ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.356 by root, Fri Oct 22 11:21:52 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
202#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
205#endif 373#endif
206 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
207#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 397# include <winsock.h>
209#endif 398#endif
210 399
211#if !EV_STAT_ENABLE 400#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
213#endif 405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
214 415
215#if EV_USE_INOTIFY 416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
217#endif 436#endif
218 437
219/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 455
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
225#if __GNUC__ >= 3 462#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 465#else
236# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
240#endif 471#endif
241 472
242#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
244 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
247 490
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
250 493
251typedef ev_watcher *W; 494typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
254 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
256 520
257#ifdef _WIN32 521#ifdef _WIN32
258# include "ev_win32.c" 522# include "ev_win32.c"
259#endif 523#endif
260 524
261/*****************************************************************************/ 525/*****************************************************************************/
262 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 struct utsname buf;
536 unsigned int v;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
263static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
264 578
265void 579void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 581{
268 syserr_cb = cb; 582 syserr_cb = cb;
269} 583}
270 584
271static void noinline 585static void noinline
272syserr (const char *msg) 586ev_syserr (const char *msg)
273{ 587{
274 if (!msg) 588 if (!msg)
275 msg = "(libev) system error"; 589 msg = "(libev) system error";
276 590
277 if (syserr_cb) 591 if (syserr_cb)
278 syserr_cb (msg); 592 syserr_cb (msg);
279 else 593 else
280 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
281 perror (msg); 603 perror (msg);
604#endif
282 abort (); 605 abort ();
283 } 606 }
284} 607}
285 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
286static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 629
288void 630void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 632{
291 alloc = cb; 633 alloc = cb;
292} 634}
293 635
294inline_speed void * 636inline_speed void *
295ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
296{ 638{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
298 640
299 if (!ptr && size) 641 if (!ptr && size)
300 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
302 abort (); 648 abort ();
303 } 649 }
304 650
305 return ptr; 651 return ptr;
306} 652}
308#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
310 656
311/*****************************************************************************/ 657/*****************************************************************************/
312 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
313typedef struct 663typedef struct
314{ 664{
315 WL head; 665 WL head;
316 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
318#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 674 SOCKET handle;
320#endif 675#endif
321} ANFD; 676} ANFD;
322 677
678/* stores the pending event set for a given watcher */
323typedef struct 679typedef struct
324{ 680{
325 W w; 681 W w;
326 int events; 682 int events; /* the pending event set for the given watcher */
327} ANPENDING; 683} ANPENDING;
328 684
329#if EV_USE_INOTIFY 685#if EV_USE_INOTIFY
686/* hash table entry per inotify-id */
330typedef struct 687typedef struct
331{ 688{
332 WL head; 689 WL head;
333} ANFS; 690} ANFS;
691#endif
692
693/* Heap Entry */
694#if EV_HEAP_CACHE_AT
695 /* a heap element */
696 typedef struct {
697 ev_tstamp at;
698 WT w;
699 } ANHE;
700
701 #define ANHE_w(he) (he).w /* access watcher, read-write */
702 #define ANHE_at(he) (he).at /* access cached at, read-only */
703 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
704#else
705 /* a heap element */
706 typedef WT ANHE;
707
708 #define ANHE_w(he) (he)
709 #define ANHE_at(he) (he)->at
710 #define ANHE_at_cache(he)
334#endif 711#endif
335 712
336#if EV_MULTIPLICITY 713#if EV_MULTIPLICITY
337 714
338 struct ev_loop 715 struct ev_loop
357 734
358 static int ev_default_loop_ptr; 735 static int ev_default_loop_ptr;
359 736
360#endif 737#endif
361 738
739#if EV_FEATURE_API
740# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
741# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
742# define EV_INVOKE_PENDING invoke_cb (EV_A)
743#else
744# define EV_RELEASE_CB (void)0
745# define EV_ACQUIRE_CB (void)0
746# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
747#endif
748
749#define EVBREAK_RECURSE 0x80
750
362/*****************************************************************************/ 751/*****************************************************************************/
363 752
753#ifndef EV_HAVE_EV_TIME
364ev_tstamp 754ev_tstamp
365ev_time (void) 755ev_time (void)
366{ 756{
367#if EV_USE_REALTIME 757#if EV_USE_REALTIME
758 if (expect_true (have_realtime))
759 {
368 struct timespec ts; 760 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 761 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 762 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 763 }
764#endif
765
372 struct timeval tv; 766 struct timeval tv;
373 gettimeofday (&tv, 0); 767 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 768 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 769}
770#endif
377 771
378ev_tstamp inline_size 772inline_size ev_tstamp
379get_clock (void) 773get_clock (void)
380{ 774{
381#if EV_USE_MONOTONIC 775#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 776 if (expect_true (have_monotonic))
383 { 777 {
396{ 790{
397 return ev_rt_now; 791 return ev_rt_now;
398} 792}
399#endif 793#endif
400 794
401int inline_size 795void
796ev_sleep (ev_tstamp delay)
797{
798 if (delay > 0.)
799 {
800#if EV_USE_NANOSLEEP
801 struct timespec ts;
802
803 EV_TS_SET (ts, delay);
804 nanosleep (&ts, 0);
805#elif defined(_WIN32)
806 Sleep ((unsigned long)(delay * 1e3));
807#else
808 struct timeval tv;
809
810 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
811 /* something not guaranteed by newer posix versions, but guaranteed */
812 /* by older ones */
813 EV_TV_SET (tv, delay);
814 select (0, 0, 0, 0, &tv);
815#endif
816 }
817}
818
819/*****************************************************************************/
820
821#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
822
823/* find a suitable new size for the given array, */
824/* hopefully by rounding to a nice-to-malloc size */
825inline_size int
402array_nextsize (int elem, int cur, int cnt) 826array_nextsize (int elem, int cur, int cnt)
403{ 827{
404 int ncur = cur + 1; 828 int ncur = cur + 1;
405 829
406 do 830 do
407 ncur <<= 1; 831 ncur <<= 1;
408 while (cnt > ncur); 832 while (cnt > ncur);
409 833
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 834 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 835 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 836 {
413 ncur *= elem; 837 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 838 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 839 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 840 ncur /= elem;
417 } 841 }
418 842
419 return ncur; 843 return ncur;
420} 844}
421 845
422inline_speed void * 846static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 847array_realloc (int elem, void *base, int *cur, int cnt)
424{ 848{
425 *cur = array_nextsize (elem, *cur, cnt); 849 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 850 return ev_realloc (base, elem * *cur);
427} 851}
852
853#define array_init_zero(base,count) \
854 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 855
429#define array_needsize(type,base,cur,cnt,init) \ 856#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 857 if (expect_false ((cnt) > (cur))) \
431 { \ 858 { \
432 int ocur_ = (cur); \ 859 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 871 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 872 }
446#endif 873#endif
447 874
448#define array_free(stem, idx) \ 875#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 876 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 877
451/*****************************************************************************/ 878/*****************************************************************************/
879
880/* dummy callback for pending events */
881static void noinline
882pendingcb (EV_P_ ev_prepare *w, int revents)
883{
884}
452 885
453void noinline 886void noinline
454ev_feed_event (EV_P_ void *w, int revents) 887ev_feed_event (EV_P_ void *w, int revents)
455{ 888{
456 W w_ = (W)w; 889 W w_ = (W)w;
890 int pri = ABSPRI (w_);
457 891
458 if (expect_false (w_->pending)) 892 if (expect_false (w_->pending))
893 pendings [pri][w_->pending - 1].events |= revents;
894 else
459 { 895 {
896 w_->pending = ++pendingcnt [pri];
897 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
898 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 899 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 900 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 901}
469 902
470void inline_size 903inline_speed void
904feed_reverse (EV_P_ W w)
905{
906 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
907 rfeeds [rfeedcnt++] = w;
908}
909
910inline_size void
911feed_reverse_done (EV_P_ int revents)
912{
913 do
914 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
915 while (rfeedcnt);
916}
917
918inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 919queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 920{
473 int i; 921 int i;
474 922
475 for (i = 0; i < eventcnt; ++i) 923 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 924 ev_feed_event (EV_A_ events [i], type);
477} 925}
478 926
479/*****************************************************************************/ 927/*****************************************************************************/
480 928
481void inline_size 929inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 930fd_event_nocheck (EV_P_ int fd, int revents)
496{ 931{
497 ANFD *anfd = anfds + fd; 932 ANFD *anfd = anfds + fd;
498 ev_io *w; 933 ev_io *w;
499 934
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 935 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 939 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 940 ev_feed_event (EV_A_ (W)w, ev);
506 } 941 }
507} 942}
508 943
944/* do not submit kernel events for fds that have reify set */
945/* because that means they changed while we were polling for new events */
946inline_speed void
947fd_event (EV_P_ int fd, int revents)
948{
949 ANFD *anfd = anfds + fd;
950
951 if (expect_true (!anfd->reify))
952 fd_event_nocheck (EV_A_ fd, revents);
953}
954
509void 955void
510ev_feed_fd_event (EV_P_ int fd, int revents) 956ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 957{
512 if (fd >= 0 && fd < anfdmax) 958 if (fd >= 0 && fd < anfdmax)
513 fd_event (EV_A_ fd, revents); 959 fd_event_nocheck (EV_A_ fd, revents);
514} 960}
515 961
516void inline_size 962/* make sure the external fd watch events are in-sync */
963/* with the kernel/libev internal state */
964inline_size void
517fd_reify (EV_P) 965fd_reify (EV_P)
518{ 966{
519 int i; 967 int i;
520 968
521 for (i = 0; i < fdchangecnt; ++i) 969 for (i = 0; i < fdchangecnt; ++i)
522 { 970 {
523 int fd = fdchanges [i]; 971 int fd = fdchanges [i];
524 ANFD *anfd = anfds + fd; 972 ANFD *anfd = anfds + fd;
525 ev_io *w; 973 ev_io *w;
526 974
527 int events = 0; 975 unsigned char o_events = anfd->events;
976 unsigned char o_reify = anfd->reify;
528 977
529 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 978 anfd->reify = 0;
530 events |= w->events;
531 979
532#if EV_SELECT_IS_WINSOCKET 980#if EV_SELECT_IS_WINSOCKET
533 if (events) 981 if (o_reify & EV__IOFDSET)
534 { 982 {
535 unsigned long argp; 983 unsigned long arg;
536 anfd->handle = _get_osfhandle (fd); 984 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
537 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 985 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
538 } 986 }
539#endif 987#endif
540 988
541 anfd->reify = 0; 989 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
990 {
991 anfd->events = 0;
542 992
993 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
994 anfd->events |= (unsigned char)w->events;
995
996 if (o_events != anfd->events)
997 o_reify = EV__IOFDSET; /* actually |= */
998 }
999
1000 if (o_reify & EV__IOFDSET)
543 backend_modify (EV_A_ fd, anfd->events, events); 1001 backend_modify (EV_A_ fd, o_events, anfd->events);
544 anfd->events = events;
545 } 1002 }
546 1003
547 fdchangecnt = 0; 1004 fdchangecnt = 0;
548} 1005}
549 1006
550void inline_size 1007/* something about the given fd changed */
1008inline_size void
551fd_change (EV_P_ int fd) 1009fd_change (EV_P_ int fd, int flags)
552{ 1010{
553 if (expect_false (anfds [fd].reify)) 1011 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 1012 anfds [fd].reify |= flags;
557 1013
1014 if (expect_true (!reify))
1015 {
558 ++fdchangecnt; 1016 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1017 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 1018 fdchanges [fdchangecnt - 1] = fd;
1019 }
561} 1020}
562 1021
563void inline_speed 1022/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1023inline_speed void
564fd_kill (EV_P_ int fd) 1024fd_kill (EV_P_ int fd)
565{ 1025{
566 ev_io *w; 1026 ev_io *w;
567 1027
568 while ((w = (ev_io *)anfds [fd].head)) 1028 while ((w = (ev_io *)anfds [fd].head))
570 ev_io_stop (EV_A_ w); 1030 ev_io_stop (EV_A_ w);
571 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1031 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
572 } 1032 }
573} 1033}
574 1034
575int inline_size 1035/* check whether the given fd is actually valid, for error recovery */
1036inline_size int
576fd_valid (int fd) 1037fd_valid (int fd)
577{ 1038{
578#ifdef _WIN32 1039#ifdef _WIN32
579 return _get_osfhandle (fd) != -1; 1040 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
580#else 1041#else
581 return fcntl (fd, F_GETFD) != -1; 1042 return fcntl (fd, F_GETFD) != -1;
582#endif 1043#endif
583} 1044}
584 1045
588{ 1049{
589 int fd; 1050 int fd;
590 1051
591 for (fd = 0; fd < anfdmax; ++fd) 1052 for (fd = 0; fd < anfdmax; ++fd)
592 if (anfds [fd].events) 1053 if (anfds [fd].events)
593 if (!fd_valid (fd) == -1 && errno == EBADF) 1054 if (!fd_valid (fd) && errno == EBADF)
594 fd_kill (EV_A_ fd); 1055 fd_kill (EV_A_ fd);
595} 1056}
596 1057
597/* called on ENOMEM in select/poll to kill some fds and retry */ 1058/* called on ENOMEM in select/poll to kill some fds and retry */
598static void noinline 1059static void noinline
602 1063
603 for (fd = anfdmax; fd--; ) 1064 for (fd = anfdmax; fd--; )
604 if (anfds [fd].events) 1065 if (anfds [fd].events)
605 { 1066 {
606 fd_kill (EV_A_ fd); 1067 fd_kill (EV_A_ fd);
607 return; 1068 break;
608 } 1069 }
609} 1070}
610 1071
611/* usually called after fork if backend needs to re-arm all fds from scratch */ 1072/* usually called after fork if backend needs to re-arm all fds from scratch */
612static void noinline 1073static void noinline
616 1077
617 for (fd = 0; fd < anfdmax; ++fd) 1078 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 1079 if (anfds [fd].events)
619 { 1080 {
620 anfds [fd].events = 0; 1081 anfds [fd].events = 0;
621 fd_change (EV_A_ fd); 1082 anfds [fd].emask = 0;
1083 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
622 } 1084 }
623} 1085}
624 1086
625/*****************************************************************************/ 1087/* used to prepare libev internal fd's */
626 1088/* this is not fork-safe */
627void inline_speed 1089inline_speed void
628upheap (WT *heap, int k)
629{
630 WT w = heap [k];
631
632 while (k && heap [k >> 1]->at > w->at)
633 {
634 heap [k] = heap [k >> 1];
635 ((W)heap [k])->active = k + 1;
636 k >>= 1;
637 }
638
639 heap [k] = w;
640 ((W)heap [k])->active = k + 1;
641
642}
643
644void inline_speed
645downheap (WT *heap, int N, int k)
646{
647 WT w = heap [k];
648
649 while (k < (N >> 1))
650 {
651 int j = k << 1;
652
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
654 ++j;
655
656 if (w->at <= heap [j]->at)
657 break;
658
659 heap [k] = heap [j];
660 ((W)heap [k])->active = k + 1;
661 k = j;
662 }
663
664 heap [k] = w;
665 ((W)heap [k])->active = k + 1;
666}
667
668void inline_size
669adjustheap (WT *heap, int N, int k)
670{
671 upheap (heap, k);
672 downheap (heap, N, k);
673}
674
675/*****************************************************************************/
676
677typedef struct
678{
679 WL head;
680 sig_atomic_t volatile gotsig;
681} ANSIG;
682
683static ANSIG *signals;
684static int signalmax;
685
686static int sigpipe [2];
687static sig_atomic_t volatile gotsig;
688static ev_io sigev;
689
690void inline_size
691signals_init (ANSIG *base, int count)
692{
693 while (count--)
694 {
695 base->head = 0;
696 base->gotsig = 0;
697
698 ++base;
699 }
700}
701
702static void
703sighandler (int signum)
704{
705#if _WIN32
706 signal (signum, sighandler);
707#endif
708
709 signals [signum - 1].gotsig = 1;
710
711 if (!gotsig)
712 {
713 int old_errno = errno;
714 gotsig = 1;
715 write (sigpipe [1], &signum, 1);
716 errno = old_errno;
717 }
718}
719
720void noinline
721ev_feed_signal_event (EV_P_ int signum)
722{
723 WL w;
724
725#if EV_MULTIPLICITY
726 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
727#endif
728
729 --signum;
730
731 if (signum < 0 || signum >= signalmax)
732 return;
733
734 signals [signum].gotsig = 0;
735
736 for (w = signals [signum].head; w; w = w->next)
737 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
738}
739
740static void
741sigcb (EV_P_ ev_io *iow, int revents)
742{
743 int signum;
744
745 read (sigpipe [0], &revents, 1);
746 gotsig = 0;
747
748 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1);
751}
752
753void inline_size
754fd_intern (int fd) 1090fd_intern (int fd)
755{ 1091{
756#ifdef _WIN32 1092#ifdef _WIN32
757 int arg = 1; 1093 unsigned long arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1094 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
759#else 1095#else
760 fcntl (fd, F_SETFD, FD_CLOEXEC); 1096 fcntl (fd, F_SETFD, FD_CLOEXEC);
761 fcntl (fd, F_SETFL, O_NONBLOCK); 1097 fcntl (fd, F_SETFL, O_NONBLOCK);
762#endif 1098#endif
763} 1099}
764 1100
1101/*****************************************************************************/
1102
1103/*
1104 * the heap functions want a real array index. array index 0 is guaranteed to not
1105 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1106 * the branching factor of the d-tree.
1107 */
1108
1109/*
1110 * at the moment we allow libev the luxury of two heaps,
1111 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1112 * which is more cache-efficient.
1113 * the difference is about 5% with 50000+ watchers.
1114 */
1115#if EV_USE_4HEAP
1116
1117#define DHEAP 4
1118#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1119#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1120#define UPHEAP_DONE(p,k) ((p) == (k))
1121
1122/* away from the root */
1123inline_speed void
1124downheap (ANHE *heap, int N, int k)
1125{
1126 ANHE he = heap [k];
1127 ANHE *E = heap + N + HEAP0;
1128
1129 for (;;)
1130 {
1131 ev_tstamp minat;
1132 ANHE *minpos;
1133 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1134
1135 /* find minimum child */
1136 if (expect_true (pos + DHEAP - 1 < E))
1137 {
1138 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1139 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1140 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1141 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1142 }
1143 else if (pos < E)
1144 {
1145 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1146 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1147 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1148 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1149 }
1150 else
1151 break;
1152
1153 if (ANHE_at (he) <= minat)
1154 break;
1155
1156 heap [k] = *minpos;
1157 ev_active (ANHE_w (*minpos)) = k;
1158
1159 k = minpos - heap;
1160 }
1161
1162 heap [k] = he;
1163 ev_active (ANHE_w (he)) = k;
1164}
1165
1166#else /* 4HEAP */
1167
1168#define HEAP0 1
1169#define HPARENT(k) ((k) >> 1)
1170#define UPHEAP_DONE(p,k) (!(p))
1171
1172/* away from the root */
1173inline_speed void
1174downheap (ANHE *heap, int N, int k)
1175{
1176 ANHE he = heap [k];
1177
1178 for (;;)
1179 {
1180 int c = k << 1;
1181
1182 if (c >= N + HEAP0)
1183 break;
1184
1185 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1186 ? 1 : 0;
1187
1188 if (ANHE_at (he) <= ANHE_at (heap [c]))
1189 break;
1190
1191 heap [k] = heap [c];
1192 ev_active (ANHE_w (heap [k])) = k;
1193
1194 k = c;
1195 }
1196
1197 heap [k] = he;
1198 ev_active (ANHE_w (he)) = k;
1199}
1200#endif
1201
1202/* towards the root */
1203inline_speed void
1204upheap (ANHE *heap, int k)
1205{
1206 ANHE he = heap [k];
1207
1208 for (;;)
1209 {
1210 int p = HPARENT (k);
1211
1212 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1213 break;
1214
1215 heap [k] = heap [p];
1216 ev_active (ANHE_w (heap [k])) = k;
1217 k = p;
1218 }
1219
1220 heap [k] = he;
1221 ev_active (ANHE_w (he)) = k;
1222}
1223
1224/* move an element suitably so it is in a correct place */
1225inline_size void
1226adjustheap (ANHE *heap, int N, int k)
1227{
1228 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1229 upheap (heap, k);
1230 else
1231 downheap (heap, N, k);
1232}
1233
1234/* rebuild the heap: this function is used only once and executed rarely */
1235inline_size void
1236reheap (ANHE *heap, int N)
1237{
1238 int i;
1239
1240 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1241 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1242 for (i = 0; i < N; ++i)
1243 upheap (heap, i + HEAP0);
1244}
1245
1246/*****************************************************************************/
1247
1248/* associate signal watchers to a signal signal */
1249typedef struct
1250{
1251 EV_ATOMIC_T pending;
1252#if EV_MULTIPLICITY
1253 EV_P;
1254#endif
1255 WL head;
1256} ANSIG;
1257
1258static ANSIG signals [EV_NSIG - 1];
1259
1260/*****************************************************************************/
1261
1262#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1263
765static void noinline 1264static void noinline
766siginit (EV_P) 1265evpipe_init (EV_P)
767{ 1266{
1267 if (!ev_is_active (&pipe_w))
1268 {
1269# if EV_USE_EVENTFD
1270 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1271 if (evfd < 0 && errno == EINVAL)
1272 evfd = eventfd (0, 0);
1273
1274 if (evfd >= 0)
1275 {
1276 evpipe [0] = -1;
1277 fd_intern (evfd); /* doing it twice doesn't hurt */
1278 ev_io_set (&pipe_w, evfd, EV_READ);
1279 }
1280 else
1281# endif
1282 {
1283 while (pipe (evpipe))
1284 ev_syserr ("(libev) error creating signal/async pipe");
1285
768 fd_intern (sigpipe [0]); 1286 fd_intern (evpipe [0]);
769 fd_intern (sigpipe [1]); 1287 fd_intern (evpipe [1]);
1288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1289 }
770 1290
771 ev_io_set (&sigev, sigpipe [0], EV_READ);
772 ev_io_start (EV_A_ &sigev); 1291 ev_io_start (EV_A_ &pipe_w);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1292 ev_unref (EV_A); /* watcher should not keep loop alive */
1293 }
1294}
1295
1296inline_size void
1297evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1298{
1299 if (!*flag)
1300 {
1301 int old_errno = errno; /* save errno because write might clobber it */
1302 char dummy;
1303
1304 *flag = 1;
1305
1306#if EV_USE_EVENTFD
1307 if (evfd >= 0)
1308 {
1309 uint64_t counter = 1;
1310 write (evfd, &counter, sizeof (uint64_t));
1311 }
1312 else
1313#endif
1314 /* win32 people keep sending patches that change this write() to send() */
1315 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1316 /* so when you think this write should be a send instead, please find out */
1317 /* where your send() is from - it's definitely not the microsoft send, and */
1318 /* tell me. thank you. */
1319 write (evpipe [1], &dummy, 1);
1320
1321 errno = old_errno;
1322 }
1323}
1324
1325/* called whenever the libev signal pipe */
1326/* got some events (signal, async) */
1327static void
1328pipecb (EV_P_ ev_io *iow, int revents)
1329{
1330 int i;
1331
1332#if EV_USE_EVENTFD
1333 if (evfd >= 0)
1334 {
1335 uint64_t counter;
1336 read (evfd, &counter, sizeof (uint64_t));
1337 }
1338 else
1339#endif
1340 {
1341 char dummy;
1342 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1343 read (evpipe [0], &dummy, 1);
1344 }
1345
1346 if (sig_pending)
1347 {
1348 sig_pending = 0;
1349
1350 for (i = EV_NSIG - 1; i--; )
1351 if (expect_false (signals [i].pending))
1352 ev_feed_signal_event (EV_A_ i + 1);
1353 }
1354
1355#if EV_ASYNC_ENABLE
1356 if (async_pending)
1357 {
1358 async_pending = 0;
1359
1360 for (i = asynccnt; i--; )
1361 if (asyncs [i]->sent)
1362 {
1363 asyncs [i]->sent = 0;
1364 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1365 }
1366 }
1367#endif
774} 1368}
775 1369
776/*****************************************************************************/ 1370/*****************************************************************************/
777 1371
778static ev_child *childs [EV_PID_HASHSIZE]; 1372static void
1373ev_sighandler (int signum)
1374{
1375#if EV_MULTIPLICITY
1376 EV_P = signals [signum - 1].loop;
1377#endif
779 1378
780#ifndef _WIN32 1379#ifdef _WIN32
1380 signal (signum, ev_sighandler);
1381#endif
1382
1383 signals [signum - 1].pending = 1;
1384 evpipe_write (EV_A_ &sig_pending);
1385}
1386
1387void noinline
1388ev_feed_signal_event (EV_P_ int signum)
1389{
1390 WL w;
1391
1392 if (expect_false (signum <= 0 || signum > EV_NSIG))
1393 return;
1394
1395 --signum;
1396
1397#if EV_MULTIPLICITY
1398 /* it is permissible to try to feed a signal to the wrong loop */
1399 /* or, likely more useful, feeding a signal nobody is waiting for */
1400
1401 if (expect_false (signals [signum].loop != EV_A))
1402 return;
1403#endif
1404
1405 signals [signum].pending = 0;
1406
1407 for (w = signals [signum].head; w; w = w->next)
1408 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1409}
1410
1411#if EV_USE_SIGNALFD
1412static void
1413sigfdcb (EV_P_ ev_io *iow, int revents)
1414{
1415 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1416
1417 for (;;)
1418 {
1419 ssize_t res = read (sigfd, si, sizeof (si));
1420
1421 /* not ISO-C, as res might be -1, but works with SuS */
1422 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1423 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1424
1425 if (res < (ssize_t)sizeof (si))
1426 break;
1427 }
1428}
1429#endif
1430
1431#endif
1432
1433/*****************************************************************************/
1434
1435#if EV_CHILD_ENABLE
1436static WL childs [EV_PID_HASHSIZE];
781 1437
782static ev_signal childev; 1438static ev_signal childev;
783 1439
784void inline_speed 1440#ifndef WIFCONTINUED
1441# define WIFCONTINUED(status) 0
1442#endif
1443
1444/* handle a single child status event */
1445inline_speed void
785child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1446child_reap (EV_P_ int chain, int pid, int status)
786{ 1447{
787 ev_child *w; 1448 ev_child *w;
1449 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
788 1450
789 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1451 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1452 {
790 if (w->pid == pid || !w->pid) 1453 if ((w->pid == pid || !w->pid)
1454 && (!traced || (w->flags & 1)))
791 { 1455 {
792 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1456 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
793 w->rpid = pid; 1457 w->rpid = pid;
794 w->rstatus = status; 1458 w->rstatus = status;
795 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1459 ev_feed_event (EV_A_ (W)w, EV_CHILD);
796 } 1460 }
1461 }
797} 1462}
798 1463
799#ifndef WCONTINUED 1464#ifndef WCONTINUED
800# define WCONTINUED 0 1465# define WCONTINUED 0
801#endif 1466#endif
802 1467
1468/* called on sigchld etc., calls waitpid */
803static void 1469static void
804childcb (EV_P_ ev_signal *sw, int revents) 1470childcb (EV_P_ ev_signal *sw, int revents)
805{ 1471{
806 int pid, status; 1472 int pid, status;
807 1473
810 if (!WCONTINUED 1476 if (!WCONTINUED
811 || errno != EINVAL 1477 || errno != EINVAL
812 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1478 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
813 return; 1479 return;
814 1480
815 /* make sure we are called again until all childs have been reaped */ 1481 /* make sure we are called again until all children have been reaped */
816 /* we need to do it this way so that the callback gets called before we continue */ 1482 /* we need to do it this way so that the callback gets called before we continue */
817 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1483 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
818 1484
819 child_reap (EV_A_ sw, pid, pid, status); 1485 child_reap (EV_A_ pid, pid, status);
820 if (EV_PID_HASHSIZE > 1) 1486 if ((EV_PID_HASHSIZE) > 1)
821 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1487 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
822} 1488}
823 1489
824#endif 1490#endif
825 1491
826/*****************************************************************************/ 1492/*****************************************************************************/
888 /* kqueue is borked on everything but netbsd apparently */ 1554 /* kqueue is borked on everything but netbsd apparently */
889 /* it usually doesn't work correctly on anything but sockets and pipes */ 1555 /* it usually doesn't work correctly on anything but sockets and pipes */
890 flags &= ~EVBACKEND_KQUEUE; 1556 flags &= ~EVBACKEND_KQUEUE;
891#endif 1557#endif
892#ifdef __APPLE__ 1558#ifdef __APPLE__
893 // flags &= ~EVBACKEND_KQUEUE; for documentation 1559 /* only select works correctly on that "unix-certified" platform */
894 flags &= ~EVBACKEND_POLL; 1560 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1561 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1562#endif
1563#ifdef __FreeBSD__
1564 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
895#endif 1565#endif
896 1566
897 return flags; 1567 return flags;
898} 1568}
899 1569
900unsigned int 1570unsigned int
901ev_embeddable_backends (void) 1571ev_embeddable_backends (void)
902{ 1572{
903 return EVBACKEND_EPOLL 1573 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
904 | EVBACKEND_KQUEUE 1574
905 | EVBACKEND_PORT; 1575 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1576 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1577 flags &= ~EVBACKEND_EPOLL;
1578
1579 return flags;
906} 1580}
907 1581
908unsigned int 1582unsigned int
909ev_backend (EV_P) 1583ev_backend (EV_P)
910{ 1584{
911 return backend; 1585 return backend;
912} 1586}
913 1587
1588#if EV_FEATURE_API
914unsigned int 1589unsigned int
915ev_loop_count (EV_P) 1590ev_iteration (EV_P)
916{ 1591{
917 return loop_count; 1592 return loop_count;
918} 1593}
919 1594
1595unsigned int
1596ev_depth (EV_P)
1597{
1598 return loop_depth;
1599}
1600
1601void
1602ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1603{
1604 io_blocktime = interval;
1605}
1606
1607void
1608ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1609{
1610 timeout_blocktime = interval;
1611}
1612
1613void
1614ev_set_userdata (EV_P_ void *data)
1615{
1616 userdata = data;
1617}
1618
1619void *
1620ev_userdata (EV_P)
1621{
1622 return userdata;
1623}
1624
1625void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1626{
1627 invoke_cb = invoke_pending_cb;
1628}
1629
1630void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1631{
1632 release_cb = release;
1633 acquire_cb = acquire;
1634}
1635#endif
1636
1637/* initialise a loop structure, must be zero-initialised */
920static void noinline 1638static void noinline
921loop_init (EV_P_ unsigned int flags) 1639loop_init (EV_P_ unsigned int flags)
922{ 1640{
923 if (!backend) 1641 if (!backend)
924 { 1642 {
1643#if EV_USE_REALTIME
1644 if (!have_realtime)
1645 {
1646 struct timespec ts;
1647
1648 if (!clock_gettime (CLOCK_REALTIME, &ts))
1649 have_realtime = 1;
1650 }
1651#endif
1652
925#if EV_USE_MONOTONIC 1653#if EV_USE_MONOTONIC
1654 if (!have_monotonic)
926 { 1655 {
927 struct timespec ts; 1656 struct timespec ts;
1657
928 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1658 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
929 have_monotonic = 1; 1659 have_monotonic = 1;
930 } 1660 }
931#endif 1661#endif
932
933 ev_rt_now = ev_time ();
934 mn_now = get_clock ();
935 now_floor = mn_now;
936 rtmn_diff = ev_rt_now - mn_now;
937 1662
938 /* pid check not overridable via env */ 1663 /* pid check not overridable via env */
939#ifndef _WIN32 1664#ifndef _WIN32
940 if (flags & EVFLAG_FORKCHECK) 1665 if (flags & EVFLAG_FORKCHECK)
941 curpid = getpid (); 1666 curpid = getpid ();
944 if (!(flags & EVFLAG_NOENV) 1669 if (!(flags & EVFLAG_NOENV)
945 && !enable_secure () 1670 && !enable_secure ()
946 && getenv ("LIBEV_FLAGS")) 1671 && getenv ("LIBEV_FLAGS"))
947 flags = atoi (getenv ("LIBEV_FLAGS")); 1672 flags = atoi (getenv ("LIBEV_FLAGS"));
948 1673
1674 ev_rt_now = ev_time ();
1675 mn_now = get_clock ();
1676 now_floor = mn_now;
1677 rtmn_diff = ev_rt_now - mn_now;
1678#if EV_FEATURE_API
1679 invoke_cb = ev_invoke_pending;
1680#endif
1681
1682 io_blocktime = 0.;
1683 timeout_blocktime = 0.;
1684 backend = 0;
1685 backend_fd = -1;
1686 sig_pending = 0;
1687#if EV_ASYNC_ENABLE
1688 async_pending = 0;
1689#endif
1690#if EV_USE_INOTIFY
1691 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1692#endif
1693#if EV_USE_SIGNALFD
1694 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1695#endif
1696
949 if (!(flags & 0x0000ffffUL)) 1697 if (!(flags & 0x0000ffffU))
950 flags |= ev_recommended_backends (); 1698 flags |= ev_recommended_backends ();
951
952 backend = 0;
953 backend_fd = -1;
954#if EV_USE_INOTIFY
955 fs_fd = -2;
956#endif
957 1699
958#if EV_USE_PORT 1700#if EV_USE_PORT
959 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1701 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
960#endif 1702#endif
961#if EV_USE_KQUEUE 1703#if EV_USE_KQUEUE
969#endif 1711#endif
970#if EV_USE_SELECT 1712#if EV_USE_SELECT
971 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1713 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
972#endif 1714#endif
973 1715
1716 ev_prepare_init (&pending_w, pendingcb);
1717
1718#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
974 ev_init (&sigev, sigcb); 1719 ev_init (&pipe_w, pipecb);
975 ev_set_priority (&sigev, EV_MAXPRI); 1720 ev_set_priority (&pipe_w, EV_MAXPRI);
1721#endif
976 } 1722 }
977} 1723}
978 1724
1725/* free up a loop structure */
979static void noinline 1726static void noinline
980loop_destroy (EV_P) 1727loop_destroy (EV_P)
981{ 1728{
982 int i; 1729 int i;
1730
1731 if (ev_is_active (&pipe_w))
1732 {
1733 /*ev_ref (EV_A);*/
1734 /*ev_io_stop (EV_A_ &pipe_w);*/
1735
1736#if EV_USE_EVENTFD
1737 if (evfd >= 0)
1738 close (evfd);
1739#endif
1740
1741 if (evpipe [0] >= 0)
1742 {
1743 EV_WIN32_CLOSE_FD (evpipe [0]);
1744 EV_WIN32_CLOSE_FD (evpipe [1]);
1745 }
1746 }
1747
1748#if EV_USE_SIGNALFD
1749 if (ev_is_active (&sigfd_w))
1750 close (sigfd);
1751#endif
983 1752
984#if EV_USE_INOTIFY 1753#if EV_USE_INOTIFY
985 if (fs_fd >= 0) 1754 if (fs_fd >= 0)
986 close (fs_fd); 1755 close (fs_fd);
987#endif 1756#endif
1011#if EV_IDLE_ENABLE 1780#if EV_IDLE_ENABLE
1012 array_free (idle, [i]); 1781 array_free (idle, [i]);
1013#endif 1782#endif
1014 } 1783 }
1015 1784
1785 ev_free (anfds); anfds = 0; anfdmax = 0;
1786
1016 /* have to use the microsoft-never-gets-it-right macro */ 1787 /* have to use the microsoft-never-gets-it-right macro */
1788 array_free (rfeed, EMPTY);
1017 array_free (fdchange, EMPTY); 1789 array_free (fdchange, EMPTY);
1018 array_free (timer, EMPTY); 1790 array_free (timer, EMPTY);
1019#if EV_PERIODIC_ENABLE 1791#if EV_PERIODIC_ENABLE
1020 array_free (periodic, EMPTY); 1792 array_free (periodic, EMPTY);
1021#endif 1793#endif
1794#if EV_FORK_ENABLE
1795 array_free (fork, EMPTY);
1796#endif
1022 array_free (prepare, EMPTY); 1797 array_free (prepare, EMPTY);
1023 array_free (check, EMPTY); 1798 array_free (check, EMPTY);
1799#if EV_ASYNC_ENABLE
1800 array_free (async, EMPTY);
1801#endif
1024 1802
1025 backend = 0; 1803 backend = 0;
1026} 1804}
1027 1805
1806#if EV_USE_INOTIFY
1028void inline_size infy_fork (EV_P); 1807inline_size void infy_fork (EV_P);
1808#endif
1029 1809
1030void inline_size 1810inline_size void
1031loop_fork (EV_P) 1811loop_fork (EV_P)
1032{ 1812{
1033#if EV_USE_PORT 1813#if EV_USE_PORT
1034 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1814 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1035#endif 1815#endif
1041#endif 1821#endif
1042#if EV_USE_INOTIFY 1822#if EV_USE_INOTIFY
1043 infy_fork (EV_A); 1823 infy_fork (EV_A);
1044#endif 1824#endif
1045 1825
1046 if (ev_is_active (&sigev)) 1826 if (ev_is_active (&pipe_w))
1047 { 1827 {
1048 /* default loop */ 1828 /* this "locks" the handlers against writing to the pipe */
1829 /* while we modify the fd vars */
1830 sig_pending = 1;
1831#if EV_ASYNC_ENABLE
1832 async_pending = 1;
1833#endif
1049 1834
1050 ev_ref (EV_A); 1835 ev_ref (EV_A);
1051 ev_io_stop (EV_A_ &sigev); 1836 ev_io_stop (EV_A_ &pipe_w);
1052 close (sigpipe [0]);
1053 close (sigpipe [1]);
1054 1837
1055 while (pipe (sigpipe)) 1838#if EV_USE_EVENTFD
1056 syserr ("(libev) error creating pipe"); 1839 if (evfd >= 0)
1840 close (evfd);
1841#endif
1057 1842
1843 if (evpipe [0] >= 0)
1844 {
1845 EV_WIN32_CLOSE_FD (evpipe [0]);
1846 EV_WIN32_CLOSE_FD (evpipe [1]);
1847 }
1848
1849#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1058 siginit (EV_A); 1850 evpipe_init (EV_A);
1851 /* now iterate over everything, in case we missed something */
1852 pipecb (EV_A_ &pipe_w, EV_READ);
1853#endif
1059 } 1854 }
1060 1855
1061 postfork = 0; 1856 postfork = 0;
1062} 1857}
1063 1858
1064#if EV_MULTIPLICITY 1859#if EV_MULTIPLICITY
1860
1065struct ev_loop * 1861struct ev_loop *
1066ev_loop_new (unsigned int flags) 1862ev_loop_new (unsigned int flags)
1067{ 1863{
1068 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1864 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1069 1865
1070 memset (loop, 0, sizeof (struct ev_loop)); 1866 memset (EV_A, 0, sizeof (struct ev_loop));
1071
1072 loop_init (EV_A_ flags); 1867 loop_init (EV_A_ flags);
1073 1868
1074 if (ev_backend (EV_A)) 1869 if (ev_backend (EV_A))
1075 return loop; 1870 return EV_A;
1076 1871
1077 return 0; 1872 return 0;
1078} 1873}
1079 1874
1080void 1875void
1085} 1880}
1086 1881
1087void 1882void
1088ev_loop_fork (EV_P) 1883ev_loop_fork (EV_P)
1089{ 1884{
1090 postfork = 1; 1885 postfork = 1; /* must be in line with ev_default_fork */
1091} 1886}
1887#endif /* multiplicity */
1092 1888
1889#if EV_VERIFY
1890static void noinline
1891verify_watcher (EV_P_ W w)
1892{
1893 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1894
1895 if (w->pending)
1896 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1897}
1898
1899static void noinline
1900verify_heap (EV_P_ ANHE *heap, int N)
1901{
1902 int i;
1903
1904 for (i = HEAP0; i < N + HEAP0; ++i)
1905 {
1906 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1907 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1908 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1909
1910 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1911 }
1912}
1913
1914static void noinline
1915array_verify (EV_P_ W *ws, int cnt)
1916{
1917 while (cnt--)
1918 {
1919 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1920 verify_watcher (EV_A_ ws [cnt]);
1921 }
1922}
1923#endif
1924
1925#if EV_FEATURE_API
1926void
1927ev_verify (EV_P)
1928{
1929#if EV_VERIFY
1930 int i;
1931 WL w;
1932
1933 assert (activecnt >= -1);
1934
1935 assert (fdchangemax >= fdchangecnt);
1936 for (i = 0; i < fdchangecnt; ++i)
1937 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1938
1939 assert (anfdmax >= 0);
1940 for (i = 0; i < anfdmax; ++i)
1941 for (w = anfds [i].head; w; w = w->next)
1942 {
1943 verify_watcher (EV_A_ (W)w);
1944 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1945 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1946 }
1947
1948 assert (timermax >= timercnt);
1949 verify_heap (EV_A_ timers, timercnt);
1950
1951#if EV_PERIODIC_ENABLE
1952 assert (periodicmax >= periodiccnt);
1953 verify_heap (EV_A_ periodics, periodiccnt);
1954#endif
1955
1956 for (i = NUMPRI; i--; )
1957 {
1958 assert (pendingmax [i] >= pendingcnt [i]);
1959#if EV_IDLE_ENABLE
1960 assert (idleall >= 0);
1961 assert (idlemax [i] >= idlecnt [i]);
1962 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1963#endif
1964 }
1965
1966#if EV_FORK_ENABLE
1967 assert (forkmax >= forkcnt);
1968 array_verify (EV_A_ (W *)forks, forkcnt);
1969#endif
1970
1971#if EV_ASYNC_ENABLE
1972 assert (asyncmax >= asynccnt);
1973 array_verify (EV_A_ (W *)asyncs, asynccnt);
1974#endif
1975
1976#if EV_PREPARE_ENABLE
1977 assert (preparemax >= preparecnt);
1978 array_verify (EV_A_ (W *)prepares, preparecnt);
1979#endif
1980
1981#if EV_CHECK_ENABLE
1982 assert (checkmax >= checkcnt);
1983 array_verify (EV_A_ (W *)checks, checkcnt);
1984#endif
1985
1986# if 0
1987#if EV_CHILD_ENABLE
1988 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1989 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1990#endif
1991# endif
1992#endif
1993}
1093#endif 1994#endif
1094 1995
1095#if EV_MULTIPLICITY 1996#if EV_MULTIPLICITY
1096struct ev_loop * 1997struct ev_loop *
1097ev_default_loop_init (unsigned int flags) 1998ev_default_loop_init (unsigned int flags)
1098#else 1999#else
1099int 2000int
1100ev_default_loop (unsigned int flags) 2001ev_default_loop (unsigned int flags)
1101#endif 2002#endif
1102{ 2003{
1103 if (sigpipe [0] == sigpipe [1])
1104 if (pipe (sigpipe))
1105 return 0;
1106
1107 if (!ev_default_loop_ptr) 2004 if (!ev_default_loop_ptr)
1108 { 2005 {
1109#if EV_MULTIPLICITY 2006#if EV_MULTIPLICITY
1110 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2007 EV_P = ev_default_loop_ptr = &default_loop_struct;
1111#else 2008#else
1112 ev_default_loop_ptr = 1; 2009 ev_default_loop_ptr = 1;
1113#endif 2010#endif
1114 2011
1115 loop_init (EV_A_ flags); 2012 loop_init (EV_A_ flags);
1116 2013
1117 if (ev_backend (EV_A)) 2014 if (ev_backend (EV_A))
1118 { 2015 {
1119 siginit (EV_A); 2016#if EV_CHILD_ENABLE
1120
1121#ifndef _WIN32
1122 ev_signal_init (&childev, childcb, SIGCHLD); 2017 ev_signal_init (&childev, childcb, SIGCHLD);
1123 ev_set_priority (&childev, EV_MAXPRI); 2018 ev_set_priority (&childev, EV_MAXPRI);
1124 ev_signal_start (EV_A_ &childev); 2019 ev_signal_start (EV_A_ &childev);
1125 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2020 ev_unref (EV_A); /* child watcher should not keep loop alive */
1126#endif 2021#endif
1134 2029
1135void 2030void
1136ev_default_destroy (void) 2031ev_default_destroy (void)
1137{ 2032{
1138#if EV_MULTIPLICITY 2033#if EV_MULTIPLICITY
1139 struct ev_loop *loop = ev_default_loop_ptr; 2034 EV_P = ev_default_loop_ptr;
1140#endif 2035#endif
1141 2036
1142#ifndef _WIN32 2037 ev_default_loop_ptr = 0;
2038
2039#if EV_CHILD_ENABLE
1143 ev_ref (EV_A); /* child watcher */ 2040 ev_ref (EV_A); /* child watcher */
1144 ev_signal_stop (EV_A_ &childev); 2041 ev_signal_stop (EV_A_ &childev);
1145#endif 2042#endif
1146 2043
1147 ev_ref (EV_A); /* signal watcher */
1148 ev_io_stop (EV_A_ &sigev);
1149
1150 close (sigpipe [0]); sigpipe [0] = 0;
1151 close (sigpipe [1]); sigpipe [1] = 0;
1152
1153 loop_destroy (EV_A); 2044 loop_destroy (EV_A);
1154} 2045}
1155 2046
1156void 2047void
1157ev_default_fork (void) 2048ev_default_fork (void)
1158{ 2049{
1159#if EV_MULTIPLICITY 2050#if EV_MULTIPLICITY
1160 struct ev_loop *loop = ev_default_loop_ptr; 2051 EV_P = ev_default_loop_ptr;
1161#endif 2052#endif
1162 2053
1163 if (backend) 2054 postfork = 1; /* must be in line with ev_loop_fork */
1164 postfork = 1;
1165} 2055}
1166 2056
1167/*****************************************************************************/ 2057/*****************************************************************************/
1168 2058
1169void 2059void
1170ev_invoke (EV_P_ void *w, int revents) 2060ev_invoke (EV_P_ void *w, int revents)
1171{ 2061{
1172 EV_CB_INVOKE ((W)w, revents); 2062 EV_CB_INVOKE ((W)w, revents);
1173} 2063}
1174 2064
1175void inline_speed 2065unsigned int
1176call_pending (EV_P) 2066ev_pending_count (EV_P)
2067{
2068 int pri;
2069 unsigned int count = 0;
2070
2071 for (pri = NUMPRI; pri--; )
2072 count += pendingcnt [pri];
2073
2074 return count;
2075}
2076
2077void noinline
2078ev_invoke_pending (EV_P)
1177{ 2079{
1178 int pri; 2080 int pri;
1179 2081
1180 for (pri = NUMPRI; pri--; ) 2082 for (pri = NUMPRI; pri--; )
1181 while (pendingcnt [pri]) 2083 while (pendingcnt [pri])
1182 { 2084 {
1183 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2085 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1184 2086
1185 if (expect_true (p->w))
1186 {
1187 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2087 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2088 /* ^ this is no longer true, as pending_w could be here */
1188 2089
1189 p->w->pending = 0; 2090 p->w->pending = 0;
1190 EV_CB_INVOKE (p->w, p->events); 2091 EV_CB_INVOKE (p->w, p->events);
1191 } 2092 EV_FREQUENT_CHECK;
1192 } 2093 }
1193} 2094}
1194 2095
1195void inline_size
1196timers_reify (EV_P)
1197{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 {
1200 ev_timer *w = timers [0];
1201
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203
1204 /* first reschedule or stop timer */
1205 if (w->repeat)
1206 {
1207 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1208
1209 ((WT)w)->at += w->repeat;
1210 if (((WT)w)->at < mn_now)
1211 ((WT)w)->at = mn_now;
1212
1213 downheap ((WT *)timers, timercnt, 0);
1214 }
1215 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1219 }
1220}
1221
1222#if EV_PERIODIC_ENABLE
1223void inline_size
1224periodics_reify (EV_P)
1225{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 {
1228 ev_periodic *w = periodics [0];
1229
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231
1232 /* first reschedule or stop timer */
1233 if (w->reschedule_cb)
1234 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0);
1238 }
1239 else if (w->interval)
1240 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0);
1244 }
1245 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1249 }
1250}
1251
1252static void noinline
1253periodics_reschedule (EV_P)
1254{
1255 int i;
1256
1257 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i)
1259 {
1260 ev_periodic *w = periodics [i];
1261
1262 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1266 }
1267
1268 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i);
1271}
1272#endif
1273
1274#if EV_IDLE_ENABLE 2096#if EV_IDLE_ENABLE
1275void inline_size 2097/* make idle watchers pending. this handles the "call-idle */
2098/* only when higher priorities are idle" logic */
2099inline_size void
1276idle_reify (EV_P) 2100idle_reify (EV_P)
1277{ 2101{
1278 if (expect_false (idleall)) 2102 if (expect_false (idleall))
1279 { 2103 {
1280 int pri; 2104 int pri;
1292 } 2116 }
1293 } 2117 }
1294} 2118}
1295#endif 2119#endif
1296 2120
1297int inline_size 2121/* make timers pending */
1298time_update_monotonic (EV_P) 2122inline_size void
2123timers_reify (EV_P)
1299{ 2124{
2125 EV_FREQUENT_CHECK;
2126
2127 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2128 {
2129 do
2130 {
2131 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2132
2133 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2134
2135 /* first reschedule or stop timer */
2136 if (w->repeat)
2137 {
2138 ev_at (w) += w->repeat;
2139 if (ev_at (w) < mn_now)
2140 ev_at (w) = mn_now;
2141
2142 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2143
2144 ANHE_at_cache (timers [HEAP0]);
2145 downheap (timers, timercnt, HEAP0);
2146 }
2147 else
2148 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2149
2150 EV_FREQUENT_CHECK;
2151 feed_reverse (EV_A_ (W)w);
2152 }
2153 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2154
2155 feed_reverse_done (EV_A_ EV_TIMER);
2156 }
2157}
2158
2159#if EV_PERIODIC_ENABLE
2160/* make periodics pending */
2161inline_size void
2162periodics_reify (EV_P)
2163{
2164 EV_FREQUENT_CHECK;
2165
2166 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2167 {
2168 int feed_count = 0;
2169
2170 do
2171 {
2172 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2173
2174 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2175
2176 /* first reschedule or stop timer */
2177 if (w->reschedule_cb)
2178 {
2179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2180
2181 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2182
2183 ANHE_at_cache (periodics [HEAP0]);
2184 downheap (periodics, periodiccnt, HEAP0);
2185 }
2186 else if (w->interval)
2187 {
2188 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2189 /* if next trigger time is not sufficiently in the future, put it there */
2190 /* this might happen because of floating point inexactness */
2191 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2192 {
2193 ev_at (w) += w->interval;
2194
2195 /* if interval is unreasonably low we might still have a time in the past */
2196 /* so correct this. this will make the periodic very inexact, but the user */
2197 /* has effectively asked to get triggered more often than possible */
2198 if (ev_at (w) < ev_rt_now)
2199 ev_at (w) = ev_rt_now;
2200 }
2201
2202 ANHE_at_cache (periodics [HEAP0]);
2203 downheap (periodics, periodiccnt, HEAP0);
2204 }
2205 else
2206 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2207
2208 EV_FREQUENT_CHECK;
2209 feed_reverse (EV_A_ (W)w);
2210 }
2211 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2212
2213 feed_reverse_done (EV_A_ EV_PERIODIC);
2214 }
2215}
2216
2217/* simply recalculate all periodics */
2218/* TODO: maybe ensure that at least one event happens when jumping forward? */
2219static void noinline
2220periodics_reschedule (EV_P)
2221{
2222 int i;
2223
2224 /* adjust periodics after time jump */
2225 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2226 {
2227 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2228
2229 if (w->reschedule_cb)
2230 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2231 else if (w->interval)
2232 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2233
2234 ANHE_at_cache (periodics [i]);
2235 }
2236
2237 reheap (periodics, periodiccnt);
2238}
2239#endif
2240
2241/* adjust all timers by a given offset */
2242static void noinline
2243timers_reschedule (EV_P_ ev_tstamp adjust)
2244{
2245 int i;
2246
2247 for (i = 0; i < timercnt; ++i)
2248 {
2249 ANHE *he = timers + i + HEAP0;
2250 ANHE_w (*he)->at += adjust;
2251 ANHE_at_cache (*he);
2252 }
2253}
2254
2255/* fetch new monotonic and realtime times from the kernel */
2256/* also detect if there was a timejump, and act accordingly */
2257inline_speed void
2258time_update (EV_P_ ev_tstamp max_block)
2259{
2260#if EV_USE_MONOTONIC
2261 if (expect_true (have_monotonic))
2262 {
2263 int i;
2264 ev_tstamp odiff = rtmn_diff;
2265
1300 mn_now = get_clock (); 2266 mn_now = get_clock ();
1301 2267
2268 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2269 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2270 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 2271 {
1304 ev_rt_now = rtmn_diff + mn_now; 2272 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 2273 return;
1306 } 2274 }
1307 else 2275
1308 {
1309 now_floor = mn_now; 2276 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 2277 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 2278
1315void inline_size 2279 /* loop a few times, before making important decisions.
1316time_update (EV_P) 2280 * on the choice of "4": one iteration isn't enough,
1317{ 2281 * in case we get preempted during the calls to
1318 int i; 2282 * ev_time and get_clock. a second call is almost guaranteed
1319 2283 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 2284 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 2285 * in the unlikely event of having been preempted here.
1322 { 2286 */
1323 if (time_update_monotonic (EV_A)) 2287 for (i = 4; --i; )
1324 { 2288 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 2289 rtmn_diff = ev_rt_now - mn_now;
1338 2290
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2291 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1340 return; /* all is well */ 2292 return; /* all is well */
1341 2293
1342 ev_rt_now = ev_time (); 2294 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 2295 mn_now = get_clock ();
1344 now_floor = mn_now; 2296 now_floor = mn_now;
1345 } 2297 }
1346 2298
2299 /* no timer adjustment, as the monotonic clock doesn't jump */
2300 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1347# if EV_PERIODIC_ENABLE 2301# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 2302 periodics_reschedule (EV_A);
1349# endif 2303# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 2304 }
1354 else 2305 else
1355#endif 2306#endif
1356 { 2307 {
1357 ev_rt_now = ev_time (); 2308 ev_rt_now = ev_time ();
1358 2309
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2310 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 2311 {
2312 /* adjust timers. this is easy, as the offset is the same for all of them */
2313 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1361#if EV_PERIODIC_ENABLE 2314#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 2315 periodics_reschedule (EV_A);
1363#endif 2316#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i)
1367 ((WT)timers [i])->at += ev_rt_now - mn_now;
1368 } 2317 }
1369 2318
1370 mn_now = ev_rt_now; 2319 mn_now = ev_rt_now;
1371 } 2320 }
1372} 2321}
1373 2322
1374void 2323void
1375ev_ref (EV_P)
1376{
1377 ++activecnt;
1378}
1379
1380void
1381ev_unref (EV_P)
1382{
1383 --activecnt;
1384}
1385
1386static int loop_done;
1387
1388void
1389ev_loop (EV_P_ int flags) 2324ev_run (EV_P_ int flags)
1390{ 2325{
1391 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2326#if EV_FEATURE_API
1392 ? EVUNLOOP_ONE 2327 ++loop_depth;
1393 : EVUNLOOP_CANCEL; 2328#endif
1394 2329
2330 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2331
2332 loop_done = EVBREAK_CANCEL;
2333
1395 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2334 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1396 2335
1397 do 2336 do
1398 { 2337 {
2338#if EV_VERIFY >= 2
2339 ev_verify (EV_A);
2340#endif
2341
1399#ifndef _WIN32 2342#ifndef _WIN32
1400 if (expect_false (curpid)) /* penalise the forking check even more */ 2343 if (expect_false (curpid)) /* penalise the forking check even more */
1401 if (expect_false (getpid () != curpid)) 2344 if (expect_false (getpid () != curpid))
1402 { 2345 {
1403 curpid = getpid (); 2346 curpid = getpid ();
1409 /* we might have forked, so queue fork handlers */ 2352 /* we might have forked, so queue fork handlers */
1410 if (expect_false (postfork)) 2353 if (expect_false (postfork))
1411 if (forkcnt) 2354 if (forkcnt)
1412 { 2355 {
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2356 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 2357 EV_INVOKE_PENDING;
1415 } 2358 }
1416#endif 2359#endif
1417 2360
2361#if EV_PREPARE_ENABLE
1418 /* queue check watchers (and execute them) */ 2362 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 2363 if (expect_false (preparecnt))
1420 { 2364 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2365 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
1423 } 2367 }
2368#endif
1424 2369
1425 if (expect_false (!activecnt)) 2370 if (expect_false (loop_done))
1426 break; 2371 break;
1427 2372
1428 /* we might have forked, so reify kernel state if necessary */ 2373 /* we might have forked, so reify kernel state if necessary */
1429 if (expect_false (postfork)) 2374 if (expect_false (postfork))
1430 loop_fork (EV_A); 2375 loop_fork (EV_A);
1432 /* update fd-related kernel structures */ 2377 /* update fd-related kernel structures */
1433 fd_reify (EV_A); 2378 fd_reify (EV_A);
1434 2379
1435 /* calculate blocking time */ 2380 /* calculate blocking time */
1436 { 2381 {
1437 ev_tstamp block; 2382 ev_tstamp waittime = 0.;
2383 ev_tstamp sleeptime = 0.;
1438 2384
2385 /* remember old timestamp for io_blocktime calculation */
2386 ev_tstamp prev_mn_now = mn_now;
2387
2388 /* update time to cancel out callback processing overhead */
2389 time_update (EV_A_ 1e100);
2390
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2391 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1440 block = 0.; /* do not block at all */
1441 else
1442 { 2392 {
1443 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453
1454 block = MAX_BLOCKTIME; 2393 waittime = MAX_BLOCKTIME;
1455 2394
1456 if (timercnt) 2395 if (timercnt)
1457 { 2396 {
1458 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2397 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1459 if (block > to) block = to; 2398 if (waittime > to) waittime = to;
1460 } 2399 }
1461 2400
1462#if EV_PERIODIC_ENABLE 2401#if EV_PERIODIC_ENABLE
1463 if (periodiccnt) 2402 if (periodiccnt)
1464 { 2403 {
1465 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2404 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1466 if (block > to) block = to; 2405 if (waittime > to) waittime = to;
1467 } 2406 }
1468#endif 2407#endif
1469 2408
2409 /* don't let timeouts decrease the waittime below timeout_blocktime */
2410 if (expect_false (waittime < timeout_blocktime))
2411 waittime = timeout_blocktime;
2412
2413 /* extra check because io_blocktime is commonly 0 */
1470 if (expect_false (block < 0.)) block = 0.; 2414 if (expect_false (io_blocktime))
2415 {
2416 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2417
2418 if (sleeptime > waittime - backend_fudge)
2419 sleeptime = waittime - backend_fudge;
2420
2421 if (expect_true (sleeptime > 0.))
2422 {
2423 ev_sleep (sleeptime);
2424 waittime -= sleeptime;
2425 }
2426 }
1471 } 2427 }
1472 2428
2429#if EV_FEATURE_API
1473 ++loop_count; 2430 ++loop_count;
2431#endif
2432 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1474 backend_poll (EV_A_ block); 2433 backend_poll (EV_A_ waittime);
2434 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2435
2436 /* update ev_rt_now, do magic */
2437 time_update (EV_A_ waittime + sleeptime);
1475 } 2438 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 2439
1480 /* queue pending timers and reschedule them */ 2440 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 2441 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 2442#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 2443 periodics_reify (EV_A); /* absolute timers called first */
1486#if EV_IDLE_ENABLE 2446#if EV_IDLE_ENABLE
1487 /* queue idle watchers unless other events are pending */ 2447 /* queue idle watchers unless other events are pending */
1488 idle_reify (EV_A); 2448 idle_reify (EV_A);
1489#endif 2449#endif
1490 2450
2451#if EV_CHECK_ENABLE
1491 /* queue check watchers, to be executed first */ 2452 /* queue check watchers, to be executed first */
1492 if (expect_false (checkcnt)) 2453 if (expect_false (checkcnt))
1493 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2454 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2455#endif
1494 2456
1495 call_pending (EV_A); 2457 EV_INVOKE_PENDING;
1496
1497 } 2458 }
1498 while (expect_true (activecnt && !loop_done)); 2459 while (expect_true (
2460 activecnt
2461 && !loop_done
2462 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2463 ));
1499 2464
1500 if (loop_done == EVUNLOOP_ONE) 2465 if (loop_done == EVBREAK_ONE)
1501 loop_done = EVUNLOOP_CANCEL; 2466 loop_done = EVBREAK_CANCEL;
1502}
1503 2467
2468#if EV_FEATURE_API
2469 --loop_depth;
2470#endif
2471}
2472
1504void 2473void
1505ev_unloop (EV_P_ int how) 2474ev_break (EV_P_ int how)
1506{ 2475{
1507 loop_done = how; 2476 loop_done = how;
1508} 2477}
1509 2478
2479void
2480ev_ref (EV_P)
2481{
2482 ++activecnt;
2483}
2484
2485void
2486ev_unref (EV_P)
2487{
2488 --activecnt;
2489}
2490
2491void
2492ev_now_update (EV_P)
2493{
2494 time_update (EV_A_ 1e100);
2495}
2496
2497void
2498ev_suspend (EV_P)
2499{
2500 ev_now_update (EV_A);
2501}
2502
2503void
2504ev_resume (EV_P)
2505{
2506 ev_tstamp mn_prev = mn_now;
2507
2508 ev_now_update (EV_A);
2509 timers_reschedule (EV_A_ mn_now - mn_prev);
2510#if EV_PERIODIC_ENABLE
2511 /* TODO: really do this? */
2512 periodics_reschedule (EV_A);
2513#endif
2514}
2515
1510/*****************************************************************************/ 2516/*****************************************************************************/
2517/* singly-linked list management, used when the expected list length is short */
1511 2518
1512void inline_size 2519inline_size void
1513wlist_add (WL *head, WL elem) 2520wlist_add (WL *head, WL elem)
1514{ 2521{
1515 elem->next = *head; 2522 elem->next = *head;
1516 *head = elem; 2523 *head = elem;
1517} 2524}
1518 2525
1519void inline_size 2526inline_size void
1520wlist_del (WL *head, WL elem) 2527wlist_del (WL *head, WL elem)
1521{ 2528{
1522 while (*head) 2529 while (*head)
1523 { 2530 {
1524 if (*head == elem) 2531 if (expect_true (*head == elem))
1525 { 2532 {
1526 *head = elem->next; 2533 *head = elem->next;
1527 return; 2534 break;
1528 } 2535 }
1529 2536
1530 head = &(*head)->next; 2537 head = &(*head)->next;
1531 } 2538 }
1532} 2539}
1533 2540
1534void inline_speed 2541/* internal, faster, version of ev_clear_pending */
2542inline_speed void
1535clear_pending (EV_P_ W w) 2543clear_pending (EV_P_ W w)
1536{ 2544{
1537 if (w->pending) 2545 if (w->pending)
1538 { 2546 {
1539 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2547 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1540 w->pending = 0; 2548 w->pending = 0;
1541 } 2549 }
1542} 2550}
1543 2551
1544int 2552int
1545ev_clear_pending (EV_P_ void *w) 2553ev_clear_pending (EV_P_ void *w)
1546{ 2554{
1547 W w_ = (W)w; 2555 W w_ = (W)w;
1548 int pending = w_->pending; 2556 int pending = w_->pending;
1549 2557
1550 if (!pending) 2558 if (expect_true (pending))
2559 {
2560 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2561 p->w = (W)&pending_w;
2562 w_->pending = 0;
2563 return p->events;
2564 }
2565 else
1551 return 0; 2566 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 2567}
1559 2568
1560void inline_size 2569inline_size void
1561pri_adjust (EV_P_ W w) 2570pri_adjust (EV_P_ W w)
1562{ 2571{
1563 int pri = w->priority; 2572 int pri = ev_priority (w);
1564 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2573 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1565 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2574 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1566 w->priority = pri; 2575 ev_set_priority (w, pri);
1567} 2576}
1568 2577
1569void inline_speed 2578inline_speed void
1570ev_start (EV_P_ W w, int active) 2579ev_start (EV_P_ W w, int active)
1571{ 2580{
1572 pri_adjust (EV_A_ w); 2581 pri_adjust (EV_A_ w);
1573 w->active = active; 2582 w->active = active;
1574 ev_ref (EV_A); 2583 ev_ref (EV_A);
1575} 2584}
1576 2585
1577void inline_size 2586inline_size void
1578ev_stop (EV_P_ W w) 2587ev_stop (EV_P_ W w)
1579{ 2588{
1580 ev_unref (EV_A); 2589 ev_unref (EV_A);
1581 w->active = 0; 2590 w->active = 0;
1582} 2591}
1583 2592
1584/*****************************************************************************/ 2593/*****************************************************************************/
1585 2594
1586void 2595void noinline
1587ev_io_start (EV_P_ ev_io *w) 2596ev_io_start (EV_P_ ev_io *w)
1588{ 2597{
1589 int fd = w->fd; 2598 int fd = w->fd;
1590 2599
1591 if (expect_false (ev_is_active (w))) 2600 if (expect_false (ev_is_active (w)))
1592 return; 2601 return;
1593 2602
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 2603 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2604 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2605
2606 EV_FREQUENT_CHECK;
1595 2607
1596 ev_start (EV_A_ (W)w, 1); 2608 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2609 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2610 wlist_add (&anfds[fd].head, (WL)w);
1599 2611
1600 fd_change (EV_A_ fd); 2612 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1601} 2613 w->events &= ~EV__IOFDSET;
1602 2614
1603void 2615 EV_FREQUENT_CHECK;
2616}
2617
2618void noinline
1604ev_io_stop (EV_P_ ev_io *w) 2619ev_io_stop (EV_P_ ev_io *w)
1605{ 2620{
1606 clear_pending (EV_A_ (W)w); 2621 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 2622 if (expect_false (!ev_is_active (w)))
1608 return; 2623 return;
1609 2624
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2625 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 2626
2627 EV_FREQUENT_CHECK;
2628
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2629 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 2630 ev_stop (EV_A_ (W)w);
1614 2631
1615 fd_change (EV_A_ w->fd); 2632 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1616}
1617 2633
1618void 2634 EV_FREQUENT_CHECK;
2635}
2636
2637void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 2638ev_timer_start (EV_P_ ev_timer *w)
1620{ 2639{
1621 if (expect_false (ev_is_active (w))) 2640 if (expect_false (ev_is_active (w)))
1622 return; 2641 return;
1623 2642
1624 ((WT)w)->at += mn_now; 2643 ev_at (w) += mn_now;
1625 2644
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2645 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 2646
2647 EV_FREQUENT_CHECK;
2648
2649 ++timercnt;
1628 ev_start (EV_A_ (W)w, ++timercnt); 2650 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2651 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1630 timers [timercnt - 1] = w; 2652 ANHE_w (timers [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 2653 ANHE_at_cache (timers [ev_active (w)]);
2654 upheap (timers, ev_active (w));
1632 2655
2656 EV_FREQUENT_CHECK;
2657
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2658 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1634} 2659}
1635 2660
1636void 2661void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 2662ev_timer_stop (EV_P_ ev_timer *w)
1638{ 2663{
1639 clear_pending (EV_A_ (W)w); 2664 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 2665 if (expect_false (!ev_is_active (w)))
1641 return; 2666 return;
1642 2667
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2668 EV_FREQUENT_CHECK;
1644 2669
1645 { 2670 {
1646 int active = ((W)w)->active; 2671 int active = ev_active (w);
1647 2672
2673 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2674
2675 --timercnt;
2676
1648 if (expect_true (--active < --timercnt)) 2677 if (expect_true (active < timercnt + HEAP0))
1649 { 2678 {
1650 timers [active] = timers [timercnt]; 2679 timers [active] = timers [timercnt + HEAP0];
1651 adjustheap ((WT *)timers, timercnt, active); 2680 adjustheap (timers, timercnt, active);
1652 } 2681 }
1653 } 2682 }
1654 2683
1655 ((WT)w)->at -= mn_now; 2684 ev_at (w) -= mn_now;
1656 2685
1657 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
1658}
1659 2687
1660void 2688 EV_FREQUENT_CHECK;
2689}
2690
2691void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 2692ev_timer_again (EV_P_ ev_timer *w)
1662{ 2693{
2694 EV_FREQUENT_CHECK;
2695
1663 if (ev_is_active (w)) 2696 if (ev_is_active (w))
1664 { 2697 {
1665 if (w->repeat) 2698 if (w->repeat)
1666 { 2699 {
1667 ((WT)w)->at = mn_now + w->repeat; 2700 ev_at (w) = mn_now + w->repeat;
2701 ANHE_at_cache (timers [ev_active (w)]);
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2702 adjustheap (timers, timercnt, ev_active (w));
1669 } 2703 }
1670 else 2704 else
1671 ev_timer_stop (EV_A_ w); 2705 ev_timer_stop (EV_A_ w);
1672 } 2706 }
1673 else if (w->repeat) 2707 else if (w->repeat)
1674 { 2708 {
1675 w->at = w->repeat; 2709 ev_at (w) = w->repeat;
1676 ev_timer_start (EV_A_ w); 2710 ev_timer_start (EV_A_ w);
1677 } 2711 }
2712
2713 EV_FREQUENT_CHECK;
2714}
2715
2716ev_tstamp
2717ev_timer_remaining (EV_P_ ev_timer *w)
2718{
2719 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1678} 2720}
1679 2721
1680#if EV_PERIODIC_ENABLE 2722#if EV_PERIODIC_ENABLE
1681void 2723void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 2724ev_periodic_start (EV_P_ ev_periodic *w)
1683{ 2725{
1684 if (expect_false (ev_is_active (w))) 2726 if (expect_false (ev_is_active (w)))
1685 return; 2727 return;
1686 2728
1687 if (w->reschedule_cb) 2729 if (w->reschedule_cb)
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2730 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 2731 else if (w->interval)
1690 { 2732 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2733 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 2734 /* this formula differs from the one in periodic_reify because we do not always round up */
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2735 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1694 } 2736 }
2737 else
2738 ev_at (w) = w->offset;
1695 2739
2740 EV_FREQUENT_CHECK;
2741
2742 ++periodiccnt;
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 2743 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2744 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 2745 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 2746 ANHE_at_cache (periodics [ev_active (w)]);
2747 upheap (periodics, ev_active (w));
1700 2748
2749 EV_FREQUENT_CHECK;
2750
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2751 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1702} 2752}
1703 2753
1704void 2754void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 2755ev_periodic_stop (EV_P_ ev_periodic *w)
1706{ 2756{
1707 clear_pending (EV_A_ (W)w); 2757 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2758 if (expect_false (!ev_is_active (w)))
1709 return; 2759 return;
1710 2760
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2761 EV_FREQUENT_CHECK;
1712 2762
1713 { 2763 {
1714 int active = ((W)w)->active; 2764 int active = ev_active (w);
1715 2765
2766 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2767
2768 --periodiccnt;
2769
1716 if (expect_true (--active < --periodiccnt)) 2770 if (expect_true (active < periodiccnt + HEAP0))
1717 { 2771 {
1718 periodics [active] = periodics [periodiccnt]; 2772 periodics [active] = periodics [periodiccnt + HEAP0];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 2773 adjustheap (periodics, periodiccnt, active);
1720 } 2774 }
1721 } 2775 }
1722 2776
1723 ev_stop (EV_A_ (W)w); 2777 ev_stop (EV_A_ (W)w);
1724}
1725 2778
1726void 2779 EV_FREQUENT_CHECK;
2780}
2781
2782void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 2783ev_periodic_again (EV_P_ ev_periodic *w)
1728{ 2784{
1729 /* TODO: use adjustheap and recalculation */ 2785 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 2786 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 2787 ev_periodic_start (EV_A_ w);
1734 2790
1735#ifndef SA_RESTART 2791#ifndef SA_RESTART
1736# define SA_RESTART 0 2792# define SA_RESTART 0
1737#endif 2793#endif
1738 2794
1739void 2795#if EV_SIGNAL_ENABLE
2796
2797void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 2798ev_signal_start (EV_P_ ev_signal *w)
1741{ 2799{
1742#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif
1745 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
1746 return; 2801 return;
1747 2802
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2803 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2804
2805#if EV_MULTIPLICITY
2806 assert (("libev: a signal must not be attached to two different loops",
2807 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2808
2809 signals [w->signum - 1].loop = EV_A;
2810#endif
2811
2812 EV_FREQUENT_CHECK;
2813
2814#if EV_USE_SIGNALFD
2815 if (sigfd == -2)
2816 {
2817 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2818 if (sigfd < 0 && errno == EINVAL)
2819 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2820
2821 if (sigfd >= 0)
2822 {
2823 fd_intern (sigfd); /* doing it twice will not hurt */
2824
2825 sigemptyset (&sigfd_set);
2826
2827 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2828 ev_set_priority (&sigfd_w, EV_MAXPRI);
2829 ev_io_start (EV_A_ &sigfd_w);
2830 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2831 }
2832 }
2833
2834 if (sigfd >= 0)
2835 {
2836 /* TODO: check .head */
2837 sigaddset (&sigfd_set, w->signum);
2838 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2839
2840 signalfd (sigfd, &sigfd_set, 0);
2841 }
2842#endif
1749 2843
1750 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2845 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 2846
1754 if (!((WL)w)->next) 2847 if (!((WL)w)->next)
2848# if EV_USE_SIGNALFD
2849 if (sigfd < 0) /*TODO*/
2850# endif
1755 { 2851 {
1756#if _WIN32 2852# ifdef _WIN32
2853 evpipe_init (EV_A);
2854
1757 signal (w->signum, sighandler); 2855 signal (w->signum, ev_sighandler);
1758#else 2856# else
1759 struct sigaction sa; 2857 struct sigaction sa;
2858
2859 evpipe_init (EV_A);
2860
1760 sa.sa_handler = sighandler; 2861 sa.sa_handler = ev_sighandler;
1761 sigfillset (&sa.sa_mask); 2862 sigfillset (&sa.sa_mask);
1762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2863 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1763 sigaction (w->signum, &sa, 0); 2864 sigaction (w->signum, &sa, 0);
2865
2866 sigemptyset (&sa.sa_mask);
2867 sigaddset (&sa.sa_mask, w->signum);
2868 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1764#endif 2869#endif
1765 } 2870 }
1766}
1767 2871
1768void 2872 EV_FREQUENT_CHECK;
2873}
2874
2875void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 2876ev_signal_stop (EV_P_ ev_signal *w)
1770{ 2877{
1771 clear_pending (EV_A_ (W)w); 2878 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 2879 if (expect_false (!ev_is_active (w)))
1773 return; 2880 return;
1774 2881
2882 EV_FREQUENT_CHECK;
2883
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2884 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 2885 ev_stop (EV_A_ (W)w);
1777 2886
1778 if (!signals [w->signum - 1].head) 2887 if (!signals [w->signum - 1].head)
2888 {
2889#if EV_MULTIPLICITY
2890 signals [w->signum - 1].loop = 0; /* unattach from signal */
2891#endif
2892#if EV_USE_SIGNALFD
2893 if (sigfd >= 0)
2894 {
2895 sigset_t ss;
2896
2897 sigemptyset (&ss);
2898 sigaddset (&ss, w->signum);
2899 sigdelset (&sigfd_set, w->signum);
2900
2901 signalfd (sigfd, &sigfd_set, 0);
2902 sigprocmask (SIG_UNBLOCK, &ss, 0);
2903 }
2904 else
2905#endif
1779 signal (w->signum, SIG_DFL); 2906 signal (w->signum, SIG_DFL);
2907 }
2908
2909 EV_FREQUENT_CHECK;
1780} 2910}
2911
2912#endif
2913
2914#if EV_CHILD_ENABLE
1781 2915
1782void 2916void
1783ev_child_start (EV_P_ ev_child *w) 2917ev_child_start (EV_P_ ev_child *w)
1784{ 2918{
1785#if EV_MULTIPLICITY 2919#if EV_MULTIPLICITY
1786 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2920 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1787#endif 2921#endif
1788 if (expect_false (ev_is_active (w))) 2922 if (expect_false (ev_is_active (w)))
1789 return; 2923 return;
1790 2924
2925 EV_FREQUENT_CHECK;
2926
1791 ev_start (EV_A_ (W)w, 1); 2927 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2928 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2929
2930 EV_FREQUENT_CHECK;
1793} 2931}
1794 2932
1795void 2933void
1796ev_child_stop (EV_P_ ev_child *w) 2934ev_child_stop (EV_P_ ev_child *w)
1797{ 2935{
1798 clear_pending (EV_A_ (W)w); 2936 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2937 if (expect_false (!ev_is_active (w)))
1800 return; 2938 return;
1801 2939
2940 EV_FREQUENT_CHECK;
2941
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2942 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 2943 ev_stop (EV_A_ (W)w);
2944
2945 EV_FREQUENT_CHECK;
1804} 2946}
2947
2948#endif
1805 2949
1806#if EV_STAT_ENABLE 2950#if EV_STAT_ENABLE
1807 2951
1808# ifdef _WIN32 2952# ifdef _WIN32
1809# undef lstat 2953# undef lstat
1810# define lstat(a,b) _stati64 (a,b) 2954# define lstat(a,b) _stati64 (a,b)
1811# endif 2955# endif
1812 2956
1813#define DEF_STAT_INTERVAL 5.0074891 2957#define DEF_STAT_INTERVAL 5.0074891
2958#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1814#define MIN_STAT_INTERVAL 0.1074891 2959#define MIN_STAT_INTERVAL 0.1074891
1815 2960
1816static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2961static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1817 2962
1818#if EV_USE_INOTIFY 2963#if EV_USE_INOTIFY
1819# define EV_INOTIFY_BUFSIZE 8192 2964
2965/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2966# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1820 2967
1821static void noinline 2968static void noinline
1822infy_add (EV_P_ ev_stat *w) 2969infy_add (EV_P_ ev_stat *w)
1823{ 2970{
1824 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2971 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1825 2972
1826 if (w->wd < 0) 2973 if (w->wd >= 0)
2974 {
2975 struct statfs sfs;
2976
2977 /* now local changes will be tracked by inotify, but remote changes won't */
2978 /* unless the filesystem is known to be local, we therefore still poll */
2979 /* also do poll on <2.6.25, but with normal frequency */
2980
2981 if (!fs_2625)
2982 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2983 else if (!statfs (w->path, &sfs)
2984 && (sfs.f_type == 0x1373 /* devfs */
2985 || sfs.f_type == 0xEF53 /* ext2/3 */
2986 || sfs.f_type == 0x3153464a /* jfs */
2987 || sfs.f_type == 0x52654973 /* reiser3 */
2988 || sfs.f_type == 0x01021994 /* tempfs */
2989 || sfs.f_type == 0x58465342 /* xfs */))
2990 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2991 else
2992 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1827 { 2993 }
1828 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2994 else
2995 {
2996 /* can't use inotify, continue to stat */
2997 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1829 2998
1830 /* monitor some parent directory for speedup hints */ 2999 /* if path is not there, monitor some parent directory for speedup hints */
3000 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3001 /* but an efficiency issue only */
1831 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3002 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1832 { 3003 {
1833 char path [4096]; 3004 char path [4096];
1834 strcpy (path, w->path); 3005 strcpy (path, w->path);
1835 3006
1838 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3009 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1839 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3010 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1840 3011
1841 char *pend = strrchr (path, '/'); 3012 char *pend = strrchr (path, '/');
1842 3013
1843 if (!pend) 3014 if (!pend || pend == path)
1844 break; /* whoops, no '/', complain to your admin */ 3015 break;
1845 3016
1846 *pend = 0; 3017 *pend = 0;
1847 w->wd = inotify_add_watch (fs_fd, path, mask); 3018 w->wd = inotify_add_watch (fs_fd, path, mask);
1848 } 3019 }
1849 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3020 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1850 } 3021 }
1851 } 3022 }
1852 else
1853 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1854 3023
1855 if (w->wd >= 0) 3024 if (w->wd >= 0)
1856 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3025 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3026
3027 /* now re-arm timer, if required */
3028 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3029 ev_timer_again (EV_A_ &w->timer);
3030 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1857} 3031}
1858 3032
1859static void noinline 3033static void noinline
1860infy_del (EV_P_ ev_stat *w) 3034infy_del (EV_P_ ev_stat *w)
1861{ 3035{
1864 3038
1865 if (wd < 0) 3039 if (wd < 0)
1866 return; 3040 return;
1867 3041
1868 w->wd = -2; 3042 w->wd = -2;
1869 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3043 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1870 wlist_del (&fs_hash [slot].head, (WL)w); 3044 wlist_del (&fs_hash [slot].head, (WL)w);
1871 3045
1872 /* remove this watcher, if others are watching it, they will rearm */ 3046 /* remove this watcher, if others are watching it, they will rearm */
1873 inotify_rm_watch (fs_fd, wd); 3047 inotify_rm_watch (fs_fd, wd);
1874} 3048}
1875 3049
1876static void noinline 3050static void noinline
1877infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3051infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1878{ 3052{
1879 if (slot < 0) 3053 if (slot < 0)
1880 /* overflow, need to check for all hahs slots */ 3054 /* overflow, need to check for all hash slots */
1881 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3055 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1882 infy_wd (EV_A_ slot, wd, ev); 3056 infy_wd (EV_A_ slot, wd, ev);
1883 else 3057 else
1884 { 3058 {
1885 WL w_; 3059 WL w_;
1886 3060
1887 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3061 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1888 { 3062 {
1889 ev_stat *w = (ev_stat *)w_; 3063 ev_stat *w = (ev_stat *)w_;
1890 w_ = w_->next; /* lets us remove this watcher and all before it */ 3064 w_ = w_->next; /* lets us remove this watcher and all before it */
1891 3065
1892 if (w->wd == wd || wd == -1) 3066 if (w->wd == wd || wd == -1)
1893 { 3067 {
1894 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3068 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1895 { 3069 {
3070 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1896 w->wd = -1; 3071 w->wd = -1;
1897 infy_add (EV_A_ w); /* re-add, no matter what */ 3072 infy_add (EV_A_ w); /* re-add, no matter what */
1898 } 3073 }
1899 3074
1900 stat_timer_cb (EV_A_ &w->timer, 0); 3075 stat_timer_cb (EV_A_ &w->timer, 0);
1905 3080
1906static void 3081static void
1907infy_cb (EV_P_ ev_io *w, int revents) 3082infy_cb (EV_P_ ev_io *w, int revents)
1908{ 3083{
1909 char buf [EV_INOTIFY_BUFSIZE]; 3084 char buf [EV_INOTIFY_BUFSIZE];
1910 struct inotify_event *ev = (struct inotify_event *)buf;
1911 int ofs; 3085 int ofs;
1912 int len = read (fs_fd, buf, sizeof (buf)); 3086 int len = read (fs_fd, buf, sizeof (buf));
1913 3087
1914 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3088 for (ofs = 0; ofs < len; )
3089 {
3090 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1915 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3091 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3092 ofs += sizeof (struct inotify_event) + ev->len;
3093 }
1916} 3094}
1917 3095
1918void inline_size 3096inline_size void
3097ev_check_2625 (EV_P)
3098{
3099 /* kernels < 2.6.25 are borked
3100 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3101 */
3102 if (ev_linux_version () < 0x020619)
3103 return;
3104
3105 fs_2625 = 1;
3106}
3107
3108inline_size int
3109infy_newfd (void)
3110{
3111#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3112 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3113 if (fd >= 0)
3114 return fd;
3115#endif
3116 return inotify_init ();
3117}
3118
3119inline_size void
1919infy_init (EV_P) 3120infy_init (EV_P)
1920{ 3121{
1921 if (fs_fd != -2) 3122 if (fs_fd != -2)
1922 return; 3123 return;
1923 3124
3125 fs_fd = -1;
3126
3127 ev_check_2625 (EV_A);
3128
1924 fs_fd = inotify_init (); 3129 fs_fd = infy_newfd ();
1925 3130
1926 if (fs_fd >= 0) 3131 if (fs_fd >= 0)
1927 { 3132 {
3133 fd_intern (fs_fd);
1928 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3134 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1929 ev_set_priority (&fs_w, EV_MAXPRI); 3135 ev_set_priority (&fs_w, EV_MAXPRI);
1930 ev_io_start (EV_A_ &fs_w); 3136 ev_io_start (EV_A_ &fs_w);
3137 ev_unref (EV_A);
1931 } 3138 }
1932} 3139}
1933 3140
1934void inline_size 3141inline_size void
1935infy_fork (EV_P) 3142infy_fork (EV_P)
1936{ 3143{
1937 int slot; 3144 int slot;
1938 3145
1939 if (fs_fd < 0) 3146 if (fs_fd < 0)
1940 return; 3147 return;
1941 3148
3149 ev_ref (EV_A);
3150 ev_io_stop (EV_A_ &fs_w);
1942 close (fs_fd); 3151 close (fs_fd);
1943 fs_fd = inotify_init (); 3152 fs_fd = infy_newfd ();
1944 3153
3154 if (fs_fd >= 0)
3155 {
3156 fd_intern (fs_fd);
3157 ev_io_set (&fs_w, fs_fd, EV_READ);
3158 ev_io_start (EV_A_ &fs_w);
3159 ev_unref (EV_A);
3160 }
3161
1945 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3162 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1946 { 3163 {
1947 WL w_ = fs_hash [slot].head; 3164 WL w_ = fs_hash [slot].head;
1948 fs_hash [slot].head = 0; 3165 fs_hash [slot].head = 0;
1949 3166
1950 while (w_) 3167 while (w_)
1955 w->wd = -1; 3172 w->wd = -1;
1956 3173
1957 if (fs_fd >= 0) 3174 if (fs_fd >= 0)
1958 infy_add (EV_A_ w); /* re-add, no matter what */ 3175 infy_add (EV_A_ w); /* re-add, no matter what */
1959 else 3176 else
3177 {
3178 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3179 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1960 ev_timer_start (EV_A_ &w->timer); 3180 ev_timer_again (EV_A_ &w->timer);
3181 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3182 }
1961 } 3183 }
1962
1963 } 3184 }
1964} 3185}
1965 3186
3187#endif
3188
3189#ifdef _WIN32
3190# define EV_LSTAT(p,b) _stati64 (p, b)
3191#else
3192# define EV_LSTAT(p,b) lstat (p, b)
1966#endif 3193#endif
1967 3194
1968void 3195void
1969ev_stat_stat (EV_P_ ev_stat *w) 3196ev_stat_stat (EV_P_ ev_stat *w)
1970{ 3197{
1977static void noinline 3204static void noinline
1978stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3205stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1979{ 3206{
1980 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3207 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1981 3208
1982 /* we copy this here each the time so that */ 3209 ev_statdata prev = w->attr;
1983 /* prev has the old value when the callback gets invoked */
1984 w->prev = w->attr;
1985 ev_stat_stat (EV_A_ w); 3210 ev_stat_stat (EV_A_ w);
1986 3211
1987 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3212 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1988 if ( 3213 if (
1989 w->prev.st_dev != w->attr.st_dev 3214 prev.st_dev != w->attr.st_dev
1990 || w->prev.st_ino != w->attr.st_ino 3215 || prev.st_ino != w->attr.st_ino
1991 || w->prev.st_mode != w->attr.st_mode 3216 || prev.st_mode != w->attr.st_mode
1992 || w->prev.st_nlink != w->attr.st_nlink 3217 || prev.st_nlink != w->attr.st_nlink
1993 || w->prev.st_uid != w->attr.st_uid 3218 || prev.st_uid != w->attr.st_uid
1994 || w->prev.st_gid != w->attr.st_gid 3219 || prev.st_gid != w->attr.st_gid
1995 || w->prev.st_rdev != w->attr.st_rdev 3220 || prev.st_rdev != w->attr.st_rdev
1996 || w->prev.st_size != w->attr.st_size 3221 || prev.st_size != w->attr.st_size
1997 || w->prev.st_atime != w->attr.st_atime 3222 || prev.st_atime != w->attr.st_atime
1998 || w->prev.st_mtime != w->attr.st_mtime 3223 || prev.st_mtime != w->attr.st_mtime
1999 || w->prev.st_ctime != w->attr.st_ctime 3224 || prev.st_ctime != w->attr.st_ctime
2000 ) { 3225 ) {
3226 /* we only update w->prev on actual differences */
3227 /* in case we test more often than invoke the callback, */
3228 /* to ensure that prev is always different to attr */
3229 w->prev = prev;
3230
2001 #if EV_USE_INOTIFY 3231 #if EV_USE_INOTIFY
3232 if (fs_fd >= 0)
3233 {
2002 infy_del (EV_A_ w); 3234 infy_del (EV_A_ w);
2003 infy_add (EV_A_ w); 3235 infy_add (EV_A_ w);
2004 ev_stat_stat (EV_A_ w); /* avoid race... */ 3236 ev_stat_stat (EV_A_ w); /* avoid race... */
3237 }
2005 #endif 3238 #endif
2006 3239
2007 ev_feed_event (EV_A_ w, EV_STAT); 3240 ev_feed_event (EV_A_ w, EV_STAT);
2008 } 3241 }
2009} 3242}
2012ev_stat_start (EV_P_ ev_stat *w) 3245ev_stat_start (EV_P_ ev_stat *w)
2013{ 3246{
2014 if (expect_false (ev_is_active (w))) 3247 if (expect_false (ev_is_active (w)))
2015 return; 3248 return;
2016 3249
2017 /* since we use memcmp, we need to clear any padding data etc. */
2018 memset (&w->prev, 0, sizeof (ev_statdata));
2019 memset (&w->attr, 0, sizeof (ev_statdata));
2020
2021 ev_stat_stat (EV_A_ w); 3250 ev_stat_stat (EV_A_ w);
2022 3251
3252 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2023 if (w->interval < MIN_STAT_INTERVAL) 3253 w->interval = MIN_STAT_INTERVAL;
2024 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2025 3254
2026 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3255 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2027 ev_set_priority (&w->timer, ev_priority (w)); 3256 ev_set_priority (&w->timer, ev_priority (w));
2028 3257
2029#if EV_USE_INOTIFY 3258#if EV_USE_INOTIFY
2030 infy_init (EV_A); 3259 infy_init (EV_A);
2031 3260
2032 if (fs_fd >= 0) 3261 if (fs_fd >= 0)
2033 infy_add (EV_A_ w); 3262 infy_add (EV_A_ w);
2034 else 3263 else
2035#endif 3264#endif
3265 {
2036 ev_timer_start (EV_A_ &w->timer); 3266 ev_timer_again (EV_A_ &w->timer);
3267 ev_unref (EV_A);
3268 }
2037 3269
2038 ev_start (EV_A_ (W)w, 1); 3270 ev_start (EV_A_ (W)w, 1);
3271
3272 EV_FREQUENT_CHECK;
2039} 3273}
2040 3274
2041void 3275void
2042ev_stat_stop (EV_P_ ev_stat *w) 3276ev_stat_stop (EV_P_ ev_stat *w)
2043{ 3277{
2044 clear_pending (EV_A_ (W)w); 3278 clear_pending (EV_A_ (W)w);
2045 if (expect_false (!ev_is_active (w))) 3279 if (expect_false (!ev_is_active (w)))
2046 return; 3280 return;
2047 3281
3282 EV_FREQUENT_CHECK;
3283
2048#if EV_USE_INOTIFY 3284#if EV_USE_INOTIFY
2049 infy_del (EV_A_ w); 3285 infy_del (EV_A_ w);
2050#endif 3286#endif
3287
3288 if (ev_is_active (&w->timer))
3289 {
3290 ev_ref (EV_A);
2051 ev_timer_stop (EV_A_ &w->timer); 3291 ev_timer_stop (EV_A_ &w->timer);
3292 }
2052 3293
2053 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
3295
3296 EV_FREQUENT_CHECK;
2054} 3297}
2055#endif 3298#endif
2056 3299
2057#if EV_IDLE_ENABLE 3300#if EV_IDLE_ENABLE
2058void 3301void
2060{ 3303{
2061 if (expect_false (ev_is_active (w))) 3304 if (expect_false (ev_is_active (w)))
2062 return; 3305 return;
2063 3306
2064 pri_adjust (EV_A_ (W)w); 3307 pri_adjust (EV_A_ (W)w);
3308
3309 EV_FREQUENT_CHECK;
2065 3310
2066 { 3311 {
2067 int active = ++idlecnt [ABSPRI (w)]; 3312 int active = ++idlecnt [ABSPRI (w)];
2068 3313
2069 ++idleall; 3314 ++idleall;
2070 ev_start (EV_A_ (W)w, active); 3315 ev_start (EV_A_ (W)w, active);
2071 3316
2072 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3317 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2073 idles [ABSPRI (w)][active - 1] = w; 3318 idles [ABSPRI (w)][active - 1] = w;
2074 } 3319 }
3320
3321 EV_FREQUENT_CHECK;
2075} 3322}
2076 3323
2077void 3324void
2078ev_idle_stop (EV_P_ ev_idle *w) 3325ev_idle_stop (EV_P_ ev_idle *w)
2079{ 3326{
2080 clear_pending (EV_A_ (W)w); 3327 clear_pending (EV_A_ (W)w);
2081 if (expect_false (!ev_is_active (w))) 3328 if (expect_false (!ev_is_active (w)))
2082 return; 3329 return;
2083 3330
3331 EV_FREQUENT_CHECK;
3332
2084 { 3333 {
2085 int active = ((W)w)->active; 3334 int active = ev_active (w);
2086 3335
2087 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3336 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2088 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3337 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2089 3338
2090 ev_stop (EV_A_ (W)w); 3339 ev_stop (EV_A_ (W)w);
2091 --idleall; 3340 --idleall;
2092 } 3341 }
2093}
2094#endif
2095 3342
3343 EV_FREQUENT_CHECK;
3344}
3345#endif
3346
3347#if EV_PREPARE_ENABLE
2096void 3348void
2097ev_prepare_start (EV_P_ ev_prepare *w) 3349ev_prepare_start (EV_P_ ev_prepare *w)
2098{ 3350{
2099 if (expect_false (ev_is_active (w))) 3351 if (expect_false (ev_is_active (w)))
2100 return; 3352 return;
3353
3354 EV_FREQUENT_CHECK;
2101 3355
2102 ev_start (EV_A_ (W)w, ++preparecnt); 3356 ev_start (EV_A_ (W)w, ++preparecnt);
2103 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2104 prepares [preparecnt - 1] = w; 3358 prepares [preparecnt - 1] = w;
3359
3360 EV_FREQUENT_CHECK;
2105} 3361}
2106 3362
2107void 3363void
2108ev_prepare_stop (EV_P_ ev_prepare *w) 3364ev_prepare_stop (EV_P_ ev_prepare *w)
2109{ 3365{
2110 clear_pending (EV_A_ (W)w); 3366 clear_pending (EV_A_ (W)w);
2111 if (expect_false (!ev_is_active (w))) 3367 if (expect_false (!ev_is_active (w)))
2112 return; 3368 return;
2113 3369
3370 EV_FREQUENT_CHECK;
3371
2114 { 3372 {
2115 int active = ((W)w)->active; 3373 int active = ev_active (w);
3374
2116 prepares [active - 1] = prepares [--preparecnt]; 3375 prepares [active - 1] = prepares [--preparecnt];
2117 ((W)prepares [active - 1])->active = active; 3376 ev_active (prepares [active - 1]) = active;
2118 } 3377 }
2119 3378
2120 ev_stop (EV_A_ (W)w); 3379 ev_stop (EV_A_ (W)w);
2121}
2122 3380
3381 EV_FREQUENT_CHECK;
3382}
3383#endif
3384
3385#if EV_CHECK_ENABLE
2123void 3386void
2124ev_check_start (EV_P_ ev_check *w) 3387ev_check_start (EV_P_ ev_check *w)
2125{ 3388{
2126 if (expect_false (ev_is_active (w))) 3389 if (expect_false (ev_is_active (w)))
2127 return; 3390 return;
3391
3392 EV_FREQUENT_CHECK;
2128 3393
2129 ev_start (EV_A_ (W)w, ++checkcnt); 3394 ev_start (EV_A_ (W)w, ++checkcnt);
2130 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3395 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2131 checks [checkcnt - 1] = w; 3396 checks [checkcnt - 1] = w;
3397
3398 EV_FREQUENT_CHECK;
2132} 3399}
2133 3400
2134void 3401void
2135ev_check_stop (EV_P_ ev_check *w) 3402ev_check_stop (EV_P_ ev_check *w)
2136{ 3403{
2137 clear_pending (EV_A_ (W)w); 3404 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 3405 if (expect_false (!ev_is_active (w)))
2139 return; 3406 return;
2140 3407
3408 EV_FREQUENT_CHECK;
3409
2141 { 3410 {
2142 int active = ((W)w)->active; 3411 int active = ev_active (w);
3412
2143 checks [active - 1] = checks [--checkcnt]; 3413 checks [active - 1] = checks [--checkcnt];
2144 ((W)checks [active - 1])->active = active; 3414 ev_active (checks [active - 1]) = active;
2145 } 3415 }
2146 3416
2147 ev_stop (EV_A_ (W)w); 3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
2148} 3420}
3421#endif
2149 3422
2150#if EV_EMBED_ENABLE 3423#if EV_EMBED_ENABLE
2151void noinline 3424void noinline
2152ev_embed_sweep (EV_P_ ev_embed *w) 3425ev_embed_sweep (EV_P_ ev_embed *w)
2153{ 3426{
2154 ev_loop (w->loop, EVLOOP_NONBLOCK); 3427 ev_run (w->other, EVRUN_NOWAIT);
2155} 3428}
2156 3429
2157static void 3430static void
2158embed_cb (EV_P_ ev_io *io, int revents) 3431embed_io_cb (EV_P_ ev_io *io, int revents)
2159{ 3432{
2160 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3433 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2161 3434
2162 if (ev_cb (w)) 3435 if (ev_cb (w))
2163 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3436 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2164 else 3437 else
2165 ev_embed_sweep (loop, w); 3438 ev_run (w->other, EVRUN_NOWAIT);
2166} 3439}
3440
3441static void
3442embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3443{
3444 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3445
3446 {
3447 EV_P = w->other;
3448
3449 while (fdchangecnt)
3450 {
3451 fd_reify (EV_A);
3452 ev_run (EV_A_ EVRUN_NOWAIT);
3453 }
3454 }
3455}
3456
3457static void
3458embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3459{
3460 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3461
3462 ev_embed_stop (EV_A_ w);
3463
3464 {
3465 EV_P = w->other;
3466
3467 ev_loop_fork (EV_A);
3468 ev_run (EV_A_ EVRUN_NOWAIT);
3469 }
3470
3471 ev_embed_start (EV_A_ w);
3472}
3473
3474#if 0
3475static void
3476embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3477{
3478 ev_idle_stop (EV_A_ idle);
3479}
3480#endif
2167 3481
2168void 3482void
2169ev_embed_start (EV_P_ ev_embed *w) 3483ev_embed_start (EV_P_ ev_embed *w)
2170{ 3484{
2171 if (expect_false (ev_is_active (w))) 3485 if (expect_false (ev_is_active (w)))
2172 return; 3486 return;
2173 3487
2174 { 3488 {
2175 struct ev_loop *loop = w->loop; 3489 EV_P = w->other;
2176 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3490 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2177 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2178 } 3492 }
3493
3494 EV_FREQUENT_CHECK;
2179 3495
2180 ev_set_priority (&w->io, ev_priority (w)); 3496 ev_set_priority (&w->io, ev_priority (w));
2181 ev_io_start (EV_A_ &w->io); 3497 ev_io_start (EV_A_ &w->io);
2182 3498
3499 ev_prepare_init (&w->prepare, embed_prepare_cb);
3500 ev_set_priority (&w->prepare, EV_MINPRI);
3501 ev_prepare_start (EV_A_ &w->prepare);
3502
3503 ev_fork_init (&w->fork, embed_fork_cb);
3504 ev_fork_start (EV_A_ &w->fork);
3505
3506 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3507
2183 ev_start (EV_A_ (W)w, 1); 3508 ev_start (EV_A_ (W)w, 1);
3509
3510 EV_FREQUENT_CHECK;
2184} 3511}
2185 3512
2186void 3513void
2187ev_embed_stop (EV_P_ ev_embed *w) 3514ev_embed_stop (EV_P_ ev_embed *w)
2188{ 3515{
2189 clear_pending (EV_A_ (W)w); 3516 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 3517 if (expect_false (!ev_is_active (w)))
2191 return; 3518 return;
2192 3519
3520 EV_FREQUENT_CHECK;
3521
2193 ev_io_stop (EV_A_ &w->io); 3522 ev_io_stop (EV_A_ &w->io);
3523 ev_prepare_stop (EV_A_ &w->prepare);
3524 ev_fork_stop (EV_A_ &w->fork);
2194 3525
2195 ev_stop (EV_A_ (W)w); 3526 ev_stop (EV_A_ (W)w);
3527
3528 EV_FREQUENT_CHECK;
2196} 3529}
2197#endif 3530#endif
2198 3531
2199#if EV_FORK_ENABLE 3532#if EV_FORK_ENABLE
2200void 3533void
2201ev_fork_start (EV_P_ ev_fork *w) 3534ev_fork_start (EV_P_ ev_fork *w)
2202{ 3535{
2203 if (expect_false (ev_is_active (w))) 3536 if (expect_false (ev_is_active (w)))
2204 return; 3537 return;
3538
3539 EV_FREQUENT_CHECK;
2205 3540
2206 ev_start (EV_A_ (W)w, ++forkcnt); 3541 ev_start (EV_A_ (W)w, ++forkcnt);
2207 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3542 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2208 forks [forkcnt - 1] = w; 3543 forks [forkcnt - 1] = w;
3544
3545 EV_FREQUENT_CHECK;
2209} 3546}
2210 3547
2211void 3548void
2212ev_fork_stop (EV_P_ ev_fork *w) 3549ev_fork_stop (EV_P_ ev_fork *w)
2213{ 3550{
2214 clear_pending (EV_A_ (W)w); 3551 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 3552 if (expect_false (!ev_is_active (w)))
2216 return; 3553 return;
2217 3554
3555 EV_FREQUENT_CHECK;
3556
2218 { 3557 {
2219 int active = ((W)w)->active; 3558 int active = ev_active (w);
3559
2220 forks [active - 1] = forks [--forkcnt]; 3560 forks [active - 1] = forks [--forkcnt];
2221 ((W)forks [active - 1])->active = active; 3561 ev_active (forks [active - 1]) = active;
2222 } 3562 }
2223 3563
2224 ev_stop (EV_A_ (W)w); 3564 ev_stop (EV_A_ (W)w);
3565
3566 EV_FREQUENT_CHECK;
3567}
3568#endif
3569
3570#if EV_ASYNC_ENABLE
3571void
3572ev_async_start (EV_P_ ev_async *w)
3573{
3574 if (expect_false (ev_is_active (w)))
3575 return;
3576
3577 w->sent = 0;
3578
3579 evpipe_init (EV_A);
3580
3581 EV_FREQUENT_CHECK;
3582
3583 ev_start (EV_A_ (W)w, ++asynccnt);
3584 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3585 asyncs [asynccnt - 1] = w;
3586
3587 EV_FREQUENT_CHECK;
3588}
3589
3590void
3591ev_async_stop (EV_P_ ev_async *w)
3592{
3593 clear_pending (EV_A_ (W)w);
3594 if (expect_false (!ev_is_active (w)))
3595 return;
3596
3597 EV_FREQUENT_CHECK;
3598
3599 {
3600 int active = ev_active (w);
3601
3602 asyncs [active - 1] = asyncs [--asynccnt];
3603 ev_active (asyncs [active - 1]) = active;
3604 }
3605
3606 ev_stop (EV_A_ (W)w);
3607
3608 EV_FREQUENT_CHECK;
3609}
3610
3611void
3612ev_async_send (EV_P_ ev_async *w)
3613{
3614 w->sent = 1;
3615 evpipe_write (EV_A_ &async_pending);
2225} 3616}
2226#endif 3617#endif
2227 3618
2228/*****************************************************************************/ 3619/*****************************************************************************/
2229 3620
2239once_cb (EV_P_ struct ev_once *once, int revents) 3630once_cb (EV_P_ struct ev_once *once, int revents)
2240{ 3631{
2241 void (*cb)(int revents, void *arg) = once->cb; 3632 void (*cb)(int revents, void *arg) = once->cb;
2242 void *arg = once->arg; 3633 void *arg = once->arg;
2243 3634
2244 ev_io_stop (EV_A_ &once->io); 3635 ev_io_stop (EV_A_ &once->io);
2245 ev_timer_stop (EV_A_ &once->to); 3636 ev_timer_stop (EV_A_ &once->to);
2246 ev_free (once); 3637 ev_free (once);
2247 3638
2248 cb (revents, arg); 3639 cb (revents, arg);
2249} 3640}
2250 3641
2251static void 3642static void
2252once_cb_io (EV_P_ ev_io *w, int revents) 3643once_cb_io (EV_P_ ev_io *w, int revents)
2253{ 3644{
2254 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3645 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3646
3647 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2255} 3648}
2256 3649
2257static void 3650static void
2258once_cb_to (EV_P_ ev_timer *w, int revents) 3651once_cb_to (EV_P_ ev_timer *w, int revents)
2259{ 3652{
2260 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3653 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3654
3655 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2261} 3656}
2262 3657
2263void 3658void
2264ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3659ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2265{ 3660{
2266 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3661 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2267 3662
2268 if (expect_false (!once)) 3663 if (expect_false (!once))
2269 { 3664 {
2270 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3665 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2271 return; 3666 return;
2272 } 3667 }
2273 3668
2274 once->cb = cb; 3669 once->cb = cb;
2275 once->arg = arg; 3670 once->arg = arg;
2287 ev_timer_set (&once->to, timeout, 0.); 3682 ev_timer_set (&once->to, timeout, 0.);
2288 ev_timer_start (EV_A_ &once->to); 3683 ev_timer_start (EV_A_ &once->to);
2289 } 3684 }
2290} 3685}
2291 3686
2292#ifdef __cplusplus 3687/*****************************************************************************/
2293} 3688
3689#if EV_WALK_ENABLE
3690void
3691ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3692{
3693 int i, j;
3694 ev_watcher_list *wl, *wn;
3695
3696 if (types & (EV_IO | EV_EMBED))
3697 for (i = 0; i < anfdmax; ++i)
3698 for (wl = anfds [i].head; wl; )
3699 {
3700 wn = wl->next;
3701
3702#if EV_EMBED_ENABLE
3703 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3704 {
3705 if (types & EV_EMBED)
3706 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3707 }
3708 else
3709#endif
3710#if EV_USE_INOTIFY
3711 if (ev_cb ((ev_io *)wl) == infy_cb)
3712 ;
3713 else
3714#endif
3715 if ((ev_io *)wl != &pipe_w)
3716 if (types & EV_IO)
3717 cb (EV_A_ EV_IO, wl);
3718
3719 wl = wn;
3720 }
3721
3722 if (types & (EV_TIMER | EV_STAT))
3723 for (i = timercnt + HEAP0; i-- > HEAP0; )
3724#if EV_STAT_ENABLE
3725 /*TODO: timer is not always active*/
3726 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3727 {
3728 if (types & EV_STAT)
3729 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3730 }
3731 else
3732#endif
3733 if (types & EV_TIMER)
3734 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3735
3736#if EV_PERIODIC_ENABLE
3737 if (types & EV_PERIODIC)
3738 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3739 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3740#endif
3741
3742#if EV_IDLE_ENABLE
3743 if (types & EV_IDLE)
3744 for (j = NUMPRI; i--; )
3745 for (i = idlecnt [j]; i--; )
3746 cb (EV_A_ EV_IDLE, idles [j][i]);
3747#endif
3748
3749#if EV_FORK_ENABLE
3750 if (types & EV_FORK)
3751 for (i = forkcnt; i--; )
3752 if (ev_cb (forks [i]) != embed_fork_cb)
3753 cb (EV_A_ EV_FORK, forks [i]);
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757 if (types & EV_ASYNC)
3758 for (i = asynccnt; i--; )
3759 cb (EV_A_ EV_ASYNC, asyncs [i]);
3760#endif
3761
3762#if EV_PREPARE_ENABLE
3763 if (types & EV_PREPARE)
3764 for (i = preparecnt; i--; )
3765# if EV_EMBED_ENABLE
3766 if (ev_cb (prepares [i]) != embed_prepare_cb)
2294#endif 3767# endif
3768 cb (EV_A_ EV_PREPARE, prepares [i]);
3769#endif
2295 3770
3771#if EV_CHECK_ENABLE
3772 if (types & EV_CHECK)
3773 for (i = checkcnt; i--; )
3774 cb (EV_A_ EV_CHECK, checks [i]);
3775#endif
3776
3777#if EV_SIGNAL_ENABLE
3778 if (types & EV_SIGNAL)
3779 for (i = 0; i < EV_NSIG - 1; ++i)
3780 for (wl = signals [i].head; wl; )
3781 {
3782 wn = wl->next;
3783 cb (EV_A_ EV_SIGNAL, wl);
3784 wl = wn;
3785 }
3786#endif
3787
3788#if EV_CHILD_ENABLE
3789 if (types & EV_CHILD)
3790 for (i = (EV_PID_HASHSIZE); i--; )
3791 for (wl = childs [i]; wl; )
3792 {
3793 wn = wl->next;
3794 cb (EV_A_ EV_CHILD, wl);
3795 wl = wn;
3796 }
3797#endif
3798/* EV_STAT 0x00001000 /* stat data changed */
3799/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3800}
3801#endif
3802
3803#if EV_MULTIPLICITY
3804 #include "ev_wrap.h"
3805#endif
3806
3807EV_CPP(})
3808

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines