ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC vs.
Revision 1.356 by root, Fri Oct 22 11:21:52 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
38 61
39# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
42# endif 65# endif
43# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
45# endif 68# endif
46# else 69# else
47# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
49# endif 72# endif
50# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
52# endif 75# endif
53# endif 76# endif
54 77
55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 78# if HAVE_NANOSLEEP
56# define EV_USE_SELECT 1 79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
57# else 82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
58# define EV_USE_SELECT 0 93# define EV_USE_SELECT 0
59# endif 94# endif
60 95
61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 96# if HAVE_POLL && HAVE_POLL_H
62# define EV_USE_POLL 1 97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
63# else 100# else
101# undef EV_USE_POLL
64# define EV_USE_POLL 0 102# define EV_USE_POLL 0
65# endif 103# endif
66 104
67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
68# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
69# else 109# else
110# undef EV_USE_EPOLL
70# define EV_USE_EPOLL 0 111# define EV_USE_EPOLL 0
71# endif 112# endif
72 113
73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
74# define EV_USE_KQUEUE 1 115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
75# else 118# else
119# undef EV_USE_KQUEUE
76# define EV_USE_KQUEUE 0 120# define EV_USE_KQUEUE 0
77# endif 121# endif
78 122
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 123# if HAVE_PORT_H && HAVE_PORT_CREATE
80# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
81# else 127# else
128# undef EV_USE_PORT
82# define EV_USE_PORT 0 129# define EV_USE_PORT 0
83# endif 130# endif
84 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
85#endif 159#endif
86 160
87#include <math.h> 161#include <math.h>
88#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
89#include <fcntl.h> 164#include <fcntl.h>
90#include <stddef.h> 165#include <stddef.h>
91 166
92#include <stdio.h> 167#include <stdio.h>
93 168
94#include <assert.h> 169#include <assert.h>
95#include <errno.h> 170#include <errno.h>
96#include <sys/types.h> 171#include <sys/types.h>
97#include <time.h> 172#include <time.h>
173#include <limits.h>
98 174
99#include <signal.h> 175#include <signal.h>
100 176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
101#ifndef _WIN32 185#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h> 186# include <sys/time.h>
104# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
105#else 189#else
190# include <io.h>
106# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
107# include <windows.h> 192# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
110# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
111#endif 242# endif
112 243#endif
113/**/
114 244
115#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
116# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
117#endif 251#endif
118 252
119#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
121#endif 263#endif
122 264
123#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
124# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
125#endif 267#endif
126 268
127#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
128# ifdef _WIN32 270# ifdef _WIN32
129# define EV_USE_POLL 0 271# define EV_USE_POLL 0
130# else 272# else
131# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
132# endif 274# endif
133#endif 275#endif
134 276
135#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
136# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
137#endif 283#endif
138 284
139#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
141#endif 287#endif
142 288
143#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
144# define EV_USE_PORT 0 290# define EV_USE_PORT 0
145#endif 291#endif
146 292
147/**/ 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
148 300
149/* darwin simply cannot be helped */ 301#ifndef EV_PID_HASHSIZE
150#ifdef __APPLE__ 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
151# undef EV_USE_POLL 361# undef EV_USE_POLL
152# undef EV_USE_KQUEUE 362# define EV_USE_POLL 0
153#endif 363#endif
154 364
155#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
156# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
157# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
160#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
161# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
162# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
163#endif 373#endif
164 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
165#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h> 397# include <winsock.h>
167#endif 398#endif
168 399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
169/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
170 455
171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
175 458
176#ifdef EV_H 459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
177# include EV_H 460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
178#else
179# include "ev.h"
180#endif
181 461
182#if __GNUC__ >= 3 462#if __GNUC__ >= 4
183# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
184# define inline static inline 464# define noinline __attribute__ ((noinline))
185#else 465#else
186# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
187# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
188#endif 471#endif
189 472
190#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
191#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
192 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
194#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
195 490
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
198 493
199typedef struct ev_watcher *W; 494typedef ev_watcher *W;
200typedef struct ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
201typedef struct ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
202 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
204 520
205#ifdef _WIN32 521#ifdef _WIN32
206# include "ev_win32.c" 522# include "ev_win32.c"
207#endif 523#endif
208 524
209/*****************************************************************************/ 525/*****************************************************************************/
210 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 struct utsname buf;
536 unsigned int v;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
211static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
212 578
579void
213void ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
214{ 581{
215 syserr_cb = cb; 582 syserr_cb = cb;
216} 583}
217 584
218static void 585static void noinline
219syserr (const char *msg) 586ev_syserr (const char *msg)
220{ 587{
221 if (!msg) 588 if (!msg)
222 msg = "(libev) system error"; 589 msg = "(libev) system error";
223 590
224 if (syserr_cb) 591 if (syserr_cb)
225 syserr_cb (msg); 592 syserr_cb (msg);
226 else 593 else
227 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
228 perror (msg); 603 perror (msg);
604#endif
229 abort (); 605 abort ();
230 } 606 }
231} 607}
232 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
233static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
234 629
630void
235void ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
236{ 632{
237 alloc = cb; 633 alloc = cb;
238} 634}
239 635
240static void * 636inline_speed void *
241ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
242{ 638{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
244 640
245 if (!ptr && size) 641 if (!ptr && size)
246 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
248 abort (); 648 abort ();
249 } 649 }
250 650
251 return ptr; 651 return ptr;
252} 652}
254#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
255#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
256 656
257/*****************************************************************************/ 657/*****************************************************************************/
258 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
259typedef struct 663typedef struct
260{ 664{
261 WL head; 665 WL head;
262 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
263 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
264#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET
265 SOCKET handle; 674 SOCKET handle;
266#endif 675#endif
267} ANFD; 676} ANFD;
268 677
678/* stores the pending event set for a given watcher */
269typedef struct 679typedef struct
270{ 680{
271 W w; 681 W w;
272 int events; 682 int events; /* the pending event set for the given watcher */
273} ANPENDING; 683} ANPENDING;
684
685#if EV_USE_INOTIFY
686/* hash table entry per inotify-id */
687typedef struct
688{
689 WL head;
690} ANFS;
691#endif
692
693/* Heap Entry */
694#if EV_HEAP_CACHE_AT
695 /* a heap element */
696 typedef struct {
697 ev_tstamp at;
698 WT w;
699 } ANHE;
700
701 #define ANHE_w(he) (he).w /* access watcher, read-write */
702 #define ANHE_at(he) (he).at /* access cached at, read-only */
703 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
704#else
705 /* a heap element */
706 typedef WT ANHE;
707
708 #define ANHE_w(he) (he)
709 #define ANHE_at(he) (he)->at
710 #define ANHE_at_cache(he)
711#endif
274 712
275#if EV_MULTIPLICITY 713#if EV_MULTIPLICITY
276 714
277 struct ev_loop 715 struct ev_loop
278 { 716 {
296 734
297 static int ev_default_loop_ptr; 735 static int ev_default_loop_ptr;
298 736
299#endif 737#endif
300 738
739#if EV_FEATURE_API
740# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
741# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
742# define EV_INVOKE_PENDING invoke_cb (EV_A)
743#else
744# define EV_RELEASE_CB (void)0
745# define EV_ACQUIRE_CB (void)0
746# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
747#endif
748
749#define EVBREAK_RECURSE 0x80
750
301/*****************************************************************************/ 751/*****************************************************************************/
302 752
753#ifndef EV_HAVE_EV_TIME
303ev_tstamp 754ev_tstamp
304ev_time (void) 755ev_time (void)
305{ 756{
306#if EV_USE_REALTIME 757#if EV_USE_REALTIME
758 if (expect_true (have_realtime))
759 {
307 struct timespec ts; 760 struct timespec ts;
308 clock_gettime (CLOCK_REALTIME, &ts); 761 clock_gettime (CLOCK_REALTIME, &ts);
309 return ts.tv_sec + ts.tv_nsec * 1e-9; 762 return ts.tv_sec + ts.tv_nsec * 1e-9;
310#else 763 }
764#endif
765
311 struct timeval tv; 766 struct timeval tv;
312 gettimeofday (&tv, 0); 767 gettimeofday (&tv, 0);
313 return tv.tv_sec + tv.tv_usec * 1e-6; 768 return tv.tv_sec + tv.tv_usec * 1e-6;
314#endif
315} 769}
770#endif
316 771
317inline ev_tstamp 772inline_size ev_tstamp
318get_clock (void) 773get_clock (void)
319{ 774{
320#if EV_USE_MONOTONIC 775#if EV_USE_MONOTONIC
321 if (expect_true (have_monotonic)) 776 if (expect_true (have_monotonic))
322 { 777 {
335{ 790{
336 return ev_rt_now; 791 return ev_rt_now;
337} 792}
338#endif 793#endif
339 794
340#define array_roundsize(type,n) (((n) | 4) & ~3) 795void
796ev_sleep (ev_tstamp delay)
797{
798 if (delay > 0.)
799 {
800#if EV_USE_NANOSLEEP
801 struct timespec ts;
802
803 EV_TS_SET (ts, delay);
804 nanosleep (&ts, 0);
805#elif defined(_WIN32)
806 Sleep ((unsigned long)(delay * 1e3));
807#else
808 struct timeval tv;
809
810 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
811 /* something not guaranteed by newer posix versions, but guaranteed */
812 /* by older ones */
813 EV_TV_SET (tv, delay);
814 select (0, 0, 0, 0, &tv);
815#endif
816 }
817}
818
819/*****************************************************************************/
820
821#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
822
823/* find a suitable new size for the given array, */
824/* hopefully by rounding to a nice-to-malloc size */
825inline_size int
826array_nextsize (int elem, int cur, int cnt)
827{
828 int ncur = cur + 1;
829
830 do
831 ncur <<= 1;
832 while (cnt > ncur);
833
834 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
835 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
836 {
837 ncur *= elem;
838 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
839 ncur = ncur - sizeof (void *) * 4;
840 ncur /= elem;
841 }
842
843 return ncur;
844}
845
846static noinline void *
847array_realloc (int elem, void *base, int *cur, int cnt)
848{
849 *cur = array_nextsize (elem, *cur, cnt);
850 return ev_realloc (base, elem * *cur);
851}
852
853#define array_init_zero(base,count) \
854 memset ((void *)(base), 0, sizeof (*(base)) * (count))
341 855
342#define array_needsize(type,base,cur,cnt,init) \ 856#define array_needsize(type,base,cur,cnt,init) \
343 if (expect_false ((cnt) > cur)) \ 857 if (expect_false ((cnt) > (cur))) \
344 { \ 858 { \
345 int newcnt = cur; \ 859 int ocur_ = (cur); \
346 do \ 860 (base) = (type *)array_realloc \
347 { \ 861 (sizeof (type), (base), &(cur), (cnt)); \
348 newcnt = array_roundsize (type, newcnt << 1); \ 862 init ((base) + (ocur_), (cur) - ocur_); \
349 } \
350 while ((cnt) > newcnt); \
351 \
352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
353 init (base + cur, newcnt - cur); \
354 cur = newcnt; \
355 } 863 }
356 864
865#if 0
357#define array_slim(type,stem) \ 866#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 867 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \ 868 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \ 869 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 870 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 871 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 } 872 }
873#endif
364 874
365#define array_free(stem, idx) \ 875#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 876 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
367 877
368/*****************************************************************************/ 878/*****************************************************************************/
369 879
370static void 880/* dummy callback for pending events */
371anfds_init (ANFD *base, int count) 881static void noinline
882pendingcb (EV_P_ ev_prepare *w, int revents)
372{ 883{
373 while (count--)
374 {
375 base->head = 0;
376 base->events = EV_NONE;
377 base->reify = 0;
378
379 ++base;
380 }
381} 884}
382 885
383void 886void noinline
384ev_feed_event (EV_P_ void *w, int revents) 887ev_feed_event (EV_P_ void *w, int revents)
385{ 888{
386 W w_ = (W)w; 889 W w_ = (W)w;
890 int pri = ABSPRI (w_);
387 891
388 if (expect_false (w_->pending)) 892 if (expect_false (w_->pending))
893 pendings [pri][w_->pending - 1].events |= revents;
894 else
389 { 895 {
896 w_->pending = ++pendingcnt [pri];
897 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
898 pendings [pri][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 899 pendings [pri][w_->pending - 1].events = revents;
391 return;
392 } 900 }
393
394 w_->pending = ++pendingcnt [ABSPRI (w_)];
395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
398} 901}
399 902
400static void 903inline_speed void
904feed_reverse (EV_P_ W w)
905{
906 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
907 rfeeds [rfeedcnt++] = w;
908}
909
910inline_size void
911feed_reverse_done (EV_P_ int revents)
912{
913 do
914 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
915 while (rfeedcnt);
916}
917
918inline_speed void
401queue_events (EV_P_ W *events, int eventcnt, int type) 919queue_events (EV_P_ W *events, int eventcnt, int type)
402{ 920{
403 int i; 921 int i;
404 922
405 for (i = 0; i < eventcnt; ++i) 923 for (i = 0; i < eventcnt; ++i)
406 ev_feed_event (EV_A_ events [i], type); 924 ev_feed_event (EV_A_ events [i], type);
407} 925}
408 926
927/*****************************************************************************/
928
409inline void 929inline_speed void
410fd_event (EV_P_ int fd, int revents) 930fd_event_nocheck (EV_P_ int fd, int revents)
411{ 931{
412 ANFD *anfd = anfds + fd; 932 ANFD *anfd = anfds + fd;
413 struct ev_io *w; 933 ev_io *w;
414 934
415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 935 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
416 { 936 {
417 int ev = w->events & revents; 937 int ev = w->events & revents;
418 938
419 if (ev) 939 if (ev)
420 ev_feed_event (EV_A_ (W)w, ev); 940 ev_feed_event (EV_A_ (W)w, ev);
421 } 941 }
422} 942}
423 943
944/* do not submit kernel events for fds that have reify set */
945/* because that means they changed while we were polling for new events */
946inline_speed void
947fd_event (EV_P_ int fd, int revents)
948{
949 ANFD *anfd = anfds + fd;
950
951 if (expect_true (!anfd->reify))
952 fd_event_nocheck (EV_A_ fd, revents);
953}
954
424void 955void
425ev_feed_fd_event (EV_P_ int fd, int revents) 956ev_feed_fd_event (EV_P_ int fd, int revents)
426{ 957{
958 if (fd >= 0 && fd < anfdmax)
427 fd_event (EV_A_ fd, revents); 959 fd_event_nocheck (EV_A_ fd, revents);
428} 960}
429 961
430/*****************************************************************************/ 962/* make sure the external fd watch events are in-sync */
431 963/* with the kernel/libev internal state */
432inline void 964inline_size void
433fd_reify (EV_P) 965fd_reify (EV_P)
434{ 966{
435 int i; 967 int i;
436 968
437 for (i = 0; i < fdchangecnt; ++i) 969 for (i = 0; i < fdchangecnt; ++i)
438 { 970 {
439 int fd = fdchanges [i]; 971 int fd = fdchanges [i];
440 ANFD *anfd = anfds + fd; 972 ANFD *anfd = anfds + fd;
441 struct ev_io *w; 973 ev_io *w;
442 974
443 int events = 0; 975 unsigned char o_events = anfd->events;
976 unsigned char o_reify = anfd->reify;
444 977
445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 978 anfd->reify = 0;
446 events |= w->events;
447 979
448#if EV_SELECT_IS_WINSOCKET 980#if EV_SELECT_IS_WINSOCKET
449 if (events) 981 if (o_reify & EV__IOFDSET)
450 { 982 {
451 unsigned long argp; 983 unsigned long arg;
452 anfd->handle = _get_osfhandle (fd); 984 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 985 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
454 } 986 }
455#endif 987#endif
456 988
457 anfd->reify = 0; 989 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
458 990 {
459 method_modify (EV_A_ fd, anfd->events, events);
460 anfd->events = events; 991 anfd->events = 0;
992
993 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
994 anfd->events |= (unsigned char)w->events;
995
996 if (o_events != anfd->events)
997 o_reify = EV__IOFDSET; /* actually |= */
998 }
999
1000 if (o_reify & EV__IOFDSET)
1001 backend_modify (EV_A_ fd, o_events, anfd->events);
461 } 1002 }
462 1003
463 fdchangecnt = 0; 1004 fdchangecnt = 0;
464} 1005}
465 1006
466static void 1007/* something about the given fd changed */
1008inline_size void
467fd_change (EV_P_ int fd) 1009fd_change (EV_P_ int fd, int flags)
468{ 1010{
469 if (expect_false (anfds [fd].reify)) 1011 unsigned char reify = anfds [fd].reify;
470 return;
471
472 anfds [fd].reify = 1; 1012 anfds [fd].reify |= flags;
473 1013
1014 if (expect_true (!reify))
1015 {
474 ++fdchangecnt; 1016 ++fdchangecnt;
475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1017 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
476 fdchanges [fdchangecnt - 1] = fd; 1018 fdchanges [fdchangecnt - 1] = fd;
1019 }
477} 1020}
478 1021
479static void 1022/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1023inline_speed void
480fd_kill (EV_P_ int fd) 1024fd_kill (EV_P_ int fd)
481{ 1025{
482 struct ev_io *w; 1026 ev_io *w;
483 1027
484 while ((w = (struct ev_io *)anfds [fd].head)) 1028 while ((w = (ev_io *)anfds [fd].head))
485 { 1029 {
486 ev_io_stop (EV_A_ w); 1030 ev_io_stop (EV_A_ w);
487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1031 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
488 } 1032 }
489} 1033}
490 1034
1035/* check whether the given fd is actually valid, for error recovery */
491inline int 1036inline_size int
492fd_valid (int fd) 1037fd_valid (int fd)
493{ 1038{
494#ifdef _WIN32 1039#ifdef _WIN32
495 return _get_osfhandle (fd) != -1; 1040 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
496#else 1041#else
497 return fcntl (fd, F_GETFD) != -1; 1042 return fcntl (fd, F_GETFD) != -1;
498#endif 1043#endif
499} 1044}
500 1045
501/* called on EBADF to verify fds */ 1046/* called on EBADF to verify fds */
502static void 1047static void noinline
503fd_ebadf (EV_P) 1048fd_ebadf (EV_P)
504{ 1049{
505 int fd; 1050 int fd;
506 1051
507 for (fd = 0; fd < anfdmax; ++fd) 1052 for (fd = 0; fd < anfdmax; ++fd)
508 if (anfds [fd].events) 1053 if (anfds [fd].events)
509 if (!fd_valid (fd) == -1 && errno == EBADF) 1054 if (!fd_valid (fd) && errno == EBADF)
510 fd_kill (EV_A_ fd); 1055 fd_kill (EV_A_ fd);
511} 1056}
512 1057
513/* called on ENOMEM in select/poll to kill some fds and retry */ 1058/* called on ENOMEM in select/poll to kill some fds and retry */
514static void 1059static void noinline
515fd_enomem (EV_P) 1060fd_enomem (EV_P)
516{ 1061{
517 int fd; 1062 int fd;
518 1063
519 for (fd = anfdmax; fd--; ) 1064 for (fd = anfdmax; fd--; )
520 if (anfds [fd].events) 1065 if (anfds [fd].events)
521 { 1066 {
522 fd_kill (EV_A_ fd); 1067 fd_kill (EV_A_ fd);
523 return; 1068 break;
524 } 1069 }
525} 1070}
526 1071
527/* usually called after fork if method needs to re-arm all fds from scratch */ 1072/* usually called after fork if backend needs to re-arm all fds from scratch */
528static void 1073static void noinline
529fd_rearm_all (EV_P) 1074fd_rearm_all (EV_P)
530{ 1075{
531 int fd; 1076 int fd;
532 1077
533 /* this should be highly optimised to not do anything but set a flag */
534 for (fd = 0; fd < anfdmax; ++fd) 1078 for (fd = 0; fd < anfdmax; ++fd)
535 if (anfds [fd].events) 1079 if (anfds [fd].events)
536 { 1080 {
537 anfds [fd].events = 0; 1081 anfds [fd].events = 0;
538 fd_change (EV_A_ fd); 1082 anfds [fd].emask = 0;
1083 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
539 } 1084 }
540} 1085}
541 1086
542/*****************************************************************************/ 1087/* used to prepare libev internal fd's */
543 1088/* this is not fork-safe */
544static void
545upheap (WT *heap, int k)
546{
547 WT w = heap [k];
548
549 while (k && heap [k >> 1]->at > w->at)
550 {
551 heap [k] = heap [k >> 1];
552 ((W)heap [k])->active = k + 1;
553 k >>= 1;
554 }
555
556 heap [k] = w;
557 ((W)heap [k])->active = k + 1;
558
559}
560
561static void
562downheap (WT *heap, int N, int k)
563{
564 WT w = heap [k];
565
566 while (k < (N >> 1))
567 {
568 int j = k << 1;
569
570 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
571 ++j;
572
573 if (w->at <= heap [j]->at)
574 break;
575
576 heap [k] = heap [j];
577 ((W)heap [k])->active = k + 1;
578 k = j;
579 }
580
581 heap [k] = w;
582 ((W)heap [k])->active = k + 1;
583}
584
585inline void 1089inline_speed void
586adjustheap (WT *heap, int N, int k)
587{
588 upheap (heap, k);
589 downheap (heap, N, k);
590}
591
592/*****************************************************************************/
593
594typedef struct
595{
596 WL head;
597 sig_atomic_t volatile gotsig;
598} ANSIG;
599
600static ANSIG *signals;
601static int signalmax;
602
603static int sigpipe [2];
604static sig_atomic_t volatile gotsig;
605static struct ev_io sigev;
606
607static void
608signals_init (ANSIG *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->gotsig = 0;
614
615 ++base;
616 }
617}
618
619static void
620sighandler (int signum)
621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625
626 signals [signum - 1].gotsig = 1;
627
628 if (!gotsig)
629 {
630 int old_errno = errno;
631 gotsig = 1;
632 write (sigpipe [1], &signum, 1);
633 errno = old_errno;
634 }
635}
636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
657static void
658sigcb (EV_P_ struct ev_io *iow, int revents)
659{
660 int signum;
661
662 read (sigpipe [0], &revents, 1);
663 gotsig = 0;
664
665 for (signum = signalmax; signum--; )
666 if (signals [signum].gotsig)
667 ev_feed_signal_event (EV_A_ signum + 1);
668}
669
670static void
671fd_intern (int fd) 1090fd_intern (int fd)
672{ 1091{
673#ifdef _WIN32 1092#ifdef _WIN32
674 int arg = 1; 1093 unsigned long arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1094 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
676#else 1095#else
677 fcntl (fd, F_SETFD, FD_CLOEXEC); 1096 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK); 1097 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif 1098#endif
680} 1099}
681 1100
1101/*****************************************************************************/
1102
1103/*
1104 * the heap functions want a real array index. array index 0 is guaranteed to not
1105 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1106 * the branching factor of the d-tree.
1107 */
1108
1109/*
1110 * at the moment we allow libev the luxury of two heaps,
1111 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1112 * which is more cache-efficient.
1113 * the difference is about 5% with 50000+ watchers.
1114 */
1115#if EV_USE_4HEAP
1116
1117#define DHEAP 4
1118#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1119#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1120#define UPHEAP_DONE(p,k) ((p) == (k))
1121
1122/* away from the root */
1123inline_speed void
1124downheap (ANHE *heap, int N, int k)
1125{
1126 ANHE he = heap [k];
1127 ANHE *E = heap + N + HEAP0;
1128
1129 for (;;)
1130 {
1131 ev_tstamp minat;
1132 ANHE *minpos;
1133 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1134
1135 /* find minimum child */
1136 if (expect_true (pos + DHEAP - 1 < E))
1137 {
1138 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1139 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1140 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1141 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1142 }
1143 else if (pos < E)
1144 {
1145 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1146 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1147 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1148 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1149 }
1150 else
1151 break;
1152
1153 if (ANHE_at (he) <= minat)
1154 break;
1155
1156 heap [k] = *minpos;
1157 ev_active (ANHE_w (*minpos)) = k;
1158
1159 k = minpos - heap;
1160 }
1161
1162 heap [k] = he;
1163 ev_active (ANHE_w (he)) = k;
1164}
1165
1166#else /* 4HEAP */
1167
1168#define HEAP0 1
1169#define HPARENT(k) ((k) >> 1)
1170#define UPHEAP_DONE(p,k) (!(p))
1171
1172/* away from the root */
1173inline_speed void
1174downheap (ANHE *heap, int N, int k)
1175{
1176 ANHE he = heap [k];
1177
1178 for (;;)
1179 {
1180 int c = k << 1;
1181
1182 if (c >= N + HEAP0)
1183 break;
1184
1185 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1186 ? 1 : 0;
1187
1188 if (ANHE_at (he) <= ANHE_at (heap [c]))
1189 break;
1190
1191 heap [k] = heap [c];
1192 ev_active (ANHE_w (heap [k])) = k;
1193
1194 k = c;
1195 }
1196
1197 heap [k] = he;
1198 ev_active (ANHE_w (he)) = k;
1199}
1200#endif
1201
1202/* towards the root */
1203inline_speed void
1204upheap (ANHE *heap, int k)
1205{
1206 ANHE he = heap [k];
1207
1208 for (;;)
1209 {
1210 int p = HPARENT (k);
1211
1212 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1213 break;
1214
1215 heap [k] = heap [p];
1216 ev_active (ANHE_w (heap [k])) = k;
1217 k = p;
1218 }
1219
1220 heap [k] = he;
1221 ev_active (ANHE_w (he)) = k;
1222}
1223
1224/* move an element suitably so it is in a correct place */
1225inline_size void
1226adjustheap (ANHE *heap, int N, int k)
1227{
1228 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1229 upheap (heap, k);
1230 else
1231 downheap (heap, N, k);
1232}
1233
1234/* rebuild the heap: this function is used only once and executed rarely */
1235inline_size void
1236reheap (ANHE *heap, int N)
1237{
1238 int i;
1239
1240 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1241 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1242 for (i = 0; i < N; ++i)
1243 upheap (heap, i + HEAP0);
1244}
1245
1246/*****************************************************************************/
1247
1248/* associate signal watchers to a signal signal */
1249typedef struct
1250{
1251 EV_ATOMIC_T pending;
1252#if EV_MULTIPLICITY
1253 EV_P;
1254#endif
1255 WL head;
1256} ANSIG;
1257
1258static ANSIG signals [EV_NSIG - 1];
1259
1260/*****************************************************************************/
1261
1262#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1263
1264static void noinline
1265evpipe_init (EV_P)
1266{
1267 if (!ev_is_active (&pipe_w))
1268 {
1269# if EV_USE_EVENTFD
1270 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1271 if (evfd < 0 && errno == EINVAL)
1272 evfd = eventfd (0, 0);
1273
1274 if (evfd >= 0)
1275 {
1276 evpipe [0] = -1;
1277 fd_intern (evfd); /* doing it twice doesn't hurt */
1278 ev_io_set (&pipe_w, evfd, EV_READ);
1279 }
1280 else
1281# endif
1282 {
1283 while (pipe (evpipe))
1284 ev_syserr ("(libev) error creating signal/async pipe");
1285
1286 fd_intern (evpipe [0]);
1287 fd_intern (evpipe [1]);
1288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1289 }
1290
1291 ev_io_start (EV_A_ &pipe_w);
1292 ev_unref (EV_A); /* watcher should not keep loop alive */
1293 }
1294}
1295
1296inline_size void
1297evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1298{
1299 if (!*flag)
1300 {
1301 int old_errno = errno; /* save errno because write might clobber it */
1302 char dummy;
1303
1304 *flag = 1;
1305
1306#if EV_USE_EVENTFD
1307 if (evfd >= 0)
1308 {
1309 uint64_t counter = 1;
1310 write (evfd, &counter, sizeof (uint64_t));
1311 }
1312 else
1313#endif
1314 /* win32 people keep sending patches that change this write() to send() */
1315 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1316 /* so when you think this write should be a send instead, please find out */
1317 /* where your send() is from - it's definitely not the microsoft send, and */
1318 /* tell me. thank you. */
1319 write (evpipe [1], &dummy, 1);
1320
1321 errno = old_errno;
1322 }
1323}
1324
1325/* called whenever the libev signal pipe */
1326/* got some events (signal, async) */
682static void 1327static void
683siginit (EV_P) 1328pipecb (EV_P_ ev_io *iow, int revents)
684{ 1329{
685 fd_intern (sigpipe [0]); 1330 int i;
686 fd_intern (sigpipe [1]);
687 1331
688 ev_io_set (&sigev, sigpipe [0], EV_READ); 1332#if EV_USE_EVENTFD
689 ev_io_start (EV_A_ &sigev); 1333 if (evfd >= 0)
690 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1334 {
1335 uint64_t counter;
1336 read (evfd, &counter, sizeof (uint64_t));
1337 }
1338 else
1339#endif
1340 {
1341 char dummy;
1342 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1343 read (evpipe [0], &dummy, 1);
1344 }
1345
1346 if (sig_pending)
1347 {
1348 sig_pending = 0;
1349
1350 for (i = EV_NSIG - 1; i--; )
1351 if (expect_false (signals [i].pending))
1352 ev_feed_signal_event (EV_A_ i + 1);
1353 }
1354
1355#if EV_ASYNC_ENABLE
1356 if (async_pending)
1357 {
1358 async_pending = 0;
1359
1360 for (i = asynccnt; i--; )
1361 if (asyncs [i]->sent)
1362 {
1363 asyncs [i]->sent = 0;
1364 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1365 }
1366 }
1367#endif
691} 1368}
692 1369
693/*****************************************************************************/ 1370/*****************************************************************************/
694 1371
695static struct ev_child *childs [PID_HASHSIZE]; 1372static void
1373ev_sighandler (int signum)
1374{
1375#if EV_MULTIPLICITY
1376 EV_P = signals [signum - 1].loop;
1377#endif
696 1378
697#ifndef _WIN32 1379#ifdef _WIN32
1380 signal (signum, ev_sighandler);
1381#endif
698 1382
1383 signals [signum - 1].pending = 1;
1384 evpipe_write (EV_A_ &sig_pending);
1385}
1386
1387void noinline
1388ev_feed_signal_event (EV_P_ int signum)
1389{
1390 WL w;
1391
1392 if (expect_false (signum <= 0 || signum > EV_NSIG))
1393 return;
1394
1395 --signum;
1396
1397#if EV_MULTIPLICITY
1398 /* it is permissible to try to feed a signal to the wrong loop */
1399 /* or, likely more useful, feeding a signal nobody is waiting for */
1400
1401 if (expect_false (signals [signum].loop != EV_A))
1402 return;
1403#endif
1404
1405 signals [signum].pending = 0;
1406
1407 for (w = signals [signum].head; w; w = w->next)
1408 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1409}
1410
1411#if EV_USE_SIGNALFD
1412static void
1413sigfdcb (EV_P_ ev_io *iow, int revents)
1414{
1415 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1416
1417 for (;;)
1418 {
1419 ssize_t res = read (sigfd, si, sizeof (si));
1420
1421 /* not ISO-C, as res might be -1, but works with SuS */
1422 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1423 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1424
1425 if (res < (ssize_t)sizeof (si))
1426 break;
1427 }
1428}
1429#endif
1430
1431#endif
1432
1433/*****************************************************************************/
1434
1435#if EV_CHILD_ENABLE
1436static WL childs [EV_PID_HASHSIZE];
1437
699static struct ev_signal childev; 1438static ev_signal childev;
1439
1440#ifndef WIFCONTINUED
1441# define WIFCONTINUED(status) 0
1442#endif
1443
1444/* handle a single child status event */
1445inline_speed void
1446child_reap (EV_P_ int chain, int pid, int status)
1447{
1448 ev_child *w;
1449 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1450
1451 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1452 {
1453 if ((w->pid == pid || !w->pid)
1454 && (!traced || (w->flags & 1)))
1455 {
1456 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1457 w->rpid = pid;
1458 w->rstatus = status;
1459 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1460 }
1461 }
1462}
700 1463
701#ifndef WCONTINUED 1464#ifndef WCONTINUED
702# define WCONTINUED 0 1465# define WCONTINUED 0
703#endif 1466#endif
704 1467
1468/* called on sigchld etc., calls waitpid */
705static void 1469static void
706child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
707{
708 struct ev_child *w;
709
710 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
711 if (w->pid == pid || !w->pid)
712 {
713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
714 w->rpid = pid;
715 w->rstatus = status;
716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
717 }
718}
719
720static void
721childcb (EV_P_ struct ev_signal *sw, int revents) 1470childcb (EV_P_ ev_signal *sw, int revents)
722{ 1471{
723 int pid, status; 1472 int pid, status;
724 1473
1474 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1475 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
726 { 1476 if (!WCONTINUED
1477 || errno != EINVAL
1478 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1479 return;
1480
727 /* make sure we are called again until all childs have been reaped */ 1481 /* make sure we are called again until all children have been reaped */
1482 /* we need to do it this way so that the callback gets called before we continue */
728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1483 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
729 1484
730 child_reap (EV_A_ sw, pid, pid, status); 1485 child_reap (EV_A_ pid, pid, status);
1486 if ((EV_PID_HASHSIZE) > 1)
731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1487 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
732 }
733} 1488}
734 1489
735#endif 1490#endif
736 1491
737/*****************************************************************************/ 1492/*****************************************************************************/
763{ 1518{
764 return EV_VERSION_MINOR; 1519 return EV_VERSION_MINOR;
765} 1520}
766 1521
767/* return true if we are running with elevated privileges and should ignore env variables */ 1522/* return true if we are running with elevated privileges and should ignore env variables */
768static int 1523int inline_size
769enable_secure (void) 1524enable_secure (void)
770{ 1525{
771#ifdef _WIN32 1526#ifdef _WIN32
772 return 0; 1527 return 0;
773#else 1528#else
775 || getgid () != getegid (); 1530 || getgid () != getegid ();
776#endif 1531#endif
777} 1532}
778 1533
779unsigned int 1534unsigned int
1535ev_supported_backends (void)
1536{
1537 unsigned int flags = 0;
1538
1539 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1540 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1541 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1542 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1543 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1544
1545 return flags;
1546}
1547
1548unsigned int
1549ev_recommended_backends (void)
1550{
1551 unsigned int flags = ev_supported_backends ();
1552
1553#ifndef __NetBSD__
1554 /* kqueue is borked on everything but netbsd apparently */
1555 /* it usually doesn't work correctly on anything but sockets and pipes */
1556 flags &= ~EVBACKEND_KQUEUE;
1557#endif
1558#ifdef __APPLE__
1559 /* only select works correctly on that "unix-certified" platform */
1560 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1561 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1562#endif
1563#ifdef __FreeBSD__
1564 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1565#endif
1566
1567 return flags;
1568}
1569
1570unsigned int
1571ev_embeddable_backends (void)
1572{
1573 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1574
1575 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1576 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1577 flags &= ~EVBACKEND_EPOLL;
1578
1579 return flags;
1580}
1581
1582unsigned int
1583ev_backend (EV_P)
1584{
1585 return backend;
1586}
1587
1588#if EV_FEATURE_API
1589unsigned int
1590ev_iteration (EV_P)
1591{
1592 return loop_count;
1593}
1594
1595unsigned int
780ev_method (EV_P) 1596ev_depth (EV_P)
781{ 1597{
782 return method; 1598 return loop_depth;
783} 1599}
784 1600
785static void 1601void
1602ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1603{
1604 io_blocktime = interval;
1605}
1606
1607void
1608ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1609{
1610 timeout_blocktime = interval;
1611}
1612
1613void
1614ev_set_userdata (EV_P_ void *data)
1615{
1616 userdata = data;
1617}
1618
1619void *
1620ev_userdata (EV_P)
1621{
1622 return userdata;
1623}
1624
1625void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1626{
1627 invoke_cb = invoke_pending_cb;
1628}
1629
1630void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1631{
1632 release_cb = release;
1633 acquire_cb = acquire;
1634}
1635#endif
1636
1637/* initialise a loop structure, must be zero-initialised */
1638static void noinline
786loop_init (EV_P_ unsigned int flags) 1639loop_init (EV_P_ unsigned int flags)
787{ 1640{
788 if (!method) 1641 if (!backend)
789 { 1642 {
1643#if EV_USE_REALTIME
1644 if (!have_realtime)
1645 {
1646 struct timespec ts;
1647
1648 if (!clock_gettime (CLOCK_REALTIME, &ts))
1649 have_realtime = 1;
1650 }
1651#endif
1652
790#if EV_USE_MONOTONIC 1653#if EV_USE_MONOTONIC
1654 if (!have_monotonic)
791 { 1655 {
792 struct timespec ts; 1656 struct timespec ts;
1657
793 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1658 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
794 have_monotonic = 1; 1659 have_monotonic = 1;
795 } 1660 }
796#endif 1661#endif
797 1662
798 ev_rt_now = ev_time (); 1663 /* pid check not overridable via env */
799 mn_now = get_clock (); 1664#ifndef _WIN32
800 now_floor = mn_now; 1665 if (flags & EVFLAG_FORKCHECK)
801 rtmn_diff = ev_rt_now - mn_now; 1666 curpid = getpid ();
1667#endif
802 1668
803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1669 if (!(flags & EVFLAG_NOENV)
1670 && !enable_secure ()
1671 && getenv ("LIBEV_FLAGS"))
804 flags = atoi (getenv ("LIBEV_FLAGS")); 1672 flags = atoi (getenv ("LIBEV_FLAGS"));
805 1673
1674 ev_rt_now = ev_time ();
1675 mn_now = get_clock ();
1676 now_floor = mn_now;
1677 rtmn_diff = ev_rt_now - mn_now;
1678#if EV_FEATURE_API
1679 invoke_cb = ev_invoke_pending;
1680#endif
1681
1682 io_blocktime = 0.;
1683 timeout_blocktime = 0.;
1684 backend = 0;
1685 backend_fd = -1;
1686 sig_pending = 0;
1687#if EV_ASYNC_ENABLE
1688 async_pending = 0;
1689#endif
1690#if EV_USE_INOTIFY
1691 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1692#endif
1693#if EV_USE_SIGNALFD
1694 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1695#endif
1696
806 if (!(flags & 0x0000ffff)) 1697 if (!(flags & 0x0000ffffU))
807 flags |= 0x0000ffff; 1698 flags |= ev_recommended_backends ();
808 1699
809 method = 0;
810#if EV_USE_PORT 1700#if EV_USE_PORT
811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1701 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
812#endif 1702#endif
813#if EV_USE_KQUEUE 1703#if EV_USE_KQUEUE
814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1704 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
815#endif 1705#endif
816#if EV_USE_EPOLL 1706#if EV_USE_EPOLL
817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1707 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
818#endif 1708#endif
819#if EV_USE_POLL 1709#if EV_USE_POLL
820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1710 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
821#endif 1711#endif
822#if EV_USE_SELECT 1712#if EV_USE_SELECT
823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1713 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
824#endif 1714#endif
825 1715
1716 ev_prepare_init (&pending_w, pendingcb);
1717
1718#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
826 ev_init (&sigev, sigcb); 1719 ev_init (&pipe_w, pipecb);
827 ev_set_priority (&sigev, EV_MAXPRI); 1720 ev_set_priority (&pipe_w, EV_MAXPRI);
1721#endif
828 } 1722 }
829} 1723}
830 1724
831static void 1725/* free up a loop structure */
1726static void noinline
832loop_destroy (EV_P) 1727loop_destroy (EV_P)
833{ 1728{
834 int i; 1729 int i;
835 1730
1731 if (ev_is_active (&pipe_w))
1732 {
1733 /*ev_ref (EV_A);*/
1734 /*ev_io_stop (EV_A_ &pipe_w);*/
1735
1736#if EV_USE_EVENTFD
1737 if (evfd >= 0)
1738 close (evfd);
1739#endif
1740
1741 if (evpipe [0] >= 0)
1742 {
1743 EV_WIN32_CLOSE_FD (evpipe [0]);
1744 EV_WIN32_CLOSE_FD (evpipe [1]);
1745 }
1746 }
1747
1748#if EV_USE_SIGNALFD
1749 if (ev_is_active (&sigfd_w))
1750 close (sigfd);
1751#endif
1752
1753#if EV_USE_INOTIFY
1754 if (fs_fd >= 0)
1755 close (fs_fd);
1756#endif
1757
1758 if (backend_fd >= 0)
1759 close (backend_fd);
1760
836#if EV_USE_PORT 1761#if EV_USE_PORT
837 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1762 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
838#endif 1763#endif
839#if EV_USE_KQUEUE 1764#if EV_USE_KQUEUE
840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1765 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
841#endif 1766#endif
842#if EV_USE_EPOLL 1767#if EV_USE_EPOLL
843 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1768 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
844#endif 1769#endif
845#if EV_USE_POLL 1770#if EV_USE_POLL
846 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1771 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
847#endif 1772#endif
848#if EV_USE_SELECT 1773#if EV_USE_SELECT
849 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1774 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
850#endif 1775#endif
851 1776
852 for (i = NUMPRI; i--; ) 1777 for (i = NUMPRI; i--; )
1778 {
853 array_free (pending, [i]); 1779 array_free (pending, [i]);
1780#if EV_IDLE_ENABLE
1781 array_free (idle, [i]);
1782#endif
1783 }
1784
1785 ev_free (anfds); anfds = 0; anfdmax = 0;
854 1786
855 /* have to use the microsoft-never-gets-it-right macro */ 1787 /* have to use the microsoft-never-gets-it-right macro */
1788 array_free (rfeed, EMPTY);
856 array_free (fdchange, EMPTY0); 1789 array_free (fdchange, EMPTY);
857 array_free (timer, EMPTY0); 1790 array_free (timer, EMPTY);
858#if EV_PERIODICS 1791#if EV_PERIODIC_ENABLE
859 array_free (periodic, EMPTY0); 1792 array_free (periodic, EMPTY);
860#endif 1793#endif
1794#if EV_FORK_ENABLE
861 array_free (idle, EMPTY0); 1795 array_free (fork, EMPTY);
1796#endif
862 array_free (prepare, EMPTY0); 1797 array_free (prepare, EMPTY);
863 array_free (check, EMPTY0); 1798 array_free (check, EMPTY);
1799#if EV_ASYNC_ENABLE
1800 array_free (async, EMPTY);
1801#endif
864 1802
865 method = 0; 1803 backend = 0;
866} 1804}
867 1805
868static void 1806#if EV_USE_INOTIFY
1807inline_size void infy_fork (EV_P);
1808#endif
1809
1810inline_size void
869loop_fork (EV_P) 1811loop_fork (EV_P)
870{ 1812{
871#if EV_USE_PORT 1813#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1814 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
873#endif 1815#endif
874#if EV_USE_KQUEUE 1816#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1817 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
876#endif 1818#endif
877#if EV_USE_EPOLL 1819#if EV_USE_EPOLL
878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1820 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
879#endif 1821#endif
1822#if EV_USE_INOTIFY
1823 infy_fork (EV_A);
1824#endif
880 1825
881 if (ev_is_active (&sigev)) 1826 if (ev_is_active (&pipe_w))
882 { 1827 {
883 /* default loop */ 1828 /* this "locks" the handlers against writing to the pipe */
1829 /* while we modify the fd vars */
1830 sig_pending = 1;
1831#if EV_ASYNC_ENABLE
1832 async_pending = 1;
1833#endif
884 1834
885 ev_ref (EV_A); 1835 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev); 1836 ev_io_stop (EV_A_ &pipe_w);
887 close (sigpipe [0]);
888 close (sigpipe [1]);
889 1837
890 while (pipe (sigpipe)) 1838#if EV_USE_EVENTFD
891 syserr ("(libev) error creating pipe"); 1839 if (evfd >= 0)
1840 close (evfd);
1841#endif
892 1842
1843 if (evpipe [0] >= 0)
1844 {
1845 EV_WIN32_CLOSE_FD (evpipe [0]);
1846 EV_WIN32_CLOSE_FD (evpipe [1]);
1847 }
1848
1849#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
893 siginit (EV_A); 1850 evpipe_init (EV_A);
1851 /* now iterate over everything, in case we missed something */
1852 pipecb (EV_A_ &pipe_w, EV_READ);
1853#endif
894 } 1854 }
895 1855
896 postfork = 0; 1856 postfork = 0;
897} 1857}
898 1858
899#if EV_MULTIPLICITY 1859#if EV_MULTIPLICITY
1860
900struct ev_loop * 1861struct ev_loop *
901ev_loop_new (unsigned int flags) 1862ev_loop_new (unsigned int flags)
902{ 1863{
903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1864 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
904 1865
905 memset (loop, 0, sizeof (struct ev_loop)); 1866 memset (EV_A, 0, sizeof (struct ev_loop));
906
907 loop_init (EV_A_ flags); 1867 loop_init (EV_A_ flags);
908 1868
909 if (ev_method (EV_A)) 1869 if (ev_backend (EV_A))
910 return loop; 1870 return EV_A;
911 1871
912 return 0; 1872 return 0;
913} 1873}
914 1874
915void 1875void
920} 1880}
921 1881
922void 1882void
923ev_loop_fork (EV_P) 1883ev_loop_fork (EV_P)
924{ 1884{
925 postfork = 1; 1885 postfork = 1; /* must be in line with ev_default_fork */
926} 1886}
1887#endif /* multiplicity */
927 1888
1889#if EV_VERIFY
1890static void noinline
1891verify_watcher (EV_P_ W w)
1892{
1893 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1894
1895 if (w->pending)
1896 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1897}
1898
1899static void noinline
1900verify_heap (EV_P_ ANHE *heap, int N)
1901{
1902 int i;
1903
1904 for (i = HEAP0; i < N + HEAP0; ++i)
1905 {
1906 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1907 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1908 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1909
1910 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1911 }
1912}
1913
1914static void noinline
1915array_verify (EV_P_ W *ws, int cnt)
1916{
1917 while (cnt--)
1918 {
1919 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1920 verify_watcher (EV_A_ ws [cnt]);
1921 }
1922}
1923#endif
1924
1925#if EV_FEATURE_API
1926void
1927ev_verify (EV_P)
1928{
1929#if EV_VERIFY
1930 int i;
1931 WL w;
1932
1933 assert (activecnt >= -1);
1934
1935 assert (fdchangemax >= fdchangecnt);
1936 for (i = 0; i < fdchangecnt; ++i)
1937 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1938
1939 assert (anfdmax >= 0);
1940 for (i = 0; i < anfdmax; ++i)
1941 for (w = anfds [i].head; w; w = w->next)
1942 {
1943 verify_watcher (EV_A_ (W)w);
1944 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1945 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1946 }
1947
1948 assert (timermax >= timercnt);
1949 verify_heap (EV_A_ timers, timercnt);
1950
1951#if EV_PERIODIC_ENABLE
1952 assert (periodicmax >= periodiccnt);
1953 verify_heap (EV_A_ periodics, periodiccnt);
1954#endif
1955
1956 for (i = NUMPRI; i--; )
1957 {
1958 assert (pendingmax [i] >= pendingcnt [i]);
1959#if EV_IDLE_ENABLE
1960 assert (idleall >= 0);
1961 assert (idlemax [i] >= idlecnt [i]);
1962 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1963#endif
1964 }
1965
1966#if EV_FORK_ENABLE
1967 assert (forkmax >= forkcnt);
1968 array_verify (EV_A_ (W *)forks, forkcnt);
1969#endif
1970
1971#if EV_ASYNC_ENABLE
1972 assert (asyncmax >= asynccnt);
1973 array_verify (EV_A_ (W *)asyncs, asynccnt);
1974#endif
1975
1976#if EV_PREPARE_ENABLE
1977 assert (preparemax >= preparecnt);
1978 array_verify (EV_A_ (W *)prepares, preparecnt);
1979#endif
1980
1981#if EV_CHECK_ENABLE
1982 assert (checkmax >= checkcnt);
1983 array_verify (EV_A_ (W *)checks, checkcnt);
1984#endif
1985
1986# if 0
1987#if EV_CHILD_ENABLE
1988 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1989 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1990#endif
1991# endif
1992#endif
1993}
928#endif 1994#endif
929 1995
930#if EV_MULTIPLICITY 1996#if EV_MULTIPLICITY
931struct ev_loop * 1997struct ev_loop *
932ev_default_loop_init (unsigned int flags) 1998ev_default_loop_init (unsigned int flags)
933#else 1999#else
934int 2000int
935ev_default_loop (unsigned int flags) 2001ev_default_loop (unsigned int flags)
936#endif 2002#endif
937{ 2003{
938 if (sigpipe [0] == sigpipe [1])
939 if (pipe (sigpipe))
940 return 0;
941
942 if (!ev_default_loop_ptr) 2004 if (!ev_default_loop_ptr)
943 { 2005 {
944#if EV_MULTIPLICITY 2006#if EV_MULTIPLICITY
945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2007 EV_P = ev_default_loop_ptr = &default_loop_struct;
946#else 2008#else
947 ev_default_loop_ptr = 1; 2009 ev_default_loop_ptr = 1;
948#endif 2010#endif
949 2011
950 loop_init (EV_A_ flags); 2012 loop_init (EV_A_ flags);
951 2013
952 if (ev_method (EV_A)) 2014 if (ev_backend (EV_A))
953 { 2015 {
954 siginit (EV_A); 2016#if EV_CHILD_ENABLE
955
956#ifndef _WIN32
957 ev_signal_init (&childev, childcb, SIGCHLD); 2017 ev_signal_init (&childev, childcb, SIGCHLD);
958 ev_set_priority (&childev, EV_MAXPRI); 2018 ev_set_priority (&childev, EV_MAXPRI);
959 ev_signal_start (EV_A_ &childev); 2019 ev_signal_start (EV_A_ &childev);
960 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2020 ev_unref (EV_A); /* child watcher should not keep loop alive */
961#endif 2021#endif
969 2029
970void 2030void
971ev_default_destroy (void) 2031ev_default_destroy (void)
972{ 2032{
973#if EV_MULTIPLICITY 2033#if EV_MULTIPLICITY
974 struct ev_loop *loop = ev_default_loop_ptr; 2034 EV_P = ev_default_loop_ptr;
975#endif 2035#endif
976 2036
977#ifndef _WIN32 2037 ev_default_loop_ptr = 0;
2038
2039#if EV_CHILD_ENABLE
978 ev_ref (EV_A); /* child watcher */ 2040 ev_ref (EV_A); /* child watcher */
979 ev_signal_stop (EV_A_ &childev); 2041 ev_signal_stop (EV_A_ &childev);
980#endif 2042#endif
981 2043
982 ev_ref (EV_A); /* signal watcher */
983 ev_io_stop (EV_A_ &sigev);
984
985 close (sigpipe [0]); sigpipe [0] = 0;
986 close (sigpipe [1]); sigpipe [1] = 0;
987
988 loop_destroy (EV_A); 2044 loop_destroy (EV_A);
989} 2045}
990 2046
991void 2047void
992ev_default_fork (void) 2048ev_default_fork (void)
993{ 2049{
994#if EV_MULTIPLICITY 2050#if EV_MULTIPLICITY
995 struct ev_loop *loop = ev_default_loop_ptr; 2051 EV_P = ev_default_loop_ptr;
996#endif 2052#endif
997 2053
998 if (method) 2054 postfork = 1; /* must be in line with ev_loop_fork */
999 postfork = 1;
1000} 2055}
1001 2056
1002/*****************************************************************************/ 2057/*****************************************************************************/
1003 2058
1004static int 2059void
1005any_pending (EV_P) 2060ev_invoke (EV_P_ void *w, int revents)
2061{
2062 EV_CB_INVOKE ((W)w, revents);
2063}
2064
2065unsigned int
2066ev_pending_count (EV_P)
1006{ 2067{
1007 int pri; 2068 int pri;
2069 unsigned int count = 0;
1008 2070
1009 for (pri = NUMPRI; pri--; ) 2071 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri]) 2072 count += pendingcnt [pri];
1011 return 1;
1012 2073
1013 return 0; 2074 return count;
1014} 2075}
1015 2076
1016inline void 2077void noinline
1017call_pending (EV_P) 2078ev_invoke_pending (EV_P)
1018{ 2079{
1019 int pri; 2080 int pri;
1020 2081
1021 for (pri = NUMPRI; pri--; ) 2082 for (pri = NUMPRI; pri--; )
1022 while (pendingcnt [pri]) 2083 while (pendingcnt [pri])
1023 { 2084 {
1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2085 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1025 2086
1026 if (expect_true (p->w)) 2087 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1027 { 2088 /* ^ this is no longer true, as pending_w could be here */
2089
1028 p->w->pending = 0; 2090 p->w->pending = 0;
1029 EV_CB_INVOKE (p->w, p->events); 2091 EV_CB_INVOKE (p->w, p->events);
1030 } 2092 EV_FREQUENT_CHECK;
1031 } 2093 }
1032} 2094}
1033 2095
2096#if EV_IDLE_ENABLE
2097/* make idle watchers pending. this handles the "call-idle */
2098/* only when higher priorities are idle" logic */
1034inline void 2099inline_size void
2100idle_reify (EV_P)
2101{
2102 if (expect_false (idleall))
2103 {
2104 int pri;
2105
2106 for (pri = NUMPRI; pri--; )
2107 {
2108 if (pendingcnt [pri])
2109 break;
2110
2111 if (idlecnt [pri])
2112 {
2113 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2114 break;
2115 }
2116 }
2117 }
2118}
2119#endif
2120
2121/* make timers pending */
2122inline_size void
1035timers_reify (EV_P) 2123timers_reify (EV_P)
1036{ 2124{
2125 EV_FREQUENT_CHECK;
2126
1037 while (timercnt && ((WT)timers [0])->at <= mn_now) 2127 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1038 { 2128 {
1039 struct ev_timer *w = timers [0]; 2129 do
1040
1041 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1042
1043 /* first reschedule or stop timer */
1044 if (w->repeat)
1045 { 2130 {
2131 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2132
2133 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2134
2135 /* first reschedule or stop timer */
2136 if (w->repeat)
2137 {
2138 ev_at (w) += w->repeat;
2139 if (ev_at (w) < mn_now)
2140 ev_at (w) = mn_now;
2141
1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2142 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047 2143
1048 ((WT)w)->at += w->repeat; 2144 ANHE_at_cache (timers [HEAP0]);
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
1052 downheap ((WT *)timers, timercnt, 0); 2145 downheap (timers, timercnt, HEAP0);
2146 }
2147 else
2148 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2149
2150 EV_FREQUENT_CHECK;
2151 feed_reverse (EV_A_ (W)w);
1053 } 2152 }
1054 else 2153 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1056 2154
1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2155 feed_reverse_done (EV_A_ EV_TIMER);
1058 } 2156 }
1059} 2157}
1060 2158
1061#if EV_PERIODICS 2159#if EV_PERIODIC_ENABLE
2160/* make periodics pending */
1062inline void 2161inline_size void
1063periodics_reify (EV_P) 2162periodics_reify (EV_P)
1064{ 2163{
2164 EV_FREQUENT_CHECK;
2165
1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2166 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1066 { 2167 {
1067 struct ev_periodic *w = periodics [0]; 2168 int feed_count = 0;
1068 2169
2170 do
2171 {
2172 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2173
1069 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2174 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1070 2175
1071 /* first reschedule or stop timer */ 2176 /* first reschedule or stop timer */
2177 if (w->reschedule_cb)
2178 {
2179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2180
2181 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2182
2183 ANHE_at_cache (periodics [HEAP0]);
2184 downheap (periodics, periodiccnt, HEAP0);
2185 }
2186 else if (w->interval)
2187 {
2188 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2189 /* if next trigger time is not sufficiently in the future, put it there */
2190 /* this might happen because of floating point inexactness */
2191 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2192 {
2193 ev_at (w) += w->interval;
2194
2195 /* if interval is unreasonably low we might still have a time in the past */
2196 /* so correct this. this will make the periodic very inexact, but the user */
2197 /* has effectively asked to get triggered more often than possible */
2198 if (ev_at (w) < ev_rt_now)
2199 ev_at (w) = ev_rt_now;
2200 }
2201
2202 ANHE_at_cache (periodics [HEAP0]);
2203 downheap (periodics, periodiccnt, HEAP0);
2204 }
2205 else
2206 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2207
2208 EV_FREQUENT_CHECK;
2209 feed_reverse (EV_A_ (W)w);
2210 }
2211 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2212
2213 feed_reverse_done (EV_A_ EV_PERIODIC);
2214 }
2215}
2216
2217/* simply recalculate all periodics */
2218/* TODO: maybe ensure that at least one event happens when jumping forward? */
2219static void noinline
2220periodics_reschedule (EV_P)
2221{
2222 int i;
2223
2224 /* adjust periodics after time jump */
2225 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2226 {
2227 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2228
1072 if (w->reschedule_cb) 2229 if (w->reschedule_cb)
2230 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2231 else if (w->interval)
2232 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2233
2234 ANHE_at_cache (periodics [i]);
2235 }
2236
2237 reheap (periodics, periodiccnt);
2238}
2239#endif
2240
2241/* adjust all timers by a given offset */
2242static void noinline
2243timers_reschedule (EV_P_ ev_tstamp adjust)
2244{
2245 int i;
2246
2247 for (i = 0; i < timercnt; ++i)
2248 {
2249 ANHE *he = timers + i + HEAP0;
2250 ANHE_w (*he)->at += adjust;
2251 ANHE_at_cache (*he);
2252 }
2253}
2254
2255/* fetch new monotonic and realtime times from the kernel */
2256/* also detect if there was a timejump, and act accordingly */
2257inline_speed void
2258time_update (EV_P_ ev_tstamp max_block)
2259{
2260#if EV_USE_MONOTONIC
2261 if (expect_true (have_monotonic))
2262 {
2263 int i;
2264 ev_tstamp odiff = rtmn_diff;
2265
2266 mn_now = get_clock ();
2267
2268 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2269 /* interpolate in the meantime */
2270 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1073 { 2271 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2272 ev_rt_now = rtmn_diff + mn_now;
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2273 return;
1076 downheap ((WT *)periodics, periodiccnt, 0);
1077 } 2274 }
1078 else if (w->interval)
1079 {
1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1082 downheap ((WT *)periodics, periodiccnt, 0);
1083 }
1084 else
1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1086 2275
1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1088 }
1089}
1090
1091static void
1092periodics_reschedule (EV_P)
1093{
1094 int i;
1095
1096 /* adjust periodics after time jump */
1097 for (i = 0; i < periodiccnt; ++i)
1098 {
1099 struct ev_periodic *w = periodics [i];
1100
1101 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1103 else if (w->interval)
1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1105 }
1106
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
1110}
1111#endif
1112
1113inline int
1114time_update_monotonic (EV_P)
1115{
1116 mn_now = get_clock ();
1117
1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1119 {
1120 ev_rt_now = rtmn_diff + mn_now;
1121 return 0;
1122 }
1123 else
1124 {
1125 now_floor = mn_now; 2276 now_floor = mn_now;
1126 ev_rt_now = ev_time (); 2277 ev_rt_now = ev_time ();
1127 return 1;
1128 }
1129}
1130 2278
1131inline void 2279 /* loop a few times, before making important decisions.
1132time_update (EV_P) 2280 * on the choice of "4": one iteration isn't enough,
1133{ 2281 * in case we get preempted during the calls to
1134 int i; 2282 * ev_time and get_clock. a second call is almost guaranteed
1135 2283 * to succeed in that case, though. and looping a few more times
1136#if EV_USE_MONOTONIC 2284 * doesn't hurt either as we only do this on time-jumps or
1137 if (expect_true (have_monotonic)) 2285 * in the unlikely event of having been preempted here.
1138 { 2286 */
1139 if (time_update_monotonic (EV_A)) 2287 for (i = 4; --i; )
1140 { 2288 {
1141 ev_tstamp odiff = rtmn_diff;
1142
1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1144 {
1145 rtmn_diff = ev_rt_now - mn_now; 2289 rtmn_diff = ev_rt_now - mn_now;
1146 2290
1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2291 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1148 return; /* all is well */ 2292 return; /* all is well */
1149 2293
1150 ev_rt_now = ev_time (); 2294 ev_rt_now = ev_time ();
1151 mn_now = get_clock (); 2295 mn_now = get_clock ();
1152 now_floor = mn_now; 2296 now_floor = mn_now;
1153 } 2297 }
1154 2298
2299 /* no timer adjustment, as the monotonic clock doesn't jump */
2300 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1155# if EV_PERIODICS 2301# if EV_PERIODIC_ENABLE
2302 periodics_reschedule (EV_A);
2303# endif
2304 }
2305 else
2306#endif
2307 {
2308 ev_rt_now = ev_time ();
2309
2310 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2311 {
2312 /* adjust timers. this is easy, as the offset is the same for all of them */
2313 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2314#if EV_PERIODIC_ENABLE
1156 periodics_reschedule (EV_A); 2315 periodics_reschedule (EV_A);
1157# endif 2316#endif
1158 /* no timer adjustment, as the monotonic clock doesn't jump */
1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1160 } 2317 }
1161 }
1162 else
1163#endif
1164 {
1165 ev_rt_now = ev_time ();
1166
1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1168 {
1169#if EV_PERIODICS
1170 periodics_reschedule (EV_A);
1171#endif
1172
1173 /* adjust timers. this is easy, as the offset is the same for all */
1174 for (i = 0; i < timercnt; ++i)
1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
1176 }
1177 2318
1178 mn_now = ev_rt_now; 2319 mn_now = ev_rt_now;
1179 } 2320 }
1180} 2321}
1181 2322
1182void 2323void
1183ev_ref (EV_P)
1184{
1185 ++activecnt;
1186}
1187
1188void
1189ev_unref (EV_P)
1190{
1191 --activecnt;
1192}
1193
1194static int loop_done;
1195
1196void
1197ev_loop (EV_P_ int flags) 2324ev_run (EV_P_ int flags)
1198{ 2325{
1199 double block; 2326#if EV_FEATURE_API
1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2327 ++loop_depth;
2328#endif
1201 2329
1202 while (activecnt) 2330 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2331
2332 loop_done = EVBREAK_CANCEL;
2333
2334 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2335
2336 do
1203 { 2337 {
2338#if EV_VERIFY >= 2
2339 ev_verify (EV_A);
2340#endif
2341
2342#ifndef _WIN32
2343 if (expect_false (curpid)) /* penalise the forking check even more */
2344 if (expect_false (getpid () != curpid))
2345 {
2346 curpid = getpid ();
2347 postfork = 1;
2348 }
2349#endif
2350
2351#if EV_FORK_ENABLE
2352 /* we might have forked, so queue fork handlers */
2353 if (expect_false (postfork))
2354 if (forkcnt)
2355 {
2356 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2357 EV_INVOKE_PENDING;
2358 }
2359#endif
2360
2361#if EV_PREPARE_ENABLE
1204 /* queue check watchers (and execute them) */ 2362 /* queue prepare watchers (and execute them) */
1205 if (expect_false (preparecnt)) 2363 if (expect_false (preparecnt))
1206 { 2364 {
1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2365 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1208 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
1209 } 2367 }
2368#endif
2369
2370 if (expect_false (loop_done))
2371 break;
1210 2372
1211 /* we might have forked, so reify kernel state if necessary */ 2373 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork)) 2374 if (expect_false (postfork))
1213 loop_fork (EV_A); 2375 loop_fork (EV_A);
1214 2376
1215 /* update fd-related kernel structures */ 2377 /* update fd-related kernel structures */
1216 fd_reify (EV_A); 2378 fd_reify (EV_A);
1217 2379
1218 /* calculate blocking time */ 2380 /* calculate blocking time */
2381 {
2382 ev_tstamp waittime = 0.;
2383 ev_tstamp sleeptime = 0.;
1219 2384
1220 /* we only need this for !monotonic clock or timers, but as we basically 2385 /* remember old timestamp for io_blocktime calculation */
1221 always have timers, we just calculate it always */ 2386 ev_tstamp prev_mn_now = mn_now;
1222#if EV_USE_MONOTONIC 2387
1223 if (expect_true (have_monotonic)) 2388 /* update time to cancel out callback processing overhead */
1224 time_update_monotonic (EV_A); 2389 time_update (EV_A_ 1e100);
1225 else 2390
1226#endif 2391 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1227 { 2392 {
1228 ev_rt_now = ev_time ();
1229 mn_now = ev_rt_now;
1230 }
1231
1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
1233 block = 0.;
1234 else
1235 {
1236 block = MAX_BLOCKTIME; 2393 waittime = MAX_BLOCKTIME;
1237 2394
1238 if (timercnt) 2395 if (timercnt)
1239 { 2396 {
1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2397 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1241 if (block > to) block = to; 2398 if (waittime > to) waittime = to;
1242 } 2399 }
1243 2400
1244#if EV_PERIODICS 2401#if EV_PERIODIC_ENABLE
1245 if (periodiccnt) 2402 if (periodiccnt)
1246 { 2403 {
1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2404 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1248 if (block > to) block = to; 2405 if (waittime > to) waittime = to;
1249 } 2406 }
1250#endif 2407#endif
1251 2408
1252 if (expect_false (block < 0.)) block = 0.; 2409 /* don't let timeouts decrease the waittime below timeout_blocktime */
2410 if (expect_false (waittime < timeout_blocktime))
2411 waittime = timeout_blocktime;
2412
2413 /* extra check because io_blocktime is commonly 0 */
2414 if (expect_false (io_blocktime))
2415 {
2416 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2417
2418 if (sleeptime > waittime - backend_fudge)
2419 sleeptime = waittime - backend_fudge;
2420
2421 if (expect_true (sleeptime > 0.))
2422 {
2423 ev_sleep (sleeptime);
2424 waittime -= sleeptime;
2425 }
2426 }
1253 } 2427 }
1254 2428
1255 method_poll (EV_A_ block); 2429#if EV_FEATURE_API
2430 ++loop_count;
2431#endif
2432 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2433 backend_poll (EV_A_ waittime);
2434 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1256 2435
1257 /* update ev_rt_now, do magic */ 2436 /* update ev_rt_now, do magic */
1258 time_update (EV_A); 2437 time_update (EV_A_ waittime + sleeptime);
2438 }
1259 2439
1260 /* queue pending timers and reschedule them */ 2440 /* queue pending timers and reschedule them */
1261 timers_reify (EV_A); /* relative timers called last */ 2441 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS 2442#if EV_PERIODIC_ENABLE
1263 periodics_reify (EV_A); /* absolute timers called first */ 2443 periodics_reify (EV_A); /* absolute timers called first */
1264#endif 2444#endif
1265 2445
2446#if EV_IDLE_ENABLE
1266 /* queue idle watchers unless io or timers are pending */ 2447 /* queue idle watchers unless other events are pending */
1267 if (idlecnt && !any_pending (EV_A)) 2448 idle_reify (EV_A);
1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2449#endif
1269 2450
2451#if EV_CHECK_ENABLE
1270 /* queue check watchers, to be executed first */ 2452 /* queue check watchers, to be executed first */
1271 if (expect_false (checkcnt)) 2453 if (expect_false (checkcnt))
1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2454 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2455#endif
1273 2456
1274 call_pending (EV_A); 2457 EV_INVOKE_PENDING;
1275
1276 if (expect_false (loop_done))
1277 break;
1278 } 2458 }
2459 while (expect_true (
2460 activecnt
2461 && !loop_done
2462 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2463 ));
1279 2464
1280 if (loop_done != 2) 2465 if (loop_done == EVBREAK_ONE)
1281 loop_done = 0; 2466 loop_done = EVBREAK_CANCEL;
1282}
1283 2467
2468#if EV_FEATURE_API
2469 --loop_depth;
2470#endif
2471}
2472
1284void 2473void
1285ev_unloop (EV_P_ int how) 2474ev_break (EV_P_ int how)
1286{ 2475{
1287 loop_done = how; 2476 loop_done = how;
1288} 2477}
1289 2478
2479void
2480ev_ref (EV_P)
2481{
2482 ++activecnt;
2483}
2484
2485void
2486ev_unref (EV_P)
2487{
2488 --activecnt;
2489}
2490
2491void
2492ev_now_update (EV_P)
2493{
2494 time_update (EV_A_ 1e100);
2495}
2496
2497void
2498ev_suspend (EV_P)
2499{
2500 ev_now_update (EV_A);
2501}
2502
2503void
2504ev_resume (EV_P)
2505{
2506 ev_tstamp mn_prev = mn_now;
2507
2508 ev_now_update (EV_A);
2509 timers_reschedule (EV_A_ mn_now - mn_prev);
2510#if EV_PERIODIC_ENABLE
2511 /* TODO: really do this? */
2512 periodics_reschedule (EV_A);
2513#endif
2514}
2515
1290/*****************************************************************************/ 2516/*****************************************************************************/
2517/* singly-linked list management, used when the expected list length is short */
1291 2518
1292inline void 2519inline_size void
1293wlist_add (WL *head, WL elem) 2520wlist_add (WL *head, WL elem)
1294{ 2521{
1295 elem->next = *head; 2522 elem->next = *head;
1296 *head = elem; 2523 *head = elem;
1297} 2524}
1298 2525
1299inline void 2526inline_size void
1300wlist_del (WL *head, WL elem) 2527wlist_del (WL *head, WL elem)
1301{ 2528{
1302 while (*head) 2529 while (*head)
1303 { 2530 {
1304 if (*head == elem) 2531 if (expect_true (*head == elem))
1305 { 2532 {
1306 *head = elem->next; 2533 *head = elem->next;
1307 return; 2534 break;
1308 } 2535 }
1309 2536
1310 head = &(*head)->next; 2537 head = &(*head)->next;
1311 } 2538 }
1312} 2539}
1313 2540
2541/* internal, faster, version of ev_clear_pending */
1314inline void 2542inline_speed void
1315ev_clear_pending (EV_P_ W w) 2543clear_pending (EV_P_ W w)
1316{ 2544{
1317 if (w->pending) 2545 if (w->pending)
1318 { 2546 {
1319 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2547 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1320 w->pending = 0; 2548 w->pending = 0;
1321 } 2549 }
1322} 2550}
1323 2551
2552int
2553ev_clear_pending (EV_P_ void *w)
2554{
2555 W w_ = (W)w;
2556 int pending = w_->pending;
2557
2558 if (expect_true (pending))
2559 {
2560 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2561 p->w = (W)&pending_w;
2562 w_->pending = 0;
2563 return p->events;
2564 }
2565 else
2566 return 0;
2567}
2568
1324inline void 2569inline_size void
2570pri_adjust (EV_P_ W w)
2571{
2572 int pri = ev_priority (w);
2573 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2574 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2575 ev_set_priority (w, pri);
2576}
2577
2578inline_speed void
1325ev_start (EV_P_ W w, int active) 2579ev_start (EV_P_ W w, int active)
1326{ 2580{
1327 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2581 pri_adjust (EV_A_ w);
1328 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1329
1330 w->active = active; 2582 w->active = active;
1331 ev_ref (EV_A); 2583 ev_ref (EV_A);
1332} 2584}
1333 2585
1334inline void 2586inline_size void
1335ev_stop (EV_P_ W w) 2587ev_stop (EV_P_ W w)
1336{ 2588{
1337 ev_unref (EV_A); 2589 ev_unref (EV_A);
1338 w->active = 0; 2590 w->active = 0;
1339} 2591}
1340 2592
1341/*****************************************************************************/ 2593/*****************************************************************************/
1342 2594
1343void 2595void noinline
1344ev_io_start (EV_P_ struct ev_io *w) 2596ev_io_start (EV_P_ ev_io *w)
1345{ 2597{
1346 int fd = w->fd; 2598 int fd = w->fd;
1347 2599
1348 if (expect_false (ev_is_active (w))) 2600 if (expect_false (ev_is_active (w)))
1349 return; 2601 return;
1350 2602
1351 assert (("ev_io_start called with negative fd", fd >= 0)); 2603 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2604 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2605
2606 EV_FREQUENT_CHECK;
1352 2607
1353 ev_start (EV_A_ (W)w, 1); 2608 ev_start (EV_A_ (W)w, 1);
1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2609 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1355 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2610 wlist_add (&anfds[fd].head, (WL)w);
1356 2611
1357 fd_change (EV_A_ fd); 2612 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1358} 2613 w->events &= ~EV__IOFDSET;
1359 2614
1360void 2615 EV_FREQUENT_CHECK;
2616}
2617
2618void noinline
1361ev_io_stop (EV_P_ struct ev_io *w) 2619ev_io_stop (EV_P_ ev_io *w)
1362{ 2620{
1363 ev_clear_pending (EV_A_ (W)w); 2621 clear_pending (EV_A_ (W)w);
1364 if (expect_false (!ev_is_active (w))) 2622 if (expect_false (!ev_is_active (w)))
1365 return; 2623 return;
1366 2624
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2625 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1368 2626
2627 EV_FREQUENT_CHECK;
2628
1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2629 wlist_del (&anfds[w->fd].head, (WL)w);
1370 ev_stop (EV_A_ (W)w); 2630 ev_stop (EV_A_ (W)w);
1371 2631
1372 fd_change (EV_A_ w->fd); 2632 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1373}
1374 2633
1375void 2634 EV_FREQUENT_CHECK;
2635}
2636
2637void noinline
1376ev_timer_start (EV_P_ struct ev_timer *w) 2638ev_timer_start (EV_P_ ev_timer *w)
1377{ 2639{
1378 if (expect_false (ev_is_active (w))) 2640 if (expect_false (ev_is_active (w)))
1379 return; 2641 return;
1380 2642
1381 ((WT)w)->at += mn_now; 2643 ev_at (w) += mn_now;
1382 2644
1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2645 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1384 2646
2647 EV_FREQUENT_CHECK;
2648
2649 ++timercnt;
1385 ev_start (EV_A_ (W)w, ++timercnt); 2650 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2651 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1387 timers [timercnt - 1] = w; 2652 ANHE_w (timers [ev_active (w)]) = (WT)w;
1388 upheap ((WT *)timers, timercnt - 1); 2653 ANHE_at_cache (timers [ev_active (w)]);
2654 upheap (timers, ev_active (w));
1389 2655
2656 EV_FREQUENT_CHECK;
2657
1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2658 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1391} 2659}
1392 2660
1393void 2661void noinline
1394ev_timer_stop (EV_P_ struct ev_timer *w) 2662ev_timer_stop (EV_P_ ev_timer *w)
1395{ 2663{
1396 ev_clear_pending (EV_A_ (W)w); 2664 clear_pending (EV_A_ (W)w);
1397 if (expect_false (!ev_is_active (w))) 2665 if (expect_false (!ev_is_active (w)))
1398 return; 2666 return;
1399 2667
2668 EV_FREQUENT_CHECK;
2669
2670 {
2671 int active = ev_active (w);
2672
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2673 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1401 2674
2675 --timercnt;
2676
1402 if (expect_true (((W)w)->active < timercnt--)) 2677 if (expect_true (active < timercnt + HEAP0))
1403 { 2678 {
1404 timers [((W)w)->active - 1] = timers [timercnt]; 2679 timers [active] = timers [timercnt + HEAP0];
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2680 adjustheap (timers, timercnt, active);
1406 } 2681 }
2682 }
1407 2683
1408 ((WT)w)->at -= mn_now; 2684 ev_at (w) -= mn_now;
1409 2685
1410 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
1411}
1412 2687
1413void 2688 EV_FREQUENT_CHECK;
2689}
2690
2691void noinline
1414ev_timer_again (EV_P_ struct ev_timer *w) 2692ev_timer_again (EV_P_ ev_timer *w)
1415{ 2693{
2694 EV_FREQUENT_CHECK;
2695
1416 if (ev_is_active (w)) 2696 if (ev_is_active (w))
1417 { 2697 {
1418 if (w->repeat) 2698 if (w->repeat)
1419 { 2699 {
1420 ((WT)w)->at = mn_now + w->repeat; 2700 ev_at (w) = mn_now + w->repeat;
2701 ANHE_at_cache (timers [ev_active (w)]);
1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2702 adjustheap (timers, timercnt, ev_active (w));
1422 } 2703 }
1423 else 2704 else
1424 ev_timer_stop (EV_A_ w); 2705 ev_timer_stop (EV_A_ w);
1425 } 2706 }
1426 else if (w->repeat) 2707 else if (w->repeat)
1427 { 2708 {
1428 w->at = w->repeat; 2709 ev_at (w) = w->repeat;
1429 ev_timer_start (EV_A_ w); 2710 ev_timer_start (EV_A_ w);
1430 } 2711 }
1431}
1432 2712
2713 EV_FREQUENT_CHECK;
2714}
2715
2716ev_tstamp
2717ev_timer_remaining (EV_P_ ev_timer *w)
2718{
2719 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2720}
2721
1433#if EV_PERIODICS 2722#if EV_PERIODIC_ENABLE
1434void 2723void noinline
1435ev_periodic_start (EV_P_ struct ev_periodic *w) 2724ev_periodic_start (EV_P_ ev_periodic *w)
1436{ 2725{
1437 if (expect_false (ev_is_active (w))) 2726 if (expect_false (ev_is_active (w)))
1438 return; 2727 return;
1439 2728
1440 if (w->reschedule_cb) 2729 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2730 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval) 2731 else if (w->interval)
1443 { 2732 {
1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2733 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1445 /* this formula differs from the one in periodic_reify because we do not always round up */ 2734 /* this formula differs from the one in periodic_reify because we do not always round up */
1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2735 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1447 } 2736 }
2737 else
2738 ev_at (w) = w->offset;
1448 2739
2740 EV_FREQUENT_CHECK;
2741
2742 ++periodiccnt;
1449 ev_start (EV_A_ (W)w, ++periodiccnt); 2743 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2744 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1451 periodics [periodiccnt - 1] = w; 2745 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)periodics, periodiccnt - 1); 2746 ANHE_at_cache (periodics [ev_active (w)]);
2747 upheap (periodics, ev_active (w));
1453 2748
2749 EV_FREQUENT_CHECK;
2750
1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2751 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1455} 2752}
1456 2753
1457void 2754void noinline
1458ev_periodic_stop (EV_P_ struct ev_periodic *w) 2755ev_periodic_stop (EV_P_ ev_periodic *w)
1459{ 2756{
1460 ev_clear_pending (EV_A_ (W)w); 2757 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2758 if (expect_false (!ev_is_active (w)))
1462 return; 2759 return;
1463 2760
2761 EV_FREQUENT_CHECK;
2762
2763 {
2764 int active = ev_active (w);
2765
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2766 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1465 2767
2768 --periodiccnt;
2769
1466 if (expect_true (((W)w)->active < periodiccnt--)) 2770 if (expect_true (active < periodiccnt + HEAP0))
1467 { 2771 {
1468 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2772 periodics [active] = periodics [periodiccnt + HEAP0];
1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2773 adjustheap (periodics, periodiccnt, active);
1470 } 2774 }
2775 }
1471 2776
1472 ev_stop (EV_A_ (W)w); 2777 ev_stop (EV_A_ (W)w);
1473}
1474 2778
1475void 2779 EV_FREQUENT_CHECK;
2780}
2781
2782void noinline
1476ev_periodic_again (EV_P_ struct ev_periodic *w) 2783ev_periodic_again (EV_P_ ev_periodic *w)
1477{ 2784{
1478 /* TODO: use adjustheap and recalculation */ 2785 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w); 2786 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w); 2787 ev_periodic_start (EV_A_ w);
1481} 2788}
1482#endif 2789#endif
1483 2790
1484void 2791#ifndef SA_RESTART
1485ev_idle_start (EV_P_ struct ev_idle *w) 2792# define SA_RESTART 0
2793#endif
2794
2795#if EV_SIGNAL_ENABLE
2796
2797void noinline
2798ev_signal_start (EV_P_ ev_signal *w)
1486{ 2799{
1487 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
1488 return; 2801 return;
1489 2802
2803 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2804
2805#if EV_MULTIPLICITY
2806 assert (("libev: a signal must not be attached to two different loops",
2807 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2808
2809 signals [w->signum - 1].loop = EV_A;
2810#endif
2811
2812 EV_FREQUENT_CHECK;
2813
2814#if EV_USE_SIGNALFD
2815 if (sigfd == -2)
2816 {
2817 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2818 if (sigfd < 0 && errno == EINVAL)
2819 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2820
2821 if (sigfd >= 0)
2822 {
2823 fd_intern (sigfd); /* doing it twice will not hurt */
2824
2825 sigemptyset (&sigfd_set);
2826
2827 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2828 ev_set_priority (&sigfd_w, EV_MAXPRI);
2829 ev_io_start (EV_A_ &sigfd_w);
2830 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2831 }
2832 }
2833
2834 if (sigfd >= 0)
2835 {
2836 /* TODO: check .head */
2837 sigaddset (&sigfd_set, w->signum);
2838 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2839
2840 signalfd (sigfd, &sigfd_set, 0);
2841 }
2842#endif
2843
1490 ev_start (EV_A_ (W)w, ++idlecnt); 2844 ev_start (EV_A_ (W)w, 1);
1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2845 wlist_add (&signals [w->signum - 1].head, (WL)w);
1492 idles [idlecnt - 1] = w;
1493}
1494 2846
1495void 2847 if (!((WL)w)->next)
1496ev_idle_stop (EV_P_ struct ev_idle *w) 2848# if EV_USE_SIGNALFD
2849 if (sigfd < 0) /*TODO*/
2850# endif
2851 {
2852# ifdef _WIN32
2853 evpipe_init (EV_A);
2854
2855 signal (w->signum, ev_sighandler);
2856# else
2857 struct sigaction sa;
2858
2859 evpipe_init (EV_A);
2860
2861 sa.sa_handler = ev_sighandler;
2862 sigfillset (&sa.sa_mask);
2863 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2864 sigaction (w->signum, &sa, 0);
2865
2866 sigemptyset (&sa.sa_mask);
2867 sigaddset (&sa.sa_mask, w->signum);
2868 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2869#endif
2870 }
2871
2872 EV_FREQUENT_CHECK;
2873}
2874
2875void noinline
2876ev_signal_stop (EV_P_ ev_signal *w)
1497{ 2877{
1498 ev_clear_pending (EV_A_ (W)w); 2878 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 2879 if (expect_false (!ev_is_active (w)))
1500 return; 2880 return;
1501 2881
1502 idles [((W)w)->active - 1] = idles [--idlecnt]; 2882 EV_FREQUENT_CHECK;
2883
2884 wlist_del (&signals [w->signum - 1].head, (WL)w);
1503 ev_stop (EV_A_ (W)w); 2885 ev_stop (EV_A_ (W)w);
1504}
1505 2886
2887 if (!signals [w->signum - 1].head)
2888 {
2889#if EV_MULTIPLICITY
2890 signals [w->signum - 1].loop = 0; /* unattach from signal */
2891#endif
2892#if EV_USE_SIGNALFD
2893 if (sigfd >= 0)
2894 {
2895 sigset_t ss;
2896
2897 sigemptyset (&ss);
2898 sigaddset (&ss, w->signum);
2899 sigdelset (&sigfd_set, w->signum);
2900
2901 signalfd (sigfd, &sigfd_set, 0);
2902 sigprocmask (SIG_UNBLOCK, &ss, 0);
2903 }
2904 else
2905#endif
2906 signal (w->signum, SIG_DFL);
2907 }
2908
2909 EV_FREQUENT_CHECK;
2910}
2911
2912#endif
2913
2914#if EV_CHILD_ENABLE
2915
1506void 2916void
1507ev_prepare_start (EV_P_ struct ev_prepare *w) 2917ev_child_start (EV_P_ ev_child *w)
1508{ 2918{
2919#if EV_MULTIPLICITY
2920 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2921#endif
1509 if (expect_false (ev_is_active (w))) 2922 if (expect_false (ev_is_active (w)))
1510 return; 2923 return;
1511 2924
2925 EV_FREQUENT_CHECK;
2926
1512 ev_start (EV_A_ (W)w, ++preparecnt); 2927 ev_start (EV_A_ (W)w, 1);
1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2928 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1514 prepares [preparecnt - 1] = w;
1515}
1516 2929
2930 EV_FREQUENT_CHECK;
2931}
2932
1517void 2933void
1518ev_prepare_stop (EV_P_ struct ev_prepare *w) 2934ev_child_stop (EV_P_ ev_child *w)
1519{ 2935{
1520 ev_clear_pending (EV_A_ (W)w); 2936 clear_pending (EV_A_ (W)w);
1521 if (expect_false (!ev_is_active (w))) 2937 if (expect_false (!ev_is_active (w)))
1522 return; 2938 return;
1523 2939
1524 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2940 EV_FREQUENT_CHECK;
2941
2942 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1525 ev_stop (EV_A_ (W)w); 2943 ev_stop (EV_A_ (W)w);
1526}
1527 2944
2945 EV_FREQUENT_CHECK;
2946}
2947
2948#endif
2949
2950#if EV_STAT_ENABLE
2951
2952# ifdef _WIN32
2953# undef lstat
2954# define lstat(a,b) _stati64 (a,b)
2955# endif
2956
2957#define DEF_STAT_INTERVAL 5.0074891
2958#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2959#define MIN_STAT_INTERVAL 0.1074891
2960
2961static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2962
2963#if EV_USE_INOTIFY
2964
2965/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2966# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2967
2968static void noinline
2969infy_add (EV_P_ ev_stat *w)
2970{
2971 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2972
2973 if (w->wd >= 0)
2974 {
2975 struct statfs sfs;
2976
2977 /* now local changes will be tracked by inotify, but remote changes won't */
2978 /* unless the filesystem is known to be local, we therefore still poll */
2979 /* also do poll on <2.6.25, but with normal frequency */
2980
2981 if (!fs_2625)
2982 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2983 else if (!statfs (w->path, &sfs)
2984 && (sfs.f_type == 0x1373 /* devfs */
2985 || sfs.f_type == 0xEF53 /* ext2/3 */
2986 || sfs.f_type == 0x3153464a /* jfs */
2987 || sfs.f_type == 0x52654973 /* reiser3 */
2988 || sfs.f_type == 0x01021994 /* tempfs */
2989 || sfs.f_type == 0x58465342 /* xfs */))
2990 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2991 else
2992 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2993 }
2994 else
2995 {
2996 /* can't use inotify, continue to stat */
2997 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2998
2999 /* if path is not there, monitor some parent directory for speedup hints */
3000 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3001 /* but an efficiency issue only */
3002 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3003 {
3004 char path [4096];
3005 strcpy (path, w->path);
3006
3007 do
3008 {
3009 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3010 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3011
3012 char *pend = strrchr (path, '/');
3013
3014 if (!pend || pend == path)
3015 break;
3016
3017 *pend = 0;
3018 w->wd = inotify_add_watch (fs_fd, path, mask);
3019 }
3020 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3021 }
3022 }
3023
3024 if (w->wd >= 0)
3025 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3026
3027 /* now re-arm timer, if required */
3028 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3029 ev_timer_again (EV_A_ &w->timer);
3030 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3031}
3032
3033static void noinline
3034infy_del (EV_P_ ev_stat *w)
3035{
3036 int slot;
3037 int wd = w->wd;
3038
3039 if (wd < 0)
3040 return;
3041
3042 w->wd = -2;
3043 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3044 wlist_del (&fs_hash [slot].head, (WL)w);
3045
3046 /* remove this watcher, if others are watching it, they will rearm */
3047 inotify_rm_watch (fs_fd, wd);
3048}
3049
3050static void noinline
3051infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3052{
3053 if (slot < 0)
3054 /* overflow, need to check for all hash slots */
3055 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3056 infy_wd (EV_A_ slot, wd, ev);
3057 else
3058 {
3059 WL w_;
3060
3061 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3062 {
3063 ev_stat *w = (ev_stat *)w_;
3064 w_ = w_->next; /* lets us remove this watcher and all before it */
3065
3066 if (w->wd == wd || wd == -1)
3067 {
3068 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3069 {
3070 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3071 w->wd = -1;
3072 infy_add (EV_A_ w); /* re-add, no matter what */
3073 }
3074
3075 stat_timer_cb (EV_A_ &w->timer, 0);
3076 }
3077 }
3078 }
3079}
3080
3081static void
3082infy_cb (EV_P_ ev_io *w, int revents)
3083{
3084 char buf [EV_INOTIFY_BUFSIZE];
3085 int ofs;
3086 int len = read (fs_fd, buf, sizeof (buf));
3087
3088 for (ofs = 0; ofs < len; )
3089 {
3090 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3091 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3092 ofs += sizeof (struct inotify_event) + ev->len;
3093 }
3094}
3095
3096inline_size void
3097ev_check_2625 (EV_P)
3098{
3099 /* kernels < 2.6.25 are borked
3100 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3101 */
3102 if (ev_linux_version () < 0x020619)
3103 return;
3104
3105 fs_2625 = 1;
3106}
3107
3108inline_size int
3109infy_newfd (void)
3110{
3111#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3112 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3113 if (fd >= 0)
3114 return fd;
3115#endif
3116 return inotify_init ();
3117}
3118
3119inline_size void
3120infy_init (EV_P)
3121{
3122 if (fs_fd != -2)
3123 return;
3124
3125 fs_fd = -1;
3126
3127 ev_check_2625 (EV_A);
3128
3129 fs_fd = infy_newfd ();
3130
3131 if (fs_fd >= 0)
3132 {
3133 fd_intern (fs_fd);
3134 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3135 ev_set_priority (&fs_w, EV_MAXPRI);
3136 ev_io_start (EV_A_ &fs_w);
3137 ev_unref (EV_A);
3138 }
3139}
3140
3141inline_size void
3142infy_fork (EV_P)
3143{
3144 int slot;
3145
3146 if (fs_fd < 0)
3147 return;
3148
3149 ev_ref (EV_A);
3150 ev_io_stop (EV_A_ &fs_w);
3151 close (fs_fd);
3152 fs_fd = infy_newfd ();
3153
3154 if (fs_fd >= 0)
3155 {
3156 fd_intern (fs_fd);
3157 ev_io_set (&fs_w, fs_fd, EV_READ);
3158 ev_io_start (EV_A_ &fs_w);
3159 ev_unref (EV_A);
3160 }
3161
3162 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3163 {
3164 WL w_ = fs_hash [slot].head;
3165 fs_hash [slot].head = 0;
3166
3167 while (w_)
3168 {
3169 ev_stat *w = (ev_stat *)w_;
3170 w_ = w_->next; /* lets us add this watcher */
3171
3172 w->wd = -1;
3173
3174 if (fs_fd >= 0)
3175 infy_add (EV_A_ w); /* re-add, no matter what */
3176 else
3177 {
3178 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3179 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3180 ev_timer_again (EV_A_ &w->timer);
3181 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3182 }
3183 }
3184 }
3185}
3186
3187#endif
3188
3189#ifdef _WIN32
3190# define EV_LSTAT(p,b) _stati64 (p, b)
3191#else
3192# define EV_LSTAT(p,b) lstat (p, b)
3193#endif
3194
1528void 3195void
1529ev_check_start (EV_P_ struct ev_check *w) 3196ev_stat_stat (EV_P_ ev_stat *w)
3197{
3198 if (lstat (w->path, &w->attr) < 0)
3199 w->attr.st_nlink = 0;
3200 else if (!w->attr.st_nlink)
3201 w->attr.st_nlink = 1;
3202}
3203
3204static void noinline
3205stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3206{
3207 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3208
3209 ev_statdata prev = w->attr;
3210 ev_stat_stat (EV_A_ w);
3211
3212 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3213 if (
3214 prev.st_dev != w->attr.st_dev
3215 || prev.st_ino != w->attr.st_ino
3216 || prev.st_mode != w->attr.st_mode
3217 || prev.st_nlink != w->attr.st_nlink
3218 || prev.st_uid != w->attr.st_uid
3219 || prev.st_gid != w->attr.st_gid
3220 || prev.st_rdev != w->attr.st_rdev
3221 || prev.st_size != w->attr.st_size
3222 || prev.st_atime != w->attr.st_atime
3223 || prev.st_mtime != w->attr.st_mtime
3224 || prev.st_ctime != w->attr.st_ctime
3225 ) {
3226 /* we only update w->prev on actual differences */
3227 /* in case we test more often than invoke the callback, */
3228 /* to ensure that prev is always different to attr */
3229 w->prev = prev;
3230
3231 #if EV_USE_INOTIFY
3232 if (fs_fd >= 0)
3233 {
3234 infy_del (EV_A_ w);
3235 infy_add (EV_A_ w);
3236 ev_stat_stat (EV_A_ w); /* avoid race... */
3237 }
3238 #endif
3239
3240 ev_feed_event (EV_A_ w, EV_STAT);
3241 }
3242}
3243
3244void
3245ev_stat_start (EV_P_ ev_stat *w)
1530{ 3246{
1531 if (expect_false (ev_is_active (w))) 3247 if (expect_false (ev_is_active (w)))
1532 return; 3248 return;
1533 3249
3250 ev_stat_stat (EV_A_ w);
3251
3252 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3253 w->interval = MIN_STAT_INTERVAL;
3254
3255 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3256 ev_set_priority (&w->timer, ev_priority (w));
3257
3258#if EV_USE_INOTIFY
3259 infy_init (EV_A);
3260
3261 if (fs_fd >= 0)
3262 infy_add (EV_A_ w);
3263 else
3264#endif
3265 {
3266 ev_timer_again (EV_A_ &w->timer);
3267 ev_unref (EV_A);
3268 }
3269
1534 ev_start (EV_A_ (W)w, ++checkcnt); 3270 ev_start (EV_A_ (W)w, 1);
1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1536 checks [checkcnt - 1] = w;
1537}
1538 3271
3272 EV_FREQUENT_CHECK;
3273}
3274
1539void 3275void
1540ev_check_stop (EV_P_ struct ev_check *w) 3276ev_stat_stop (EV_P_ ev_stat *w)
1541{ 3277{
1542 ev_clear_pending (EV_A_ (W)w); 3278 clear_pending (EV_A_ (W)w);
1543 if (expect_false (!ev_is_active (w))) 3279 if (expect_false (!ev_is_active (w)))
1544 return; 3280 return;
1545 3281
1546 checks [((W)w)->active - 1] = checks [--checkcnt]; 3282 EV_FREQUENT_CHECK;
3283
3284#if EV_USE_INOTIFY
3285 infy_del (EV_A_ w);
3286#endif
3287
3288 if (ev_is_active (&w->timer))
3289 {
3290 ev_ref (EV_A);
3291 ev_timer_stop (EV_A_ &w->timer);
3292 }
3293
1547 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
1548}
1549 3295
1550#ifndef SA_RESTART 3296 EV_FREQUENT_CHECK;
1551# define SA_RESTART 0 3297}
1552#endif 3298#endif
1553 3299
3300#if EV_IDLE_ENABLE
1554void 3301void
1555ev_signal_start (EV_P_ struct ev_signal *w) 3302ev_idle_start (EV_P_ ev_idle *w)
1556{ 3303{
1557#if EV_MULTIPLICITY
1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1559#endif
1560 if (expect_false (ev_is_active (w))) 3304 if (expect_false (ev_is_active (w)))
1561 return; 3305 return;
1562 3306
1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3307 pri_adjust (EV_A_ (W)w);
1564 3308
3309 EV_FREQUENT_CHECK;
3310
3311 {
3312 int active = ++idlecnt [ABSPRI (w)];
3313
3314 ++idleall;
1565 ev_start (EV_A_ (W)w, 1); 3315 ev_start (EV_A_ (W)w, active);
1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1568 3316
1569 if (!((WL)w)->next) 3317 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1570 { 3318 idles [ABSPRI (w)][active - 1] = w;
1571#if _WIN32
1572 signal (w->signum, sighandler);
1573#else
1574 struct sigaction sa;
1575 sa.sa_handler = sighandler;
1576 sigfillset (&sa.sa_mask);
1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1578 sigaction (w->signum, &sa, 0);
1579#endif
1580 } 3319 }
1581}
1582 3320
3321 EV_FREQUENT_CHECK;
3322}
3323
1583void 3324void
1584ev_signal_stop (EV_P_ struct ev_signal *w) 3325ev_idle_stop (EV_P_ ev_idle *w)
1585{ 3326{
1586 ev_clear_pending (EV_A_ (W)w); 3327 clear_pending (EV_A_ (W)w);
1587 if (expect_false (!ev_is_active (w))) 3328 if (expect_false (!ev_is_active (w)))
1588 return; 3329 return;
1589 3330
1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3331 EV_FREQUENT_CHECK;
3332
3333 {
3334 int active = ev_active (w);
3335
3336 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3337 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3338
1591 ev_stop (EV_A_ (W)w); 3339 ev_stop (EV_A_ (W)w);
3340 --idleall;
3341 }
1592 3342
1593 if (!signals [w->signum - 1].head) 3343 EV_FREQUENT_CHECK;
1594 signal (w->signum, SIG_DFL);
1595} 3344}
1596
1597void
1598ev_child_start (EV_P_ struct ev_child *w)
1599{
1600#if EV_MULTIPLICITY
1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif 3345#endif
3346
3347#if EV_PREPARE_ENABLE
3348void
3349ev_prepare_start (EV_P_ ev_prepare *w)
3350{
1603 if (expect_false (ev_is_active (w))) 3351 if (expect_false (ev_is_active (w)))
1604 return; 3352 return;
1605 3353
3354 EV_FREQUENT_CHECK;
3355
1606 ev_start (EV_A_ (W)w, 1); 3356 ev_start (EV_A_ (W)w, ++preparecnt);
1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1608} 3358 prepares [preparecnt - 1] = w;
1609 3359
3360 EV_FREQUENT_CHECK;
3361}
3362
1610void 3363void
1611ev_child_stop (EV_P_ struct ev_child *w) 3364ev_prepare_stop (EV_P_ ev_prepare *w)
1612{ 3365{
1613 ev_clear_pending (EV_A_ (W)w); 3366 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 3367 if (expect_false (!ev_is_active (w)))
1615 return; 3368 return;
1616 3369
1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3370 EV_FREQUENT_CHECK;
3371
3372 {
3373 int active = ev_active (w);
3374
3375 prepares [active - 1] = prepares [--preparecnt];
3376 ev_active (prepares [active - 1]) = active;
3377 }
3378
1618 ev_stop (EV_A_ (W)w); 3379 ev_stop (EV_A_ (W)w);
3380
3381 EV_FREQUENT_CHECK;
1619} 3382}
3383#endif
3384
3385#if EV_CHECK_ENABLE
3386void
3387ev_check_start (EV_P_ ev_check *w)
3388{
3389 if (expect_false (ev_is_active (w)))
3390 return;
3391
3392 EV_FREQUENT_CHECK;
3393
3394 ev_start (EV_A_ (W)w, ++checkcnt);
3395 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3396 checks [checkcnt - 1] = w;
3397
3398 EV_FREQUENT_CHECK;
3399}
3400
3401void
3402ev_check_stop (EV_P_ ev_check *w)
3403{
3404 clear_pending (EV_A_ (W)w);
3405 if (expect_false (!ev_is_active (w)))
3406 return;
3407
3408 EV_FREQUENT_CHECK;
3409
3410 {
3411 int active = ev_active (w);
3412
3413 checks [active - 1] = checks [--checkcnt];
3414 ev_active (checks [active - 1]) = active;
3415 }
3416
3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
3420}
3421#endif
3422
3423#if EV_EMBED_ENABLE
3424void noinline
3425ev_embed_sweep (EV_P_ ev_embed *w)
3426{
3427 ev_run (w->other, EVRUN_NOWAIT);
3428}
3429
3430static void
3431embed_io_cb (EV_P_ ev_io *io, int revents)
3432{
3433 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3434
3435 if (ev_cb (w))
3436 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3437 else
3438 ev_run (w->other, EVRUN_NOWAIT);
3439}
3440
3441static void
3442embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3443{
3444 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3445
3446 {
3447 EV_P = w->other;
3448
3449 while (fdchangecnt)
3450 {
3451 fd_reify (EV_A);
3452 ev_run (EV_A_ EVRUN_NOWAIT);
3453 }
3454 }
3455}
3456
3457static void
3458embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3459{
3460 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3461
3462 ev_embed_stop (EV_A_ w);
3463
3464 {
3465 EV_P = w->other;
3466
3467 ev_loop_fork (EV_A);
3468 ev_run (EV_A_ EVRUN_NOWAIT);
3469 }
3470
3471 ev_embed_start (EV_A_ w);
3472}
3473
3474#if 0
3475static void
3476embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3477{
3478 ev_idle_stop (EV_A_ idle);
3479}
3480#endif
3481
3482void
3483ev_embed_start (EV_P_ ev_embed *w)
3484{
3485 if (expect_false (ev_is_active (w)))
3486 return;
3487
3488 {
3489 EV_P = w->other;
3490 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3492 }
3493
3494 EV_FREQUENT_CHECK;
3495
3496 ev_set_priority (&w->io, ev_priority (w));
3497 ev_io_start (EV_A_ &w->io);
3498
3499 ev_prepare_init (&w->prepare, embed_prepare_cb);
3500 ev_set_priority (&w->prepare, EV_MINPRI);
3501 ev_prepare_start (EV_A_ &w->prepare);
3502
3503 ev_fork_init (&w->fork, embed_fork_cb);
3504 ev_fork_start (EV_A_ &w->fork);
3505
3506 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3507
3508 ev_start (EV_A_ (W)w, 1);
3509
3510 EV_FREQUENT_CHECK;
3511}
3512
3513void
3514ev_embed_stop (EV_P_ ev_embed *w)
3515{
3516 clear_pending (EV_A_ (W)w);
3517 if (expect_false (!ev_is_active (w)))
3518 return;
3519
3520 EV_FREQUENT_CHECK;
3521
3522 ev_io_stop (EV_A_ &w->io);
3523 ev_prepare_stop (EV_A_ &w->prepare);
3524 ev_fork_stop (EV_A_ &w->fork);
3525
3526 ev_stop (EV_A_ (W)w);
3527
3528 EV_FREQUENT_CHECK;
3529}
3530#endif
3531
3532#if EV_FORK_ENABLE
3533void
3534ev_fork_start (EV_P_ ev_fork *w)
3535{
3536 if (expect_false (ev_is_active (w)))
3537 return;
3538
3539 EV_FREQUENT_CHECK;
3540
3541 ev_start (EV_A_ (W)w, ++forkcnt);
3542 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3543 forks [forkcnt - 1] = w;
3544
3545 EV_FREQUENT_CHECK;
3546}
3547
3548void
3549ev_fork_stop (EV_P_ ev_fork *w)
3550{
3551 clear_pending (EV_A_ (W)w);
3552 if (expect_false (!ev_is_active (w)))
3553 return;
3554
3555 EV_FREQUENT_CHECK;
3556
3557 {
3558 int active = ev_active (w);
3559
3560 forks [active - 1] = forks [--forkcnt];
3561 ev_active (forks [active - 1]) = active;
3562 }
3563
3564 ev_stop (EV_A_ (W)w);
3565
3566 EV_FREQUENT_CHECK;
3567}
3568#endif
3569
3570#if EV_ASYNC_ENABLE
3571void
3572ev_async_start (EV_P_ ev_async *w)
3573{
3574 if (expect_false (ev_is_active (w)))
3575 return;
3576
3577 w->sent = 0;
3578
3579 evpipe_init (EV_A);
3580
3581 EV_FREQUENT_CHECK;
3582
3583 ev_start (EV_A_ (W)w, ++asynccnt);
3584 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3585 asyncs [asynccnt - 1] = w;
3586
3587 EV_FREQUENT_CHECK;
3588}
3589
3590void
3591ev_async_stop (EV_P_ ev_async *w)
3592{
3593 clear_pending (EV_A_ (W)w);
3594 if (expect_false (!ev_is_active (w)))
3595 return;
3596
3597 EV_FREQUENT_CHECK;
3598
3599 {
3600 int active = ev_active (w);
3601
3602 asyncs [active - 1] = asyncs [--asynccnt];
3603 ev_active (asyncs [active - 1]) = active;
3604 }
3605
3606 ev_stop (EV_A_ (W)w);
3607
3608 EV_FREQUENT_CHECK;
3609}
3610
3611void
3612ev_async_send (EV_P_ ev_async *w)
3613{
3614 w->sent = 1;
3615 evpipe_write (EV_A_ &async_pending);
3616}
3617#endif
1620 3618
1621/*****************************************************************************/ 3619/*****************************************************************************/
1622 3620
1623struct ev_once 3621struct ev_once
1624{ 3622{
1625 struct ev_io io; 3623 ev_io io;
1626 struct ev_timer to; 3624 ev_timer to;
1627 void (*cb)(int revents, void *arg); 3625 void (*cb)(int revents, void *arg);
1628 void *arg; 3626 void *arg;
1629}; 3627};
1630 3628
1631static void 3629static void
1632once_cb (EV_P_ struct ev_once *once, int revents) 3630once_cb (EV_P_ struct ev_once *once, int revents)
1633{ 3631{
1634 void (*cb)(int revents, void *arg) = once->cb; 3632 void (*cb)(int revents, void *arg) = once->cb;
1635 void *arg = once->arg; 3633 void *arg = once->arg;
1636 3634
1637 ev_io_stop (EV_A_ &once->io); 3635 ev_io_stop (EV_A_ &once->io);
1638 ev_timer_stop (EV_A_ &once->to); 3636 ev_timer_stop (EV_A_ &once->to);
1639 ev_free (once); 3637 ev_free (once);
1640 3638
1641 cb (revents, arg); 3639 cb (revents, arg);
1642} 3640}
1643 3641
1644static void 3642static void
1645once_cb_io (EV_P_ struct ev_io *w, int revents) 3643once_cb_io (EV_P_ ev_io *w, int revents)
1646{ 3644{
1647 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3645 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3646
3647 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1648} 3648}
1649 3649
1650static void 3650static void
1651once_cb_to (EV_P_ struct ev_timer *w, int revents) 3651once_cb_to (EV_P_ ev_timer *w, int revents)
1652{ 3652{
1653 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3653 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3654
3655 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1654} 3656}
1655 3657
1656void 3658void
1657ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3659ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1658{ 3660{
1659 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3661 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1660 3662
1661 if (expect_false (!once)) 3663 if (expect_false (!once))
1662 { 3664 {
1663 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3665 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1664 return; 3666 return;
1665 } 3667 }
1666 3668
1667 once->cb = cb; 3669 once->cb = cb;
1668 once->arg = arg; 3670 once->arg = arg;
1680 ev_timer_set (&once->to, timeout, 0.); 3682 ev_timer_set (&once->to, timeout, 0.);
1681 ev_timer_start (EV_A_ &once->to); 3683 ev_timer_start (EV_A_ &once->to);
1682 } 3684 }
1683} 3685}
1684 3686
1685#ifdef __cplusplus 3687/*****************************************************************************/
1686} 3688
3689#if EV_WALK_ENABLE
3690void
3691ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3692{
3693 int i, j;
3694 ev_watcher_list *wl, *wn;
3695
3696 if (types & (EV_IO | EV_EMBED))
3697 for (i = 0; i < anfdmax; ++i)
3698 for (wl = anfds [i].head; wl; )
3699 {
3700 wn = wl->next;
3701
3702#if EV_EMBED_ENABLE
3703 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3704 {
3705 if (types & EV_EMBED)
3706 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3707 }
3708 else
3709#endif
3710#if EV_USE_INOTIFY
3711 if (ev_cb ((ev_io *)wl) == infy_cb)
3712 ;
3713 else
3714#endif
3715 if ((ev_io *)wl != &pipe_w)
3716 if (types & EV_IO)
3717 cb (EV_A_ EV_IO, wl);
3718
3719 wl = wn;
3720 }
3721
3722 if (types & (EV_TIMER | EV_STAT))
3723 for (i = timercnt + HEAP0; i-- > HEAP0; )
3724#if EV_STAT_ENABLE
3725 /*TODO: timer is not always active*/
3726 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3727 {
3728 if (types & EV_STAT)
3729 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3730 }
3731 else
3732#endif
3733 if (types & EV_TIMER)
3734 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3735
3736#if EV_PERIODIC_ENABLE
3737 if (types & EV_PERIODIC)
3738 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3739 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3740#endif
3741
3742#if EV_IDLE_ENABLE
3743 if (types & EV_IDLE)
3744 for (j = NUMPRI; i--; )
3745 for (i = idlecnt [j]; i--; )
3746 cb (EV_A_ EV_IDLE, idles [j][i]);
3747#endif
3748
3749#if EV_FORK_ENABLE
3750 if (types & EV_FORK)
3751 for (i = forkcnt; i--; )
3752 if (ev_cb (forks [i]) != embed_fork_cb)
3753 cb (EV_A_ EV_FORK, forks [i]);
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757 if (types & EV_ASYNC)
3758 for (i = asynccnt; i--; )
3759 cb (EV_A_ EV_ASYNC, asyncs [i]);
3760#endif
3761
3762#if EV_PREPARE_ENABLE
3763 if (types & EV_PREPARE)
3764 for (i = preparecnt; i--; )
3765# if EV_EMBED_ENABLE
3766 if (ev_cb (prepares [i]) != embed_prepare_cb)
1687#endif 3767# endif
3768 cb (EV_A_ EV_PREPARE, prepares [i]);
3769#endif
1688 3770
3771#if EV_CHECK_ENABLE
3772 if (types & EV_CHECK)
3773 for (i = checkcnt; i--; )
3774 cb (EV_A_ EV_CHECK, checks [i]);
3775#endif
3776
3777#if EV_SIGNAL_ENABLE
3778 if (types & EV_SIGNAL)
3779 for (i = 0; i < EV_NSIG - 1; ++i)
3780 for (wl = signals [i].head; wl; )
3781 {
3782 wn = wl->next;
3783 cb (EV_A_ EV_SIGNAL, wl);
3784 wl = wn;
3785 }
3786#endif
3787
3788#if EV_CHILD_ENABLE
3789 if (types & EV_CHILD)
3790 for (i = (EV_PID_HASHSIZE); i--; )
3791 for (wl = childs [i]; wl; )
3792 {
3793 wn = wl->next;
3794 cb (EV_A_ EV_CHILD, wl);
3795 wl = wn;
3796 }
3797#endif
3798/* EV_STAT 0x00001000 /* stat data changed */
3799/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3800}
3801#endif
3802
3803#if EV_MULTIPLICITY
3804 #include "ev_wrap.h"
3805#endif
3806
3807EV_CPP(})
3808

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines