ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.140 by root, Mon Nov 26 19:49:36 2007 UTC vs.
Revision 1.356 by root, Fri Oct 22 11:21:52 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
99#endif 159#endif
100 160
101#include <math.h> 161#include <math.h>
102#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
103#include <fcntl.h> 164#include <fcntl.h>
104#include <stddef.h> 165#include <stddef.h>
105 166
106#include <stdio.h> 167#include <stdio.h>
107 168
108#include <assert.h> 169#include <assert.h>
109#include <errno.h> 170#include <errno.h>
110#include <sys/types.h> 171#include <sys/types.h>
111#include <time.h> 172#include <time.h>
173#include <limits.h>
112 174
113#include <signal.h> 175#include <signal.h>
176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
114 184
115#ifndef _WIN32 185#ifndef _WIN32
116# include <sys/time.h> 186# include <sys/time.h>
117# include <sys/wait.h> 187# include <sys/wait.h>
118# include <unistd.h> 188# include <unistd.h>
119#else 189#else
190# include <io.h>
120# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 192# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
124# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
125#endif 242# endif
126 243#endif
127/**/
128 244
129#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
130# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
131#endif 251#endif
132 252
133#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
135#endif 263#endif
136 264
137#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 267#endif
140 268
141#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
142# ifdef _WIN32 270# ifdef _WIN32
143# define EV_USE_POLL 0 271# define EV_USE_POLL 0
144# else 272# else
145# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 274# endif
147#endif 275#endif
148 276
149#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
150# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
151#endif 283#endif
152 284
153#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
155#endif 287#endif
156 288
157#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 290# define EV_USE_PORT 0
159#endif 291#endif
160 292
161/**/ 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
162 364
163#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
166#endif 368#endif
168#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
171#endif 373#endif
172 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
173#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 397# include <winsock.h>
175#endif 398#endif
176 399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
177/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 455
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 458
184#ifdef EV_H 459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
185# include EV_H 460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
186#else
187# include "ev.h"
188#endif
189 461
190#if __GNUC__ >= 3 462#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 465#else
201# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_minimal static
204# define noinline 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
205#endif 471#endif
206 472
207#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
209 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
212 490
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
215 493
216typedef ev_watcher *W; 494typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
219 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
221 520
222#ifdef _WIN32 521#ifdef _WIN32
223# include "ev_win32.c" 522# include "ev_win32.c"
224#endif 523#endif
225 524
226/*****************************************************************************/ 525/*****************************************************************************/
227 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 struct utsname buf;
536 unsigned int v;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
228static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
229 578
579void
230void ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
231{ 581{
232 syserr_cb = cb; 582 syserr_cb = cb;
233} 583}
234 584
235static void 585static void noinline
236syserr (const char *msg) 586ev_syserr (const char *msg)
237{ 587{
238 if (!msg) 588 if (!msg)
239 msg = "(libev) system error"; 589 msg = "(libev) system error";
240 590
241 if (syserr_cb) 591 if (syserr_cb)
242 syserr_cb (msg); 592 syserr_cb (msg);
243 else 593 else
244 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
245 perror (msg); 603 perror (msg);
604#endif
246 abort (); 605 abort ();
247 } 606 }
248} 607}
249 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
250static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
251 629
630void
252void ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
253{ 632{
254 alloc = cb; 633 alloc = cb;
255} 634}
256 635
257static void * 636inline_speed void *
258ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
259{ 638{
260 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
261 640
262 if (!ptr && size) 641 if (!ptr && size)
263 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
264 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
265 abort (); 648 abort ();
266 } 649 }
267 650
268 return ptr; 651 return ptr;
269} 652}
271#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
272#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
273 656
274/*****************************************************************************/ 657/*****************************************************************************/
275 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
276typedef struct 663typedef struct
277{ 664{
278 WL head; 665 WL head;
279 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
280 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
281#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET
282 SOCKET handle; 674 SOCKET handle;
283#endif 675#endif
284} ANFD; 676} ANFD;
285 677
678/* stores the pending event set for a given watcher */
286typedef struct 679typedef struct
287{ 680{
288 W w; 681 W w;
289 int events; 682 int events; /* the pending event set for the given watcher */
290} ANPENDING; 683} ANPENDING;
684
685#if EV_USE_INOTIFY
686/* hash table entry per inotify-id */
687typedef struct
688{
689 WL head;
690} ANFS;
691#endif
692
693/* Heap Entry */
694#if EV_HEAP_CACHE_AT
695 /* a heap element */
696 typedef struct {
697 ev_tstamp at;
698 WT w;
699 } ANHE;
700
701 #define ANHE_w(he) (he).w /* access watcher, read-write */
702 #define ANHE_at(he) (he).at /* access cached at, read-only */
703 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
704#else
705 /* a heap element */
706 typedef WT ANHE;
707
708 #define ANHE_w(he) (he)
709 #define ANHE_at(he) (he)->at
710 #define ANHE_at_cache(he)
711#endif
291 712
292#if EV_MULTIPLICITY 713#if EV_MULTIPLICITY
293 714
294 struct ev_loop 715 struct ev_loop
295 { 716 {
313 734
314 static int ev_default_loop_ptr; 735 static int ev_default_loop_ptr;
315 736
316#endif 737#endif
317 738
739#if EV_FEATURE_API
740# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
741# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
742# define EV_INVOKE_PENDING invoke_cb (EV_A)
743#else
744# define EV_RELEASE_CB (void)0
745# define EV_ACQUIRE_CB (void)0
746# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
747#endif
748
749#define EVBREAK_RECURSE 0x80
750
318/*****************************************************************************/ 751/*****************************************************************************/
319 752
320ev_tstamp noinline 753#ifndef EV_HAVE_EV_TIME
754ev_tstamp
321ev_time (void) 755ev_time (void)
322{ 756{
323#if EV_USE_REALTIME 757#if EV_USE_REALTIME
758 if (expect_true (have_realtime))
759 {
324 struct timespec ts; 760 struct timespec ts;
325 clock_gettime (CLOCK_REALTIME, &ts); 761 clock_gettime (CLOCK_REALTIME, &ts);
326 return ts.tv_sec + ts.tv_nsec * 1e-9; 762 return ts.tv_sec + ts.tv_nsec * 1e-9;
327#else 763 }
764#endif
765
328 struct timeval tv; 766 struct timeval tv;
329 gettimeofday (&tv, 0); 767 gettimeofday (&tv, 0);
330 return tv.tv_sec + tv.tv_usec * 1e-6; 768 return tv.tv_sec + tv.tv_usec * 1e-6;
331#endif
332} 769}
770#endif
333 771
334ev_tstamp inline_size 772inline_size ev_tstamp
335get_clock (void) 773get_clock (void)
336{ 774{
337#if EV_USE_MONOTONIC 775#if EV_USE_MONOTONIC
338 if (expect_true (have_monotonic)) 776 if (expect_true (have_monotonic))
339 { 777 {
352{ 790{
353 return ev_rt_now; 791 return ev_rt_now;
354} 792}
355#endif 793#endif
356 794
357#define array_roundsize(type,n) (((n) | 4) & ~3) 795void
796ev_sleep (ev_tstamp delay)
797{
798 if (delay > 0.)
799 {
800#if EV_USE_NANOSLEEP
801 struct timespec ts;
802
803 EV_TS_SET (ts, delay);
804 nanosleep (&ts, 0);
805#elif defined(_WIN32)
806 Sleep ((unsigned long)(delay * 1e3));
807#else
808 struct timeval tv;
809
810 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
811 /* something not guaranteed by newer posix versions, but guaranteed */
812 /* by older ones */
813 EV_TV_SET (tv, delay);
814 select (0, 0, 0, 0, &tv);
815#endif
816 }
817}
818
819/*****************************************************************************/
820
821#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
822
823/* find a suitable new size for the given array, */
824/* hopefully by rounding to a nice-to-malloc size */
825inline_size int
826array_nextsize (int elem, int cur, int cnt)
827{
828 int ncur = cur + 1;
829
830 do
831 ncur <<= 1;
832 while (cnt > ncur);
833
834 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
835 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
836 {
837 ncur *= elem;
838 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
839 ncur = ncur - sizeof (void *) * 4;
840 ncur /= elem;
841 }
842
843 return ncur;
844}
845
846static noinline void *
847array_realloc (int elem, void *base, int *cur, int cnt)
848{
849 *cur = array_nextsize (elem, *cur, cnt);
850 return ev_realloc (base, elem * *cur);
851}
852
853#define array_init_zero(base,count) \
854 memset ((void *)(base), 0, sizeof (*(base)) * (count))
358 855
359#define array_needsize(type,base,cur,cnt,init) \ 856#define array_needsize(type,base,cur,cnt,init) \
360 if (expect_false ((cnt) > cur)) \ 857 if (expect_false ((cnt) > (cur))) \
361 { \ 858 { \
362 int newcnt = cur; \ 859 int ocur_ = (cur); \
363 do \ 860 (base) = (type *)array_realloc \
364 { \ 861 (sizeof (type), (base), &(cur), (cnt)); \
365 newcnt = array_roundsize (type, newcnt << 1); \ 862 init ((base) + (ocur_), (cur) - ocur_); \
366 } \
367 while ((cnt) > newcnt); \
368 \
369 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
370 init (base + cur, newcnt - cur); \
371 cur = newcnt; \
372 } 863 }
373 864
865#if 0
374#define array_slim(type,stem) \ 866#define array_slim(type,stem) \
375 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 867 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
376 { \ 868 { \
377 stem ## max = array_roundsize (stem ## cnt >> 1); \ 869 stem ## max = array_roundsize (stem ## cnt >> 1); \
378 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 870 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
379 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 871 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
380 } 872 }
873#endif
381 874
382#define array_free(stem, idx) \ 875#define array_free(stem, idx) \
383 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 876 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
384 877
385/*****************************************************************************/ 878/*****************************************************************************/
386 879
387void inline_size 880/* dummy callback for pending events */
388anfds_init (ANFD *base, int count) 881static void noinline
882pendingcb (EV_P_ ev_prepare *w, int revents)
389{ 883{
390 while (count--)
391 {
392 base->head = 0;
393 base->events = EV_NONE;
394 base->reify = 0;
395
396 ++base;
397 }
398} 884}
399 885
400void noinline 886void noinline
401ev_feed_event (EV_P_ void *w, int revents) 887ev_feed_event (EV_P_ void *w, int revents)
402{ 888{
403 W w_ = (W)w; 889 W w_ = (W)w;
890 int pri = ABSPRI (w_);
404 891
405 if (expect_false (w_->pending)) 892 if (expect_false (w_->pending))
893 pendings [pri][w_->pending - 1].events |= revents;
894 else
406 { 895 {
896 w_->pending = ++pendingcnt [pri];
897 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
898 pendings [pri][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 899 pendings [pri][w_->pending - 1].events = revents;
408 return;
409 } 900 }
410
411 w_->pending = ++pendingcnt [ABSPRI (w_)];
412 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
413 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
414 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
415} 901}
416 902
417static void 903inline_speed void
904feed_reverse (EV_P_ W w)
905{
906 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
907 rfeeds [rfeedcnt++] = w;
908}
909
910inline_size void
911feed_reverse_done (EV_P_ int revents)
912{
913 do
914 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
915 while (rfeedcnt);
916}
917
918inline_speed void
418queue_events (EV_P_ W *events, int eventcnt, int type) 919queue_events (EV_P_ W *events, int eventcnt, int type)
419{ 920{
420 int i; 921 int i;
421 922
422 for (i = 0; i < eventcnt; ++i) 923 for (i = 0; i < eventcnt; ++i)
423 ev_feed_event (EV_A_ events [i], type); 924 ev_feed_event (EV_A_ events [i], type);
424} 925}
425 926
426void inline_speed 927/*****************************************************************************/
928
929inline_speed void
427fd_event (EV_P_ int fd, int revents) 930fd_event_nocheck (EV_P_ int fd, int revents)
428{ 931{
429 ANFD *anfd = anfds + fd; 932 ANFD *anfd = anfds + fd;
430 ev_io *w; 933 ev_io *w;
431 934
432 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 935 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
436 if (ev) 939 if (ev)
437 ev_feed_event (EV_A_ (W)w, ev); 940 ev_feed_event (EV_A_ (W)w, ev);
438 } 941 }
439} 942}
440 943
944/* do not submit kernel events for fds that have reify set */
945/* because that means they changed while we were polling for new events */
946inline_speed void
947fd_event (EV_P_ int fd, int revents)
948{
949 ANFD *anfd = anfds + fd;
950
951 if (expect_true (!anfd->reify))
952 fd_event_nocheck (EV_A_ fd, revents);
953}
954
441void 955void
442ev_feed_fd_event (EV_P_ int fd, int revents) 956ev_feed_fd_event (EV_P_ int fd, int revents)
443{ 957{
958 if (fd >= 0 && fd < anfdmax)
444 fd_event (EV_A_ fd, revents); 959 fd_event_nocheck (EV_A_ fd, revents);
445} 960}
446 961
447/*****************************************************************************/ 962/* make sure the external fd watch events are in-sync */
448 963/* with the kernel/libev internal state */
449void inline_size 964inline_size void
450fd_reify (EV_P) 965fd_reify (EV_P)
451{ 966{
452 int i; 967 int i;
453 968
454 for (i = 0; i < fdchangecnt; ++i) 969 for (i = 0; i < fdchangecnt; ++i)
455 { 970 {
456 int fd = fdchanges [i]; 971 int fd = fdchanges [i];
457 ANFD *anfd = anfds + fd; 972 ANFD *anfd = anfds + fd;
458 ev_io *w; 973 ev_io *w;
459 974
460 int events = 0; 975 unsigned char o_events = anfd->events;
976 unsigned char o_reify = anfd->reify;
461 977
462 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 978 anfd->reify = 0;
463 events |= w->events;
464 979
465#if EV_SELECT_IS_WINSOCKET 980#if EV_SELECT_IS_WINSOCKET
466 if (events) 981 if (o_reify & EV__IOFDSET)
467 { 982 {
468 unsigned long argp; 983 unsigned long arg;
469 anfd->handle = _get_osfhandle (fd); 984 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
470 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 985 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
471 } 986 }
472#endif 987#endif
473 988
474 anfd->reify = 0; 989 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
990 {
991 anfd->events = 0;
475 992
993 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
994 anfd->events |= (unsigned char)w->events;
995
996 if (o_events != anfd->events)
997 o_reify = EV__IOFDSET; /* actually |= */
998 }
999
1000 if (o_reify & EV__IOFDSET)
476 backend_modify (EV_A_ fd, anfd->events, events); 1001 backend_modify (EV_A_ fd, o_events, anfd->events);
477 anfd->events = events;
478 } 1002 }
479 1003
480 fdchangecnt = 0; 1004 fdchangecnt = 0;
481} 1005}
482 1006
483void inline_size 1007/* something about the given fd changed */
1008inline_size void
484fd_change (EV_P_ int fd) 1009fd_change (EV_P_ int fd, int flags)
485{ 1010{
486 if (expect_false (anfds [fd].reify)) 1011 unsigned char reify = anfds [fd].reify;
487 return;
488
489 anfds [fd].reify = 1; 1012 anfds [fd].reify |= flags;
490 1013
1014 if (expect_true (!reify))
1015 {
491 ++fdchangecnt; 1016 ++fdchangecnt;
492 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1017 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
493 fdchanges [fdchangecnt - 1] = fd; 1018 fdchanges [fdchangecnt - 1] = fd;
1019 }
494} 1020}
495 1021
496void inline_speed 1022/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1023inline_speed void
497fd_kill (EV_P_ int fd) 1024fd_kill (EV_P_ int fd)
498{ 1025{
499 ev_io *w; 1026 ev_io *w;
500 1027
501 while ((w = (ev_io *)anfds [fd].head)) 1028 while ((w = (ev_io *)anfds [fd].head))
503 ev_io_stop (EV_A_ w); 1030 ev_io_stop (EV_A_ w);
504 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1031 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
505 } 1032 }
506} 1033}
507 1034
508int inline_size 1035/* check whether the given fd is actually valid, for error recovery */
1036inline_size int
509fd_valid (int fd) 1037fd_valid (int fd)
510{ 1038{
511#ifdef _WIN32 1039#ifdef _WIN32
512 return _get_osfhandle (fd) != -1; 1040 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
513#else 1041#else
514 return fcntl (fd, F_GETFD) != -1; 1042 return fcntl (fd, F_GETFD) != -1;
515#endif 1043#endif
516} 1044}
517 1045
521{ 1049{
522 int fd; 1050 int fd;
523 1051
524 for (fd = 0; fd < anfdmax; ++fd) 1052 for (fd = 0; fd < anfdmax; ++fd)
525 if (anfds [fd].events) 1053 if (anfds [fd].events)
526 if (!fd_valid (fd) == -1 && errno == EBADF) 1054 if (!fd_valid (fd) && errno == EBADF)
527 fd_kill (EV_A_ fd); 1055 fd_kill (EV_A_ fd);
528} 1056}
529 1057
530/* called on ENOMEM in select/poll to kill some fds and retry */ 1058/* called on ENOMEM in select/poll to kill some fds and retry */
531static void noinline 1059static void noinline
535 1063
536 for (fd = anfdmax; fd--; ) 1064 for (fd = anfdmax; fd--; )
537 if (anfds [fd].events) 1065 if (anfds [fd].events)
538 { 1066 {
539 fd_kill (EV_A_ fd); 1067 fd_kill (EV_A_ fd);
540 return; 1068 break;
541 } 1069 }
542} 1070}
543 1071
544/* usually called after fork if backend needs to re-arm all fds from scratch */ 1072/* usually called after fork if backend needs to re-arm all fds from scratch */
545static void noinline 1073static void noinline
546fd_rearm_all (EV_P) 1074fd_rearm_all (EV_P)
547{ 1075{
548 int fd; 1076 int fd;
549 1077
550 /* this should be highly optimised to not do anything but set a flag */
551 for (fd = 0; fd < anfdmax; ++fd) 1078 for (fd = 0; fd < anfdmax; ++fd)
552 if (anfds [fd].events) 1079 if (anfds [fd].events)
553 { 1080 {
554 anfds [fd].events = 0; 1081 anfds [fd].events = 0;
555 fd_change (EV_A_ fd); 1082 anfds [fd].emask = 0;
1083 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
556 } 1084 }
557} 1085}
558 1086
559/*****************************************************************************/ 1087/* used to prepare libev internal fd's */
560 1088/* this is not fork-safe */
561void inline_speed 1089inline_speed void
562upheap (WT *heap, int k)
563{
564 WT w = heap [k];
565
566 while (k && heap [k >> 1]->at > w->at)
567 {
568 heap [k] = heap [k >> 1];
569 ((W)heap [k])->active = k + 1;
570 k >>= 1;
571 }
572
573 heap [k] = w;
574 ((W)heap [k])->active = k + 1;
575
576}
577
578void inline_speed
579downheap (WT *heap, int N, int k)
580{
581 WT w = heap [k];
582
583 while (k < (N >> 1))
584 {
585 int j = k << 1;
586
587 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
588 ++j;
589
590 if (w->at <= heap [j]->at)
591 break;
592
593 heap [k] = heap [j];
594 ((W)heap [k])->active = k + 1;
595 k = j;
596 }
597
598 heap [k] = w;
599 ((W)heap [k])->active = k + 1;
600}
601
602void inline_size
603adjustheap (WT *heap, int N, int k)
604{
605 upheap (heap, k);
606 downheap (heap, N, k);
607}
608
609/*****************************************************************************/
610
611typedef struct
612{
613 WL head;
614 sig_atomic_t volatile gotsig;
615} ANSIG;
616
617static ANSIG *signals;
618static int signalmax;
619
620static int sigpipe [2];
621static sig_atomic_t volatile gotsig;
622static ev_io sigev;
623
624void inline_size
625signals_init (ANSIG *base, int count)
626{
627 while (count--)
628 {
629 base->head = 0;
630 base->gotsig = 0;
631
632 ++base;
633 }
634}
635
636static void
637sighandler (int signum)
638{
639#if _WIN32
640 signal (signum, sighandler);
641#endif
642
643 signals [signum - 1].gotsig = 1;
644
645 if (!gotsig)
646 {
647 int old_errno = errno;
648 gotsig = 1;
649 write (sigpipe [1], &signum, 1);
650 errno = old_errno;
651 }
652}
653
654void noinline
655ev_feed_signal_event (EV_P_ int signum)
656{
657 WL w;
658
659#if EV_MULTIPLICITY
660 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
661#endif
662
663 --signum;
664
665 if (signum < 0 || signum >= signalmax)
666 return;
667
668 signals [signum].gotsig = 0;
669
670 for (w = signals [signum].head; w; w = w->next)
671 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
672}
673
674static void
675sigcb (EV_P_ ev_io *iow, int revents)
676{
677 int signum;
678
679 read (sigpipe [0], &revents, 1);
680 gotsig = 0;
681
682 for (signum = signalmax; signum--; )
683 if (signals [signum].gotsig)
684 ev_feed_signal_event (EV_A_ signum + 1);
685}
686
687void inline_size
688fd_intern (int fd) 1090fd_intern (int fd)
689{ 1091{
690#ifdef _WIN32 1092#ifdef _WIN32
691 int arg = 1; 1093 unsigned long arg = 1;
692 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1094 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
693#else 1095#else
694 fcntl (fd, F_SETFD, FD_CLOEXEC); 1096 fcntl (fd, F_SETFD, FD_CLOEXEC);
695 fcntl (fd, F_SETFL, O_NONBLOCK); 1097 fcntl (fd, F_SETFL, O_NONBLOCK);
696#endif 1098#endif
697} 1099}
698 1100
1101/*****************************************************************************/
1102
1103/*
1104 * the heap functions want a real array index. array index 0 is guaranteed to not
1105 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1106 * the branching factor of the d-tree.
1107 */
1108
1109/*
1110 * at the moment we allow libev the luxury of two heaps,
1111 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1112 * which is more cache-efficient.
1113 * the difference is about 5% with 50000+ watchers.
1114 */
1115#if EV_USE_4HEAP
1116
1117#define DHEAP 4
1118#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1119#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1120#define UPHEAP_DONE(p,k) ((p) == (k))
1121
1122/* away from the root */
1123inline_speed void
1124downheap (ANHE *heap, int N, int k)
1125{
1126 ANHE he = heap [k];
1127 ANHE *E = heap + N + HEAP0;
1128
1129 for (;;)
1130 {
1131 ev_tstamp minat;
1132 ANHE *minpos;
1133 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1134
1135 /* find minimum child */
1136 if (expect_true (pos + DHEAP - 1 < E))
1137 {
1138 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1139 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1140 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1141 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1142 }
1143 else if (pos < E)
1144 {
1145 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1146 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1147 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1148 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1149 }
1150 else
1151 break;
1152
1153 if (ANHE_at (he) <= minat)
1154 break;
1155
1156 heap [k] = *minpos;
1157 ev_active (ANHE_w (*minpos)) = k;
1158
1159 k = minpos - heap;
1160 }
1161
1162 heap [k] = he;
1163 ev_active (ANHE_w (he)) = k;
1164}
1165
1166#else /* 4HEAP */
1167
1168#define HEAP0 1
1169#define HPARENT(k) ((k) >> 1)
1170#define UPHEAP_DONE(p,k) (!(p))
1171
1172/* away from the root */
1173inline_speed void
1174downheap (ANHE *heap, int N, int k)
1175{
1176 ANHE he = heap [k];
1177
1178 for (;;)
1179 {
1180 int c = k << 1;
1181
1182 if (c >= N + HEAP0)
1183 break;
1184
1185 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1186 ? 1 : 0;
1187
1188 if (ANHE_at (he) <= ANHE_at (heap [c]))
1189 break;
1190
1191 heap [k] = heap [c];
1192 ev_active (ANHE_w (heap [k])) = k;
1193
1194 k = c;
1195 }
1196
1197 heap [k] = he;
1198 ev_active (ANHE_w (he)) = k;
1199}
1200#endif
1201
1202/* towards the root */
1203inline_speed void
1204upheap (ANHE *heap, int k)
1205{
1206 ANHE he = heap [k];
1207
1208 for (;;)
1209 {
1210 int p = HPARENT (k);
1211
1212 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1213 break;
1214
1215 heap [k] = heap [p];
1216 ev_active (ANHE_w (heap [k])) = k;
1217 k = p;
1218 }
1219
1220 heap [k] = he;
1221 ev_active (ANHE_w (he)) = k;
1222}
1223
1224/* move an element suitably so it is in a correct place */
1225inline_size void
1226adjustheap (ANHE *heap, int N, int k)
1227{
1228 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1229 upheap (heap, k);
1230 else
1231 downheap (heap, N, k);
1232}
1233
1234/* rebuild the heap: this function is used only once and executed rarely */
1235inline_size void
1236reheap (ANHE *heap, int N)
1237{
1238 int i;
1239
1240 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1241 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1242 for (i = 0; i < N; ++i)
1243 upheap (heap, i + HEAP0);
1244}
1245
1246/*****************************************************************************/
1247
1248/* associate signal watchers to a signal signal */
1249typedef struct
1250{
1251 EV_ATOMIC_T pending;
1252#if EV_MULTIPLICITY
1253 EV_P;
1254#endif
1255 WL head;
1256} ANSIG;
1257
1258static ANSIG signals [EV_NSIG - 1];
1259
1260/*****************************************************************************/
1261
1262#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1263
699static void noinline 1264static void noinline
700siginit (EV_P) 1265evpipe_init (EV_P)
701{ 1266{
1267 if (!ev_is_active (&pipe_w))
1268 {
1269# if EV_USE_EVENTFD
1270 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1271 if (evfd < 0 && errno == EINVAL)
1272 evfd = eventfd (0, 0);
1273
1274 if (evfd >= 0)
1275 {
1276 evpipe [0] = -1;
1277 fd_intern (evfd); /* doing it twice doesn't hurt */
1278 ev_io_set (&pipe_w, evfd, EV_READ);
1279 }
1280 else
1281# endif
1282 {
1283 while (pipe (evpipe))
1284 ev_syserr ("(libev) error creating signal/async pipe");
1285
702 fd_intern (sigpipe [0]); 1286 fd_intern (evpipe [0]);
703 fd_intern (sigpipe [1]); 1287 fd_intern (evpipe [1]);
1288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1289 }
704 1290
705 ev_io_set (&sigev, sigpipe [0], EV_READ);
706 ev_io_start (EV_A_ &sigev); 1291 ev_io_start (EV_A_ &pipe_w);
707 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1292 ev_unref (EV_A); /* watcher should not keep loop alive */
1293 }
1294}
1295
1296inline_size void
1297evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1298{
1299 if (!*flag)
1300 {
1301 int old_errno = errno; /* save errno because write might clobber it */
1302 char dummy;
1303
1304 *flag = 1;
1305
1306#if EV_USE_EVENTFD
1307 if (evfd >= 0)
1308 {
1309 uint64_t counter = 1;
1310 write (evfd, &counter, sizeof (uint64_t));
1311 }
1312 else
1313#endif
1314 /* win32 people keep sending patches that change this write() to send() */
1315 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1316 /* so when you think this write should be a send instead, please find out */
1317 /* where your send() is from - it's definitely not the microsoft send, and */
1318 /* tell me. thank you. */
1319 write (evpipe [1], &dummy, 1);
1320
1321 errno = old_errno;
1322 }
1323}
1324
1325/* called whenever the libev signal pipe */
1326/* got some events (signal, async) */
1327static void
1328pipecb (EV_P_ ev_io *iow, int revents)
1329{
1330 int i;
1331
1332#if EV_USE_EVENTFD
1333 if (evfd >= 0)
1334 {
1335 uint64_t counter;
1336 read (evfd, &counter, sizeof (uint64_t));
1337 }
1338 else
1339#endif
1340 {
1341 char dummy;
1342 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1343 read (evpipe [0], &dummy, 1);
1344 }
1345
1346 if (sig_pending)
1347 {
1348 sig_pending = 0;
1349
1350 for (i = EV_NSIG - 1; i--; )
1351 if (expect_false (signals [i].pending))
1352 ev_feed_signal_event (EV_A_ i + 1);
1353 }
1354
1355#if EV_ASYNC_ENABLE
1356 if (async_pending)
1357 {
1358 async_pending = 0;
1359
1360 for (i = asynccnt; i--; )
1361 if (asyncs [i]->sent)
1362 {
1363 asyncs [i]->sent = 0;
1364 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1365 }
1366 }
1367#endif
708} 1368}
709 1369
710/*****************************************************************************/ 1370/*****************************************************************************/
711 1371
712static ev_child *childs [PID_HASHSIZE]; 1372static void
1373ev_sighandler (int signum)
1374{
1375#if EV_MULTIPLICITY
1376 EV_P = signals [signum - 1].loop;
1377#endif
713 1378
714#ifndef _WIN32 1379#ifdef _WIN32
1380 signal (signum, ev_sighandler);
1381#endif
1382
1383 signals [signum - 1].pending = 1;
1384 evpipe_write (EV_A_ &sig_pending);
1385}
1386
1387void noinline
1388ev_feed_signal_event (EV_P_ int signum)
1389{
1390 WL w;
1391
1392 if (expect_false (signum <= 0 || signum > EV_NSIG))
1393 return;
1394
1395 --signum;
1396
1397#if EV_MULTIPLICITY
1398 /* it is permissible to try to feed a signal to the wrong loop */
1399 /* or, likely more useful, feeding a signal nobody is waiting for */
1400
1401 if (expect_false (signals [signum].loop != EV_A))
1402 return;
1403#endif
1404
1405 signals [signum].pending = 0;
1406
1407 for (w = signals [signum].head; w; w = w->next)
1408 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1409}
1410
1411#if EV_USE_SIGNALFD
1412static void
1413sigfdcb (EV_P_ ev_io *iow, int revents)
1414{
1415 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1416
1417 for (;;)
1418 {
1419 ssize_t res = read (sigfd, si, sizeof (si));
1420
1421 /* not ISO-C, as res might be -1, but works with SuS */
1422 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1423 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1424
1425 if (res < (ssize_t)sizeof (si))
1426 break;
1427 }
1428}
1429#endif
1430
1431#endif
1432
1433/*****************************************************************************/
1434
1435#if EV_CHILD_ENABLE
1436static WL childs [EV_PID_HASHSIZE];
715 1437
716static ev_signal childev; 1438static ev_signal childev;
1439
1440#ifndef WIFCONTINUED
1441# define WIFCONTINUED(status) 0
1442#endif
1443
1444/* handle a single child status event */
1445inline_speed void
1446child_reap (EV_P_ int chain, int pid, int status)
1447{
1448 ev_child *w;
1449 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1450
1451 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1452 {
1453 if ((w->pid == pid || !w->pid)
1454 && (!traced || (w->flags & 1)))
1455 {
1456 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1457 w->rpid = pid;
1458 w->rstatus = status;
1459 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1460 }
1461 }
1462}
717 1463
718#ifndef WCONTINUED 1464#ifndef WCONTINUED
719# define WCONTINUED 0 1465# define WCONTINUED 0
720#endif 1466#endif
721 1467
722void inline_speed 1468/* called on sigchld etc., calls waitpid */
723child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
724{
725 ev_child *w;
726
727 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
728 if (w->pid == pid || !w->pid)
729 {
730 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
731 w->rpid = pid;
732 w->rstatus = status;
733 ev_feed_event (EV_A_ (W)w, EV_CHILD);
734 }
735}
736
737static void 1469static void
738childcb (EV_P_ ev_signal *sw, int revents) 1470childcb (EV_P_ ev_signal *sw, int revents)
739{ 1471{
740 int pid, status; 1472 int pid, status;
741 1473
1474 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
742 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1475 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
743 { 1476 if (!WCONTINUED
1477 || errno != EINVAL
1478 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1479 return;
1480
744 /* make sure we are called again until all childs have been reaped */ 1481 /* make sure we are called again until all children have been reaped */
745 /* we need to do it this way so that the callback gets called before we continue */ 1482 /* we need to do it this way so that the callback gets called before we continue */
746 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1483 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
747 1484
748 child_reap (EV_A_ sw, pid, pid, status); 1485 child_reap (EV_A_ pid, pid, status);
1486 if ((EV_PID_HASHSIZE) > 1)
749 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1487 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
750 }
751} 1488}
752 1489
753#endif 1490#endif
754 1491
755/*****************************************************************************/ 1492/*****************************************************************************/
817 /* kqueue is borked on everything but netbsd apparently */ 1554 /* kqueue is borked on everything but netbsd apparently */
818 /* it usually doesn't work correctly on anything but sockets and pipes */ 1555 /* it usually doesn't work correctly on anything but sockets and pipes */
819 flags &= ~EVBACKEND_KQUEUE; 1556 flags &= ~EVBACKEND_KQUEUE;
820#endif 1557#endif
821#ifdef __APPLE__ 1558#ifdef __APPLE__
822 // flags &= ~EVBACKEND_KQUEUE; for documentation 1559 /* only select works correctly on that "unix-certified" platform */
823 flags &= ~EVBACKEND_POLL; 1560 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1561 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1562#endif
1563#ifdef __FreeBSD__
1564 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
824#endif 1565#endif
825 1566
826 return flags; 1567 return flags;
827} 1568}
828 1569
829unsigned int 1570unsigned int
830ev_embeddable_backends (void) 1571ev_embeddable_backends (void)
831{ 1572{
832 return EVBACKEND_EPOLL 1573 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
833 | EVBACKEND_KQUEUE 1574
834 | EVBACKEND_PORT; 1575 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1576 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1577 flags &= ~EVBACKEND_EPOLL;
1578
1579 return flags;
835} 1580}
836 1581
837unsigned int 1582unsigned int
838ev_backend (EV_P) 1583ev_backend (EV_P)
839{ 1584{
840 return backend; 1585 return backend;
841} 1586}
842 1587
843static void 1588#if EV_FEATURE_API
1589unsigned int
1590ev_iteration (EV_P)
1591{
1592 return loop_count;
1593}
1594
1595unsigned int
1596ev_depth (EV_P)
1597{
1598 return loop_depth;
1599}
1600
1601void
1602ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1603{
1604 io_blocktime = interval;
1605}
1606
1607void
1608ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1609{
1610 timeout_blocktime = interval;
1611}
1612
1613void
1614ev_set_userdata (EV_P_ void *data)
1615{
1616 userdata = data;
1617}
1618
1619void *
1620ev_userdata (EV_P)
1621{
1622 return userdata;
1623}
1624
1625void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1626{
1627 invoke_cb = invoke_pending_cb;
1628}
1629
1630void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1631{
1632 release_cb = release;
1633 acquire_cb = acquire;
1634}
1635#endif
1636
1637/* initialise a loop structure, must be zero-initialised */
1638static void noinline
844loop_init (EV_P_ unsigned int flags) 1639loop_init (EV_P_ unsigned int flags)
845{ 1640{
846 if (!backend) 1641 if (!backend)
847 { 1642 {
1643#if EV_USE_REALTIME
1644 if (!have_realtime)
1645 {
1646 struct timespec ts;
1647
1648 if (!clock_gettime (CLOCK_REALTIME, &ts))
1649 have_realtime = 1;
1650 }
1651#endif
1652
848#if EV_USE_MONOTONIC 1653#if EV_USE_MONOTONIC
1654 if (!have_monotonic)
849 { 1655 {
850 struct timespec ts; 1656 struct timespec ts;
1657
851 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1658 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
852 have_monotonic = 1; 1659 have_monotonic = 1;
853 } 1660 }
854#endif 1661#endif
855 1662
856 ev_rt_now = ev_time (); 1663 /* pid check not overridable via env */
857 mn_now = get_clock (); 1664#ifndef _WIN32
858 now_floor = mn_now; 1665 if (flags & EVFLAG_FORKCHECK)
859 rtmn_diff = ev_rt_now - mn_now; 1666 curpid = getpid ();
1667#endif
860 1668
861 if (!(flags & EVFLAG_NOENV) 1669 if (!(flags & EVFLAG_NOENV)
862 && !enable_secure () 1670 && !enable_secure ()
863 && getenv ("LIBEV_FLAGS")) 1671 && getenv ("LIBEV_FLAGS"))
864 flags = atoi (getenv ("LIBEV_FLAGS")); 1672 flags = atoi (getenv ("LIBEV_FLAGS"));
865 1673
1674 ev_rt_now = ev_time ();
1675 mn_now = get_clock ();
1676 now_floor = mn_now;
1677 rtmn_diff = ev_rt_now - mn_now;
1678#if EV_FEATURE_API
1679 invoke_cb = ev_invoke_pending;
1680#endif
1681
1682 io_blocktime = 0.;
1683 timeout_blocktime = 0.;
1684 backend = 0;
1685 backend_fd = -1;
1686 sig_pending = 0;
1687#if EV_ASYNC_ENABLE
1688 async_pending = 0;
1689#endif
1690#if EV_USE_INOTIFY
1691 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1692#endif
1693#if EV_USE_SIGNALFD
1694 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1695#endif
1696
866 if (!(flags & 0x0000ffffUL)) 1697 if (!(flags & 0x0000ffffU))
867 flags |= ev_recommended_backends (); 1698 flags |= ev_recommended_backends ();
868 1699
869 backend = 0;
870#if EV_USE_PORT 1700#if EV_USE_PORT
871 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1701 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
872#endif 1702#endif
873#if EV_USE_KQUEUE 1703#if EV_USE_KQUEUE
874 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1704 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
881#endif 1711#endif
882#if EV_USE_SELECT 1712#if EV_USE_SELECT
883 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1713 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
884#endif 1714#endif
885 1715
1716 ev_prepare_init (&pending_w, pendingcb);
1717
1718#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
886 ev_init (&sigev, sigcb); 1719 ev_init (&pipe_w, pipecb);
887 ev_set_priority (&sigev, EV_MAXPRI); 1720 ev_set_priority (&pipe_w, EV_MAXPRI);
1721#endif
888 } 1722 }
889} 1723}
890 1724
891static void 1725/* free up a loop structure */
1726static void noinline
892loop_destroy (EV_P) 1727loop_destroy (EV_P)
893{ 1728{
894 int i; 1729 int i;
1730
1731 if (ev_is_active (&pipe_w))
1732 {
1733 /*ev_ref (EV_A);*/
1734 /*ev_io_stop (EV_A_ &pipe_w);*/
1735
1736#if EV_USE_EVENTFD
1737 if (evfd >= 0)
1738 close (evfd);
1739#endif
1740
1741 if (evpipe [0] >= 0)
1742 {
1743 EV_WIN32_CLOSE_FD (evpipe [0]);
1744 EV_WIN32_CLOSE_FD (evpipe [1]);
1745 }
1746 }
1747
1748#if EV_USE_SIGNALFD
1749 if (ev_is_active (&sigfd_w))
1750 close (sigfd);
1751#endif
1752
1753#if EV_USE_INOTIFY
1754 if (fs_fd >= 0)
1755 close (fs_fd);
1756#endif
1757
1758 if (backend_fd >= 0)
1759 close (backend_fd);
895 1760
896#if EV_USE_PORT 1761#if EV_USE_PORT
897 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1762 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
898#endif 1763#endif
899#if EV_USE_KQUEUE 1764#if EV_USE_KQUEUE
908#if EV_USE_SELECT 1773#if EV_USE_SELECT
909 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1774 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
910#endif 1775#endif
911 1776
912 for (i = NUMPRI; i--; ) 1777 for (i = NUMPRI; i--; )
1778 {
913 array_free (pending, [i]); 1779 array_free (pending, [i]);
1780#if EV_IDLE_ENABLE
1781 array_free (idle, [i]);
1782#endif
1783 }
1784
1785 ev_free (anfds); anfds = 0; anfdmax = 0;
914 1786
915 /* have to use the microsoft-never-gets-it-right macro */ 1787 /* have to use the microsoft-never-gets-it-right macro */
1788 array_free (rfeed, EMPTY);
916 array_free (fdchange, EMPTY0); 1789 array_free (fdchange, EMPTY);
917 array_free (timer, EMPTY0); 1790 array_free (timer, EMPTY);
918#if EV_PERIODIC_ENABLE 1791#if EV_PERIODIC_ENABLE
919 array_free (periodic, EMPTY0); 1792 array_free (periodic, EMPTY);
920#endif 1793#endif
1794#if EV_FORK_ENABLE
921 array_free (idle, EMPTY0); 1795 array_free (fork, EMPTY);
1796#endif
922 array_free (prepare, EMPTY0); 1797 array_free (prepare, EMPTY);
923 array_free (check, EMPTY0); 1798 array_free (check, EMPTY);
1799#if EV_ASYNC_ENABLE
1800 array_free (async, EMPTY);
1801#endif
924 1802
925 backend = 0; 1803 backend = 0;
926} 1804}
927 1805
928static void 1806#if EV_USE_INOTIFY
1807inline_size void infy_fork (EV_P);
1808#endif
1809
1810inline_size void
929loop_fork (EV_P) 1811loop_fork (EV_P)
930{ 1812{
931#if EV_USE_PORT 1813#if EV_USE_PORT
932 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1814 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
933#endif 1815#endif
935 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1817 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
936#endif 1818#endif
937#if EV_USE_EPOLL 1819#if EV_USE_EPOLL
938 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1820 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
939#endif 1821#endif
1822#if EV_USE_INOTIFY
1823 infy_fork (EV_A);
1824#endif
940 1825
941 if (ev_is_active (&sigev)) 1826 if (ev_is_active (&pipe_w))
942 { 1827 {
943 /* default loop */ 1828 /* this "locks" the handlers against writing to the pipe */
1829 /* while we modify the fd vars */
1830 sig_pending = 1;
1831#if EV_ASYNC_ENABLE
1832 async_pending = 1;
1833#endif
944 1834
945 ev_ref (EV_A); 1835 ev_ref (EV_A);
946 ev_io_stop (EV_A_ &sigev); 1836 ev_io_stop (EV_A_ &pipe_w);
947 close (sigpipe [0]);
948 close (sigpipe [1]);
949 1837
950 while (pipe (sigpipe)) 1838#if EV_USE_EVENTFD
951 syserr ("(libev) error creating pipe"); 1839 if (evfd >= 0)
1840 close (evfd);
1841#endif
952 1842
1843 if (evpipe [0] >= 0)
1844 {
1845 EV_WIN32_CLOSE_FD (evpipe [0]);
1846 EV_WIN32_CLOSE_FD (evpipe [1]);
1847 }
1848
1849#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
953 siginit (EV_A); 1850 evpipe_init (EV_A);
1851 /* now iterate over everything, in case we missed something */
1852 pipecb (EV_A_ &pipe_w, EV_READ);
1853#endif
954 } 1854 }
955 1855
956 postfork = 0; 1856 postfork = 0;
957} 1857}
958 1858
959#if EV_MULTIPLICITY 1859#if EV_MULTIPLICITY
1860
960struct ev_loop * 1861struct ev_loop *
961ev_loop_new (unsigned int flags) 1862ev_loop_new (unsigned int flags)
962{ 1863{
963 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1864 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
964 1865
965 memset (loop, 0, sizeof (struct ev_loop)); 1866 memset (EV_A, 0, sizeof (struct ev_loop));
966
967 loop_init (EV_A_ flags); 1867 loop_init (EV_A_ flags);
968 1868
969 if (ev_backend (EV_A)) 1869 if (ev_backend (EV_A))
970 return loop; 1870 return EV_A;
971 1871
972 return 0; 1872 return 0;
973} 1873}
974 1874
975void 1875void
980} 1880}
981 1881
982void 1882void
983ev_loop_fork (EV_P) 1883ev_loop_fork (EV_P)
984{ 1884{
985 postfork = 1; 1885 postfork = 1; /* must be in line with ev_default_fork */
986} 1886}
1887#endif /* multiplicity */
987 1888
1889#if EV_VERIFY
1890static void noinline
1891verify_watcher (EV_P_ W w)
1892{
1893 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1894
1895 if (w->pending)
1896 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1897}
1898
1899static void noinline
1900verify_heap (EV_P_ ANHE *heap, int N)
1901{
1902 int i;
1903
1904 for (i = HEAP0; i < N + HEAP0; ++i)
1905 {
1906 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1907 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1908 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1909
1910 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1911 }
1912}
1913
1914static void noinline
1915array_verify (EV_P_ W *ws, int cnt)
1916{
1917 while (cnt--)
1918 {
1919 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1920 verify_watcher (EV_A_ ws [cnt]);
1921 }
1922}
1923#endif
1924
1925#if EV_FEATURE_API
1926void
1927ev_verify (EV_P)
1928{
1929#if EV_VERIFY
1930 int i;
1931 WL w;
1932
1933 assert (activecnt >= -1);
1934
1935 assert (fdchangemax >= fdchangecnt);
1936 for (i = 0; i < fdchangecnt; ++i)
1937 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1938
1939 assert (anfdmax >= 0);
1940 for (i = 0; i < anfdmax; ++i)
1941 for (w = anfds [i].head; w; w = w->next)
1942 {
1943 verify_watcher (EV_A_ (W)w);
1944 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1945 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1946 }
1947
1948 assert (timermax >= timercnt);
1949 verify_heap (EV_A_ timers, timercnt);
1950
1951#if EV_PERIODIC_ENABLE
1952 assert (periodicmax >= periodiccnt);
1953 verify_heap (EV_A_ periodics, periodiccnt);
1954#endif
1955
1956 for (i = NUMPRI; i--; )
1957 {
1958 assert (pendingmax [i] >= pendingcnt [i]);
1959#if EV_IDLE_ENABLE
1960 assert (idleall >= 0);
1961 assert (idlemax [i] >= idlecnt [i]);
1962 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1963#endif
1964 }
1965
1966#if EV_FORK_ENABLE
1967 assert (forkmax >= forkcnt);
1968 array_verify (EV_A_ (W *)forks, forkcnt);
1969#endif
1970
1971#if EV_ASYNC_ENABLE
1972 assert (asyncmax >= asynccnt);
1973 array_verify (EV_A_ (W *)asyncs, asynccnt);
1974#endif
1975
1976#if EV_PREPARE_ENABLE
1977 assert (preparemax >= preparecnt);
1978 array_verify (EV_A_ (W *)prepares, preparecnt);
1979#endif
1980
1981#if EV_CHECK_ENABLE
1982 assert (checkmax >= checkcnt);
1983 array_verify (EV_A_ (W *)checks, checkcnt);
1984#endif
1985
1986# if 0
1987#if EV_CHILD_ENABLE
1988 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1989 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1990#endif
1991# endif
1992#endif
1993}
988#endif 1994#endif
989 1995
990#if EV_MULTIPLICITY 1996#if EV_MULTIPLICITY
991struct ev_loop * 1997struct ev_loop *
992ev_default_loop_init (unsigned int flags) 1998ev_default_loop_init (unsigned int flags)
993#else 1999#else
994int 2000int
995ev_default_loop (unsigned int flags) 2001ev_default_loop (unsigned int flags)
996#endif 2002#endif
997{ 2003{
998 if (sigpipe [0] == sigpipe [1])
999 if (pipe (sigpipe))
1000 return 0;
1001
1002 if (!ev_default_loop_ptr) 2004 if (!ev_default_loop_ptr)
1003 { 2005 {
1004#if EV_MULTIPLICITY 2006#if EV_MULTIPLICITY
1005 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2007 EV_P = ev_default_loop_ptr = &default_loop_struct;
1006#else 2008#else
1007 ev_default_loop_ptr = 1; 2009 ev_default_loop_ptr = 1;
1008#endif 2010#endif
1009 2011
1010 loop_init (EV_A_ flags); 2012 loop_init (EV_A_ flags);
1011 2013
1012 if (ev_backend (EV_A)) 2014 if (ev_backend (EV_A))
1013 { 2015 {
1014 siginit (EV_A); 2016#if EV_CHILD_ENABLE
1015
1016#ifndef _WIN32
1017 ev_signal_init (&childev, childcb, SIGCHLD); 2017 ev_signal_init (&childev, childcb, SIGCHLD);
1018 ev_set_priority (&childev, EV_MAXPRI); 2018 ev_set_priority (&childev, EV_MAXPRI);
1019 ev_signal_start (EV_A_ &childev); 2019 ev_signal_start (EV_A_ &childev);
1020 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2020 ev_unref (EV_A); /* child watcher should not keep loop alive */
1021#endif 2021#endif
1029 2029
1030void 2030void
1031ev_default_destroy (void) 2031ev_default_destroy (void)
1032{ 2032{
1033#if EV_MULTIPLICITY 2033#if EV_MULTIPLICITY
1034 struct ev_loop *loop = ev_default_loop_ptr; 2034 EV_P = ev_default_loop_ptr;
1035#endif 2035#endif
1036 2036
1037#ifndef _WIN32 2037 ev_default_loop_ptr = 0;
2038
2039#if EV_CHILD_ENABLE
1038 ev_ref (EV_A); /* child watcher */ 2040 ev_ref (EV_A); /* child watcher */
1039 ev_signal_stop (EV_A_ &childev); 2041 ev_signal_stop (EV_A_ &childev);
1040#endif 2042#endif
1041 2043
1042 ev_ref (EV_A); /* signal watcher */
1043 ev_io_stop (EV_A_ &sigev);
1044
1045 close (sigpipe [0]); sigpipe [0] = 0;
1046 close (sigpipe [1]); sigpipe [1] = 0;
1047
1048 loop_destroy (EV_A); 2044 loop_destroy (EV_A);
1049} 2045}
1050 2046
1051void 2047void
1052ev_default_fork (void) 2048ev_default_fork (void)
1053{ 2049{
1054#if EV_MULTIPLICITY 2050#if EV_MULTIPLICITY
1055 struct ev_loop *loop = ev_default_loop_ptr; 2051 EV_P = ev_default_loop_ptr;
1056#endif 2052#endif
1057 2053
1058 if (backend) 2054 postfork = 1; /* must be in line with ev_loop_fork */
1059 postfork = 1;
1060} 2055}
1061 2056
1062/*****************************************************************************/ 2057/*****************************************************************************/
1063 2058
1064int inline_size 2059void
1065any_pending (EV_P) 2060ev_invoke (EV_P_ void *w, int revents)
2061{
2062 EV_CB_INVOKE ((W)w, revents);
2063}
2064
2065unsigned int
2066ev_pending_count (EV_P)
1066{ 2067{
1067 int pri; 2068 int pri;
2069 unsigned int count = 0;
1068 2070
1069 for (pri = NUMPRI; pri--; ) 2071 for (pri = NUMPRI; pri--; )
1070 if (pendingcnt [pri]) 2072 count += pendingcnt [pri];
1071 return 1;
1072 2073
1073 return 0; 2074 return count;
1074} 2075}
1075 2076
1076void inline_speed 2077void noinline
1077call_pending (EV_P) 2078ev_invoke_pending (EV_P)
1078{ 2079{
1079 int pri; 2080 int pri;
1080 2081
1081 for (pri = NUMPRI; pri--; ) 2082 for (pri = NUMPRI; pri--; )
1082 while (pendingcnt [pri]) 2083 while (pendingcnt [pri])
1083 { 2084 {
1084 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2085 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1085 2086
1086 if (expect_true (p->w))
1087 {
1088 assert (("non-pending watcher on pending list", p->w->pending)); 2087 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2088 /* ^ this is no longer true, as pending_w could be here */
1089 2089
1090 p->w->pending = 0; 2090 p->w->pending = 0;
1091 EV_CB_INVOKE (p->w, p->events); 2091 EV_CB_INVOKE (p->w, p->events);
1092 } 2092 EV_FREQUENT_CHECK;
1093 } 2093 }
1094} 2094}
1095 2095
1096void inline_size 2096#if EV_IDLE_ENABLE
2097/* make idle watchers pending. this handles the "call-idle */
2098/* only when higher priorities are idle" logic */
2099inline_size void
2100idle_reify (EV_P)
2101{
2102 if (expect_false (idleall))
2103 {
2104 int pri;
2105
2106 for (pri = NUMPRI; pri--; )
2107 {
2108 if (pendingcnt [pri])
2109 break;
2110
2111 if (idlecnt [pri])
2112 {
2113 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2114 break;
2115 }
2116 }
2117 }
2118}
2119#endif
2120
2121/* make timers pending */
2122inline_size void
1097timers_reify (EV_P) 2123timers_reify (EV_P)
1098{ 2124{
2125 EV_FREQUENT_CHECK;
2126
1099 while (timercnt && ((WT)timers [0])->at <= mn_now) 2127 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1100 { 2128 {
1101 ev_timer *w = timers [0]; 2129 do
1102
1103 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1104
1105 /* first reschedule or stop timer */
1106 if (w->repeat)
1107 { 2130 {
2131 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2132
2133 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2134
2135 /* first reschedule or stop timer */
2136 if (w->repeat)
2137 {
2138 ev_at (w) += w->repeat;
2139 if (ev_at (w) < mn_now)
2140 ev_at (w) = mn_now;
2141
1108 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2142 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1109 2143
1110 ((WT)w)->at += w->repeat; 2144 ANHE_at_cache (timers [HEAP0]);
1111 if (((WT)w)->at < mn_now)
1112 ((WT)w)->at = mn_now;
1113
1114 downheap ((WT *)timers, timercnt, 0); 2145 downheap (timers, timercnt, HEAP0);
2146 }
2147 else
2148 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2149
2150 EV_FREQUENT_CHECK;
2151 feed_reverse (EV_A_ (W)w);
1115 } 2152 }
1116 else 2153 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1117 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1118 2154
1119 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2155 feed_reverse_done (EV_A_ EV_TIMER);
1120 } 2156 }
1121} 2157}
1122 2158
1123#if EV_PERIODIC_ENABLE 2159#if EV_PERIODIC_ENABLE
1124void inline_size 2160/* make periodics pending */
2161inline_size void
1125periodics_reify (EV_P) 2162periodics_reify (EV_P)
1126{ 2163{
2164 EV_FREQUENT_CHECK;
2165
1127 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2166 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1128 { 2167 {
1129 ev_periodic *w = periodics [0]; 2168 int feed_count = 0;
1130 2169
1131 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2170 do
1132
1133 /* first reschedule or stop timer */
1134 if (w->reschedule_cb)
1135 { 2171 {
2172 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2173
2174 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2175
2176 /* first reschedule or stop timer */
2177 if (w->reschedule_cb)
2178 {
1136 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2180
1137 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2181 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2182
2183 ANHE_at_cache (periodics [HEAP0]);
1138 downheap ((WT *)periodics, periodiccnt, 0); 2184 downheap (periodics, periodiccnt, HEAP0);
2185 }
2186 else if (w->interval)
2187 {
2188 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2189 /* if next trigger time is not sufficiently in the future, put it there */
2190 /* this might happen because of floating point inexactness */
2191 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2192 {
2193 ev_at (w) += w->interval;
2194
2195 /* if interval is unreasonably low we might still have a time in the past */
2196 /* so correct this. this will make the periodic very inexact, but the user */
2197 /* has effectively asked to get triggered more often than possible */
2198 if (ev_at (w) < ev_rt_now)
2199 ev_at (w) = ev_rt_now;
2200 }
2201
2202 ANHE_at_cache (periodics [HEAP0]);
2203 downheap (periodics, periodiccnt, HEAP0);
2204 }
2205 else
2206 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2207
2208 EV_FREQUENT_CHECK;
2209 feed_reverse (EV_A_ (W)w);
1139 } 2210 }
1140 else if (w->interval) 2211 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1141 {
1142 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1143 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1144 downheap ((WT *)periodics, periodiccnt, 0);
1145 }
1146 else
1147 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1148 2212
1149 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2213 feed_reverse_done (EV_A_ EV_PERIODIC);
1150 } 2214 }
1151} 2215}
1152 2216
2217/* simply recalculate all periodics */
2218/* TODO: maybe ensure that at least one event happens when jumping forward? */
1153static void noinline 2219static void noinline
1154periodics_reschedule (EV_P) 2220periodics_reschedule (EV_P)
1155{ 2221{
1156 int i; 2222 int i;
1157 2223
1158 /* adjust periodics after time jump */ 2224 /* adjust periodics after time jump */
1159 for (i = 0; i < periodiccnt; ++i) 2225 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1160 { 2226 {
1161 ev_periodic *w = periodics [i]; 2227 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1162 2228
1163 if (w->reschedule_cb) 2229 if (w->reschedule_cb)
1164 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2230 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1165 else if (w->interval) 2231 else if (w->interval)
1166 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2232 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2233
2234 ANHE_at_cache (periodics [i]);
2235 }
2236
2237 reheap (periodics, periodiccnt);
2238}
2239#endif
2240
2241/* adjust all timers by a given offset */
2242static void noinline
2243timers_reschedule (EV_P_ ev_tstamp adjust)
2244{
2245 int i;
2246
2247 for (i = 0; i < timercnt; ++i)
1167 } 2248 {
1168 2249 ANHE *he = timers + i + HEAP0;
1169 /* now rebuild the heap */ 2250 ANHE_w (*he)->at += adjust;
1170 for (i = periodiccnt >> 1; i--; ) 2251 ANHE_at_cache (*he);
1171 downheap ((WT *)periodics, periodiccnt, i); 2252 }
1172} 2253}
1173#endif
1174 2254
1175int inline_size 2255/* fetch new monotonic and realtime times from the kernel */
1176time_update_monotonic (EV_P) 2256/* also detect if there was a timejump, and act accordingly */
2257inline_speed void
2258time_update (EV_P_ ev_tstamp max_block)
1177{ 2259{
2260#if EV_USE_MONOTONIC
2261 if (expect_true (have_monotonic))
2262 {
2263 int i;
2264 ev_tstamp odiff = rtmn_diff;
2265
1178 mn_now = get_clock (); 2266 mn_now = get_clock ();
1179 2267
2268 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2269 /* interpolate in the meantime */
1180 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2270 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1181 { 2271 {
1182 ev_rt_now = rtmn_diff + mn_now; 2272 ev_rt_now = rtmn_diff + mn_now;
1183 return 0; 2273 return;
1184 } 2274 }
1185 else 2275
1186 {
1187 now_floor = mn_now; 2276 now_floor = mn_now;
1188 ev_rt_now = ev_time (); 2277 ev_rt_now = ev_time ();
1189 return 1;
1190 }
1191}
1192 2278
1193void inline_size 2279 /* loop a few times, before making important decisions.
1194time_update (EV_P) 2280 * on the choice of "4": one iteration isn't enough,
1195{ 2281 * in case we get preempted during the calls to
1196 int i; 2282 * ev_time and get_clock. a second call is almost guaranteed
1197 2283 * to succeed in that case, though. and looping a few more times
1198#if EV_USE_MONOTONIC 2284 * doesn't hurt either as we only do this on time-jumps or
1199 if (expect_true (have_monotonic)) 2285 * in the unlikely event of having been preempted here.
1200 { 2286 */
1201 if (time_update_monotonic (EV_A)) 2287 for (i = 4; --i; )
1202 { 2288 {
1203 ev_tstamp odiff = rtmn_diff;
1204
1205 /* loop a few times, before making important decisions.
1206 * on the choice of "4": one iteration isn't enough,
1207 * in case we get preempted during the calls to
1208 * ev_time and get_clock. a second call is almost guarenteed
1209 * to succeed in that case, though. and looping a few more times
1210 * doesn't hurt either as we only do this on time-jumps or
1211 * in the unlikely event of getting preempted here.
1212 */
1213 for (i = 4; --i; )
1214 {
1215 rtmn_diff = ev_rt_now - mn_now; 2289 rtmn_diff = ev_rt_now - mn_now;
1216 2290
1217 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2291 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1218 return; /* all is well */ 2292 return; /* all is well */
1219 2293
1220 ev_rt_now = ev_time (); 2294 ev_rt_now = ev_time ();
1221 mn_now = get_clock (); 2295 mn_now = get_clock ();
1222 now_floor = mn_now; 2296 now_floor = mn_now;
1223 } 2297 }
1224 2298
2299 /* no timer adjustment, as the monotonic clock doesn't jump */
2300 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1225# if EV_PERIODIC_ENABLE 2301# if EV_PERIODIC_ENABLE
1226 periodics_reschedule (EV_A); 2302 periodics_reschedule (EV_A);
1227# endif 2303# endif
1228 /* no timer adjustment, as the monotonic clock doesn't jump */
1229 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1230 }
1231 } 2304 }
1232 else 2305 else
1233#endif 2306#endif
1234 { 2307 {
1235 ev_rt_now = ev_time (); 2308 ev_rt_now = ev_time ();
1236 2309
1237 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2310 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1238 { 2311 {
2312 /* adjust timers. this is easy, as the offset is the same for all of them */
2313 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1239#if EV_PERIODIC_ENABLE 2314#if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 2315 periodics_reschedule (EV_A);
1241#endif 2316#endif
1242
1243 /* adjust timers. this is easy, as the offset is the same for all */
1244 for (i = 0; i < timercnt; ++i)
1245 ((WT)timers [i])->at += ev_rt_now - mn_now;
1246 } 2317 }
1247 2318
1248 mn_now = ev_rt_now; 2319 mn_now = ev_rt_now;
1249 } 2320 }
1250} 2321}
1251 2322
1252void 2323void
1253ev_ref (EV_P)
1254{
1255 ++activecnt;
1256}
1257
1258void
1259ev_unref (EV_P)
1260{
1261 --activecnt;
1262}
1263
1264static int loop_done;
1265
1266void
1267ev_loop (EV_P_ int flags) 2324ev_run (EV_P_ int flags)
1268{ 2325{
1269 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2326#if EV_FEATURE_API
1270 ? EVUNLOOP_ONE 2327 ++loop_depth;
1271 : EVUNLOOP_CANCEL; 2328#endif
1272 2329
1273 while (activecnt) 2330 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2331
2332 loop_done = EVBREAK_CANCEL;
2333
2334 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2335
2336 do
1274 { 2337 {
2338#if EV_VERIFY >= 2
2339 ev_verify (EV_A);
2340#endif
2341
2342#ifndef _WIN32
2343 if (expect_false (curpid)) /* penalise the forking check even more */
2344 if (expect_false (getpid () != curpid))
2345 {
2346 curpid = getpid ();
2347 postfork = 1;
2348 }
2349#endif
2350
2351#if EV_FORK_ENABLE
2352 /* we might have forked, so queue fork handlers */
2353 if (expect_false (postfork))
2354 if (forkcnt)
2355 {
2356 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2357 EV_INVOKE_PENDING;
2358 }
2359#endif
2360
2361#if EV_PREPARE_ENABLE
1275 /* queue check watchers (and execute them) */ 2362 /* queue prepare watchers (and execute them) */
1276 if (expect_false (preparecnt)) 2363 if (expect_false (preparecnt))
1277 { 2364 {
1278 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2365 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1279 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
1280 } 2367 }
2368#endif
2369
2370 if (expect_false (loop_done))
2371 break;
1281 2372
1282 /* we might have forked, so reify kernel state if necessary */ 2373 /* we might have forked, so reify kernel state if necessary */
1283 if (expect_false (postfork)) 2374 if (expect_false (postfork))
1284 loop_fork (EV_A); 2375 loop_fork (EV_A);
1285 2376
1286 /* update fd-related kernel structures */ 2377 /* update fd-related kernel structures */
1287 fd_reify (EV_A); 2378 fd_reify (EV_A);
1288 2379
1289 /* calculate blocking time */ 2380 /* calculate blocking time */
1290 { 2381 {
1291 double block; 2382 ev_tstamp waittime = 0.;
2383 ev_tstamp sleeptime = 0.;
1292 2384
1293 if (flags & EVLOOP_NONBLOCK || idlecnt) 2385 /* remember old timestamp for io_blocktime calculation */
1294 block = 0.; /* do not block at all */ 2386 ev_tstamp prev_mn_now = mn_now;
1295 else 2387
2388 /* update time to cancel out callback processing overhead */
2389 time_update (EV_A_ 1e100);
2390
2391 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1296 { 2392 {
1297 /* update time to cancel out callback processing overhead */
1298#if EV_USE_MONOTONIC
1299 if (expect_true (have_monotonic))
1300 time_update_monotonic (EV_A);
1301 else
1302#endif
1303 {
1304 ev_rt_now = ev_time ();
1305 mn_now = ev_rt_now;
1306 }
1307
1308 block = MAX_BLOCKTIME; 2393 waittime = MAX_BLOCKTIME;
1309 2394
1310 if (timercnt) 2395 if (timercnt)
1311 { 2396 {
1312 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2397 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1313 if (block > to) block = to; 2398 if (waittime > to) waittime = to;
1314 } 2399 }
1315 2400
1316#if EV_PERIODIC_ENABLE 2401#if EV_PERIODIC_ENABLE
1317 if (periodiccnt) 2402 if (periodiccnt)
1318 { 2403 {
1319 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2404 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1320 if (block > to) block = to; 2405 if (waittime > to) waittime = to;
1321 } 2406 }
1322#endif 2407#endif
1323 2408
2409 /* don't let timeouts decrease the waittime below timeout_blocktime */
2410 if (expect_false (waittime < timeout_blocktime))
2411 waittime = timeout_blocktime;
2412
2413 /* extra check because io_blocktime is commonly 0 */
1324 if (expect_false (block < 0.)) block = 0.; 2414 if (expect_false (io_blocktime))
2415 {
2416 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2417
2418 if (sleeptime > waittime - backend_fudge)
2419 sleeptime = waittime - backend_fudge;
2420
2421 if (expect_true (sleeptime > 0.))
2422 {
2423 ev_sleep (sleeptime);
2424 waittime -= sleeptime;
2425 }
2426 }
1325 } 2427 }
1326 2428
2429#if EV_FEATURE_API
2430 ++loop_count;
2431#endif
2432 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1327 backend_poll (EV_A_ block); 2433 backend_poll (EV_A_ waittime);
2434 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2435
2436 /* update ev_rt_now, do magic */
2437 time_update (EV_A_ waittime + sleeptime);
1328 } 2438 }
1329
1330 /* update ev_rt_now, do magic */
1331 time_update (EV_A);
1332 2439
1333 /* queue pending timers and reschedule them */ 2440 /* queue pending timers and reschedule them */
1334 timers_reify (EV_A); /* relative timers called last */ 2441 timers_reify (EV_A); /* relative timers called last */
1335#if EV_PERIODIC_ENABLE 2442#if EV_PERIODIC_ENABLE
1336 periodics_reify (EV_A); /* absolute timers called first */ 2443 periodics_reify (EV_A); /* absolute timers called first */
1337#endif 2444#endif
1338 2445
2446#if EV_IDLE_ENABLE
1339 /* queue idle watchers unless other events are pending */ 2447 /* queue idle watchers unless other events are pending */
1340 if (idlecnt && !any_pending (EV_A)) 2448 idle_reify (EV_A);
1341 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2449#endif
1342 2450
2451#if EV_CHECK_ENABLE
1343 /* queue check watchers, to be executed first */ 2452 /* queue check watchers, to be executed first */
1344 if (expect_false (checkcnt)) 2453 if (expect_false (checkcnt))
1345 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2454 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2455#endif
1346 2456
1347 call_pending (EV_A); 2457 EV_INVOKE_PENDING;
1348
1349 if (expect_false (loop_done))
1350 break;
1351 } 2458 }
2459 while (expect_true (
2460 activecnt
2461 && !loop_done
2462 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2463 ));
1352 2464
1353 if (loop_done == EVUNLOOP_ONE) 2465 if (loop_done == EVBREAK_ONE)
1354 loop_done = EVUNLOOP_CANCEL; 2466 loop_done = EVBREAK_CANCEL;
1355}
1356 2467
2468#if EV_FEATURE_API
2469 --loop_depth;
2470#endif
2471}
2472
1357void 2473void
1358ev_unloop (EV_P_ int how) 2474ev_break (EV_P_ int how)
1359{ 2475{
1360 loop_done = how; 2476 loop_done = how;
1361} 2477}
1362 2478
2479void
2480ev_ref (EV_P)
2481{
2482 ++activecnt;
2483}
2484
2485void
2486ev_unref (EV_P)
2487{
2488 --activecnt;
2489}
2490
2491void
2492ev_now_update (EV_P)
2493{
2494 time_update (EV_A_ 1e100);
2495}
2496
2497void
2498ev_suspend (EV_P)
2499{
2500 ev_now_update (EV_A);
2501}
2502
2503void
2504ev_resume (EV_P)
2505{
2506 ev_tstamp mn_prev = mn_now;
2507
2508 ev_now_update (EV_A);
2509 timers_reschedule (EV_A_ mn_now - mn_prev);
2510#if EV_PERIODIC_ENABLE
2511 /* TODO: really do this? */
2512 periodics_reschedule (EV_A);
2513#endif
2514}
2515
1363/*****************************************************************************/ 2516/*****************************************************************************/
2517/* singly-linked list management, used when the expected list length is short */
1364 2518
1365void inline_size 2519inline_size void
1366wlist_add (WL *head, WL elem) 2520wlist_add (WL *head, WL elem)
1367{ 2521{
1368 elem->next = *head; 2522 elem->next = *head;
1369 *head = elem; 2523 *head = elem;
1370} 2524}
1371 2525
1372void inline_size 2526inline_size void
1373wlist_del (WL *head, WL elem) 2527wlist_del (WL *head, WL elem)
1374{ 2528{
1375 while (*head) 2529 while (*head)
1376 { 2530 {
1377 if (*head == elem) 2531 if (expect_true (*head == elem))
1378 { 2532 {
1379 *head = elem->next; 2533 *head = elem->next;
1380 return; 2534 break;
1381 } 2535 }
1382 2536
1383 head = &(*head)->next; 2537 head = &(*head)->next;
1384 } 2538 }
1385} 2539}
1386 2540
1387void inline_speed 2541/* internal, faster, version of ev_clear_pending */
2542inline_speed void
1388ev_clear_pending (EV_P_ W w) 2543clear_pending (EV_P_ W w)
1389{ 2544{
1390 if (w->pending) 2545 if (w->pending)
1391 { 2546 {
1392 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2547 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1393 w->pending = 0; 2548 w->pending = 0;
1394 } 2549 }
1395} 2550}
1396 2551
1397void inline_speed 2552int
2553ev_clear_pending (EV_P_ void *w)
2554{
2555 W w_ = (W)w;
2556 int pending = w_->pending;
2557
2558 if (expect_true (pending))
2559 {
2560 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2561 p->w = (W)&pending_w;
2562 w_->pending = 0;
2563 return p->events;
2564 }
2565 else
2566 return 0;
2567}
2568
2569inline_size void
2570pri_adjust (EV_P_ W w)
2571{
2572 int pri = ev_priority (w);
2573 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2574 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2575 ev_set_priority (w, pri);
2576}
2577
2578inline_speed void
1398ev_start (EV_P_ W w, int active) 2579ev_start (EV_P_ W w, int active)
1399{ 2580{
1400 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2581 pri_adjust (EV_A_ w);
1401 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1402
1403 w->active = active; 2582 w->active = active;
1404 ev_ref (EV_A); 2583 ev_ref (EV_A);
1405} 2584}
1406 2585
1407void inline_size 2586inline_size void
1408ev_stop (EV_P_ W w) 2587ev_stop (EV_P_ W w)
1409{ 2588{
1410 ev_unref (EV_A); 2589 ev_unref (EV_A);
1411 w->active = 0; 2590 w->active = 0;
1412} 2591}
1413 2592
1414/*****************************************************************************/ 2593/*****************************************************************************/
1415 2594
1416void 2595void noinline
1417ev_io_start (EV_P_ ev_io *w) 2596ev_io_start (EV_P_ ev_io *w)
1418{ 2597{
1419 int fd = w->fd; 2598 int fd = w->fd;
1420 2599
1421 if (expect_false (ev_is_active (w))) 2600 if (expect_false (ev_is_active (w)))
1422 return; 2601 return;
1423 2602
1424 assert (("ev_io_start called with negative fd", fd >= 0)); 2603 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2604 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2605
2606 EV_FREQUENT_CHECK;
1425 2607
1426 ev_start (EV_A_ (W)w, 1); 2608 ev_start (EV_A_ (W)w, 1);
1427 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2609 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1428 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2610 wlist_add (&anfds[fd].head, (WL)w);
1429 2611
1430 fd_change (EV_A_ fd); 2612 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1431} 2613 w->events &= ~EV__IOFDSET;
1432 2614
1433void 2615 EV_FREQUENT_CHECK;
2616}
2617
2618void noinline
1434ev_io_stop (EV_P_ ev_io *w) 2619ev_io_stop (EV_P_ ev_io *w)
1435{ 2620{
1436 ev_clear_pending (EV_A_ (W)w); 2621 clear_pending (EV_A_ (W)w);
1437 if (expect_false (!ev_is_active (w))) 2622 if (expect_false (!ev_is_active (w)))
1438 return; 2623 return;
1439 2624
1440 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2625 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1441 2626
2627 EV_FREQUENT_CHECK;
2628
1442 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2629 wlist_del (&anfds[w->fd].head, (WL)w);
1443 ev_stop (EV_A_ (W)w); 2630 ev_stop (EV_A_ (W)w);
1444 2631
1445 fd_change (EV_A_ w->fd); 2632 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1446}
1447 2633
1448void 2634 EV_FREQUENT_CHECK;
2635}
2636
2637void noinline
1449ev_timer_start (EV_P_ ev_timer *w) 2638ev_timer_start (EV_P_ ev_timer *w)
1450{ 2639{
1451 if (expect_false (ev_is_active (w))) 2640 if (expect_false (ev_is_active (w)))
1452 return; 2641 return;
1453 2642
1454 ((WT)w)->at += mn_now; 2643 ev_at (w) += mn_now;
1455 2644
1456 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2645 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1457 2646
2647 EV_FREQUENT_CHECK;
2648
2649 ++timercnt;
1458 ev_start (EV_A_ (W)w, ++timercnt); 2650 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1459 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2651 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1460 timers [timercnt - 1] = w; 2652 ANHE_w (timers [ev_active (w)]) = (WT)w;
1461 upheap ((WT *)timers, timercnt - 1); 2653 ANHE_at_cache (timers [ev_active (w)]);
2654 upheap (timers, ev_active (w));
1462 2655
2656 EV_FREQUENT_CHECK;
2657
1463 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2658 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1464} 2659}
1465 2660
1466void 2661void noinline
1467ev_timer_stop (EV_P_ ev_timer *w) 2662ev_timer_stop (EV_P_ ev_timer *w)
1468{ 2663{
1469 ev_clear_pending (EV_A_ (W)w); 2664 clear_pending (EV_A_ (W)w);
1470 if (expect_false (!ev_is_active (w))) 2665 if (expect_false (!ev_is_active (w)))
1471 return; 2666 return;
1472 2667
2668 EV_FREQUENT_CHECK;
2669
2670 {
2671 int active = ev_active (w);
2672
1473 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2673 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1474 2674
2675 --timercnt;
2676
1475 if (expect_true (((W)w)->active < timercnt--)) 2677 if (expect_true (active < timercnt + HEAP0))
1476 { 2678 {
1477 timers [((W)w)->active - 1] = timers [timercnt]; 2679 timers [active] = timers [timercnt + HEAP0];
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2680 adjustheap (timers, timercnt, active);
1479 } 2681 }
2682 }
1480 2683
1481 ((WT)w)->at -= mn_now; 2684 ev_at (w) -= mn_now;
1482 2685
1483 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
1484}
1485 2687
1486void 2688 EV_FREQUENT_CHECK;
2689}
2690
2691void noinline
1487ev_timer_again (EV_P_ ev_timer *w) 2692ev_timer_again (EV_P_ ev_timer *w)
1488{ 2693{
2694 EV_FREQUENT_CHECK;
2695
1489 if (ev_is_active (w)) 2696 if (ev_is_active (w))
1490 { 2697 {
1491 if (w->repeat) 2698 if (w->repeat)
1492 { 2699 {
1493 ((WT)w)->at = mn_now + w->repeat; 2700 ev_at (w) = mn_now + w->repeat;
2701 ANHE_at_cache (timers [ev_active (w)]);
1494 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2702 adjustheap (timers, timercnt, ev_active (w));
1495 } 2703 }
1496 else 2704 else
1497 ev_timer_stop (EV_A_ w); 2705 ev_timer_stop (EV_A_ w);
1498 } 2706 }
1499 else if (w->repeat) 2707 else if (w->repeat)
1500 { 2708 {
1501 w->at = w->repeat; 2709 ev_at (w) = w->repeat;
1502 ev_timer_start (EV_A_ w); 2710 ev_timer_start (EV_A_ w);
1503 } 2711 }
2712
2713 EV_FREQUENT_CHECK;
2714}
2715
2716ev_tstamp
2717ev_timer_remaining (EV_P_ ev_timer *w)
2718{
2719 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1504} 2720}
1505 2721
1506#if EV_PERIODIC_ENABLE 2722#if EV_PERIODIC_ENABLE
1507void 2723void noinline
1508ev_periodic_start (EV_P_ ev_periodic *w) 2724ev_periodic_start (EV_P_ ev_periodic *w)
1509{ 2725{
1510 if (expect_false (ev_is_active (w))) 2726 if (expect_false (ev_is_active (w)))
1511 return; 2727 return;
1512 2728
1513 if (w->reschedule_cb) 2729 if (w->reschedule_cb)
1514 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2730 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1515 else if (w->interval) 2731 else if (w->interval)
1516 { 2732 {
1517 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2733 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1518 /* this formula differs from the one in periodic_reify because we do not always round up */ 2734 /* this formula differs from the one in periodic_reify because we do not always round up */
1519 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2735 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1520 } 2736 }
2737 else
2738 ev_at (w) = w->offset;
1521 2739
2740 EV_FREQUENT_CHECK;
2741
2742 ++periodiccnt;
1522 ev_start (EV_A_ (W)w, ++periodiccnt); 2743 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1523 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2744 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1524 periodics [periodiccnt - 1] = w; 2745 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1525 upheap ((WT *)periodics, periodiccnt - 1); 2746 ANHE_at_cache (periodics [ev_active (w)]);
2747 upheap (periodics, ev_active (w));
1526 2748
2749 EV_FREQUENT_CHECK;
2750
1527 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2751 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1528} 2752}
1529 2753
1530void 2754void noinline
1531ev_periodic_stop (EV_P_ ev_periodic *w) 2755ev_periodic_stop (EV_P_ ev_periodic *w)
1532{ 2756{
1533 ev_clear_pending (EV_A_ (W)w); 2757 clear_pending (EV_A_ (W)w);
1534 if (expect_false (!ev_is_active (w))) 2758 if (expect_false (!ev_is_active (w)))
1535 return; 2759 return;
1536 2760
2761 EV_FREQUENT_CHECK;
2762
2763 {
2764 int active = ev_active (w);
2765
1537 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2766 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1538 2767
2768 --periodiccnt;
2769
1539 if (expect_true (((W)w)->active < periodiccnt--)) 2770 if (expect_true (active < periodiccnt + HEAP0))
1540 { 2771 {
1541 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2772 periodics [active] = periodics [periodiccnt + HEAP0];
1542 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2773 adjustheap (periodics, periodiccnt, active);
1543 } 2774 }
2775 }
1544 2776
1545 ev_stop (EV_A_ (W)w); 2777 ev_stop (EV_A_ (W)w);
1546}
1547 2778
1548void 2779 EV_FREQUENT_CHECK;
2780}
2781
2782void noinline
1549ev_periodic_again (EV_P_ ev_periodic *w) 2783ev_periodic_again (EV_P_ ev_periodic *w)
1550{ 2784{
1551 /* TODO: use adjustheap and recalculation */ 2785 /* TODO: use adjustheap and recalculation */
1552 ev_periodic_stop (EV_A_ w); 2786 ev_periodic_stop (EV_A_ w);
1553 ev_periodic_start (EV_A_ w); 2787 ev_periodic_start (EV_A_ w);
1554} 2788}
1555#endif 2789#endif
1556 2790
1557void 2791#ifndef SA_RESTART
2792# define SA_RESTART 0
2793#endif
2794
2795#if EV_SIGNAL_ENABLE
2796
2797void noinline
1558ev_idle_start (EV_P_ ev_idle *w) 2798ev_signal_start (EV_P_ ev_signal *w)
1559{ 2799{
1560 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
1561 return; 2801 return;
1562 2802
2803 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2804
2805#if EV_MULTIPLICITY
2806 assert (("libev: a signal must not be attached to two different loops",
2807 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2808
2809 signals [w->signum - 1].loop = EV_A;
2810#endif
2811
2812 EV_FREQUENT_CHECK;
2813
2814#if EV_USE_SIGNALFD
2815 if (sigfd == -2)
2816 {
2817 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2818 if (sigfd < 0 && errno == EINVAL)
2819 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2820
2821 if (sigfd >= 0)
2822 {
2823 fd_intern (sigfd); /* doing it twice will not hurt */
2824
2825 sigemptyset (&sigfd_set);
2826
2827 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2828 ev_set_priority (&sigfd_w, EV_MAXPRI);
2829 ev_io_start (EV_A_ &sigfd_w);
2830 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2831 }
2832 }
2833
2834 if (sigfd >= 0)
2835 {
2836 /* TODO: check .head */
2837 sigaddset (&sigfd_set, w->signum);
2838 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2839
2840 signalfd (sigfd, &sigfd_set, 0);
2841 }
2842#endif
2843
1563 ev_start (EV_A_ (W)w, ++idlecnt); 2844 ev_start (EV_A_ (W)w, 1);
1564 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2845 wlist_add (&signals [w->signum - 1].head, (WL)w);
1565 idles [idlecnt - 1] = w;
1566}
1567 2846
1568void 2847 if (!((WL)w)->next)
2848# if EV_USE_SIGNALFD
2849 if (sigfd < 0) /*TODO*/
2850# endif
2851 {
2852# ifdef _WIN32
2853 evpipe_init (EV_A);
2854
2855 signal (w->signum, ev_sighandler);
2856# else
2857 struct sigaction sa;
2858
2859 evpipe_init (EV_A);
2860
2861 sa.sa_handler = ev_sighandler;
2862 sigfillset (&sa.sa_mask);
2863 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2864 sigaction (w->signum, &sa, 0);
2865
2866 sigemptyset (&sa.sa_mask);
2867 sigaddset (&sa.sa_mask, w->signum);
2868 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2869#endif
2870 }
2871
2872 EV_FREQUENT_CHECK;
2873}
2874
2875void noinline
1569ev_idle_stop (EV_P_ ev_idle *w) 2876ev_signal_stop (EV_P_ ev_signal *w)
1570{ 2877{
1571 ev_clear_pending (EV_A_ (W)w); 2878 clear_pending (EV_A_ (W)w);
1572 if (expect_false (!ev_is_active (w))) 2879 if (expect_false (!ev_is_active (w)))
1573 return; 2880 return;
1574 2881
1575 { 2882 EV_FREQUENT_CHECK;
1576 int active = ((W)w)->active;
1577 idles [active - 1] = idles [--idlecnt];
1578 ((W)idles [active - 1])->active = active;
1579 }
1580 2883
2884 wlist_del (&signals [w->signum - 1].head, (WL)w);
1581 ev_stop (EV_A_ (W)w); 2885 ev_stop (EV_A_ (W)w);
1582}
1583 2886
2887 if (!signals [w->signum - 1].head)
2888 {
2889#if EV_MULTIPLICITY
2890 signals [w->signum - 1].loop = 0; /* unattach from signal */
2891#endif
2892#if EV_USE_SIGNALFD
2893 if (sigfd >= 0)
2894 {
2895 sigset_t ss;
2896
2897 sigemptyset (&ss);
2898 sigaddset (&ss, w->signum);
2899 sigdelset (&sigfd_set, w->signum);
2900
2901 signalfd (sigfd, &sigfd_set, 0);
2902 sigprocmask (SIG_UNBLOCK, &ss, 0);
2903 }
2904 else
2905#endif
2906 signal (w->signum, SIG_DFL);
2907 }
2908
2909 EV_FREQUENT_CHECK;
2910}
2911
2912#endif
2913
2914#if EV_CHILD_ENABLE
2915
1584void 2916void
1585ev_prepare_start (EV_P_ ev_prepare *w) 2917ev_child_start (EV_P_ ev_child *w)
1586{ 2918{
2919#if EV_MULTIPLICITY
2920 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2921#endif
1587 if (expect_false (ev_is_active (w))) 2922 if (expect_false (ev_is_active (w)))
1588 return; 2923 return;
1589 2924
2925 EV_FREQUENT_CHECK;
2926
1590 ev_start (EV_A_ (W)w, ++preparecnt); 2927 ev_start (EV_A_ (W)w, 1);
1591 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2928 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1592 prepares [preparecnt - 1] = w;
1593}
1594 2929
2930 EV_FREQUENT_CHECK;
2931}
2932
1595void 2933void
1596ev_prepare_stop (EV_P_ ev_prepare *w) 2934ev_child_stop (EV_P_ ev_child *w)
1597{ 2935{
1598 ev_clear_pending (EV_A_ (W)w); 2936 clear_pending (EV_A_ (W)w);
1599 if (expect_false (!ev_is_active (w))) 2937 if (expect_false (!ev_is_active (w)))
1600 return; 2938 return;
1601 2939
1602 { 2940 EV_FREQUENT_CHECK;
1603 int active = ((W)w)->active;
1604 prepares [active - 1] = prepares [--preparecnt];
1605 ((W)prepares [active - 1])->active = active;
1606 }
1607 2941
2942 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1608 ev_stop (EV_A_ (W)w); 2943 ev_stop (EV_A_ (W)w);
1609}
1610 2944
1611void 2945 EV_FREQUENT_CHECK;
1612ev_check_start (EV_P_ ev_check *w) 2946}
2947
2948#endif
2949
2950#if EV_STAT_ENABLE
2951
2952# ifdef _WIN32
2953# undef lstat
2954# define lstat(a,b) _stati64 (a,b)
2955# endif
2956
2957#define DEF_STAT_INTERVAL 5.0074891
2958#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2959#define MIN_STAT_INTERVAL 0.1074891
2960
2961static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2962
2963#if EV_USE_INOTIFY
2964
2965/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2966# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2967
2968static void noinline
2969infy_add (EV_P_ ev_stat *w)
1613{ 2970{
1614 if (expect_false (ev_is_active (w))) 2971 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2972
2973 if (w->wd >= 0)
2974 {
2975 struct statfs sfs;
2976
2977 /* now local changes will be tracked by inotify, but remote changes won't */
2978 /* unless the filesystem is known to be local, we therefore still poll */
2979 /* also do poll on <2.6.25, but with normal frequency */
2980
2981 if (!fs_2625)
2982 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2983 else if (!statfs (w->path, &sfs)
2984 && (sfs.f_type == 0x1373 /* devfs */
2985 || sfs.f_type == 0xEF53 /* ext2/3 */
2986 || sfs.f_type == 0x3153464a /* jfs */
2987 || sfs.f_type == 0x52654973 /* reiser3 */
2988 || sfs.f_type == 0x01021994 /* tempfs */
2989 || sfs.f_type == 0x58465342 /* xfs */))
2990 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2991 else
2992 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2993 }
2994 else
2995 {
2996 /* can't use inotify, continue to stat */
2997 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2998
2999 /* if path is not there, monitor some parent directory for speedup hints */
3000 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3001 /* but an efficiency issue only */
3002 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3003 {
3004 char path [4096];
3005 strcpy (path, w->path);
3006
3007 do
3008 {
3009 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3010 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3011
3012 char *pend = strrchr (path, '/');
3013
3014 if (!pend || pend == path)
3015 break;
3016
3017 *pend = 0;
3018 w->wd = inotify_add_watch (fs_fd, path, mask);
3019 }
3020 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3021 }
3022 }
3023
3024 if (w->wd >= 0)
3025 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3026
3027 /* now re-arm timer, if required */
3028 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3029 ev_timer_again (EV_A_ &w->timer);
3030 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3031}
3032
3033static void noinline
3034infy_del (EV_P_ ev_stat *w)
3035{
3036 int slot;
3037 int wd = w->wd;
3038
3039 if (wd < 0)
1615 return; 3040 return;
1616 3041
1617 ev_start (EV_A_ (W)w, ++checkcnt); 3042 w->wd = -2;
1618 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3043 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1619 checks [checkcnt - 1] = w; 3044 wlist_del (&fs_hash [slot].head, (WL)w);
1620}
1621 3045
1622void 3046 /* remove this watcher, if others are watching it, they will rearm */
1623ev_check_stop (EV_P_ ev_check *w) 3047 inotify_rm_watch (fs_fd, wd);
3048}
3049
3050static void noinline
3051infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1624{ 3052{
1625 ev_clear_pending (EV_A_ (W)w); 3053 if (slot < 0)
1626 if (expect_false (!ev_is_active (w))) 3054 /* overflow, need to check for all hash slots */
3055 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3056 infy_wd (EV_A_ slot, wd, ev);
3057 else
3058 {
3059 WL w_;
3060
3061 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3062 {
3063 ev_stat *w = (ev_stat *)w_;
3064 w_ = w_->next; /* lets us remove this watcher and all before it */
3065
3066 if (w->wd == wd || wd == -1)
3067 {
3068 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3069 {
3070 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3071 w->wd = -1;
3072 infy_add (EV_A_ w); /* re-add, no matter what */
3073 }
3074
3075 stat_timer_cb (EV_A_ &w->timer, 0);
3076 }
3077 }
3078 }
3079}
3080
3081static void
3082infy_cb (EV_P_ ev_io *w, int revents)
3083{
3084 char buf [EV_INOTIFY_BUFSIZE];
3085 int ofs;
3086 int len = read (fs_fd, buf, sizeof (buf));
3087
3088 for (ofs = 0; ofs < len; )
3089 {
3090 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3091 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3092 ofs += sizeof (struct inotify_event) + ev->len;
3093 }
3094}
3095
3096inline_size void
3097ev_check_2625 (EV_P)
3098{
3099 /* kernels < 2.6.25 are borked
3100 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3101 */
3102 if (ev_linux_version () < 0x020619)
1627 return; 3103 return;
1628 3104
1629 { 3105 fs_2625 = 1;
1630 int active = ((W)w)->active;
1631 checks [active - 1] = checks [--checkcnt];
1632 ((W)checks [active - 1])->active = active;
1633 }
1634
1635 ev_stop (EV_A_ (W)w);
1636} 3106}
1637 3107
1638#ifndef SA_RESTART 3108inline_size int
1639# define SA_RESTART 0 3109infy_newfd (void)
1640#endif
1641
1642void
1643ev_signal_start (EV_P_ ev_signal *w)
1644{ 3110{
1645#if EV_MULTIPLICITY 3111#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
1646 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3112 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3113 if (fd >= 0)
3114 return fd;
1647#endif 3115#endif
1648 if (expect_false (ev_is_active (w))) 3116 return inotify_init ();
3117}
3118
3119inline_size void
3120infy_init (EV_P)
3121{
3122 if (fs_fd != -2)
1649 return; 3123 return;
1650 3124
1651 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3125 fs_fd = -1;
1652 3126
1653 ev_start (EV_A_ (W)w, 1); 3127 ev_check_2625 (EV_A);
1654 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1655 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1656 3128
1657 if (!((WL)w)->next) 3129 fs_fd = infy_newfd ();
3130
3131 if (fs_fd >= 0)
3132 {
3133 fd_intern (fs_fd);
3134 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3135 ev_set_priority (&fs_w, EV_MAXPRI);
3136 ev_io_start (EV_A_ &fs_w);
3137 ev_unref (EV_A);
1658 { 3138 }
3139}
3140
3141inline_size void
3142infy_fork (EV_P)
3143{
3144 int slot;
3145
3146 if (fs_fd < 0)
3147 return;
3148
3149 ev_ref (EV_A);
3150 ev_io_stop (EV_A_ &fs_w);
3151 close (fs_fd);
3152 fs_fd = infy_newfd ();
3153
3154 if (fs_fd >= 0)
3155 {
3156 fd_intern (fs_fd);
3157 ev_io_set (&fs_w, fs_fd, EV_READ);
3158 ev_io_start (EV_A_ &fs_w);
3159 ev_unref (EV_A);
3160 }
3161
3162 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3163 {
3164 WL w_ = fs_hash [slot].head;
3165 fs_hash [slot].head = 0;
3166
3167 while (w_)
3168 {
3169 ev_stat *w = (ev_stat *)w_;
3170 w_ = w_->next; /* lets us add this watcher */
3171
3172 w->wd = -1;
3173
3174 if (fs_fd >= 0)
3175 infy_add (EV_A_ w); /* re-add, no matter what */
3176 else
3177 {
3178 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3179 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3180 ev_timer_again (EV_A_ &w->timer);
3181 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3182 }
3183 }
3184 }
3185}
3186
3187#endif
3188
1659#if _WIN32 3189#ifdef _WIN32
1660 signal (w->signum, sighandler); 3190# define EV_LSTAT(p,b) _stati64 (p, b)
1661#else 3191#else
1662 struct sigaction sa; 3192# define EV_LSTAT(p,b) lstat (p, b)
1663 sa.sa_handler = sighandler;
1664 sigfillset (&sa.sa_mask);
1665 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1666 sigaction (w->signum, &sa, 0);
1667#endif
1668 }
1669}
1670
1671void
1672ev_signal_stop (EV_P_ ev_signal *w)
1673{
1674 ev_clear_pending (EV_A_ (W)w);
1675 if (expect_false (!ev_is_active (w)))
1676 return;
1677
1678 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1679 ev_stop (EV_A_ (W)w);
1680
1681 if (!signals [w->signum - 1].head)
1682 signal (w->signum, SIG_DFL);
1683}
1684
1685void
1686ev_child_start (EV_P_ ev_child *w)
1687{
1688#if EV_MULTIPLICITY
1689 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1690#endif
1691 if (expect_false (ev_is_active (w)))
1692 return;
1693
1694 ev_start (EV_A_ (W)w, 1);
1695 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1696}
1697
1698void
1699ev_child_stop (EV_P_ ev_child *w)
1700{
1701 ev_clear_pending (EV_A_ (W)w);
1702 if (expect_false (!ev_is_active (w)))
1703 return;
1704
1705 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1706 ev_stop (EV_A_ (W)w);
1707}
1708
1709#if EV_EMBED_ENABLE
1710void noinline
1711ev_embed_sweep (EV_P_ ev_embed *w)
1712{
1713 ev_loop (w->loop, EVLOOP_NONBLOCK);
1714}
1715
1716static void
1717embed_cb (EV_P_ ev_io *io, int revents)
1718{
1719 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1720
1721 if (ev_cb (w))
1722 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1723 else
1724 ev_embed_sweep (loop, w);
1725}
1726
1727void
1728ev_embed_start (EV_P_ ev_embed *w)
1729{
1730 if (expect_false (ev_is_active (w)))
1731 return;
1732
1733 {
1734 struct ev_loop *loop = w->loop;
1735 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1736 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1737 }
1738
1739 ev_set_priority (&w->io, ev_priority (w));
1740 ev_io_start (EV_A_ &w->io);
1741
1742 ev_start (EV_A_ (W)w, 1);
1743}
1744
1745void
1746ev_embed_stop (EV_P_ ev_embed *w)
1747{
1748 ev_clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w)))
1750 return;
1751
1752 ev_io_stop (EV_A_ &w->io);
1753
1754 ev_stop (EV_A_ (W)w);
1755}
1756#endif
1757
1758#if EV_STAT_ENABLE
1759
1760# ifdef _WIN32
1761# define lstat(a,b) stat(a,b)
1762# endif 3193#endif
1763 3194
1764void 3195void
1765ev_stat_stat (EV_P_ ev_stat *w) 3196ev_stat_stat (EV_P_ ev_stat *w)
1766{ 3197{
1767 if (lstat (w->path, &w->attr) < 0) 3198 if (lstat (w->path, &w->attr) < 0)
1768 w->attr.st_nlink = 0; 3199 w->attr.st_nlink = 0;
1769 else if (!w->attr.st_nlink) 3200 else if (!w->attr.st_nlink)
1770 w->attr.st_nlink = 1; 3201 w->attr.st_nlink = 1;
1771} 3202}
1772 3203
1773static void 3204static void noinline
1774stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3205stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1775{ 3206{
1776 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3207 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1777 3208
1778 /* we copy this here each the time so that */ 3209 ev_statdata prev = w->attr;
1779 /* prev has the old value when the callback gets invoked */
1780 w->prev = w->attr;
1781 ev_stat_stat (EV_A_ w); 3210 ev_stat_stat (EV_A_ w);
1782 3211
1783 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 3212 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3213 if (
3214 prev.st_dev != w->attr.st_dev
3215 || prev.st_ino != w->attr.st_ino
3216 || prev.st_mode != w->attr.st_mode
3217 || prev.st_nlink != w->attr.st_nlink
3218 || prev.st_uid != w->attr.st_uid
3219 || prev.st_gid != w->attr.st_gid
3220 || prev.st_rdev != w->attr.st_rdev
3221 || prev.st_size != w->attr.st_size
3222 || prev.st_atime != w->attr.st_atime
3223 || prev.st_mtime != w->attr.st_mtime
3224 || prev.st_ctime != w->attr.st_ctime
3225 ) {
3226 /* we only update w->prev on actual differences */
3227 /* in case we test more often than invoke the callback, */
3228 /* to ensure that prev is always different to attr */
3229 w->prev = prev;
3230
3231 #if EV_USE_INOTIFY
3232 if (fs_fd >= 0)
3233 {
3234 infy_del (EV_A_ w);
3235 infy_add (EV_A_ w);
3236 ev_stat_stat (EV_A_ w); /* avoid race... */
3237 }
3238 #endif
3239
1784 ev_feed_event (EV_A_ w, EV_STAT); 3240 ev_feed_event (EV_A_ w, EV_STAT);
3241 }
1785} 3242}
1786 3243
1787void 3244void
1788ev_stat_start (EV_P_ ev_stat *w) 3245ev_stat_start (EV_P_ ev_stat *w)
1789{ 3246{
1790 if (expect_false (ev_is_active (w))) 3247 if (expect_false (ev_is_active (w)))
1791 return; 3248 return;
1792 3249
1793 /* since we use memcmp, we need to clear any padding data etc. */
1794 memset (&w->prev, 0, sizeof (ev_statdata));
1795 memset (&w->attr, 0, sizeof (ev_statdata));
1796
1797 ev_stat_stat (EV_A_ w); 3250 ev_stat_stat (EV_A_ w);
1798 3251
3252 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3253 w->interval = MIN_STAT_INTERVAL;
3254
1799 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3255 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1800 ev_set_priority (&w->timer, ev_priority (w)); 3256 ev_set_priority (&w->timer, ev_priority (w));
3257
3258#if EV_USE_INOTIFY
3259 infy_init (EV_A);
3260
3261 if (fs_fd >= 0)
3262 infy_add (EV_A_ w);
3263 else
3264#endif
3265 {
1801 ev_timer_start (EV_A_ &w->timer); 3266 ev_timer_again (EV_A_ &w->timer);
3267 ev_unref (EV_A);
3268 }
1802 3269
1803 ev_start (EV_A_ (W)w, 1); 3270 ev_start (EV_A_ (W)w, 1);
3271
3272 EV_FREQUENT_CHECK;
1804} 3273}
1805 3274
1806void 3275void
1807ev_stat_stop (EV_P_ ev_stat *w) 3276ev_stat_stop (EV_P_ ev_stat *w)
1808{ 3277{
1809 ev_clear_pending (EV_A_ (W)w); 3278 clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w))) 3279 if (expect_false (!ev_is_active (w)))
1811 return; 3280 return;
1812 3281
3282 EV_FREQUENT_CHECK;
3283
3284#if EV_USE_INOTIFY
3285 infy_del (EV_A_ w);
3286#endif
3287
3288 if (ev_is_active (&w->timer))
3289 {
3290 ev_ref (EV_A);
1813 ev_timer_stop (EV_A_ &w->timer); 3291 ev_timer_stop (EV_A_ &w->timer);
3292 }
1814 3293
1815 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
3295
3296 EV_FREQUENT_CHECK;
3297}
3298#endif
3299
3300#if EV_IDLE_ENABLE
3301void
3302ev_idle_start (EV_P_ ev_idle *w)
3303{
3304 if (expect_false (ev_is_active (w)))
3305 return;
3306
3307 pri_adjust (EV_A_ (W)w);
3308
3309 EV_FREQUENT_CHECK;
3310
3311 {
3312 int active = ++idlecnt [ABSPRI (w)];
3313
3314 ++idleall;
3315 ev_start (EV_A_ (W)w, active);
3316
3317 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3318 idles [ABSPRI (w)][active - 1] = w;
3319 }
3320
3321 EV_FREQUENT_CHECK;
3322}
3323
3324void
3325ev_idle_stop (EV_P_ ev_idle *w)
3326{
3327 clear_pending (EV_A_ (W)w);
3328 if (expect_false (!ev_is_active (w)))
3329 return;
3330
3331 EV_FREQUENT_CHECK;
3332
3333 {
3334 int active = ev_active (w);
3335
3336 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3337 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3338
3339 ev_stop (EV_A_ (W)w);
3340 --idleall;
3341 }
3342
3343 EV_FREQUENT_CHECK;
3344}
3345#endif
3346
3347#if EV_PREPARE_ENABLE
3348void
3349ev_prepare_start (EV_P_ ev_prepare *w)
3350{
3351 if (expect_false (ev_is_active (w)))
3352 return;
3353
3354 EV_FREQUENT_CHECK;
3355
3356 ev_start (EV_A_ (W)w, ++preparecnt);
3357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3358 prepares [preparecnt - 1] = w;
3359
3360 EV_FREQUENT_CHECK;
3361}
3362
3363void
3364ev_prepare_stop (EV_P_ ev_prepare *w)
3365{
3366 clear_pending (EV_A_ (W)w);
3367 if (expect_false (!ev_is_active (w)))
3368 return;
3369
3370 EV_FREQUENT_CHECK;
3371
3372 {
3373 int active = ev_active (w);
3374
3375 prepares [active - 1] = prepares [--preparecnt];
3376 ev_active (prepares [active - 1]) = active;
3377 }
3378
3379 ev_stop (EV_A_ (W)w);
3380
3381 EV_FREQUENT_CHECK;
3382}
3383#endif
3384
3385#if EV_CHECK_ENABLE
3386void
3387ev_check_start (EV_P_ ev_check *w)
3388{
3389 if (expect_false (ev_is_active (w)))
3390 return;
3391
3392 EV_FREQUENT_CHECK;
3393
3394 ev_start (EV_A_ (W)w, ++checkcnt);
3395 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3396 checks [checkcnt - 1] = w;
3397
3398 EV_FREQUENT_CHECK;
3399}
3400
3401void
3402ev_check_stop (EV_P_ ev_check *w)
3403{
3404 clear_pending (EV_A_ (W)w);
3405 if (expect_false (!ev_is_active (w)))
3406 return;
3407
3408 EV_FREQUENT_CHECK;
3409
3410 {
3411 int active = ev_active (w);
3412
3413 checks [active - 1] = checks [--checkcnt];
3414 ev_active (checks [active - 1]) = active;
3415 }
3416
3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
3420}
3421#endif
3422
3423#if EV_EMBED_ENABLE
3424void noinline
3425ev_embed_sweep (EV_P_ ev_embed *w)
3426{
3427 ev_run (w->other, EVRUN_NOWAIT);
3428}
3429
3430static void
3431embed_io_cb (EV_P_ ev_io *io, int revents)
3432{
3433 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3434
3435 if (ev_cb (w))
3436 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3437 else
3438 ev_run (w->other, EVRUN_NOWAIT);
3439}
3440
3441static void
3442embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3443{
3444 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3445
3446 {
3447 EV_P = w->other;
3448
3449 while (fdchangecnt)
3450 {
3451 fd_reify (EV_A);
3452 ev_run (EV_A_ EVRUN_NOWAIT);
3453 }
3454 }
3455}
3456
3457static void
3458embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3459{
3460 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3461
3462 ev_embed_stop (EV_A_ w);
3463
3464 {
3465 EV_P = w->other;
3466
3467 ev_loop_fork (EV_A);
3468 ev_run (EV_A_ EVRUN_NOWAIT);
3469 }
3470
3471 ev_embed_start (EV_A_ w);
3472}
3473
3474#if 0
3475static void
3476embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3477{
3478 ev_idle_stop (EV_A_ idle);
3479}
3480#endif
3481
3482void
3483ev_embed_start (EV_P_ ev_embed *w)
3484{
3485 if (expect_false (ev_is_active (w)))
3486 return;
3487
3488 {
3489 EV_P = w->other;
3490 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3492 }
3493
3494 EV_FREQUENT_CHECK;
3495
3496 ev_set_priority (&w->io, ev_priority (w));
3497 ev_io_start (EV_A_ &w->io);
3498
3499 ev_prepare_init (&w->prepare, embed_prepare_cb);
3500 ev_set_priority (&w->prepare, EV_MINPRI);
3501 ev_prepare_start (EV_A_ &w->prepare);
3502
3503 ev_fork_init (&w->fork, embed_fork_cb);
3504 ev_fork_start (EV_A_ &w->fork);
3505
3506 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3507
3508 ev_start (EV_A_ (W)w, 1);
3509
3510 EV_FREQUENT_CHECK;
3511}
3512
3513void
3514ev_embed_stop (EV_P_ ev_embed *w)
3515{
3516 clear_pending (EV_A_ (W)w);
3517 if (expect_false (!ev_is_active (w)))
3518 return;
3519
3520 EV_FREQUENT_CHECK;
3521
3522 ev_io_stop (EV_A_ &w->io);
3523 ev_prepare_stop (EV_A_ &w->prepare);
3524 ev_fork_stop (EV_A_ &w->fork);
3525
3526 ev_stop (EV_A_ (W)w);
3527
3528 EV_FREQUENT_CHECK;
3529}
3530#endif
3531
3532#if EV_FORK_ENABLE
3533void
3534ev_fork_start (EV_P_ ev_fork *w)
3535{
3536 if (expect_false (ev_is_active (w)))
3537 return;
3538
3539 EV_FREQUENT_CHECK;
3540
3541 ev_start (EV_A_ (W)w, ++forkcnt);
3542 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3543 forks [forkcnt - 1] = w;
3544
3545 EV_FREQUENT_CHECK;
3546}
3547
3548void
3549ev_fork_stop (EV_P_ ev_fork *w)
3550{
3551 clear_pending (EV_A_ (W)w);
3552 if (expect_false (!ev_is_active (w)))
3553 return;
3554
3555 EV_FREQUENT_CHECK;
3556
3557 {
3558 int active = ev_active (w);
3559
3560 forks [active - 1] = forks [--forkcnt];
3561 ev_active (forks [active - 1]) = active;
3562 }
3563
3564 ev_stop (EV_A_ (W)w);
3565
3566 EV_FREQUENT_CHECK;
3567}
3568#endif
3569
3570#if EV_ASYNC_ENABLE
3571void
3572ev_async_start (EV_P_ ev_async *w)
3573{
3574 if (expect_false (ev_is_active (w)))
3575 return;
3576
3577 w->sent = 0;
3578
3579 evpipe_init (EV_A);
3580
3581 EV_FREQUENT_CHECK;
3582
3583 ev_start (EV_A_ (W)w, ++asynccnt);
3584 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3585 asyncs [asynccnt - 1] = w;
3586
3587 EV_FREQUENT_CHECK;
3588}
3589
3590void
3591ev_async_stop (EV_P_ ev_async *w)
3592{
3593 clear_pending (EV_A_ (W)w);
3594 if (expect_false (!ev_is_active (w)))
3595 return;
3596
3597 EV_FREQUENT_CHECK;
3598
3599 {
3600 int active = ev_active (w);
3601
3602 asyncs [active - 1] = asyncs [--asynccnt];
3603 ev_active (asyncs [active - 1]) = active;
3604 }
3605
3606 ev_stop (EV_A_ (W)w);
3607
3608 EV_FREQUENT_CHECK;
3609}
3610
3611void
3612ev_async_send (EV_P_ ev_async *w)
3613{
3614 w->sent = 1;
3615 evpipe_write (EV_A_ &async_pending);
1816} 3616}
1817#endif 3617#endif
1818 3618
1819/*****************************************************************************/ 3619/*****************************************************************************/
1820 3620
1830once_cb (EV_P_ struct ev_once *once, int revents) 3630once_cb (EV_P_ struct ev_once *once, int revents)
1831{ 3631{
1832 void (*cb)(int revents, void *arg) = once->cb; 3632 void (*cb)(int revents, void *arg) = once->cb;
1833 void *arg = once->arg; 3633 void *arg = once->arg;
1834 3634
1835 ev_io_stop (EV_A_ &once->io); 3635 ev_io_stop (EV_A_ &once->io);
1836 ev_timer_stop (EV_A_ &once->to); 3636 ev_timer_stop (EV_A_ &once->to);
1837 ev_free (once); 3637 ev_free (once);
1838 3638
1839 cb (revents, arg); 3639 cb (revents, arg);
1840} 3640}
1841 3641
1842static void 3642static void
1843once_cb_io (EV_P_ ev_io *w, int revents) 3643once_cb_io (EV_P_ ev_io *w, int revents)
1844{ 3644{
1845 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3645 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3646
3647 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1846} 3648}
1847 3649
1848static void 3650static void
1849once_cb_to (EV_P_ ev_timer *w, int revents) 3651once_cb_to (EV_P_ ev_timer *w, int revents)
1850{ 3652{
1851 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3653 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3654
3655 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1852} 3656}
1853 3657
1854void 3658void
1855ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3659ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1856{ 3660{
1857 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3661 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1858 3662
1859 if (expect_false (!once)) 3663 if (expect_false (!once))
1860 { 3664 {
1861 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3665 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1862 return; 3666 return;
1863 } 3667 }
1864 3668
1865 once->cb = cb; 3669 once->cb = cb;
1866 once->arg = arg; 3670 once->arg = arg;
1878 ev_timer_set (&once->to, timeout, 0.); 3682 ev_timer_set (&once->to, timeout, 0.);
1879 ev_timer_start (EV_A_ &once->to); 3683 ev_timer_start (EV_A_ &once->to);
1880 } 3684 }
1881} 3685}
1882 3686
1883#ifdef __cplusplus 3687/*****************************************************************************/
1884} 3688
3689#if EV_WALK_ENABLE
3690void
3691ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3692{
3693 int i, j;
3694 ev_watcher_list *wl, *wn;
3695
3696 if (types & (EV_IO | EV_EMBED))
3697 for (i = 0; i < anfdmax; ++i)
3698 for (wl = anfds [i].head; wl; )
3699 {
3700 wn = wl->next;
3701
3702#if EV_EMBED_ENABLE
3703 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3704 {
3705 if (types & EV_EMBED)
3706 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3707 }
3708 else
3709#endif
3710#if EV_USE_INOTIFY
3711 if (ev_cb ((ev_io *)wl) == infy_cb)
3712 ;
3713 else
3714#endif
3715 if ((ev_io *)wl != &pipe_w)
3716 if (types & EV_IO)
3717 cb (EV_A_ EV_IO, wl);
3718
3719 wl = wn;
3720 }
3721
3722 if (types & (EV_TIMER | EV_STAT))
3723 for (i = timercnt + HEAP0; i-- > HEAP0; )
3724#if EV_STAT_ENABLE
3725 /*TODO: timer is not always active*/
3726 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3727 {
3728 if (types & EV_STAT)
3729 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3730 }
3731 else
3732#endif
3733 if (types & EV_TIMER)
3734 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3735
3736#if EV_PERIODIC_ENABLE
3737 if (types & EV_PERIODIC)
3738 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3739 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3740#endif
3741
3742#if EV_IDLE_ENABLE
3743 if (types & EV_IDLE)
3744 for (j = NUMPRI; i--; )
3745 for (i = idlecnt [j]; i--; )
3746 cb (EV_A_ EV_IDLE, idles [j][i]);
3747#endif
3748
3749#if EV_FORK_ENABLE
3750 if (types & EV_FORK)
3751 for (i = forkcnt; i--; )
3752 if (ev_cb (forks [i]) != embed_fork_cb)
3753 cb (EV_A_ EV_FORK, forks [i]);
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757 if (types & EV_ASYNC)
3758 for (i = asynccnt; i--; )
3759 cb (EV_A_ EV_ASYNC, asyncs [i]);
3760#endif
3761
3762#if EV_PREPARE_ENABLE
3763 if (types & EV_PREPARE)
3764 for (i = preparecnt; i--; )
3765# if EV_EMBED_ENABLE
3766 if (ev_cb (prepares [i]) != embed_prepare_cb)
1885#endif 3767# endif
3768 cb (EV_A_ EV_PREPARE, prepares [i]);
3769#endif
1886 3770
3771#if EV_CHECK_ENABLE
3772 if (types & EV_CHECK)
3773 for (i = checkcnt; i--; )
3774 cb (EV_A_ EV_CHECK, checks [i]);
3775#endif
3776
3777#if EV_SIGNAL_ENABLE
3778 if (types & EV_SIGNAL)
3779 for (i = 0; i < EV_NSIG - 1; ++i)
3780 for (wl = signals [i].head; wl; )
3781 {
3782 wn = wl->next;
3783 cb (EV_A_ EV_SIGNAL, wl);
3784 wl = wn;
3785 }
3786#endif
3787
3788#if EV_CHILD_ENABLE
3789 if (types & EV_CHILD)
3790 for (i = (EV_PID_HASHSIZE); i--; )
3791 for (wl = childs [i]; wl; )
3792 {
3793 wn = wl->next;
3794 cb (EV_A_ EV_CHILD, wl);
3795 wl = wn;
3796 }
3797#endif
3798/* EV_STAT 0x00001000 /* stat data changed */
3799/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3800}
3801#endif
3802
3803#if EV_MULTIPLICITY
3804 #include "ev_wrap.h"
3805#endif
3806
3807EV_CPP(})
3808

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines