ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.52 by root, Sat Nov 3 22:10:39 2007 UTC vs.
Revision 1.353 by root, Thu Oct 21 12:32:47 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# if HAVE_NANOSLEEP
83# ifndef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
86# else
87# undef EV_USE_NANOSLEEP
88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
98# endif
99
100# if HAVE_POLL && HAVE_POLL_H
101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
103# endif
104# else
105# undef EV_USE_POLL
106# define EV_USE_POLL 0
107# endif
108
109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
110# ifndef EV_USE_EPOLL
111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
116# endif
117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
119# ifndef EV_USE_KQUEUE
120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
125# endif
126
127# if HAVE_PORT_H && HAVE_PORT_CREATE
128# ifndef EV_USE_PORT
129# define EV_USE_PORT EV_FEATURE_BACKENDS
130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
134# endif
135
136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137# ifndef EV_USE_INOTIFY
138# define EV_USE_INOTIFY EV_FEATURE_OS
139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
143# endif
144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
33#endif 163#endif
34 164
35#include <math.h> 165#include <math.h>
36#include <stdlib.h> 166#include <stdlib.h>
37#include <unistd.h> 167#include <string.h>
38#include <fcntl.h> 168#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 169#include <stddef.h>
41 170
42#include <stdio.h> 171#include <stdio.h>
43 172
44#include <assert.h> 173#include <assert.h>
45#include <errno.h> 174#include <errno.h>
46#include <sys/types.h> 175#include <sys/types.h>
176#include <time.h>
177#include <limits.h>
178
179#include <signal.h>
180
181#ifdef EV_H
182# include EV_H
183#else
184# include "ev.h"
185#endif
186
47#ifndef WIN32 187#ifndef _WIN32
188# include <sys/time.h>
48# include <sys/wait.h> 189# include <sys/wait.h>
190# include <unistd.h>
191#else
192# include <io.h>
193# define WIN32_LEAN_AND_MEAN
194# include <windows.h>
195# ifndef EV_SELECT_IS_WINSOCKET
196# define EV_SELECT_IS_WINSOCKET 1
49#endif 197# endif
50#include <sys/time.h> 198# undef EV_AVOID_STDIO
51#include <time.h> 199#endif
52 200
53/**/ 201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
208
209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
244# endif
245#endif
54 246
55#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
56# define EV_USE_MONOTONIC 1 251# define EV_USE_MONOTONIC 0
252# endif
253#endif
254
255#ifndef EV_USE_REALTIME
256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
257#endif
258
259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
263# define EV_USE_NANOSLEEP 0
264# endif
57#endif 265#endif
58 266
59#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
61#endif 269#endif
62 270
63#ifndef EV_USEV_POLL 271#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 272# ifdef _WIN32
273# define EV_USE_POLL 0
274# else
275# define EV_USE_POLL EV_FEATURE_BACKENDS
276# endif
65#endif 277#endif
66 278
67#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
282# else
68# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
284# endif
69#endif 285#endif
70 286
71#ifndef EV_USE_KQUEUE 287#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 288# define EV_USE_KQUEUE 0
73#endif 289#endif
74 290
75#ifndef EV_USE_REALTIME 291#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 292# define EV_USE_PORT 0
293#endif
294
295#ifndef EV_USE_INOTIFY
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_INOTIFY EV_FEATURE_OS
298# else
299# define EV_USE_INOTIFY 0
77#endif 300# endif
301#endif
78 302
79/**/ 303#ifndef EV_PID_HASHSIZE
304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
305#endif
306
307#ifndef EV_INOTIFY_HASHSIZE
308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309#endif
310
311#ifndef EV_USE_EVENTFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_EVENTFD EV_FEATURE_OS
314# else
315# define EV_USE_EVENTFD 0
316# endif
317#endif
318
319#ifndef EV_USE_SIGNALFD
320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
321# define EV_USE_SIGNALFD EV_FEATURE_OS
322# else
323# define EV_USE_SIGNALFD 0
324# endif
325#endif
326
327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
80 366
81#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
84#endif 370#endif
86#ifndef CLOCK_REALTIME 372#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 373# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 374# define EV_USE_REALTIME 0
89#endif 375#endif
90 376
377#if !EV_STAT_ENABLE
378# undef EV_USE_INOTIFY
379# define EV_USE_INOTIFY 0
380#endif
381
382#if !EV_USE_NANOSLEEP
383# ifndef _WIN32
384# include <sys/select.h>
385# endif
386#endif
387
388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
397#endif
398
399#if EV_SELECT_IS_WINSOCKET
400# include <winsock.h>
401#endif
402
403#if EV_USE_EVENTFD
404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
408# endif
409# ifndef EFD_CLOEXEC
410# ifdef O_CLOEXEC
411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
415# endif
416# ifdef __cplusplus
417extern "C" {
418# endif
419int (eventfd) (unsigned int initval, int flags);
420# ifdef __cplusplus
421}
422# endif
423#endif
424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
91/**/ 453/**/
92 454
455#if EV_VERIFY >= 3
456# define EV_FREQUENT_CHECK ev_verify (EV_A)
457#else
458# define EV_FREQUENT_CHECK do { } while (0)
459#endif
460
461/*
462 * This is used to avoid floating point rounding problems.
463 * It is added to ev_rt_now when scheduling periodics
464 * to ensure progress, time-wise, even when rounding
465 * errors are against us.
466 * This value is good at least till the year 4000.
467 * Better solutions welcome.
468 */
469#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
470
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 471#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 472#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 473
98#include "ev.h" 474#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
475#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
99 476
100#if __GNUC__ >= 3 477#if __GNUC__ >= 4
101# define expect(expr,value) __builtin_expect ((expr),(value)) 478# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 479# define noinline __attribute__ ((noinline))
103#else 480#else
104# define expect(expr,value) (expr) 481# define expect(expr,value) (expr)
105# define inline static 482# define noinline
483# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
484# define inline
485# endif
106#endif 486#endif
107 487
108#define expect_false(expr) expect ((expr) != 0, 0) 488#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 489#define expect_true(expr) expect ((expr) != 0, 1)
490#define inline_size static inline
110 491
492#if EV_FEATURE_CODE
493# define inline_speed static inline
494#else
495# define inline_speed static noinline
496#endif
497
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 498#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
499
500#if EV_MINPRI == EV_MAXPRI
501# define ABSPRI(w) (((W)w), 0)
502#else
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 503# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
504#endif
113 505
506#define EMPTY /* required for microsofts broken pseudo-c compiler */
507#define EMPTY2(a,b) /* used to suppress some warnings */
508
114typedef struct ev_watcher *W; 509typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 510typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 511typedef ev_watcher_time *WT;
117 512
118static ev_tstamp now_floor, mn_now, diff; /* monotonic clock */ 513#define ev_active(w) ((W)(w))->active
119static ev_tstamp rt_now; 514#define ev_at(w) ((WT)(w))->at
120static int method;
121 515
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(EV_P_ int fd, int oev, int nev);
126static void (*method_poll)(EV_P_ ev_tstamp timeout);
127
128static int activecnt; /* number of active events */
129
130#if EV_USE_SELECT 516#if EV_USE_REALTIME
131static unsigned char *vec_ri, *vec_ro, *vec_wi, *vec_wo; 517/* sig_atomic_t is used to avoid per-thread variables or locking but still */
132static int vec_max; 518/* giving it a reasonably high chance of working on typical architectures */
519static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
133#endif 520#endif
134 521
135#if EV_USEV_POLL 522#if EV_USE_MONOTONIC
136static struct pollfd *polls; 523static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
137static int pollmax, pollcnt;
138static int *pollidxs; /* maps fds into structure indices */
139static int pollidxmax;
140#endif 524#endif
141 525
526#ifndef EV_FD_TO_WIN32_HANDLE
527# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
528#endif
529#ifndef EV_WIN32_HANDLE_TO_FD
530# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
531#endif
532#ifndef EV_WIN32_CLOSE_FD
533# define EV_WIN32_CLOSE_FD(fd) close (fd)
534#endif
535
536#ifdef _WIN32
537# include "ev_win32.c"
538#endif
539
540/*****************************************************************************/
541
542#if EV_AVOID_STDIO
543static void noinline
544ev_printerr (const char *msg)
545{
546 write (STDERR_FILENO, msg, strlen (msg));
547}
548#endif
549
550static void (*syserr_cb)(const char *msg);
551
552void
553ev_set_syserr_cb (void (*cb)(const char *msg))
554{
555 syserr_cb = cb;
556}
557
558static void noinline
559ev_syserr (const char *msg)
560{
561 if (!msg)
562 msg = "(libev) system error";
563
564 if (syserr_cb)
565 syserr_cb (msg);
566 else
567 {
568#if EV_AVOID_STDIO
569 const char *err = strerror (errno);
570
571 ev_printerr (msg);
572 ev_printerr (": ");
573 ev_printerr (err);
574 ev_printerr ("\n");
575#else
576 perror (msg);
577#endif
578 abort ();
579 }
580}
581
582static void *
583ev_realloc_emul (void *ptr, long size)
584{
585#if __GLIBC__
586 return realloc (ptr, size);
587#else
588 /* some systems, notably openbsd and darwin, fail to properly
589 * implement realloc (x, 0) (as required by both ansi c-89 and
590 * the single unix specification, so work around them here.
591 */
592
593 if (size)
594 return realloc (ptr, size);
595
596 free (ptr);
597 return 0;
598#endif
599}
600
601static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
602
603void
604ev_set_allocator (void *(*cb)(void *ptr, long size))
605{
606 alloc = cb;
607}
608
609inline_speed void *
610ev_realloc (void *ptr, long size)
611{
612 ptr = alloc (ptr, size);
613
614 if (!ptr && size)
615 {
616#if EV_AVOID_STDIO
617 ev_printerr ("libev: memory allocation failed, aborting.\n");
618#else
619 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
620#endif
621 abort ();
622 }
623
624 return ptr;
625}
626
627#define ev_malloc(size) ev_realloc (0, (size))
628#define ev_free(ptr) ev_realloc ((ptr), 0)
629
630/*****************************************************************************/
631
632/* set in reify when reification needed */
633#define EV_ANFD_REIFY 1
634
635/* file descriptor info structure */
636typedef struct
637{
638 WL head;
639 unsigned char events; /* the events watched for */
640 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
641 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
642 unsigned char unused;
142#if EV_USE_EPOLL 643#if EV_USE_EPOLL
143static int epoll_fd = -1; 644 unsigned int egen; /* generation counter to counter epoll bugs */
144
145static struct epoll_event *events;
146static int eventmax;
147#endif 645#endif
148 646#if EV_SELECT_IS_WINSOCKET
149#if EV_USE_KQUEUE 647 SOCKET handle;
150static int kqueue_fd;
151static struct kevent *kqueue_changes;
152static int kqueue_changemax, kqueue_changecnt;
153static struct kevent *kqueue_events;
154static int kqueue_eventmax;
155#endif 648#endif
649} ANFD;
650
651/* stores the pending event set for a given watcher */
652typedef struct
653{
654 W w;
655 int events; /* the pending event set for the given watcher */
656} ANPENDING;
657
658#if EV_USE_INOTIFY
659/* hash table entry per inotify-id */
660typedef struct
661{
662 WL head;
663} ANFS;
664#endif
665
666/* Heap Entry */
667#if EV_HEAP_CACHE_AT
668 /* a heap element */
669 typedef struct {
670 ev_tstamp at;
671 WT w;
672 } ANHE;
673
674 #define ANHE_w(he) (he).w /* access watcher, read-write */
675 #define ANHE_at(he) (he).at /* access cached at, read-only */
676 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
677#else
678 /* a heap element */
679 typedef WT ANHE;
680
681 #define ANHE_w(he) (he)
682 #define ANHE_at(he) (he)->at
683 #define ANHE_at_cache(he)
684#endif
685
686#if EV_MULTIPLICITY
687
688 struct ev_loop
689 {
690 ev_tstamp ev_rt_now;
691 #define ev_rt_now ((loop)->ev_rt_now)
692 #define VAR(name,decl) decl;
693 #include "ev_vars.h"
694 #undef VAR
695 };
696 #include "ev_wrap.h"
697
698 static struct ev_loop default_loop_struct;
699 struct ev_loop *ev_default_loop_ptr;
700
701#else
702
703 ev_tstamp ev_rt_now;
704 #define VAR(name,decl) static decl;
705 #include "ev_vars.h"
706 #undef VAR
707
708 static int ev_default_loop_ptr;
709
710#endif
711
712#if EV_FEATURE_API
713# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
714# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
715# define EV_INVOKE_PENDING invoke_cb (EV_A)
716#else
717# define EV_RELEASE_CB (void)0
718# define EV_ACQUIRE_CB (void)0
719# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
720#endif
721
722#define EVBREAK_RECURSE 0x80
156 723
157/*****************************************************************************/ 724/*****************************************************************************/
158 725
159inline ev_tstamp 726#ifndef EV_HAVE_EV_TIME
727ev_tstamp
160ev_time (void) 728ev_time (void)
161{ 729{
162#if EV_USE_REALTIME 730#if EV_USE_REALTIME
731 if (expect_true (have_realtime))
732 {
163 struct timespec ts; 733 struct timespec ts;
164 clock_gettime (CLOCK_REALTIME, &ts); 734 clock_gettime (CLOCK_REALTIME, &ts);
165 return ts.tv_sec + ts.tv_nsec * 1e-9; 735 return ts.tv_sec + ts.tv_nsec * 1e-9;
166#else 736 }
737#endif
738
167 struct timeval tv; 739 struct timeval tv;
168 gettimeofday (&tv, 0); 740 gettimeofday (&tv, 0);
169 return tv.tv_sec + tv.tv_usec * 1e-6; 741 return tv.tv_sec + tv.tv_usec * 1e-6;
170#endif
171} 742}
743#endif
172 744
173inline ev_tstamp 745inline_size ev_tstamp
174get_clock (void) 746get_clock (void)
175{ 747{
176#if EV_USE_MONOTONIC 748#if EV_USE_MONOTONIC
177 if (expect_true (have_monotonic)) 749 if (expect_true (have_monotonic))
178 { 750 {
183#endif 755#endif
184 756
185 return ev_time (); 757 return ev_time ();
186} 758}
187 759
760#if EV_MULTIPLICITY
188ev_tstamp 761ev_tstamp
189ev_now (EV_P) 762ev_now (EV_P)
190{ 763{
191 return rt_now; 764 return ev_rt_now;
192} 765}
766#endif
193 767
194#define array_roundsize(base,n) ((n) | 4 & ~3) 768void
195 769ev_sleep (ev_tstamp delay)
196#define array_needsize(base,cur,cnt,init) \ 770{
197 if (expect_false ((cnt) > cur)) \ 771 if (delay > 0.)
198 { \
199 int newcnt = cur; \
200 do \
201 { \
202 newcnt = array_roundsize (base, newcnt << 1); \
203 } \
204 while ((cnt) > newcnt); \
205 \
206 base = realloc (base, sizeof (*base) * (newcnt)); \
207 init (base + cur, newcnt - cur); \
208 cur = newcnt; \
209 } 772 {
773#if EV_USE_NANOSLEEP
774 struct timespec ts;
775
776 EV_TS_SET (ts, delay);
777 nanosleep (&ts, 0);
778#elif defined(_WIN32)
779 Sleep ((unsigned long)(delay * 1e3));
780#else
781 struct timeval tv;
782
783 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
784 /* something not guaranteed by newer posix versions, but guaranteed */
785 /* by older ones */
786 EV_TV_SET (tv, delay);
787 select (0, 0, 0, 0, &tv);
788#endif
789 }
790}
210 791
211/*****************************************************************************/ 792/*****************************************************************************/
212 793
213typedef struct 794#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
214{
215 struct ev_watcher_list *head;
216 unsigned char events;
217 unsigned char reify;
218} ANFD;
219 795
220static ANFD *anfds; 796/* find a suitable new size for the given array, */
221static int anfdmax; 797/* hopefully by rounding to a nice-to-malloc size */
222 798inline_size int
223static void 799array_nextsize (int elem, int cur, int cnt)
224anfds_init (ANFD *base, int count)
225{ 800{
226 while (count--) 801 int ncur = cur + 1;
227 {
228 base->head = 0;
229 base->events = EV_NONE;
230 base->reify = 0;
231 802
232 ++base; 803 do
804 ncur <<= 1;
805 while (cnt > ncur);
806
807 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
808 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
233 } 809 {
234} 810 ncur *= elem;
235 811 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
236typedef struct 812 ncur = ncur - sizeof (void *) * 4;
237{ 813 ncur /= elem;
238 W w;
239 int events;
240} ANPENDING;
241
242static ANPENDING *pendings [NUMPRI];
243static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
244
245static void
246event (EV_P_ W w, int events)
247{
248 if (w->pending)
249 { 814 }
815
816 return ncur;
817}
818
819static noinline void *
820array_realloc (int elem, void *base, int *cur, int cnt)
821{
822 *cur = array_nextsize (elem, *cur, cnt);
823 return ev_realloc (base, elem * *cur);
824}
825
826#define array_init_zero(base,count) \
827 memset ((void *)(base), 0, sizeof (*(base)) * (count))
828
829#define array_needsize(type,base,cur,cnt,init) \
830 if (expect_false ((cnt) > (cur))) \
831 { \
832 int ocur_ = (cur); \
833 (base) = (type *)array_realloc \
834 (sizeof (type), (base), &(cur), (cnt)); \
835 init ((base) + (ocur_), (cur) - ocur_); \
836 }
837
838#if 0
839#define array_slim(type,stem) \
840 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
841 { \
842 stem ## max = array_roundsize (stem ## cnt >> 1); \
843 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
844 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
845 }
846#endif
847
848#define array_free(stem, idx) \
849 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
850
851/*****************************************************************************/
852
853/* dummy callback for pending events */
854static void noinline
855pendingcb (EV_P_ ev_prepare *w, int revents)
856{
857}
858
859void noinline
860ev_feed_event (EV_P_ void *w, int revents)
861{
862 W w_ = (W)w;
863 int pri = ABSPRI (w_);
864
865 if (expect_false (w_->pending))
866 pendings [pri][w_->pending - 1].events |= revents;
867 else
868 {
869 w_->pending = ++pendingcnt [pri];
870 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
871 pendings [pri][w_->pending - 1].w = w_;
250 pendings [ABSPRI (w)][w->pending - 1].events |= events; 872 pendings [pri][w_->pending - 1].events = revents;
251 return;
252 } 873 }
253
254 w->pending = ++pendingcnt [ABSPRI (w)];
255 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
256 pendings [ABSPRI (w)][w->pending - 1].w = w;
257 pendings [ABSPRI (w)][w->pending - 1].events = events;
258} 874}
259 875
260static void 876inline_speed void
877feed_reverse (EV_P_ W w)
878{
879 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
880 rfeeds [rfeedcnt++] = w;
881}
882
883inline_size void
884feed_reverse_done (EV_P_ int revents)
885{
886 do
887 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
888 while (rfeedcnt);
889}
890
891inline_speed void
261queue_events (EV_P_ W *events, int eventcnt, int type) 892queue_events (EV_P_ W *events, int eventcnt, int type)
262{ 893{
263 int i; 894 int i;
264 895
265 for (i = 0; i < eventcnt; ++i) 896 for (i = 0; i < eventcnt; ++i)
266 event (EV_A_ events [i], type); 897 ev_feed_event (EV_A_ events [i], type);
267} 898}
268 899
269static void 900/*****************************************************************************/
901
902inline_speed void
270fd_event (EV_P_ int fd, int events) 903fd_event_nocheck (EV_P_ int fd, int revents)
271{ 904{
272 ANFD *anfd = anfds + fd; 905 ANFD *anfd = anfds + fd;
273 struct ev_io *w; 906 ev_io *w;
274 907
275 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
276 { 909 {
277 int ev = w->events & events; 910 int ev = w->events & revents;
278 911
279 if (ev) 912 if (ev)
280 event (EV_A_ (W)w, ev); 913 ev_feed_event (EV_A_ (W)w, ev);
281 } 914 }
282} 915}
283 916
284/*****************************************************************************/ 917/* do not submit kernel events for fds that have reify set */
918/* because that means they changed while we were polling for new events */
919inline_speed void
920fd_event (EV_P_ int fd, int revents)
921{
922 ANFD *anfd = anfds + fd;
285 923
286static int *fdchanges; 924 if (expect_true (!anfd->reify))
287static int fdchangemax, fdchangecnt; 925 fd_event_nocheck (EV_A_ fd, revents);
926}
288 927
289static void 928void
929ev_feed_fd_event (EV_P_ int fd, int revents)
930{
931 if (fd >= 0 && fd < anfdmax)
932 fd_event_nocheck (EV_A_ fd, revents);
933}
934
935/* make sure the external fd watch events are in-sync */
936/* with the kernel/libev internal state */
937inline_size void
290fd_reify (EV_P) 938fd_reify (EV_P)
291{ 939{
292 int i; 940 int i;
293 941
294 for (i = 0; i < fdchangecnt; ++i) 942 for (i = 0; i < fdchangecnt; ++i)
295 { 943 {
296 int fd = fdchanges [i]; 944 int fd = fdchanges [i];
297 ANFD *anfd = anfds + fd; 945 ANFD *anfd = anfds + fd;
298 struct ev_io *w; 946 ev_io *w;
299 947
300 int events = 0; 948 unsigned char o_events = anfd->events;
949 unsigned char o_reify = anfd->reify;
301 950
302 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
303 events |= w->events;
304
305 anfd->reify = 0; 951 anfd->reify = 0;
306 952
307 if (anfd->events != events) 953#if EV_SELECT_IS_WINSOCKET
954 if (o_reify & EV__IOFDSET)
308 { 955 {
309 method_modify (EV_A_ fd, anfd->events, events); 956 unsigned long arg;
310 anfd->events = events; 957 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
958 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
311 } 959 }
960#endif
961
962 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
963 {
964 anfd->events = 0;
965
966 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
967 anfd->events |= (unsigned char)w->events;
968
969 if (o_events != anfd->events)
970 o_reify = EV__IOFDSET; /* actually |= */
971 }
972
973 if (o_reify & EV__IOFDSET)
974 backend_modify (EV_A_ fd, o_events, anfd->events);
312 } 975 }
313 976
314 fdchangecnt = 0; 977 fdchangecnt = 0;
315} 978}
316 979
317static void 980/* something about the given fd changed */
981inline_size void
318fd_change (EV_P_ int fd) 982fd_change (EV_P_ int fd, int flags)
319{ 983{
320 if (anfds [fd].reify || fdchangecnt < 0) 984 unsigned char reify = anfds [fd].reify;
321 return;
322
323 anfds [fd].reify = 1; 985 anfds [fd].reify |= flags;
324 986
987 if (expect_true (!reify))
988 {
325 ++fdchangecnt; 989 ++fdchangecnt;
326 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 990 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
327 fdchanges [fdchangecnt - 1] = fd; 991 fdchanges [fdchangecnt - 1] = fd;
992 }
328} 993}
329 994
330static void 995/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
996inline_speed void
331fd_kill (EV_P_ int fd) 997fd_kill (EV_P_ int fd)
332{ 998{
333 struct ev_io *w; 999 ev_io *w;
334 1000
335 while ((w = (struct ev_io *)anfds [fd].head)) 1001 while ((w = (ev_io *)anfds [fd].head))
336 { 1002 {
337 ev_io_stop (EV_A_ w); 1003 ev_io_stop (EV_A_ w);
338 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1004 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
339 } 1005 }
1006}
1007
1008/* check whether the given fd is actually valid, for error recovery */
1009inline_size int
1010fd_valid (int fd)
1011{
1012#ifdef _WIN32
1013 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1014#else
1015 return fcntl (fd, F_GETFD) != -1;
1016#endif
340} 1017}
341 1018
342/* called on EBADF to verify fds */ 1019/* called on EBADF to verify fds */
343static void 1020static void noinline
344fd_ebadf (EV_P) 1021fd_ebadf (EV_P)
345{ 1022{
346 int fd; 1023 int fd;
347 1024
348 for (fd = 0; fd < anfdmax; ++fd) 1025 for (fd = 0; fd < anfdmax; ++fd)
349 if (anfds [fd].events) 1026 if (anfds [fd].events)
350 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1027 if (!fd_valid (fd) && errno == EBADF)
351 fd_kill (EV_A_ fd); 1028 fd_kill (EV_A_ fd);
352} 1029}
353 1030
354/* called on ENOMEM in select/poll to kill some fds and retry */ 1031/* called on ENOMEM in select/poll to kill some fds and retry */
355static void 1032static void noinline
356fd_enomem (EV_P) 1033fd_enomem (EV_P)
357{ 1034{
358 int fd = anfdmax; 1035 int fd;
359 1036
360 while (fd--) 1037 for (fd = anfdmax; fd--; )
361 if (anfds [fd].events) 1038 if (anfds [fd].events)
362 { 1039 {
363 close (fd);
364 fd_kill (EV_A_ fd); 1040 fd_kill (EV_A_ fd);
365 return; 1041 break;
366 } 1042 }
367} 1043}
368 1044
1045/* usually called after fork if backend needs to re-arm all fds from scratch */
1046static void noinline
1047fd_rearm_all (EV_P)
1048{
1049 int fd;
1050
1051 for (fd = 0; fd < anfdmax; ++fd)
1052 if (anfds [fd].events)
1053 {
1054 anfds [fd].events = 0;
1055 anfds [fd].emask = 0;
1056 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1057 }
1058}
1059
1060/* used to prepare libev internal fd's */
1061/* this is not fork-safe */
1062inline_speed void
1063fd_intern (int fd)
1064{
1065#ifdef _WIN32
1066 unsigned long arg = 1;
1067 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1068#else
1069 fcntl (fd, F_SETFD, FD_CLOEXEC);
1070 fcntl (fd, F_SETFL, O_NONBLOCK);
1071#endif
1072}
1073
369/*****************************************************************************/ 1074/*****************************************************************************/
370 1075
371static struct ev_timer **timers; 1076/*
372static int timermax, timercnt; 1077 * the heap functions want a real array index. array index 0 is guaranteed to not
1078 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1079 * the branching factor of the d-tree.
1080 */
373 1081
374static struct ev_periodic **periodics; 1082/*
375static int periodicmax, periodiccnt; 1083 * at the moment we allow libev the luxury of two heaps,
1084 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1085 * which is more cache-efficient.
1086 * the difference is about 5% with 50000+ watchers.
1087 */
1088#if EV_USE_4HEAP
376 1089
1090#define DHEAP 4
1091#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1092#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1093#define UPHEAP_DONE(p,k) ((p) == (k))
1094
1095/* away from the root */
1096inline_speed void
1097downheap (ANHE *heap, int N, int k)
1098{
1099 ANHE he = heap [k];
1100 ANHE *E = heap + N + HEAP0;
1101
1102 for (;;)
1103 {
1104 ev_tstamp minat;
1105 ANHE *minpos;
1106 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1107
1108 /* find minimum child */
1109 if (expect_true (pos + DHEAP - 1 < E))
1110 {
1111 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1112 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1113 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1114 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1115 }
1116 else if (pos < E)
1117 {
1118 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1119 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1120 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1121 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1122 }
1123 else
1124 break;
1125
1126 if (ANHE_at (he) <= minat)
1127 break;
1128
1129 heap [k] = *minpos;
1130 ev_active (ANHE_w (*minpos)) = k;
1131
1132 k = minpos - heap;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139#else /* 4HEAP */
1140
1141#define HEAP0 1
1142#define HPARENT(k) ((k) >> 1)
1143#define UPHEAP_DONE(p,k) (!(p))
1144
1145/* away from the root */
1146inline_speed void
1147downheap (ANHE *heap, int N, int k)
1148{
1149 ANHE he = heap [k];
1150
1151 for (;;)
1152 {
1153 int c = k << 1;
1154
1155 if (c >= N + HEAP0)
1156 break;
1157
1158 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1159 ? 1 : 0;
1160
1161 if (ANHE_at (he) <= ANHE_at (heap [c]))
1162 break;
1163
1164 heap [k] = heap [c];
1165 ev_active (ANHE_w (heap [k])) = k;
1166
1167 k = c;
1168 }
1169
1170 heap [k] = he;
1171 ev_active (ANHE_w (he)) = k;
1172}
1173#endif
1174
1175/* towards the root */
1176inline_speed void
1177upheap (ANHE *heap, int k)
1178{
1179 ANHE he = heap [k];
1180
1181 for (;;)
1182 {
1183 int p = HPARENT (k);
1184
1185 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1186 break;
1187
1188 heap [k] = heap [p];
1189 ev_active (ANHE_w (heap [k])) = k;
1190 k = p;
1191 }
1192
1193 heap [k] = he;
1194 ev_active (ANHE_w (he)) = k;
1195}
1196
1197/* move an element suitably so it is in a correct place */
1198inline_size void
1199adjustheap (ANHE *heap, int N, int k)
1200{
1201 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1202 upheap (heap, k);
1203 else
1204 downheap (heap, N, k);
1205}
1206
1207/* rebuild the heap: this function is used only once and executed rarely */
1208inline_size void
1209reheap (ANHE *heap, int N)
1210{
1211 int i;
1212
1213 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1214 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1215 for (i = 0; i < N; ++i)
1216 upheap (heap, i + HEAP0);
1217}
1218
1219/*****************************************************************************/
1220
1221/* associate signal watchers to a signal signal */
1222typedef struct
1223{
1224 EV_ATOMIC_T pending;
1225#if EV_MULTIPLICITY
1226 EV_P;
1227#endif
1228 WL head;
1229} ANSIG;
1230
1231static ANSIG signals [EV_NSIG - 1];
1232
1233/*****************************************************************************/
1234
1235#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1236
1237static void noinline
1238evpipe_init (EV_P)
1239{
1240 if (!ev_is_active (&pipe_w))
1241 {
1242# if EV_USE_EVENTFD
1243 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1244 if (evfd < 0 && errno == EINVAL)
1245 evfd = eventfd (0, 0);
1246
1247 if (evfd >= 0)
1248 {
1249 evpipe [0] = -1;
1250 fd_intern (evfd); /* doing it twice doesn't hurt */
1251 ev_io_set (&pipe_w, evfd, EV_READ);
1252 }
1253 else
1254# endif
1255 {
1256 while (pipe (evpipe))
1257 ev_syserr ("(libev) error creating signal/async pipe");
1258
1259 fd_intern (evpipe [0]);
1260 fd_intern (evpipe [1]);
1261 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1262 }
1263
1264 ev_io_start (EV_A_ &pipe_w);
1265 ev_unref (EV_A); /* watcher should not keep loop alive */
1266 }
1267}
1268
1269inline_size void
1270evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1271{
1272 if (!*flag)
1273 {
1274 int old_errno = errno; /* save errno because write might clobber it */
1275 char dummy;
1276
1277 *flag = 1;
1278
1279#if EV_USE_EVENTFD
1280 if (evfd >= 0)
1281 {
1282 uint64_t counter = 1;
1283 write (evfd, &counter, sizeof (uint64_t));
1284 }
1285 else
1286#endif
1287 /* win32 people keep sending patches that change this write() to send() */
1288 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1289 /* so when you think this write should be a send instead, please find out */
1290 /* where your send() is from - it's definitely not the microsoft send, and */
1291 /* tell me. thank you. */
1292 write (evpipe [1], &dummy, 1);
1293
1294 errno = old_errno;
1295 }
1296}
1297
1298/* called whenever the libev signal pipe */
1299/* got some events (signal, async) */
377static void 1300static void
378upheap (WT *timers, int k) 1301pipecb (EV_P_ ev_io *iow, int revents)
379{ 1302{
380 WT w = timers [k]; 1303 int i;
381 1304
382 while (k && timers [k >> 1]->at > w->at) 1305#if EV_USE_EVENTFD
383 { 1306 if (evfd >= 0)
384 timers [k] = timers [k >> 1];
385 timers [k]->active = k + 1;
386 k >>= 1;
387 } 1307 {
1308 uint64_t counter;
1309 read (evfd, &counter, sizeof (uint64_t));
1310 }
1311 else
1312#endif
1313 {
1314 char dummy;
1315 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1316 read (evpipe [0], &dummy, 1);
1317 }
388 1318
389 timers [k] = w; 1319 if (sig_pending)
390 timers [k]->active = k + 1; 1320 {
1321 sig_pending = 0;
391 1322
1323 for (i = EV_NSIG - 1; i--; )
1324 if (expect_false (signals [i].pending))
1325 ev_feed_signal_event (EV_A_ i + 1);
1326 }
1327
1328#if EV_ASYNC_ENABLE
1329 if (async_pending)
1330 {
1331 async_pending = 0;
1332
1333 for (i = asynccnt; i--; )
1334 if (asyncs [i]->sent)
1335 {
1336 asyncs [i]->sent = 0;
1337 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1338 }
1339 }
1340#endif
392} 1341}
1342
1343/*****************************************************************************/
393 1344
394static void 1345static void
395downheap (WT *timers, int N, int k) 1346ev_sighandler (int signum)
396{ 1347{
397 WT w = timers [k]; 1348#if EV_MULTIPLICITY
1349 EV_P = signals [signum - 1].loop;
1350#endif
398 1351
399 while (k < (N >> 1)) 1352#ifdef _WIN32
400 { 1353 signal (signum, ev_sighandler);
401 int j = k << 1; 1354#endif
402 1355
403 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 1356 signals [signum - 1].pending = 1;
404 ++j; 1357 evpipe_write (EV_A_ &sig_pending);
1358}
405 1359
406 if (w->at <= timers [j]->at) 1360void noinline
1361ev_feed_signal_event (EV_P_ int signum)
1362{
1363 WL w;
1364
1365 if (expect_false (signum <= 0 || signum > EV_NSIG))
1366 return;
1367
1368 --signum;
1369
1370#if EV_MULTIPLICITY
1371 /* it is permissible to try to feed a signal to the wrong loop */
1372 /* or, likely more useful, feeding a signal nobody is waiting for */
1373
1374 if (expect_false (signals [signum].loop != EV_A))
1375 return;
1376#endif
1377
1378 signals [signum].pending = 0;
1379
1380 for (w = signals [signum].head; w; w = w->next)
1381 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1382}
1383
1384#if EV_USE_SIGNALFD
1385static void
1386sigfdcb (EV_P_ ev_io *iow, int revents)
1387{
1388 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1389
1390 for (;;)
1391 {
1392 ssize_t res = read (sigfd, si, sizeof (si));
1393
1394 /* not ISO-C, as res might be -1, but works with SuS */
1395 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1396 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1397
1398 if (res < (ssize_t)sizeof (si))
407 break; 1399 break;
408
409 timers [k] = timers [j];
410 timers [k]->active = k + 1;
411 k = j;
412 } 1400 }
413
414 timers [k] = w;
415 timers [k]->active = k + 1;
416} 1401}
1402#endif
1403
1404#endif
417 1405
418/*****************************************************************************/ 1406/*****************************************************************************/
419 1407
420typedef struct 1408#if EV_CHILD_ENABLE
421{ 1409static WL childs [EV_PID_HASHSIZE];
422 struct ev_watcher_list *head;
423 sig_atomic_t volatile gotsig;
424} ANSIG;
425 1410
426static ANSIG *signals;
427static int signalmax;
428
429static int sigpipe [2];
430static sig_atomic_t volatile gotsig;
431static struct ev_io sigev;
432
433static void
434signals_init (ANSIG *base, int count)
435{
436 while (count--)
437 {
438 base->head = 0;
439 base->gotsig = 0;
440
441 ++base;
442 }
443}
444
445static void
446sighandler (int signum)
447{
448 signals [signum - 1].gotsig = 1;
449
450 if (!gotsig)
451 {
452 int old_errno = errno;
453 gotsig = 1;
454 write (sigpipe [1], &signum, 1);
455 errno = old_errno;
456 }
457}
458
459static void
460sigcb (EV_P_ struct ev_io *iow, int revents)
461{
462 struct ev_watcher_list *w;
463 int signum;
464
465 read (sigpipe [0], &revents, 1);
466 gotsig = 0;
467
468 for (signum = signalmax; signum--; )
469 if (signals [signum].gotsig)
470 {
471 signals [signum].gotsig = 0;
472
473 for (w = signals [signum].head; w; w = w->next)
474 event (EV_A_ (W)w, EV_SIGNAL);
475 }
476}
477
478static void
479siginit (EV_P)
480{
481#ifndef WIN32
482 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
483 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
484
485 /* rather than sort out wether we really need nb, set it */
486 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
487 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
488#endif
489
490 ev_io_set (&sigev, sigpipe [0], EV_READ);
491 ev_io_start (&sigev);
492 ev_unref (EV_A); /* child watcher should not keep loop alive */
493}
494
495/*****************************************************************************/
496
497static struct ev_idle **idles;
498static int idlemax, idlecnt;
499
500static struct ev_prepare **prepares;
501static int preparemax, preparecnt;
502
503static struct ev_check **checks;
504static int checkmax, checkcnt;
505
506/*****************************************************************************/
507
508static struct ev_child *childs [PID_HASHSIZE];
509static struct ev_signal childev; 1411static ev_signal childev;
510 1412
511#ifndef WIN32 1413#ifndef WIFCONTINUED
1414# define WIFCONTINUED(status) 0
1415#endif
1416
1417/* handle a single child status event */
1418inline_speed void
1419child_reap (EV_P_ int chain, int pid, int status)
1420{
1421 ev_child *w;
1422 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1423
1424 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1425 {
1426 if ((w->pid == pid || !w->pid)
1427 && (!traced || (w->flags & 1)))
1428 {
1429 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1430 w->rpid = pid;
1431 w->rstatus = status;
1432 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1433 }
1434 }
1435}
512 1436
513#ifndef WCONTINUED 1437#ifndef WCONTINUED
514# define WCONTINUED 0 1438# define WCONTINUED 0
515#endif 1439#endif
516 1440
1441/* called on sigchld etc., calls waitpid */
517static void 1442static void
518child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
519{
520 struct ev_child *w;
521
522 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
523 if (w->pid == pid || !w->pid)
524 {
525 w->priority = sw->priority; /* need to do it *now* */
526 w->rpid = pid;
527 w->rstatus = status;
528 event (EV_A_ (W)w, EV_CHILD);
529 }
530}
531
532static void
533childcb (EV_P_ struct ev_signal *sw, int revents) 1443childcb (EV_P_ ev_signal *sw, int revents)
534{ 1444{
535 int pid, status; 1445 int pid, status;
536 1446
1447 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
537 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1448 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
538 { 1449 if (!WCONTINUED
1450 || errno != EINVAL
1451 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1452 return;
1453
539 /* make sure we are called again until all childs have been reaped */ 1454 /* make sure we are called again until all children have been reaped */
1455 /* we need to do it this way so that the callback gets called before we continue */
540 event (EV_A_ (W)sw, EV_SIGNAL); 1456 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
541 1457
542 child_reap (EV_A_ sw, pid, pid, status); 1458 child_reap (EV_A_ pid, pid, status);
1459 if ((EV_PID_HASHSIZE) > 1)
543 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1460 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
544 }
545} 1461}
546 1462
547#endif 1463#endif
548 1464
549/*****************************************************************************/ 1465/*****************************************************************************/
550 1466
1467#if EV_USE_PORT
1468# include "ev_port.c"
1469#endif
551#if EV_USE_KQUEUE 1470#if EV_USE_KQUEUE
552# include "ev_kqueue.c" 1471# include "ev_kqueue.c"
553#endif 1472#endif
554#if EV_USE_EPOLL 1473#if EV_USE_EPOLL
555# include "ev_epoll.c" 1474# include "ev_epoll.c"
556#endif 1475#endif
557#if EV_USEV_POLL 1476#if EV_USE_POLL
558# include "ev_poll.c" 1477# include "ev_poll.c"
559#endif 1478#endif
560#if EV_USE_SELECT 1479#if EV_USE_SELECT
561# include "ev_select.c" 1480# include "ev_select.c"
562#endif 1481#endif
572{ 1491{
573 return EV_VERSION_MINOR; 1492 return EV_VERSION_MINOR;
574} 1493}
575 1494
576/* return true if we are running with elevated privileges and should ignore env variables */ 1495/* return true if we are running with elevated privileges and should ignore env variables */
577static int 1496int inline_size
578enable_secure (void) 1497enable_secure (void)
579{ 1498{
580#ifdef WIN32 1499#ifdef _WIN32
581 return 0; 1500 return 0;
582#else 1501#else
583 return getuid () != geteuid () 1502 return getuid () != geteuid ()
584 || getgid () != getegid (); 1503 || getgid () != getegid ();
585#endif 1504#endif
586} 1505}
587 1506
1507unsigned int
1508ev_supported_backends (void)
1509{
1510 unsigned int flags = 0;
1511
1512 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1513 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1514 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1515 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1516 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1517
1518 return flags;
1519}
1520
1521unsigned int
1522ev_recommended_backends (void)
1523{
1524 unsigned int flags = ev_supported_backends ();
1525
1526#ifndef __NetBSD__
1527 /* kqueue is borked on everything but netbsd apparently */
1528 /* it usually doesn't work correctly on anything but sockets and pipes */
1529 flags &= ~EVBACKEND_KQUEUE;
1530#endif
1531#ifdef __APPLE__
1532 /* only select works correctly on that "unix-certified" platform */
1533 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1534 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1535#endif
1536#ifdef __FreeBSD__
1537 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1538#endif
1539
1540 return flags;
1541}
1542
1543unsigned int
1544ev_embeddable_backends (void)
1545{
1546 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1547
1548 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1549 /* please fix it and tell me how to detect the fix */
1550 flags &= ~EVBACKEND_EPOLL;
1551
1552 return flags;
1553}
1554
1555unsigned int
1556ev_backend (EV_P)
1557{
1558 return backend;
1559}
1560
1561#if EV_FEATURE_API
1562unsigned int
1563ev_iteration (EV_P)
1564{
1565 return loop_count;
1566}
1567
1568unsigned int
1569ev_depth (EV_P)
1570{
1571 return loop_depth;
1572}
1573
1574void
1575ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1576{
1577 io_blocktime = interval;
1578}
1579
1580void
1581ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1582{
1583 timeout_blocktime = interval;
1584}
1585
1586void
1587ev_set_userdata (EV_P_ void *data)
1588{
1589 userdata = data;
1590}
1591
1592void *
1593ev_userdata (EV_P)
1594{
1595 return userdata;
1596}
1597
1598void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1599{
1600 invoke_cb = invoke_pending_cb;
1601}
1602
1603void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1604{
1605 release_cb = release;
1606 acquire_cb = acquire;
1607}
1608#endif
1609
1610/* initialise a loop structure, must be zero-initialised */
1611static void noinline
1612loop_init (EV_P_ unsigned int flags)
1613{
1614 if (!backend)
1615 {
1616#if EV_USE_REALTIME
1617 if (!have_realtime)
1618 {
1619 struct timespec ts;
1620
1621 if (!clock_gettime (CLOCK_REALTIME, &ts))
1622 have_realtime = 1;
1623 }
1624#endif
1625
1626#if EV_USE_MONOTONIC
1627 if (!have_monotonic)
1628 {
1629 struct timespec ts;
1630
1631 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1632 have_monotonic = 1;
1633 }
1634#endif
1635
1636 /* pid check not overridable via env */
1637#ifndef _WIN32
1638 if (flags & EVFLAG_FORKCHECK)
1639 curpid = getpid ();
1640#endif
1641
1642 if (!(flags & EVFLAG_NOENV)
1643 && !enable_secure ()
1644 && getenv ("LIBEV_FLAGS"))
1645 flags = atoi (getenv ("LIBEV_FLAGS"));
1646
1647 ev_rt_now = ev_time ();
1648 mn_now = get_clock ();
1649 now_floor = mn_now;
1650 rtmn_diff = ev_rt_now - mn_now;
1651#if EV_FEATURE_API
1652 invoke_cb = ev_invoke_pending;
1653#endif
1654
1655 io_blocktime = 0.;
1656 timeout_blocktime = 0.;
1657 backend = 0;
1658 backend_fd = -1;
1659 sig_pending = 0;
1660#if EV_ASYNC_ENABLE
1661 async_pending = 0;
1662#endif
1663#if EV_USE_INOTIFY
1664 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1665#endif
1666#if EV_USE_SIGNALFD
1667 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1668#endif
1669
1670 if (!(flags & 0x0000ffffU))
1671 flags |= ev_recommended_backends ();
1672
1673#if EV_USE_PORT
1674 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1675#endif
1676#if EV_USE_KQUEUE
1677 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1678#endif
1679#if EV_USE_EPOLL
1680 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1681#endif
1682#if EV_USE_POLL
1683 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1684#endif
1685#if EV_USE_SELECT
1686 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1687#endif
1688
1689 ev_prepare_init (&pending_w, pendingcb);
1690
1691#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1692 ev_init (&pipe_w, pipecb);
1693 ev_set_priority (&pipe_w, EV_MAXPRI);
1694#endif
1695 }
1696}
1697
1698/* free up a loop structure */
1699static void noinline
1700loop_destroy (EV_P)
1701{
1702 int i;
1703
1704 if (ev_is_active (&pipe_w))
1705 {
1706 /*ev_ref (EV_A);*/
1707 /*ev_io_stop (EV_A_ &pipe_w);*/
1708
1709#if EV_USE_EVENTFD
1710 if (evfd >= 0)
1711 close (evfd);
1712#endif
1713
1714 if (evpipe [0] >= 0)
1715 {
1716 EV_WIN32_CLOSE_FD (evpipe [0]);
1717 EV_WIN32_CLOSE_FD (evpipe [1]);
1718 }
1719 }
1720
1721#if EV_USE_SIGNALFD
1722 if (ev_is_active (&sigfd_w))
1723 close (sigfd);
1724#endif
1725
1726#if EV_USE_INOTIFY
1727 if (fs_fd >= 0)
1728 close (fs_fd);
1729#endif
1730
1731 if (backend_fd >= 0)
1732 close (backend_fd);
1733
1734#if EV_USE_PORT
1735 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1736#endif
1737#if EV_USE_KQUEUE
1738 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1739#endif
1740#if EV_USE_EPOLL
1741 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1742#endif
1743#if EV_USE_POLL
1744 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1745#endif
1746#if EV_USE_SELECT
1747 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1748#endif
1749
1750 for (i = NUMPRI; i--; )
1751 {
1752 array_free (pending, [i]);
1753#if EV_IDLE_ENABLE
1754 array_free (idle, [i]);
1755#endif
1756 }
1757
1758 ev_free (anfds); anfds = 0; anfdmax = 0;
1759
1760 /* have to use the microsoft-never-gets-it-right macro */
1761 array_free (rfeed, EMPTY);
1762 array_free (fdchange, EMPTY);
1763 array_free (timer, EMPTY);
1764#if EV_PERIODIC_ENABLE
1765 array_free (periodic, EMPTY);
1766#endif
1767#if EV_FORK_ENABLE
1768 array_free (fork, EMPTY);
1769#endif
1770 array_free (prepare, EMPTY);
1771 array_free (check, EMPTY);
1772#if EV_ASYNC_ENABLE
1773 array_free (async, EMPTY);
1774#endif
1775
1776 backend = 0;
1777}
1778
1779#if EV_USE_INOTIFY
1780inline_size void infy_fork (EV_P);
1781#endif
1782
1783inline_size void
1784loop_fork (EV_P)
1785{
1786#if EV_USE_PORT
1787 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1788#endif
1789#if EV_USE_KQUEUE
1790 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1791#endif
1792#if EV_USE_EPOLL
1793 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1794#endif
1795#if EV_USE_INOTIFY
1796 infy_fork (EV_A);
1797#endif
1798
1799 if (ev_is_active (&pipe_w))
1800 {
1801 /* this "locks" the handlers against writing to the pipe */
1802 /* while we modify the fd vars */
1803 sig_pending = 1;
1804#if EV_ASYNC_ENABLE
1805 async_pending = 1;
1806#endif
1807
1808 ev_ref (EV_A);
1809 ev_io_stop (EV_A_ &pipe_w);
1810
1811#if EV_USE_EVENTFD
1812 if (evfd >= 0)
1813 close (evfd);
1814#endif
1815
1816 if (evpipe [0] >= 0)
1817 {
1818 EV_WIN32_CLOSE_FD (evpipe [0]);
1819 EV_WIN32_CLOSE_FD (evpipe [1]);
1820 }
1821
1822#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1823 evpipe_init (EV_A);
1824 /* now iterate over everything, in case we missed something */
1825 pipecb (EV_A_ &pipe_w, EV_READ);
1826#endif
1827 }
1828
1829 postfork = 0;
1830}
1831
1832#if EV_MULTIPLICITY
1833
1834struct ev_loop *
1835ev_loop_new (unsigned int flags)
1836{
1837 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1838
1839 memset (EV_A, 0, sizeof (struct ev_loop));
1840 loop_init (EV_A_ flags);
1841
1842 if (ev_backend (EV_A))
1843 return EV_A;
1844
1845 return 0;
1846}
1847
1848void
1849ev_loop_destroy (EV_P)
1850{
1851 loop_destroy (EV_A);
1852 ev_free (loop);
1853}
1854
1855void
1856ev_loop_fork (EV_P)
1857{
1858 postfork = 1; /* must be in line with ev_default_fork */
1859}
1860#endif /* multiplicity */
1861
1862#if EV_VERIFY
1863static void noinline
1864verify_watcher (EV_P_ W w)
1865{
1866 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1867
1868 if (w->pending)
1869 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1870}
1871
1872static void noinline
1873verify_heap (EV_P_ ANHE *heap, int N)
1874{
1875 int i;
1876
1877 for (i = HEAP0; i < N + HEAP0; ++i)
1878 {
1879 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1880 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1881 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1882
1883 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1884 }
1885}
1886
1887static void noinline
1888array_verify (EV_P_ W *ws, int cnt)
1889{
1890 while (cnt--)
1891 {
1892 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1893 verify_watcher (EV_A_ ws [cnt]);
1894 }
1895}
1896#endif
1897
1898#if EV_FEATURE_API
1899void
1900ev_verify (EV_P)
1901{
1902#if EV_VERIFY
1903 int i;
1904 WL w;
1905
1906 assert (activecnt >= -1);
1907
1908 assert (fdchangemax >= fdchangecnt);
1909 for (i = 0; i < fdchangecnt; ++i)
1910 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1911
1912 assert (anfdmax >= 0);
1913 for (i = 0; i < anfdmax; ++i)
1914 for (w = anfds [i].head; w; w = w->next)
1915 {
1916 verify_watcher (EV_A_ (W)w);
1917 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1918 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1919 }
1920
1921 assert (timermax >= timercnt);
1922 verify_heap (EV_A_ timers, timercnt);
1923
1924#if EV_PERIODIC_ENABLE
1925 assert (periodicmax >= periodiccnt);
1926 verify_heap (EV_A_ periodics, periodiccnt);
1927#endif
1928
1929 for (i = NUMPRI; i--; )
1930 {
1931 assert (pendingmax [i] >= pendingcnt [i]);
1932#if EV_IDLE_ENABLE
1933 assert (idleall >= 0);
1934 assert (idlemax [i] >= idlecnt [i]);
1935 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1936#endif
1937 }
1938
1939#if EV_FORK_ENABLE
1940 assert (forkmax >= forkcnt);
1941 array_verify (EV_A_ (W *)forks, forkcnt);
1942#endif
1943
1944#if EV_ASYNC_ENABLE
1945 assert (asyncmax >= asynccnt);
1946 array_verify (EV_A_ (W *)asyncs, asynccnt);
1947#endif
1948
1949#if EV_PREPARE_ENABLE
1950 assert (preparemax >= preparecnt);
1951 array_verify (EV_A_ (W *)prepares, preparecnt);
1952#endif
1953
1954#if EV_CHECK_ENABLE
1955 assert (checkmax >= checkcnt);
1956 array_verify (EV_A_ (W *)checks, checkcnt);
1957#endif
1958
1959# if 0
1960#if EV_CHILD_ENABLE
1961 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1962 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1963#endif
1964# endif
1965#endif
1966}
1967#endif
1968
1969#if EV_MULTIPLICITY
1970struct ev_loop *
1971ev_default_loop_init (unsigned int flags)
1972#else
588int 1973int
589ev_method (EV_P) 1974ev_default_loop (unsigned int flags)
1975#endif
590{ 1976{
591 return method; 1977 if (!ev_default_loop_ptr)
592}
593
594int
595ev_init (EV_P_ int methods)
596{
597 if (!method)
598 {
599#if EV_USE_MONOTONIC
600 { 1978 {
601 struct timespec ts; 1979#if EV_MULTIPLICITY
602 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1980 EV_P = ev_default_loop_ptr = &default_loop_struct;
603 have_monotonic = 1; 1981#else
604 } 1982 ev_default_loop_ptr = 1;
605#endif 1983#endif
606 1984
607 rt_now = ev_time (); 1985 loop_init (EV_A_ flags);
608 mn_now = get_clock ();
609 now_floor = mn_now;
610 diff = rt_now - mn_now;
611 1986
612 if (pipe (sigpipe)) 1987 if (ev_backend (EV_A))
613 return 0;
614
615 if (methods == EVMETHOD_AUTO)
616 if (!enable_secure () && getenv ("LIBmethodS"))
617 methods = atoi (getenv ("LIBmethodS"));
618 else
619 methods = EVMETHOD_ANY;
620
621 method = 0;
622#if EV_USE_KQUEUE
623 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
624#endif
625#if EV_USE_EPOLL
626 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
627#endif
628#if EV_USEV_POLL
629 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
630#endif
631#if EV_USE_SELECT
632 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
633#endif
634
635 if (method)
636 { 1988 {
637 ev_watcher_init (&sigev, sigcb); 1989#if EV_CHILD_ENABLE
638 ev_set_priority (&sigev, EV_MAXPRI);
639 siginit (EV_A);
640
641#ifndef WIN32
642 ev_signal_init (&childev, childcb, SIGCHLD); 1990 ev_signal_init (&childev, childcb, SIGCHLD);
643 ev_set_priority (&childev, EV_MAXPRI); 1991 ev_set_priority (&childev, EV_MAXPRI);
644 ev_signal_start (EV_A_ &childev); 1992 ev_signal_start (EV_A_ &childev);
645 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1993 ev_unref (EV_A); /* child watcher should not keep loop alive */
646#endif 1994#endif
647 } 1995 }
1996 else
1997 ev_default_loop_ptr = 0;
648 } 1998 }
649 1999
650 return method; 2000 return ev_default_loop_ptr;
2001}
2002
2003void
2004ev_default_destroy (void)
2005{
2006#if EV_MULTIPLICITY
2007 EV_P = ev_default_loop_ptr;
2008#endif
2009
2010 ev_default_loop_ptr = 0;
2011
2012#if EV_CHILD_ENABLE
2013 ev_ref (EV_A); /* child watcher */
2014 ev_signal_stop (EV_A_ &childev);
2015#endif
2016
2017 loop_destroy (EV_A);
2018}
2019
2020void
2021ev_default_fork (void)
2022{
2023#if EV_MULTIPLICITY
2024 EV_P = ev_default_loop_ptr;
2025#endif
2026
2027 postfork = 1; /* must be in line with ev_loop_fork */
651} 2028}
652 2029
653/*****************************************************************************/ 2030/*****************************************************************************/
654 2031
655void 2032void
656ev_fork_prepare (void) 2033ev_invoke (EV_P_ void *w, int revents)
657{ 2034{
658 /* nop */ 2035 EV_CB_INVOKE ((W)w, revents);
659} 2036}
660 2037
661void 2038unsigned int
662ev_fork_parent (void) 2039ev_pending_count (EV_P)
663{ 2040{
664 /* nop */ 2041 int pri;
665} 2042 unsigned int count = 0;
666 2043
667void 2044 for (pri = NUMPRI; pri--; )
668ev_fork_child (void) 2045 count += pendingcnt [pri];
669{
670#if EV_USE_EPOLL
671 if (method == EVMETHOD_EPOLL)
672 epoll_postfork_child ();
673#endif
674 2046
675 ev_io_stop (&sigev); 2047 return count;
676 close (sigpipe [0]);
677 close (sigpipe [1]);
678 pipe (sigpipe);
679 siginit ();
680} 2048}
681 2049
682/*****************************************************************************/ 2050void noinline
683 2051ev_invoke_pending (EV_P)
684static void
685call_pending (EV_P)
686{ 2052{
687 int pri; 2053 int pri;
688 2054
689 for (pri = NUMPRI; pri--; ) 2055 for (pri = NUMPRI; pri--; )
690 while (pendingcnt [pri]) 2056 while (pendingcnt [pri])
691 { 2057 {
692 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2058 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
693 2059
694 if (p->w) 2060 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
695 { 2061 /* ^ this is no longer true, as pending_w could be here */
2062
696 p->w->pending = 0; 2063 p->w->pending = 0;
697 p->w->cb (EV_A_ p->w, p->events); 2064 EV_CB_INVOKE (p->w, p->events);
698 } 2065 EV_FREQUENT_CHECK;
699 } 2066 }
700} 2067}
701 2068
702static void 2069#if EV_IDLE_ENABLE
2070/* make idle watchers pending. this handles the "call-idle */
2071/* only when higher priorities are idle" logic */
2072inline_size void
703timers_reify (EV_P) 2073idle_reify (EV_P)
704{ 2074{
705 while (timercnt && timers [0]->at <= mn_now) 2075 if (expect_false (idleall))
706 { 2076 {
707 struct ev_timer *w = timers [0]; 2077 int pri;
708 2078
709 /* first reschedule or stop timer */ 2079 for (pri = NUMPRI; pri--; )
710 if (w->repeat)
711 { 2080 {
712 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2081 if (pendingcnt [pri])
713 w->at = mn_now + w->repeat; 2082 break;
714 downheap ((WT *)timers, timercnt, 0);
715 }
716 else
717 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
718 2083
719 event ((W)w, EV_TIMEOUT); 2084 if (idlecnt [pri])
720 }
721}
722
723static void
724periodics_reify (EV_P)
725{
726 while (periodiccnt && periodics [0]->at <= rt_now)
727 {
728 struct ev_periodic *w = periodics [0];
729
730 /* first reschedule or stop timer */
731 if (w->interval)
732 {
733 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
734 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
735 downheap ((WT *)periodics, periodiccnt, 0);
736 }
737 else
738 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
739
740 event (EV_A_ (W)w, EV_PERIODIC);
741 }
742}
743
744static void
745periodics_reschedule (EV_P_ ev_tstamp diff)
746{
747 int i;
748
749 /* adjust periodics after time jump */
750 for (i = 0; i < periodiccnt; ++i)
751 {
752 struct ev_periodic *w = periodics [i];
753
754 if (w->interval)
755 {
756 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
757
758 if (fabs (diff) >= 1e-4)
759 { 2085 {
760 ev_periodic_stop (EV_A_ w); 2086 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
761 ev_periodic_start (EV_A_ w); 2087 break;
762
763 i = 0; /* restart loop, inefficient, but time jumps should be rare */
764 } 2088 }
765 } 2089 }
766 } 2090 }
767} 2091}
2092#endif
768 2093
769inline int 2094/* make timers pending */
770time_update_monotonic (EV_P) 2095inline_size void
2096timers_reify (EV_P)
771{ 2097{
772 mn_now = get_clock (); 2098 EV_FREQUENT_CHECK;
773 2099
774 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2100 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
775 {
776 rt_now = mn_now + diff;
777 return 0;
778 } 2101 {
779 else 2102 do
2103 {
2104 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2105
2106 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2107
2108 /* first reschedule or stop timer */
2109 if (w->repeat)
2110 {
2111 ev_at (w) += w->repeat;
2112 if (ev_at (w) < mn_now)
2113 ev_at (w) = mn_now;
2114
2115 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2116
2117 ANHE_at_cache (timers [HEAP0]);
2118 downheap (timers, timercnt, HEAP0);
2119 }
2120 else
2121 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2122
2123 EV_FREQUENT_CHECK;
2124 feed_reverse (EV_A_ (W)w);
2125 }
2126 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2127
2128 feed_reverse_done (EV_A_ EV_TIMER);
780 { 2129 }
781 now_floor = mn_now; 2130}
782 rt_now = ev_time (); 2131
783 return 1; 2132#if EV_PERIODIC_ENABLE
2133/* make periodics pending */
2134inline_size void
2135periodics_reify (EV_P)
2136{
2137 EV_FREQUENT_CHECK;
2138
2139 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
784 } 2140 {
785} 2141 int feed_count = 0;
786 2142
787static void 2143 do
788time_update (EV_P) 2144 {
2145 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2146
2147 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2148
2149 /* first reschedule or stop timer */
2150 if (w->reschedule_cb)
2151 {
2152 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2153
2154 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2155
2156 ANHE_at_cache (periodics [HEAP0]);
2157 downheap (periodics, periodiccnt, HEAP0);
2158 }
2159 else if (w->interval)
2160 {
2161 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2162 /* if next trigger time is not sufficiently in the future, put it there */
2163 /* this might happen because of floating point inexactness */
2164 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2165 {
2166 ev_at (w) += w->interval;
2167
2168 /* if interval is unreasonably low we might still have a time in the past */
2169 /* so correct this. this will make the periodic very inexact, but the user */
2170 /* has effectively asked to get triggered more often than possible */
2171 if (ev_at (w) < ev_rt_now)
2172 ev_at (w) = ev_rt_now;
2173 }
2174
2175 ANHE_at_cache (periodics [HEAP0]);
2176 downheap (periodics, periodiccnt, HEAP0);
2177 }
2178 else
2179 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2180
2181 EV_FREQUENT_CHECK;
2182 feed_reverse (EV_A_ (W)w);
2183 }
2184 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2185
2186 feed_reverse_done (EV_A_ EV_PERIODIC);
2187 }
2188}
2189
2190/* simply recalculate all periodics */
2191/* TODO: maybe ensure that at least one event happens when jumping forward? */
2192static void noinline
2193periodics_reschedule (EV_P)
789{ 2194{
790 int i; 2195 int i;
791 2196
2197 /* adjust periodics after time jump */
2198 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2199 {
2200 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2201
2202 if (w->reschedule_cb)
2203 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2204 else if (w->interval)
2205 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2206
2207 ANHE_at_cache (periodics [i]);
2208 }
2209
2210 reheap (periodics, periodiccnt);
2211}
2212#endif
2213
2214/* adjust all timers by a given offset */
2215static void noinline
2216timers_reschedule (EV_P_ ev_tstamp adjust)
2217{
2218 int i;
2219
2220 for (i = 0; i < timercnt; ++i)
2221 {
2222 ANHE *he = timers + i + HEAP0;
2223 ANHE_w (*he)->at += adjust;
2224 ANHE_at_cache (*he);
2225 }
2226}
2227
2228/* fetch new monotonic and realtime times from the kernel */
2229/* also detect if there was a timejump, and act accordingly */
2230inline_speed void
2231time_update (EV_P_ ev_tstamp max_block)
2232{
792#if EV_USE_MONOTONIC 2233#if EV_USE_MONOTONIC
793 if (expect_true (have_monotonic)) 2234 if (expect_true (have_monotonic))
794 { 2235 {
795 if (time_update_monotonic (EV_A)) 2236 int i;
2237 ev_tstamp odiff = rtmn_diff;
2238
2239 mn_now = get_clock ();
2240
2241 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2242 /* interpolate in the meantime */
2243 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
796 { 2244 {
797 ev_tstamp odiff = diff; 2245 ev_rt_now = rtmn_diff + mn_now;
798 2246 return;
799 for (i = 4; --i; ) /* loop a few times, before making important decisions */
800 {
801 diff = rt_now - mn_now;
802
803 if (fabs (odiff - diff) < MIN_TIMEJUMP)
804 return; /* all is well */
805
806 rt_now = ev_time ();
807 mn_now = get_clock ();
808 now_floor = mn_now;
809 }
810
811 periodics_reschedule (EV_A_ diff - odiff);
812 /* no timer adjustment, as the monotonic clock doesn't jump */
813 } 2247 }
2248
2249 now_floor = mn_now;
2250 ev_rt_now = ev_time ();
2251
2252 /* loop a few times, before making important decisions.
2253 * on the choice of "4": one iteration isn't enough,
2254 * in case we get preempted during the calls to
2255 * ev_time and get_clock. a second call is almost guaranteed
2256 * to succeed in that case, though. and looping a few more times
2257 * doesn't hurt either as we only do this on time-jumps or
2258 * in the unlikely event of having been preempted here.
2259 */
2260 for (i = 4; --i; )
2261 {
2262 rtmn_diff = ev_rt_now - mn_now;
2263
2264 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2265 return; /* all is well */
2266
2267 ev_rt_now = ev_time ();
2268 mn_now = get_clock ();
2269 now_floor = mn_now;
2270 }
2271
2272 /* no timer adjustment, as the monotonic clock doesn't jump */
2273 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2274# if EV_PERIODIC_ENABLE
2275 periodics_reschedule (EV_A);
2276# endif
814 } 2277 }
815 else 2278 else
816#endif 2279#endif
817 { 2280 {
818 rt_now = ev_time (); 2281 ev_rt_now = ev_time ();
819 2282
820 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2283 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
821 { 2284 {
822 periodics_reschedule (EV_A_ rt_now - mn_now);
823
824 /* adjust timers. this is easy, as the offset is the same for all */ 2285 /* adjust timers. this is easy, as the offset is the same for all of them */
825 for (i = 0; i < timercnt; ++i) 2286 timers_reschedule (EV_A_ ev_rt_now - mn_now);
826 timers [i]->at += diff; 2287#if EV_PERIODIC_ENABLE
2288 periodics_reschedule (EV_A);
2289#endif
827 } 2290 }
828 2291
829 mn_now = rt_now; 2292 mn_now = ev_rt_now;
830 } 2293 }
831} 2294}
832 2295
833void 2296void
834ev_ref (EV_P)
835{
836 ++activecnt;
837}
838
839void
840ev_unref (EV_P)
841{
842 --activecnt;
843}
844
845static int loop_done;
846
847void
848ev_loop (EV_P_ int flags) 2297ev_run (EV_P_ int flags)
849{ 2298{
850 double block; 2299#if EV_FEATURE_API
851 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2300 ++loop_depth;
2301#endif
2302
2303 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2304
2305 loop_done = EVBREAK_CANCEL;
2306
2307 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
852 2308
853 do 2309 do
854 { 2310 {
2311#if EV_VERIFY >= 2
2312 ev_verify (EV_A);
2313#endif
2314
2315#ifndef _WIN32
2316 if (expect_false (curpid)) /* penalise the forking check even more */
2317 if (expect_false (getpid () != curpid))
2318 {
2319 curpid = getpid ();
2320 postfork = 1;
2321 }
2322#endif
2323
2324#if EV_FORK_ENABLE
2325 /* we might have forked, so queue fork handlers */
2326 if (expect_false (postfork))
2327 if (forkcnt)
2328 {
2329 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2330 EV_INVOKE_PENDING;
2331 }
2332#endif
2333
2334#if EV_PREPARE_ENABLE
855 /* queue check watchers (and execute them) */ 2335 /* queue prepare watchers (and execute them) */
856 if (expect_false (preparecnt)) 2336 if (expect_false (preparecnt))
857 { 2337 {
858 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2338 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
859 call_pending (EV_A); 2339 EV_INVOKE_PENDING;
860 } 2340 }
2341#endif
2342
2343 if (expect_false (loop_done))
2344 break;
2345
2346 /* we might have forked, so reify kernel state if necessary */
2347 if (expect_false (postfork))
2348 loop_fork (EV_A);
861 2349
862 /* update fd-related kernel structures */ 2350 /* update fd-related kernel structures */
863 fd_reify (EV_A); 2351 fd_reify (EV_A);
864 2352
865 /* calculate blocking time */ 2353 /* calculate blocking time */
2354 {
2355 ev_tstamp waittime = 0.;
2356 ev_tstamp sleeptime = 0.;
866 2357
867 /* we only need this for !monotonic clockor timers, but as we basically 2358 /* remember old timestamp for io_blocktime calculation */
868 always have timers, we just calculate it always */ 2359 ev_tstamp prev_mn_now = mn_now;
869#if EV_USE_MONOTONIC 2360
870 if (expect_true (have_monotonic)) 2361 /* update time to cancel out callback processing overhead */
871 time_update_monotonic (EV_A); 2362 time_update (EV_A_ 1e100);
872 else 2363
873#endif 2364 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
874 { 2365 {
875 rt_now = ev_time ();
876 mn_now = rt_now;
877 }
878
879 if (flags & EVLOOP_NONBLOCK || idlecnt)
880 block = 0.;
881 else
882 {
883 block = MAX_BLOCKTIME; 2366 waittime = MAX_BLOCKTIME;
884 2367
885 if (timercnt) 2368 if (timercnt)
886 { 2369 {
887 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 2370 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
888 if (block > to) block = to; 2371 if (waittime > to) waittime = to;
889 } 2372 }
890 2373
2374#if EV_PERIODIC_ENABLE
891 if (periodiccnt) 2375 if (periodiccnt)
892 { 2376 {
893 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 2377 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
894 if (block > to) block = to; 2378 if (waittime > to) waittime = to;
895 } 2379 }
2380#endif
896 2381
897 if (block < 0.) block = 0.; 2382 /* don't let timeouts decrease the waittime below timeout_blocktime */
2383 if (expect_false (waittime < timeout_blocktime))
2384 waittime = timeout_blocktime;
2385
2386 /* extra check because io_blocktime is commonly 0 */
2387 if (expect_false (io_blocktime))
2388 {
2389 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2390
2391 if (sleeptime > waittime - backend_fudge)
2392 sleeptime = waittime - backend_fudge;
2393
2394 if (expect_true (sleeptime > 0.))
2395 {
2396 ev_sleep (sleeptime);
2397 waittime -= sleeptime;
2398 }
2399 }
898 } 2400 }
899 2401
900 method_poll (EV_A_ block); 2402#if EV_FEATURE_API
2403 ++loop_count;
2404#endif
2405 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2406 backend_poll (EV_A_ waittime);
2407 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
901 2408
902 /* update rt_now, do magic */ 2409 /* update ev_rt_now, do magic */
903 time_update (EV_A); 2410 time_update (EV_A_ waittime + sleeptime);
2411 }
904 2412
905 /* queue pending timers and reschedule them */ 2413 /* queue pending timers and reschedule them */
906 timers_reify (EV_A); /* relative timers called last */ 2414 timers_reify (EV_A); /* relative timers called last */
2415#if EV_PERIODIC_ENABLE
907 periodics_reify (EV_A); /* absolute timers called first */ 2416 periodics_reify (EV_A); /* absolute timers called first */
2417#endif
908 2418
2419#if EV_IDLE_ENABLE
909 /* queue idle watchers unless io or timers are pending */ 2420 /* queue idle watchers unless other events are pending */
910 if (!pendingcnt) 2421 idle_reify (EV_A);
911 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2422#endif
912 2423
2424#if EV_CHECK_ENABLE
913 /* queue check watchers, to be executed first */ 2425 /* queue check watchers, to be executed first */
914 if (checkcnt) 2426 if (expect_false (checkcnt))
915 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2427 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2428#endif
916 2429
917 call_pending (EV_A); 2430 EV_INVOKE_PENDING;
918 } 2431 }
919 while (activecnt && !loop_done); 2432 while (expect_true (
2433 activecnt
2434 && !loop_done
2435 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2436 ));
920 2437
921 if (loop_done != 2) 2438 if (loop_done == EVBREAK_ONE)
922 loop_done = 0; 2439 loop_done = EVBREAK_CANCEL;
923}
924 2440
2441#if EV_FEATURE_API
2442 --loop_depth;
2443#endif
2444}
2445
925void 2446void
926ev_unloop (EV_P_ int how) 2447ev_break (EV_P_ int how)
927{ 2448{
928 loop_done = how; 2449 loop_done = how;
929} 2450}
930 2451
2452void
2453ev_ref (EV_P)
2454{
2455 ++activecnt;
2456}
2457
2458void
2459ev_unref (EV_P)
2460{
2461 --activecnt;
2462}
2463
2464void
2465ev_now_update (EV_P)
2466{
2467 time_update (EV_A_ 1e100);
2468}
2469
2470void
2471ev_suspend (EV_P)
2472{
2473 ev_now_update (EV_A);
2474}
2475
2476void
2477ev_resume (EV_P)
2478{
2479 ev_tstamp mn_prev = mn_now;
2480
2481 ev_now_update (EV_A);
2482 timers_reschedule (EV_A_ mn_now - mn_prev);
2483#if EV_PERIODIC_ENABLE
2484 /* TODO: really do this? */
2485 periodics_reschedule (EV_A);
2486#endif
2487}
2488
931/*****************************************************************************/ 2489/*****************************************************************************/
2490/* singly-linked list management, used when the expected list length is short */
932 2491
933inline void 2492inline_size void
934wlist_add (WL *head, WL elem) 2493wlist_add (WL *head, WL elem)
935{ 2494{
936 elem->next = *head; 2495 elem->next = *head;
937 *head = elem; 2496 *head = elem;
938} 2497}
939 2498
940inline void 2499inline_size void
941wlist_del (WL *head, WL elem) 2500wlist_del (WL *head, WL elem)
942{ 2501{
943 while (*head) 2502 while (*head)
944 { 2503 {
945 if (*head == elem) 2504 if (expect_true (*head == elem))
946 { 2505 {
947 *head = elem->next; 2506 *head = elem->next;
948 return; 2507 break;
949 } 2508 }
950 2509
951 head = &(*head)->next; 2510 head = &(*head)->next;
952 } 2511 }
953} 2512}
954 2513
2514/* internal, faster, version of ev_clear_pending */
955inline void 2515inline_speed void
956ev_clear_pending (EV_P_ W w) 2516clear_pending (EV_P_ W w)
957{ 2517{
958 if (w->pending) 2518 if (w->pending)
959 { 2519 {
960 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2520 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
961 w->pending = 0; 2521 w->pending = 0;
962 } 2522 }
963} 2523}
964 2524
2525int
2526ev_clear_pending (EV_P_ void *w)
2527{
2528 W w_ = (W)w;
2529 int pending = w_->pending;
2530
2531 if (expect_true (pending))
2532 {
2533 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2534 p->w = (W)&pending_w;
2535 w_->pending = 0;
2536 return p->events;
2537 }
2538 else
2539 return 0;
2540}
2541
965inline void 2542inline_size void
2543pri_adjust (EV_P_ W w)
2544{
2545 int pri = ev_priority (w);
2546 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2547 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2548 ev_set_priority (w, pri);
2549}
2550
2551inline_speed void
966ev_start (EV_P_ W w, int active) 2552ev_start (EV_P_ W w, int active)
967{ 2553{
968 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2554 pri_adjust (EV_A_ w);
969 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
970
971 w->active = active; 2555 w->active = active;
972 ev_ref (EV_A); 2556 ev_ref (EV_A);
973} 2557}
974 2558
975inline void 2559inline_size void
976ev_stop (EV_P_ W w) 2560ev_stop (EV_P_ W w)
977{ 2561{
978 ev_unref (EV_A); 2562 ev_unref (EV_A);
979 w->active = 0; 2563 w->active = 0;
980} 2564}
981 2565
982/*****************************************************************************/ 2566/*****************************************************************************/
983 2567
984void 2568void noinline
985ev_io_start (EV_P_ struct ev_io *w) 2569ev_io_start (EV_P_ ev_io *w)
986{ 2570{
987 int fd = w->fd; 2571 int fd = w->fd;
988 2572
989 if (ev_is_active (w)) 2573 if (expect_false (ev_is_active (w)))
990 return; 2574 return;
991 2575
992 assert (("ev_io_start called with negative fd", fd >= 0)); 2576 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2577 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2578
2579 EV_FREQUENT_CHECK;
993 2580
994 ev_start (EV_A_ (W)w, 1); 2581 ev_start (EV_A_ (W)w, 1);
995 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2582 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
996 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2583 wlist_add (&anfds[fd].head, (WL)w);
997 2584
998 fd_change (EV_A_ fd); 2585 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
999} 2586 w->events &= ~EV__IOFDSET;
1000 2587
1001void 2588 EV_FREQUENT_CHECK;
2589}
2590
2591void noinline
1002ev_io_stop (EV_P_ struct ev_io *w) 2592ev_io_stop (EV_P_ ev_io *w)
1003{ 2593{
1004 ev_clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
1005 if (!ev_is_active (w)) 2595 if (expect_false (!ev_is_active (w)))
1006 return; 2596 return;
1007 2597
2598 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2599
2600 EV_FREQUENT_CHECK;
2601
1008 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2602 wlist_del (&anfds[w->fd].head, (WL)w);
1009 ev_stop (EV_A_ (W)w); 2603 ev_stop (EV_A_ (W)w);
1010 2604
1011 fd_change (EV_A_ w->fd); 2605 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1012}
1013 2606
1014void 2607 EV_FREQUENT_CHECK;
2608}
2609
2610void noinline
1015ev_timer_start (EV_P_ struct ev_timer *w) 2611ev_timer_start (EV_P_ ev_timer *w)
1016{ 2612{
1017 if (ev_is_active (w)) 2613 if (expect_false (ev_is_active (w)))
1018 return; 2614 return;
1019 2615
1020 w->at += mn_now; 2616 ev_at (w) += mn_now;
1021 2617
1022 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2618 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1023 2619
2620 EV_FREQUENT_CHECK;
2621
2622 ++timercnt;
1024 ev_start (EV_A_ (W)w, ++timercnt); 2623 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1025 array_needsize (timers, timermax, timercnt, ); 2624 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1026 timers [timercnt - 1] = w; 2625 ANHE_w (timers [ev_active (w)]) = (WT)w;
1027 upheap ((WT *)timers, timercnt - 1); 2626 ANHE_at_cache (timers [ev_active (w)]);
1028} 2627 upheap (timers, ev_active (w));
1029 2628
1030void 2629 EV_FREQUENT_CHECK;
2630
2631 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2632}
2633
2634void noinline
1031ev_timer_stop (EV_P_ struct ev_timer *w) 2635ev_timer_stop (EV_P_ ev_timer *w)
1032{ 2636{
1033 ev_clear_pending (EV_A_ (W)w); 2637 clear_pending (EV_A_ (W)w);
1034 if (!ev_is_active (w)) 2638 if (expect_false (!ev_is_active (w)))
1035 return; 2639 return;
1036 2640
1037 if (w->active < timercnt--) 2641 EV_FREQUENT_CHECK;
2642
2643 {
2644 int active = ev_active (w);
2645
2646 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2647
2648 --timercnt;
2649
2650 if (expect_true (active < timercnt + HEAP0))
1038 { 2651 {
1039 timers [w->active - 1] = timers [timercnt]; 2652 timers [active] = timers [timercnt + HEAP0];
1040 downheap ((WT *)timers, timercnt, w->active - 1); 2653 adjustheap (timers, timercnt, active);
1041 } 2654 }
2655 }
1042 2656
1043 w->at = w->repeat; 2657 ev_at (w) -= mn_now;
1044 2658
1045 ev_stop (EV_A_ (W)w); 2659 ev_stop (EV_A_ (W)w);
1046}
1047 2660
1048void 2661 EV_FREQUENT_CHECK;
2662}
2663
2664void noinline
1049ev_timer_again (EV_P_ struct ev_timer *w) 2665ev_timer_again (EV_P_ ev_timer *w)
1050{ 2666{
2667 EV_FREQUENT_CHECK;
2668
1051 if (ev_is_active (w)) 2669 if (ev_is_active (w))
1052 { 2670 {
1053 if (w->repeat) 2671 if (w->repeat)
1054 { 2672 {
1055 w->at = mn_now + w->repeat; 2673 ev_at (w) = mn_now + w->repeat;
2674 ANHE_at_cache (timers [ev_active (w)]);
1056 downheap ((WT *)timers, timercnt, w->active - 1); 2675 adjustheap (timers, timercnt, ev_active (w));
1057 } 2676 }
1058 else 2677 else
1059 ev_timer_stop (EV_A_ w); 2678 ev_timer_stop (EV_A_ w);
1060 } 2679 }
1061 else if (w->repeat) 2680 else if (w->repeat)
2681 {
2682 ev_at (w) = w->repeat;
1062 ev_timer_start (EV_A_ w); 2683 ev_timer_start (EV_A_ w);
1063} 2684 }
1064 2685
1065void 2686 EV_FREQUENT_CHECK;
2687}
2688
2689ev_tstamp
2690ev_timer_remaining (EV_P_ ev_timer *w)
2691{
2692 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2693}
2694
2695#if EV_PERIODIC_ENABLE
2696void noinline
1066ev_periodic_start (EV_P_ struct ev_periodic *w) 2697ev_periodic_start (EV_P_ ev_periodic *w)
1067{ 2698{
1068 if (ev_is_active (w)) 2699 if (expect_false (ev_is_active (w)))
1069 return; 2700 return;
1070 2701
2702 if (w->reschedule_cb)
2703 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2704 else if (w->interval)
2705 {
1071 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2706 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1072
1073 /* this formula differs from the one in periodic_reify because we do not always round up */ 2707 /* this formula differs from the one in periodic_reify because we do not always round up */
1074 if (w->interval)
1075 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2708 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2709 }
2710 else
2711 ev_at (w) = w->offset;
1076 2712
2713 EV_FREQUENT_CHECK;
2714
2715 ++periodiccnt;
1077 ev_start (EV_A_ (W)w, ++periodiccnt); 2716 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1078 array_needsize (periodics, periodicmax, periodiccnt, ); 2717 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1079 periodics [periodiccnt - 1] = w; 2718 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1080 upheap ((WT *)periodics, periodiccnt - 1); 2719 ANHE_at_cache (periodics [ev_active (w)]);
1081} 2720 upheap (periodics, ev_active (w));
1082 2721
1083void 2722 EV_FREQUENT_CHECK;
2723
2724 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2725}
2726
2727void noinline
1084ev_periodic_stop (EV_P_ struct ev_periodic *w) 2728ev_periodic_stop (EV_P_ ev_periodic *w)
1085{ 2729{
1086 ev_clear_pending (EV_A_ (W)w); 2730 clear_pending (EV_A_ (W)w);
1087 if (!ev_is_active (w)) 2731 if (expect_false (!ev_is_active (w)))
1088 return; 2732 return;
1089 2733
1090 if (w->active < periodiccnt--) 2734 EV_FREQUENT_CHECK;
2735
2736 {
2737 int active = ev_active (w);
2738
2739 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2740
2741 --periodiccnt;
2742
2743 if (expect_true (active < periodiccnt + HEAP0))
1091 { 2744 {
1092 periodics [w->active - 1] = periodics [periodiccnt]; 2745 periodics [active] = periodics [periodiccnt + HEAP0];
1093 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2746 adjustheap (periodics, periodiccnt, active);
1094 } 2747 }
2748 }
1095 2749
1096 ev_stop (EV_A_ (W)w); 2750 ev_stop (EV_A_ (W)w);
2751
2752 EV_FREQUENT_CHECK;
1097} 2753}
2754
2755void noinline
2756ev_periodic_again (EV_P_ ev_periodic *w)
2757{
2758 /* TODO: use adjustheap and recalculation */
2759 ev_periodic_stop (EV_A_ w);
2760 ev_periodic_start (EV_A_ w);
2761}
2762#endif
1098 2763
1099#ifndef SA_RESTART 2764#ifndef SA_RESTART
1100# define SA_RESTART 0 2765# define SA_RESTART 0
1101#endif 2766#endif
1102 2767
1103void 2768#if EV_SIGNAL_ENABLE
2769
2770void noinline
1104ev_signal_start (EV_P_ struct ev_signal *w) 2771ev_signal_start (EV_P_ ev_signal *w)
1105{ 2772{
1106 if (ev_is_active (w)) 2773 if (expect_false (ev_is_active (w)))
1107 return; 2774 return;
1108 2775
1109 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2776 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2777
2778#if EV_MULTIPLICITY
2779 assert (("libev: a signal must not be attached to two different loops",
2780 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2781
2782 signals [w->signum - 1].loop = EV_A;
2783#endif
2784
2785 EV_FREQUENT_CHECK;
2786
2787#if EV_USE_SIGNALFD
2788 if (sigfd == -2)
2789 {
2790 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2791 if (sigfd < 0 && errno == EINVAL)
2792 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2793
2794 if (sigfd >= 0)
2795 {
2796 fd_intern (sigfd); /* doing it twice will not hurt */
2797
2798 sigemptyset (&sigfd_set);
2799
2800 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2801 ev_set_priority (&sigfd_w, EV_MAXPRI);
2802 ev_io_start (EV_A_ &sigfd_w);
2803 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2804 }
2805 }
2806
2807 if (sigfd >= 0)
2808 {
2809 /* TODO: check .head */
2810 sigaddset (&sigfd_set, w->signum);
2811 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2812
2813 signalfd (sigfd, &sigfd_set, 0);
2814 }
2815#endif
1110 2816
1111 ev_start (EV_A_ (W)w, 1); 2817 ev_start (EV_A_ (W)w, 1);
1112 array_needsize (signals, signalmax, w->signum, signals_init);
1113 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2818 wlist_add (&signals [w->signum - 1].head, (WL)w);
1114 2819
1115 if (!w->next) 2820 if (!((WL)w)->next)
2821# if EV_USE_SIGNALFD
2822 if (sigfd < 0) /*TODO*/
2823# endif
1116 { 2824 {
2825# ifdef _WIN32
2826 evpipe_init (EV_A);
2827
2828 signal (w->signum, ev_sighandler);
2829# else
1117 struct sigaction sa; 2830 struct sigaction sa;
2831
2832 evpipe_init (EV_A);
2833
1118 sa.sa_handler = sighandler; 2834 sa.sa_handler = ev_sighandler;
1119 sigfillset (&sa.sa_mask); 2835 sigfillset (&sa.sa_mask);
1120 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2836 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1121 sigaction (w->signum, &sa, 0); 2837 sigaction (w->signum, &sa, 0);
2838
2839 sigemptyset (&sa.sa_mask);
2840 sigaddset (&sa.sa_mask, w->signum);
2841 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2842#endif
1122 } 2843 }
1123}
1124 2844
1125void 2845 EV_FREQUENT_CHECK;
2846}
2847
2848void noinline
1126ev_signal_stop (EV_P_ struct ev_signal *w) 2849ev_signal_stop (EV_P_ ev_signal *w)
1127{ 2850{
1128 ev_clear_pending (EV_A_ (W)w); 2851 clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 2852 if (expect_false (!ev_is_active (w)))
1130 return; 2853 return;
1131 2854
2855 EV_FREQUENT_CHECK;
2856
1132 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2857 wlist_del (&signals [w->signum - 1].head, (WL)w);
1133 ev_stop (EV_A_ (W)w); 2858 ev_stop (EV_A_ (W)w);
1134 2859
1135 if (!signals [w->signum - 1].head) 2860 if (!signals [w->signum - 1].head)
2861 {
2862#if EV_MULTIPLICITY
2863 signals [w->signum - 1].loop = 0; /* unattach from signal */
2864#endif
2865#if EV_USE_SIGNALFD
2866 if (sigfd >= 0)
2867 {
2868 sigset_t ss;
2869
2870 sigemptyset (&ss);
2871 sigaddset (&ss, w->signum);
2872 sigdelset (&sigfd_set, w->signum);
2873
2874 signalfd (sigfd, &sigfd_set, 0);
2875 sigprocmask (SIG_UNBLOCK, &ss, 0);
2876 }
2877 else
2878#endif
1136 signal (w->signum, SIG_DFL); 2879 signal (w->signum, SIG_DFL);
1137} 2880 }
1138 2881
2882 EV_FREQUENT_CHECK;
2883}
2884
2885#endif
2886
2887#if EV_CHILD_ENABLE
2888
1139void 2889void
1140ev_idle_start (EV_P_ struct ev_idle *w) 2890ev_child_start (EV_P_ ev_child *w)
1141{ 2891{
2892#if EV_MULTIPLICITY
2893 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2894#endif
1142 if (ev_is_active (w)) 2895 if (expect_false (ev_is_active (w)))
1143 return; 2896 return;
1144 2897
2898 EV_FREQUENT_CHECK;
2899
1145 ev_start (EV_A_ (W)w, ++idlecnt); 2900 ev_start (EV_A_ (W)w, 1);
1146 array_needsize (idles, idlemax, idlecnt, ); 2901 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1147 idles [idlecnt - 1] = w;
1148}
1149 2902
2903 EV_FREQUENT_CHECK;
2904}
2905
1150void 2906void
1151ev_idle_stop (EV_P_ struct ev_idle *w) 2907ev_child_stop (EV_P_ ev_child *w)
1152{ 2908{
1153 ev_clear_pending (EV_A_ (W)w); 2909 clear_pending (EV_A_ (W)w);
1154 if (ev_is_active (w)) 2910 if (expect_false (!ev_is_active (w)))
1155 return; 2911 return;
1156 2912
1157 idles [w->active - 1] = idles [--idlecnt]; 2913 EV_FREQUENT_CHECK;
2914
2915 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1158 ev_stop (EV_A_ (W)w); 2916 ev_stop (EV_A_ (W)w);
1159}
1160 2917
1161void 2918 EV_FREQUENT_CHECK;
1162ev_prepare_start (EV_P_ struct ev_prepare *w) 2919}
2920
2921#endif
2922
2923#if EV_STAT_ENABLE
2924
2925# ifdef _WIN32
2926# undef lstat
2927# define lstat(a,b) _stati64 (a,b)
2928# endif
2929
2930#define DEF_STAT_INTERVAL 5.0074891
2931#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2932#define MIN_STAT_INTERVAL 0.1074891
2933
2934static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2935
2936#if EV_USE_INOTIFY
2937
2938/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2939# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2940
2941static void noinline
2942infy_add (EV_P_ ev_stat *w)
1163{ 2943{
1164 if (ev_is_active (w)) 2944 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2945
2946 if (w->wd >= 0)
2947 {
2948 struct statfs sfs;
2949
2950 /* now local changes will be tracked by inotify, but remote changes won't */
2951 /* unless the filesystem is known to be local, we therefore still poll */
2952 /* also do poll on <2.6.25, but with normal frequency */
2953
2954 if (!fs_2625)
2955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2956 else if (!statfs (w->path, &sfs)
2957 && (sfs.f_type == 0x1373 /* devfs */
2958 || sfs.f_type == 0xEF53 /* ext2/3 */
2959 || sfs.f_type == 0x3153464a /* jfs */
2960 || sfs.f_type == 0x52654973 /* reiser3 */
2961 || sfs.f_type == 0x01021994 /* tempfs */
2962 || sfs.f_type == 0x58465342 /* xfs */))
2963 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2964 else
2965 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2966 }
2967 else
2968 {
2969 /* can't use inotify, continue to stat */
2970 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2971
2972 /* if path is not there, monitor some parent directory for speedup hints */
2973 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2974 /* but an efficiency issue only */
2975 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2976 {
2977 char path [4096];
2978 strcpy (path, w->path);
2979
2980 do
2981 {
2982 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2983 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2984
2985 char *pend = strrchr (path, '/');
2986
2987 if (!pend || pend == path)
2988 break;
2989
2990 *pend = 0;
2991 w->wd = inotify_add_watch (fs_fd, path, mask);
2992 }
2993 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2994 }
2995 }
2996
2997 if (w->wd >= 0)
2998 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2999
3000 /* now re-arm timer, if required */
3001 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3002 ev_timer_again (EV_A_ &w->timer);
3003 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3004}
3005
3006static void noinline
3007infy_del (EV_P_ ev_stat *w)
3008{
3009 int slot;
3010 int wd = w->wd;
3011
3012 if (wd < 0)
1165 return; 3013 return;
1166 3014
3015 w->wd = -2;
3016 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3017 wlist_del (&fs_hash [slot].head, (WL)w);
3018
3019 /* remove this watcher, if others are watching it, they will rearm */
3020 inotify_rm_watch (fs_fd, wd);
3021}
3022
3023static void noinline
3024infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3025{
3026 if (slot < 0)
3027 /* overflow, need to check for all hash slots */
3028 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3029 infy_wd (EV_A_ slot, wd, ev);
3030 else
3031 {
3032 WL w_;
3033
3034 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3035 {
3036 ev_stat *w = (ev_stat *)w_;
3037 w_ = w_->next; /* lets us remove this watcher and all before it */
3038
3039 if (w->wd == wd || wd == -1)
3040 {
3041 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3042 {
3043 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3044 w->wd = -1;
3045 infy_add (EV_A_ w); /* re-add, no matter what */
3046 }
3047
3048 stat_timer_cb (EV_A_ &w->timer, 0);
3049 }
3050 }
3051 }
3052}
3053
3054static void
3055infy_cb (EV_P_ ev_io *w, int revents)
3056{
3057 char buf [EV_INOTIFY_BUFSIZE];
3058 int ofs;
3059 int len = read (fs_fd, buf, sizeof (buf));
3060
3061 for (ofs = 0; ofs < len; )
3062 {
3063 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3064 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3065 ofs += sizeof (struct inotify_event) + ev->len;
3066 }
3067}
3068
3069inline_size unsigned int
3070ev_linux_version (void)
3071{
3072 struct utsname buf;
3073 unsigned int v;
3074 int i;
3075 char *p = buf.release;
3076
3077 if (uname (&buf))
3078 return 0;
3079
3080 for (i = 3+1; --i; )
3081 {
3082 unsigned int c = 0;
3083
3084 for (;;)
3085 {
3086 if (*p >= '0' && *p <= '9')
3087 c = c * 10 + *p++ - '0';
3088 else
3089 {
3090 p += *p == '.';
3091 break;
3092 }
3093 }
3094
3095 v = (v << 8) | c;
3096 }
3097
3098 return v;
3099}
3100
3101inline_size void
3102ev_check_2625 (EV_P)
3103{
3104 /* kernels < 2.6.25 are borked
3105 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3106 */
3107 if (ev_linux_version () < 0x020619)
3108 return;
3109
3110 fs_2625 = 1;
3111}
3112
3113inline_size int
3114infy_newfd (void)
3115{
3116#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3117 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3118 if (fd >= 0)
3119 return fd;
3120#endif
3121 return inotify_init ();
3122}
3123
3124inline_size void
3125infy_init (EV_P)
3126{
3127 if (fs_fd != -2)
3128 return;
3129
3130 fs_fd = -1;
3131
3132 ev_check_2625 (EV_A);
3133
3134 fs_fd = infy_newfd ();
3135
3136 if (fs_fd >= 0)
3137 {
3138 fd_intern (fs_fd);
3139 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3140 ev_set_priority (&fs_w, EV_MAXPRI);
3141 ev_io_start (EV_A_ &fs_w);
3142 ev_unref (EV_A);
3143 }
3144}
3145
3146inline_size void
3147infy_fork (EV_P)
3148{
3149 int slot;
3150
3151 if (fs_fd < 0)
3152 return;
3153
3154 ev_ref (EV_A);
3155 ev_io_stop (EV_A_ &fs_w);
3156 close (fs_fd);
3157 fs_fd = infy_newfd ();
3158
3159 if (fs_fd >= 0)
3160 {
3161 fd_intern (fs_fd);
3162 ev_io_set (&fs_w, fs_fd, EV_READ);
3163 ev_io_start (EV_A_ &fs_w);
3164 ev_unref (EV_A);
3165 }
3166
3167 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3168 {
3169 WL w_ = fs_hash [slot].head;
3170 fs_hash [slot].head = 0;
3171
3172 while (w_)
3173 {
3174 ev_stat *w = (ev_stat *)w_;
3175 w_ = w_->next; /* lets us add this watcher */
3176
3177 w->wd = -1;
3178
3179 if (fs_fd >= 0)
3180 infy_add (EV_A_ w); /* re-add, no matter what */
3181 else
3182 {
3183 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3184 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3185 ev_timer_again (EV_A_ &w->timer);
3186 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3187 }
3188 }
3189 }
3190}
3191
3192#endif
3193
3194#ifdef _WIN32
3195# define EV_LSTAT(p,b) _stati64 (p, b)
3196#else
3197# define EV_LSTAT(p,b) lstat (p, b)
3198#endif
3199
3200void
3201ev_stat_stat (EV_P_ ev_stat *w)
3202{
3203 if (lstat (w->path, &w->attr) < 0)
3204 w->attr.st_nlink = 0;
3205 else if (!w->attr.st_nlink)
3206 w->attr.st_nlink = 1;
3207}
3208
3209static void noinline
3210stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3211{
3212 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3213
3214 ev_statdata prev = w->attr;
3215 ev_stat_stat (EV_A_ w);
3216
3217 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3218 if (
3219 prev.st_dev != w->attr.st_dev
3220 || prev.st_ino != w->attr.st_ino
3221 || prev.st_mode != w->attr.st_mode
3222 || prev.st_nlink != w->attr.st_nlink
3223 || prev.st_uid != w->attr.st_uid
3224 || prev.st_gid != w->attr.st_gid
3225 || prev.st_rdev != w->attr.st_rdev
3226 || prev.st_size != w->attr.st_size
3227 || prev.st_atime != w->attr.st_atime
3228 || prev.st_mtime != w->attr.st_mtime
3229 || prev.st_ctime != w->attr.st_ctime
3230 ) {
3231 /* we only update w->prev on actual differences */
3232 /* in case we test more often than invoke the callback, */
3233 /* to ensure that prev is always different to attr */
3234 w->prev = prev;
3235
3236 #if EV_USE_INOTIFY
3237 if (fs_fd >= 0)
3238 {
3239 infy_del (EV_A_ w);
3240 infy_add (EV_A_ w);
3241 ev_stat_stat (EV_A_ w); /* avoid race... */
3242 }
3243 #endif
3244
3245 ev_feed_event (EV_A_ w, EV_STAT);
3246 }
3247}
3248
3249void
3250ev_stat_start (EV_P_ ev_stat *w)
3251{
3252 if (expect_false (ev_is_active (w)))
3253 return;
3254
3255 ev_stat_stat (EV_A_ w);
3256
3257 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3258 w->interval = MIN_STAT_INTERVAL;
3259
3260 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3261 ev_set_priority (&w->timer, ev_priority (w));
3262
3263#if EV_USE_INOTIFY
3264 infy_init (EV_A);
3265
3266 if (fs_fd >= 0)
3267 infy_add (EV_A_ w);
3268 else
3269#endif
3270 {
3271 ev_timer_again (EV_A_ &w->timer);
3272 ev_unref (EV_A);
3273 }
3274
3275 ev_start (EV_A_ (W)w, 1);
3276
3277 EV_FREQUENT_CHECK;
3278}
3279
3280void
3281ev_stat_stop (EV_P_ ev_stat *w)
3282{
3283 clear_pending (EV_A_ (W)w);
3284 if (expect_false (!ev_is_active (w)))
3285 return;
3286
3287 EV_FREQUENT_CHECK;
3288
3289#if EV_USE_INOTIFY
3290 infy_del (EV_A_ w);
3291#endif
3292
3293 if (ev_is_active (&w->timer))
3294 {
3295 ev_ref (EV_A);
3296 ev_timer_stop (EV_A_ &w->timer);
3297 }
3298
3299 ev_stop (EV_A_ (W)w);
3300
3301 EV_FREQUENT_CHECK;
3302}
3303#endif
3304
3305#if EV_IDLE_ENABLE
3306void
3307ev_idle_start (EV_P_ ev_idle *w)
3308{
3309 if (expect_false (ev_is_active (w)))
3310 return;
3311
3312 pri_adjust (EV_A_ (W)w);
3313
3314 EV_FREQUENT_CHECK;
3315
3316 {
3317 int active = ++idlecnt [ABSPRI (w)];
3318
3319 ++idleall;
3320 ev_start (EV_A_ (W)w, active);
3321
3322 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3323 idles [ABSPRI (w)][active - 1] = w;
3324 }
3325
3326 EV_FREQUENT_CHECK;
3327}
3328
3329void
3330ev_idle_stop (EV_P_ ev_idle *w)
3331{
3332 clear_pending (EV_A_ (W)w);
3333 if (expect_false (!ev_is_active (w)))
3334 return;
3335
3336 EV_FREQUENT_CHECK;
3337
3338 {
3339 int active = ev_active (w);
3340
3341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3342 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3343
3344 ev_stop (EV_A_ (W)w);
3345 --idleall;
3346 }
3347
3348 EV_FREQUENT_CHECK;
3349}
3350#endif
3351
3352#if EV_PREPARE_ENABLE
3353void
3354ev_prepare_start (EV_P_ ev_prepare *w)
3355{
3356 if (expect_false (ev_is_active (w)))
3357 return;
3358
3359 EV_FREQUENT_CHECK;
3360
1167 ev_start (EV_A_ (W)w, ++preparecnt); 3361 ev_start (EV_A_ (W)w, ++preparecnt);
1168 array_needsize (prepares, preparemax, preparecnt, ); 3362 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1169 prepares [preparecnt - 1] = w; 3363 prepares [preparecnt - 1] = w;
1170}
1171 3364
3365 EV_FREQUENT_CHECK;
3366}
3367
1172void 3368void
1173ev_prepare_stop (EV_P_ struct ev_prepare *w) 3369ev_prepare_stop (EV_P_ ev_prepare *w)
1174{ 3370{
1175 ev_clear_pending (EV_A_ (W)w); 3371 clear_pending (EV_A_ (W)w);
1176 if (ev_is_active (w)) 3372 if (expect_false (!ev_is_active (w)))
1177 return; 3373 return;
1178 3374
3375 EV_FREQUENT_CHECK;
3376
3377 {
3378 int active = ev_active (w);
3379
1179 prepares [w->active - 1] = prepares [--preparecnt]; 3380 prepares [active - 1] = prepares [--preparecnt];
3381 ev_active (prepares [active - 1]) = active;
3382 }
3383
1180 ev_stop (EV_A_ (W)w); 3384 ev_stop (EV_A_ (W)w);
1181}
1182 3385
3386 EV_FREQUENT_CHECK;
3387}
3388#endif
3389
3390#if EV_CHECK_ENABLE
1183void 3391void
1184ev_check_start (EV_P_ struct ev_check *w) 3392ev_check_start (EV_P_ ev_check *w)
1185{ 3393{
1186 if (ev_is_active (w)) 3394 if (expect_false (ev_is_active (w)))
1187 return; 3395 return;
1188 3396
3397 EV_FREQUENT_CHECK;
3398
1189 ev_start (EV_A_ (W)w, ++checkcnt); 3399 ev_start (EV_A_ (W)w, ++checkcnt);
1190 array_needsize (checks, checkmax, checkcnt, ); 3400 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1191 checks [checkcnt - 1] = w; 3401 checks [checkcnt - 1] = w;
1192}
1193 3402
3403 EV_FREQUENT_CHECK;
3404}
3405
1194void 3406void
1195ev_check_stop (EV_P_ struct ev_check *w) 3407ev_check_stop (EV_P_ ev_check *w)
1196{ 3408{
1197 ev_clear_pending (EV_A_ (W)w); 3409 clear_pending (EV_A_ (W)w);
1198 if (ev_is_active (w)) 3410 if (expect_false (!ev_is_active (w)))
1199 return; 3411 return;
1200 3412
3413 EV_FREQUENT_CHECK;
3414
3415 {
3416 int active = ev_active (w);
3417
1201 checks [w->active - 1] = checks [--checkcnt]; 3418 checks [active - 1] = checks [--checkcnt];
3419 ev_active (checks [active - 1]) = active;
3420 }
3421
1202 ev_stop (EV_A_ (W)w); 3422 ev_stop (EV_A_ (W)w);
1203}
1204 3423
1205void 3424 EV_FREQUENT_CHECK;
1206ev_child_start (EV_P_ struct ev_child *w) 3425}
3426#endif
3427
3428#if EV_EMBED_ENABLE
3429void noinline
3430ev_embed_sweep (EV_P_ ev_embed *w)
1207{ 3431{
3432 ev_run (w->other, EVRUN_NOWAIT);
3433}
3434
3435static void
3436embed_io_cb (EV_P_ ev_io *io, int revents)
3437{
3438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3439
1208 if (ev_is_active (w)) 3440 if (ev_cb (w))
3441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3442 else
3443 ev_run (w->other, EVRUN_NOWAIT);
3444}
3445
3446static void
3447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3448{
3449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3450
3451 {
3452 EV_P = w->other;
3453
3454 while (fdchangecnt)
3455 {
3456 fd_reify (EV_A);
3457 ev_run (EV_A_ EVRUN_NOWAIT);
3458 }
3459 }
3460}
3461
3462static void
3463embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3464{
3465 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3466
3467 ev_embed_stop (EV_A_ w);
3468
3469 {
3470 EV_P = w->other;
3471
3472 ev_loop_fork (EV_A);
3473 ev_run (EV_A_ EVRUN_NOWAIT);
3474 }
3475
3476 ev_embed_start (EV_A_ w);
3477}
3478
3479#if 0
3480static void
3481embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3482{
3483 ev_idle_stop (EV_A_ idle);
3484}
3485#endif
3486
3487void
3488ev_embed_start (EV_P_ ev_embed *w)
3489{
3490 if (expect_false (ev_is_active (w)))
1209 return; 3491 return;
1210 3492
3493 {
3494 EV_P = w->other;
3495 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3496 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3497 }
3498
3499 EV_FREQUENT_CHECK;
3500
3501 ev_set_priority (&w->io, ev_priority (w));
3502 ev_io_start (EV_A_ &w->io);
3503
3504 ev_prepare_init (&w->prepare, embed_prepare_cb);
3505 ev_set_priority (&w->prepare, EV_MINPRI);
3506 ev_prepare_start (EV_A_ &w->prepare);
3507
3508 ev_fork_init (&w->fork, embed_fork_cb);
3509 ev_fork_start (EV_A_ &w->fork);
3510
3511 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3512
1211 ev_start (EV_A_ (W)w, 1); 3513 ev_start (EV_A_ (W)w, 1);
1212 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1213}
1214 3514
3515 EV_FREQUENT_CHECK;
3516}
3517
1215void 3518void
1216ev_child_stop (EV_P_ struct ev_child *w) 3519ev_embed_stop (EV_P_ ev_embed *w)
1217{ 3520{
1218 ev_clear_pending (EV_A_ (W)w); 3521 clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w)) 3522 if (expect_false (!ev_is_active (w)))
1220 return; 3523 return;
1221 3524
1222 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3525 EV_FREQUENT_CHECK;
3526
3527 ev_io_stop (EV_A_ &w->io);
3528 ev_prepare_stop (EV_A_ &w->prepare);
3529 ev_fork_stop (EV_A_ &w->fork);
3530
1223 ev_stop (EV_A_ (W)w); 3531 ev_stop (EV_A_ (W)w);
3532
3533 EV_FREQUENT_CHECK;
1224} 3534}
3535#endif
3536
3537#if EV_FORK_ENABLE
3538void
3539ev_fork_start (EV_P_ ev_fork *w)
3540{
3541 if (expect_false (ev_is_active (w)))
3542 return;
3543
3544 EV_FREQUENT_CHECK;
3545
3546 ev_start (EV_A_ (W)w, ++forkcnt);
3547 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3548 forks [forkcnt - 1] = w;
3549
3550 EV_FREQUENT_CHECK;
3551}
3552
3553void
3554ev_fork_stop (EV_P_ ev_fork *w)
3555{
3556 clear_pending (EV_A_ (W)w);
3557 if (expect_false (!ev_is_active (w)))
3558 return;
3559
3560 EV_FREQUENT_CHECK;
3561
3562 {
3563 int active = ev_active (w);
3564
3565 forks [active - 1] = forks [--forkcnt];
3566 ev_active (forks [active - 1]) = active;
3567 }
3568
3569 ev_stop (EV_A_ (W)w);
3570
3571 EV_FREQUENT_CHECK;
3572}
3573#endif
3574
3575#if EV_ASYNC_ENABLE
3576void
3577ev_async_start (EV_P_ ev_async *w)
3578{
3579 if (expect_false (ev_is_active (w)))
3580 return;
3581
3582 w->sent = 0;
3583
3584 evpipe_init (EV_A);
3585
3586 EV_FREQUENT_CHECK;
3587
3588 ev_start (EV_A_ (W)w, ++asynccnt);
3589 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3590 asyncs [asynccnt - 1] = w;
3591
3592 EV_FREQUENT_CHECK;
3593}
3594
3595void
3596ev_async_stop (EV_P_ ev_async *w)
3597{
3598 clear_pending (EV_A_ (W)w);
3599 if (expect_false (!ev_is_active (w)))
3600 return;
3601
3602 EV_FREQUENT_CHECK;
3603
3604 {
3605 int active = ev_active (w);
3606
3607 asyncs [active - 1] = asyncs [--asynccnt];
3608 ev_active (asyncs [active - 1]) = active;
3609 }
3610
3611 ev_stop (EV_A_ (W)w);
3612
3613 EV_FREQUENT_CHECK;
3614}
3615
3616void
3617ev_async_send (EV_P_ ev_async *w)
3618{
3619 w->sent = 1;
3620 evpipe_write (EV_A_ &async_pending);
3621}
3622#endif
1225 3623
1226/*****************************************************************************/ 3624/*****************************************************************************/
1227 3625
1228struct ev_once 3626struct ev_once
1229{ 3627{
1230 struct ev_io io; 3628 ev_io io;
1231 struct ev_timer to; 3629 ev_timer to;
1232 void (*cb)(int revents, void *arg); 3630 void (*cb)(int revents, void *arg);
1233 void *arg; 3631 void *arg;
1234}; 3632};
1235 3633
1236static void 3634static void
1237once_cb (EV_P_ struct ev_once *once, int revents) 3635once_cb (EV_P_ struct ev_once *once, int revents)
1238{ 3636{
1239 void (*cb)(int revents, void *arg) = once->cb; 3637 void (*cb)(int revents, void *arg) = once->cb;
1240 void *arg = once->arg; 3638 void *arg = once->arg;
1241 3639
1242 ev_io_stop (EV_A_ &once->io); 3640 ev_io_stop (EV_A_ &once->io);
1243 ev_timer_stop (EV_A_ &once->to); 3641 ev_timer_stop (EV_A_ &once->to);
1244 free (once); 3642 ev_free (once);
1245 3643
1246 cb (revents, arg); 3644 cb (revents, arg);
1247} 3645}
1248 3646
1249static void 3647static void
1250once_cb_io (EV_P_ struct ev_io *w, int revents) 3648once_cb_io (EV_P_ ev_io *w, int revents)
1251{ 3649{
1252 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3650 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3651
3652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1253} 3653}
1254 3654
1255static void 3655static void
1256once_cb_to (EV_P_ struct ev_timer *w, int revents) 3656once_cb_to (EV_P_ ev_timer *w, int revents)
1257{ 3657{
1258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3658 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3659
3660 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1259} 3661}
1260 3662
1261void 3663void
1262ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3664ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1263{ 3665{
1264 struct ev_once *once = malloc (sizeof (struct ev_once)); 3666 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1265 3667
1266 if (!once) 3668 if (expect_false (!once))
3669 {
1267 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3670 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1268 else 3671 return;
1269 { 3672 }
3673
1270 once->cb = cb; 3674 once->cb = cb;
1271 once->arg = arg; 3675 once->arg = arg;
1272 3676
1273 ev_watcher_init (&once->io, once_cb_io); 3677 ev_init (&once->io, once_cb_io);
1274 if (fd >= 0) 3678 if (fd >= 0)
3679 {
3680 ev_io_set (&once->io, fd, events);
3681 ev_io_start (EV_A_ &once->io);
3682 }
3683
3684 ev_init (&once->to, once_cb_to);
3685 if (timeout >= 0.)
3686 {
3687 ev_timer_set (&once->to, timeout, 0.);
3688 ev_timer_start (EV_A_ &once->to);
3689 }
3690}
3691
3692/*****************************************************************************/
3693
3694#if EV_WALK_ENABLE
3695void
3696ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3697{
3698 int i, j;
3699 ev_watcher_list *wl, *wn;
3700
3701 if (types & (EV_IO | EV_EMBED))
3702 for (i = 0; i < anfdmax; ++i)
3703 for (wl = anfds [i].head; wl; )
1275 { 3704 {
1276 ev_io_set (&once->io, fd, events); 3705 wn = wl->next;
1277 ev_io_start (EV_A_ &once->io); 3706
3707#if EV_EMBED_ENABLE
3708 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3709 {
3710 if (types & EV_EMBED)
3711 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3712 }
3713 else
3714#endif
3715#if EV_USE_INOTIFY
3716 if (ev_cb ((ev_io *)wl) == infy_cb)
3717 ;
3718 else
3719#endif
3720 if ((ev_io *)wl != &pipe_w)
3721 if (types & EV_IO)
3722 cb (EV_A_ EV_IO, wl);
3723
3724 wl = wn;
1278 } 3725 }
1279 3726
1280 ev_watcher_init (&once->to, once_cb_to); 3727 if (types & (EV_TIMER | EV_STAT))
1281 if (timeout >= 0.) 3728 for (i = timercnt + HEAP0; i-- > HEAP0; )
3729#if EV_STAT_ENABLE
3730 /*TODO: timer is not always active*/
3731 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1282 { 3732 {
1283 ev_timer_set (&once->to, timeout, 0.); 3733 if (types & EV_STAT)
1284 ev_timer_start (EV_A_ &once->to); 3734 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1285 } 3735 }
1286 } 3736 else
1287} 3737#endif
3738 if (types & EV_TIMER)
3739 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1288 3740
1289/*****************************************************************************/ 3741#if EV_PERIODIC_ENABLE
3742 if (types & EV_PERIODIC)
3743 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3744 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3745#endif
1290 3746
1291#if 0 3747#if EV_IDLE_ENABLE
3748 if (types & EV_IDLE)
3749 for (j = NUMPRI; i--; )
3750 for (i = idlecnt [j]; i--; )
3751 cb (EV_A_ EV_IDLE, idles [j][i]);
3752#endif
1292 3753
1293struct ev_io wio; 3754#if EV_FORK_ENABLE
3755 if (types & EV_FORK)
3756 for (i = forkcnt; i--; )
3757 if (ev_cb (forks [i]) != embed_fork_cb)
3758 cb (EV_A_ EV_FORK, forks [i]);
3759#endif
1294 3760
1295static void 3761#if EV_ASYNC_ENABLE
1296sin_cb (struct ev_io *w, int revents) 3762 if (types & EV_ASYNC)
1297{ 3763 for (i = asynccnt; i--; )
1298 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3764 cb (EV_A_ EV_ASYNC, asyncs [i]);
1299} 3765#endif
1300 3766
1301static void 3767#if EV_PREPARE_ENABLE
1302ocb (struct ev_timer *w, int revents) 3768 if (types & EV_PREPARE)
1303{ 3769 for (i = preparecnt; i--; )
1304 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3770# if EV_EMBED_ENABLE
1305 ev_timer_stop (w); 3771 if (ev_cb (prepares [i]) != embed_prepare_cb)
1306 ev_timer_start (w);
1307}
1308
1309static void
1310scb (struct ev_signal *w, int revents)
1311{
1312 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1313 ev_io_stop (&wio);
1314 ev_io_start (&wio);
1315}
1316
1317static void
1318gcb (struct ev_signal *w, int revents)
1319{
1320 fprintf (stderr, "generic %x\n", revents);
1321
1322}
1323
1324int main (void)
1325{
1326 ev_init (0);
1327
1328 ev_io_init (&wio, sin_cb, 0, EV_READ);
1329 ev_io_start (&wio);
1330
1331 struct ev_timer t[10000];
1332
1333#if 0
1334 int i;
1335 for (i = 0; i < 10000; ++i)
1336 {
1337 struct ev_timer *w = t + i;
1338 ev_watcher_init (w, ocb, i);
1339 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1340 ev_timer_start (w);
1341 if (drand48 () < 0.5)
1342 ev_timer_stop (w);
1343 }
1344#endif 3772# endif
1345 3773 cb (EV_A_ EV_PREPARE, prepares [i]);
1346 struct ev_timer t1;
1347 ev_timer_init (&t1, ocb, 5, 10);
1348 ev_timer_start (&t1);
1349
1350 struct ev_signal sig;
1351 ev_signal_init (&sig, scb, SIGQUIT);
1352 ev_signal_start (&sig);
1353
1354 struct ev_check cw;
1355 ev_check_init (&cw, gcb);
1356 ev_check_start (&cw);
1357
1358 struct ev_idle iw;
1359 ev_idle_init (&iw, gcb);
1360 ev_idle_start (&iw);
1361
1362 ev_loop (0);
1363
1364 return 0;
1365}
1366
1367#endif 3774#endif
1368 3775
3776#if EV_CHECK_ENABLE
3777 if (types & EV_CHECK)
3778 for (i = checkcnt; i--; )
3779 cb (EV_A_ EV_CHECK, checks [i]);
3780#endif
1369 3781
3782#if EV_SIGNAL_ENABLE
3783 if (types & EV_SIGNAL)
3784 for (i = 0; i < EV_NSIG - 1; ++i)
3785 for (wl = signals [i].head; wl; )
3786 {
3787 wn = wl->next;
3788 cb (EV_A_ EV_SIGNAL, wl);
3789 wl = wn;
3790 }
3791#endif
1370 3792
3793#if EV_CHILD_ENABLE
3794 if (types & EV_CHILD)
3795 for (i = (EV_PID_HASHSIZE); i--; )
3796 for (wl = childs [i]; wl; )
3797 {
3798 wn = wl->next;
3799 cb (EV_A_ EV_CHILD, wl);
3800 wl = wn;
3801 }
3802#endif
3803/* EV_STAT 0x00001000 /* stat data changed */
3804/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3805}
3806#endif
1371 3807
3808#if EV_MULTIPLICITY
3809 #include "ev_wrap.h"
3810#endif
3811
3812#ifdef __cplusplus
3813}
3814#endif
3815

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines