ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC vs.
Revision 1.353 by root, Thu Oct 21 12:32:47 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
77# endif 79# endif
78# endif 80# endif
79 81
82# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
83# else 86# else
87# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
86# endif 98# endif
87 99
100# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 101# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 102# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 103# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 104# else
105# undef EV_USE_POLL
100# define EV_USE_POLL 0 106# define EV_USE_POLL 0
101# endif
102# endif 107# endif
103 108
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
107# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
110# endif 116# endif
111 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
118# endif 125# endif
119 126
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
123# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
126# endif 134# endif
127 135
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
134# endif 143# endif
135 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 147# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
142# endif 161# endif
143 162
144#endif 163#endif
145 164
146#include <math.h> 165#include <math.h>
147#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
148#include <fcntl.h> 168#include <fcntl.h>
149#include <stddef.h> 169#include <stddef.h>
150 170
151#include <stdio.h> 171#include <stdio.h>
152 172
153#include <assert.h> 173#include <assert.h>
154#include <errno.h> 174#include <errno.h>
155#include <sys/types.h> 175#include <sys/types.h>
156#include <time.h> 176#include <time.h>
177#include <limits.h>
157 178
158#include <signal.h> 179#include <signal.h>
159 180
160#ifdef EV_H 181#ifdef EV_H
161# include EV_H 182# include EV_H
172# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
173# include <windows.h> 194# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
176# endif 197# endif
198# undef EV_AVOID_STDIO
177#endif 199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
178 208
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
180 238
181#ifndef EV_USE_CLOCK_SYSCALL 239#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 240# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 242# else
185# define EV_USE_CLOCK_SYSCALL 0 243# define EV_USE_CLOCK_SYSCALL 0
186# endif 244# endif
187#endif 245#endif
188 246
189#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 249# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 250# else
193# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
194# endif 252# endif
195#endif 253#endif
196 254
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 257#endif
200 258
201#ifndef EV_USE_NANOSLEEP 259#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 260# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 261# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 262# else
205# define EV_USE_NANOSLEEP 0 263# define EV_USE_NANOSLEEP 0
206# endif 264# endif
207#endif 265#endif
208 266
209#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 269#endif
212 270
213#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
214# ifdef _WIN32 272# ifdef _WIN32
215# define EV_USE_POLL 0 273# define EV_USE_POLL 0
216# else 274# else
217# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 276# endif
219#endif 277#endif
220 278
221#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 282# else
225# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
226# endif 284# endif
227#endif 285#endif
228 286
234# define EV_USE_PORT 0 292# define EV_USE_PORT 0
235#endif 293#endif
236 294
237#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 297# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 298# else
241# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
242# endif 300# endif
243#endif 301#endif
244 302
245#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 305#endif
252 306
253#ifndef EV_INOTIFY_HASHSIZE 307#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 309#endif
260 310
261#ifndef EV_USE_EVENTFD 311#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 313# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 314# else
265# define EV_USE_EVENTFD 0 315# define EV_USE_EVENTFD 0
316# endif
317#endif
318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
266# endif 324# endif
267#endif 325#endif
268 326
269#if 0 /* debugging */ 327#if 0 /* debugging */
270# define EV_VERIFY 3 328# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 329# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 330# define EV_HEAP_CACHE_AT 1
273#endif 331#endif
274 332
275#ifndef EV_VERIFY 333#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 335#endif
278 336
279#ifndef EV_USE_4HEAP 337#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 338# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 339#endif
282 340
283#ifndef EV_HEAP_CACHE_AT 341#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
285#endif 357#endif
286 358
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
288 366
289#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
292#endif 370#endif
320 398
321#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 400# include <winsock.h>
323#endif 401#endif
324 402
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 403#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
337# ifdef __cplusplus 416# ifdef __cplusplus
338extern "C" { 417extern "C" {
339# endif 418# endif
340int eventfd (unsigned int initval, int flags); 419int (eventfd) (unsigned int initval, int flags);
341# ifdef __cplusplus 420# ifdef __cplusplus
342} 421}
343# endif 422# endif
344#endif 423#endif
345 424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
346/**/ 453/**/
347 454
348#if EV_VERIFY >= 3 455#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 456# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 457#else
351# define EV_FREQUENT_CHECK do { } while (0) 458# define EV_FREQUENT_CHECK do { } while (0)
352#endif 459#endif
353 460
354/* 461/*
361 */ 468 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363 470
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 471#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 472#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 473
474#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
475#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
367 476
368#if __GNUC__ >= 4 477#if __GNUC__ >= 4
369# define expect(expr,value) __builtin_expect ((expr),(value)) 478# define expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline)) 479# define noinline __attribute__ ((noinline))
371#else 480#else
378 487
379#define expect_false(expr) expect ((expr) != 0, 0) 488#define expect_false(expr) expect ((expr) != 0, 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 489#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline 490#define inline_size static inline
382 491
383#if EV_MINIMAL 492#if EV_FEATURE_CODE
493# define inline_speed static inline
494#else
384# define inline_speed static noinline 495# define inline_speed static noinline
496#endif
497
498#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499
500#if EV_MINPRI == EV_MAXPRI
501# define ABSPRI(w) (((W)w), 0)
385#else 502#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 503# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504#endif
391 505
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 506#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 507#define EMPTY2(a,b) /* used to suppress some warnings */
394 508
395typedef ev_watcher *W; 509typedef ev_watcher *W;
399#define ev_active(w) ((W)(w))->active 513#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 514#define ev_at(w) ((WT)(w))->at
401 515
402#if EV_USE_REALTIME 516#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 517/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 518/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 519static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 520#endif
407 521
408#if EV_USE_MONOTONIC 522#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 523static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 524#endif
411 525
526#ifndef EV_FD_TO_WIN32_HANDLE
527# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528#endif
529#ifndef EV_WIN32_HANDLE_TO_FD
530# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531#endif
532#ifndef EV_WIN32_CLOSE_FD
533# define EV_WIN32_CLOSE_FD(fd) close (fd)
534#endif
535
412#ifdef _WIN32 536#ifdef _WIN32
413# include "ev_win32.c" 537# include "ev_win32.c"
414#endif 538#endif
415 539
416/*****************************************************************************/ 540/*****************************************************************************/
541
542#if EV_AVOID_STDIO
543static void noinline
544ev_printerr (const char *msg)
545{
546 write (STDERR_FILENO, msg, strlen (msg));
547}
548#endif
417 549
418static void (*syserr_cb)(const char *msg); 550static void (*syserr_cb)(const char *msg);
419 551
420void 552void
421ev_set_syserr_cb (void (*cb)(const char *msg)) 553ev_set_syserr_cb (void (*cb)(const char *msg))
431 563
432 if (syserr_cb) 564 if (syserr_cb)
433 syserr_cb (msg); 565 syserr_cb (msg);
434 else 566 else
435 { 567 {
568#if EV_AVOID_STDIO
569 const char *err = strerror (errno);
570
571 ev_printerr (msg);
572 ev_printerr (": ");
573 ev_printerr (err);
574 ev_printerr ("\n");
575#else
436 perror (msg); 576 perror (msg);
577#endif
437 abort (); 578 abort ();
438 } 579 }
439} 580}
440 581
441static void * 582static void *
442ev_realloc_emul (void *ptr, long size) 583ev_realloc_emul (void *ptr, long size)
443{ 584{
585#if __GLIBC__
586 return realloc (ptr, size);
587#else
444 /* some systems, notably openbsd and darwin, fail to properly 588 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 589 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 590 * the single unix specification, so work around them here.
447 */ 591 */
448 592
449 if (size) 593 if (size)
450 return realloc (ptr, size); 594 return realloc (ptr, size);
451 595
452 free (ptr); 596 free (ptr);
453 return 0; 597 return 0;
598#endif
454} 599}
455 600
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 601static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457 602
458void 603void
466{ 611{
467 ptr = alloc (ptr, size); 612 ptr = alloc (ptr, size);
468 613
469 if (!ptr && size) 614 if (!ptr && size)
470 { 615 {
616#if EV_AVOID_STDIO
617 ev_printerr ("libev: memory allocation failed, aborting.\n");
618#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 619 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620#endif
472 abort (); 621 abort ();
473 } 622 }
474 623
475 return ptr; 624 return ptr;
476} 625}
478#define ev_malloc(size) ev_realloc (0, (size)) 627#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 628#define ev_free(ptr) ev_realloc ((ptr), 0)
480 629
481/*****************************************************************************/ 630/*****************************************************************************/
482 631
632/* set in reify when reification needed */
633#define EV_ANFD_REIFY 1
634
635/* file descriptor info structure */
483typedef struct 636typedef struct
484{ 637{
485 WL head; 638 WL head;
486 unsigned char events; 639 unsigned char events; /* the events watched for */
487 unsigned char reify; 640 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 641 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 642 unsigned char unused;
490#if EV_USE_EPOLL 643#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 644 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 645#endif
493#if EV_SELECT_IS_WINSOCKET 646#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle; 647 SOCKET handle;
495#endif 648#endif
496} ANFD; 649} ANFD;
497 650
651/* stores the pending event set for a given watcher */
498typedef struct 652typedef struct
499{ 653{
500 W w; 654 W w;
501 int events; 655 int events; /* the pending event set for the given watcher */
502} ANPENDING; 656} ANPENDING;
503 657
504#if EV_USE_INOTIFY 658#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 659/* hash table entry per inotify-id */
506typedef struct 660typedef struct
509} ANFS; 663} ANFS;
510#endif 664#endif
511 665
512/* Heap Entry */ 666/* Heap Entry */
513#if EV_HEAP_CACHE_AT 667#if EV_HEAP_CACHE_AT
668 /* a heap element */
514 typedef struct { 669 typedef struct {
515 ev_tstamp at; 670 ev_tstamp at;
516 WT w; 671 WT w;
517 } ANHE; 672 } ANHE;
518 673
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 674 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 675 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 676 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 677#else
678 /* a heap element */
523 typedef WT ANHE; 679 typedef WT ANHE;
524 680
525 #define ANHE_w(he) (he) 681 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 682 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 683 #define ANHE_at_cache(he)
551 707
552 static int ev_default_loop_ptr; 708 static int ev_default_loop_ptr;
553 709
554#endif 710#endif
555 711
712#if EV_FEATURE_API
713# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715# define EV_INVOKE_PENDING invoke_cb (EV_A)
716#else
717# define EV_RELEASE_CB (void)0
718# define EV_ACQUIRE_CB (void)0
719# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720#endif
721
722#define EVBREAK_RECURSE 0x80
723
556/*****************************************************************************/ 724/*****************************************************************************/
557 725
726#ifndef EV_HAVE_EV_TIME
558ev_tstamp 727ev_tstamp
559ev_time (void) 728ev_time (void)
560{ 729{
561#if EV_USE_REALTIME 730#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 731 if (expect_true (have_realtime))
569 738
570 struct timeval tv; 739 struct timeval tv;
571 gettimeofday (&tv, 0); 740 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 741 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 742}
743#endif
574 744
575ev_tstamp inline_size 745inline_size ev_tstamp
576get_clock (void) 746get_clock (void)
577{ 747{
578#if EV_USE_MONOTONIC 748#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 749 if (expect_true (have_monotonic))
580 { 750 {
601 if (delay > 0.) 771 if (delay > 0.)
602 { 772 {
603#if EV_USE_NANOSLEEP 773#if EV_USE_NANOSLEEP
604 struct timespec ts; 774 struct timespec ts;
605 775
606 ts.tv_sec = (time_t)delay; 776 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 777 nanosleep (&ts, 0);
610#elif defined(_WIN32) 778#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3)); 779 Sleep ((unsigned long)(delay * 1e3));
612#else 780#else
613 struct timeval tv; 781 struct timeval tv;
614 782
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 783 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 784 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 785 /* by older ones */
786 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 787 select (0, 0, 0, 0, &tv);
622#endif 788#endif
623 } 789 }
624} 790}
625 791
626/*****************************************************************************/ 792/*****************************************************************************/
627 793
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 794#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 795
630int inline_size 796/* find a suitable new size for the given array, */
797/* hopefully by rounding to a nice-to-malloc size */
798inline_size int
631array_nextsize (int elem, int cur, int cnt) 799array_nextsize (int elem, int cur, int cnt)
632{ 800{
633 int ncur = cur + 1; 801 int ncur = cur + 1;
634 802
635 do 803 do
680#define array_free(stem, idx) \ 848#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 849 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 850
683/*****************************************************************************/ 851/*****************************************************************************/
684 852
853/* dummy callback for pending events */
854static void noinline
855pendingcb (EV_P_ ev_prepare *w, int revents)
856{
857}
858
685void noinline 859void noinline
686ev_feed_event (EV_P_ void *w, int revents) 860ev_feed_event (EV_P_ void *w, int revents)
687{ 861{
688 W w_ = (W)w; 862 W w_ = (W)w;
689 int pri = ABSPRI (w_); 863 int pri = ABSPRI (w_);
697 pendings [pri][w_->pending - 1].w = w_; 871 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 872 pendings [pri][w_->pending - 1].events = revents;
699 } 873 }
700} 874}
701 875
702void inline_speed 876inline_speed void
877feed_reverse (EV_P_ W w)
878{
879 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880 rfeeds [rfeedcnt++] = w;
881}
882
883inline_size void
884feed_reverse_done (EV_P_ int revents)
885{
886 do
887 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888 while (rfeedcnt);
889}
890
891inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 892queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 893{
705 int i; 894 int i;
706 895
707 for (i = 0; i < eventcnt; ++i) 896 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 897 ev_feed_event (EV_A_ events [i], type);
709} 898}
710 899
711/*****************************************************************************/ 900/*****************************************************************************/
712 901
713void inline_speed 902inline_speed void
714fd_event (EV_P_ int fd, int revents) 903fd_event_nocheck (EV_P_ int fd, int revents)
715{ 904{
716 ANFD *anfd = anfds + fd; 905 ANFD *anfd = anfds + fd;
717 ev_io *w; 906 ev_io *w;
718 907
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 912 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 913 ev_feed_event (EV_A_ (W)w, ev);
725 } 914 }
726} 915}
727 916
917/* do not submit kernel events for fds that have reify set */
918/* because that means they changed while we were polling for new events */
919inline_speed void
920fd_event (EV_P_ int fd, int revents)
921{
922 ANFD *anfd = anfds + fd;
923
924 if (expect_true (!anfd->reify))
925 fd_event_nocheck (EV_A_ fd, revents);
926}
927
728void 928void
729ev_feed_fd_event (EV_P_ int fd, int revents) 929ev_feed_fd_event (EV_P_ int fd, int revents)
730{ 930{
731 if (fd >= 0 && fd < anfdmax) 931 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 932 fd_event_nocheck (EV_A_ fd, revents);
733} 933}
734 934
735void inline_size 935/* make sure the external fd watch events are in-sync */
936/* with the kernel/libev internal state */
937inline_size void
736fd_reify (EV_P) 938fd_reify (EV_P)
737{ 939{
738 int i; 940 int i;
739 941
740 for (i = 0; i < fdchangecnt; ++i) 942 for (i = 0; i < fdchangecnt; ++i)
741 { 943 {
742 int fd = fdchanges [i]; 944 int fd = fdchanges [i];
743 ANFD *anfd = anfds + fd; 945 ANFD *anfd = anfds + fd;
744 ev_io *w; 946 ev_io *w;
745 947
746 unsigned char events = 0; 948 unsigned char o_events = anfd->events;
949 unsigned char o_reify = anfd->reify;
747 950
748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 951 anfd->reify = 0;
749 events |= (unsigned char)w->events;
750 952
751#if EV_SELECT_IS_WINSOCKET 953#if EV_SELECT_IS_WINSOCKET
752 if (events) 954 if (o_reify & EV__IOFDSET)
753 { 955 {
754 unsigned long arg; 956 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 957 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
758 anfd->handle = _get_osfhandle (fd);
759 #endif
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 958 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
761 } 959 }
762#endif 960#endif
763 961
962 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
764 { 963 {
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events; 964 anfd->events = 0;
770 965
771 if (o_events != events || o_reify & EV__IOFDSET) 966 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
967 anfd->events |= (unsigned char)w->events;
968
969 if (o_events != anfd->events)
970 o_reify = EV__IOFDSET; /* actually |= */
971 }
972
973 if (o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 974 backend_modify (EV_A_ fd, o_events, anfd->events);
773 }
774 } 975 }
775 976
776 fdchangecnt = 0; 977 fdchangecnt = 0;
777} 978}
778 979
779void inline_size 980/* something about the given fd changed */
981inline_size void
780fd_change (EV_P_ int fd, int flags) 982fd_change (EV_P_ int fd, int flags)
781{ 983{
782 unsigned char reify = anfds [fd].reify; 984 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 985 anfds [fd].reify |= flags;
784 986
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 990 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 991 fdchanges [fdchangecnt - 1] = fd;
790 } 992 }
791} 993}
792 994
793void inline_speed 995/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
996inline_speed void
794fd_kill (EV_P_ int fd) 997fd_kill (EV_P_ int fd)
795{ 998{
796 ev_io *w; 999 ev_io *w;
797 1000
798 while ((w = (ev_io *)anfds [fd].head)) 1001 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 1003 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1004 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 1005 }
803} 1006}
804 1007
805int inline_size 1008/* check whether the given fd is actually valid, for error recovery */
1009inline_size int
806fd_valid (int fd) 1010fd_valid (int fd)
807{ 1011{
808#ifdef _WIN32 1012#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 1013 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 1014#else
811 return fcntl (fd, F_GETFD) != -1; 1015 return fcntl (fd, F_GETFD) != -1;
812#endif 1016#endif
813} 1017}
814 1018
832 1036
833 for (fd = anfdmax; fd--; ) 1037 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 1038 if (anfds [fd].events)
835 { 1039 {
836 fd_kill (EV_A_ fd); 1040 fd_kill (EV_A_ fd);
837 return; 1041 break;
838 } 1042 }
839} 1043}
840 1044
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 1045/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 1046static void noinline
847 for (fd = 0; fd < anfdmax; ++fd) 1051 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 1052 if (anfds [fd].events)
849 { 1053 {
850 anfds [fd].events = 0; 1054 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 1055 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 1056 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 1057 }
854} 1058}
855 1059
1060/* used to prepare libev internal fd's */
1061/* this is not fork-safe */
1062inline_speed void
1063fd_intern (int fd)
1064{
1065#ifdef _WIN32
1066 unsigned long arg = 1;
1067 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1068#else
1069 fcntl (fd, F_SETFD, FD_CLOEXEC);
1070 fcntl (fd, F_SETFL, O_NONBLOCK);
1071#endif
1072}
1073
856/*****************************************************************************/ 1074/*****************************************************************************/
857 1075
858/* 1076/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not 1077 * the heap functions want a real array index. array index 0 is guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1078 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree. 1079 * the branching factor of the d-tree.
862 */ 1080 */
863 1081
864/* 1082/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1091#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1092#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 1093#define UPHEAP_DONE(p,k) ((p) == (k))
876 1094
877/* away from the root */ 1095/* away from the root */
878void inline_speed 1096inline_speed void
879downheap (ANHE *heap, int N, int k) 1097downheap (ANHE *heap, int N, int k)
880{ 1098{
881 ANHE he = heap [k]; 1099 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 1100 ANHE *E = heap + N + HEAP0;
883 1101
923#define HEAP0 1 1141#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 1142#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 1143#define UPHEAP_DONE(p,k) (!(p))
926 1144
927/* away from the root */ 1145/* away from the root */
928void inline_speed 1146inline_speed void
929downheap (ANHE *heap, int N, int k) 1147downheap (ANHE *heap, int N, int k)
930{ 1148{
931 ANHE he = heap [k]; 1149 ANHE he = heap [k];
932 1150
933 for (;;) 1151 for (;;)
934 { 1152 {
935 int c = k << 1; 1153 int c = k << 1;
936 1154
937 if (c > N + HEAP0 - 1) 1155 if (c >= N + HEAP0)
938 break; 1156 break;
939 1157
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1158 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 1159 ? 1 : 0;
942 1160
953 ev_active (ANHE_w (he)) = k; 1171 ev_active (ANHE_w (he)) = k;
954} 1172}
955#endif 1173#endif
956 1174
957/* towards the root */ 1175/* towards the root */
958void inline_speed 1176inline_speed void
959upheap (ANHE *heap, int k) 1177upheap (ANHE *heap, int k)
960{ 1178{
961 ANHE he = heap [k]; 1179 ANHE he = heap [k];
962 1180
963 for (;;) 1181 for (;;)
974 1192
975 heap [k] = he; 1193 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1194 ev_active (ANHE_w (he)) = k;
977} 1195}
978 1196
979void inline_size 1197/* move an element suitably so it is in a correct place */
1198inline_size void
980adjustheap (ANHE *heap, int N, int k) 1199adjustheap (ANHE *heap, int N, int k)
981{ 1200{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1201 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 1202 upheap (heap, k);
984 else 1203 else
985 downheap (heap, N, k); 1204 downheap (heap, N, k);
986} 1205}
987 1206
988/* rebuild the heap: this function is used only once and executed rarely */ 1207/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1208inline_size void
990reheap (ANHE *heap, int N) 1209reheap (ANHE *heap, int N)
991{ 1210{
992 int i; 1211 int i;
993 1212
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1213 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1216 upheap (heap, i + HEAP0);
998} 1217}
999 1218
1000/*****************************************************************************/ 1219/*****************************************************************************/
1001 1220
1221/* associate signal watchers to a signal signal */
1002typedef struct 1222typedef struct
1003{ 1223{
1224 EV_ATOMIC_T pending;
1225#if EV_MULTIPLICITY
1226 EV_P;
1227#endif
1004 WL head; 1228 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 1229} ANSIG;
1007 1230
1008static ANSIG *signals; 1231static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 1232
1013/*****************************************************************************/ 1233/*****************************************************************************/
1014 1234
1015void inline_speed 1235#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 1236
1027static void noinline 1237static void noinline
1028evpipe_init (EV_P) 1238evpipe_init (EV_P)
1029{ 1239{
1030 if (!ev_is_active (&pipeev)) 1240 if (!ev_is_active (&pipe_w))
1031 { 1241 {
1032#if EV_USE_EVENTFD 1242# if EV_USE_EVENTFD
1243 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1244 if (evfd < 0 && errno == EINVAL)
1033 if ((evfd = eventfd (0, 0)) >= 0) 1245 evfd = eventfd (0, 0);
1246
1247 if (evfd >= 0)
1034 { 1248 {
1035 evpipe [0] = -1; 1249 evpipe [0] = -1;
1036 fd_intern (evfd); 1250 fd_intern (evfd); /* doing it twice doesn't hurt */
1037 ev_io_set (&pipeev, evfd, EV_READ); 1251 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1252 }
1039 else 1253 else
1040#endif 1254# endif
1041 { 1255 {
1042 while (pipe (evpipe)) 1256 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1257 ev_syserr ("(libev) error creating signal/async pipe");
1044 1258
1045 fd_intern (evpipe [0]); 1259 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1260 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1261 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1262 }
1049 1263
1050 ev_io_start (EV_A_ &pipeev); 1264 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1265 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1266 }
1053} 1267}
1054 1268
1055void inline_size 1269inline_size void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1270evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1271{
1058 if (!*flag) 1272 if (!*flag)
1059 { 1273 {
1060 int old_errno = errno; /* save errno because write might clobber it */ 1274 int old_errno = errno; /* save errno because write might clobber it */
1275 char dummy;
1061 1276
1062 *flag = 1; 1277 *flag = 1;
1063 1278
1064#if EV_USE_EVENTFD 1279#if EV_USE_EVENTFD
1065 if (evfd >= 0) 1280 if (evfd >= 0)
1067 uint64_t counter = 1; 1282 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t)); 1283 write (evfd, &counter, sizeof (uint64_t));
1069 } 1284 }
1070 else 1285 else
1071#endif 1286#endif
1287 /* win32 people keep sending patches that change this write() to send() */
1288 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1289 /* so when you think this write should be a send instead, please find out */
1290 /* where your send() is from - it's definitely not the microsoft send, and */
1291 /* tell me. thank you. */
1072 write (evpipe [1], &old_errno, 1); 1292 write (evpipe [1], &dummy, 1);
1073 1293
1074 errno = old_errno; 1294 errno = old_errno;
1075 } 1295 }
1076} 1296}
1077 1297
1298/* called whenever the libev signal pipe */
1299/* got some events (signal, async) */
1078static void 1300static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1301pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1302{
1303 int i;
1304
1081#if EV_USE_EVENTFD 1305#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1306 if (evfd >= 0)
1083 { 1307 {
1084 uint64_t counter; 1308 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t)); 1309 read (evfd, &counter, sizeof (uint64_t));
1086 } 1310 }
1087 else 1311 else
1088#endif 1312#endif
1089 { 1313 {
1090 char dummy; 1314 char dummy;
1315 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1091 read (evpipe [0], &dummy, 1); 1316 read (evpipe [0], &dummy, 1);
1092 } 1317 }
1093 1318
1094 if (gotsig && ev_is_default_loop (EV_A)) 1319 if (sig_pending)
1095 { 1320 {
1096 int signum; 1321 sig_pending = 0;
1097 gotsig = 0;
1098 1322
1099 for (signum = signalmax; signum--; ) 1323 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 1324 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 1325 ev_feed_signal_event (EV_A_ i + 1);
1102 } 1326 }
1103 1327
1104#if EV_ASYNC_ENABLE 1328#if EV_ASYNC_ENABLE
1105 if (gotasync) 1329 if (async_pending)
1106 { 1330 {
1107 int i; 1331 async_pending = 0;
1108 gotasync = 0;
1109 1332
1110 for (i = asynccnt; i--; ) 1333 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 1334 if (asyncs [i]->sent)
1112 { 1335 {
1113 asyncs [i]->sent = 0; 1336 asyncs [i]->sent = 0;
1121 1344
1122static void 1345static void
1123ev_sighandler (int signum) 1346ev_sighandler (int signum)
1124{ 1347{
1125#if EV_MULTIPLICITY 1348#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 1349 EV_P = signals [signum - 1].loop;
1127#endif 1350#endif
1128 1351
1129#if _WIN32 1352#ifdef _WIN32
1130 signal (signum, ev_sighandler); 1353 signal (signum, ev_sighandler);
1131#endif 1354#endif
1132 1355
1133 signals [signum - 1].gotsig = 1; 1356 signals [signum - 1].pending = 1;
1134 evpipe_write (EV_A_ &gotsig); 1357 evpipe_write (EV_A_ &sig_pending);
1135} 1358}
1136 1359
1137void noinline 1360void noinline
1138ev_feed_signal_event (EV_P_ int signum) 1361ev_feed_signal_event (EV_P_ int signum)
1139{ 1362{
1140 WL w; 1363 WL w;
1141 1364
1365 if (expect_false (signum <= 0 || signum > EV_NSIG))
1366 return;
1367
1368 --signum;
1369
1142#if EV_MULTIPLICITY 1370#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1371 /* it is permissible to try to feed a signal to the wrong loop */
1144#endif 1372 /* or, likely more useful, feeding a signal nobody is waiting for */
1145 1373
1146 --signum; 1374 if (expect_false (signals [signum].loop != EV_A))
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 1375 return;
1376#endif
1150 1377
1151 signals [signum].gotsig = 0; 1378 signals [signum].pending = 0;
1152 1379
1153 for (w = signals [signum].head; w; w = w->next) 1380 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1381 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 1382}
1156 1383
1384#if EV_USE_SIGNALFD
1385static void
1386sigfdcb (EV_P_ ev_io *iow, int revents)
1387{
1388 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1389
1390 for (;;)
1391 {
1392 ssize_t res = read (sigfd, si, sizeof (si));
1393
1394 /* not ISO-C, as res might be -1, but works with SuS */
1395 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1396 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1397
1398 if (res < (ssize_t)sizeof (si))
1399 break;
1400 }
1401}
1402#endif
1403
1404#endif
1405
1157/*****************************************************************************/ 1406/*****************************************************************************/
1158 1407
1408#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 1409static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 1410
1163static ev_signal childev; 1411static ev_signal childev;
1164 1412
1165#ifndef WIFCONTINUED 1413#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 1414# define WIFCONTINUED(status) 0
1167#endif 1415#endif
1168 1416
1169void inline_speed 1417/* handle a single child status event */
1418inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 1419child_reap (EV_P_ int chain, int pid, int status)
1171{ 1420{
1172 ev_child *w; 1421 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1422 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 1423
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1424 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 1425 {
1177 if ((w->pid == pid || !w->pid) 1426 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 1427 && (!traced || (w->flags & 1)))
1179 { 1428 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1429 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 1436
1188#ifndef WCONTINUED 1437#ifndef WCONTINUED
1189# define WCONTINUED 0 1438# define WCONTINUED 0
1190#endif 1439#endif
1191 1440
1441/* called on sigchld etc., calls waitpid */
1192static void 1442static void
1193childcb (EV_P_ ev_signal *sw, int revents) 1443childcb (EV_P_ ev_signal *sw, int revents)
1194{ 1444{
1195 int pid, status; 1445 int pid, status;
1196 1446
1204 /* make sure we are called again until all children have been reaped */ 1454 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 1455 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1456 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 1457
1208 child_reap (EV_A_ pid, pid, status); 1458 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 1459 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1460 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 1461}
1212 1462
1213#endif 1463#endif
1214 1464
1281#ifdef __APPLE__ 1531#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 1532 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 1533 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 1534 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 1535#endif
1536#ifdef __FreeBSD__
1537 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1538#endif
1286 1539
1287 return flags; 1540 return flags;
1288} 1541}
1289 1542
1290unsigned int 1543unsigned int
1303ev_backend (EV_P) 1556ev_backend (EV_P)
1304{ 1557{
1305 return backend; 1558 return backend;
1306} 1559}
1307 1560
1561#if EV_FEATURE_API
1308unsigned int 1562unsigned int
1309ev_loop_count (EV_P) 1563ev_iteration (EV_P)
1310{ 1564{
1311 return loop_count; 1565 return loop_count;
1312} 1566}
1313 1567
1568unsigned int
1569ev_depth (EV_P)
1570{
1571 return loop_depth;
1572}
1573
1314void 1574void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1575ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{ 1576{
1317 io_blocktime = interval; 1577 io_blocktime = interval;
1318} 1578}
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1581ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{ 1582{
1323 timeout_blocktime = interval; 1583 timeout_blocktime = interval;
1324} 1584}
1325 1585
1586void
1587ev_set_userdata (EV_P_ void *data)
1588{
1589 userdata = data;
1590}
1591
1592void *
1593ev_userdata (EV_P)
1594{
1595 return userdata;
1596}
1597
1598void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1599{
1600 invoke_cb = invoke_pending_cb;
1601}
1602
1603void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1604{
1605 release_cb = release;
1606 acquire_cb = acquire;
1607}
1608#endif
1609
1610/* initialise a loop structure, must be zero-initialised */
1326static void noinline 1611static void noinline
1327loop_init (EV_P_ unsigned int flags) 1612loop_init (EV_P_ unsigned int flags)
1328{ 1613{
1329 if (!backend) 1614 if (!backend)
1330 { 1615 {
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1631 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 1632 have_monotonic = 1;
1348 } 1633 }
1349#endif 1634#endif
1350 1635
1636 /* pid check not overridable via env */
1637#ifndef _WIN32
1638 if (flags & EVFLAG_FORKCHECK)
1639 curpid = getpid ();
1640#endif
1641
1642 if (!(flags & EVFLAG_NOENV)
1643 && !enable_secure ()
1644 && getenv ("LIBEV_FLAGS"))
1645 flags = atoi (getenv ("LIBEV_FLAGS"));
1646
1351 ev_rt_now = ev_time (); 1647 ev_rt_now = ev_time ();
1352 mn_now = get_clock (); 1648 mn_now = get_clock ();
1353 now_floor = mn_now; 1649 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now; 1650 rtmn_diff = ev_rt_now - mn_now;
1651#if EV_FEATURE_API
1652 invoke_cb = ev_invoke_pending;
1653#endif
1355 1654
1356 io_blocktime = 0.; 1655 io_blocktime = 0.;
1357 timeout_blocktime = 0.; 1656 timeout_blocktime = 0.;
1358 backend = 0; 1657 backend = 0;
1359 backend_fd = -1; 1658 backend_fd = -1;
1360 gotasync = 0; 1659 sig_pending = 0;
1660#if EV_ASYNC_ENABLE
1661 async_pending = 0;
1662#endif
1361#if EV_USE_INOTIFY 1663#if EV_USE_INOTIFY
1362 fs_fd = -2; 1664 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1363#endif 1665#endif
1364 1666#if EV_USE_SIGNALFD
1365 /* pid check not overridable via env */ 1667 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif 1668#endif
1370
1371 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 1669
1376 if (!(flags & 0x0000ffffU)) 1670 if (!(flags & 0x0000ffffU))
1377 flags |= ev_recommended_backends (); 1671 flags |= ev_recommended_backends ();
1378 1672
1379#if EV_USE_PORT 1673#if EV_USE_PORT
1390#endif 1684#endif
1391#if EV_USE_SELECT 1685#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1686 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 1687#endif
1394 1688
1689 ev_prepare_init (&pending_w, pendingcb);
1690
1691#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 1692 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 1693 ev_set_priority (&pipe_w, EV_MAXPRI);
1694#endif
1397 } 1695 }
1398} 1696}
1399 1697
1698/* free up a loop structure */
1400static void noinline 1699static void noinline
1401loop_destroy (EV_P) 1700loop_destroy (EV_P)
1402{ 1701{
1403 int i; 1702 int i;
1404 1703
1405 if (ev_is_active (&pipeev)) 1704 if (ev_is_active (&pipe_w))
1406 { 1705 {
1407 ev_ref (EV_A); /* signal watcher */ 1706 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 1707 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 1708
1410#if EV_USE_EVENTFD 1709#if EV_USE_EVENTFD
1411 if (evfd >= 0) 1710 if (evfd >= 0)
1412 close (evfd); 1711 close (evfd);
1413#endif 1712#endif
1414 1713
1415 if (evpipe [0] >= 0) 1714 if (evpipe [0] >= 0)
1416 { 1715 {
1417 close (evpipe [0]); 1716 EV_WIN32_CLOSE_FD (evpipe [0]);
1418 close (evpipe [1]); 1717 EV_WIN32_CLOSE_FD (evpipe [1]);
1419 } 1718 }
1420 } 1719 }
1720
1721#if EV_USE_SIGNALFD
1722 if (ev_is_active (&sigfd_w))
1723 close (sigfd);
1724#endif
1421 1725
1422#if EV_USE_INOTIFY 1726#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 1727 if (fs_fd >= 0)
1424 close (fs_fd); 1728 close (fs_fd);
1425#endif 1729#endif
1449#if EV_IDLE_ENABLE 1753#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 1754 array_free (idle, [i]);
1451#endif 1755#endif
1452 } 1756 }
1453 1757
1454 ev_free (anfds); anfdmax = 0; 1758 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 1759
1456 /* have to use the microsoft-never-gets-it-right macro */ 1760 /* have to use the microsoft-never-gets-it-right macro */
1761 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 1762 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 1763 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 1764#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 1765 array_free (periodic, EMPTY);
1461#endif 1766#endif
1470 1775
1471 backend = 0; 1776 backend = 0;
1472} 1777}
1473 1778
1474#if EV_USE_INOTIFY 1779#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 1780inline_size void infy_fork (EV_P);
1476#endif 1781#endif
1477 1782
1478void inline_size 1783inline_size void
1479loop_fork (EV_P) 1784loop_fork (EV_P)
1480{ 1785{
1481#if EV_USE_PORT 1786#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1787 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 1788#endif
1489#endif 1794#endif
1490#if EV_USE_INOTIFY 1795#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 1796 infy_fork (EV_A);
1492#endif 1797#endif
1493 1798
1494 if (ev_is_active (&pipeev)) 1799 if (ev_is_active (&pipe_w))
1495 { 1800 {
1496 /* this "locks" the handlers against writing to the pipe */ 1801 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */ 1802 /* while we modify the fd vars */
1498 gotsig = 1; 1803 sig_pending = 1;
1499#if EV_ASYNC_ENABLE 1804#if EV_ASYNC_ENABLE
1500 gotasync = 1; 1805 async_pending = 1;
1501#endif 1806#endif
1502 1807
1503 ev_ref (EV_A); 1808 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 1809 ev_io_stop (EV_A_ &pipe_w);
1505 1810
1506#if EV_USE_EVENTFD 1811#if EV_USE_EVENTFD
1507 if (evfd >= 0) 1812 if (evfd >= 0)
1508 close (evfd); 1813 close (evfd);
1509#endif 1814#endif
1510 1815
1511 if (evpipe [0] >= 0) 1816 if (evpipe [0] >= 0)
1512 { 1817 {
1513 close (evpipe [0]); 1818 EV_WIN32_CLOSE_FD (evpipe [0]);
1514 close (evpipe [1]); 1819 EV_WIN32_CLOSE_FD (evpipe [1]);
1515 } 1820 }
1516 1821
1822#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1517 evpipe_init (EV_A); 1823 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 1824 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 1825 pipecb (EV_A_ &pipe_w, EV_READ);
1826#endif
1520 } 1827 }
1521 1828
1522 postfork = 0; 1829 postfork = 0;
1523} 1830}
1524 1831
1525#if EV_MULTIPLICITY 1832#if EV_MULTIPLICITY
1526 1833
1527struct ev_loop * 1834struct ev_loop *
1528ev_loop_new (unsigned int flags) 1835ev_loop_new (unsigned int flags)
1529{ 1836{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1837 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 1838
1532 memset (loop, 0, sizeof (struct ev_loop)); 1839 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 1840 loop_init (EV_A_ flags);
1535 1841
1536 if (ev_backend (EV_A)) 1842 if (ev_backend (EV_A))
1537 return loop; 1843 return EV_A;
1538 1844
1539 return 0; 1845 return 0;
1540} 1846}
1541 1847
1542void 1848void
1549void 1855void
1550ev_loop_fork (EV_P) 1856ev_loop_fork (EV_P)
1551{ 1857{
1552 postfork = 1; /* must be in line with ev_default_fork */ 1858 postfork = 1; /* must be in line with ev_default_fork */
1553} 1859}
1860#endif /* multiplicity */
1554 1861
1555#if EV_VERIFY 1862#if EV_VERIFY
1556static void noinline 1863static void noinline
1557verify_watcher (EV_P_ W w) 1864verify_watcher (EV_P_ W w)
1558{ 1865{
1586 verify_watcher (EV_A_ ws [cnt]); 1893 verify_watcher (EV_A_ ws [cnt]);
1587 } 1894 }
1588} 1895}
1589#endif 1896#endif
1590 1897
1898#if EV_FEATURE_API
1591void 1899void
1592ev_loop_verify (EV_P) 1900ev_verify (EV_P)
1593{ 1901{
1594#if EV_VERIFY 1902#if EV_VERIFY
1595 int i; 1903 int i;
1596 WL w; 1904 WL w;
1597 1905
1636#if EV_ASYNC_ENABLE 1944#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 1945 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 1946 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 1947#endif
1640 1948
1949#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 1950 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 1951 array_verify (EV_A_ (W *)prepares, preparecnt);
1952#endif
1643 1953
1954#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 1955 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 1956 array_verify (EV_A_ (W *)checks, checkcnt);
1957#endif
1646 1958
1647# if 0 1959# if 0
1960#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1961 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1962 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1963#endif
1650# endif 1964# endif
1651#endif 1965#endif
1652} 1966}
1653 1967#endif
1654#endif /* multiplicity */
1655 1968
1656#if EV_MULTIPLICITY 1969#if EV_MULTIPLICITY
1657struct ev_loop * 1970struct ev_loop *
1658ev_default_loop_init (unsigned int flags) 1971ev_default_loop_init (unsigned int flags)
1659#else 1972#else
1662#endif 1975#endif
1663{ 1976{
1664 if (!ev_default_loop_ptr) 1977 if (!ev_default_loop_ptr)
1665 { 1978 {
1666#if EV_MULTIPLICITY 1979#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1980 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 1981#else
1669 ev_default_loop_ptr = 1; 1982 ev_default_loop_ptr = 1;
1670#endif 1983#endif
1671 1984
1672 loop_init (EV_A_ flags); 1985 loop_init (EV_A_ flags);
1673 1986
1674 if (ev_backend (EV_A)) 1987 if (ev_backend (EV_A))
1675 { 1988 {
1676#ifndef _WIN32 1989#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 1990 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 1991 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 1992 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1993 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 1994#endif
1689 2002
1690void 2003void
1691ev_default_destroy (void) 2004ev_default_destroy (void)
1692{ 2005{
1693#if EV_MULTIPLICITY 2006#if EV_MULTIPLICITY
1694 struct ev_loop *loop = ev_default_loop_ptr; 2007 EV_P = ev_default_loop_ptr;
1695#endif 2008#endif
1696 2009
1697 ev_default_loop_ptr = 0; 2010 ev_default_loop_ptr = 0;
1698 2011
1699#ifndef _WIN32 2012#if EV_CHILD_ENABLE
1700 ev_ref (EV_A); /* child watcher */ 2013 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev); 2014 ev_signal_stop (EV_A_ &childev);
1702#endif 2015#endif
1703 2016
1704 loop_destroy (EV_A); 2017 loop_destroy (EV_A);
1706 2019
1707void 2020void
1708ev_default_fork (void) 2021ev_default_fork (void)
1709{ 2022{
1710#if EV_MULTIPLICITY 2023#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr; 2024 EV_P = ev_default_loop_ptr;
1712#endif 2025#endif
1713 2026
1714 postfork = 1; /* must be in line with ev_loop_fork */ 2027 postfork = 1; /* must be in line with ev_loop_fork */
1715} 2028}
1716 2029
1720ev_invoke (EV_P_ void *w, int revents) 2033ev_invoke (EV_P_ void *w, int revents)
1721{ 2034{
1722 EV_CB_INVOKE ((W)w, revents); 2035 EV_CB_INVOKE ((W)w, revents);
1723} 2036}
1724 2037
1725void inline_speed 2038unsigned int
1726call_pending (EV_P) 2039ev_pending_count (EV_P)
2040{
2041 int pri;
2042 unsigned int count = 0;
2043
2044 for (pri = NUMPRI; pri--; )
2045 count += pendingcnt [pri];
2046
2047 return count;
2048}
2049
2050void noinline
2051ev_invoke_pending (EV_P)
1727{ 2052{
1728 int pri; 2053 int pri;
1729 2054
1730 for (pri = NUMPRI; pri--; ) 2055 for (pri = NUMPRI; pri--; )
1731 while (pendingcnt [pri]) 2056 while (pendingcnt [pri])
1732 { 2057 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2058 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734 2059
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 2060 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2061 /* ^ this is no longer true, as pending_w could be here */
1738 2062
1739 p->w->pending = 0; 2063 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 2064 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 2065 EV_FREQUENT_CHECK;
1742 }
1743 } 2066 }
1744} 2067}
1745 2068
1746#if EV_IDLE_ENABLE 2069#if EV_IDLE_ENABLE
1747void inline_size 2070/* make idle watchers pending. this handles the "call-idle */
2071/* only when higher priorities are idle" logic */
2072inline_size void
1748idle_reify (EV_P) 2073idle_reify (EV_P)
1749{ 2074{
1750 if (expect_false (idleall)) 2075 if (expect_false (idleall))
1751 { 2076 {
1752 int pri; 2077 int pri;
1764 } 2089 }
1765 } 2090 }
1766} 2091}
1767#endif 2092#endif
1768 2093
1769void inline_size 2094/* make timers pending */
2095inline_size void
1770timers_reify (EV_P) 2096timers_reify (EV_P)
1771{ 2097{
1772 EV_FREQUENT_CHECK; 2098 EV_FREQUENT_CHECK;
1773 2099
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2100 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 2101 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2102 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 2103 {
2104 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2105
2106 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2107
2108 /* first reschedule or stop timer */
2109 if (w->repeat)
2110 {
1783 ev_at (w) += w->repeat; 2111 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 2112 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 2113 ev_at (w) = mn_now;
1786 2114
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2115 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 2116
1789 ANHE_at_cache (timers [HEAP0]); 2117 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 2118 downheap (timers, timercnt, HEAP0);
2119 }
2120 else
2121 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2122
2123 EV_FREQUENT_CHECK;
2124 feed_reverse (EV_A_ (W)w);
1791 } 2125 }
1792 else 2126 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 2127
1795 EV_FREQUENT_CHECK; 2128 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 2129 }
1798} 2130}
1799 2131
1800#if EV_PERIODIC_ENABLE 2132#if EV_PERIODIC_ENABLE
1801void inline_size 2133/* make periodics pending */
2134inline_size void
1802periodics_reify (EV_P) 2135periodics_reify (EV_P)
1803{ 2136{
1804 EV_FREQUENT_CHECK; 2137 EV_FREQUENT_CHECK;
1805 2138
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2139 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 2140 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2141 int feed_count = 0;
1809 2142
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2143 do
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 2144 {
2145 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2146
2147 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2148
2149 /* first reschedule or stop timer */
2150 if (w->reschedule_cb)
2151 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2152 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 2153
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2154 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 2155
1819 ANHE_at_cache (periodics [HEAP0]); 2156 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 2157 downheap (periodics, periodiccnt, HEAP0);
2158 }
2159 else if (w->interval)
2160 {
2161 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2162 /* if next trigger time is not sufficiently in the future, put it there */
2163 /* this might happen because of floating point inexactness */
2164 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2165 {
2166 ev_at (w) += w->interval;
2167
2168 /* if interval is unreasonably low we might still have a time in the past */
2169 /* so correct this. this will make the periodic very inexact, but the user */
2170 /* has effectively asked to get triggered more often than possible */
2171 if (ev_at (w) < ev_rt_now)
2172 ev_at (w) = ev_rt_now;
2173 }
2174
2175 ANHE_at_cache (periodics [HEAP0]);
2176 downheap (periodics, periodiccnt, HEAP0);
2177 }
2178 else
2179 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2180
2181 EV_FREQUENT_CHECK;
2182 feed_reverse (EV_A_ (W)w);
1821 } 2183 }
1822 else if (w->interval) 2184 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 2185
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2186 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 2187 }
1847} 2188}
1848 2189
2190/* simply recalculate all periodics */
2191/* TODO: maybe ensure that at least one event happens when jumping forward? */
1849static void noinline 2192static void noinline
1850periodics_reschedule (EV_P) 2193periodics_reschedule (EV_P)
1851{ 2194{
1852 int i; 2195 int i;
1853 2196
1866 2209
1867 reheap (periodics, periodiccnt); 2210 reheap (periodics, periodiccnt);
1868} 2211}
1869#endif 2212#endif
1870 2213
1871void inline_speed 2214/* adjust all timers by a given offset */
2215static void noinline
2216timers_reschedule (EV_P_ ev_tstamp adjust)
2217{
2218 int i;
2219
2220 for (i = 0; i < timercnt; ++i)
2221 {
2222 ANHE *he = timers + i + HEAP0;
2223 ANHE_w (*he)->at += adjust;
2224 ANHE_at_cache (*he);
2225 }
2226}
2227
2228/* fetch new monotonic and realtime times from the kernel */
2229/* also detect if there was a timejump, and act accordingly */
2230inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 2231time_update (EV_P_ ev_tstamp max_block)
1873{ 2232{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 2233#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 2234 if (expect_true (have_monotonic))
1878 { 2235 {
2236 int i;
1879 ev_tstamp odiff = rtmn_diff; 2237 ev_tstamp odiff = rtmn_diff;
1880 2238
1881 mn_now = get_clock (); 2239 mn_now = get_clock ();
1882 2240
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2241 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1909 ev_rt_now = ev_time (); 2267 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2268 mn_now = get_clock ();
1911 now_floor = mn_now; 2269 now_floor = mn_now;
1912 } 2270 }
1913 2271
2272 /* no timer adjustment, as the monotonic clock doesn't jump */
2273 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2274# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2275 periodics_reschedule (EV_A);
1916# endif 2276# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2277 }
1920 else 2278 else
1921#endif 2279#endif
1922 { 2280 {
1923 ev_rt_now = ev_time (); 2281 ev_rt_now = ev_time ();
1924 2282
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2283 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 2284 {
2285 /* adjust timers. this is easy, as the offset is the same for all of them */
2286 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 2287#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 2288 periodics_reschedule (EV_A);
1929#endif 2289#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 2290 }
1938 2291
1939 mn_now = ev_rt_now; 2292 mn_now = ev_rt_now;
1940 } 2293 }
1941} 2294}
1942 2295
1943void 2296void
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 2297ev_run (EV_P_ int flags)
1965{ 2298{
2299#if EV_FEATURE_API
2300 ++loop_depth;
2301#endif
2302
2303 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2304
1966 loop_done = EVUNLOOP_CANCEL; 2305 loop_done = EVBREAK_CANCEL;
1967 2306
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2307 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 2308
1970 do 2309 do
1971 { 2310 {
1972#if EV_VERIFY >= 2 2311#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 2312 ev_verify (EV_A);
1974#endif 2313#endif
1975 2314
1976#ifndef _WIN32 2315#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 2316 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 2317 if (expect_false (getpid () != curpid))
1986 /* we might have forked, so queue fork handlers */ 2325 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 2326 if (expect_false (postfork))
1988 if (forkcnt) 2327 if (forkcnt)
1989 { 2328 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2329 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 2330 EV_INVOKE_PENDING;
1992 } 2331 }
1993#endif 2332#endif
1994 2333
2334#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 2335 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 2336 if (expect_false (preparecnt))
1997 { 2337 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2338 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 2339 EV_INVOKE_PENDING;
2000 } 2340 }
2341#endif
2342
2343 if (expect_false (loop_done))
2344 break;
2001 2345
2002 /* we might have forked, so reify kernel state if necessary */ 2346 /* we might have forked, so reify kernel state if necessary */
2003 if (expect_false (postfork)) 2347 if (expect_false (postfork))
2004 loop_fork (EV_A); 2348 loop_fork (EV_A);
2005 2349
2009 /* calculate blocking time */ 2353 /* calculate blocking time */
2010 { 2354 {
2011 ev_tstamp waittime = 0.; 2355 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.; 2356 ev_tstamp sleeptime = 0.;
2013 2357
2358 /* remember old timestamp for io_blocktime calculation */
2359 ev_tstamp prev_mn_now = mn_now;
2360
2361 /* update time to cancel out callback processing overhead */
2362 time_update (EV_A_ 1e100);
2363
2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2364 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
2015 { 2365 {
2016 /* update time to cancel out callback processing overhead */
2017 time_update (EV_A_ 1e100);
2018
2019 waittime = MAX_BLOCKTIME; 2366 waittime = MAX_BLOCKTIME;
2020 2367
2021 if (timercnt) 2368 if (timercnt)
2022 { 2369 {
2023 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2370 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2031 if (waittime > to) waittime = to; 2378 if (waittime > to) waittime = to;
2032 } 2379 }
2033#endif 2380#endif
2034 2381
2382 /* don't let timeouts decrease the waittime below timeout_blocktime */
2035 if (expect_false (waittime < timeout_blocktime)) 2383 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime; 2384 waittime = timeout_blocktime;
2037 2385
2038 sleeptime = waittime - backend_fudge; 2386 /* extra check because io_blocktime is commonly 0 */
2039
2040 if (expect_true (sleeptime > io_blocktime)) 2387 if (expect_false (io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 { 2388 {
2389 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2390
2391 if (sleeptime > waittime - backend_fudge)
2392 sleeptime = waittime - backend_fudge;
2393
2394 if (expect_true (sleeptime > 0.))
2395 {
2045 ev_sleep (sleeptime); 2396 ev_sleep (sleeptime);
2046 waittime -= sleeptime; 2397 waittime -= sleeptime;
2398 }
2047 } 2399 }
2048 } 2400 }
2049 2401
2402#if EV_FEATURE_API
2050 ++loop_count; 2403 ++loop_count;
2404#endif
2405 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2051 backend_poll (EV_A_ waittime); 2406 backend_poll (EV_A_ waittime);
2407 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2052 2408
2053 /* update ev_rt_now, do magic */ 2409 /* update ev_rt_now, do magic */
2054 time_update (EV_A_ waittime + sleeptime); 2410 time_update (EV_A_ waittime + sleeptime);
2055 } 2411 }
2056 2412
2063#if EV_IDLE_ENABLE 2419#if EV_IDLE_ENABLE
2064 /* queue idle watchers unless other events are pending */ 2420 /* queue idle watchers unless other events are pending */
2065 idle_reify (EV_A); 2421 idle_reify (EV_A);
2066#endif 2422#endif
2067 2423
2424#if EV_CHECK_ENABLE
2068 /* queue check watchers, to be executed first */ 2425 /* queue check watchers, to be executed first */
2069 if (expect_false (checkcnt)) 2426 if (expect_false (checkcnt))
2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2427 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2428#endif
2071 2429
2072 call_pending (EV_A); 2430 EV_INVOKE_PENDING;
2073 } 2431 }
2074 while (expect_true ( 2432 while (expect_true (
2075 activecnt 2433 activecnt
2076 && !loop_done 2434 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2435 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2078 )); 2436 ));
2079 2437
2080 if (loop_done == EVUNLOOP_ONE) 2438 if (loop_done == EVBREAK_ONE)
2081 loop_done = EVUNLOOP_CANCEL; 2439 loop_done = EVBREAK_CANCEL;
2082}
2083 2440
2441#if EV_FEATURE_API
2442 --loop_depth;
2443#endif
2444}
2445
2084void 2446void
2085ev_unloop (EV_P_ int how) 2447ev_break (EV_P_ int how)
2086{ 2448{
2087 loop_done = how; 2449 loop_done = how;
2088} 2450}
2089 2451
2452void
2453ev_ref (EV_P)
2454{
2455 ++activecnt;
2456}
2457
2458void
2459ev_unref (EV_P)
2460{
2461 --activecnt;
2462}
2463
2464void
2465ev_now_update (EV_P)
2466{
2467 time_update (EV_A_ 1e100);
2468}
2469
2470void
2471ev_suspend (EV_P)
2472{
2473 ev_now_update (EV_A);
2474}
2475
2476void
2477ev_resume (EV_P)
2478{
2479 ev_tstamp mn_prev = mn_now;
2480
2481 ev_now_update (EV_A);
2482 timers_reschedule (EV_A_ mn_now - mn_prev);
2483#if EV_PERIODIC_ENABLE
2484 /* TODO: really do this? */
2485 periodics_reschedule (EV_A);
2486#endif
2487}
2488
2090/*****************************************************************************/ 2489/*****************************************************************************/
2490/* singly-linked list management, used when the expected list length is short */
2091 2491
2092void inline_size 2492inline_size void
2093wlist_add (WL *head, WL elem) 2493wlist_add (WL *head, WL elem)
2094{ 2494{
2095 elem->next = *head; 2495 elem->next = *head;
2096 *head = elem; 2496 *head = elem;
2097} 2497}
2098 2498
2099void inline_size 2499inline_size void
2100wlist_del (WL *head, WL elem) 2500wlist_del (WL *head, WL elem)
2101{ 2501{
2102 while (*head) 2502 while (*head)
2103 { 2503 {
2104 if (*head == elem) 2504 if (expect_true (*head == elem))
2105 { 2505 {
2106 *head = elem->next; 2506 *head = elem->next;
2107 return; 2507 break;
2108 } 2508 }
2109 2509
2110 head = &(*head)->next; 2510 head = &(*head)->next;
2111 } 2511 }
2112} 2512}
2113 2513
2114void inline_speed 2514/* internal, faster, version of ev_clear_pending */
2515inline_speed void
2115clear_pending (EV_P_ W w) 2516clear_pending (EV_P_ W w)
2116{ 2517{
2117 if (w->pending) 2518 if (w->pending)
2118 { 2519 {
2119 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2520 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2120 w->pending = 0; 2521 w->pending = 0;
2121 } 2522 }
2122} 2523}
2123 2524
2124int 2525int
2128 int pending = w_->pending; 2529 int pending = w_->pending;
2129 2530
2130 if (expect_true (pending)) 2531 if (expect_true (pending))
2131 { 2532 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2533 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2534 p->w = (W)&pending_w;
2133 w_->pending = 0; 2535 w_->pending = 0;
2134 p->w = 0;
2135 return p->events; 2536 return p->events;
2136 } 2537 }
2137 else 2538 else
2138 return 0; 2539 return 0;
2139} 2540}
2140 2541
2141void inline_size 2542inline_size void
2142pri_adjust (EV_P_ W w) 2543pri_adjust (EV_P_ W w)
2143{ 2544{
2144 int pri = w->priority; 2545 int pri = ev_priority (w);
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2546 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2547 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri; 2548 ev_set_priority (w, pri);
2148} 2549}
2149 2550
2150void inline_speed 2551inline_speed void
2151ev_start (EV_P_ W w, int active) 2552ev_start (EV_P_ W w, int active)
2152{ 2553{
2153 pri_adjust (EV_A_ w); 2554 pri_adjust (EV_A_ w);
2154 w->active = active; 2555 w->active = active;
2155 ev_ref (EV_A); 2556 ev_ref (EV_A);
2156} 2557}
2157 2558
2158void inline_size 2559inline_size void
2159ev_stop (EV_P_ W w) 2560ev_stop (EV_P_ W w)
2160{ 2561{
2161 ev_unref (EV_A); 2562 ev_unref (EV_A);
2162 w->active = 0; 2563 w->active = 0;
2163} 2564}
2171 2572
2172 if (expect_false (ev_is_active (w))) 2573 if (expect_false (ev_is_active (w)))
2173 return; 2574 return;
2174 2575
2175 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2576 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2176 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 2577 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2177 2578
2178 EV_FREQUENT_CHECK; 2579 EV_FREQUENT_CHECK;
2179 2580
2180 ev_start (EV_A_ (W)w, 1); 2581 ev_start (EV_A_ (W)w, 1);
2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2582 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2182 wlist_add (&anfds[fd].head, (WL)w); 2583 wlist_add (&anfds[fd].head, (WL)w);
2183 2584
2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 2585 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2185 w->events &= ~EV__IOFDSET; 2586 w->events &= ~EV__IOFDSET;
2186 2587
2187 EV_FREQUENT_CHECK; 2588 EV_FREQUENT_CHECK;
2188} 2589}
2189 2590
2199 EV_FREQUENT_CHECK; 2600 EV_FREQUENT_CHECK;
2200 2601
2201 wlist_del (&anfds[w->fd].head, (WL)w); 2602 wlist_del (&anfds[w->fd].head, (WL)w);
2202 ev_stop (EV_A_ (W)w); 2603 ev_stop (EV_A_ (W)w);
2203 2604
2204 fd_change (EV_A_ w->fd, 1); 2605 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2205 2606
2206 EV_FREQUENT_CHECK; 2607 EV_FREQUENT_CHECK;
2207} 2608}
2208 2609
2209void noinline 2610void noinline
2251 timers [active] = timers [timercnt + HEAP0]; 2652 timers [active] = timers [timercnt + HEAP0];
2252 adjustheap (timers, timercnt, active); 2653 adjustheap (timers, timercnt, active);
2253 } 2654 }
2254 } 2655 }
2255 2656
2256 EV_FREQUENT_CHECK;
2257
2258 ev_at (w) -= mn_now; 2657 ev_at (w) -= mn_now;
2259 2658
2260 ev_stop (EV_A_ (W)w); 2659 ev_stop (EV_A_ (W)w);
2660
2661 EV_FREQUENT_CHECK;
2261} 2662}
2262 2663
2263void noinline 2664void noinline
2264ev_timer_again (EV_P_ ev_timer *w) 2665ev_timer_again (EV_P_ ev_timer *w)
2265{ 2666{
2283 } 2684 }
2284 2685
2285 EV_FREQUENT_CHECK; 2686 EV_FREQUENT_CHECK;
2286} 2687}
2287 2688
2689ev_tstamp
2690ev_timer_remaining (EV_P_ ev_timer *w)
2691{
2692 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2693}
2694
2288#if EV_PERIODIC_ENABLE 2695#if EV_PERIODIC_ENABLE
2289void noinline 2696void noinline
2290ev_periodic_start (EV_P_ ev_periodic *w) 2697ev_periodic_start (EV_P_ ev_periodic *w)
2291{ 2698{
2292 if (expect_false (ev_is_active (w))) 2699 if (expect_false (ev_is_active (w)))
2338 periodics [active] = periodics [periodiccnt + HEAP0]; 2745 periodics [active] = periodics [periodiccnt + HEAP0];
2339 adjustheap (periodics, periodiccnt, active); 2746 adjustheap (periodics, periodiccnt, active);
2340 } 2747 }
2341 } 2748 }
2342 2749
2343 EV_FREQUENT_CHECK;
2344
2345 ev_stop (EV_A_ (W)w); 2750 ev_stop (EV_A_ (W)w);
2751
2752 EV_FREQUENT_CHECK;
2346} 2753}
2347 2754
2348void noinline 2755void noinline
2349ev_periodic_again (EV_P_ ev_periodic *w) 2756ev_periodic_again (EV_P_ ev_periodic *w)
2350{ 2757{
2356 2763
2357#ifndef SA_RESTART 2764#ifndef SA_RESTART
2358# define SA_RESTART 0 2765# define SA_RESTART 0
2359#endif 2766#endif
2360 2767
2768#if EV_SIGNAL_ENABLE
2769
2361void noinline 2770void noinline
2362ev_signal_start (EV_P_ ev_signal *w) 2771ev_signal_start (EV_P_ ev_signal *w)
2363{ 2772{
2364#if EV_MULTIPLICITY
2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2366#endif
2367 if (expect_false (ev_is_active (w))) 2773 if (expect_false (ev_is_active (w)))
2368 return; 2774 return;
2369 2775
2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 2776 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2371 2777
2372 evpipe_init (EV_A); 2778#if EV_MULTIPLICITY
2779 assert (("libev: a signal must not be attached to two different loops",
2780 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2373 2781
2374 EV_FREQUENT_CHECK; 2782 signals [w->signum - 1].loop = EV_A;
2783#endif
2375 2784
2785 EV_FREQUENT_CHECK;
2786
2787#if EV_USE_SIGNALFD
2788 if (sigfd == -2)
2376 { 2789 {
2377#ifndef _WIN32 2790 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2378 sigset_t full, prev; 2791 if (sigfd < 0 && errno == EINVAL)
2379 sigfillset (&full); 2792 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2380 sigprocmask (SIG_SETMASK, &full, &prev);
2381#endif
2382 2793
2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2794 if (sigfd >= 0)
2795 {
2796 fd_intern (sigfd); /* doing it twice will not hurt */
2384 2797
2385#ifndef _WIN32 2798 sigemptyset (&sigfd_set);
2386 sigprocmask (SIG_SETMASK, &prev, 0); 2799
2387#endif 2800 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2801 ev_set_priority (&sigfd_w, EV_MAXPRI);
2802 ev_io_start (EV_A_ &sigfd_w);
2803 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2804 }
2388 } 2805 }
2806
2807 if (sigfd >= 0)
2808 {
2809 /* TODO: check .head */
2810 sigaddset (&sigfd_set, w->signum);
2811 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2812
2813 signalfd (sigfd, &sigfd_set, 0);
2814 }
2815#endif
2389 2816
2390 ev_start (EV_A_ (W)w, 1); 2817 ev_start (EV_A_ (W)w, 1);
2391 wlist_add (&signals [w->signum - 1].head, (WL)w); 2818 wlist_add (&signals [w->signum - 1].head, (WL)w);
2392 2819
2393 if (!((WL)w)->next) 2820 if (!((WL)w)->next)
2821# if EV_USE_SIGNALFD
2822 if (sigfd < 0) /*TODO*/
2823# endif
2394 { 2824 {
2395#if _WIN32 2825# ifdef _WIN32
2826 evpipe_init (EV_A);
2827
2396 signal (w->signum, ev_sighandler); 2828 signal (w->signum, ev_sighandler);
2397#else 2829# else
2398 struct sigaction sa; 2830 struct sigaction sa;
2831
2832 evpipe_init (EV_A);
2833
2399 sa.sa_handler = ev_sighandler; 2834 sa.sa_handler = ev_sighandler;
2400 sigfillset (&sa.sa_mask); 2835 sigfillset (&sa.sa_mask);
2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2836 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2402 sigaction (w->signum, &sa, 0); 2837 sigaction (w->signum, &sa, 0);
2838
2839 sigemptyset (&sa.sa_mask);
2840 sigaddset (&sa.sa_mask, w->signum);
2841 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2403#endif 2842#endif
2404 } 2843 }
2405 2844
2406 EV_FREQUENT_CHECK; 2845 EV_FREQUENT_CHECK;
2407} 2846}
2408 2847
2409void noinline 2848void noinline
2417 2856
2418 wlist_del (&signals [w->signum - 1].head, (WL)w); 2857 wlist_del (&signals [w->signum - 1].head, (WL)w);
2419 ev_stop (EV_A_ (W)w); 2858 ev_stop (EV_A_ (W)w);
2420 2859
2421 if (!signals [w->signum - 1].head) 2860 if (!signals [w->signum - 1].head)
2861 {
2862#if EV_MULTIPLICITY
2863 signals [w->signum - 1].loop = 0; /* unattach from signal */
2864#endif
2865#if EV_USE_SIGNALFD
2866 if (sigfd >= 0)
2867 {
2868 sigset_t ss;
2869
2870 sigemptyset (&ss);
2871 sigaddset (&ss, w->signum);
2872 sigdelset (&sigfd_set, w->signum);
2873
2874 signalfd (sigfd, &sigfd_set, 0);
2875 sigprocmask (SIG_UNBLOCK, &ss, 0);
2876 }
2877 else
2878#endif
2422 signal (w->signum, SIG_DFL); 2879 signal (w->signum, SIG_DFL);
2880 }
2423 2881
2424 EV_FREQUENT_CHECK; 2882 EV_FREQUENT_CHECK;
2425} 2883}
2884
2885#endif
2886
2887#if EV_CHILD_ENABLE
2426 2888
2427void 2889void
2428ev_child_start (EV_P_ ev_child *w) 2890ev_child_start (EV_P_ ev_child *w)
2429{ 2891{
2430#if EV_MULTIPLICITY 2892#if EV_MULTIPLICITY
2434 return; 2896 return;
2435 2897
2436 EV_FREQUENT_CHECK; 2898 EV_FREQUENT_CHECK;
2437 2899
2438 ev_start (EV_A_ (W)w, 1); 2900 ev_start (EV_A_ (W)w, 1);
2439 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2901 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2440 2902
2441 EV_FREQUENT_CHECK; 2903 EV_FREQUENT_CHECK;
2442} 2904}
2443 2905
2444void 2906void
2448 if (expect_false (!ev_is_active (w))) 2910 if (expect_false (!ev_is_active (w)))
2449 return; 2911 return;
2450 2912
2451 EV_FREQUENT_CHECK; 2913 EV_FREQUENT_CHECK;
2452 2914
2453 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2915 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2454 ev_stop (EV_A_ (W)w); 2916 ev_stop (EV_A_ (W)w);
2455 2917
2456 EV_FREQUENT_CHECK; 2918 EV_FREQUENT_CHECK;
2457} 2919}
2920
2921#endif
2458 2922
2459#if EV_STAT_ENABLE 2923#if EV_STAT_ENABLE
2460 2924
2461# ifdef _WIN32 2925# ifdef _WIN32
2462# undef lstat 2926# undef lstat
2468#define MIN_STAT_INTERVAL 0.1074891 2932#define MIN_STAT_INTERVAL 0.1074891
2469 2933
2470static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2934static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2471 2935
2472#if EV_USE_INOTIFY 2936#if EV_USE_INOTIFY
2473# define EV_INOTIFY_BUFSIZE 8192 2937
2938/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2939# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2474 2940
2475static void noinline 2941static void noinline
2476infy_add (EV_P_ ev_stat *w) 2942infy_add (EV_P_ ev_stat *w)
2477{ 2943{
2478 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2479 2945
2480 if (w->wd < 0) 2946 if (w->wd >= 0)
2947 {
2948 struct statfs sfs;
2949
2950 /* now local changes will be tracked by inotify, but remote changes won't */
2951 /* unless the filesystem is known to be local, we therefore still poll */
2952 /* also do poll on <2.6.25, but with normal frequency */
2953
2954 if (!fs_2625)
2955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2956 else if (!statfs (w->path, &sfs)
2957 && (sfs.f_type == 0x1373 /* devfs */
2958 || sfs.f_type == 0xEF53 /* ext2/3 */
2959 || sfs.f_type == 0x3153464a /* jfs */
2960 || sfs.f_type == 0x52654973 /* reiser3 */
2961 || sfs.f_type == 0x01021994 /* tempfs */
2962 || sfs.f_type == 0x58465342 /* xfs */))
2963 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2964 else
2965 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2481 { 2966 }
2967 else
2968 {
2969 /* can't use inotify, continue to stat */
2482 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 2970 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2483 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2484 2971
2485 /* monitor some parent directory for speedup hints */ 2972 /* if path is not there, monitor some parent directory for speedup hints */
2486 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 2973 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2487 /* but an efficiency issue only */ 2974 /* but an efficiency issue only */
2488 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2975 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2489 { 2976 {
2490 char path [4096]; 2977 char path [4096];
2506 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2993 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2507 } 2994 }
2508 } 2995 }
2509 2996
2510 if (w->wd >= 0) 2997 if (w->wd >= 0)
2511 {
2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2998 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2513 2999
2514 /* now local changes will be tracked by inotify, but remote changes won't */ 3000 /* now re-arm timer, if required */
2515 /* unless the filesystem it known to be local, we therefore still poll */ 3001 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2516 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518
2519 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */
2523 || sfs.f_type == 0x52654973 /* reiser3 */
2524 || sfs.f_type == 0x01021994 /* tempfs */
2525 || sfs.f_type == 0x58465342 /* xfs */)
2526 return;
2527
2528 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2529 ev_timer_again (EV_A_ &w->timer); 3002 ev_timer_again (EV_A_ &w->timer);
2530 } 3003 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2531} 3004}
2532 3005
2533static void noinline 3006static void noinline
2534infy_del (EV_P_ ev_stat *w) 3007infy_del (EV_P_ ev_stat *w)
2535{ 3008{
2538 3011
2539 if (wd < 0) 3012 if (wd < 0)
2540 return; 3013 return;
2541 3014
2542 w->wd = -2; 3015 w->wd = -2;
2543 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3016 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2544 wlist_del (&fs_hash [slot].head, (WL)w); 3017 wlist_del (&fs_hash [slot].head, (WL)w);
2545 3018
2546 /* remove this watcher, if others are watching it, they will rearm */ 3019 /* remove this watcher, if others are watching it, they will rearm */
2547 inotify_rm_watch (fs_fd, wd); 3020 inotify_rm_watch (fs_fd, wd);
2548} 3021}
2550static void noinline 3023static void noinline
2551infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3024infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2552{ 3025{
2553 if (slot < 0) 3026 if (slot < 0)
2554 /* overflow, need to check for all hash slots */ 3027 /* overflow, need to check for all hash slots */
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3028 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2556 infy_wd (EV_A_ slot, wd, ev); 3029 infy_wd (EV_A_ slot, wd, ev);
2557 else 3030 else
2558 { 3031 {
2559 WL w_; 3032 WL w_;
2560 3033
2561 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3034 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2562 { 3035 {
2563 ev_stat *w = (ev_stat *)w_; 3036 ev_stat *w = (ev_stat *)w_;
2564 w_ = w_->next; /* lets us remove this watcher and all before it */ 3037 w_ = w_->next; /* lets us remove this watcher and all before it */
2565 3038
2566 if (w->wd == wd || wd == -1) 3039 if (w->wd == wd || wd == -1)
2567 { 3040 {
2568 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3041 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2569 { 3042 {
2570 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3043 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2571 w->wd = -1; 3044 w->wd = -1;
2572 infy_add (EV_A_ w); /* re-add, no matter what */ 3045 infy_add (EV_A_ w); /* re-add, no matter what */
2573 } 3046 }
2574 3047
2575 stat_timer_cb (EV_A_ &w->timer, 0); 3048 stat_timer_cb (EV_A_ &w->timer, 0);
2580 3053
2581static void 3054static void
2582infy_cb (EV_P_ ev_io *w, int revents) 3055infy_cb (EV_P_ ev_io *w, int revents)
2583{ 3056{
2584 char buf [EV_INOTIFY_BUFSIZE]; 3057 char buf [EV_INOTIFY_BUFSIZE];
2585 struct inotify_event *ev = (struct inotify_event *)buf;
2586 int ofs; 3058 int ofs;
2587 int len = read (fs_fd, buf, sizeof (buf)); 3059 int len = read (fs_fd, buf, sizeof (buf));
2588 3060
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3061 for (ofs = 0; ofs < len; )
3062 {
3063 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3064 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3065 ofs += sizeof (struct inotify_event) + ev->len;
3066 }
2591} 3067}
2592 3068
2593void inline_size 3069inline_size unsigned int
3070ev_linux_version (void)
3071{
3072 struct utsname buf;
3073 unsigned int v;
3074 int i;
3075 char *p = buf.release;
3076
3077 if (uname (&buf))
3078 return 0;
3079
3080 for (i = 3+1; --i; )
3081 {
3082 unsigned int c = 0;
3083
3084 for (;;)
3085 {
3086 if (*p >= '0' && *p <= '9')
3087 c = c * 10 + *p++ - '0';
3088 else
3089 {
3090 p += *p == '.';
3091 break;
3092 }
3093 }
3094
3095 v = (v << 8) | c;
3096 }
3097
3098 return v;
3099}
3100
3101inline_size void
2594check_2625 (EV_P) 3102ev_check_2625 (EV_P)
2595{ 3103{
2596 /* kernels < 2.6.25 are borked 3104 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3105 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */ 3106 */
2599 struct utsname buf; 3107 if (ev_linux_version () < 0x020619)
2600 int major, minor, micro;
2601
2602 if (uname (&buf))
2603 return; 3108 return;
2604 3109
2605 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2606 return;
2607
2608 if (major < 2
2609 || (major == 2 && minor < 6)
2610 || (major == 2 && minor == 6 && micro < 25))
2611 return;
2612
2613 fs_2625 = 1; 3110 fs_2625 = 1;
2614} 3111}
2615 3112
2616void inline_size 3113inline_size int
3114infy_newfd (void)
3115{
3116#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3117 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3118 if (fd >= 0)
3119 return fd;
3120#endif
3121 return inotify_init ();
3122}
3123
3124inline_size void
2617infy_init (EV_P) 3125infy_init (EV_P)
2618{ 3126{
2619 if (fs_fd != -2) 3127 if (fs_fd != -2)
2620 return; 3128 return;
2621 3129
2622 fs_fd = -1; 3130 fs_fd = -1;
2623 3131
2624 check_2625 (EV_A); 3132 ev_check_2625 (EV_A);
2625 3133
2626 fs_fd = inotify_init (); 3134 fs_fd = infy_newfd ();
2627 3135
2628 if (fs_fd >= 0) 3136 if (fs_fd >= 0)
2629 { 3137 {
3138 fd_intern (fs_fd);
2630 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3139 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2631 ev_set_priority (&fs_w, EV_MAXPRI); 3140 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w); 3141 ev_io_start (EV_A_ &fs_w);
3142 ev_unref (EV_A);
2633 } 3143 }
2634} 3144}
2635 3145
2636void inline_size 3146inline_size void
2637infy_fork (EV_P) 3147infy_fork (EV_P)
2638{ 3148{
2639 int slot; 3149 int slot;
2640 3150
2641 if (fs_fd < 0) 3151 if (fs_fd < 0)
2642 return; 3152 return;
2643 3153
3154 ev_ref (EV_A);
3155 ev_io_stop (EV_A_ &fs_w);
2644 close (fs_fd); 3156 close (fs_fd);
2645 fs_fd = inotify_init (); 3157 fs_fd = infy_newfd ();
2646 3158
3159 if (fs_fd >= 0)
3160 {
3161 fd_intern (fs_fd);
3162 ev_io_set (&fs_w, fs_fd, EV_READ);
3163 ev_io_start (EV_A_ &fs_w);
3164 ev_unref (EV_A);
3165 }
3166
2647 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3167 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2648 { 3168 {
2649 WL w_ = fs_hash [slot].head; 3169 WL w_ = fs_hash [slot].head;
2650 fs_hash [slot].head = 0; 3170 fs_hash [slot].head = 0;
2651 3171
2652 while (w_) 3172 while (w_)
2657 w->wd = -1; 3177 w->wd = -1;
2658 3178
2659 if (fs_fd >= 0) 3179 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); /* re-add, no matter what */ 3180 infy_add (EV_A_ w); /* re-add, no matter what */
2661 else 3181 else
3182 {
3183 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3184 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2662 ev_timer_again (EV_A_ &w->timer); 3185 ev_timer_again (EV_A_ &w->timer);
3186 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3187 }
2663 } 3188 }
2664 } 3189 }
2665} 3190}
2666 3191
2667#endif 3192#endif
2684static void noinline 3209static void noinline
2685stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3210stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2686{ 3211{
2687 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3212 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2688 3213
2689 /* we copy this here each the time so that */ 3214 ev_statdata prev = w->attr;
2690 /* prev has the old value when the callback gets invoked */
2691 w->prev = w->attr;
2692 ev_stat_stat (EV_A_ w); 3215 ev_stat_stat (EV_A_ w);
2693 3216
2694 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3217 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2695 if ( 3218 if (
2696 w->prev.st_dev != w->attr.st_dev 3219 prev.st_dev != w->attr.st_dev
2697 || w->prev.st_ino != w->attr.st_ino 3220 || prev.st_ino != w->attr.st_ino
2698 || w->prev.st_mode != w->attr.st_mode 3221 || prev.st_mode != w->attr.st_mode
2699 || w->prev.st_nlink != w->attr.st_nlink 3222 || prev.st_nlink != w->attr.st_nlink
2700 || w->prev.st_uid != w->attr.st_uid 3223 || prev.st_uid != w->attr.st_uid
2701 || w->prev.st_gid != w->attr.st_gid 3224 || prev.st_gid != w->attr.st_gid
2702 || w->prev.st_rdev != w->attr.st_rdev 3225 || prev.st_rdev != w->attr.st_rdev
2703 || w->prev.st_size != w->attr.st_size 3226 || prev.st_size != w->attr.st_size
2704 || w->prev.st_atime != w->attr.st_atime 3227 || prev.st_atime != w->attr.st_atime
2705 || w->prev.st_mtime != w->attr.st_mtime 3228 || prev.st_mtime != w->attr.st_mtime
2706 || w->prev.st_ctime != w->attr.st_ctime 3229 || prev.st_ctime != w->attr.st_ctime
2707 ) { 3230 ) {
3231 /* we only update w->prev on actual differences */
3232 /* in case we test more often than invoke the callback, */
3233 /* to ensure that prev is always different to attr */
3234 w->prev = prev;
3235
2708 #if EV_USE_INOTIFY 3236 #if EV_USE_INOTIFY
2709 if (fs_fd >= 0) 3237 if (fs_fd >= 0)
2710 { 3238 {
2711 infy_del (EV_A_ w); 3239 infy_del (EV_A_ w);
2712 infy_add (EV_A_ w); 3240 infy_add (EV_A_ w);
2737 3265
2738 if (fs_fd >= 0) 3266 if (fs_fd >= 0)
2739 infy_add (EV_A_ w); 3267 infy_add (EV_A_ w);
2740 else 3268 else
2741#endif 3269#endif
3270 {
2742 ev_timer_again (EV_A_ &w->timer); 3271 ev_timer_again (EV_A_ &w->timer);
3272 ev_unref (EV_A);
3273 }
2743 3274
2744 ev_start (EV_A_ (W)w, 1); 3275 ev_start (EV_A_ (W)w, 1);
2745 3276
2746 EV_FREQUENT_CHECK; 3277 EV_FREQUENT_CHECK;
2747} 3278}
2756 EV_FREQUENT_CHECK; 3287 EV_FREQUENT_CHECK;
2757 3288
2758#if EV_USE_INOTIFY 3289#if EV_USE_INOTIFY
2759 infy_del (EV_A_ w); 3290 infy_del (EV_A_ w);
2760#endif 3291#endif
3292
3293 if (ev_is_active (&w->timer))
3294 {
3295 ev_ref (EV_A);
2761 ev_timer_stop (EV_A_ &w->timer); 3296 ev_timer_stop (EV_A_ &w->timer);
3297 }
2762 3298
2763 ev_stop (EV_A_ (W)w); 3299 ev_stop (EV_A_ (W)w);
2764 3300
2765 EV_FREQUENT_CHECK; 3301 EV_FREQUENT_CHECK;
2766} 3302}
2811 3347
2812 EV_FREQUENT_CHECK; 3348 EV_FREQUENT_CHECK;
2813} 3349}
2814#endif 3350#endif
2815 3351
3352#if EV_PREPARE_ENABLE
2816void 3353void
2817ev_prepare_start (EV_P_ ev_prepare *w) 3354ev_prepare_start (EV_P_ ev_prepare *w)
2818{ 3355{
2819 if (expect_false (ev_is_active (w))) 3356 if (expect_false (ev_is_active (w)))
2820 return; 3357 return;
2846 3383
2847 ev_stop (EV_A_ (W)w); 3384 ev_stop (EV_A_ (W)w);
2848 3385
2849 EV_FREQUENT_CHECK; 3386 EV_FREQUENT_CHECK;
2850} 3387}
3388#endif
2851 3389
3390#if EV_CHECK_ENABLE
2852void 3391void
2853ev_check_start (EV_P_ ev_check *w) 3392ev_check_start (EV_P_ ev_check *w)
2854{ 3393{
2855 if (expect_false (ev_is_active (w))) 3394 if (expect_false (ev_is_active (w)))
2856 return; 3395 return;
2882 3421
2883 ev_stop (EV_A_ (W)w); 3422 ev_stop (EV_A_ (W)w);
2884 3423
2885 EV_FREQUENT_CHECK; 3424 EV_FREQUENT_CHECK;
2886} 3425}
3426#endif
2887 3427
2888#if EV_EMBED_ENABLE 3428#if EV_EMBED_ENABLE
2889void noinline 3429void noinline
2890ev_embed_sweep (EV_P_ ev_embed *w) 3430ev_embed_sweep (EV_P_ ev_embed *w)
2891{ 3431{
2892 ev_loop (w->other, EVLOOP_NONBLOCK); 3432 ev_run (w->other, EVRUN_NOWAIT);
2893} 3433}
2894 3434
2895static void 3435static void
2896embed_io_cb (EV_P_ ev_io *io, int revents) 3436embed_io_cb (EV_P_ ev_io *io, int revents)
2897{ 3437{
2898 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2899 3439
2900 if (ev_cb (w)) 3440 if (ev_cb (w))
2901 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2902 else 3442 else
2903 ev_loop (w->other, EVLOOP_NONBLOCK); 3443 ev_run (w->other, EVRUN_NOWAIT);
2904} 3444}
2905 3445
2906static void 3446static void
2907embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2908{ 3448{
2909 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2910 3450
2911 { 3451 {
2912 struct ev_loop *loop = w->other; 3452 EV_P = w->other;
2913 3453
2914 while (fdchangecnt) 3454 while (fdchangecnt)
2915 { 3455 {
2916 fd_reify (EV_A); 3456 fd_reify (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3457 ev_run (EV_A_ EVRUN_NOWAIT);
2918 } 3458 }
2919 } 3459 }
2920} 3460}
2921 3461
2922static void 3462static void
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3465 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926 3466
2927 ev_embed_stop (EV_A_ w); 3467 ev_embed_stop (EV_A_ w);
2928 3468
2929 { 3469 {
2930 struct ev_loop *loop = w->other; 3470 EV_P = w->other;
2931 3471
2932 ev_loop_fork (EV_A); 3472 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3473 ev_run (EV_A_ EVRUN_NOWAIT);
2934 } 3474 }
2935 3475
2936 ev_embed_start (EV_A_ w); 3476 ev_embed_start (EV_A_ w);
2937} 3477}
2938 3478
2949{ 3489{
2950 if (expect_false (ev_is_active (w))) 3490 if (expect_false (ev_is_active (w)))
2951 return; 3491 return;
2952 3492
2953 { 3493 {
2954 struct ev_loop *loop = w->other; 3494 EV_P = w->other;
2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3495 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3496 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2957 } 3497 }
2958 3498
2959 EV_FREQUENT_CHECK; 3499 EV_FREQUENT_CHECK;
2986 3526
2987 ev_io_stop (EV_A_ &w->io); 3527 ev_io_stop (EV_A_ &w->io);
2988 ev_prepare_stop (EV_A_ &w->prepare); 3528 ev_prepare_stop (EV_A_ &w->prepare);
2989 ev_fork_stop (EV_A_ &w->fork); 3529 ev_fork_stop (EV_A_ &w->fork);
2990 3530
3531 ev_stop (EV_A_ (W)w);
3532
2991 EV_FREQUENT_CHECK; 3533 EV_FREQUENT_CHECK;
2992} 3534}
2993#endif 3535#endif
2994 3536
2995#if EV_FORK_ENABLE 3537#if EV_FORK_ENABLE
3035ev_async_start (EV_P_ ev_async *w) 3577ev_async_start (EV_P_ ev_async *w)
3036{ 3578{
3037 if (expect_false (ev_is_active (w))) 3579 if (expect_false (ev_is_active (w)))
3038 return; 3580 return;
3039 3581
3582 w->sent = 0;
3583
3040 evpipe_init (EV_A); 3584 evpipe_init (EV_A);
3041 3585
3042 EV_FREQUENT_CHECK; 3586 EV_FREQUENT_CHECK;
3043 3587
3044 ev_start (EV_A_ (W)w, ++asynccnt); 3588 ev_start (EV_A_ (W)w, ++asynccnt);
3071 3615
3072void 3616void
3073ev_async_send (EV_P_ ev_async *w) 3617ev_async_send (EV_P_ ev_async *w)
3074{ 3618{
3075 w->sent = 1; 3619 w->sent = 1;
3076 evpipe_write (EV_A_ &gotasync); 3620 evpipe_write (EV_A_ &async_pending);
3077} 3621}
3078#endif 3622#endif
3079 3623
3080/*****************************************************************************/ 3624/*****************************************************************************/
3081 3625
3121{ 3665{
3122 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3666 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3123 3667
3124 if (expect_false (!once)) 3668 if (expect_false (!once))
3125 { 3669 {
3126 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3670 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3127 return; 3671 return;
3128 } 3672 }
3129 3673
3130 once->cb = cb; 3674 once->cb = cb;
3131 once->arg = arg; 3675 once->arg = arg;
3145 } 3689 }
3146} 3690}
3147 3691
3148/*****************************************************************************/ 3692/*****************************************************************************/
3149 3693
3150#if 0 3694#if EV_WALK_ENABLE
3151void 3695void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 3696ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3153{ 3697{
3154 int i, j; 3698 int i, j;
3155 ev_watcher_list *wl, *wn; 3699 ev_watcher_list *wl, *wn;
3171#if EV_USE_INOTIFY 3715#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb) 3716 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ; 3717 ;
3174 else 3718 else
3175#endif 3719#endif
3176 if ((ev_io *)wl != &pipeev) 3720 if ((ev_io *)wl != &pipe_w)
3177 if (types & EV_IO) 3721 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl); 3722 cb (EV_A_ EV_IO, wl);
3179 3723
3180 wl = wn; 3724 wl = wn;
3181 } 3725 }
3218 if (types & EV_ASYNC) 3762 if (types & EV_ASYNC)
3219 for (i = asynccnt; i--; ) 3763 for (i = asynccnt; i--; )
3220 cb (EV_A_ EV_ASYNC, asyncs [i]); 3764 cb (EV_A_ EV_ASYNC, asyncs [i]);
3221#endif 3765#endif
3222 3766
3767#if EV_PREPARE_ENABLE
3223 if (types & EV_PREPARE) 3768 if (types & EV_PREPARE)
3224 for (i = preparecnt; i--; ) 3769 for (i = preparecnt; i--; )
3225#if EV_EMBED_ENABLE 3770# if EV_EMBED_ENABLE
3226 if (ev_cb (prepares [i]) != embed_prepare_cb) 3771 if (ev_cb (prepares [i]) != embed_prepare_cb)
3227#endif 3772# endif
3228 cb (EV_A_ EV_PREPARE, prepares [i]); 3773 cb (EV_A_ EV_PREPARE, prepares [i]);
3774#endif
3229 3775
3776#if EV_CHECK_ENABLE
3230 if (types & EV_CHECK) 3777 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; ) 3778 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]); 3779 cb (EV_A_ EV_CHECK, checks [i]);
3780#endif
3233 3781
3782#if EV_SIGNAL_ENABLE
3234 if (types & EV_SIGNAL) 3783 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i) 3784 for (i = 0; i < EV_NSIG - 1; ++i)
3236 for (wl = signals [i].head; wl; ) 3785 for (wl = signals [i].head; wl; )
3237 { 3786 {
3238 wn = wl->next; 3787 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl); 3788 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn; 3789 wl = wn;
3241 } 3790 }
3791#endif
3242 3792
3793#if EV_CHILD_ENABLE
3243 if (types & EV_CHILD) 3794 if (types & EV_CHILD)
3244 for (i = EV_PID_HASHSIZE; i--; ) 3795 for (i = (EV_PID_HASHSIZE); i--; )
3245 for (wl = childs [i]; wl; ) 3796 for (wl = childs [i]; wl; )
3246 { 3797 {
3247 wn = wl->next; 3798 wn = wl->next;
3248 cb (EV_A_ EV_CHILD, wl); 3799 cb (EV_A_ EV_CHILD, wl);
3249 wl = wn; 3800 wl = wn;
3250 } 3801 }
3802#endif
3251/* EV_STAT 0x00001000 /* stat data changed */ 3803/* EV_STAT 0x00001000 /* stat data changed */
3252/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 3804/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3253} 3805}
3254#endif 3806#endif
3255 3807

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines