1856ev_loop_fork (EV_P)
1369{ 1857{
1370 postfork = 1; /* must be in line with ev_default_fork */ 1858 postfork = 1; /* must be in line with ev_default_fork */
1371} 1859}
1860#endif /* multiplicity */
1372 1861
1862#if EV_VERIFY
1863static void noinline
1864verify_watcher (EV_P_ W w)
1865{
1866 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1867
1868 if (w->pending)
1869 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1870}
1871
1872static void noinline
1873verify_heap (EV_P_ ANHE *heap, int N)
1874{
1875 int i;
1876
1877 for (i = HEAP0; i < N + HEAP0; ++i)
1878 {
1879 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1880 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1881 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1882
1883 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1884 }
1885}
1886
1887static void noinline
1888array_verify (EV_P_ W *ws, int cnt)
1889{
1890 while (cnt--)
1891 {
1892 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1893 verify_watcher (EV_A_ ws [cnt]);
1894 }
1895}
1896#endif
1897
1898#if EV_FEATURE_API
1899void
1900ev_verify (EV_P)
1901{
1902#if EV_VERIFY
1903 int i;
1904 WL w;
1905
1906 assert (activecnt >= -1);
1907
1908 assert (fdchangemax >= fdchangecnt);
1909 for (i = 0; i < fdchangecnt; ++i)
1910 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1911
1912 assert (anfdmax >= 0);
1913 for (i = 0; i < anfdmax; ++i)
1914 for (w = anfds [i].head; w; w = w->next)
1915 {
1916 verify_watcher (EV_A_ (W)w);
1917 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1918 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1919 }
1920
1921 assert (timermax >= timercnt);
1922 verify_heap (EV_A_ timers, timercnt);
1923
1924#if EV_PERIODIC_ENABLE
1925 assert (periodicmax >= periodiccnt);
1926 verify_heap (EV_A_ periodics, periodiccnt);
1927#endif
1928
1929 for (i = NUMPRI; i--; )
1930 {
1931 assert (pendingmax [i] >= pendingcnt [i]);
1932#if EV_IDLE_ENABLE
1933 assert (idleall >= 0);
1934 assert (idlemax [i] >= idlecnt [i]);
1935 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1936#endif
1937 }
1938
1939#if EV_FORK_ENABLE
1940 assert (forkmax >= forkcnt);
1941 array_verify (EV_A_ (W *)forks, forkcnt);
1942#endif
1943
1944#if EV_ASYNC_ENABLE
1945 assert (asyncmax >= asynccnt);
1946 array_verify (EV_A_ (W *)asyncs, asynccnt);
1947#endif
1948
1949#if EV_PREPARE_ENABLE
1950 assert (preparemax >= preparecnt);
1951 array_verify (EV_A_ (W *)prepares, preparecnt);
1952#endif
1953
1954#if EV_CHECK_ENABLE
1955 assert (checkmax >= checkcnt);
1956 array_verify (EV_A_ (W *)checks, checkcnt);
1957#endif
1958
1959# if 0
1960#if EV_CHILD_ENABLE
1961 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1962 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1963#endif
1964# endif
1965#endif
1966}
1373#endif 1967#endif
1374 1968
1375#if EV_MULTIPLICITY 1969#if EV_MULTIPLICITY
1376struct ev_loop * 1970struct ev_loop *
1377ev_default_loop_init (unsigned int flags) 1971ev_default_loop_init (unsigned int flags)
1381#endif 1975#endif
1382{ 1976{
1383 if (!ev_default_loop_ptr) 1977 if (!ev_default_loop_ptr)
1384 { 1978 {
1385#if EV_MULTIPLICITY 1979#if EV_MULTIPLICITY
1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1980 EV_P = ev_default_loop_ptr = &default_loop_struct;
1387#else 1981#else
1388 ev_default_loop_ptr = 1; 1982 ev_default_loop_ptr = 1;
1389#endif 1983#endif
1390 1984
1391 loop_init (EV_A_ flags); 1985 loop_init (EV_A_ flags);
1392 1986
1393 if (ev_backend (EV_A)) 1987 if (ev_backend (EV_A))
1394 { 1988 {
1395#ifndef _WIN32 1989#if EV_CHILD_ENABLE
1396 ev_signal_init (&childev, childcb, SIGCHLD); 1990 ev_signal_init (&childev, childcb, SIGCHLD);
1397 ev_set_priority (&childev, EV_MAXPRI); 1991 ev_set_priority (&childev, EV_MAXPRI);
1398 ev_signal_start (EV_A_ &childev); 1992 ev_signal_start (EV_A_ &childev);
1399 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1993 ev_unref (EV_A); /* child watcher should not keep loop alive */
1400#endif 1994#endif
1408 2002
1409void 2003void
1410ev_default_destroy (void) 2004ev_default_destroy (void)
1411{ 2005{
1412#if EV_MULTIPLICITY 2006#if EV_MULTIPLICITY
1413 struct ev_loop *loop = ev_default_loop_ptr; 2007 EV_P = ev_default_loop_ptr;
1414#endif 2008#endif
1415 2009
1416#ifndef _WIN32 2010 ev_default_loop_ptr = 0;
2011
2012#if EV_CHILD_ENABLE
1417 ev_ref (EV_A); /* child watcher */ 2013 ev_ref (EV_A); /* child watcher */
1418 ev_signal_stop (EV_A_ &childev); 2014 ev_signal_stop (EV_A_ &childev);
1419#endif 2015#endif
1420 2016
1421 loop_destroy (EV_A); 2017 loop_destroy (EV_A);
1423 2019
1424void 2020void
1425ev_default_fork (void) 2021ev_default_fork (void)
1426{ 2022{
1427#if EV_MULTIPLICITY 2023#if EV_MULTIPLICITY
1428 struct ev_loop *loop = ev_default_loop_ptr; 2024 EV_P = ev_default_loop_ptr;
1429#endif 2025#endif
1430 2026
1431 if (backend)
1432 postfork = 1; /* must be in line with ev_loop_fork */ 2027 postfork = 1; /* must be in line with ev_loop_fork */
1433} 2028}
1434 2029
1435/*****************************************************************************/ 2030/*****************************************************************************/
1436 2031
1437void 2032void
1438ev_invoke (EV_P_ void *w, int revents) 2033ev_invoke (EV_P_ void *w, int revents)
1439{ 2034{
1440 EV_CB_INVOKE ((W)w, revents); 2035 EV_CB_INVOKE ((W)w, revents);
1441} 2036}
1442 2037
1443void inline_speed 2038unsigned int
1444call_pending (EV_P) 2039ev_pending_count (EV_P)
2040{
2041 int pri;
2042 unsigned int count = 0;
2043
2044 for (pri = NUMPRI; pri--; )
2045 count += pendingcnt [pri];
2046
2047 return count;
2048}
2049
2050void noinline
2051ev_invoke_pending (EV_P)
1445{ 2052{
1446 int pri; 2053 int pri;
1447 2054
1448 for (pri = NUMPRI; pri--; ) 2055 for (pri = NUMPRI; pri--; )
1449 while (pendingcnt [pri]) 2056 while (pendingcnt [pri])
1450 { 2057 {
1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2058 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1452 2059
1453 if (expect_true (p->w))
1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2060 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2061 /* ^ this is no longer true, as pending_w could be here */
1456 2062
1457 p->w->pending = 0; 2063 p->w->pending = 0;
1458 EV_CB_INVOKE (p->w, p->events); 2064 EV_CB_INVOKE (p->w, p->events);
1459 } 2065 EV_FREQUENT_CHECK;
1460 } 2066 }
1461} 2067}
1462 2068
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
1481 downheap (timers, timercnt, 1);
1482 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 {
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542
1543#if EV_IDLE_ENABLE 2069#if EV_IDLE_ENABLE
1544void inline_size 2070/* make idle watchers pending. this handles the "call-idle */
2071/* only when higher priorities are idle" logic */
2072inline_size void
1545idle_reify (EV_P) 2073idle_reify (EV_P)
1546{ 2074{
1547 if (expect_false (idleall)) 2075 if (expect_false (idleall))
1548 { 2076 {
1549 int pri; 2077 int pri;
1561 } 2089 }
1562 } 2090 }
1563} 2091}
1564#endif 2092#endif
1565 2093
1566void inline_speed 2094/* make timers pending */
2095inline_size void
2096timers_reify (EV_P)
2097{
2098 EV_FREQUENT_CHECK;
2099
2100 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2101 {
2102 do
2103 {
2104 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2105
2106 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2107
2108 /* first reschedule or stop timer */
2109 if (w->repeat)
2110 {
2111 ev_at (w) += w->repeat;
2112 if (ev_at (w) < mn_now)
2113 ev_at (w) = mn_now;
2114
2115 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2116
2117 ANHE_at_cache (timers [HEAP0]);
2118 downheap (timers, timercnt, HEAP0);
2119 }
2120 else
2121 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2122
2123 EV_FREQUENT_CHECK;
2124 feed_reverse (EV_A_ (W)w);
2125 }
2126 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2127
2128 feed_reverse_done (EV_A_ EV_TIMER);
2129 }
2130}
2131
2132#if EV_PERIODIC_ENABLE
2133/* make periodics pending */
2134inline_size void
2135periodics_reify (EV_P)
2136{
2137 EV_FREQUENT_CHECK;
2138
2139 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2140 {
2141 int feed_count = 0;
2142
2143 do
2144 {
2145 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2146
2147 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2148
2149 /* first reschedule or stop timer */
2150 if (w->reschedule_cb)
2151 {
2152 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2153
2154 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2155
2156 ANHE_at_cache (periodics [HEAP0]);
2157 downheap (periodics, periodiccnt, HEAP0);
2158 }
2159 else if (w->interval)
2160 {
2161 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2162 /* if next trigger time is not sufficiently in the future, put it there */
2163 /* this might happen because of floating point inexactness */
2164 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2165 {
2166 ev_at (w) += w->interval;
2167
2168 /* if interval is unreasonably low we might still have a time in the past */
2169 /* so correct this. this will make the periodic very inexact, but the user */
2170 /* has effectively asked to get triggered more often than possible */
2171 if (ev_at (w) < ev_rt_now)
2172 ev_at (w) = ev_rt_now;
2173 }
2174
2175 ANHE_at_cache (periodics [HEAP0]);
2176 downheap (periodics, periodiccnt, HEAP0);
2177 }
2178 else
2179 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2180
2181 EV_FREQUENT_CHECK;
2182 feed_reverse (EV_A_ (W)w);
2183 }
2184 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2185
2186 feed_reverse_done (EV_A_ EV_PERIODIC);
2187 }
2188}
2189
2190/* simply recalculate all periodics */
2191/* TODO: maybe ensure that at least one event happens when jumping forward? */
2192static void noinline
2193periodics_reschedule (EV_P)
2194{
2195 int i;
2196
2197 /* adjust periodics after time jump */
2198 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2199 {
2200 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2201
2202 if (w->reschedule_cb)
2203 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2204 else if (w->interval)
2205 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2206
2207 ANHE_at_cache (periodics [i]);
2208 }
2209
2210 reheap (periodics, periodiccnt);
2211}
2212#endif
2213
2214/* adjust all timers by a given offset */
2215static void noinline
2216timers_reschedule (EV_P_ ev_tstamp adjust)
2217{
2218 int i;
2219
2220 for (i = 0; i < timercnt; ++i)
2221 {
2222 ANHE *he = timers + i + HEAP0;
2223 ANHE_w (*he)->at += adjust;
2224 ANHE_at_cache (*he);
2225 }
2226}
2227
2228/* fetch new monotonic and realtime times from the kernel */
2229/* also detect if there was a timejump, and act accordingly */
2230inline_speed void
1567time_update (EV_P_ ev_tstamp max_block) 2231time_update (EV_P_ ev_tstamp max_block)
1568{ 2232{
1569 int i;
1570
1571#if EV_USE_MONOTONIC 2233#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic)) 2234 if (expect_true (have_monotonic))
1573 { 2235 {
2236 int i;
1574 ev_tstamp odiff = rtmn_diff; 2237 ev_tstamp odiff = rtmn_diff;
1575 2238
1576 mn_now = get_clock (); 2239 mn_now = get_clock ();
1577 2240
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2241 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1596 */ 2259 */
1597 for (i = 4; --i; ) 2260 for (i = 4; --i; )
1598 { 2261 {
1599 rtmn_diff = ev_rt_now - mn_now; 2262 rtmn_diff = ev_rt_now - mn_now;
1600 2263
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2264 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 2265 return; /* all is well */
1603 2266
1604 ev_rt_now = ev_time (); 2267 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 2268 mn_now = get_clock ();
1606 now_floor = mn_now; 2269 now_floor = mn_now;
1607 } 2270 }
1608 2271
2272 /* no timer adjustment, as the monotonic clock doesn't jump */
2273 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609# if EV_PERIODIC_ENABLE 2274# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A); 2275 periodics_reschedule (EV_A);
1611# endif 2276# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 } 2277 }
1615 else 2278 else
1616#endif 2279#endif
1617 { 2280 {
1618 ev_rt_now = ev_time (); 2281 ev_rt_now = ev_time ();
1619 2282
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2283 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 { 2284 {
2285 /* adjust timers. this is easy, as the offset is the same for all of them */
2286 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1622#if EV_PERIODIC_ENABLE 2287#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 2288 periodics_reschedule (EV_A);
1624#endif 2289#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1628 } 2290 }
1629 2291
1630 mn_now = ev_rt_now; 2292 mn_now = ev_rt_now;
1631 } 2293 }
1632} 2294}
1633 2295
1634void 2296void
1635ev_ref (EV_P)
1636{
1637 ++activecnt;
1638}
1639
1640void
1641ev_unref (EV_P)
1642{
1643 --activecnt;
1644}
1645
1646static int loop_done;
1647
1648void
1649ev_loop (EV_P_ int flags) 2297ev_run (EV_P_ int flags)
1650{ 2298{
2299#if EV_FEATURE_API
2300 ++loop_depth;
2301#endif
2302
2303 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2304
1651 loop_done = EVUNLOOP_CANCEL; 2305 loop_done = EVBREAK_CANCEL;
1652 2306
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2307 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1654 2308
1655 do 2309 do
1656 { 2310 {
2311#if EV_VERIFY >= 2
2312 ev_verify (EV_A);
2313#endif
2314
1657#ifndef _WIN32 2315#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */ 2316 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid)) 2317 if (expect_false (getpid () != curpid))
1660 { 2318 {
1661 curpid = getpid (); 2319 curpid = getpid ();
1667 /* we might have forked, so queue fork handlers */ 2325 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork)) 2326 if (expect_false (postfork))
1669 if (forkcnt) 2327 if (forkcnt)
1670 { 2328 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2329 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A); 2330 EV_INVOKE_PENDING;
1673 } 2331 }
1674#endif 2332#endif
1675 2333
2334#if EV_PREPARE_ENABLE
1676 /* queue prepare watchers (and execute them) */ 2335 /* queue prepare watchers (and execute them) */
1677 if (expect_false (preparecnt)) 2336 if (expect_false (preparecnt))
1678 { 2337 {
1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2338 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1680 call_pending (EV_A); 2339 EV_INVOKE_PENDING;
1681 } 2340 }
2341#endif
1682 2342
1683 if (expect_false (!activecnt)) 2343 if (expect_false (loop_done))
1684 break; 2344 break;
1685 2345
1686 /* we might have forked, so reify kernel state if necessary */ 2346 /* we might have forked, so reify kernel state if necessary */
1687 if (expect_false (postfork)) 2347 if (expect_false (postfork))
1688 loop_fork (EV_A); 2348 loop_fork (EV_A);
1693 /* calculate blocking time */ 2353 /* calculate blocking time */
1694 { 2354 {
1695 ev_tstamp waittime = 0.; 2355 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.; 2356 ev_tstamp sleeptime = 0.;
1697 2357
2358 /* remember old timestamp for io_blocktime calculation */
2359 ev_tstamp prev_mn_now = mn_now;
2360
2361 /* update time to cancel out callback processing overhead */
2362 time_update (EV_A_ 1e100);
2363
1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2364 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1699 { 2365 {
1700 /* update time to cancel out callback processing overhead */
1701 time_update (EV_A_ 1e100);
1702
1703 waittime = MAX_BLOCKTIME; 2366 waittime = MAX_BLOCKTIME;
1704 2367
1705 if (timercnt) 2368 if (timercnt)
1706 { 2369 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2370 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1708 if (waittime > to) waittime = to; 2371 if (waittime > to) waittime = to;
1709 } 2372 }
1710 2373
1711#if EV_PERIODIC_ENABLE 2374#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 2375 if (periodiccnt)
1713 { 2376 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1715 if (waittime > to) waittime = to; 2378 if (waittime > to) waittime = to;
1716 } 2379 }
1717#endif 2380#endif
1718 2381
2382 /* don't let timeouts decrease the waittime below timeout_blocktime */
1719 if (expect_false (waittime < timeout_blocktime)) 2383 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime; 2384 waittime = timeout_blocktime;
1721 2385
1722 sleeptime = waittime - backend_fudge; 2386 /* extra check because io_blocktime is commonly 0 */
1723
1724 if (expect_true (sleeptime > io_blocktime)) 2387 if (expect_false (io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 { 2388 {
2389 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2390
2391 if (sleeptime > waittime - backend_fudge)
2392 sleeptime = waittime - backend_fudge;
2393
2394 if (expect_true (sleeptime > 0.))
2395 {
1729 ev_sleep (sleeptime); 2396 ev_sleep (sleeptime);
1730 waittime -= sleeptime; 2397 waittime -= sleeptime;
2398 }
1731 } 2399 }
1732 } 2400 }
1733 2401
2402#if EV_FEATURE_API
1734 ++loop_count; 2403 ++loop_count;
2404#endif
2405 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1735 backend_poll (EV_A_ waittime); 2406 backend_poll (EV_A_ waittime);
2407 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1736 2408
1737 /* update ev_rt_now, do magic */ 2409 /* update ev_rt_now, do magic */
1738 time_update (EV_A_ waittime + sleeptime); 2410 time_update (EV_A_ waittime + sleeptime);
1739 } 2411 }
1740 2412
1747#if EV_IDLE_ENABLE 2419#if EV_IDLE_ENABLE
1748 /* queue idle watchers unless other events are pending */ 2420 /* queue idle watchers unless other events are pending */
1749 idle_reify (EV_A); 2421 idle_reify (EV_A);
1750#endif 2422#endif
1751 2423
2424#if EV_CHECK_ENABLE
1752 /* queue check watchers, to be executed first */ 2425 /* queue check watchers, to be executed first */
1753 if (expect_false (checkcnt)) 2426 if (expect_false (checkcnt))
1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2427 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2428#endif
1755 2429
1756 call_pending (EV_A); 2430 EV_INVOKE_PENDING;
1757 } 2431 }
1758 while (expect_true ( 2432 while (expect_true (
1759 activecnt 2433 activecnt
1760 && !loop_done 2434 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2435 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1762 )); 2436 ));
1763 2437
1764 if (loop_done == EVUNLOOP_ONE) 2438 if (loop_done == EVBREAK_ONE)
1765 loop_done = EVUNLOOP_CANCEL; 2439 loop_done = EVBREAK_CANCEL;
1766}
1767 2440
2441#if EV_FEATURE_API
2442 --loop_depth;
2443#endif
2444}
2445
1768void 2446void
1769ev_unloop (EV_P_ int how) 2447ev_break (EV_P_ int how)
1770{ 2448{
1771 loop_done = how; 2449 loop_done = how;
1772} 2450}
1773 2451
2452void
2453ev_ref (EV_P)
2454{
2455 ++activecnt;
2456}
2457
2458void
2459ev_unref (EV_P)
2460{
2461 --activecnt;
2462}
2463
2464void
2465ev_now_update (EV_P)
2466{
2467 time_update (EV_A_ 1e100);
2468}
2469
2470void
2471ev_suspend (EV_P)
2472{
2473 ev_now_update (EV_A);
2474}
2475
2476void
2477ev_resume (EV_P)
2478{
2479 ev_tstamp mn_prev = mn_now;
2480
2481 ev_now_update (EV_A);
2482 timers_reschedule (EV_A_ mn_now - mn_prev);
2483#if EV_PERIODIC_ENABLE
2484 /* TODO: really do this? */
2485 periodics_reschedule (EV_A);
2486#endif
2487}
2488
1774/*****************************************************************************/ 2489/*****************************************************************************/
2490/* singly-linked list management, used when the expected list length is short */
1775 2491
1776void inline_size 2492inline_size void
1777wlist_add (WL *head, WL elem) 2493wlist_add (WL *head, WL elem)
1778{ 2494{
1779 elem->next = *head; 2495 elem->next = *head;
1780 *head = elem; 2496 *head = elem;
1781} 2497}
1782 2498
1783void inline_size 2499inline_size void
1784wlist_del (WL *head, WL elem) 2500wlist_del (WL *head, WL elem)
1785{ 2501{
1786 while (*head) 2502 while (*head)
1787 { 2503 {
1788 if (*head == elem) 2504 if (expect_true (*head == elem))
1789 { 2505 {
1790 *head = elem->next; 2506 *head = elem->next;
1791 return; 2507 break;
1792 } 2508 }
1793 2509
1794 head = &(*head)->next; 2510 head = &(*head)->next;
1795 } 2511 }
1796} 2512}
1797 2513
1798void inline_speed 2514/* internal, faster, version of ev_clear_pending */
2515inline_speed void
1799clear_pending (EV_P_ W w) 2516clear_pending (EV_P_ W w)
1800{ 2517{
1801 if (w->pending) 2518 if (w->pending)
1802 { 2519 {
1803 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2520 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1804 w->pending = 0; 2521 w->pending = 0;
1805 } 2522 }
1806} 2523}
1807 2524
1808int 2525int
1812 int pending = w_->pending; 2529 int pending = w_->pending;
1813 2530
1814 if (expect_true (pending)) 2531 if (expect_true (pending))
1815 { 2532 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2533 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2534 p->w = (W)&pending_w;
1817 w_->pending = 0; 2535 w_->pending = 0;
1818 p->w = 0;
1819 return p->events; 2536 return p->events;
1820 } 2537 }
1821 else 2538 else
1822 return 0; 2539 return 0;
1823} 2540}
1824 2541
1825void inline_size 2542inline_size void
1826pri_adjust (EV_P_ W w) 2543pri_adjust (EV_P_ W w)
1827{ 2544{
1828 int pri = w->priority; 2545 int pri = ev_priority (w);
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2546 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2547 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri; 2548 ev_set_priority (w, pri);
1832} 2549}
1833 2550
1834void inline_speed 2551inline_speed void
1835ev_start (EV_P_ W w, int active) 2552ev_start (EV_P_ W w, int active)
1836{ 2553{
1837 pri_adjust (EV_A_ w); 2554 pri_adjust (EV_A_ w);
1838 w->active = active; 2555 w->active = active;
1839 ev_ref (EV_A); 2556 ev_ref (EV_A);
1840} 2557}
1841 2558
1842void inline_size 2559inline_size void
1843ev_stop (EV_P_ W w) 2560ev_stop (EV_P_ W w)
1844{ 2561{
1845 ev_unref (EV_A); 2562 ev_unref (EV_A);
1846 w->active = 0; 2563 w->active = 0;
1847} 2564}
1854 int fd = w->fd; 2571 int fd = w->fd;
1855 2572
1856 if (expect_false (ev_is_active (w))) 2573 if (expect_false (ev_is_active (w)))
1857 return; 2574 return;
1858 2575
1859 assert (("ev_io_start called with negative fd", fd >= 0)); 2576 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2577 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2578
2579 EV_FREQUENT_CHECK;
1860 2580
1861 ev_start (EV_A_ (W)w, 1); 2581 ev_start (EV_A_ (W)w, 1);
1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2582 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1863 wlist_add (&anfds[fd].head, (WL)w); 2583 wlist_add (&anfds[fd].head, (WL)w);
1864 2584
1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2585 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1866 w->events &= ~EV_IOFDSET; 2586 w->events &= ~EV__IOFDSET;
2587
2588 EV_FREQUENT_CHECK;
1867} 2589}
1868 2590
1869void noinline 2591void noinline
1870ev_io_stop (EV_P_ ev_io *w) 2592ev_io_stop (EV_P_ ev_io *w)
1871{ 2593{
1872 clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
1874 return; 2596 return;
1875 2597
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2598 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2599
2600 EV_FREQUENT_CHECK;
1877 2601
1878 wlist_del (&anfds[w->fd].head, (WL)w); 2602 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 2603 ev_stop (EV_A_ (W)w);
1880 2604
1881 fd_change (EV_A_ w->fd, 1); 2605 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2606
2607 EV_FREQUENT_CHECK;
1882} 2608}
1883 2609
1884void noinline 2610void noinline
1885ev_timer_start (EV_P_ ev_timer *w) 2611ev_timer_start (EV_P_ ev_timer *w)
1886{ 2612{
1887 if (expect_false (ev_is_active (w))) 2613 if (expect_false (ev_is_active (w)))
1888 return; 2614 return;
1889 2615
1890 ev_at (w) += mn_now; 2616 ev_at (w) += mn_now;
1891 2617
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2618 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 2619
2620 EV_FREQUENT_CHECK;
2621
2622 ++timercnt;
1894 ev_start (EV_A_ (W)w, ++timercnt); 2623 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2624 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 2625 ANHE_w (timers [ev_active (w)]) = (WT)w;
2626 ANHE_at_cache (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 2627 upheap (timers, ev_active (w));
1898 2628
2629 EV_FREQUENT_CHECK;
2630
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 2631 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 2632}
1901 2633
1902void noinline 2634void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 2635ev_timer_stop (EV_P_ ev_timer *w)
1904{ 2636{
1905 clear_pending (EV_A_ (W)w); 2637 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 2638 if (expect_false (!ev_is_active (w)))
1907 return; 2639 return;
1908 2640
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 2641 EV_FREQUENT_CHECK;
1910 2642
1911 { 2643 {
1912 int active = ((W)w)->active; 2644 int active = ev_active (w);
1913 2645
2646 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2647
2648 --timercnt;
2649
1914 if (expect_true (active < timercnt)) 2650 if (expect_true (active < timercnt + HEAP0))
1915 { 2651 {
1916 timers [active] = timers [timercnt]; 2652 timers [active] = timers [timercnt + HEAP0];
1917 adjustheap (timers, timercnt, active); 2653 adjustheap (timers, timercnt, active);
1918 } 2654 }
1919
1920 --timercnt;
1921 } 2655 }
1922 2656
1923 ev_at (w) -= mn_now; 2657 ev_at (w) -= mn_now;
1924 2658
1925 ev_stop (EV_A_ (W)w); 2659 ev_stop (EV_A_ (W)w);
2660
2661 EV_FREQUENT_CHECK;
1926} 2662}
1927 2663
1928void noinline 2664void noinline
1929ev_timer_again (EV_P_ ev_timer *w) 2665ev_timer_again (EV_P_ ev_timer *w)
1930{ 2666{
2667 EV_FREQUENT_CHECK;
2668
1931 if (ev_is_active (w)) 2669 if (ev_is_active (w))
1932 { 2670 {
1933 if (w->repeat) 2671 if (w->repeat)
1934 { 2672 {
1935 ev_at (w) = mn_now + w->repeat; 2673 ev_at (w) = mn_now + w->repeat;
2674 ANHE_at_cache (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 2675 adjustheap (timers, timercnt, ev_active (w));
1937 } 2676 }
1938 else 2677 else
1939 ev_timer_stop (EV_A_ w); 2678 ev_timer_stop (EV_A_ w);
1940 } 2679 }
1941 else if (w->repeat) 2680 else if (w->repeat)
1942 { 2681 {
1943 w->at = w->repeat; 2682 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 2683 ev_timer_start (EV_A_ w);
1945 } 2684 }
2685
2686 EV_FREQUENT_CHECK;
2687}
2688
2689ev_tstamp
2690ev_timer_remaining (EV_P_ ev_timer *w)
2691{
2692 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1946} 2693}
1947 2694
1948#if EV_PERIODIC_ENABLE 2695#if EV_PERIODIC_ENABLE
1949void noinline 2696void noinline
1950ev_periodic_start (EV_P_ ev_periodic *w) 2697ev_periodic_start (EV_P_ ev_periodic *w)
1954 2701
1955 if (w->reschedule_cb) 2702 if (w->reschedule_cb)
1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2703 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1957 else if (w->interval) 2704 else if (w->interval)
1958 { 2705 {
1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2706 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1960 /* this formula differs from the one in periodic_reify because we do not always round up */ 2707 /* this formula differs from the one in periodic_reify because we do not always round up */
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2708 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 2709 }
1963 else 2710 else
1964 ev_at (w) = w->offset; 2711 ev_at (w) = w->offset;
1965 2712
2713 EV_FREQUENT_CHECK;
2714
2715 ++periodiccnt;
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 2716 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2717 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 2718 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 2719 ANHE_at_cache (periodics [ev_active (w)]);
2720 upheap (periodics, ev_active (w));
1970 2721
2722 EV_FREQUENT_CHECK;
2723
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2724 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 2725}
1973 2726
1974void noinline 2727void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 2728ev_periodic_stop (EV_P_ ev_periodic *w)
1976{ 2729{
1977 clear_pending (EV_A_ (W)w); 2730 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2731 if (expect_false (!ev_is_active (w)))
1979 return; 2732 return;
1980 2733
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 2734 EV_FREQUENT_CHECK;
1982 2735
1983 { 2736 {
1984 int active = ((W)w)->active; 2737 int active = ev_active (w);
1985 2738
2739 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2740
2741 --periodiccnt;
2742
1986 if (expect_true (active < periodiccnt)) 2743 if (expect_true (active < periodiccnt + HEAP0))
1987 { 2744 {
1988 periodics [active] = periodics [periodiccnt]; 2745 periodics [active] = periodics [periodiccnt + HEAP0];
1989 adjustheap (periodics, periodiccnt, active); 2746 adjustheap (periodics, periodiccnt, active);
1990 } 2747 }
1991
1992 --periodiccnt;
1993 } 2748 }
1994 2749
1995 ev_stop (EV_A_ (W)w); 2750 ev_stop (EV_A_ (W)w);
2751
2752 EV_FREQUENT_CHECK;
1996} 2753}
1997 2754
1998void noinline 2755void noinline
1999ev_periodic_again (EV_P_ ev_periodic *w) 2756ev_periodic_again (EV_P_ ev_periodic *w)
2000{ 2757{
2006 2763
2007#ifndef SA_RESTART 2764#ifndef SA_RESTART
2008# define SA_RESTART 0 2765# define SA_RESTART 0
2009#endif 2766#endif
2010 2767
2768#if EV_SIGNAL_ENABLE
2769
2011void noinline 2770void noinline
2012ev_signal_start (EV_P_ ev_signal *w) 2771ev_signal_start (EV_P_ ev_signal *w)
2013{ 2772{
2014#if EV_MULTIPLICITY
2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2016#endif
2017 if (expect_false (ev_is_active (w))) 2773 if (expect_false (ev_is_active (w)))
2018 return; 2774 return;
2019 2775
2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2776 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2021 2777
2022 evpipe_init (EV_A); 2778#if EV_MULTIPLICITY
2779 assert (("libev: a signal must not be attached to two different loops",
2780 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2023 2781
2782 signals [w->signum - 1].loop = EV_A;
2783#endif
2784
2785 EV_FREQUENT_CHECK;
2786
2787#if EV_USE_SIGNALFD
2788 if (sigfd == -2)
2024 { 2789 {
2025#ifndef _WIN32 2790 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2026 sigset_t full, prev; 2791 if (sigfd < 0 && errno == EINVAL)
2027 sigfillset (&full); 2792 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030 2793
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2794 if (sigfd >= 0)
2795 {
2796 fd_intern (sigfd); /* doing it twice will not hurt */
2032 2797
2033#ifndef _WIN32 2798 sigemptyset (&sigfd_set);
2034 sigprocmask (SIG_SETMASK, &prev, 0); 2799
2035#endif 2800 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2801 ev_set_priority (&sigfd_w, EV_MAXPRI);
2802 ev_io_start (EV_A_ &sigfd_w);
2803 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2804 }
2036 } 2805 }
2806
2807 if (sigfd >= 0)
2808 {
2809 /* TODO: check .head */
2810 sigaddset (&sigfd_set, w->signum);
2811 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2812
2813 signalfd (sigfd, &sigfd_set, 0);
2814 }
2815#endif
2037 2816
2038 ev_start (EV_A_ (W)w, 1); 2817 ev_start (EV_A_ (W)w, 1);
2039 wlist_add (&signals [w->signum - 1].head, (WL)w); 2818 wlist_add (&signals [w->signum - 1].head, (WL)w);
2040 2819
2041 if (!((WL)w)->next) 2820 if (!((WL)w)->next)
2821# if EV_USE_SIGNALFD
2822 if (sigfd < 0) /*TODO*/
2823# endif
2042 { 2824 {
2043#if _WIN32 2825# ifdef _WIN32
2826 evpipe_init (EV_A);
2827
2044 signal (w->signum, ev_sighandler); 2828 signal (w->signum, ev_sighandler);
2045#else 2829# else
2046 struct sigaction sa; 2830 struct sigaction sa;
2831
2832 evpipe_init (EV_A);
2833
2047 sa.sa_handler = ev_sighandler; 2834 sa.sa_handler = ev_sighandler;
2048 sigfillset (&sa.sa_mask); 2835 sigfillset (&sa.sa_mask);
2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2836 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2050 sigaction (w->signum, &sa, 0); 2837 sigaction (w->signum, &sa, 0);
2838
2839 sigemptyset (&sa.sa_mask);
2840 sigaddset (&sa.sa_mask, w->signum);
2841 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2051#endif 2842#endif
2052 } 2843 }
2844
2845 EV_FREQUENT_CHECK;
2053} 2846}
2054 2847
2055void noinline 2848void noinline
2056ev_signal_stop (EV_P_ ev_signal *w) 2849ev_signal_stop (EV_P_ ev_signal *w)
2057{ 2850{
2058 clear_pending (EV_A_ (W)w); 2851 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 2852 if (expect_false (!ev_is_active (w)))
2060 return; 2853 return;
2061 2854
2855 EV_FREQUENT_CHECK;
2856
2062 wlist_del (&signals [w->signum - 1].head, (WL)w); 2857 wlist_del (&signals [w->signum - 1].head, (WL)w);
2063 ev_stop (EV_A_ (W)w); 2858 ev_stop (EV_A_ (W)w);
2064 2859
2065 if (!signals [w->signum - 1].head) 2860 if (!signals [w->signum - 1].head)
2861 {
2862#if EV_MULTIPLICITY
2863 signals [w->signum - 1].loop = 0; /* unattach from signal */
2864#endif
2865#if EV_USE_SIGNALFD
2866 if (sigfd >= 0)
2867 {
2868 sigset_t ss;
2869
2870 sigemptyset (&ss);
2871 sigaddset (&ss, w->signum);
2872 sigdelset (&sigfd_set, w->signum);
2873
2874 signalfd (sigfd, &sigfd_set, 0);
2875 sigprocmask (SIG_UNBLOCK, &ss, 0);
2876 }
2877 else
2878#endif
2066 signal (w->signum, SIG_DFL); 2879 signal (w->signum, SIG_DFL);
2880 }
2881
2882 EV_FREQUENT_CHECK;
2067} 2883}
2884
2885#endif
2886
2887#if EV_CHILD_ENABLE
2068 2888
2069void 2889void
2070ev_child_start (EV_P_ ev_child *w) 2890ev_child_start (EV_P_ ev_child *w)
2071{ 2891{
2072#if EV_MULTIPLICITY 2892#if EV_MULTIPLICITY
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2893 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif 2894#endif
2075 if (expect_false (ev_is_active (w))) 2895 if (expect_false (ev_is_active (w)))
2076 return; 2896 return;
2077 2897
2898 EV_FREQUENT_CHECK;
2899
2078 ev_start (EV_A_ (W)w, 1); 2900 ev_start (EV_A_ (W)w, 1);
2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2901 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2902
2903 EV_FREQUENT_CHECK;
2080} 2904}
2081 2905
2082void 2906void
2083ev_child_stop (EV_P_ ev_child *w) 2907ev_child_stop (EV_P_ ev_child *w)
2084{ 2908{
2085 clear_pending (EV_A_ (W)w); 2909 clear_pending (EV_A_ (W)w);
2086 if (expect_false (!ev_is_active (w))) 2910 if (expect_false (!ev_is_active (w)))
2087 return; 2911 return;
2088 2912
2913 EV_FREQUENT_CHECK;
2914
2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2915 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2090 ev_stop (EV_A_ (W)w); 2916 ev_stop (EV_A_ (W)w);
2917
2918 EV_FREQUENT_CHECK;
2091} 2919}
2920
2921#endif
2092 2922
2093#if EV_STAT_ENABLE 2923#if EV_STAT_ENABLE
2094 2924
2095# ifdef _WIN32 2925# ifdef _WIN32
2096# undef lstat 2926# undef lstat
2097# define lstat(a,b) _stati64 (a,b) 2927# define lstat(a,b) _stati64 (a,b)
2098# endif 2928# endif
2099 2929
2100#define DEF_STAT_INTERVAL 5.0074891 2930#define DEF_STAT_INTERVAL 5.0074891
2931#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2101#define MIN_STAT_INTERVAL 0.1074891 2932#define MIN_STAT_INTERVAL 0.1074891
2102 2933
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2934static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104 2935
2105#if EV_USE_INOTIFY 2936#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192 2937
2938/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2939# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2107 2940
2108static void noinline 2941static void noinline
2109infy_add (EV_P_ ev_stat *w) 2942infy_add (EV_P_ ev_stat *w)
2110{ 2943{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112 2945
2113 if (w->wd < 0) 2946 if (w->wd >= 0)
2947 {
2948 struct statfs sfs;
2949
2950 /* now local changes will be tracked by inotify, but remote changes won't */
2951 /* unless the filesystem is known to be local, we therefore still poll */
2952 /* also do poll on <2.6.25, but with normal frequency */
2953
2954 if (!fs_2625)
2955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2956 else if (!statfs (w->path, &sfs)
2957 && (sfs.f_type == 0x1373 /* devfs */
2958 || sfs.f_type == 0xEF53 /* ext2/3 */
2959 || sfs.f_type == 0x3153464a /* jfs */
2960 || sfs.f_type == 0x52654973 /* reiser3 */
2961 || sfs.f_type == 0x01021994 /* tempfs */
2962 || sfs.f_type == 0x58465342 /* xfs */))
2963 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2964 else
2965 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2114 { 2966 }
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2967 else
2968 {
2969 /* can't use inotify, continue to stat */
2970 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2116 2971
2117 /* monitor some parent directory for speedup hints */ 2972 /* if path is not there, monitor some parent directory for speedup hints */
2973 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2974 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2975 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 2976 {
2120 char path [4096]; 2977 char path [4096];
2121 strcpy (path, w->path); 2978 strcpy (path, w->path);
2122 2979
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2982 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2983 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127 2984
2128 char *pend = strrchr (path, '/'); 2985 char *pend = strrchr (path, '/');
2129 2986
2130 if (!pend) 2987 if (!pend || pend == path)
2131 break; /* whoops, no '/', complain to your admin */ 2988 break;
2132 2989
2133 *pend = 0; 2990 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask); 2991 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 } 2992 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2993 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 } 2994 }
2138 } 2995 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141 2996
2142 if (w->wd >= 0) 2997 if (w->wd >= 0)
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2998 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2999
3000 /* now re-arm timer, if required */
3001 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3002 ev_timer_again (EV_A_ &w->timer);
3003 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2144} 3004}
2145 3005
2146static void noinline 3006static void noinline
2147infy_del (EV_P_ ev_stat *w) 3007infy_del (EV_P_ ev_stat *w)
2148{ 3008{
2151 3011
2152 if (wd < 0) 3012 if (wd < 0)
2153 return; 3013 return;
2154 3014
2155 w->wd = -2; 3015 w->wd = -2;
2156 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3016 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2157 wlist_del (&fs_hash [slot].head, (WL)w); 3017 wlist_del (&fs_hash [slot].head, (WL)w);
2158 3018
2159 /* remove this watcher, if others are watching it, they will rearm */ 3019 /* remove this watcher, if others are watching it, they will rearm */
2160 inotify_rm_watch (fs_fd, wd); 3020 inotify_rm_watch (fs_fd, wd);
2161} 3021}
2162 3022
2163static void noinline 3023static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3024infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{ 3025{
2166 if (slot < 0) 3026 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */ 3027 /* overflow, need to check for all hash slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3028 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2169 infy_wd (EV_A_ slot, wd, ev); 3029 infy_wd (EV_A_ slot, wd, ev);
2170 else 3030 else
2171 { 3031 {
2172 WL w_; 3032 WL w_;
2173 3033
2174 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3034 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2175 { 3035 {
2176 ev_stat *w = (ev_stat *)w_; 3036 ev_stat *w = (ev_stat *)w_;
2177 w_ = w_->next; /* lets us remove this watcher and all before it */ 3037 w_ = w_->next; /* lets us remove this watcher and all before it */
2178 3038
2179 if (w->wd == wd || wd == -1) 3039 if (w->wd == wd || wd == -1)
2180 { 3040 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3041 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 { 3042 {
3043 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2183 w->wd = -1; 3044 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */ 3045 infy_add (EV_A_ w); /* re-add, no matter what */
2185 } 3046 }
2186 3047
2187 stat_timer_cb (EV_A_ &w->timer, 0); 3048 stat_timer_cb (EV_A_ &w->timer, 0);
2192 3053
2193static void 3054static void
2194infy_cb (EV_P_ ev_io *w, int revents) 3055infy_cb (EV_P_ ev_io *w, int revents)
2195{ 3056{
2196 char buf [EV_INOTIFY_BUFSIZE]; 3057 char buf [EV_INOTIFY_BUFSIZE];
2197 struct inotify_event *ev = (struct inotify_event *)buf;
2198 int ofs; 3058 int ofs;
2199 int len = read (fs_fd, buf, sizeof (buf)); 3059 int len = read (fs_fd, buf, sizeof (buf));
2200 3060
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3061 for (ofs = 0; ofs < len; )
3062 {
3063 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3064 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3065 ofs += sizeof (struct inotify_event) + ev->len;
3066 }
2203} 3067}
2204 3068
2205void inline_size 3069inline_size unsigned int
3070ev_linux_version (void)
3071{
3072 struct utsname buf;
3073 unsigned int v;
3074 int i;
3075 char *p = buf.release;
3076
3077 if (uname (&buf))
3078 return 0;
3079
3080 for (i = 3+1; --i; )
3081 {
3082 unsigned int c = 0;
3083
3084 for (;;)
3085 {
3086 if (*p >= '0' && *p <= '9')
3087 c = c * 10 + *p++ - '0';
3088 else
3089 {
3090 p += *p == '.';
3091 break;
3092 }
3093 }
3094
3095 v = (v << 8) | c;
3096 }
3097
3098 return v;
3099}
3100
3101inline_size void
3102ev_check_2625 (EV_P)
3103{
3104 /* kernels < 2.6.25 are borked
3105 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3106 */
3107 if (ev_linux_version () < 0x020619)
3108 return;
3109
3110 fs_2625 = 1;
3111}
3112
3113inline_size int
3114infy_newfd (void)
3115{
3116#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3117 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3118 if (fd >= 0)
3119 return fd;
3120#endif
3121 return inotify_init ();
3122}
3123
3124inline_size void
2206infy_init (EV_P) 3125infy_init (EV_P)
2207{ 3126{
2208 if (fs_fd != -2) 3127 if (fs_fd != -2)
2209 return; 3128 return;
2210 3129
3130 fs_fd = -1;
3131
3132 ev_check_2625 (EV_A);
3133
2211 fs_fd = inotify_init (); 3134 fs_fd = infy_newfd ();
2212 3135
2213 if (fs_fd >= 0) 3136 if (fs_fd >= 0)
2214 { 3137 {
3138 fd_intern (fs_fd);
2215 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3139 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2216 ev_set_priority (&fs_w, EV_MAXPRI); 3140 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w); 3141 ev_io_start (EV_A_ &fs_w);
3142 ev_unref (EV_A);
2218 } 3143 }
2219} 3144}
2220 3145
2221void inline_size 3146inline_size void
2222infy_fork (EV_P) 3147infy_fork (EV_P)
2223{ 3148{
2224 int slot; 3149 int slot;
2225 3150
2226 if (fs_fd < 0) 3151 if (fs_fd < 0)
2227 return; 3152 return;
2228 3153
3154 ev_ref (EV_A);
3155 ev_io_stop (EV_A_ &fs_w);
2229 close (fs_fd); 3156 close (fs_fd);
2230 fs_fd = inotify_init (); 3157 fs_fd = infy_newfd ();
2231 3158
3159 if (fs_fd >= 0)
3160 {
3161 fd_intern (fs_fd);
3162 ev_io_set (&fs_w, fs_fd, EV_READ);
3163 ev_io_start (EV_A_ &fs_w);
3164 ev_unref (EV_A);
3165 }
3166
2232 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3167 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2233 { 3168 {
2234 WL w_ = fs_hash [slot].head; 3169 WL w_ = fs_hash [slot].head;
2235 fs_hash [slot].head = 0; 3170 fs_hash [slot].head = 0;
2236 3171
2237 while (w_) 3172 while (w_)
2242 w->wd = -1; 3177 w->wd = -1;
2243 3178
2244 if (fs_fd >= 0) 3179 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */ 3180 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else 3181 else
3182 {
3183 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3184 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2247 ev_timer_start (EV_A_ &w->timer); 3185 ev_timer_again (EV_A_ &w->timer);
3186 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3187 }
2248 } 3188 }
2249
2250 } 3189 }
2251} 3190}
2252 3191
3192#endif
3193
3194#ifdef _WIN32
3195# define EV_LSTAT(p,b) _stati64 (p, b)
3196#else
3197# define EV_LSTAT(p,b) lstat (p, b)
2253#endif 3198#endif
2254 3199
2255void 3200void
2256ev_stat_stat (EV_P_ ev_stat *w) 3201ev_stat_stat (EV_P_ ev_stat *w)
2257{ 3202{
2264static void noinline 3209static void noinline
2265stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3210stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2266{ 3211{
2267 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3212 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2268 3213
2269 /* we copy this here each the time so that */ 3214 ev_statdata prev = w->attr;
2270 /* prev has the old value when the callback gets invoked */
2271 w->prev = w->attr;
2272 ev_stat_stat (EV_A_ w); 3215 ev_stat_stat (EV_A_ w);
2273 3216
2274 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3217 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2275 if ( 3218 if (
2276 w->prev.st_dev != w->attr.st_dev 3219 prev.st_dev != w->attr.st_dev
2277 || w->prev.st_ino != w->attr.st_ino 3220 || prev.st_ino != w->attr.st_ino
2278 || w->prev.st_mode != w->attr.st_mode 3221 || prev.st_mode != w->attr.st_mode
2279 || w->prev.st_nlink != w->attr.st_nlink 3222 || prev.st_nlink != w->attr.st_nlink
2280 || w->prev.st_uid != w->attr.st_uid 3223 || prev.st_uid != w->attr.st_uid
2281 || w->prev.st_gid != w->attr.st_gid 3224 || prev.st_gid != w->attr.st_gid
2282 || w->prev.st_rdev != w->attr.st_rdev 3225 || prev.st_rdev != w->attr.st_rdev
2283 || w->prev.st_size != w->attr.st_size 3226 || prev.st_size != w->attr.st_size
2284 || w->prev.st_atime != w->attr.st_atime 3227 || prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime 3228 || prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime 3229 || prev.st_ctime != w->attr.st_ctime
2287 ) { 3230 ) {
3231 /* we only update w->prev on actual differences */
3232 /* in case we test more often than invoke the callback, */
3233 /* to ensure that prev is always different to attr */
3234 w->prev = prev;
3235
2288 #if EV_USE_INOTIFY 3236 #if EV_USE_INOTIFY
3237 if (fs_fd >= 0)
3238 {
2289 infy_del (EV_A_ w); 3239 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w); 3240 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */ 3241 ev_stat_stat (EV_A_ w); /* avoid race... */
3242 }
2292 #endif 3243 #endif
2293 3244
2294 ev_feed_event (EV_A_ w, EV_STAT); 3245 ev_feed_event (EV_A_ w, EV_STAT);
2295 } 3246 }
2296} 3247}
2299ev_stat_start (EV_P_ ev_stat *w) 3250ev_stat_start (EV_P_ ev_stat *w)
2300{ 3251{
2301 if (expect_false (ev_is_active (w))) 3252 if (expect_false (ev_is_active (w)))
2302 return; 3253 return;
2303 3254
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w); 3255 ev_stat_stat (EV_A_ w);
2309 3256
3257 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2310 if (w->interval < MIN_STAT_INTERVAL) 3258 w->interval = MIN_STAT_INTERVAL;
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312 3259
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3260 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2314 ev_set_priority (&w->timer, ev_priority (w)); 3261 ev_set_priority (&w->timer, ev_priority (w));
2315 3262
2316#if EV_USE_INOTIFY 3263#if EV_USE_INOTIFY
2317 infy_init (EV_A); 3264 infy_init (EV_A);
2318 3265
2319 if (fs_fd >= 0) 3266 if (fs_fd >= 0)
2320 infy_add (EV_A_ w); 3267 infy_add (EV_A_ w);
2321 else 3268 else
2322#endif 3269#endif
3270 {
2323 ev_timer_start (EV_A_ &w->timer); 3271 ev_timer_again (EV_A_ &w->timer);
3272 ev_unref (EV_A);
3273 }
2324 3274
2325 ev_start (EV_A_ (W)w, 1); 3275 ev_start (EV_A_ (W)w, 1);
3276
3277 EV_FREQUENT_CHECK;
2326} 3278}
2327 3279
2328void 3280void
2329ev_stat_stop (EV_P_ ev_stat *w) 3281ev_stat_stop (EV_P_ ev_stat *w)
2330{ 3282{
2331 clear_pending (EV_A_ (W)w); 3283 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3284 if (expect_false (!ev_is_active (w)))
2333 return; 3285 return;
2334 3286
3287 EV_FREQUENT_CHECK;
3288
2335#if EV_USE_INOTIFY 3289#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w); 3290 infy_del (EV_A_ w);
2337#endif 3291#endif
3292
3293 if (ev_is_active (&w->timer))
3294 {
3295 ev_ref (EV_A);
2338 ev_timer_stop (EV_A_ &w->timer); 3296 ev_timer_stop (EV_A_ &w->timer);
3297 }
2339 3298
2340 ev_stop (EV_A_ (W)w); 3299 ev_stop (EV_A_ (W)w);
3300
3301 EV_FREQUENT_CHECK;
2341} 3302}
2342#endif 3303#endif
2343 3304
2344#if EV_IDLE_ENABLE 3305#if EV_IDLE_ENABLE
2345void 3306void
2347{ 3308{
2348 if (expect_false (ev_is_active (w))) 3309 if (expect_false (ev_is_active (w)))
2349 return; 3310 return;
2350 3311
2351 pri_adjust (EV_A_ (W)w); 3312 pri_adjust (EV_A_ (W)w);
3313
3314 EV_FREQUENT_CHECK;
2352 3315
2353 { 3316 {
2354 int active = ++idlecnt [ABSPRI (w)]; 3317 int active = ++idlecnt [ABSPRI (w)];
2355 3318
2356 ++idleall; 3319 ++idleall;
2357 ev_start (EV_A_ (W)w, active); 3320 ev_start (EV_A_ (W)w, active);
2358 3321
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3322 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w; 3323 idles [ABSPRI (w)][active - 1] = w;
2361 } 3324 }
3325
3326 EV_FREQUENT_CHECK;
2362} 3327}
2363 3328
2364void 3329void
2365ev_idle_stop (EV_P_ ev_idle *w) 3330ev_idle_stop (EV_P_ ev_idle *w)
2366{ 3331{
2367 clear_pending (EV_A_ (W)w); 3332 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 3333 if (expect_false (!ev_is_active (w)))
2369 return; 3334 return;
2370 3335
3336 EV_FREQUENT_CHECK;
3337
2371 { 3338 {
2372 int active = ((W)w)->active; 3339 int active = ev_active (w);
2373 3340
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3342 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 3343
2377 ev_stop (EV_A_ (W)w); 3344 ev_stop (EV_A_ (W)w);
2378 --idleall; 3345 --idleall;
2379 } 3346 }
2380}
2381#endif
2382 3347
3348 EV_FREQUENT_CHECK;
3349}
3350#endif
3351
3352#if EV_PREPARE_ENABLE
2383void 3353void
2384ev_prepare_start (EV_P_ ev_prepare *w) 3354ev_prepare_start (EV_P_ ev_prepare *w)
2385{ 3355{
2386 if (expect_false (ev_is_active (w))) 3356 if (expect_false (ev_is_active (w)))
2387 return; 3357 return;
3358
3359 EV_FREQUENT_CHECK;
2388 3360
2389 ev_start (EV_A_ (W)w, ++preparecnt); 3361 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3362 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w; 3363 prepares [preparecnt - 1] = w;
3364
3365 EV_FREQUENT_CHECK;
2392} 3366}
2393 3367
2394void 3368void
2395ev_prepare_stop (EV_P_ ev_prepare *w) 3369ev_prepare_stop (EV_P_ ev_prepare *w)
2396{ 3370{
2397 clear_pending (EV_A_ (W)w); 3371 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 3372 if (expect_false (!ev_is_active (w)))
2399 return; 3373 return;
2400 3374
3375 EV_FREQUENT_CHECK;
3376
2401 { 3377 {
2402 int active = ((W)w)->active; 3378 int active = ev_active (w);
3379
2403 prepares [active - 1] = prepares [--preparecnt]; 3380 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 3381 ev_active (prepares [active - 1]) = active;
2405 } 3382 }
2406 3383
2407 ev_stop (EV_A_ (W)w); 3384 ev_stop (EV_A_ (W)w);
2408}
2409 3385
3386 EV_FREQUENT_CHECK;
3387}
3388#endif
3389
3390#if EV_CHECK_ENABLE
2410void 3391void
2411ev_check_start (EV_P_ ev_check *w) 3392ev_check_start (EV_P_ ev_check *w)
2412{ 3393{
2413 if (expect_false (ev_is_active (w))) 3394 if (expect_false (ev_is_active (w)))
2414 return; 3395 return;
3396
3397 EV_FREQUENT_CHECK;
2415 3398
2416 ev_start (EV_A_ (W)w, ++checkcnt); 3399 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3400 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w; 3401 checks [checkcnt - 1] = w;
3402
3403 EV_FREQUENT_CHECK;
2419} 3404}
2420 3405
2421void 3406void
2422ev_check_stop (EV_P_ ev_check *w) 3407ev_check_stop (EV_P_ ev_check *w)
2423{ 3408{
2424 clear_pending (EV_A_ (W)w); 3409 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 3410 if (expect_false (!ev_is_active (w)))
2426 return; 3411 return;
2427 3412
3413 EV_FREQUENT_CHECK;
3414
2428 { 3415 {
2429 int active = ((W)w)->active; 3416 int active = ev_active (w);
3417
2430 checks [active - 1] = checks [--checkcnt]; 3418 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 3419 ev_active (checks [active - 1]) = active;
2432 } 3420 }
2433 3421
2434 ev_stop (EV_A_ (W)w); 3422 ev_stop (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
2435} 3425}
3426#endif
2436 3427
2437#if EV_EMBED_ENABLE 3428#if EV_EMBED_ENABLE
2438void noinline 3429void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w) 3430ev_embed_sweep (EV_P_ ev_embed *w)
2440{ 3431{
2441 ev_loop (w->other, EVLOOP_NONBLOCK); 3432 ev_run (w->other, EVRUN_NOWAIT);
2442} 3433}
2443 3434
2444static void 3435static void
2445embed_io_cb (EV_P_ ev_io *io, int revents) 3436embed_io_cb (EV_P_ ev_io *io, int revents)
2446{ 3437{
2447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2448 3439
2449 if (ev_cb (w)) 3440 if (ev_cb (w))
2450 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2451 else 3442 else
2452 ev_loop (w->other, EVLOOP_NONBLOCK); 3443 ev_run (w->other, EVRUN_NOWAIT);
2453} 3444}
2454 3445
2455static void 3446static void
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{ 3448{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459 3450
2460 { 3451 {
2461 struct ev_loop *loop = w->other; 3452 EV_P = w->other;
2462 3453
2463 while (fdchangecnt) 3454 while (fdchangecnt)
2464 { 3455 {
2465 fd_reify (EV_A); 3456 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3457 ev_run (EV_A_ EVRUN_NOWAIT);
2467 } 3458 }
2468 } 3459 }
3460}
3461
3462static void
3463embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3464{
3465 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3466
3467 ev_embed_stop (EV_A_ w);
3468
3469 {
3470 EV_P = w->other;
3471
3472 ev_loop_fork (EV_A);
3473 ev_run (EV_A_ EVRUN_NOWAIT);
3474 }
3475
3476 ev_embed_start (EV_A_ w);
2469} 3477}
2470 3478
2471#if 0 3479#if 0
2472static void 3480static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3481embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2481{ 3489{
2482 if (expect_false (ev_is_active (w))) 3490 if (expect_false (ev_is_active (w)))
2483 return; 3491 return;
2484 3492
2485 { 3493 {
2486 struct ev_loop *loop = w->other; 3494 EV_P = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3495 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3496 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 } 3497 }
3498
3499 EV_FREQUENT_CHECK;
2490 3500
2491 ev_set_priority (&w->io, ev_priority (w)); 3501 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io); 3502 ev_io_start (EV_A_ &w->io);
2493 3503
2494 ev_prepare_init (&w->prepare, embed_prepare_cb); 3504 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI); 3505 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare); 3506 ev_prepare_start (EV_A_ &w->prepare);
2497 3507
3508 ev_fork_init (&w->fork, embed_fork_cb);
3509 ev_fork_start (EV_A_ &w->fork);
3510
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3511 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499 3512
2500 ev_start (EV_A_ (W)w, 1); 3513 ev_start (EV_A_ (W)w, 1);
3514
3515 EV_FREQUENT_CHECK;
2501} 3516}
2502 3517
2503void 3518void
2504ev_embed_stop (EV_P_ ev_embed *w) 3519ev_embed_stop (EV_P_ ev_embed *w)
2505{ 3520{
2506 clear_pending (EV_A_ (W)w); 3521 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 3522 if (expect_false (!ev_is_active (w)))
2508 return; 3523 return;
2509 3524
3525 EV_FREQUENT_CHECK;
3526
2510 ev_io_stop (EV_A_ &w->io); 3527 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare); 3528 ev_prepare_stop (EV_A_ &w->prepare);
3529 ev_fork_stop (EV_A_ &w->fork);
2512 3530
2513 ev_stop (EV_A_ (W)w); 3531 ev_stop (EV_A_ (W)w);
3532
3533 EV_FREQUENT_CHECK;
2514} 3534}
2515#endif 3535#endif
2516 3536
2517#if EV_FORK_ENABLE 3537#if EV_FORK_ENABLE
2518void 3538void
2519ev_fork_start (EV_P_ ev_fork *w) 3539ev_fork_start (EV_P_ ev_fork *w)
2520{ 3540{
2521 if (expect_false (ev_is_active (w))) 3541 if (expect_false (ev_is_active (w)))
2522 return; 3542 return;
3543
3544 EV_FREQUENT_CHECK;
2523 3545
2524 ev_start (EV_A_ (W)w, ++forkcnt); 3546 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3547 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w; 3548 forks [forkcnt - 1] = w;
3549
3550 EV_FREQUENT_CHECK;
2527} 3551}
2528 3552
2529void 3553void
2530ev_fork_stop (EV_P_ ev_fork *w) 3554ev_fork_stop (EV_P_ ev_fork *w)
2531{ 3555{
2532 clear_pending (EV_A_ (W)w); 3556 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 3557 if (expect_false (!ev_is_active (w)))
2534 return; 3558 return;
2535 3559
3560 EV_FREQUENT_CHECK;
3561
2536 { 3562 {
2537 int active = ((W)w)->active; 3563 int active = ev_active (w);
3564
2538 forks [active - 1] = forks [--forkcnt]; 3565 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 3566 ev_active (forks [active - 1]) = active;
2540 } 3567 }
2541 3568
2542 ev_stop (EV_A_ (W)w); 3569 ev_stop (EV_A_ (W)w);
3570
3571 EV_FREQUENT_CHECK;
2543} 3572}
2544#endif 3573#endif
2545 3574
2546#if EV_ASYNC_ENABLE 3575#if EV_ASYNC_ENABLE
2547void 3576void
2548ev_async_start (EV_P_ ev_async *w) 3577ev_async_start (EV_P_ ev_async *w)
2549{ 3578{
2550 if (expect_false (ev_is_active (w))) 3579 if (expect_false (ev_is_active (w)))
2551 return; 3580 return;
2552 3581
3582 w->sent = 0;
3583
2553 evpipe_init (EV_A); 3584 evpipe_init (EV_A);
3585
3586 EV_FREQUENT_CHECK;
2554 3587
2555 ev_start (EV_A_ (W)w, ++asynccnt); 3588 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3589 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w; 3590 asyncs [asynccnt - 1] = w;
3591
3592 EV_FREQUENT_CHECK;
2558} 3593}
2559 3594
2560void 3595void
2561ev_async_stop (EV_P_ ev_async *w) 3596ev_async_stop (EV_P_ ev_async *w)
2562{ 3597{
2563 clear_pending (EV_A_ (W)w); 3598 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 3599 if (expect_false (!ev_is_active (w)))
2565 return; 3600 return;
2566 3601
3602 EV_FREQUENT_CHECK;
3603
2567 { 3604 {
2568 int active = ((W)w)->active; 3605 int active = ev_active (w);
3606
2569 asyncs [active - 1] = asyncs [--asynccnt]; 3607 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 3608 ev_active (asyncs [active - 1]) = active;
2571 } 3609 }
2572 3610
2573 ev_stop (EV_A_ (W)w); 3611 ev_stop (EV_A_ (W)w);
3612
3613 EV_FREQUENT_CHECK;
2574} 3614}
2575 3615
2576void 3616void
2577ev_async_send (EV_P_ ev_async *w) 3617ev_async_send (EV_P_ ev_async *w)
2578{ 3618{
2579 w->sent = 1; 3619 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync); 3620 evpipe_write (EV_A_ &async_pending);
2581} 3621}
2582#endif 3622#endif
2583 3623
2584/*****************************************************************************/ 3624/*****************************************************************************/
2585 3625
2595once_cb (EV_P_ struct ev_once *once, int revents) 3635once_cb (EV_P_ struct ev_once *once, int revents)
2596{ 3636{
2597 void (*cb)(int revents, void *arg) = once->cb; 3637 void (*cb)(int revents, void *arg) = once->cb;
2598 void *arg = once->arg; 3638 void *arg = once->arg;
2599 3639
2600 ev_io_stop (EV_A_ &once->io); 3640 ev_io_stop (EV_A_ &once->io);
2601 ev_timer_stop (EV_A_ &once->to); 3641 ev_timer_stop (EV_A_ &once->to);
2602 ev_free (once); 3642 ev_free (once);
2603 3643
2604 cb (revents, arg); 3644 cb (revents, arg);
2605} 3645}
2606 3646
2607static void 3647static void
2608once_cb_io (EV_P_ ev_io *w, int revents) 3648once_cb_io (EV_P_ ev_io *w, int revents)
2609{ 3649{
2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3650 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3651
3652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2611} 3653}
2612 3654
2613static void 3655static void
2614once_cb_to (EV_P_ ev_timer *w, int revents) 3656once_cb_to (EV_P_ ev_timer *w, int revents)
2615{ 3657{
2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3658 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3659
3660 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2617} 3661}
2618 3662
2619void 3663void
2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3664ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2621{ 3665{
2622 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3666 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2623 3667
2624 if (expect_false (!once)) 3668 if (expect_false (!once))
2625 { 3669 {
2626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3670 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2627 return; 3671 return;
2628 } 3672 }
2629 3673
2630 once->cb = cb; 3674 once->cb = cb;
2631 once->arg = arg; 3675 once->arg = arg;
2643 ev_timer_set (&once->to, timeout, 0.); 3687 ev_timer_set (&once->to, timeout, 0.);
2644 ev_timer_start (EV_A_ &once->to); 3688 ev_timer_start (EV_A_ &once->to);
2645 } 3689 }
2646} 3690}
2647 3691
3692/*****************************************************************************/
3693
3694#if EV_WALK_ENABLE
3695void
3696ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3697{
3698 int i, j;
3699 ev_watcher_list *wl, *wn;
3700
3701 if (types & (EV_IO | EV_EMBED))
3702 for (i = 0; i < anfdmax; ++i)
3703 for (wl = anfds [i].head; wl; )
3704 {
3705 wn = wl->next;
3706
3707#if EV_EMBED_ENABLE
3708 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3709 {
3710 if (types & EV_EMBED)
3711 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3712 }
3713 else
3714#endif
3715#if EV_USE_INOTIFY
3716 if (ev_cb ((ev_io *)wl) == infy_cb)
3717 ;
3718 else
3719#endif
3720 if ((ev_io *)wl != &pipe_w)
3721 if (types & EV_IO)
3722 cb (EV_A_ EV_IO, wl);
3723
3724 wl = wn;
3725 }
3726
3727 if (types & (EV_TIMER | EV_STAT))
3728 for (i = timercnt + HEAP0; i-- > HEAP0; )
3729#if EV_STAT_ENABLE
3730 /*TODO: timer is not always active*/
3731 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3732 {
3733 if (types & EV_STAT)
3734 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3735 }
3736 else
3737#endif
3738 if (types & EV_TIMER)
3739 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3740
3741#if EV_PERIODIC_ENABLE
3742 if (types & EV_PERIODIC)
3743 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3744 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3745#endif
3746
3747#if EV_IDLE_ENABLE
3748 if (types & EV_IDLE)
3749 for (j = NUMPRI; i--; )
3750 for (i = idlecnt [j]; i--; )
3751 cb (EV_A_ EV_IDLE, idles [j][i]);
3752#endif
3753
3754#if EV_FORK_ENABLE
3755 if (types & EV_FORK)
3756 for (i = forkcnt; i--; )
3757 if (ev_cb (forks [i]) != embed_fork_cb)
3758 cb (EV_A_ EV_FORK, forks [i]);
3759#endif
3760
3761#if EV_ASYNC_ENABLE
3762 if (types & EV_ASYNC)
3763 for (i = asynccnt; i--; )
3764 cb (EV_A_ EV_ASYNC, asyncs [i]);
3765#endif
3766
3767#if EV_PREPARE_ENABLE
3768 if (types & EV_PREPARE)
3769 for (i = preparecnt; i--; )
3770# if EV_EMBED_ENABLE
3771 if (ev_cb (prepares [i]) != embed_prepare_cb)
3772# endif
3773 cb (EV_A_ EV_PREPARE, prepares [i]);
3774#endif
3775
3776#if EV_CHECK_ENABLE
3777 if (types & EV_CHECK)
3778 for (i = checkcnt; i--; )
3779 cb (EV_A_ EV_CHECK, checks [i]);
3780#endif
3781
3782#if EV_SIGNAL_ENABLE
3783 if (types & EV_SIGNAL)
3784 for (i = 0; i < EV_NSIG - 1; ++i)
3785 for (wl = signals [i].head; wl; )
3786 {
3787 wn = wl->next;
3788 cb (EV_A_ EV_SIGNAL, wl);
3789 wl = wn;
3790 }
3791#endif
3792
3793#if EV_CHILD_ENABLE
3794 if (types & EV_CHILD)
3795 for (i = (EV_PID_HASHSIZE); i--; )
3796 for (wl = childs [i]; wl; )
3797 {
3798 wn = wl->next;
3799 cb (EV_A_ EV_CHILD, wl);
3800 wl = wn;
3801 }
3802#endif
3803/* EV_STAT 0x00001000 /* stat data changed */
3804/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3805}
3806#endif
3807
2648#if EV_MULTIPLICITY 3808#if EV_MULTIPLICITY
2649 #include "ev_wrap.h" 3809 #include "ev_wrap.h"
2650#endif 3810#endif
2651 3811
2652#ifdef __cplusplus 3812#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines