ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.354 by root, Fri Oct 22 09:24:11 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
202#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
205#endif 373#endif
206 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/utsname.h>
388# include <sys/statfs.h>
389# include <sys/inotify.h>
390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391# ifndef IN_DONT_FOLLOW
392# undef EV_USE_INOTIFY
393# define EV_USE_INOTIFY 0
394# endif
395#endif
396
207#if EV_SELECT_IS_WINSOCKET 397#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 398# include <winsock.h>
209#endif 399#endif
210 400
211#if !EV_STAT_ENABLE 401#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
403# include <stdint.h>
404# ifndef EFD_NONBLOCK
405# define EFD_NONBLOCK O_NONBLOCK
213#endif 406# endif
407# ifndef EFD_CLOEXEC
408# ifdef O_CLOEXEC
409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
214 416
215#if EV_USE_INOTIFY 417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
217#endif 437#endif
218 438
219/**/ 439/**/
440
441#if EV_VERIFY >= 3
442# define EV_FREQUENT_CHECK ev_verify (EV_A)
443#else
444# define EV_FREQUENT_CHECK do { } while (0)
445#endif
220 446
221/* 447/*
222 * This is used to avoid floating point rounding problems. 448 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 449 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 450 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 451 * errors are against us.
226 * This value is good at least till the year 4000 452 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 453 * Better solutions welcome.
229 */ 454 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 456
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 459
460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
462
236#if __GNUC__ >= 3 463#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
239#else 466#else
240# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
241# define noinline 468# define noinline
242# if __STDC_VERSION__ < 199901L 469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 470# define inline
244# endif 471# endif
245#endif 472#endif
246 473
247#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
248#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline 476#define inline_size static inline
250 477
251#if EV_MINIMAL 478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
252# define inline_speed static noinline 481# define inline_speed static noinline
482#endif
483
484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
253#else 488#else
254# define inline_speed static inline
255#endif
256
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
259 491
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
262 494
263typedef ev_watcher *W; 495typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
266 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
520#endif
268 521
269#ifdef _WIN32 522#ifdef _WIN32
270# include "ev_win32.c" 523# include "ev_win32.c"
271#endif 524#endif
272 525
273/*****************************************************************************/ 526/*****************************************************************************/
274 527
528#if EV_AVOID_STDIO
529static void noinline
530ev_printerr (const char *msg)
531{
532 write (STDERR_FILENO, msg, strlen (msg));
533}
534#endif
535
275static void (*syserr_cb)(const char *msg); 536static void (*syserr_cb)(const char *msg);
276 537
277void 538void
278ev_set_syserr_cb (void (*cb)(const char *msg)) 539ev_set_syserr_cb (void (*cb)(const char *msg))
279{ 540{
280 syserr_cb = cb; 541 syserr_cb = cb;
281} 542}
282 543
283static void noinline 544static void noinline
284syserr (const char *msg) 545ev_syserr (const char *msg)
285{ 546{
286 if (!msg) 547 if (!msg)
287 msg = "(libev) system error"; 548 msg = "(libev) system error";
288 549
289 if (syserr_cb) 550 if (syserr_cb)
290 syserr_cb (msg); 551 syserr_cb (msg);
291 else 552 else
292 { 553 {
554#if EV_AVOID_STDIO
555 const char *err = strerror (errno);
556
557 ev_printerr (msg);
558 ev_printerr (": ");
559 ev_printerr (err);
560 ev_printerr ("\n");
561#else
293 perror (msg); 562 perror (msg);
563#endif
294 abort (); 564 abort ();
295 } 565 }
296} 566}
297 567
568static void *
569ev_realloc_emul (void *ptr, long size)
570{
571#if __GLIBC__
572 return realloc (ptr, size);
573#else
574 /* some systems, notably openbsd and darwin, fail to properly
575 * implement realloc (x, 0) (as required by both ansi c-89 and
576 * the single unix specification, so work around them here.
577 */
578
579 if (size)
580 return realloc (ptr, size);
581
582 free (ptr);
583 return 0;
584#endif
585}
586
298static void *(*alloc)(void *ptr, long size); 587static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 588
300void 589void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 590ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 591{
303 alloc = cb; 592 alloc = cb;
304} 593}
305 594
306inline_speed void * 595inline_speed void *
307ev_realloc (void *ptr, long size) 596ev_realloc (void *ptr, long size)
308{ 597{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 598 ptr = alloc (ptr, size);
310 599
311 if (!ptr && size) 600 if (!ptr && size)
312 { 601 {
602#if EV_AVOID_STDIO
603 ev_printerr ("libev: memory allocation failed, aborting.\n");
604#else
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 605 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
606#endif
314 abort (); 607 abort ();
315 } 608 }
316 609
317 return ptr; 610 return ptr;
318} 611}
320#define ev_malloc(size) ev_realloc (0, (size)) 613#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 614#define ev_free(ptr) ev_realloc ((ptr), 0)
322 615
323/*****************************************************************************/ 616/*****************************************************************************/
324 617
618/* set in reify when reification needed */
619#define EV_ANFD_REIFY 1
620
621/* file descriptor info structure */
325typedef struct 622typedef struct
326{ 623{
327 WL head; 624 WL head;
328 unsigned char events; 625 unsigned char events; /* the events watched for */
626 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
627 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
329 unsigned char reify; 628 unsigned char unused;
629#if EV_USE_EPOLL
630 unsigned int egen; /* generation counter to counter epoll bugs */
631#endif
330#if EV_SELECT_IS_WINSOCKET 632#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle; 633 SOCKET handle;
332#endif 634#endif
333} ANFD; 635} ANFD;
334 636
637/* stores the pending event set for a given watcher */
335typedef struct 638typedef struct
336{ 639{
337 W w; 640 W w;
338 int events; 641 int events; /* the pending event set for the given watcher */
339} ANPENDING; 642} ANPENDING;
340 643
341#if EV_USE_INOTIFY 644#if EV_USE_INOTIFY
645/* hash table entry per inotify-id */
342typedef struct 646typedef struct
343{ 647{
344 WL head; 648 WL head;
345} ANFS; 649} ANFS;
650#endif
651
652/* Heap Entry */
653#if EV_HEAP_CACHE_AT
654 /* a heap element */
655 typedef struct {
656 ev_tstamp at;
657 WT w;
658 } ANHE;
659
660 #define ANHE_w(he) (he).w /* access watcher, read-write */
661 #define ANHE_at(he) (he).at /* access cached at, read-only */
662 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
663#else
664 /* a heap element */
665 typedef WT ANHE;
666
667 #define ANHE_w(he) (he)
668 #define ANHE_at(he) (he)->at
669 #define ANHE_at_cache(he)
346#endif 670#endif
347 671
348#if EV_MULTIPLICITY 672#if EV_MULTIPLICITY
349 673
350 struct ev_loop 674 struct ev_loop
369 693
370 static int ev_default_loop_ptr; 694 static int ev_default_loop_ptr;
371 695
372#endif 696#endif
373 697
698#if EV_FEATURE_API
699# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
700# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
701# define EV_INVOKE_PENDING invoke_cb (EV_A)
702#else
703# define EV_RELEASE_CB (void)0
704# define EV_ACQUIRE_CB (void)0
705# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
706#endif
707
708#define EVBREAK_RECURSE 0x80
709
374/*****************************************************************************/ 710/*****************************************************************************/
375 711
712#ifndef EV_HAVE_EV_TIME
376ev_tstamp 713ev_tstamp
377ev_time (void) 714ev_time (void)
378{ 715{
379#if EV_USE_REALTIME 716#if EV_USE_REALTIME
717 if (expect_true (have_realtime))
718 {
380 struct timespec ts; 719 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 720 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 721 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 722 }
723#endif
724
384 struct timeval tv; 725 struct timeval tv;
385 gettimeofday (&tv, 0); 726 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 727 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 728}
729#endif
389 730
390ev_tstamp inline_size 731inline_size ev_tstamp
391get_clock (void) 732get_clock (void)
392{ 733{
393#if EV_USE_MONOTONIC 734#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 735 if (expect_true (have_monotonic))
395 { 736 {
408{ 749{
409 return ev_rt_now; 750 return ev_rt_now;
410} 751}
411#endif 752#endif
412 753
413int inline_size 754void
755ev_sleep (ev_tstamp delay)
756{
757 if (delay > 0.)
758 {
759#if EV_USE_NANOSLEEP
760 struct timespec ts;
761
762 EV_TS_SET (ts, delay);
763 nanosleep (&ts, 0);
764#elif defined(_WIN32)
765 Sleep ((unsigned long)(delay * 1e3));
766#else
767 struct timeval tv;
768
769 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
770 /* something not guaranteed by newer posix versions, but guaranteed */
771 /* by older ones */
772 EV_TV_SET (tv, delay);
773 select (0, 0, 0, 0, &tv);
774#endif
775 }
776}
777
778/*****************************************************************************/
779
780#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
781
782/* find a suitable new size for the given array, */
783/* hopefully by rounding to a nice-to-malloc size */
784inline_size int
414array_nextsize (int elem, int cur, int cnt) 785array_nextsize (int elem, int cur, int cnt)
415{ 786{
416 int ncur = cur + 1; 787 int ncur = cur + 1;
417 788
418 do 789 do
419 ncur <<= 1; 790 ncur <<= 1;
420 while (cnt > ncur); 791 while (cnt > ncur);
421 792
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 793 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 794 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 795 {
425 ncur *= elem; 796 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 797 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 798 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 799 ncur /= elem;
429 } 800 }
430 801
431 return ncur; 802 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 806array_realloc (int elem, void *base, int *cur, int cnt)
436{ 807{
437 *cur = array_nextsize (elem, *cur, cnt); 808 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 809 return ev_realloc (base, elem * *cur);
439} 810}
811
812#define array_init_zero(base,count) \
813 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 814
441#define array_needsize(type,base,cur,cnt,init) \ 815#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 816 if (expect_false ((cnt) > (cur))) \
443 { \ 817 { \
444 int ocur_ = (cur); \ 818 int ocur_ = (cur); \
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 830 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 831 }
458#endif 832#endif
459 833
460#define array_free(stem, idx) \ 834#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 835 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 836
463/*****************************************************************************/ 837/*****************************************************************************/
838
839/* dummy callback for pending events */
840static void noinline
841pendingcb (EV_P_ ev_prepare *w, int revents)
842{
843}
464 844
465void noinline 845void noinline
466ev_feed_event (EV_P_ void *w, int revents) 846ev_feed_event (EV_P_ void *w, int revents)
467{ 847{
468 W w_ = (W)w; 848 W w_ = (W)w;
477 pendings [pri][w_->pending - 1].w = w_; 857 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 858 pendings [pri][w_->pending - 1].events = revents;
479 } 859 }
480} 860}
481 861
482void inline_size 862inline_speed void
863feed_reverse (EV_P_ W w)
864{
865 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
866 rfeeds [rfeedcnt++] = w;
867}
868
869inline_size void
870feed_reverse_done (EV_P_ int revents)
871{
872 do
873 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
874 while (rfeedcnt);
875}
876
877inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 878queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 879{
485 int i; 880 int i;
486 881
487 for (i = 0; i < eventcnt; ++i) 882 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 883 ev_feed_event (EV_A_ events [i], type);
489} 884}
490 885
491/*****************************************************************************/ 886/*****************************************************************************/
492 887
493void inline_size 888inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 889fd_event_nocheck (EV_P_ int fd, int revents)
508{ 890{
509 ANFD *anfd = anfds + fd; 891 ANFD *anfd = anfds + fd;
510 ev_io *w; 892 ev_io *w;
511 893
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 894 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 898 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 899 ev_feed_event (EV_A_ (W)w, ev);
518 } 900 }
519} 901}
520 902
903/* do not submit kernel events for fds that have reify set */
904/* because that means they changed while we were polling for new events */
905inline_speed void
906fd_event (EV_P_ int fd, int revents)
907{
908 ANFD *anfd = anfds + fd;
909
910 if (expect_true (!anfd->reify))
911 fd_event_nocheck (EV_A_ fd, revents);
912}
913
521void 914void
522ev_feed_fd_event (EV_P_ int fd, int revents) 915ev_feed_fd_event (EV_P_ int fd, int revents)
523{ 916{
524 if (fd >= 0 && fd < anfdmax) 917 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 918 fd_event_nocheck (EV_A_ fd, revents);
526} 919}
527 920
528void inline_size 921/* make sure the external fd watch events are in-sync */
922/* with the kernel/libev internal state */
923inline_size void
529fd_reify (EV_P) 924fd_reify (EV_P)
530{ 925{
531 int i; 926 int i;
532 927
533 for (i = 0; i < fdchangecnt; ++i) 928 for (i = 0; i < fdchangecnt; ++i)
534 { 929 {
535 int fd = fdchanges [i]; 930 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 931 ANFD *anfd = anfds + fd;
537 ev_io *w; 932 ev_io *w;
538 933
539 int events = 0; 934 unsigned char o_events = anfd->events;
935 unsigned char o_reify = anfd->reify;
540 936
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 937 anfd->reify = 0;
542 events |= w->events;
543 938
544#if EV_SELECT_IS_WINSOCKET 939#if EV_SELECT_IS_WINSOCKET
545 if (events) 940 if (o_reify & EV__IOFDSET)
546 { 941 {
547 unsigned long argp; 942 unsigned long arg;
548 anfd->handle = _get_osfhandle (fd); 943 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 944 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 945 }
551#endif 946#endif
552 947
553 anfd->reify = 0; 948 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
949 {
950 anfd->events = 0;
554 951
952 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
953 anfd->events |= (unsigned char)w->events;
954
955 if (o_events != anfd->events)
956 o_reify = EV__IOFDSET; /* actually |= */
957 }
958
959 if (o_reify & EV__IOFDSET)
555 backend_modify (EV_A_ fd, anfd->events, events); 960 backend_modify (EV_A_ fd, o_events, anfd->events);
556 anfd->events = events;
557 } 961 }
558 962
559 fdchangecnt = 0; 963 fdchangecnt = 0;
560} 964}
561 965
562void inline_size 966/* something about the given fd changed */
967inline_size void
563fd_change (EV_P_ int fd) 968fd_change (EV_P_ int fd, int flags)
564{ 969{
565 if (expect_false (anfds [fd].reify)) 970 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 971 anfds [fd].reify |= flags;
569 972
973 if (expect_true (!reify))
974 {
570 ++fdchangecnt; 975 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 976 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 977 fdchanges [fdchangecnt - 1] = fd;
978 }
573} 979}
574 980
575void inline_speed 981/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
982inline_speed void
576fd_kill (EV_P_ int fd) 983fd_kill (EV_P_ int fd)
577{ 984{
578 ev_io *w; 985 ev_io *w;
579 986
580 while ((w = (ev_io *)anfds [fd].head)) 987 while ((w = (ev_io *)anfds [fd].head))
582 ev_io_stop (EV_A_ w); 989 ev_io_stop (EV_A_ w);
583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 990 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
584 } 991 }
585} 992}
586 993
587int inline_size 994/* check whether the given fd is actually valid, for error recovery */
995inline_size int
588fd_valid (int fd) 996fd_valid (int fd)
589{ 997{
590#ifdef _WIN32 998#ifdef _WIN32
591 return _get_osfhandle (fd) != -1; 999 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
592#else 1000#else
593 return fcntl (fd, F_GETFD) != -1; 1001 return fcntl (fd, F_GETFD) != -1;
594#endif 1002#endif
595} 1003}
596 1004
600{ 1008{
601 int fd; 1009 int fd;
602 1010
603 for (fd = 0; fd < anfdmax; ++fd) 1011 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 1012 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 1013 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 1014 fd_kill (EV_A_ fd);
607} 1015}
608 1016
609/* called on ENOMEM in select/poll to kill some fds and retry */ 1017/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 1018static void noinline
614 1022
615 for (fd = anfdmax; fd--; ) 1023 for (fd = anfdmax; fd--; )
616 if (anfds [fd].events) 1024 if (anfds [fd].events)
617 { 1025 {
618 fd_kill (EV_A_ fd); 1026 fd_kill (EV_A_ fd);
619 return; 1027 break;
620 } 1028 }
621} 1029}
622 1030
623/* usually called after fork if backend needs to re-arm all fds from scratch */ 1031/* usually called after fork if backend needs to re-arm all fds from scratch */
624static void noinline 1032static void noinline
628 1036
629 for (fd = 0; fd < anfdmax; ++fd) 1037 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 1038 if (anfds [fd].events)
631 { 1039 {
632 anfds [fd].events = 0; 1040 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 1041 anfds [fd].emask = 0;
1042 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
634 } 1043 }
635} 1044}
636 1045
637/*****************************************************************************/ 1046/* used to prepare libev internal fd's */
638 1047/* this is not fork-safe */
639void inline_speed 1048inline_speed void
640upheap (WT *heap, int k)
641{
642 WT w = heap [k];
643
644 while (k && heap [k >> 1]->at > w->at)
645 {
646 heap [k] = heap [k >> 1];
647 ((W)heap [k])->active = k + 1;
648 k >>= 1;
649 }
650
651 heap [k] = w;
652 ((W)heap [k])->active = k + 1;
653
654}
655
656void inline_speed
657downheap (WT *heap, int N, int k)
658{
659 WT w = heap [k];
660
661 while (k < (N >> 1))
662 {
663 int j = k << 1;
664
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break;
670
671 heap [k] = heap [j];
672 ((W)heap [k])->active = k + 1;
673 k = j;
674 }
675
676 heap [k] = w;
677 ((W)heap [k])->active = k + 1;
678}
679
680void inline_size
681adjustheap (WT *heap, int N, int k)
682{
683 upheap (heap, k);
684 downheap (heap, N, k);
685}
686
687/*****************************************************************************/
688
689typedef struct
690{
691 WL head;
692 sig_atomic_t volatile gotsig;
693} ANSIG;
694
695static ANSIG *signals;
696static int signalmax;
697
698static int sigpipe [2];
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701
702void inline_size
703signals_init (ANSIG *base, int count)
704{
705 while (count--)
706 {
707 base->head = 0;
708 base->gotsig = 0;
709
710 ++base;
711 }
712}
713
714static void
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764
765void inline_speed
766fd_intern (int fd) 1049fd_intern (int fd)
767{ 1050{
768#ifdef _WIN32 1051#ifdef _WIN32
769 int arg = 1; 1052 unsigned long arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1053 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
771#else 1054#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC); 1055 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK); 1056 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 1057#endif
775} 1058}
776 1059
1060/*****************************************************************************/
1061
1062/*
1063 * the heap functions want a real array index. array index 0 is guaranteed to not
1064 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1065 * the branching factor of the d-tree.
1066 */
1067
1068/*
1069 * at the moment we allow libev the luxury of two heaps,
1070 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1071 * which is more cache-efficient.
1072 * the difference is about 5% with 50000+ watchers.
1073 */
1074#if EV_USE_4HEAP
1075
1076#define DHEAP 4
1077#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1078#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1079#define UPHEAP_DONE(p,k) ((p) == (k))
1080
1081/* away from the root */
1082inline_speed void
1083downheap (ANHE *heap, int N, int k)
1084{
1085 ANHE he = heap [k];
1086 ANHE *E = heap + N + HEAP0;
1087
1088 for (;;)
1089 {
1090 ev_tstamp minat;
1091 ANHE *minpos;
1092 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1093
1094 /* find minimum child */
1095 if (expect_true (pos + DHEAP - 1 < E))
1096 {
1097 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1098 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1099 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1100 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1101 }
1102 else if (pos < E)
1103 {
1104 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1105 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1106 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1107 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1108 }
1109 else
1110 break;
1111
1112 if (ANHE_at (he) <= minat)
1113 break;
1114
1115 heap [k] = *minpos;
1116 ev_active (ANHE_w (*minpos)) = k;
1117
1118 k = minpos - heap;
1119 }
1120
1121 heap [k] = he;
1122 ev_active (ANHE_w (he)) = k;
1123}
1124
1125#else /* 4HEAP */
1126
1127#define HEAP0 1
1128#define HPARENT(k) ((k) >> 1)
1129#define UPHEAP_DONE(p,k) (!(p))
1130
1131/* away from the root */
1132inline_speed void
1133downheap (ANHE *heap, int N, int k)
1134{
1135 ANHE he = heap [k];
1136
1137 for (;;)
1138 {
1139 int c = k << 1;
1140
1141 if (c >= N + HEAP0)
1142 break;
1143
1144 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1145 ? 1 : 0;
1146
1147 if (ANHE_at (he) <= ANHE_at (heap [c]))
1148 break;
1149
1150 heap [k] = heap [c];
1151 ev_active (ANHE_w (heap [k])) = k;
1152
1153 k = c;
1154 }
1155
1156 heap [k] = he;
1157 ev_active (ANHE_w (he)) = k;
1158}
1159#endif
1160
1161/* towards the root */
1162inline_speed void
1163upheap (ANHE *heap, int k)
1164{
1165 ANHE he = heap [k];
1166
1167 for (;;)
1168 {
1169 int p = HPARENT (k);
1170
1171 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1172 break;
1173
1174 heap [k] = heap [p];
1175 ev_active (ANHE_w (heap [k])) = k;
1176 k = p;
1177 }
1178
1179 heap [k] = he;
1180 ev_active (ANHE_w (he)) = k;
1181}
1182
1183/* move an element suitably so it is in a correct place */
1184inline_size void
1185adjustheap (ANHE *heap, int N, int k)
1186{
1187 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1188 upheap (heap, k);
1189 else
1190 downheap (heap, N, k);
1191}
1192
1193/* rebuild the heap: this function is used only once and executed rarely */
1194inline_size void
1195reheap (ANHE *heap, int N)
1196{
1197 int i;
1198
1199 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1200 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1201 for (i = 0; i < N; ++i)
1202 upheap (heap, i + HEAP0);
1203}
1204
1205/*****************************************************************************/
1206
1207/* associate signal watchers to a signal signal */
1208typedef struct
1209{
1210 EV_ATOMIC_T pending;
1211#if EV_MULTIPLICITY
1212 EV_P;
1213#endif
1214 WL head;
1215} ANSIG;
1216
1217static ANSIG signals [EV_NSIG - 1];
1218
1219/*****************************************************************************/
1220
1221#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1222
777static void noinline 1223static void noinline
778siginit (EV_P) 1224evpipe_init (EV_P)
779{ 1225{
1226 if (!ev_is_active (&pipe_w))
1227 {
1228# if EV_USE_EVENTFD
1229 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1230 if (evfd < 0 && errno == EINVAL)
1231 evfd = eventfd (0, 0);
1232
1233 if (evfd >= 0)
1234 {
1235 evpipe [0] = -1;
1236 fd_intern (evfd); /* doing it twice doesn't hurt */
1237 ev_io_set (&pipe_w, evfd, EV_READ);
1238 }
1239 else
1240# endif
1241 {
1242 while (pipe (evpipe))
1243 ev_syserr ("(libev) error creating signal/async pipe");
1244
780 fd_intern (sigpipe [0]); 1245 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 1246 fd_intern (evpipe [1]);
1247 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1248 }
782 1249
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1250 ev_io_start (EV_A_ &pipe_w);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1251 ev_unref (EV_A); /* watcher should not keep loop alive */
1252 }
1253}
1254
1255inline_size void
1256evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1257{
1258 if (!*flag)
1259 {
1260 int old_errno = errno; /* save errno because write might clobber it */
1261 char dummy;
1262
1263 *flag = 1;
1264
1265#if EV_USE_EVENTFD
1266 if (evfd >= 0)
1267 {
1268 uint64_t counter = 1;
1269 write (evfd, &counter, sizeof (uint64_t));
1270 }
1271 else
1272#endif
1273 /* win32 people keep sending patches that change this write() to send() */
1274 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1275 /* so when you think this write should be a send instead, please find out */
1276 /* where your send() is from - it's definitely not the microsoft send, and */
1277 /* tell me. thank you. */
1278 write (evpipe [1], &dummy, 1);
1279
1280 errno = old_errno;
1281 }
1282}
1283
1284/* called whenever the libev signal pipe */
1285/* got some events (signal, async) */
1286static void
1287pipecb (EV_P_ ev_io *iow, int revents)
1288{
1289 int i;
1290
1291#if EV_USE_EVENTFD
1292 if (evfd >= 0)
1293 {
1294 uint64_t counter;
1295 read (evfd, &counter, sizeof (uint64_t));
1296 }
1297 else
1298#endif
1299 {
1300 char dummy;
1301 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1302 read (evpipe [0], &dummy, 1);
1303 }
1304
1305 if (sig_pending)
1306 {
1307 sig_pending = 0;
1308
1309 for (i = EV_NSIG - 1; i--; )
1310 if (expect_false (signals [i].pending))
1311 ev_feed_signal_event (EV_A_ i + 1);
1312 }
1313
1314#if EV_ASYNC_ENABLE
1315 if (async_pending)
1316 {
1317 async_pending = 0;
1318
1319 for (i = asynccnt; i--; )
1320 if (asyncs [i]->sent)
1321 {
1322 asyncs [i]->sent = 0;
1323 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1324 }
1325 }
1326#endif
786} 1327}
787 1328
788/*****************************************************************************/ 1329/*****************************************************************************/
789 1330
790static ev_child *childs [EV_PID_HASHSIZE]; 1331static void
1332ev_sighandler (int signum)
1333{
1334#if EV_MULTIPLICITY
1335 EV_P = signals [signum - 1].loop;
1336#endif
791 1337
792#ifndef _WIN32 1338#ifdef _WIN32
1339 signal (signum, ev_sighandler);
1340#endif
1341
1342 signals [signum - 1].pending = 1;
1343 evpipe_write (EV_A_ &sig_pending);
1344}
1345
1346void noinline
1347ev_feed_signal_event (EV_P_ int signum)
1348{
1349 WL w;
1350
1351 if (expect_false (signum <= 0 || signum > EV_NSIG))
1352 return;
1353
1354 --signum;
1355
1356#if EV_MULTIPLICITY
1357 /* it is permissible to try to feed a signal to the wrong loop */
1358 /* or, likely more useful, feeding a signal nobody is waiting for */
1359
1360 if (expect_false (signals [signum].loop != EV_A))
1361 return;
1362#endif
1363
1364 signals [signum].pending = 0;
1365
1366 for (w = signals [signum].head; w; w = w->next)
1367 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1368}
1369
1370#if EV_USE_SIGNALFD
1371static void
1372sigfdcb (EV_P_ ev_io *iow, int revents)
1373{
1374 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1375
1376 for (;;)
1377 {
1378 ssize_t res = read (sigfd, si, sizeof (si));
1379
1380 /* not ISO-C, as res might be -1, but works with SuS */
1381 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1382 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1383
1384 if (res < (ssize_t)sizeof (si))
1385 break;
1386 }
1387}
1388#endif
1389
1390#endif
1391
1392/*****************************************************************************/
1393
1394#if EV_CHILD_ENABLE
1395static WL childs [EV_PID_HASHSIZE];
793 1396
794static ev_signal childev; 1397static ev_signal childev;
795 1398
796void inline_speed 1399#ifndef WIFCONTINUED
1400# define WIFCONTINUED(status) 0
1401#endif
1402
1403/* handle a single child status event */
1404inline_speed void
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1405child_reap (EV_P_ int chain, int pid, int status)
798{ 1406{
799 ev_child *w; 1407 ev_child *w;
1408 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1409
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1410 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1411 {
802 if (w->pid == pid || !w->pid) 1412 if ((w->pid == pid || !w->pid)
1413 && (!traced || (w->flags & 1)))
803 { 1414 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1415 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1416 w->rpid = pid;
806 w->rstatus = status; 1417 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1418 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1419 }
1420 }
809} 1421}
810 1422
811#ifndef WCONTINUED 1423#ifndef WCONTINUED
812# define WCONTINUED 0 1424# define WCONTINUED 0
813#endif 1425#endif
814 1426
1427/* called on sigchld etc., calls waitpid */
815static void 1428static void
816childcb (EV_P_ ev_signal *sw, int revents) 1429childcb (EV_P_ ev_signal *sw, int revents)
817{ 1430{
818 int pid, status; 1431 int pid, status;
819 1432
822 if (!WCONTINUED 1435 if (!WCONTINUED
823 || errno != EINVAL 1436 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1437 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1438 return;
826 1439
827 /* make sure we are called again until all childs have been reaped */ 1440 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1441 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1442 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1443
831 child_reap (EV_A_ sw, pid, pid, status); 1444 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1445 if ((EV_PID_HASHSIZE) > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1446 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1447}
835 1448
836#endif 1449#endif
837 1450
838/*****************************************************************************/ 1451/*****************************************************************************/
900 /* kqueue is borked on everything but netbsd apparently */ 1513 /* kqueue is borked on everything but netbsd apparently */
901 /* it usually doesn't work correctly on anything but sockets and pipes */ 1514 /* it usually doesn't work correctly on anything but sockets and pipes */
902 flags &= ~EVBACKEND_KQUEUE; 1515 flags &= ~EVBACKEND_KQUEUE;
903#endif 1516#endif
904#ifdef __APPLE__ 1517#ifdef __APPLE__
905 // flags &= ~EVBACKEND_KQUEUE; for documentation 1518 /* only select works correctly on that "unix-certified" platform */
906 flags &= ~EVBACKEND_POLL; 1519 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1520 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1521#endif
1522#ifdef __FreeBSD__
1523 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
907#endif 1524#endif
908 1525
909 return flags; 1526 return flags;
910} 1527}
911 1528
912unsigned int 1529unsigned int
913ev_embeddable_backends (void) 1530ev_embeddable_backends (void)
914{ 1531{
915 return EVBACKEND_EPOLL 1532 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1533
917 | EVBACKEND_PORT; 1534 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1535 /* please fix it and tell me how to detect the fix */
1536 flags &= ~EVBACKEND_EPOLL;
1537
1538 return flags;
918} 1539}
919 1540
920unsigned int 1541unsigned int
921ev_backend (EV_P) 1542ev_backend (EV_P)
922{ 1543{
923 return backend; 1544 return backend;
924} 1545}
925 1546
1547#if EV_FEATURE_API
926unsigned int 1548unsigned int
927ev_loop_count (EV_P) 1549ev_iteration (EV_P)
928{ 1550{
929 return loop_count; 1551 return loop_count;
930} 1552}
931 1553
1554unsigned int
1555ev_depth (EV_P)
1556{
1557 return loop_depth;
1558}
1559
1560void
1561ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1562{
1563 io_blocktime = interval;
1564}
1565
1566void
1567ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1568{
1569 timeout_blocktime = interval;
1570}
1571
1572void
1573ev_set_userdata (EV_P_ void *data)
1574{
1575 userdata = data;
1576}
1577
1578void *
1579ev_userdata (EV_P)
1580{
1581 return userdata;
1582}
1583
1584void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1585{
1586 invoke_cb = invoke_pending_cb;
1587}
1588
1589void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1590{
1591 release_cb = release;
1592 acquire_cb = acquire;
1593}
1594#endif
1595
1596/* initialise a loop structure, must be zero-initialised */
932static void noinline 1597static void noinline
933loop_init (EV_P_ unsigned int flags) 1598loop_init (EV_P_ unsigned int flags)
934{ 1599{
935 if (!backend) 1600 if (!backend)
936 { 1601 {
1602#if EV_USE_REALTIME
1603 if (!have_realtime)
1604 {
1605 struct timespec ts;
1606
1607 if (!clock_gettime (CLOCK_REALTIME, &ts))
1608 have_realtime = 1;
1609 }
1610#endif
1611
937#if EV_USE_MONOTONIC 1612#if EV_USE_MONOTONIC
1613 if (!have_monotonic)
938 { 1614 {
939 struct timespec ts; 1615 struct timespec ts;
1616
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1617 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1618 have_monotonic = 1;
942 } 1619 }
943#endif 1620#endif
944
945 ev_rt_now = ev_time ();
946 mn_now = get_clock ();
947 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now;
949 1621
950 /* pid check not overridable via env */ 1622 /* pid check not overridable via env */
951#ifndef _WIN32 1623#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1624 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1625 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1628 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1629 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1630 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1631 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1632
1633 ev_rt_now = ev_time ();
1634 mn_now = get_clock ();
1635 now_floor = mn_now;
1636 rtmn_diff = ev_rt_now - mn_now;
1637#if EV_FEATURE_API
1638 invoke_cb = ev_invoke_pending;
1639#endif
1640
1641 io_blocktime = 0.;
1642 timeout_blocktime = 0.;
1643 backend = 0;
1644 backend_fd = -1;
1645 sig_pending = 0;
1646#if EV_ASYNC_ENABLE
1647 async_pending = 0;
1648#endif
1649#if EV_USE_INOTIFY
1650 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1651#endif
1652#if EV_USE_SIGNALFD
1653 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1654#endif
1655
961 if (!(flags & 0x0000ffffUL)) 1656 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1657 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1658
970#if EV_USE_PORT 1659#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1660 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1661#endif
973#if EV_USE_KQUEUE 1662#if EV_USE_KQUEUE
981#endif 1670#endif
982#if EV_USE_SELECT 1671#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1672 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1673#endif
985 1674
1675 ev_prepare_init (&pending_w, pendingcb);
1676
1677#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
986 ev_init (&sigev, sigcb); 1678 ev_init (&pipe_w, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1679 ev_set_priority (&pipe_w, EV_MAXPRI);
1680#endif
988 } 1681 }
989} 1682}
990 1683
1684/* free up a loop structure */
991static void noinline 1685static void noinline
992loop_destroy (EV_P) 1686loop_destroy (EV_P)
993{ 1687{
994 int i; 1688 int i;
1689
1690 if (ev_is_active (&pipe_w))
1691 {
1692 /*ev_ref (EV_A);*/
1693 /*ev_io_stop (EV_A_ &pipe_w);*/
1694
1695#if EV_USE_EVENTFD
1696 if (evfd >= 0)
1697 close (evfd);
1698#endif
1699
1700 if (evpipe [0] >= 0)
1701 {
1702 EV_WIN32_CLOSE_FD (evpipe [0]);
1703 EV_WIN32_CLOSE_FD (evpipe [1]);
1704 }
1705 }
1706
1707#if EV_USE_SIGNALFD
1708 if (ev_is_active (&sigfd_w))
1709 close (sigfd);
1710#endif
995 1711
996#if EV_USE_INOTIFY 1712#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1713 if (fs_fd >= 0)
998 close (fs_fd); 1714 close (fs_fd);
999#endif 1715#endif
1023#if EV_IDLE_ENABLE 1739#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1740 array_free (idle, [i]);
1025#endif 1741#endif
1026 } 1742 }
1027 1743
1744 ev_free (anfds); anfds = 0; anfdmax = 0;
1745
1028 /* have to use the microsoft-never-gets-it-right macro */ 1746 /* have to use the microsoft-never-gets-it-right macro */
1747 array_free (rfeed, EMPTY);
1029 array_free (fdchange, EMPTY); 1748 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1749 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1750#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1751 array_free (periodic, EMPTY);
1033#endif 1752#endif
1753#if EV_FORK_ENABLE
1754 array_free (fork, EMPTY);
1755#endif
1034 array_free (prepare, EMPTY); 1756 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1757 array_free (check, EMPTY);
1758#if EV_ASYNC_ENABLE
1759 array_free (async, EMPTY);
1760#endif
1036 1761
1037 backend = 0; 1762 backend = 0;
1038} 1763}
1039 1764
1765#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1766inline_size void infy_fork (EV_P);
1767#endif
1041 1768
1042void inline_size 1769inline_size void
1043loop_fork (EV_P) 1770loop_fork (EV_P)
1044{ 1771{
1045#if EV_USE_PORT 1772#if EV_USE_PORT
1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1773 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1047#endif 1774#endif
1053#endif 1780#endif
1054#if EV_USE_INOTIFY 1781#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1782 infy_fork (EV_A);
1056#endif 1783#endif
1057 1784
1058 if (ev_is_active (&sigev)) 1785 if (ev_is_active (&pipe_w))
1059 { 1786 {
1060 /* default loop */ 1787 /* this "locks" the handlers against writing to the pipe */
1788 /* while we modify the fd vars */
1789 sig_pending = 1;
1790#if EV_ASYNC_ENABLE
1791 async_pending = 1;
1792#endif
1061 1793
1062 ev_ref (EV_A); 1794 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1795 ev_io_stop (EV_A_ &pipe_w);
1064 close (sigpipe [0]);
1065 close (sigpipe [1]);
1066 1796
1067 while (pipe (sigpipe)) 1797#if EV_USE_EVENTFD
1068 syserr ("(libev) error creating pipe"); 1798 if (evfd >= 0)
1799 close (evfd);
1800#endif
1069 1801
1802 if (evpipe [0] >= 0)
1803 {
1804 EV_WIN32_CLOSE_FD (evpipe [0]);
1805 EV_WIN32_CLOSE_FD (evpipe [1]);
1806 }
1807
1808#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1070 siginit (EV_A); 1809 evpipe_init (EV_A);
1810 /* now iterate over everything, in case we missed something */
1811 pipecb (EV_A_ &pipe_w, EV_READ);
1812#endif
1071 } 1813 }
1072 1814
1073 postfork = 0; 1815 postfork = 0;
1074} 1816}
1075 1817
1076#if EV_MULTIPLICITY 1818#if EV_MULTIPLICITY
1819
1077struct ev_loop * 1820struct ev_loop *
1078ev_loop_new (unsigned int flags) 1821ev_loop_new (unsigned int flags)
1079{ 1822{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1823 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081 1824
1082 memset (loop, 0, sizeof (struct ev_loop)); 1825 memset (EV_A, 0, sizeof (struct ev_loop));
1083
1084 loop_init (EV_A_ flags); 1826 loop_init (EV_A_ flags);
1085 1827
1086 if (ev_backend (EV_A)) 1828 if (ev_backend (EV_A))
1087 return loop; 1829 return EV_A;
1088 1830
1089 return 0; 1831 return 0;
1090} 1832}
1091 1833
1092void 1834void
1097} 1839}
1098 1840
1099void 1841void
1100ev_loop_fork (EV_P) 1842ev_loop_fork (EV_P)
1101{ 1843{
1102 postfork = 1; 1844 postfork = 1; /* must be in line with ev_default_fork */
1103} 1845}
1846#endif /* multiplicity */
1104 1847
1848#if EV_VERIFY
1849static void noinline
1850verify_watcher (EV_P_ W w)
1851{
1852 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1853
1854 if (w->pending)
1855 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1856}
1857
1858static void noinline
1859verify_heap (EV_P_ ANHE *heap, int N)
1860{
1861 int i;
1862
1863 for (i = HEAP0; i < N + HEAP0; ++i)
1864 {
1865 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1866 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1867 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1868
1869 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1870 }
1871}
1872
1873static void noinline
1874array_verify (EV_P_ W *ws, int cnt)
1875{
1876 while (cnt--)
1877 {
1878 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1879 verify_watcher (EV_A_ ws [cnt]);
1880 }
1881}
1882#endif
1883
1884#if EV_FEATURE_API
1885void
1886ev_verify (EV_P)
1887{
1888#if EV_VERIFY
1889 int i;
1890 WL w;
1891
1892 assert (activecnt >= -1);
1893
1894 assert (fdchangemax >= fdchangecnt);
1895 for (i = 0; i < fdchangecnt; ++i)
1896 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1897
1898 assert (anfdmax >= 0);
1899 for (i = 0; i < anfdmax; ++i)
1900 for (w = anfds [i].head; w; w = w->next)
1901 {
1902 verify_watcher (EV_A_ (W)w);
1903 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1904 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1905 }
1906
1907 assert (timermax >= timercnt);
1908 verify_heap (EV_A_ timers, timercnt);
1909
1910#if EV_PERIODIC_ENABLE
1911 assert (periodicmax >= periodiccnt);
1912 verify_heap (EV_A_ periodics, periodiccnt);
1913#endif
1914
1915 for (i = NUMPRI; i--; )
1916 {
1917 assert (pendingmax [i] >= pendingcnt [i]);
1918#if EV_IDLE_ENABLE
1919 assert (idleall >= 0);
1920 assert (idlemax [i] >= idlecnt [i]);
1921 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1922#endif
1923 }
1924
1925#if EV_FORK_ENABLE
1926 assert (forkmax >= forkcnt);
1927 array_verify (EV_A_ (W *)forks, forkcnt);
1928#endif
1929
1930#if EV_ASYNC_ENABLE
1931 assert (asyncmax >= asynccnt);
1932 array_verify (EV_A_ (W *)asyncs, asynccnt);
1933#endif
1934
1935#if EV_PREPARE_ENABLE
1936 assert (preparemax >= preparecnt);
1937 array_verify (EV_A_ (W *)prepares, preparecnt);
1938#endif
1939
1940#if EV_CHECK_ENABLE
1941 assert (checkmax >= checkcnt);
1942 array_verify (EV_A_ (W *)checks, checkcnt);
1943#endif
1944
1945# if 0
1946#if EV_CHILD_ENABLE
1947 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1948 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1949#endif
1950# endif
1951#endif
1952}
1105#endif 1953#endif
1106 1954
1107#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
1108struct ev_loop * 1956struct ev_loop *
1109ev_default_loop_init (unsigned int flags) 1957ev_default_loop_init (unsigned int flags)
1110#else 1958#else
1111int 1959int
1112ev_default_loop (unsigned int flags) 1960ev_default_loop (unsigned int flags)
1113#endif 1961#endif
1114{ 1962{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1963 if (!ev_default_loop_ptr)
1120 { 1964 {
1121#if EV_MULTIPLICITY 1965#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1966 EV_P = ev_default_loop_ptr = &default_loop_struct;
1123#else 1967#else
1124 ev_default_loop_ptr = 1; 1968 ev_default_loop_ptr = 1;
1125#endif 1969#endif
1126 1970
1127 loop_init (EV_A_ flags); 1971 loop_init (EV_A_ flags);
1128 1972
1129 if (ev_backend (EV_A)) 1973 if (ev_backend (EV_A))
1130 { 1974 {
1131 siginit (EV_A); 1975#if EV_CHILD_ENABLE
1132
1133#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1976 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1977 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1978 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1979 ev_unref (EV_A); /* child watcher should not keep loop alive */
1138#endif 1980#endif
1146 1988
1147void 1989void
1148ev_default_destroy (void) 1990ev_default_destroy (void)
1149{ 1991{
1150#if EV_MULTIPLICITY 1992#if EV_MULTIPLICITY
1151 struct ev_loop *loop = ev_default_loop_ptr; 1993 EV_P = ev_default_loop_ptr;
1152#endif 1994#endif
1153 1995
1154#ifndef _WIN32 1996 ev_default_loop_ptr = 0;
1997
1998#if EV_CHILD_ENABLE
1155 ev_ref (EV_A); /* child watcher */ 1999 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 2000 ev_signal_stop (EV_A_ &childev);
1157#endif 2001#endif
1158 2002
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 2003 loop_destroy (EV_A);
1166} 2004}
1167 2005
1168void 2006void
1169ev_default_fork (void) 2007ev_default_fork (void)
1170{ 2008{
1171#if EV_MULTIPLICITY 2009#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 2010 EV_P = ev_default_loop_ptr;
1173#endif 2011#endif
1174 2012
1175 if (backend) 2013 postfork = 1; /* must be in line with ev_loop_fork */
1176 postfork = 1;
1177} 2014}
1178 2015
1179/*****************************************************************************/ 2016/*****************************************************************************/
1180 2017
1181void 2018void
1182ev_invoke (EV_P_ void *w, int revents) 2019ev_invoke (EV_P_ void *w, int revents)
1183{ 2020{
1184 EV_CB_INVOKE ((W)w, revents); 2021 EV_CB_INVOKE ((W)w, revents);
1185} 2022}
1186 2023
1187void inline_speed 2024unsigned int
1188call_pending (EV_P) 2025ev_pending_count (EV_P)
2026{
2027 int pri;
2028 unsigned int count = 0;
2029
2030 for (pri = NUMPRI; pri--; )
2031 count += pendingcnt [pri];
2032
2033 return count;
2034}
2035
2036void noinline
2037ev_invoke_pending (EV_P)
1189{ 2038{
1190 int pri; 2039 int pri;
1191 2040
1192 for (pri = NUMPRI; pri--; ) 2041 for (pri = NUMPRI; pri--; )
1193 while (pendingcnt [pri]) 2042 while (pendingcnt [pri])
1194 { 2043 {
1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2044 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1196 2045
1197 if (expect_true (p->w))
1198 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2046 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2047 /* ^ this is no longer true, as pending_w could be here */
1200 2048
1201 p->w->pending = 0; 2049 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 2050 EV_CB_INVOKE (p->w, p->events);
1203 } 2051 EV_FREQUENT_CHECK;
1204 } 2052 }
1205} 2053}
1206 2054
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285
1286#if EV_IDLE_ENABLE 2055#if EV_IDLE_ENABLE
1287void inline_size 2056/* make idle watchers pending. this handles the "call-idle */
2057/* only when higher priorities are idle" logic */
2058inline_size void
1288idle_reify (EV_P) 2059idle_reify (EV_P)
1289{ 2060{
1290 if (expect_false (idleall)) 2061 if (expect_false (idleall))
1291 { 2062 {
1292 int pri; 2063 int pri;
1304 } 2075 }
1305 } 2076 }
1306} 2077}
1307#endif 2078#endif
1308 2079
1309int inline_size 2080/* make timers pending */
1310time_update_monotonic (EV_P) 2081inline_size void
2082timers_reify (EV_P)
1311{ 2083{
2084 EV_FREQUENT_CHECK;
2085
2086 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2087 {
2088 do
2089 {
2090 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2091
2092 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2093
2094 /* first reschedule or stop timer */
2095 if (w->repeat)
2096 {
2097 ev_at (w) += w->repeat;
2098 if (ev_at (w) < mn_now)
2099 ev_at (w) = mn_now;
2100
2101 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2102
2103 ANHE_at_cache (timers [HEAP0]);
2104 downheap (timers, timercnt, HEAP0);
2105 }
2106 else
2107 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2108
2109 EV_FREQUENT_CHECK;
2110 feed_reverse (EV_A_ (W)w);
2111 }
2112 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2113
2114 feed_reverse_done (EV_A_ EV_TIMER);
2115 }
2116}
2117
2118#if EV_PERIODIC_ENABLE
2119/* make periodics pending */
2120inline_size void
2121periodics_reify (EV_P)
2122{
2123 EV_FREQUENT_CHECK;
2124
2125 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2126 {
2127 int feed_count = 0;
2128
2129 do
2130 {
2131 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2132
2133 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2134
2135 /* first reschedule or stop timer */
2136 if (w->reschedule_cb)
2137 {
2138 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2139
2140 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2141
2142 ANHE_at_cache (periodics [HEAP0]);
2143 downheap (periodics, periodiccnt, HEAP0);
2144 }
2145 else if (w->interval)
2146 {
2147 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2148 /* if next trigger time is not sufficiently in the future, put it there */
2149 /* this might happen because of floating point inexactness */
2150 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2151 {
2152 ev_at (w) += w->interval;
2153
2154 /* if interval is unreasonably low we might still have a time in the past */
2155 /* so correct this. this will make the periodic very inexact, but the user */
2156 /* has effectively asked to get triggered more often than possible */
2157 if (ev_at (w) < ev_rt_now)
2158 ev_at (w) = ev_rt_now;
2159 }
2160
2161 ANHE_at_cache (periodics [HEAP0]);
2162 downheap (periodics, periodiccnt, HEAP0);
2163 }
2164 else
2165 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2166
2167 EV_FREQUENT_CHECK;
2168 feed_reverse (EV_A_ (W)w);
2169 }
2170 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2171
2172 feed_reverse_done (EV_A_ EV_PERIODIC);
2173 }
2174}
2175
2176/* simply recalculate all periodics */
2177/* TODO: maybe ensure that at least one event happens when jumping forward? */
2178static void noinline
2179periodics_reschedule (EV_P)
2180{
2181 int i;
2182
2183 /* adjust periodics after time jump */
2184 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2185 {
2186 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2187
2188 if (w->reschedule_cb)
2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2190 else if (w->interval)
2191 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2192
2193 ANHE_at_cache (periodics [i]);
2194 }
2195
2196 reheap (periodics, periodiccnt);
2197}
2198#endif
2199
2200/* adjust all timers by a given offset */
2201static void noinline
2202timers_reschedule (EV_P_ ev_tstamp adjust)
2203{
2204 int i;
2205
2206 for (i = 0; i < timercnt; ++i)
2207 {
2208 ANHE *he = timers + i + HEAP0;
2209 ANHE_w (*he)->at += adjust;
2210 ANHE_at_cache (*he);
2211 }
2212}
2213
2214/* fetch new monotonic and realtime times from the kernel */
2215/* also detect if there was a timejump, and act accordingly */
2216inline_speed void
2217time_update (EV_P_ ev_tstamp max_block)
2218{
2219#if EV_USE_MONOTONIC
2220 if (expect_true (have_monotonic))
2221 {
2222 int i;
2223 ev_tstamp odiff = rtmn_diff;
2224
1312 mn_now = get_clock (); 2225 mn_now = get_clock ();
1313 2226
2227 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2228 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2229 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 2230 {
1316 ev_rt_now = rtmn_diff + mn_now; 2231 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 2232 return;
1318 } 2233 }
1319 else 2234
1320 {
1321 now_floor = mn_now; 2235 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 2236 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 2237
1327void inline_size 2238 /* loop a few times, before making important decisions.
1328time_update (EV_P) 2239 * on the choice of "4": one iteration isn't enough,
1329{ 2240 * in case we get preempted during the calls to
1330 int i; 2241 * ev_time and get_clock. a second call is almost guaranteed
1331 2242 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 2243 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 2244 * in the unlikely event of having been preempted here.
1334 { 2245 */
1335 if (time_update_monotonic (EV_A)) 2246 for (i = 4; --i; )
1336 { 2247 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 2248 rtmn_diff = ev_rt_now - mn_now;
1350 2249
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2250 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 2251 return; /* all is well */
1353 2252
1354 ev_rt_now = ev_time (); 2253 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 2254 mn_now = get_clock ();
1356 now_floor = mn_now; 2255 now_floor = mn_now;
1357 } 2256 }
1358 2257
2258 /* no timer adjustment, as the monotonic clock doesn't jump */
2259 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1359# if EV_PERIODIC_ENABLE 2260# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 2261 periodics_reschedule (EV_A);
1361# endif 2262# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 2263 }
1366 else 2264 else
1367#endif 2265#endif
1368 { 2266 {
1369 ev_rt_now = ev_time (); 2267 ev_rt_now = ev_time ();
1370 2268
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2269 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 2270 {
2271 /* adjust timers. this is easy, as the offset is the same for all of them */
2272 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1373#if EV_PERIODIC_ENABLE 2273#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2274 periodics_reschedule (EV_A);
1375#endif 2275#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2276 }
1381 2277
1382 mn_now = ev_rt_now; 2278 mn_now = ev_rt_now;
1383 } 2279 }
1384} 2280}
1385 2281
1386void 2282void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done;
1399
1400void
1401ev_loop (EV_P_ int flags) 2283ev_run (EV_P_ int flags)
1402{ 2284{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2285#if EV_FEATURE_API
1404 ? EVUNLOOP_ONE 2286 ++loop_depth;
1405 : EVUNLOOP_CANCEL; 2287#endif
1406 2288
2289 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2290
2291 loop_done = EVBREAK_CANCEL;
2292
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2293 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1408 2294
1409 do 2295 do
1410 { 2296 {
2297#if EV_VERIFY >= 2
2298 ev_verify (EV_A);
2299#endif
2300
1411#ifndef _WIN32 2301#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2302 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2303 if (expect_false (getpid () != curpid))
1414 { 2304 {
1415 curpid = getpid (); 2305 curpid = getpid ();
1421 /* we might have forked, so queue fork handlers */ 2311 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork)) 2312 if (expect_false (postfork))
1423 if (forkcnt) 2313 if (forkcnt)
1424 { 2314 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2315 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A); 2316 EV_INVOKE_PENDING;
1427 } 2317 }
1428#endif 2318#endif
1429 2319
2320#if EV_PREPARE_ENABLE
1430 /* queue prepare watchers (and execute them) */ 2321 /* queue prepare watchers (and execute them) */
1431 if (expect_false (preparecnt)) 2322 if (expect_false (preparecnt))
1432 { 2323 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2324 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2325 EV_INVOKE_PENDING;
1435 } 2326 }
2327#endif
1436 2328
1437 if (expect_false (!activecnt)) 2329 if (expect_false (loop_done))
1438 break; 2330 break;
1439 2331
1440 /* we might have forked, so reify kernel state if necessary */ 2332 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2333 if (expect_false (postfork))
1442 loop_fork (EV_A); 2334 loop_fork (EV_A);
1444 /* update fd-related kernel structures */ 2336 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2337 fd_reify (EV_A);
1446 2338
1447 /* calculate blocking time */ 2339 /* calculate blocking time */
1448 { 2340 {
1449 ev_tstamp block; 2341 ev_tstamp waittime = 0.;
2342 ev_tstamp sleeptime = 0.;
1450 2343
2344 /* remember old timestamp for io_blocktime calculation */
2345 ev_tstamp prev_mn_now = mn_now;
2346
2347 /* update time to cancel out callback processing overhead */
2348 time_update (EV_A_ 1e100);
2349
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2350 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2351 {
1455 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465
1466 block = MAX_BLOCKTIME; 2352 waittime = MAX_BLOCKTIME;
1467 2353
1468 if (timercnt) 2354 if (timercnt)
1469 { 2355 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2356 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 2357 if (waittime > to) waittime = to;
1472 } 2358 }
1473 2359
1474#if EV_PERIODIC_ENABLE 2360#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 2361 if (periodiccnt)
1476 { 2362 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2363 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 2364 if (waittime > to) waittime = to;
1479 } 2365 }
1480#endif 2366#endif
1481 2367
2368 /* don't let timeouts decrease the waittime below timeout_blocktime */
2369 if (expect_false (waittime < timeout_blocktime))
2370 waittime = timeout_blocktime;
2371
2372 /* extra check because io_blocktime is commonly 0 */
1482 if (expect_false (block < 0.)) block = 0.; 2373 if (expect_false (io_blocktime))
2374 {
2375 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2376
2377 if (sleeptime > waittime - backend_fudge)
2378 sleeptime = waittime - backend_fudge;
2379
2380 if (expect_true (sleeptime > 0.))
2381 {
2382 ev_sleep (sleeptime);
2383 waittime -= sleeptime;
2384 }
2385 }
1483 } 2386 }
1484 2387
2388#if EV_FEATURE_API
1485 ++loop_count; 2389 ++loop_count;
2390#endif
2391 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1486 backend_poll (EV_A_ block); 2392 backend_poll (EV_A_ waittime);
2393 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2394
2395 /* update ev_rt_now, do magic */
2396 time_update (EV_A_ waittime + sleeptime);
1487 } 2397 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 2398
1492 /* queue pending timers and reschedule them */ 2399 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 2400 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 2401#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 2402 periodics_reify (EV_A); /* absolute timers called first */
1498#if EV_IDLE_ENABLE 2405#if EV_IDLE_ENABLE
1499 /* queue idle watchers unless other events are pending */ 2406 /* queue idle watchers unless other events are pending */
1500 idle_reify (EV_A); 2407 idle_reify (EV_A);
1501#endif 2408#endif
1502 2409
2410#if EV_CHECK_ENABLE
1503 /* queue check watchers, to be executed first */ 2411 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 2412 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2413 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2414#endif
1506 2415
1507 call_pending (EV_A); 2416 EV_INVOKE_PENDING;
1508
1509 } 2417 }
1510 while (expect_true (activecnt && !loop_done)); 2418 while (expect_true (
2419 activecnt
2420 && !loop_done
2421 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2422 ));
1511 2423
1512 if (loop_done == EVUNLOOP_ONE) 2424 if (loop_done == EVBREAK_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 2425 loop_done = EVBREAK_CANCEL;
1514}
1515 2426
2427#if EV_FEATURE_API
2428 --loop_depth;
2429#endif
2430}
2431
1516void 2432void
1517ev_unloop (EV_P_ int how) 2433ev_break (EV_P_ int how)
1518{ 2434{
1519 loop_done = how; 2435 loop_done = how;
1520} 2436}
1521 2437
2438void
2439ev_ref (EV_P)
2440{
2441 ++activecnt;
2442}
2443
2444void
2445ev_unref (EV_P)
2446{
2447 --activecnt;
2448}
2449
2450void
2451ev_now_update (EV_P)
2452{
2453 time_update (EV_A_ 1e100);
2454}
2455
2456void
2457ev_suspend (EV_P)
2458{
2459 ev_now_update (EV_A);
2460}
2461
2462void
2463ev_resume (EV_P)
2464{
2465 ev_tstamp mn_prev = mn_now;
2466
2467 ev_now_update (EV_A);
2468 timers_reschedule (EV_A_ mn_now - mn_prev);
2469#if EV_PERIODIC_ENABLE
2470 /* TODO: really do this? */
2471 periodics_reschedule (EV_A);
2472#endif
2473}
2474
1522/*****************************************************************************/ 2475/*****************************************************************************/
2476/* singly-linked list management, used when the expected list length is short */
1523 2477
1524void inline_size 2478inline_size void
1525wlist_add (WL *head, WL elem) 2479wlist_add (WL *head, WL elem)
1526{ 2480{
1527 elem->next = *head; 2481 elem->next = *head;
1528 *head = elem; 2482 *head = elem;
1529} 2483}
1530 2484
1531void inline_size 2485inline_size void
1532wlist_del (WL *head, WL elem) 2486wlist_del (WL *head, WL elem)
1533{ 2487{
1534 while (*head) 2488 while (*head)
1535 { 2489 {
1536 if (*head == elem) 2490 if (expect_true (*head == elem))
1537 { 2491 {
1538 *head = elem->next; 2492 *head = elem->next;
1539 return; 2493 break;
1540 } 2494 }
1541 2495
1542 head = &(*head)->next; 2496 head = &(*head)->next;
1543 } 2497 }
1544} 2498}
1545 2499
1546void inline_speed 2500/* internal, faster, version of ev_clear_pending */
2501inline_speed void
1547clear_pending (EV_P_ W w) 2502clear_pending (EV_P_ W w)
1548{ 2503{
1549 if (w->pending) 2504 if (w->pending)
1550 { 2505 {
1551 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2506 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1552 w->pending = 0; 2507 w->pending = 0;
1553 } 2508 }
1554} 2509}
1555 2510
1556int 2511int
1560 int pending = w_->pending; 2515 int pending = w_->pending;
1561 2516
1562 if (expect_true (pending)) 2517 if (expect_true (pending))
1563 { 2518 {
1564 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2519 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2520 p->w = (W)&pending_w;
1565 w_->pending = 0; 2521 w_->pending = 0;
1566 p->w = 0;
1567 return p->events; 2522 return p->events;
1568 } 2523 }
1569 else 2524 else
1570 return 0; 2525 return 0;
1571} 2526}
1572 2527
1573void inline_size 2528inline_size void
1574pri_adjust (EV_P_ W w) 2529pri_adjust (EV_P_ W w)
1575{ 2530{
1576 int pri = w->priority; 2531 int pri = ev_priority (w);
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2532 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2533 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri; 2534 ev_set_priority (w, pri);
1580} 2535}
1581 2536
1582void inline_speed 2537inline_speed void
1583ev_start (EV_P_ W w, int active) 2538ev_start (EV_P_ W w, int active)
1584{ 2539{
1585 pri_adjust (EV_A_ w); 2540 pri_adjust (EV_A_ w);
1586 w->active = active; 2541 w->active = active;
1587 ev_ref (EV_A); 2542 ev_ref (EV_A);
1588} 2543}
1589 2544
1590void inline_size 2545inline_size void
1591ev_stop (EV_P_ W w) 2546ev_stop (EV_P_ W w)
1592{ 2547{
1593 ev_unref (EV_A); 2548 ev_unref (EV_A);
1594 w->active = 0; 2549 w->active = 0;
1595} 2550}
1602 int fd = w->fd; 2557 int fd = w->fd;
1603 2558
1604 if (expect_false (ev_is_active (w))) 2559 if (expect_false (ev_is_active (w)))
1605 return; 2560 return;
1606 2561
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 2562 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2563 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2564
2565 EV_FREQUENT_CHECK;
1608 2566
1609 ev_start (EV_A_ (W)w, 1); 2567 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2568 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2569 wlist_add (&anfds[fd].head, (WL)w);
1612 2570
1613 fd_change (EV_A_ fd); 2571 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2572 w->events &= ~EV__IOFDSET;
2573
2574 EV_FREQUENT_CHECK;
1614} 2575}
1615 2576
1616void noinline 2577void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2578ev_io_stop (EV_P_ ev_io *w)
1618{ 2579{
1619 clear_pending (EV_A_ (W)w); 2580 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2581 if (expect_false (!ev_is_active (w)))
1621 return; 2582 return;
1622 2583
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2584 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2585
2586 EV_FREQUENT_CHECK;
2587
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2588 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2589 ev_stop (EV_A_ (W)w);
1627 2590
1628 fd_change (EV_A_ w->fd); 2591 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2592
2593 EV_FREQUENT_CHECK;
1629} 2594}
1630 2595
1631void noinline 2596void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2597ev_timer_start (EV_P_ ev_timer *w)
1633{ 2598{
1634 if (expect_false (ev_is_active (w))) 2599 if (expect_false (ev_is_active (w)))
1635 return; 2600 return;
1636 2601
1637 ((WT)w)->at += mn_now; 2602 ev_at (w) += mn_now;
1638 2603
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2604 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2605
2606 EV_FREQUENT_CHECK;
2607
2608 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2609 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2610 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2611 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2612 ANHE_at_cache (timers [ev_active (w)]);
2613 upheap (timers, ev_active (w));
1645 2614
2615 EV_FREQUENT_CHECK;
2616
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2617 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2618}
1648 2619
1649void noinline 2620void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2621ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2622{
1652 clear_pending (EV_A_ (W)w); 2623 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2624 if (expect_false (!ev_is_active (w)))
1654 return; 2625 return;
1655 2626
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2627 EV_FREQUENT_CHECK;
1657 2628
1658 { 2629 {
1659 int active = ((W)w)->active; 2630 int active = ev_active (w);
1660 2631
2632 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2633
2634 --timercnt;
2635
1661 if (expect_true (--active < --timercnt)) 2636 if (expect_true (active < timercnt + HEAP0))
1662 { 2637 {
1663 timers [active] = timers [timercnt]; 2638 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 2639 adjustheap (timers, timercnt, active);
1665 } 2640 }
1666 } 2641 }
1667 2642
1668 ((WT)w)->at -= mn_now; 2643 ev_at (w) -= mn_now;
1669 2644
1670 ev_stop (EV_A_ (W)w); 2645 ev_stop (EV_A_ (W)w);
2646
2647 EV_FREQUENT_CHECK;
1671} 2648}
1672 2649
1673void noinline 2650void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2651ev_timer_again (EV_P_ ev_timer *w)
1675{ 2652{
2653 EV_FREQUENT_CHECK;
2654
1676 if (ev_is_active (w)) 2655 if (ev_is_active (w))
1677 { 2656 {
1678 if (w->repeat) 2657 if (w->repeat)
1679 { 2658 {
1680 ((WT)w)->at = mn_now + w->repeat; 2659 ev_at (w) = mn_now + w->repeat;
2660 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2661 adjustheap (timers, timercnt, ev_active (w));
1682 } 2662 }
1683 else 2663 else
1684 ev_timer_stop (EV_A_ w); 2664 ev_timer_stop (EV_A_ w);
1685 } 2665 }
1686 else if (w->repeat) 2666 else if (w->repeat)
1687 { 2667 {
1688 w->at = w->repeat; 2668 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2669 ev_timer_start (EV_A_ w);
1690 } 2670 }
2671
2672 EV_FREQUENT_CHECK;
2673}
2674
2675ev_tstamp
2676ev_timer_remaining (EV_P_ ev_timer *w)
2677{
2678 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1691} 2679}
1692 2680
1693#if EV_PERIODIC_ENABLE 2681#if EV_PERIODIC_ENABLE
1694void noinline 2682void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2683ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2684{
1697 if (expect_false (ev_is_active (w))) 2685 if (expect_false (ev_is_active (w)))
1698 return; 2686 return;
1699 2687
1700 if (w->reschedule_cb) 2688 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2689 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2690 else if (w->interval)
1703 { 2691 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2692 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2693 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2695 }
1708 else 2696 else
1709 ((WT)w)->at = w->offset; 2697 ev_at (w) = w->offset;
1710 2698
2699 EV_FREQUENT_CHECK;
2700
2701 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2702 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2703 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2704 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2705 ANHE_at_cache (periodics [ev_active (w)]);
2706 upheap (periodics, ev_active (w));
1715 2707
2708 EV_FREQUENT_CHECK;
2709
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2710 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2711}
1718 2712
1719void noinline 2713void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2714ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2715{
1722 clear_pending (EV_A_ (W)w); 2716 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2717 if (expect_false (!ev_is_active (w)))
1724 return; 2718 return;
1725 2719
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2720 EV_FREQUENT_CHECK;
1727 2721
1728 { 2722 {
1729 int active = ((W)w)->active; 2723 int active = ev_active (w);
1730 2724
2725 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2726
2727 --periodiccnt;
2728
1731 if (expect_true (--active < --periodiccnt)) 2729 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2730 {
1733 periodics [active] = periodics [periodiccnt]; 2731 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2732 adjustheap (periodics, periodiccnt, active);
1735 } 2733 }
1736 } 2734 }
1737 2735
1738 ev_stop (EV_A_ (W)w); 2736 ev_stop (EV_A_ (W)w);
2737
2738 EV_FREQUENT_CHECK;
1739} 2739}
1740 2740
1741void noinline 2741void noinline
1742ev_periodic_again (EV_P_ ev_periodic *w) 2742ev_periodic_again (EV_P_ ev_periodic *w)
1743{ 2743{
1749 2749
1750#ifndef SA_RESTART 2750#ifndef SA_RESTART
1751# define SA_RESTART 0 2751# define SA_RESTART 0
1752#endif 2752#endif
1753 2753
2754#if EV_SIGNAL_ENABLE
2755
1754void noinline 2756void noinline
1755ev_signal_start (EV_P_ ev_signal *w) 2757ev_signal_start (EV_P_ ev_signal *w)
1756{ 2758{
1757#if EV_MULTIPLICITY
1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1759#endif
1760 if (expect_false (ev_is_active (w))) 2759 if (expect_false (ev_is_active (w)))
1761 return; 2760 return;
1762 2761
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2762 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2763
2764#if EV_MULTIPLICITY
2765 assert (("libev: a signal must not be attached to two different loops",
2766 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2767
2768 signals [w->signum - 1].loop = EV_A;
2769#endif
2770
2771 EV_FREQUENT_CHECK;
2772
2773#if EV_USE_SIGNALFD
2774 if (sigfd == -2)
2775 {
2776 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2777 if (sigfd < 0 && errno == EINVAL)
2778 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2779
2780 if (sigfd >= 0)
2781 {
2782 fd_intern (sigfd); /* doing it twice will not hurt */
2783
2784 sigemptyset (&sigfd_set);
2785
2786 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2787 ev_set_priority (&sigfd_w, EV_MAXPRI);
2788 ev_io_start (EV_A_ &sigfd_w);
2789 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2790 }
2791 }
2792
2793 if (sigfd >= 0)
2794 {
2795 /* TODO: check .head */
2796 sigaddset (&sigfd_set, w->signum);
2797 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2798
2799 signalfd (sigfd, &sigfd_set, 0);
2800 }
2801#endif
1764 2802
1765 ev_start (EV_A_ (W)w, 1); 2803 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2804 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2805
1769 if (!((WL)w)->next) 2806 if (!((WL)w)->next)
2807# if EV_USE_SIGNALFD
2808 if (sigfd < 0) /*TODO*/
2809# endif
1770 { 2810 {
1771#if _WIN32 2811# ifdef _WIN32
2812 evpipe_init (EV_A);
2813
1772 signal (w->signum, sighandler); 2814 signal (w->signum, ev_sighandler);
1773#else 2815# else
1774 struct sigaction sa; 2816 struct sigaction sa;
2817
2818 evpipe_init (EV_A);
2819
1775 sa.sa_handler = sighandler; 2820 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2821 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2822 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2823 sigaction (w->signum, &sa, 0);
2824
2825 sigemptyset (&sa.sa_mask);
2826 sigaddset (&sa.sa_mask, w->signum);
2827 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1779#endif 2828#endif
1780 } 2829 }
2830
2831 EV_FREQUENT_CHECK;
1781} 2832}
1782 2833
1783void noinline 2834void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 2835ev_signal_stop (EV_P_ ev_signal *w)
1785{ 2836{
1786 clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
1788 return; 2839 return;
1789 2840
2841 EV_FREQUENT_CHECK;
2842
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2843 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2844 ev_stop (EV_A_ (W)w);
1792 2845
1793 if (!signals [w->signum - 1].head) 2846 if (!signals [w->signum - 1].head)
2847 {
2848#if EV_MULTIPLICITY
2849 signals [w->signum - 1].loop = 0; /* unattach from signal */
2850#endif
2851#if EV_USE_SIGNALFD
2852 if (sigfd >= 0)
2853 {
2854 sigset_t ss;
2855
2856 sigemptyset (&ss);
2857 sigaddset (&ss, w->signum);
2858 sigdelset (&sigfd_set, w->signum);
2859
2860 signalfd (sigfd, &sigfd_set, 0);
2861 sigprocmask (SIG_UNBLOCK, &ss, 0);
2862 }
2863 else
2864#endif
1794 signal (w->signum, SIG_DFL); 2865 signal (w->signum, SIG_DFL);
2866 }
2867
2868 EV_FREQUENT_CHECK;
1795} 2869}
2870
2871#endif
2872
2873#if EV_CHILD_ENABLE
1796 2874
1797void 2875void
1798ev_child_start (EV_P_ ev_child *w) 2876ev_child_start (EV_P_ ev_child *w)
1799{ 2877{
1800#if EV_MULTIPLICITY 2878#if EV_MULTIPLICITY
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2879 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 2880#endif
1803 if (expect_false (ev_is_active (w))) 2881 if (expect_false (ev_is_active (w)))
1804 return; 2882 return;
1805 2883
2884 EV_FREQUENT_CHECK;
2885
1806 ev_start (EV_A_ (W)w, 1); 2886 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2887 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2888
2889 EV_FREQUENT_CHECK;
1808} 2890}
1809 2891
1810void 2892void
1811ev_child_stop (EV_P_ ev_child *w) 2893ev_child_stop (EV_P_ ev_child *w)
1812{ 2894{
1813 clear_pending (EV_A_ (W)w); 2895 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2896 if (expect_false (!ev_is_active (w)))
1815 return; 2897 return;
1816 2898
2899 EV_FREQUENT_CHECK;
2900
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2901 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2902 ev_stop (EV_A_ (W)w);
2903
2904 EV_FREQUENT_CHECK;
1819} 2905}
2906
2907#endif
1820 2908
1821#if EV_STAT_ENABLE 2909#if EV_STAT_ENABLE
1822 2910
1823# ifdef _WIN32 2911# ifdef _WIN32
1824# undef lstat 2912# undef lstat
1825# define lstat(a,b) _stati64 (a,b) 2913# define lstat(a,b) _stati64 (a,b)
1826# endif 2914# endif
1827 2915
1828#define DEF_STAT_INTERVAL 5.0074891 2916#define DEF_STAT_INTERVAL 5.0074891
2917#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1829#define MIN_STAT_INTERVAL 0.1074891 2918#define MIN_STAT_INTERVAL 0.1074891
1830 2919
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832 2921
1833#if EV_USE_INOTIFY 2922#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192 2923
2924/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2925# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1835 2926
1836static void noinline 2927static void noinline
1837infy_add (EV_P_ ev_stat *w) 2928infy_add (EV_P_ ev_stat *w)
1838{ 2929{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2930 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840 2931
1841 if (w->wd < 0) 2932 if (w->wd >= 0)
2933 {
2934 struct statfs sfs;
2935
2936 /* now local changes will be tracked by inotify, but remote changes won't */
2937 /* unless the filesystem is known to be local, we therefore still poll */
2938 /* also do poll on <2.6.25, but with normal frequency */
2939
2940 if (!fs_2625)
2941 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2942 else if (!statfs (w->path, &sfs)
2943 && (sfs.f_type == 0x1373 /* devfs */
2944 || sfs.f_type == 0xEF53 /* ext2/3 */
2945 || sfs.f_type == 0x3153464a /* jfs */
2946 || sfs.f_type == 0x52654973 /* reiser3 */
2947 || sfs.f_type == 0x01021994 /* tempfs */
2948 || sfs.f_type == 0x58465342 /* xfs */))
2949 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2950 else
2951 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1842 { 2952 }
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2953 else
2954 {
2955 /* can't use inotify, continue to stat */
2956 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1844 2957
1845 /* monitor some parent directory for speedup hints */ 2958 /* if path is not there, monitor some parent directory for speedup hints */
2959 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2960 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2961 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2962 {
1848 char path [4096]; 2963 char path [4096];
1849 strcpy (path, w->path); 2964 strcpy (path, w->path);
1850 2965
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2968 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2969 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855 2970
1856 char *pend = strrchr (path, '/'); 2971 char *pend = strrchr (path, '/');
1857 2972
1858 if (!pend) 2973 if (!pend || pend == path)
1859 break; /* whoops, no '/', complain to your admin */ 2974 break;
1860 2975
1861 *pend = 0; 2976 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask); 2977 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 } 2978 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2979 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 } 2980 }
1866 } 2981 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869 2982
1870 if (w->wd >= 0) 2983 if (w->wd >= 0)
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2984 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2985
2986 /* now re-arm timer, if required */
2987 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2988 ev_timer_again (EV_A_ &w->timer);
2989 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1872} 2990}
1873 2991
1874static void noinline 2992static void noinline
1875infy_del (EV_P_ ev_stat *w) 2993infy_del (EV_P_ ev_stat *w)
1876{ 2994{
1879 2997
1880 if (wd < 0) 2998 if (wd < 0)
1881 return; 2999 return;
1882 3000
1883 w->wd = -2; 3001 w->wd = -2;
1884 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3002 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1885 wlist_del (&fs_hash [slot].head, (WL)w); 3003 wlist_del (&fs_hash [slot].head, (WL)w);
1886 3004
1887 /* remove this watcher, if others are watching it, they will rearm */ 3005 /* remove this watcher, if others are watching it, they will rearm */
1888 inotify_rm_watch (fs_fd, wd); 3006 inotify_rm_watch (fs_fd, wd);
1889} 3007}
1890 3008
1891static void noinline 3009static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3010infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{ 3011{
1894 if (slot < 0) 3012 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */ 3013 /* overflow, need to check for all hash slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3014 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1897 infy_wd (EV_A_ slot, wd, ev); 3015 infy_wd (EV_A_ slot, wd, ev);
1898 else 3016 else
1899 { 3017 {
1900 WL w_; 3018 WL w_;
1901 3019
1902 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3020 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1903 { 3021 {
1904 ev_stat *w = (ev_stat *)w_; 3022 ev_stat *w = (ev_stat *)w_;
1905 w_ = w_->next; /* lets us remove this watcher and all before it */ 3023 w_ = w_->next; /* lets us remove this watcher and all before it */
1906 3024
1907 if (w->wd == wd || wd == -1) 3025 if (w->wd == wd || wd == -1)
1908 { 3026 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3027 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 { 3028 {
3029 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1911 w->wd = -1; 3030 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 3031 infy_add (EV_A_ w); /* re-add, no matter what */
1913 } 3032 }
1914 3033
1915 stat_timer_cb (EV_A_ &w->timer, 0); 3034 stat_timer_cb (EV_A_ &w->timer, 0);
1920 3039
1921static void 3040static void
1922infy_cb (EV_P_ ev_io *w, int revents) 3041infy_cb (EV_P_ ev_io *w, int revents)
1923{ 3042{
1924 char buf [EV_INOTIFY_BUFSIZE]; 3043 char buf [EV_INOTIFY_BUFSIZE];
1925 struct inotify_event *ev = (struct inotify_event *)buf;
1926 int ofs; 3044 int ofs;
1927 int len = read (fs_fd, buf, sizeof (buf)); 3045 int len = read (fs_fd, buf, sizeof (buf));
1928 3046
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3047 for (ofs = 0; ofs < len; )
3048 {
3049 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3050 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3051 ofs += sizeof (struct inotify_event) + ev->len;
3052 }
1931} 3053}
1932 3054
1933void inline_size 3055inline_size unsigned int
3056ev_linux_version (void)
3057{
3058 struct utsname buf;
3059 unsigned int v;
3060 int i;
3061 char *p = buf.release;
3062
3063 if (uname (&buf))
3064 return 0;
3065
3066 for (i = 3+1; --i; )
3067 {
3068 unsigned int c = 0;
3069
3070 for (;;)
3071 {
3072 if (*p >= '0' && *p <= '9')
3073 c = c * 10 + *p++ - '0';
3074 else
3075 {
3076 p += *p == '.';
3077 break;
3078 }
3079 }
3080
3081 v = (v << 8) | c;
3082 }
3083
3084 return v;
3085}
3086
3087inline_size void
3088ev_check_2625 (EV_P)
3089{
3090 /* kernels < 2.6.25 are borked
3091 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3092 */
3093 if (ev_linux_version () < 0x020619)
3094 return;
3095
3096 fs_2625 = 1;
3097}
3098
3099inline_size int
3100infy_newfd (void)
3101{
3102#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3103 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3104 if (fd >= 0)
3105 return fd;
3106#endif
3107 return inotify_init ();
3108}
3109
3110inline_size void
1934infy_init (EV_P) 3111infy_init (EV_P)
1935{ 3112{
1936 if (fs_fd != -2) 3113 if (fs_fd != -2)
1937 return; 3114 return;
1938 3115
3116 fs_fd = -1;
3117
3118 ev_check_2625 (EV_A);
3119
1939 fs_fd = inotify_init (); 3120 fs_fd = infy_newfd ();
1940 3121
1941 if (fs_fd >= 0) 3122 if (fs_fd >= 0)
1942 { 3123 {
3124 fd_intern (fs_fd);
1943 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3125 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1944 ev_set_priority (&fs_w, EV_MAXPRI); 3126 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w); 3127 ev_io_start (EV_A_ &fs_w);
3128 ev_unref (EV_A);
1946 } 3129 }
1947} 3130}
1948 3131
1949void inline_size 3132inline_size void
1950infy_fork (EV_P) 3133infy_fork (EV_P)
1951{ 3134{
1952 int slot; 3135 int slot;
1953 3136
1954 if (fs_fd < 0) 3137 if (fs_fd < 0)
1955 return; 3138 return;
1956 3139
3140 ev_ref (EV_A);
3141 ev_io_stop (EV_A_ &fs_w);
1957 close (fs_fd); 3142 close (fs_fd);
1958 fs_fd = inotify_init (); 3143 fs_fd = infy_newfd ();
1959 3144
3145 if (fs_fd >= 0)
3146 {
3147 fd_intern (fs_fd);
3148 ev_io_set (&fs_w, fs_fd, EV_READ);
3149 ev_io_start (EV_A_ &fs_w);
3150 ev_unref (EV_A);
3151 }
3152
1960 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3153 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1961 { 3154 {
1962 WL w_ = fs_hash [slot].head; 3155 WL w_ = fs_hash [slot].head;
1963 fs_hash [slot].head = 0; 3156 fs_hash [slot].head = 0;
1964 3157
1965 while (w_) 3158 while (w_)
1970 w->wd = -1; 3163 w->wd = -1;
1971 3164
1972 if (fs_fd >= 0) 3165 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */ 3166 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else 3167 else
3168 {
3169 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3170 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1975 ev_timer_start (EV_A_ &w->timer); 3171 ev_timer_again (EV_A_ &w->timer);
3172 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3173 }
1976 } 3174 }
1977
1978 } 3175 }
1979} 3176}
1980 3177
3178#endif
3179
3180#ifdef _WIN32
3181# define EV_LSTAT(p,b) _stati64 (p, b)
3182#else
3183# define EV_LSTAT(p,b) lstat (p, b)
1981#endif 3184#endif
1982 3185
1983void 3186void
1984ev_stat_stat (EV_P_ ev_stat *w) 3187ev_stat_stat (EV_P_ ev_stat *w)
1985{ 3188{
1992static void noinline 3195static void noinline
1993stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3196stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1994{ 3197{
1995 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3198 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1996 3199
1997 /* we copy this here each the time so that */ 3200 ev_statdata prev = w->attr;
1998 /* prev has the old value when the callback gets invoked */
1999 w->prev = w->attr;
2000 ev_stat_stat (EV_A_ w); 3201 ev_stat_stat (EV_A_ w);
2001 3202
2002 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3203 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2003 if ( 3204 if (
2004 w->prev.st_dev != w->attr.st_dev 3205 prev.st_dev != w->attr.st_dev
2005 || w->prev.st_ino != w->attr.st_ino 3206 || prev.st_ino != w->attr.st_ino
2006 || w->prev.st_mode != w->attr.st_mode 3207 || prev.st_mode != w->attr.st_mode
2007 || w->prev.st_nlink != w->attr.st_nlink 3208 || prev.st_nlink != w->attr.st_nlink
2008 || w->prev.st_uid != w->attr.st_uid 3209 || prev.st_uid != w->attr.st_uid
2009 || w->prev.st_gid != w->attr.st_gid 3210 || prev.st_gid != w->attr.st_gid
2010 || w->prev.st_rdev != w->attr.st_rdev 3211 || prev.st_rdev != w->attr.st_rdev
2011 || w->prev.st_size != w->attr.st_size 3212 || prev.st_size != w->attr.st_size
2012 || w->prev.st_atime != w->attr.st_atime 3213 || prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime 3214 || prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime 3215 || prev.st_ctime != w->attr.st_ctime
2015 ) { 3216 ) {
3217 /* we only update w->prev on actual differences */
3218 /* in case we test more often than invoke the callback, */
3219 /* to ensure that prev is always different to attr */
3220 w->prev = prev;
3221
2016 #if EV_USE_INOTIFY 3222 #if EV_USE_INOTIFY
3223 if (fs_fd >= 0)
3224 {
2017 infy_del (EV_A_ w); 3225 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w); 3226 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */ 3227 ev_stat_stat (EV_A_ w); /* avoid race... */
3228 }
2020 #endif 3229 #endif
2021 3230
2022 ev_feed_event (EV_A_ w, EV_STAT); 3231 ev_feed_event (EV_A_ w, EV_STAT);
2023 } 3232 }
2024} 3233}
2027ev_stat_start (EV_P_ ev_stat *w) 3236ev_stat_start (EV_P_ ev_stat *w)
2028{ 3237{
2029 if (expect_false (ev_is_active (w))) 3238 if (expect_false (ev_is_active (w)))
2030 return; 3239 return;
2031 3240
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w); 3241 ev_stat_stat (EV_A_ w);
2037 3242
3243 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2038 if (w->interval < MIN_STAT_INTERVAL) 3244 w->interval = MIN_STAT_INTERVAL;
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040 3245
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3246 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2042 ev_set_priority (&w->timer, ev_priority (w)); 3247 ev_set_priority (&w->timer, ev_priority (w));
2043 3248
2044#if EV_USE_INOTIFY 3249#if EV_USE_INOTIFY
2045 infy_init (EV_A); 3250 infy_init (EV_A);
2046 3251
2047 if (fs_fd >= 0) 3252 if (fs_fd >= 0)
2048 infy_add (EV_A_ w); 3253 infy_add (EV_A_ w);
2049 else 3254 else
2050#endif 3255#endif
3256 {
2051 ev_timer_start (EV_A_ &w->timer); 3257 ev_timer_again (EV_A_ &w->timer);
3258 ev_unref (EV_A);
3259 }
2052 3260
2053 ev_start (EV_A_ (W)w, 1); 3261 ev_start (EV_A_ (W)w, 1);
3262
3263 EV_FREQUENT_CHECK;
2054} 3264}
2055 3265
2056void 3266void
2057ev_stat_stop (EV_P_ ev_stat *w) 3267ev_stat_stop (EV_P_ ev_stat *w)
2058{ 3268{
2059 clear_pending (EV_A_ (W)w); 3269 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 3270 if (expect_false (!ev_is_active (w)))
2061 return; 3271 return;
2062 3272
3273 EV_FREQUENT_CHECK;
3274
2063#if EV_USE_INOTIFY 3275#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 3276 infy_del (EV_A_ w);
2065#endif 3277#endif
3278
3279 if (ev_is_active (&w->timer))
3280 {
3281 ev_ref (EV_A);
2066 ev_timer_stop (EV_A_ &w->timer); 3282 ev_timer_stop (EV_A_ &w->timer);
3283 }
2067 3284
2068 ev_stop (EV_A_ (W)w); 3285 ev_stop (EV_A_ (W)w);
3286
3287 EV_FREQUENT_CHECK;
2069} 3288}
2070#endif 3289#endif
2071 3290
2072#if EV_IDLE_ENABLE 3291#if EV_IDLE_ENABLE
2073void 3292void
2075{ 3294{
2076 if (expect_false (ev_is_active (w))) 3295 if (expect_false (ev_is_active (w)))
2077 return; 3296 return;
2078 3297
2079 pri_adjust (EV_A_ (W)w); 3298 pri_adjust (EV_A_ (W)w);
3299
3300 EV_FREQUENT_CHECK;
2080 3301
2081 { 3302 {
2082 int active = ++idlecnt [ABSPRI (w)]; 3303 int active = ++idlecnt [ABSPRI (w)];
2083 3304
2084 ++idleall; 3305 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 3306 ev_start (EV_A_ (W)w, active);
2086 3307
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3308 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 3309 idles [ABSPRI (w)][active - 1] = w;
2089 } 3310 }
3311
3312 EV_FREQUENT_CHECK;
2090} 3313}
2091 3314
2092void 3315void
2093ev_idle_stop (EV_P_ ev_idle *w) 3316ev_idle_stop (EV_P_ ev_idle *w)
2094{ 3317{
2095 clear_pending (EV_A_ (W)w); 3318 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 3319 if (expect_false (!ev_is_active (w)))
2097 return; 3320 return;
2098 3321
3322 EV_FREQUENT_CHECK;
3323
2099 { 3324 {
2100 int active = ((W)w)->active; 3325 int active = ev_active (w);
2101 3326
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3327 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3328 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 3329
2105 ev_stop (EV_A_ (W)w); 3330 ev_stop (EV_A_ (W)w);
2106 --idleall; 3331 --idleall;
2107 } 3332 }
2108}
2109#endif
2110 3333
3334 EV_FREQUENT_CHECK;
3335}
3336#endif
3337
3338#if EV_PREPARE_ENABLE
2111void 3339void
2112ev_prepare_start (EV_P_ ev_prepare *w) 3340ev_prepare_start (EV_P_ ev_prepare *w)
2113{ 3341{
2114 if (expect_false (ev_is_active (w))) 3342 if (expect_false (ev_is_active (w)))
2115 return; 3343 return;
3344
3345 EV_FREQUENT_CHECK;
2116 3346
2117 ev_start (EV_A_ (W)w, ++preparecnt); 3347 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3348 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 3349 prepares [preparecnt - 1] = w;
3350
3351 EV_FREQUENT_CHECK;
2120} 3352}
2121 3353
2122void 3354void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 3355ev_prepare_stop (EV_P_ ev_prepare *w)
2124{ 3356{
2125 clear_pending (EV_A_ (W)w); 3357 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 3358 if (expect_false (!ev_is_active (w)))
2127 return; 3359 return;
2128 3360
3361 EV_FREQUENT_CHECK;
3362
2129 { 3363 {
2130 int active = ((W)w)->active; 3364 int active = ev_active (w);
3365
2131 prepares [active - 1] = prepares [--preparecnt]; 3366 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 3367 ev_active (prepares [active - 1]) = active;
2133 } 3368 }
2134 3369
2135 ev_stop (EV_A_ (W)w); 3370 ev_stop (EV_A_ (W)w);
2136}
2137 3371
3372 EV_FREQUENT_CHECK;
3373}
3374#endif
3375
3376#if EV_CHECK_ENABLE
2138void 3377void
2139ev_check_start (EV_P_ ev_check *w) 3378ev_check_start (EV_P_ ev_check *w)
2140{ 3379{
2141 if (expect_false (ev_is_active (w))) 3380 if (expect_false (ev_is_active (w)))
2142 return; 3381 return;
3382
3383 EV_FREQUENT_CHECK;
2143 3384
2144 ev_start (EV_A_ (W)w, ++checkcnt); 3385 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3386 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 3387 checks [checkcnt - 1] = w;
3388
3389 EV_FREQUENT_CHECK;
2147} 3390}
2148 3391
2149void 3392void
2150ev_check_stop (EV_P_ ev_check *w) 3393ev_check_stop (EV_P_ ev_check *w)
2151{ 3394{
2152 clear_pending (EV_A_ (W)w); 3395 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 3396 if (expect_false (!ev_is_active (w)))
2154 return; 3397 return;
2155 3398
3399 EV_FREQUENT_CHECK;
3400
2156 { 3401 {
2157 int active = ((W)w)->active; 3402 int active = ev_active (w);
3403
2158 checks [active - 1] = checks [--checkcnt]; 3404 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 3405 ev_active (checks [active - 1]) = active;
2160 } 3406 }
2161 3407
2162 ev_stop (EV_A_ (W)w); 3408 ev_stop (EV_A_ (W)w);
3409
3410 EV_FREQUENT_CHECK;
2163} 3411}
3412#endif
2164 3413
2165#if EV_EMBED_ENABLE 3414#if EV_EMBED_ENABLE
2166void noinline 3415void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 3416ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 3417{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 3418 ev_run (w->other, EVRUN_NOWAIT);
2170} 3419}
2171 3420
2172static void 3421static void
2173embed_cb (EV_P_ ev_io *io, int revents) 3422embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 3423{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3424 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 3425
2177 if (ev_cb (w)) 3426 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3427 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 3428 else
2180 ev_embed_sweep (loop, w); 3429 ev_run (w->other, EVRUN_NOWAIT);
2181} 3430}
3431
3432static void
3433embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3434{
3435 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3436
3437 {
3438 EV_P = w->other;
3439
3440 while (fdchangecnt)
3441 {
3442 fd_reify (EV_A);
3443 ev_run (EV_A_ EVRUN_NOWAIT);
3444 }
3445 }
3446}
3447
3448static void
3449embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3450{
3451 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3452
3453 ev_embed_stop (EV_A_ w);
3454
3455 {
3456 EV_P = w->other;
3457
3458 ev_loop_fork (EV_A);
3459 ev_run (EV_A_ EVRUN_NOWAIT);
3460 }
3461
3462 ev_embed_start (EV_A_ w);
3463}
3464
3465#if 0
3466static void
3467embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3468{
3469 ev_idle_stop (EV_A_ idle);
3470}
3471#endif
2182 3472
2183void 3473void
2184ev_embed_start (EV_P_ ev_embed *w) 3474ev_embed_start (EV_P_ ev_embed *w)
2185{ 3475{
2186 if (expect_false (ev_is_active (w))) 3476 if (expect_false (ev_is_active (w)))
2187 return; 3477 return;
2188 3478
2189 { 3479 {
2190 struct ev_loop *loop = w->loop; 3480 EV_P = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3481 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3482 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 3483 }
3484
3485 EV_FREQUENT_CHECK;
2194 3486
2195 ev_set_priority (&w->io, ev_priority (w)); 3487 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 3488 ev_io_start (EV_A_ &w->io);
2197 3489
3490 ev_prepare_init (&w->prepare, embed_prepare_cb);
3491 ev_set_priority (&w->prepare, EV_MINPRI);
3492 ev_prepare_start (EV_A_ &w->prepare);
3493
3494 ev_fork_init (&w->fork, embed_fork_cb);
3495 ev_fork_start (EV_A_ &w->fork);
3496
3497 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3498
2198 ev_start (EV_A_ (W)w, 1); 3499 ev_start (EV_A_ (W)w, 1);
3500
3501 EV_FREQUENT_CHECK;
2199} 3502}
2200 3503
2201void 3504void
2202ev_embed_stop (EV_P_ ev_embed *w) 3505ev_embed_stop (EV_P_ ev_embed *w)
2203{ 3506{
2204 clear_pending (EV_A_ (W)w); 3507 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 3508 if (expect_false (!ev_is_active (w)))
2206 return; 3509 return;
2207 3510
3511 EV_FREQUENT_CHECK;
3512
2208 ev_io_stop (EV_A_ &w->io); 3513 ev_io_stop (EV_A_ &w->io);
3514 ev_prepare_stop (EV_A_ &w->prepare);
3515 ev_fork_stop (EV_A_ &w->fork);
2209 3516
2210 ev_stop (EV_A_ (W)w); 3517 ev_stop (EV_A_ (W)w);
3518
3519 EV_FREQUENT_CHECK;
2211} 3520}
2212#endif 3521#endif
2213 3522
2214#if EV_FORK_ENABLE 3523#if EV_FORK_ENABLE
2215void 3524void
2216ev_fork_start (EV_P_ ev_fork *w) 3525ev_fork_start (EV_P_ ev_fork *w)
2217{ 3526{
2218 if (expect_false (ev_is_active (w))) 3527 if (expect_false (ev_is_active (w)))
2219 return; 3528 return;
3529
3530 EV_FREQUENT_CHECK;
2220 3531
2221 ev_start (EV_A_ (W)w, ++forkcnt); 3532 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3533 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 3534 forks [forkcnt - 1] = w;
3535
3536 EV_FREQUENT_CHECK;
2224} 3537}
2225 3538
2226void 3539void
2227ev_fork_stop (EV_P_ ev_fork *w) 3540ev_fork_stop (EV_P_ ev_fork *w)
2228{ 3541{
2229 clear_pending (EV_A_ (W)w); 3542 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 3543 if (expect_false (!ev_is_active (w)))
2231 return; 3544 return;
2232 3545
3546 EV_FREQUENT_CHECK;
3547
2233 { 3548 {
2234 int active = ((W)w)->active; 3549 int active = ev_active (w);
3550
2235 forks [active - 1] = forks [--forkcnt]; 3551 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 3552 ev_active (forks [active - 1]) = active;
2237 } 3553 }
2238 3554
2239 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
3558}
3559#endif
3560
3561#if EV_ASYNC_ENABLE
3562void
3563ev_async_start (EV_P_ ev_async *w)
3564{
3565 if (expect_false (ev_is_active (w)))
3566 return;
3567
3568 w->sent = 0;
3569
3570 evpipe_init (EV_A);
3571
3572 EV_FREQUENT_CHECK;
3573
3574 ev_start (EV_A_ (W)w, ++asynccnt);
3575 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3576 asyncs [asynccnt - 1] = w;
3577
3578 EV_FREQUENT_CHECK;
3579}
3580
3581void
3582ev_async_stop (EV_P_ ev_async *w)
3583{
3584 clear_pending (EV_A_ (W)w);
3585 if (expect_false (!ev_is_active (w)))
3586 return;
3587
3588 EV_FREQUENT_CHECK;
3589
3590 {
3591 int active = ev_active (w);
3592
3593 asyncs [active - 1] = asyncs [--asynccnt];
3594 ev_active (asyncs [active - 1]) = active;
3595 }
3596
3597 ev_stop (EV_A_ (W)w);
3598
3599 EV_FREQUENT_CHECK;
3600}
3601
3602void
3603ev_async_send (EV_P_ ev_async *w)
3604{
3605 w->sent = 1;
3606 evpipe_write (EV_A_ &async_pending);
2240} 3607}
2241#endif 3608#endif
2242 3609
2243/*****************************************************************************/ 3610/*****************************************************************************/
2244 3611
2254once_cb (EV_P_ struct ev_once *once, int revents) 3621once_cb (EV_P_ struct ev_once *once, int revents)
2255{ 3622{
2256 void (*cb)(int revents, void *arg) = once->cb; 3623 void (*cb)(int revents, void *arg) = once->cb;
2257 void *arg = once->arg; 3624 void *arg = once->arg;
2258 3625
2259 ev_io_stop (EV_A_ &once->io); 3626 ev_io_stop (EV_A_ &once->io);
2260 ev_timer_stop (EV_A_ &once->to); 3627 ev_timer_stop (EV_A_ &once->to);
2261 ev_free (once); 3628 ev_free (once);
2262 3629
2263 cb (revents, arg); 3630 cb (revents, arg);
2264} 3631}
2265 3632
2266static void 3633static void
2267once_cb_io (EV_P_ ev_io *w, int revents) 3634once_cb_io (EV_P_ ev_io *w, int revents)
2268{ 3635{
2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3636 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3637
3638 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2270} 3639}
2271 3640
2272static void 3641static void
2273once_cb_to (EV_P_ ev_timer *w, int revents) 3642once_cb_to (EV_P_ ev_timer *w, int revents)
2274{ 3643{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3644 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3645
3646 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2276} 3647}
2277 3648
2278void 3649void
2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3650ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2280{ 3651{
2281 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3652 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2282 3653
2283 if (expect_false (!once)) 3654 if (expect_false (!once))
2284 { 3655 {
2285 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3656 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2286 return; 3657 return;
2287 } 3658 }
2288 3659
2289 once->cb = cb; 3660 once->cb = cb;
2290 once->arg = arg; 3661 once->arg = arg;
2302 ev_timer_set (&once->to, timeout, 0.); 3673 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 3674 ev_timer_start (EV_A_ &once->to);
2304 } 3675 }
2305} 3676}
2306 3677
2307#ifdef __cplusplus 3678/*****************************************************************************/
2308} 3679
3680#if EV_WALK_ENABLE
3681void
3682ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3683{
3684 int i, j;
3685 ev_watcher_list *wl, *wn;
3686
3687 if (types & (EV_IO | EV_EMBED))
3688 for (i = 0; i < anfdmax; ++i)
3689 for (wl = anfds [i].head; wl; )
3690 {
3691 wn = wl->next;
3692
3693#if EV_EMBED_ENABLE
3694 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3695 {
3696 if (types & EV_EMBED)
3697 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3698 }
3699 else
3700#endif
3701#if EV_USE_INOTIFY
3702 if (ev_cb ((ev_io *)wl) == infy_cb)
3703 ;
3704 else
3705#endif
3706 if ((ev_io *)wl != &pipe_w)
3707 if (types & EV_IO)
3708 cb (EV_A_ EV_IO, wl);
3709
3710 wl = wn;
3711 }
3712
3713 if (types & (EV_TIMER | EV_STAT))
3714 for (i = timercnt + HEAP0; i-- > HEAP0; )
3715#if EV_STAT_ENABLE
3716 /*TODO: timer is not always active*/
3717 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3718 {
3719 if (types & EV_STAT)
3720 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3721 }
3722 else
3723#endif
3724 if (types & EV_TIMER)
3725 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3726
3727#if EV_PERIODIC_ENABLE
3728 if (types & EV_PERIODIC)
3729 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3730 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3731#endif
3732
3733#if EV_IDLE_ENABLE
3734 if (types & EV_IDLE)
3735 for (j = NUMPRI; i--; )
3736 for (i = idlecnt [j]; i--; )
3737 cb (EV_A_ EV_IDLE, idles [j][i]);
3738#endif
3739
3740#if EV_FORK_ENABLE
3741 if (types & EV_FORK)
3742 for (i = forkcnt; i--; )
3743 if (ev_cb (forks [i]) != embed_fork_cb)
3744 cb (EV_A_ EV_FORK, forks [i]);
3745#endif
3746
3747#if EV_ASYNC_ENABLE
3748 if (types & EV_ASYNC)
3749 for (i = asynccnt; i--; )
3750 cb (EV_A_ EV_ASYNC, asyncs [i]);
3751#endif
3752
3753#if EV_PREPARE_ENABLE
3754 if (types & EV_PREPARE)
3755 for (i = preparecnt; i--; )
3756# if EV_EMBED_ENABLE
3757 if (ev_cb (prepares [i]) != embed_prepare_cb)
2309#endif 3758# endif
3759 cb (EV_A_ EV_PREPARE, prepares [i]);
3760#endif
2310 3761
3762#if EV_CHECK_ENABLE
3763 if (types & EV_CHECK)
3764 for (i = checkcnt; i--; )
3765 cb (EV_A_ EV_CHECK, checks [i]);
3766#endif
3767
3768#if EV_SIGNAL_ENABLE
3769 if (types & EV_SIGNAL)
3770 for (i = 0; i < EV_NSIG - 1; ++i)
3771 for (wl = signals [i].head; wl; )
3772 {
3773 wn = wl->next;
3774 cb (EV_A_ EV_SIGNAL, wl);
3775 wl = wn;
3776 }
3777#endif
3778
3779#if EV_CHILD_ENABLE
3780 if (types & EV_CHILD)
3781 for (i = (EV_PID_HASHSIZE); i--; )
3782 for (wl = childs [i]; wl; )
3783 {
3784 wn = wl->next;
3785 cb (EV_A_ EV_CHILD, wl);
3786 wl = wn;
3787 }
3788#endif
3789/* EV_STAT 0x00001000 /* stat data changed */
3790/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3791}
3792#endif
3793
3794#if EV_MULTIPLICITY
3795 #include "ev_wrap.h"
3796#endif
3797
3798EV_CPP(})
3799

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines