ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.226 by root, Fri Apr 18 17:16:44 2008 UTC vs.
Revision 1.356 by root, Fri Oct 22 11:21:52 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
130# endif 148# endif
131 149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
237# endif 314# endif
238#endif 315#endif
239 316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
241 364
242#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
245#endif 368#endif
259# include <sys/select.h> 382# include <sys/select.h>
260# endif 383# endif
261#endif 384#endif
262 385
263#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
264# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
265#endif 394#endif
266 395
267#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 397# include <winsock.h>
269#endif 398#endif
270 399
271#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 402# include <stdint.h>
274# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
275extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
276# endif 405# endif
277int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 407# ifdef O_CLOEXEC
279} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
280# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
281#endif 436#endif
282 437
283/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
284 445
285/* 446/*
286 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
292 */ 453 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 455
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
298 461
299#if __GNUC__ >= 4 462#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
302#else 465#else
309 472
310#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 475#define inline_size static inline
313 476
314#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
315# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
316#else 487#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
322 490
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
325 493
326typedef ev_watcher *W; 494typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
329 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
330#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
334#endif 519#endif
335 520
336#ifdef _WIN32 521#ifdef _WIN32
337# include "ev_win32.c" 522# include "ev_win32.c"
338#endif 523#endif
339 524
340/*****************************************************************************/ 525/*****************************************************************************/
341 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 struct utsname buf;
536 unsigned int v;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
342static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
343 578
344void 579void
345ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
346{ 581{
347 syserr_cb = cb; 582 syserr_cb = cb;
348} 583}
349 584
350static void noinline 585static void noinline
351syserr (const char *msg) 586ev_syserr (const char *msg)
352{ 587{
353 if (!msg) 588 if (!msg)
354 msg = "(libev) system error"; 589 msg = "(libev) system error";
355 590
356 if (syserr_cb) 591 if (syserr_cb)
357 syserr_cb (msg); 592 syserr_cb (msg);
358 else 593 else
359 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
360 perror (msg); 603 perror (msg);
604#endif
361 abort (); 605 abort ();
362 } 606 }
363} 607}
364 608
365static void * 609static void *
366ev_realloc_emul (void *ptr, long size) 610ev_realloc_emul (void *ptr, long size)
367{ 611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
368 /* some systems, notably openbsd and darwin, fail to properly 615 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and 616 * implement realloc (x, 0) (as required by both ansi c-89 and
370 * the single unix specification, so work around them here. 617 * the single unix specification, so work around them here.
371 */ 618 */
372 619
373 if (size) 620 if (size)
374 return realloc (ptr, size); 621 return realloc (ptr, size);
375 622
376 free (ptr); 623 free (ptr);
377 return 0; 624 return 0;
625#endif
378} 626}
379 627
380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
381 629
382void 630void
390{ 638{
391 ptr = alloc (ptr, size); 639 ptr = alloc (ptr, size);
392 640
393 if (!ptr && size) 641 if (!ptr && size)
394 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
396 abort (); 648 abort ();
397 } 649 }
398 650
399 return ptr; 651 return ptr;
400} 652}
402#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
403#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
404 656
405/*****************************************************************************/ 657/*****************************************************************************/
406 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
407typedef struct 663typedef struct
408{ 664{
409 WL head; 665 WL head;
410 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
411 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
412#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET
413 SOCKET handle; 674 SOCKET handle;
414#endif 675#endif
415} ANFD; 676} ANFD;
416 677
678/* stores the pending event set for a given watcher */
417typedef struct 679typedef struct
418{ 680{
419 W w; 681 W w;
420 int events; 682 int events; /* the pending event set for the given watcher */
421} ANPENDING; 683} ANPENDING;
422 684
423#if EV_USE_INOTIFY 685#if EV_USE_INOTIFY
686/* hash table entry per inotify-id */
424typedef struct 687typedef struct
425{ 688{
426 WL head; 689 WL head;
427} ANFS; 690} ANFS;
691#endif
692
693/* Heap Entry */
694#if EV_HEAP_CACHE_AT
695 /* a heap element */
696 typedef struct {
697 ev_tstamp at;
698 WT w;
699 } ANHE;
700
701 #define ANHE_w(he) (he).w /* access watcher, read-write */
702 #define ANHE_at(he) (he).at /* access cached at, read-only */
703 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
704#else
705 /* a heap element */
706 typedef WT ANHE;
707
708 #define ANHE_w(he) (he)
709 #define ANHE_at(he) (he)->at
710 #define ANHE_at_cache(he)
428#endif 711#endif
429 712
430#if EV_MULTIPLICITY 713#if EV_MULTIPLICITY
431 714
432 struct ev_loop 715 struct ev_loop
451 734
452 static int ev_default_loop_ptr; 735 static int ev_default_loop_ptr;
453 736
454#endif 737#endif
455 738
739#if EV_FEATURE_API
740# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
741# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
742# define EV_INVOKE_PENDING invoke_cb (EV_A)
743#else
744# define EV_RELEASE_CB (void)0
745# define EV_ACQUIRE_CB (void)0
746# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
747#endif
748
749#define EVBREAK_RECURSE 0x80
750
456/*****************************************************************************/ 751/*****************************************************************************/
457 752
753#ifndef EV_HAVE_EV_TIME
458ev_tstamp 754ev_tstamp
459ev_time (void) 755ev_time (void)
460{ 756{
461#if EV_USE_REALTIME 757#if EV_USE_REALTIME
758 if (expect_true (have_realtime))
759 {
462 struct timespec ts; 760 struct timespec ts;
463 clock_gettime (CLOCK_REALTIME, &ts); 761 clock_gettime (CLOCK_REALTIME, &ts);
464 return ts.tv_sec + ts.tv_nsec * 1e-9; 762 return ts.tv_sec + ts.tv_nsec * 1e-9;
465#else 763 }
764#endif
765
466 struct timeval tv; 766 struct timeval tv;
467 gettimeofday (&tv, 0); 767 gettimeofday (&tv, 0);
468 return tv.tv_sec + tv.tv_usec * 1e-6; 768 return tv.tv_sec + tv.tv_usec * 1e-6;
469#endif
470} 769}
770#endif
471 771
472ev_tstamp inline_size 772inline_size ev_tstamp
473get_clock (void) 773get_clock (void)
474{ 774{
475#if EV_USE_MONOTONIC 775#if EV_USE_MONOTONIC
476 if (expect_true (have_monotonic)) 776 if (expect_true (have_monotonic))
477 { 777 {
498 if (delay > 0.) 798 if (delay > 0.)
499 { 799 {
500#if EV_USE_NANOSLEEP 800#if EV_USE_NANOSLEEP
501 struct timespec ts; 801 struct timespec ts;
502 802
503 ts.tv_sec = (time_t)delay; 803 EV_TS_SET (ts, delay);
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0); 804 nanosleep (&ts, 0);
507#elif defined(_WIN32) 805#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3)); 806 Sleep ((unsigned long)(delay * 1e3));
509#else 807#else
510 struct timeval tv; 808 struct timeval tv;
511 809
512 tv.tv_sec = (time_t)delay; 810 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 811 /* something not guaranteed by newer posix versions, but guaranteed */
514 812 /* by older ones */
813 EV_TV_SET (tv, delay);
515 select (0, 0, 0, 0, &tv); 814 select (0, 0, 0, 0, &tv);
516#endif 815#endif
517 } 816 }
518} 817}
519 818
520/*****************************************************************************/ 819/*****************************************************************************/
521 820
522int inline_size 821#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
822
823/* find a suitable new size for the given array, */
824/* hopefully by rounding to a nice-to-malloc size */
825inline_size int
523array_nextsize (int elem, int cur, int cnt) 826array_nextsize (int elem, int cur, int cnt)
524{ 827{
525 int ncur = cur + 1; 828 int ncur = cur + 1;
526 829
527 do 830 do
528 ncur <<= 1; 831 ncur <<= 1;
529 while (cnt > ncur); 832 while (cnt > ncur);
530 833
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 834 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 835 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 836 {
534 ncur *= elem; 837 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 838 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 839 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 840 ncur /= elem;
538 } 841 }
539 842
540 return ncur; 843 return ncur;
544array_realloc (int elem, void *base, int *cur, int cnt) 847array_realloc (int elem, void *base, int *cur, int cnt)
545{ 848{
546 *cur = array_nextsize (elem, *cur, cnt); 849 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 850 return ev_realloc (base, elem * *cur);
548} 851}
852
853#define array_init_zero(base,count) \
854 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 855
550#define array_needsize(type,base,cur,cnt,init) \ 856#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 857 if (expect_false ((cnt) > (cur))) \
552 { \ 858 { \
553 int ocur_ = (cur); \ 859 int ocur_ = (cur); \
565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 871 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
566 } 872 }
567#endif 873#endif
568 874
569#define array_free(stem, idx) \ 875#define array_free(stem, idx) \
570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 876 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
571 877
572/*****************************************************************************/ 878/*****************************************************************************/
879
880/* dummy callback for pending events */
881static void noinline
882pendingcb (EV_P_ ev_prepare *w, int revents)
883{
884}
573 885
574void noinline 886void noinline
575ev_feed_event (EV_P_ void *w, int revents) 887ev_feed_event (EV_P_ void *w, int revents)
576{ 888{
577 W w_ = (W)w; 889 W w_ = (W)w;
586 pendings [pri][w_->pending - 1].w = w_; 898 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents; 899 pendings [pri][w_->pending - 1].events = revents;
588 } 900 }
589} 901}
590 902
591void inline_speed 903inline_speed void
904feed_reverse (EV_P_ W w)
905{
906 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
907 rfeeds [rfeedcnt++] = w;
908}
909
910inline_size void
911feed_reverse_done (EV_P_ int revents)
912{
913 do
914 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
915 while (rfeedcnt);
916}
917
918inline_speed void
592queue_events (EV_P_ W *events, int eventcnt, int type) 919queue_events (EV_P_ W *events, int eventcnt, int type)
593{ 920{
594 int i; 921 int i;
595 922
596 for (i = 0; i < eventcnt; ++i) 923 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type); 924 ev_feed_event (EV_A_ events [i], type);
598} 925}
599 926
600/*****************************************************************************/ 927/*****************************************************************************/
601 928
602void inline_size 929inline_speed void
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed
616fd_event (EV_P_ int fd, int revents) 930fd_event_nocheck (EV_P_ int fd, int revents)
617{ 931{
618 ANFD *anfd = anfds + fd; 932 ANFD *anfd = anfds + fd;
619 ev_io *w; 933 ev_io *w;
620 934
621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 935 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
625 if (ev) 939 if (ev)
626 ev_feed_event (EV_A_ (W)w, ev); 940 ev_feed_event (EV_A_ (W)w, ev);
627 } 941 }
628} 942}
629 943
944/* do not submit kernel events for fds that have reify set */
945/* because that means they changed while we were polling for new events */
946inline_speed void
947fd_event (EV_P_ int fd, int revents)
948{
949 ANFD *anfd = anfds + fd;
950
951 if (expect_true (!anfd->reify))
952 fd_event_nocheck (EV_A_ fd, revents);
953}
954
630void 955void
631ev_feed_fd_event (EV_P_ int fd, int revents) 956ev_feed_fd_event (EV_P_ int fd, int revents)
632{ 957{
633 if (fd >= 0 && fd < anfdmax) 958 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents); 959 fd_event_nocheck (EV_A_ fd, revents);
635} 960}
636 961
637void inline_size 962/* make sure the external fd watch events are in-sync */
963/* with the kernel/libev internal state */
964inline_size void
638fd_reify (EV_P) 965fd_reify (EV_P)
639{ 966{
640 int i; 967 int i;
641 968
642 for (i = 0; i < fdchangecnt; ++i) 969 for (i = 0; i < fdchangecnt; ++i)
643 { 970 {
644 int fd = fdchanges [i]; 971 int fd = fdchanges [i];
645 ANFD *anfd = anfds + fd; 972 ANFD *anfd = anfds + fd;
646 ev_io *w; 973 ev_io *w;
647 974
648 unsigned char events = 0; 975 unsigned char o_events = anfd->events;
976 unsigned char o_reify = anfd->reify;
649 977
650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 978 anfd->reify = 0;
651 events |= (unsigned char)w->events;
652 979
653#if EV_SELECT_IS_WINSOCKET 980#if EV_SELECT_IS_WINSOCKET
654 if (events) 981 if (o_reify & EV__IOFDSET)
655 { 982 {
656 unsigned long argp; 983 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 984 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else
660 anfd->handle = _get_osfhandle (fd);
661 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 985 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 986 }
664#endif 987#endif
665 988
989 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
666 { 990 {
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
670 anfd->reify = 0;
671 anfd->events = events; 991 anfd->events = 0;
672 992
673 if (o_events != events || o_reify & EV_IOFDSET) 993 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
994 anfd->events |= (unsigned char)w->events;
995
996 if (o_events != anfd->events)
997 o_reify = EV__IOFDSET; /* actually |= */
998 }
999
1000 if (o_reify & EV__IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events); 1001 backend_modify (EV_A_ fd, o_events, anfd->events);
675 }
676 } 1002 }
677 1003
678 fdchangecnt = 0; 1004 fdchangecnt = 0;
679} 1005}
680 1006
681void inline_size 1007/* something about the given fd changed */
1008inline_size void
682fd_change (EV_P_ int fd, int flags) 1009fd_change (EV_P_ int fd, int flags)
683{ 1010{
684 unsigned char reify = anfds [fd].reify; 1011 unsigned char reify = anfds [fd].reify;
685 anfds [fd].reify |= flags; 1012 anfds [fd].reify |= flags;
686 1013
690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1017 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
691 fdchanges [fdchangecnt - 1] = fd; 1018 fdchanges [fdchangecnt - 1] = fd;
692 } 1019 }
693} 1020}
694 1021
695void inline_speed 1022/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1023inline_speed void
696fd_kill (EV_P_ int fd) 1024fd_kill (EV_P_ int fd)
697{ 1025{
698 ev_io *w; 1026 ev_io *w;
699 1027
700 while ((w = (ev_io *)anfds [fd].head)) 1028 while ((w = (ev_io *)anfds [fd].head))
702 ev_io_stop (EV_A_ w); 1030 ev_io_stop (EV_A_ w);
703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1031 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
704 } 1032 }
705} 1033}
706 1034
707int inline_size 1035/* check whether the given fd is actually valid, for error recovery */
1036inline_size int
708fd_valid (int fd) 1037fd_valid (int fd)
709{ 1038{
710#ifdef _WIN32 1039#ifdef _WIN32
711 return _get_osfhandle (fd) != -1; 1040 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
712#else 1041#else
713 return fcntl (fd, F_GETFD) != -1; 1042 return fcntl (fd, F_GETFD) != -1;
714#endif 1043#endif
715} 1044}
716 1045
720{ 1049{
721 int fd; 1050 int fd;
722 1051
723 for (fd = 0; fd < anfdmax; ++fd) 1052 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 1053 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 1054 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 1055 fd_kill (EV_A_ fd);
727} 1056}
728 1057
729/* called on ENOMEM in select/poll to kill some fds and retry */ 1058/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 1059static void noinline
734 1063
735 for (fd = anfdmax; fd--; ) 1064 for (fd = anfdmax; fd--; )
736 if (anfds [fd].events) 1065 if (anfds [fd].events)
737 { 1066 {
738 fd_kill (EV_A_ fd); 1067 fd_kill (EV_A_ fd);
739 return; 1068 break;
740 } 1069 }
741} 1070}
742 1071
743/* usually called after fork if backend needs to re-arm all fds from scratch */ 1072/* usually called after fork if backend needs to re-arm all fds from scratch */
744static void noinline 1073static void noinline
748 1077
749 for (fd = 0; fd < anfdmax; ++fd) 1078 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 1079 if (anfds [fd].events)
751 { 1080 {
752 anfds [fd].events = 0; 1081 anfds [fd].events = 0;
1082 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1083 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
754 } 1084 }
755} 1085}
756 1086
757/*****************************************************************************/ 1087/* used to prepare libev internal fd's */
758 1088/* this is not fork-safe */
759void inline_speed 1089inline_speed void
760upheap (WT *heap, int k)
761{
762 WT w = heap [k];
763
764 while (k)
765 {
766 int p = (k - 1) >> 1;
767
768 if (heap [p]->at <= w->at)
769 break;
770
771 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1;
773 k = p;
774 }
775
776 heap [k] = w;
777 ((W)heap [k])->active = k + 1;
778}
779
780void inline_speed
781downheap (WT *heap, int N, int k)
782{
783 WT w = heap [k];
784
785 for (;;)
786 {
787 int c = (k << 1) + 1;
788
789 if (c >= N)
790 break;
791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
798 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1;
800
801 k = c;
802 }
803
804 heap [k] = w;
805 ((W)heap [k])->active = k + 1;
806}
807
808void inline_size
809adjustheap (WT *heap, int N, int k)
810{
811 upheap (heap, k);
812 downheap (heap, N, k);
813}
814
815/*****************************************************************************/
816
817typedef struct
818{
819 WL head;
820 EV_ATOMIC_T gotsig;
821} ANSIG;
822
823static ANSIG *signals;
824static int signalmax;
825
826static EV_ATOMIC_T gotsig;
827
828void inline_size
829signals_init (ANSIG *base, int count)
830{
831 while (count--)
832 {
833 base->head = 0;
834 base->gotsig = 0;
835
836 ++base;
837 }
838}
839
840/*****************************************************************************/
841
842void inline_speed
843fd_intern (int fd) 1090fd_intern (int fd)
844{ 1091{
845#ifdef _WIN32 1092#ifdef _WIN32
846 int arg = 1; 1093 unsigned long arg = 1;
847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1094 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
848#else 1095#else
849 fcntl (fd, F_SETFD, FD_CLOEXEC); 1096 fcntl (fd, F_SETFD, FD_CLOEXEC);
850 fcntl (fd, F_SETFL, O_NONBLOCK); 1097 fcntl (fd, F_SETFL, O_NONBLOCK);
851#endif 1098#endif
852} 1099}
853 1100
1101/*****************************************************************************/
1102
1103/*
1104 * the heap functions want a real array index. array index 0 is guaranteed to not
1105 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1106 * the branching factor of the d-tree.
1107 */
1108
1109/*
1110 * at the moment we allow libev the luxury of two heaps,
1111 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1112 * which is more cache-efficient.
1113 * the difference is about 5% with 50000+ watchers.
1114 */
1115#if EV_USE_4HEAP
1116
1117#define DHEAP 4
1118#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1119#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1120#define UPHEAP_DONE(p,k) ((p) == (k))
1121
1122/* away from the root */
1123inline_speed void
1124downheap (ANHE *heap, int N, int k)
1125{
1126 ANHE he = heap [k];
1127 ANHE *E = heap + N + HEAP0;
1128
1129 for (;;)
1130 {
1131 ev_tstamp minat;
1132 ANHE *minpos;
1133 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1134
1135 /* find minimum child */
1136 if (expect_true (pos + DHEAP - 1 < E))
1137 {
1138 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1139 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1140 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1141 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1142 }
1143 else if (pos < E)
1144 {
1145 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1146 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1147 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1148 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1149 }
1150 else
1151 break;
1152
1153 if (ANHE_at (he) <= minat)
1154 break;
1155
1156 heap [k] = *minpos;
1157 ev_active (ANHE_w (*minpos)) = k;
1158
1159 k = minpos - heap;
1160 }
1161
1162 heap [k] = he;
1163 ev_active (ANHE_w (he)) = k;
1164}
1165
1166#else /* 4HEAP */
1167
1168#define HEAP0 1
1169#define HPARENT(k) ((k) >> 1)
1170#define UPHEAP_DONE(p,k) (!(p))
1171
1172/* away from the root */
1173inline_speed void
1174downheap (ANHE *heap, int N, int k)
1175{
1176 ANHE he = heap [k];
1177
1178 for (;;)
1179 {
1180 int c = k << 1;
1181
1182 if (c >= N + HEAP0)
1183 break;
1184
1185 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1186 ? 1 : 0;
1187
1188 if (ANHE_at (he) <= ANHE_at (heap [c]))
1189 break;
1190
1191 heap [k] = heap [c];
1192 ev_active (ANHE_w (heap [k])) = k;
1193
1194 k = c;
1195 }
1196
1197 heap [k] = he;
1198 ev_active (ANHE_w (he)) = k;
1199}
1200#endif
1201
1202/* towards the root */
1203inline_speed void
1204upheap (ANHE *heap, int k)
1205{
1206 ANHE he = heap [k];
1207
1208 for (;;)
1209 {
1210 int p = HPARENT (k);
1211
1212 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1213 break;
1214
1215 heap [k] = heap [p];
1216 ev_active (ANHE_w (heap [k])) = k;
1217 k = p;
1218 }
1219
1220 heap [k] = he;
1221 ev_active (ANHE_w (he)) = k;
1222}
1223
1224/* move an element suitably so it is in a correct place */
1225inline_size void
1226adjustheap (ANHE *heap, int N, int k)
1227{
1228 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1229 upheap (heap, k);
1230 else
1231 downheap (heap, N, k);
1232}
1233
1234/* rebuild the heap: this function is used only once and executed rarely */
1235inline_size void
1236reheap (ANHE *heap, int N)
1237{
1238 int i;
1239
1240 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1241 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1242 for (i = 0; i < N; ++i)
1243 upheap (heap, i + HEAP0);
1244}
1245
1246/*****************************************************************************/
1247
1248/* associate signal watchers to a signal signal */
1249typedef struct
1250{
1251 EV_ATOMIC_T pending;
1252#if EV_MULTIPLICITY
1253 EV_P;
1254#endif
1255 WL head;
1256} ANSIG;
1257
1258static ANSIG signals [EV_NSIG - 1];
1259
1260/*****************************************************************************/
1261
1262#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1263
854static void noinline 1264static void noinline
855evpipe_init (EV_P) 1265evpipe_init (EV_P)
856{ 1266{
857 if (!ev_is_active (&pipeev)) 1267 if (!ev_is_active (&pipe_w))
858 { 1268 {
859#if EV_USE_EVENTFD 1269# if EV_USE_EVENTFD
1270 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1271 if (evfd < 0 && errno == EINVAL)
860 if ((evfd = eventfd (0, 0)) >= 0) 1272 evfd = eventfd (0, 0);
1273
1274 if (evfd >= 0)
861 { 1275 {
862 evpipe [0] = -1; 1276 evpipe [0] = -1;
863 fd_intern (evfd); 1277 fd_intern (evfd); /* doing it twice doesn't hurt */
864 ev_io_set (&pipeev, evfd, EV_READ); 1278 ev_io_set (&pipe_w, evfd, EV_READ);
865 } 1279 }
866 else 1280 else
867#endif 1281# endif
868 { 1282 {
869 while (pipe (evpipe)) 1283 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe"); 1284 ev_syserr ("(libev) error creating signal/async pipe");
871 1285
872 fd_intern (evpipe [0]); 1286 fd_intern (evpipe [0]);
873 fd_intern (evpipe [1]); 1287 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ); 1288 ev_io_set (&pipe_w, evpipe [0], EV_READ);
875 } 1289 }
876 1290
877 ev_io_start (EV_A_ &pipeev); 1291 ev_io_start (EV_A_ &pipe_w);
878 ev_unref (EV_A); /* watcher should not keep loop alive */ 1292 ev_unref (EV_A); /* watcher should not keep loop alive */
879 } 1293 }
880} 1294}
881 1295
882void inline_size 1296inline_size void
883evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1297evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{ 1298{
885 if (!*flag) 1299 if (!*flag)
886 { 1300 {
887 int old_errno = errno; /* save errno because write might clobber it */ 1301 int old_errno = errno; /* save errno because write might clobber it */
1302 char dummy;
888 1303
889 *flag = 1; 1304 *flag = 1;
890 1305
891#if EV_USE_EVENTFD 1306#if EV_USE_EVENTFD
892 if (evfd >= 0) 1307 if (evfd >= 0)
894 uint64_t counter = 1; 1309 uint64_t counter = 1;
895 write (evfd, &counter, sizeof (uint64_t)); 1310 write (evfd, &counter, sizeof (uint64_t));
896 } 1311 }
897 else 1312 else
898#endif 1313#endif
1314 /* win32 people keep sending patches that change this write() to send() */
1315 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1316 /* so when you think this write should be a send instead, please find out */
1317 /* where your send() is from - it's definitely not the microsoft send, and */
1318 /* tell me. thank you. */
899 write (evpipe [1], &old_errno, 1); 1319 write (evpipe [1], &dummy, 1);
900 1320
901 errno = old_errno; 1321 errno = old_errno;
902 } 1322 }
903} 1323}
904 1324
1325/* called whenever the libev signal pipe */
1326/* got some events (signal, async) */
905static void 1327static void
906pipecb (EV_P_ ev_io *iow, int revents) 1328pipecb (EV_P_ ev_io *iow, int revents)
907{ 1329{
1330 int i;
1331
908#if EV_USE_EVENTFD 1332#if EV_USE_EVENTFD
909 if (evfd >= 0) 1333 if (evfd >= 0)
910 { 1334 {
911 uint64_t counter = 1; 1335 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1336 read (evfd, &counter, sizeof (uint64_t));
913 } 1337 }
914 else 1338 else
915#endif 1339#endif
916 { 1340 {
917 char dummy; 1341 char dummy;
1342 /* see discussion in evpipe_write when you think this read should be recv in win32 */
918 read (evpipe [0], &dummy, 1); 1343 read (evpipe [0], &dummy, 1);
919 } 1344 }
920 1345
921 if (gotsig && ev_is_default_loop (EV_A)) 1346 if (sig_pending)
922 { 1347 {
923 int signum; 1348 sig_pending = 0;
924 gotsig = 0;
925 1349
926 for (signum = signalmax; signum--; ) 1350 for (i = EV_NSIG - 1; i--; )
927 if (signals [signum].gotsig) 1351 if (expect_false (signals [i].pending))
928 ev_feed_signal_event (EV_A_ signum + 1); 1352 ev_feed_signal_event (EV_A_ i + 1);
929 } 1353 }
930 1354
931#if EV_ASYNC_ENABLE 1355#if EV_ASYNC_ENABLE
932 if (gotasync) 1356 if (async_pending)
933 { 1357 {
934 int i; 1358 async_pending = 0;
935 gotasync = 0;
936 1359
937 for (i = asynccnt; i--; ) 1360 for (i = asynccnt; i--; )
938 if (asyncs [i]->sent) 1361 if (asyncs [i]->sent)
939 { 1362 {
940 asyncs [i]->sent = 0; 1363 asyncs [i]->sent = 0;
948 1371
949static void 1372static void
950ev_sighandler (int signum) 1373ev_sighandler (int signum)
951{ 1374{
952#if EV_MULTIPLICITY 1375#if EV_MULTIPLICITY
953 struct ev_loop *loop = &default_loop_struct; 1376 EV_P = signals [signum - 1].loop;
954#endif 1377#endif
955 1378
956#if _WIN32 1379#ifdef _WIN32
957 signal (signum, ev_sighandler); 1380 signal (signum, ev_sighandler);
958#endif 1381#endif
959 1382
960 signals [signum - 1].gotsig = 1; 1383 signals [signum - 1].pending = 1;
961 evpipe_write (EV_A_ &gotsig); 1384 evpipe_write (EV_A_ &sig_pending);
962} 1385}
963 1386
964void noinline 1387void noinline
965ev_feed_signal_event (EV_P_ int signum) 1388ev_feed_signal_event (EV_P_ int signum)
966{ 1389{
967 WL w; 1390 WL w;
968 1391
1392 if (expect_false (signum <= 0 || signum > EV_NSIG))
1393 return;
1394
1395 --signum;
1396
969#if EV_MULTIPLICITY 1397#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1398 /* it is permissible to try to feed a signal to the wrong loop */
971#endif 1399 /* or, likely more useful, feeding a signal nobody is waiting for */
972 1400
973 --signum; 1401 if (expect_false (signals [signum].loop != EV_A))
974
975 if (signum < 0 || signum >= signalmax)
976 return; 1402 return;
1403#endif
977 1404
978 signals [signum].gotsig = 0; 1405 signals [signum].pending = 0;
979 1406
980 for (w = signals [signum].head; w; w = w->next) 1407 for (w = signals [signum].head; w; w = w->next)
981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1408 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
982} 1409}
983 1410
1411#if EV_USE_SIGNALFD
1412static void
1413sigfdcb (EV_P_ ev_io *iow, int revents)
1414{
1415 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1416
1417 for (;;)
1418 {
1419 ssize_t res = read (sigfd, si, sizeof (si));
1420
1421 /* not ISO-C, as res might be -1, but works with SuS */
1422 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1423 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1424
1425 if (res < (ssize_t)sizeof (si))
1426 break;
1427 }
1428}
1429#endif
1430
1431#endif
1432
984/*****************************************************************************/ 1433/*****************************************************************************/
985 1434
1435#if EV_CHILD_ENABLE
986static WL childs [EV_PID_HASHSIZE]; 1436static WL childs [EV_PID_HASHSIZE];
987
988#ifndef _WIN32
989 1437
990static ev_signal childev; 1438static ev_signal childev;
991 1439
992#ifndef WIFCONTINUED 1440#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0 1441# define WIFCONTINUED(status) 0
994#endif 1442#endif
995 1443
996void inline_speed 1444/* handle a single child status event */
1445inline_speed void
997child_reap (EV_P_ int chain, int pid, int status) 1446child_reap (EV_P_ int chain, int pid, int status)
998{ 1447{
999 ev_child *w; 1448 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1449 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1001 1450
1002 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1451 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1003 { 1452 {
1004 if ((w->pid == pid || !w->pid) 1453 if ((w->pid == pid || !w->pid)
1005 && (!traced || (w->flags & 1))) 1454 && (!traced || (w->flags & 1)))
1006 { 1455 {
1007 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1456 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1014 1463
1015#ifndef WCONTINUED 1464#ifndef WCONTINUED
1016# define WCONTINUED 0 1465# define WCONTINUED 0
1017#endif 1466#endif
1018 1467
1468/* called on sigchld etc., calls waitpid */
1019static void 1469static void
1020childcb (EV_P_ ev_signal *sw, int revents) 1470childcb (EV_P_ ev_signal *sw, int revents)
1021{ 1471{
1022 int pid, status; 1472 int pid, status;
1023 1473
1031 /* make sure we are called again until all children have been reaped */ 1481 /* make sure we are called again until all children have been reaped */
1032 /* we need to do it this way so that the callback gets called before we continue */ 1482 /* we need to do it this way so that the callback gets called before we continue */
1033 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1483 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1034 1484
1035 child_reap (EV_A_ pid, pid, status); 1485 child_reap (EV_A_ pid, pid, status);
1036 if (EV_PID_HASHSIZE > 1) 1486 if ((EV_PID_HASHSIZE) > 1)
1037 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1487 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1038} 1488}
1039 1489
1040#endif 1490#endif
1041 1491
1104 /* kqueue is borked on everything but netbsd apparently */ 1554 /* kqueue is borked on everything but netbsd apparently */
1105 /* it usually doesn't work correctly on anything but sockets and pipes */ 1555 /* it usually doesn't work correctly on anything but sockets and pipes */
1106 flags &= ~EVBACKEND_KQUEUE; 1556 flags &= ~EVBACKEND_KQUEUE;
1107#endif 1557#endif
1108#ifdef __APPLE__ 1558#ifdef __APPLE__
1109 // flags &= ~EVBACKEND_KQUEUE; for documentation 1559 /* only select works correctly on that "unix-certified" platform */
1110 flags &= ~EVBACKEND_POLL; 1560 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1561 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1562#endif
1563#ifdef __FreeBSD__
1564 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1111#endif 1565#endif
1112 1566
1113 return flags; 1567 return flags;
1114} 1568}
1115 1569
1117ev_embeddable_backends (void) 1571ev_embeddable_backends (void)
1118{ 1572{
1119 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1573 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1120 1574
1121 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1575 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1122 /* please fix it and tell me how to detect the fix */ 1576 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1123 flags &= ~EVBACKEND_EPOLL; 1577 flags &= ~EVBACKEND_EPOLL;
1124 1578
1125 return flags; 1579 return flags;
1126} 1580}
1127 1581
1128unsigned int 1582unsigned int
1129ev_backend (EV_P) 1583ev_backend (EV_P)
1130{ 1584{
1131 return backend; 1585 return backend;
1132} 1586}
1133 1587
1588#if EV_FEATURE_API
1134unsigned int 1589unsigned int
1135ev_loop_count (EV_P) 1590ev_iteration (EV_P)
1136{ 1591{
1137 return loop_count; 1592 return loop_count;
1138} 1593}
1139 1594
1595unsigned int
1596ev_depth (EV_P)
1597{
1598 return loop_depth;
1599}
1600
1140void 1601void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1602ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{ 1603{
1143 io_blocktime = interval; 1604 io_blocktime = interval;
1144} 1605}
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1608ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{ 1609{
1149 timeout_blocktime = interval; 1610 timeout_blocktime = interval;
1150} 1611}
1151 1612
1613void
1614ev_set_userdata (EV_P_ void *data)
1615{
1616 userdata = data;
1617}
1618
1619void *
1620ev_userdata (EV_P)
1621{
1622 return userdata;
1623}
1624
1625void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1626{
1627 invoke_cb = invoke_pending_cb;
1628}
1629
1630void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1631{
1632 release_cb = release;
1633 acquire_cb = acquire;
1634}
1635#endif
1636
1637/* initialise a loop structure, must be zero-initialised */
1152static void noinline 1638static void noinline
1153loop_init (EV_P_ unsigned int flags) 1639loop_init (EV_P_ unsigned int flags)
1154{ 1640{
1155 if (!backend) 1641 if (!backend)
1156 { 1642 {
1643#if EV_USE_REALTIME
1644 if (!have_realtime)
1645 {
1646 struct timespec ts;
1647
1648 if (!clock_gettime (CLOCK_REALTIME, &ts))
1649 have_realtime = 1;
1650 }
1651#endif
1652
1157#if EV_USE_MONOTONIC 1653#if EV_USE_MONOTONIC
1654 if (!have_monotonic)
1158 { 1655 {
1159 struct timespec ts; 1656 struct timespec ts;
1657
1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1658 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1161 have_monotonic = 1; 1659 have_monotonic = 1;
1162 } 1660 }
1163#endif 1661#endif
1662
1663 /* pid check not overridable via env */
1664#ifndef _WIN32
1665 if (flags & EVFLAG_FORKCHECK)
1666 curpid = getpid ();
1667#endif
1668
1669 if (!(flags & EVFLAG_NOENV)
1670 && !enable_secure ()
1671 && getenv ("LIBEV_FLAGS"))
1672 flags = atoi (getenv ("LIBEV_FLAGS"));
1164 1673
1165 ev_rt_now = ev_time (); 1674 ev_rt_now = ev_time ();
1166 mn_now = get_clock (); 1675 mn_now = get_clock ();
1167 now_floor = mn_now; 1676 now_floor = mn_now;
1168 rtmn_diff = ev_rt_now - mn_now; 1677 rtmn_diff = ev_rt_now - mn_now;
1678#if EV_FEATURE_API
1679 invoke_cb = ev_invoke_pending;
1680#endif
1169 1681
1170 io_blocktime = 0.; 1682 io_blocktime = 0.;
1171 timeout_blocktime = 0.; 1683 timeout_blocktime = 0.;
1172 backend = 0; 1684 backend = 0;
1173 backend_fd = -1; 1685 backend_fd = -1;
1174 gotasync = 0; 1686 sig_pending = 0;
1687#if EV_ASYNC_ENABLE
1688 async_pending = 0;
1689#endif
1175#if EV_USE_INOTIFY 1690#if EV_USE_INOTIFY
1176 fs_fd = -2; 1691 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1177#endif 1692#endif
1178 1693#if EV_USE_SIGNALFD
1179 /* pid check not overridable via env */ 1694 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1180#ifndef _WIN32
1181 if (flags & EVFLAG_FORKCHECK)
1182 curpid = getpid ();
1183#endif 1695#endif
1184
1185 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS"))
1188 flags = atoi (getenv ("LIBEV_FLAGS"));
1189 1696
1190 if (!(flags & 0x0000ffffU)) 1697 if (!(flags & 0x0000ffffU))
1191 flags |= ev_recommended_backends (); 1698 flags |= ev_recommended_backends ();
1192 1699
1193#if EV_USE_PORT 1700#if EV_USE_PORT
1204#endif 1711#endif
1205#if EV_USE_SELECT 1712#if EV_USE_SELECT
1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1713 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1207#endif 1714#endif
1208 1715
1716 ev_prepare_init (&pending_w, pendingcb);
1717
1718#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1209 ev_init (&pipeev, pipecb); 1719 ev_init (&pipe_w, pipecb);
1210 ev_set_priority (&pipeev, EV_MAXPRI); 1720 ev_set_priority (&pipe_w, EV_MAXPRI);
1721#endif
1211 } 1722 }
1212} 1723}
1213 1724
1725/* free up a loop structure */
1214static void noinline 1726static void noinline
1215loop_destroy (EV_P) 1727loop_destroy (EV_P)
1216{ 1728{
1217 int i; 1729 int i;
1218 1730
1219 if (ev_is_active (&pipeev)) 1731 if (ev_is_active (&pipe_w))
1220 { 1732 {
1221 ev_ref (EV_A); /* signal watcher */ 1733 /*ev_ref (EV_A);*/
1222 ev_io_stop (EV_A_ &pipeev); 1734 /*ev_io_stop (EV_A_ &pipe_w);*/
1223 1735
1224#if EV_USE_EVENTFD 1736#if EV_USE_EVENTFD
1225 if (evfd >= 0) 1737 if (evfd >= 0)
1226 close (evfd); 1738 close (evfd);
1227#endif 1739#endif
1228 1740
1229 if (evpipe [0] >= 0) 1741 if (evpipe [0] >= 0)
1230 { 1742 {
1231 close (evpipe [0]); 1743 EV_WIN32_CLOSE_FD (evpipe [0]);
1232 close (evpipe [1]); 1744 EV_WIN32_CLOSE_FD (evpipe [1]);
1233 } 1745 }
1234 } 1746 }
1747
1748#if EV_USE_SIGNALFD
1749 if (ev_is_active (&sigfd_w))
1750 close (sigfd);
1751#endif
1235 1752
1236#if EV_USE_INOTIFY 1753#if EV_USE_INOTIFY
1237 if (fs_fd >= 0) 1754 if (fs_fd >= 0)
1238 close (fs_fd); 1755 close (fs_fd);
1239#endif 1756#endif
1263#if EV_IDLE_ENABLE 1780#if EV_IDLE_ENABLE
1264 array_free (idle, [i]); 1781 array_free (idle, [i]);
1265#endif 1782#endif
1266 } 1783 }
1267 1784
1268 ev_free (anfds); anfdmax = 0; 1785 ev_free (anfds); anfds = 0; anfdmax = 0;
1269 1786
1270 /* have to use the microsoft-never-gets-it-right macro */ 1787 /* have to use the microsoft-never-gets-it-right macro */
1788 array_free (rfeed, EMPTY);
1271 array_free (fdchange, EMPTY); 1789 array_free (fdchange, EMPTY);
1272 array_free (timer, EMPTY); 1790 array_free (timer, EMPTY);
1273#if EV_PERIODIC_ENABLE 1791#if EV_PERIODIC_ENABLE
1274 array_free (periodic, EMPTY); 1792 array_free (periodic, EMPTY);
1275#endif 1793#endif
1284 1802
1285 backend = 0; 1803 backend = 0;
1286} 1804}
1287 1805
1288#if EV_USE_INOTIFY 1806#if EV_USE_INOTIFY
1289void inline_size infy_fork (EV_P); 1807inline_size void infy_fork (EV_P);
1290#endif 1808#endif
1291 1809
1292void inline_size 1810inline_size void
1293loop_fork (EV_P) 1811loop_fork (EV_P)
1294{ 1812{
1295#if EV_USE_PORT 1813#if EV_USE_PORT
1296 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1814 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1297#endif 1815#endif
1303#endif 1821#endif
1304#if EV_USE_INOTIFY 1822#if EV_USE_INOTIFY
1305 infy_fork (EV_A); 1823 infy_fork (EV_A);
1306#endif 1824#endif
1307 1825
1308 if (ev_is_active (&pipeev)) 1826 if (ev_is_active (&pipe_w))
1309 { 1827 {
1310 /* this "locks" the handlers against writing to the pipe */ 1828 /* this "locks" the handlers against writing to the pipe */
1311 /* while we modify the fd vars */ 1829 /* while we modify the fd vars */
1312 gotsig = 1; 1830 sig_pending = 1;
1313#if EV_ASYNC_ENABLE 1831#if EV_ASYNC_ENABLE
1314 gotasync = 1; 1832 async_pending = 1;
1315#endif 1833#endif
1316 1834
1317 ev_ref (EV_A); 1835 ev_ref (EV_A);
1318 ev_io_stop (EV_A_ &pipeev); 1836 ev_io_stop (EV_A_ &pipe_w);
1319 1837
1320#if EV_USE_EVENTFD 1838#if EV_USE_EVENTFD
1321 if (evfd >= 0) 1839 if (evfd >= 0)
1322 close (evfd); 1840 close (evfd);
1323#endif 1841#endif
1324 1842
1325 if (evpipe [0] >= 0) 1843 if (evpipe [0] >= 0)
1326 { 1844 {
1327 close (evpipe [0]); 1845 EV_WIN32_CLOSE_FD (evpipe [0]);
1328 close (evpipe [1]); 1846 EV_WIN32_CLOSE_FD (evpipe [1]);
1329 } 1847 }
1330 1848
1849#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1331 evpipe_init (EV_A); 1850 evpipe_init (EV_A);
1332 /* now iterate over everything, in case we missed something */ 1851 /* now iterate over everything, in case we missed something */
1333 pipecb (EV_A_ &pipeev, EV_READ); 1852 pipecb (EV_A_ &pipe_w, EV_READ);
1853#endif
1334 } 1854 }
1335 1855
1336 postfork = 0; 1856 postfork = 0;
1337} 1857}
1338 1858
1339#if EV_MULTIPLICITY 1859#if EV_MULTIPLICITY
1860
1340struct ev_loop * 1861struct ev_loop *
1341ev_loop_new (unsigned int flags) 1862ev_loop_new (unsigned int flags)
1342{ 1863{
1343 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1864 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1344 1865
1345 memset (loop, 0, sizeof (struct ev_loop)); 1866 memset (EV_A, 0, sizeof (struct ev_loop));
1346
1347 loop_init (EV_A_ flags); 1867 loop_init (EV_A_ flags);
1348 1868
1349 if (ev_backend (EV_A)) 1869 if (ev_backend (EV_A))
1350 return loop; 1870 return EV_A;
1351 1871
1352 return 0; 1872 return 0;
1353} 1873}
1354 1874
1355void 1875void
1362void 1882void
1363ev_loop_fork (EV_P) 1883ev_loop_fork (EV_P)
1364{ 1884{
1365 postfork = 1; /* must be in line with ev_default_fork */ 1885 postfork = 1; /* must be in line with ev_default_fork */
1366} 1886}
1887#endif /* multiplicity */
1367 1888
1889#if EV_VERIFY
1890static void noinline
1891verify_watcher (EV_P_ W w)
1892{
1893 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1894
1895 if (w->pending)
1896 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1897}
1898
1899static void noinline
1900verify_heap (EV_P_ ANHE *heap, int N)
1901{
1902 int i;
1903
1904 for (i = HEAP0; i < N + HEAP0; ++i)
1905 {
1906 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1907 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1908 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1909
1910 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1911 }
1912}
1913
1914static void noinline
1915array_verify (EV_P_ W *ws, int cnt)
1916{
1917 while (cnt--)
1918 {
1919 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1920 verify_watcher (EV_A_ ws [cnt]);
1921 }
1922}
1923#endif
1924
1925#if EV_FEATURE_API
1926void
1927ev_verify (EV_P)
1928{
1929#if EV_VERIFY
1930 int i;
1931 WL w;
1932
1933 assert (activecnt >= -1);
1934
1935 assert (fdchangemax >= fdchangecnt);
1936 for (i = 0; i < fdchangecnt; ++i)
1937 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1938
1939 assert (anfdmax >= 0);
1940 for (i = 0; i < anfdmax; ++i)
1941 for (w = anfds [i].head; w; w = w->next)
1942 {
1943 verify_watcher (EV_A_ (W)w);
1944 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1945 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1946 }
1947
1948 assert (timermax >= timercnt);
1949 verify_heap (EV_A_ timers, timercnt);
1950
1951#if EV_PERIODIC_ENABLE
1952 assert (periodicmax >= periodiccnt);
1953 verify_heap (EV_A_ periodics, periodiccnt);
1954#endif
1955
1956 for (i = NUMPRI; i--; )
1957 {
1958 assert (pendingmax [i] >= pendingcnt [i]);
1959#if EV_IDLE_ENABLE
1960 assert (idleall >= 0);
1961 assert (idlemax [i] >= idlecnt [i]);
1962 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1963#endif
1964 }
1965
1966#if EV_FORK_ENABLE
1967 assert (forkmax >= forkcnt);
1968 array_verify (EV_A_ (W *)forks, forkcnt);
1969#endif
1970
1971#if EV_ASYNC_ENABLE
1972 assert (asyncmax >= asynccnt);
1973 array_verify (EV_A_ (W *)asyncs, asynccnt);
1974#endif
1975
1976#if EV_PREPARE_ENABLE
1977 assert (preparemax >= preparecnt);
1978 array_verify (EV_A_ (W *)prepares, preparecnt);
1979#endif
1980
1981#if EV_CHECK_ENABLE
1982 assert (checkmax >= checkcnt);
1983 array_verify (EV_A_ (W *)checks, checkcnt);
1984#endif
1985
1986# if 0
1987#if EV_CHILD_ENABLE
1988 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1989 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1990#endif
1991# endif
1992#endif
1993}
1368#endif 1994#endif
1369 1995
1370#if EV_MULTIPLICITY 1996#if EV_MULTIPLICITY
1371struct ev_loop * 1997struct ev_loop *
1372ev_default_loop_init (unsigned int flags) 1998ev_default_loop_init (unsigned int flags)
1376#endif 2002#endif
1377{ 2003{
1378 if (!ev_default_loop_ptr) 2004 if (!ev_default_loop_ptr)
1379 { 2005 {
1380#if EV_MULTIPLICITY 2006#if EV_MULTIPLICITY
1381 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2007 EV_P = ev_default_loop_ptr = &default_loop_struct;
1382#else 2008#else
1383 ev_default_loop_ptr = 1; 2009 ev_default_loop_ptr = 1;
1384#endif 2010#endif
1385 2011
1386 loop_init (EV_A_ flags); 2012 loop_init (EV_A_ flags);
1387 2013
1388 if (ev_backend (EV_A)) 2014 if (ev_backend (EV_A))
1389 { 2015 {
1390#ifndef _WIN32 2016#if EV_CHILD_ENABLE
1391 ev_signal_init (&childev, childcb, SIGCHLD); 2017 ev_signal_init (&childev, childcb, SIGCHLD);
1392 ev_set_priority (&childev, EV_MAXPRI); 2018 ev_set_priority (&childev, EV_MAXPRI);
1393 ev_signal_start (EV_A_ &childev); 2019 ev_signal_start (EV_A_ &childev);
1394 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2020 ev_unref (EV_A); /* child watcher should not keep loop alive */
1395#endif 2021#endif
1403 2029
1404void 2030void
1405ev_default_destroy (void) 2031ev_default_destroy (void)
1406{ 2032{
1407#if EV_MULTIPLICITY 2033#if EV_MULTIPLICITY
1408 struct ev_loop *loop = ev_default_loop_ptr; 2034 EV_P = ev_default_loop_ptr;
1409#endif 2035#endif
1410 2036
1411#ifndef _WIN32 2037 ev_default_loop_ptr = 0;
2038
2039#if EV_CHILD_ENABLE
1412 ev_ref (EV_A); /* child watcher */ 2040 ev_ref (EV_A); /* child watcher */
1413 ev_signal_stop (EV_A_ &childev); 2041 ev_signal_stop (EV_A_ &childev);
1414#endif 2042#endif
1415 2043
1416 loop_destroy (EV_A); 2044 loop_destroy (EV_A);
1418 2046
1419void 2047void
1420ev_default_fork (void) 2048ev_default_fork (void)
1421{ 2049{
1422#if EV_MULTIPLICITY 2050#if EV_MULTIPLICITY
1423 struct ev_loop *loop = ev_default_loop_ptr; 2051 EV_P = ev_default_loop_ptr;
1424#endif 2052#endif
1425 2053
1426 if (backend)
1427 postfork = 1; /* must be in line with ev_loop_fork */ 2054 postfork = 1; /* must be in line with ev_loop_fork */
1428} 2055}
1429 2056
1430/*****************************************************************************/ 2057/*****************************************************************************/
1431 2058
1432void 2059void
1433ev_invoke (EV_P_ void *w, int revents) 2060ev_invoke (EV_P_ void *w, int revents)
1434{ 2061{
1435 EV_CB_INVOKE ((W)w, revents); 2062 EV_CB_INVOKE ((W)w, revents);
1436} 2063}
1437 2064
1438void inline_speed 2065unsigned int
1439call_pending (EV_P) 2066ev_pending_count (EV_P)
2067{
2068 int pri;
2069 unsigned int count = 0;
2070
2071 for (pri = NUMPRI; pri--; )
2072 count += pendingcnt [pri];
2073
2074 return count;
2075}
2076
2077void noinline
2078ev_invoke_pending (EV_P)
1440{ 2079{
1441 int pri; 2080 int pri;
1442 2081
1443 for (pri = NUMPRI; pri--; ) 2082 for (pri = NUMPRI; pri--; )
1444 while (pendingcnt [pri]) 2083 while (pendingcnt [pri])
1445 { 2084 {
1446 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2085 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1447 2086
1448 if (expect_true (p->w))
1449 {
1450 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2087 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2088 /* ^ this is no longer true, as pending_w could be here */
1451 2089
1452 p->w->pending = 0; 2090 p->w->pending = 0;
1453 EV_CB_INVOKE (p->w, p->events); 2091 EV_CB_INVOKE (p->w, p->events);
1454 } 2092 EV_FREQUENT_CHECK;
1455 } 2093 }
1456} 2094}
1457 2095
1458void inline_size
1459timers_reify (EV_P)
1460{
1461 while (timercnt && ((WT)timers [0])->at <= mn_now)
1462 {
1463 ev_timer *w = (ev_timer *)timers [0];
1464
1465 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1466
1467 /* first reschedule or stop timer */
1468 if (w->repeat)
1469 {
1470 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1471
1472 ((WT)w)->at += w->repeat;
1473 if (((WT)w)->at < mn_now)
1474 ((WT)w)->at = mn_now;
1475
1476 downheap (timers, timercnt, 0);
1477 }
1478 else
1479 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1480
1481 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1482 }
1483}
1484
1485#if EV_PERIODIC_ENABLE
1486void inline_size
1487periodics_reify (EV_P)
1488{
1489 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1490 {
1491 ev_periodic *w = (ev_periodic *)periodics [0];
1492
1493 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1494
1495 /* first reschedule or stop timer */
1496 if (w->reschedule_cb)
1497 {
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1499 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1500 downheap (periodics, periodiccnt, 0);
1501 }
1502 else if (w->interval)
1503 {
1504 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1505 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1506 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1507 downheap (periodics, periodiccnt, 0);
1508 }
1509 else
1510 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1511
1512 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1513 }
1514}
1515
1516static void noinline
1517periodics_reschedule (EV_P)
1518{
1519 int i;
1520
1521 /* adjust periodics after time jump */
1522 for (i = 0; i < periodiccnt; ++i)
1523 {
1524 ev_periodic *w = (ev_periodic *)periodics [i];
1525
1526 if (w->reschedule_cb)
1527 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1528 else if (w->interval)
1529 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1530 }
1531
1532 /* now rebuild the heap */
1533 for (i = periodiccnt >> 1; i--; )
1534 downheap (periodics, periodiccnt, i);
1535}
1536#endif
1537
1538#if EV_IDLE_ENABLE 2096#if EV_IDLE_ENABLE
1539void inline_size 2097/* make idle watchers pending. this handles the "call-idle */
2098/* only when higher priorities are idle" logic */
2099inline_size void
1540idle_reify (EV_P) 2100idle_reify (EV_P)
1541{ 2101{
1542 if (expect_false (idleall)) 2102 if (expect_false (idleall))
1543 { 2103 {
1544 int pri; 2104 int pri;
1556 } 2116 }
1557 } 2117 }
1558} 2118}
1559#endif 2119#endif
1560 2120
1561void inline_speed 2121/* make timers pending */
2122inline_size void
2123timers_reify (EV_P)
2124{
2125 EV_FREQUENT_CHECK;
2126
2127 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2128 {
2129 do
2130 {
2131 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2132
2133 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2134
2135 /* first reschedule or stop timer */
2136 if (w->repeat)
2137 {
2138 ev_at (w) += w->repeat;
2139 if (ev_at (w) < mn_now)
2140 ev_at (w) = mn_now;
2141
2142 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2143
2144 ANHE_at_cache (timers [HEAP0]);
2145 downheap (timers, timercnt, HEAP0);
2146 }
2147 else
2148 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2149
2150 EV_FREQUENT_CHECK;
2151 feed_reverse (EV_A_ (W)w);
2152 }
2153 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2154
2155 feed_reverse_done (EV_A_ EV_TIMER);
2156 }
2157}
2158
2159#if EV_PERIODIC_ENABLE
2160/* make periodics pending */
2161inline_size void
2162periodics_reify (EV_P)
2163{
2164 EV_FREQUENT_CHECK;
2165
2166 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2167 {
2168 int feed_count = 0;
2169
2170 do
2171 {
2172 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2173
2174 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2175
2176 /* first reschedule or stop timer */
2177 if (w->reschedule_cb)
2178 {
2179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2180
2181 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2182
2183 ANHE_at_cache (periodics [HEAP0]);
2184 downheap (periodics, periodiccnt, HEAP0);
2185 }
2186 else if (w->interval)
2187 {
2188 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2189 /* if next trigger time is not sufficiently in the future, put it there */
2190 /* this might happen because of floating point inexactness */
2191 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2192 {
2193 ev_at (w) += w->interval;
2194
2195 /* if interval is unreasonably low we might still have a time in the past */
2196 /* so correct this. this will make the periodic very inexact, but the user */
2197 /* has effectively asked to get triggered more often than possible */
2198 if (ev_at (w) < ev_rt_now)
2199 ev_at (w) = ev_rt_now;
2200 }
2201
2202 ANHE_at_cache (periodics [HEAP0]);
2203 downheap (periodics, periodiccnt, HEAP0);
2204 }
2205 else
2206 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2207
2208 EV_FREQUENT_CHECK;
2209 feed_reverse (EV_A_ (W)w);
2210 }
2211 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2212
2213 feed_reverse_done (EV_A_ EV_PERIODIC);
2214 }
2215}
2216
2217/* simply recalculate all periodics */
2218/* TODO: maybe ensure that at least one event happens when jumping forward? */
2219static void noinline
2220periodics_reschedule (EV_P)
2221{
2222 int i;
2223
2224 /* adjust periodics after time jump */
2225 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2226 {
2227 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2228
2229 if (w->reschedule_cb)
2230 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2231 else if (w->interval)
2232 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2233
2234 ANHE_at_cache (periodics [i]);
2235 }
2236
2237 reheap (periodics, periodiccnt);
2238}
2239#endif
2240
2241/* adjust all timers by a given offset */
2242static void noinline
2243timers_reschedule (EV_P_ ev_tstamp adjust)
2244{
2245 int i;
2246
2247 for (i = 0; i < timercnt; ++i)
2248 {
2249 ANHE *he = timers + i + HEAP0;
2250 ANHE_w (*he)->at += adjust;
2251 ANHE_at_cache (*he);
2252 }
2253}
2254
2255/* fetch new monotonic and realtime times from the kernel */
2256/* also detect if there was a timejump, and act accordingly */
2257inline_speed void
1562time_update (EV_P_ ev_tstamp max_block) 2258time_update (EV_P_ ev_tstamp max_block)
1563{ 2259{
1564 int i;
1565
1566#if EV_USE_MONOTONIC 2260#if EV_USE_MONOTONIC
1567 if (expect_true (have_monotonic)) 2261 if (expect_true (have_monotonic))
1568 { 2262 {
2263 int i;
1569 ev_tstamp odiff = rtmn_diff; 2264 ev_tstamp odiff = rtmn_diff;
1570 2265
1571 mn_now = get_clock (); 2266 mn_now = get_clock ();
1572 2267
1573 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2268 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1591 */ 2286 */
1592 for (i = 4; --i; ) 2287 for (i = 4; --i; )
1593 { 2288 {
1594 rtmn_diff = ev_rt_now - mn_now; 2289 rtmn_diff = ev_rt_now - mn_now;
1595 2290
1596 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2291 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1597 return; /* all is well */ 2292 return; /* all is well */
1598 2293
1599 ev_rt_now = ev_time (); 2294 ev_rt_now = ev_time ();
1600 mn_now = get_clock (); 2295 mn_now = get_clock ();
1601 now_floor = mn_now; 2296 now_floor = mn_now;
1602 } 2297 }
1603 2298
2299 /* no timer adjustment, as the monotonic clock doesn't jump */
2300 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1604# if EV_PERIODIC_ENABLE 2301# if EV_PERIODIC_ENABLE
1605 periodics_reschedule (EV_A); 2302 periodics_reschedule (EV_A);
1606# endif 2303# endif
1607 /* no timer adjustment, as the monotonic clock doesn't jump */
1608 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609 } 2304 }
1610 else 2305 else
1611#endif 2306#endif
1612 { 2307 {
1613 ev_rt_now = ev_time (); 2308 ev_rt_now = ev_time ();
1614 2309
1615 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2310 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1616 { 2311 {
2312 /* adjust timers. this is easy, as the offset is the same for all of them */
2313 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1617#if EV_PERIODIC_ENABLE 2314#if EV_PERIODIC_ENABLE
1618 periodics_reschedule (EV_A); 2315 periodics_reschedule (EV_A);
1619#endif 2316#endif
1620 /* adjust timers. this is easy, as the offset is the same for all of them */
1621 for (i = 0; i < timercnt; ++i)
1622 ((WT)timers [i])->at += ev_rt_now - mn_now;
1623 } 2317 }
1624 2318
1625 mn_now = ev_rt_now; 2319 mn_now = ev_rt_now;
1626 } 2320 }
1627} 2321}
1628 2322
1629void 2323void
1630ev_ref (EV_P)
1631{
1632 ++activecnt;
1633}
1634
1635void
1636ev_unref (EV_P)
1637{
1638 --activecnt;
1639}
1640
1641static int loop_done;
1642
1643void
1644ev_loop (EV_P_ int flags) 2324ev_run (EV_P_ int flags)
1645{ 2325{
2326#if EV_FEATURE_API
2327 ++loop_depth;
2328#endif
2329
2330 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2331
1646 loop_done = EVUNLOOP_CANCEL; 2332 loop_done = EVBREAK_CANCEL;
1647 2333
1648 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2334 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1649 2335
1650 do 2336 do
1651 { 2337 {
2338#if EV_VERIFY >= 2
2339 ev_verify (EV_A);
2340#endif
2341
1652#ifndef _WIN32 2342#ifndef _WIN32
1653 if (expect_false (curpid)) /* penalise the forking check even more */ 2343 if (expect_false (curpid)) /* penalise the forking check even more */
1654 if (expect_false (getpid () != curpid)) 2344 if (expect_false (getpid () != curpid))
1655 { 2345 {
1656 curpid = getpid (); 2346 curpid = getpid ();
1662 /* we might have forked, so queue fork handlers */ 2352 /* we might have forked, so queue fork handlers */
1663 if (expect_false (postfork)) 2353 if (expect_false (postfork))
1664 if (forkcnt) 2354 if (forkcnt)
1665 { 2355 {
1666 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2356 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1667 call_pending (EV_A); 2357 EV_INVOKE_PENDING;
1668 } 2358 }
1669#endif 2359#endif
1670 2360
2361#if EV_PREPARE_ENABLE
1671 /* queue prepare watchers (and execute them) */ 2362 /* queue prepare watchers (and execute them) */
1672 if (expect_false (preparecnt)) 2363 if (expect_false (preparecnt))
1673 { 2364 {
1674 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2365 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1675 call_pending (EV_A); 2366 EV_INVOKE_PENDING;
1676 } 2367 }
2368#endif
1677 2369
1678 if (expect_false (!activecnt)) 2370 if (expect_false (loop_done))
1679 break; 2371 break;
1680 2372
1681 /* we might have forked, so reify kernel state if necessary */ 2373 /* we might have forked, so reify kernel state if necessary */
1682 if (expect_false (postfork)) 2374 if (expect_false (postfork))
1683 loop_fork (EV_A); 2375 loop_fork (EV_A);
1688 /* calculate blocking time */ 2380 /* calculate blocking time */
1689 { 2381 {
1690 ev_tstamp waittime = 0.; 2382 ev_tstamp waittime = 0.;
1691 ev_tstamp sleeptime = 0.; 2383 ev_tstamp sleeptime = 0.;
1692 2384
2385 /* remember old timestamp for io_blocktime calculation */
2386 ev_tstamp prev_mn_now = mn_now;
2387
2388 /* update time to cancel out callback processing overhead */
2389 time_update (EV_A_ 1e100);
2390
1693 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2391 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1694 { 2392 {
1695 /* update time to cancel out callback processing overhead */
1696 time_update (EV_A_ 1e100);
1697
1698 waittime = MAX_BLOCKTIME; 2393 waittime = MAX_BLOCKTIME;
1699 2394
1700 if (timercnt) 2395 if (timercnt)
1701 { 2396 {
1702 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2397 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1703 if (waittime > to) waittime = to; 2398 if (waittime > to) waittime = to;
1704 } 2399 }
1705 2400
1706#if EV_PERIODIC_ENABLE 2401#if EV_PERIODIC_ENABLE
1707 if (periodiccnt) 2402 if (periodiccnt)
1708 { 2403 {
1709 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2404 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1710 if (waittime > to) waittime = to; 2405 if (waittime > to) waittime = to;
1711 } 2406 }
1712#endif 2407#endif
1713 2408
2409 /* don't let timeouts decrease the waittime below timeout_blocktime */
1714 if (expect_false (waittime < timeout_blocktime)) 2410 if (expect_false (waittime < timeout_blocktime))
1715 waittime = timeout_blocktime; 2411 waittime = timeout_blocktime;
1716 2412
1717 sleeptime = waittime - backend_fudge; 2413 /* extra check because io_blocktime is commonly 0 */
1718
1719 if (expect_true (sleeptime > io_blocktime)) 2414 if (expect_false (io_blocktime))
1720 sleeptime = io_blocktime;
1721
1722 if (sleeptime)
1723 { 2415 {
2416 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2417
2418 if (sleeptime > waittime - backend_fudge)
2419 sleeptime = waittime - backend_fudge;
2420
2421 if (expect_true (sleeptime > 0.))
2422 {
1724 ev_sleep (sleeptime); 2423 ev_sleep (sleeptime);
1725 waittime -= sleeptime; 2424 waittime -= sleeptime;
2425 }
1726 } 2426 }
1727 } 2427 }
1728 2428
2429#if EV_FEATURE_API
1729 ++loop_count; 2430 ++loop_count;
2431#endif
2432 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1730 backend_poll (EV_A_ waittime); 2433 backend_poll (EV_A_ waittime);
2434 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1731 2435
1732 /* update ev_rt_now, do magic */ 2436 /* update ev_rt_now, do magic */
1733 time_update (EV_A_ waittime + sleeptime); 2437 time_update (EV_A_ waittime + sleeptime);
1734 } 2438 }
1735 2439
1742#if EV_IDLE_ENABLE 2446#if EV_IDLE_ENABLE
1743 /* queue idle watchers unless other events are pending */ 2447 /* queue idle watchers unless other events are pending */
1744 idle_reify (EV_A); 2448 idle_reify (EV_A);
1745#endif 2449#endif
1746 2450
2451#if EV_CHECK_ENABLE
1747 /* queue check watchers, to be executed first */ 2452 /* queue check watchers, to be executed first */
1748 if (expect_false (checkcnt)) 2453 if (expect_false (checkcnt))
1749 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2454 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2455#endif
1750 2456
1751 call_pending (EV_A); 2457 EV_INVOKE_PENDING;
1752 } 2458 }
1753 while (expect_true ( 2459 while (expect_true (
1754 activecnt 2460 activecnt
1755 && !loop_done 2461 && !loop_done
1756 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2462 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1757 )); 2463 ));
1758 2464
1759 if (loop_done == EVUNLOOP_ONE) 2465 if (loop_done == EVBREAK_ONE)
1760 loop_done = EVUNLOOP_CANCEL; 2466 loop_done = EVBREAK_CANCEL;
1761}
1762 2467
2468#if EV_FEATURE_API
2469 --loop_depth;
2470#endif
2471}
2472
1763void 2473void
1764ev_unloop (EV_P_ int how) 2474ev_break (EV_P_ int how)
1765{ 2475{
1766 loop_done = how; 2476 loop_done = how;
1767} 2477}
1768 2478
2479void
2480ev_ref (EV_P)
2481{
2482 ++activecnt;
2483}
2484
2485void
2486ev_unref (EV_P)
2487{
2488 --activecnt;
2489}
2490
2491void
2492ev_now_update (EV_P)
2493{
2494 time_update (EV_A_ 1e100);
2495}
2496
2497void
2498ev_suspend (EV_P)
2499{
2500 ev_now_update (EV_A);
2501}
2502
2503void
2504ev_resume (EV_P)
2505{
2506 ev_tstamp mn_prev = mn_now;
2507
2508 ev_now_update (EV_A);
2509 timers_reschedule (EV_A_ mn_now - mn_prev);
2510#if EV_PERIODIC_ENABLE
2511 /* TODO: really do this? */
2512 periodics_reschedule (EV_A);
2513#endif
2514}
2515
1769/*****************************************************************************/ 2516/*****************************************************************************/
2517/* singly-linked list management, used when the expected list length is short */
1770 2518
1771void inline_size 2519inline_size void
1772wlist_add (WL *head, WL elem) 2520wlist_add (WL *head, WL elem)
1773{ 2521{
1774 elem->next = *head; 2522 elem->next = *head;
1775 *head = elem; 2523 *head = elem;
1776} 2524}
1777 2525
1778void inline_size 2526inline_size void
1779wlist_del (WL *head, WL elem) 2527wlist_del (WL *head, WL elem)
1780{ 2528{
1781 while (*head) 2529 while (*head)
1782 { 2530 {
1783 if (*head == elem) 2531 if (expect_true (*head == elem))
1784 { 2532 {
1785 *head = elem->next; 2533 *head = elem->next;
1786 return; 2534 break;
1787 } 2535 }
1788 2536
1789 head = &(*head)->next; 2537 head = &(*head)->next;
1790 } 2538 }
1791} 2539}
1792 2540
1793void inline_speed 2541/* internal, faster, version of ev_clear_pending */
2542inline_speed void
1794clear_pending (EV_P_ W w) 2543clear_pending (EV_P_ W w)
1795{ 2544{
1796 if (w->pending) 2545 if (w->pending)
1797 { 2546 {
1798 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2547 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1799 w->pending = 0; 2548 w->pending = 0;
1800 } 2549 }
1801} 2550}
1802 2551
1803int 2552int
1807 int pending = w_->pending; 2556 int pending = w_->pending;
1808 2557
1809 if (expect_true (pending)) 2558 if (expect_true (pending))
1810 { 2559 {
1811 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2560 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2561 p->w = (W)&pending_w;
1812 w_->pending = 0; 2562 w_->pending = 0;
1813 p->w = 0;
1814 return p->events; 2563 return p->events;
1815 } 2564 }
1816 else 2565 else
1817 return 0; 2566 return 0;
1818} 2567}
1819 2568
1820void inline_size 2569inline_size void
1821pri_adjust (EV_P_ W w) 2570pri_adjust (EV_P_ W w)
1822{ 2571{
1823 int pri = w->priority; 2572 int pri = ev_priority (w);
1824 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2573 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1825 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2574 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1826 w->priority = pri; 2575 ev_set_priority (w, pri);
1827} 2576}
1828 2577
1829void inline_speed 2578inline_speed void
1830ev_start (EV_P_ W w, int active) 2579ev_start (EV_P_ W w, int active)
1831{ 2580{
1832 pri_adjust (EV_A_ w); 2581 pri_adjust (EV_A_ w);
1833 w->active = active; 2582 w->active = active;
1834 ev_ref (EV_A); 2583 ev_ref (EV_A);
1835} 2584}
1836 2585
1837void inline_size 2586inline_size void
1838ev_stop (EV_P_ W w) 2587ev_stop (EV_P_ W w)
1839{ 2588{
1840 ev_unref (EV_A); 2589 ev_unref (EV_A);
1841 w->active = 0; 2590 w->active = 0;
1842} 2591}
1849 int fd = w->fd; 2598 int fd = w->fd;
1850 2599
1851 if (expect_false (ev_is_active (w))) 2600 if (expect_false (ev_is_active (w)))
1852 return; 2601 return;
1853 2602
1854 assert (("ev_io_start called with negative fd", fd >= 0)); 2603 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2604 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2605
2606 EV_FREQUENT_CHECK;
1855 2607
1856 ev_start (EV_A_ (W)w, 1); 2608 ev_start (EV_A_ (W)w, 1);
1857 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2609 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1858 wlist_add (&anfds[fd].head, (WL)w); 2610 wlist_add (&anfds[fd].head, (WL)w);
1859 2611
1860 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2612 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1861 w->events &= ~EV_IOFDSET; 2613 w->events &= ~EV__IOFDSET;
2614
2615 EV_FREQUENT_CHECK;
1862} 2616}
1863 2617
1864void noinline 2618void noinline
1865ev_io_stop (EV_P_ ev_io *w) 2619ev_io_stop (EV_P_ ev_io *w)
1866{ 2620{
1867 clear_pending (EV_A_ (W)w); 2621 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 2622 if (expect_false (!ev_is_active (w)))
1869 return; 2623 return;
1870 2624
1871 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2625 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2626
2627 EV_FREQUENT_CHECK;
1872 2628
1873 wlist_del (&anfds[w->fd].head, (WL)w); 2629 wlist_del (&anfds[w->fd].head, (WL)w);
1874 ev_stop (EV_A_ (W)w); 2630 ev_stop (EV_A_ (W)w);
1875 2631
1876 fd_change (EV_A_ w->fd, 1); 2632 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2633
2634 EV_FREQUENT_CHECK;
1877} 2635}
1878 2636
1879void noinline 2637void noinline
1880ev_timer_start (EV_P_ ev_timer *w) 2638ev_timer_start (EV_P_ ev_timer *w)
1881{ 2639{
1882 if (expect_false (ev_is_active (w))) 2640 if (expect_false (ev_is_active (w)))
1883 return; 2641 return;
1884 2642
1885 ((WT)w)->at += mn_now; 2643 ev_at (w) += mn_now;
1886 2644
1887 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2645 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1888 2646
2647 EV_FREQUENT_CHECK;
2648
2649 ++timercnt;
1889 ev_start (EV_A_ (W)w, ++timercnt); 2650 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1890 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2651 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1891 timers [timercnt - 1] = (WT)w; 2652 ANHE_w (timers [ev_active (w)]) = (WT)w;
1892 upheap (timers, timercnt - 1); 2653 ANHE_at_cache (timers [ev_active (w)]);
2654 upheap (timers, ev_active (w));
1893 2655
2656 EV_FREQUENT_CHECK;
2657
1894 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2658 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1895} 2659}
1896 2660
1897void noinline 2661void noinline
1898ev_timer_stop (EV_P_ ev_timer *w) 2662ev_timer_stop (EV_P_ ev_timer *w)
1899{ 2663{
1900 clear_pending (EV_A_ (W)w); 2664 clear_pending (EV_A_ (W)w);
1901 if (expect_false (!ev_is_active (w))) 2665 if (expect_false (!ev_is_active (w)))
1902 return; 2666 return;
1903 2667
1904 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2668 EV_FREQUENT_CHECK;
1905 2669
1906 { 2670 {
1907 int active = ((W)w)->active; 2671 int active = ev_active (w);
1908 2672
2673 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2674
2675 --timercnt;
2676
1909 if (expect_true (--active < --timercnt)) 2677 if (expect_true (active < timercnt + HEAP0))
1910 { 2678 {
1911 timers [active] = timers [timercnt]; 2679 timers [active] = timers [timercnt + HEAP0];
1912 adjustheap (timers, timercnt, active); 2680 adjustheap (timers, timercnt, active);
1913 } 2681 }
1914 } 2682 }
1915 2683
1916 ((WT)w)->at -= mn_now; 2684 ev_at (w) -= mn_now;
1917 2685
1918 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
1919} 2689}
1920 2690
1921void noinline 2691void noinline
1922ev_timer_again (EV_P_ ev_timer *w) 2692ev_timer_again (EV_P_ ev_timer *w)
1923{ 2693{
2694 EV_FREQUENT_CHECK;
2695
1924 if (ev_is_active (w)) 2696 if (ev_is_active (w))
1925 { 2697 {
1926 if (w->repeat) 2698 if (w->repeat)
1927 { 2699 {
1928 ((WT)w)->at = mn_now + w->repeat; 2700 ev_at (w) = mn_now + w->repeat;
2701 ANHE_at_cache (timers [ev_active (w)]);
1929 adjustheap (timers, timercnt, ((W)w)->active - 1); 2702 adjustheap (timers, timercnt, ev_active (w));
1930 } 2703 }
1931 else 2704 else
1932 ev_timer_stop (EV_A_ w); 2705 ev_timer_stop (EV_A_ w);
1933 } 2706 }
1934 else if (w->repeat) 2707 else if (w->repeat)
1935 { 2708 {
1936 w->at = w->repeat; 2709 ev_at (w) = w->repeat;
1937 ev_timer_start (EV_A_ w); 2710 ev_timer_start (EV_A_ w);
1938 } 2711 }
2712
2713 EV_FREQUENT_CHECK;
2714}
2715
2716ev_tstamp
2717ev_timer_remaining (EV_P_ ev_timer *w)
2718{
2719 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1939} 2720}
1940 2721
1941#if EV_PERIODIC_ENABLE 2722#if EV_PERIODIC_ENABLE
1942void noinline 2723void noinline
1943ev_periodic_start (EV_P_ ev_periodic *w) 2724ev_periodic_start (EV_P_ ev_periodic *w)
1944{ 2725{
1945 if (expect_false (ev_is_active (w))) 2726 if (expect_false (ev_is_active (w)))
1946 return; 2727 return;
1947 2728
1948 if (w->reschedule_cb) 2729 if (w->reschedule_cb)
1949 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2730 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1950 else if (w->interval) 2731 else if (w->interval)
1951 { 2732 {
1952 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2733 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1953 /* this formula differs from the one in periodic_reify because we do not always round up */ 2734 /* this formula differs from the one in periodic_reify because we do not always round up */
1954 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2735 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1955 } 2736 }
1956 else 2737 else
1957 ((WT)w)->at = w->offset; 2738 ev_at (w) = w->offset;
1958 2739
2740 EV_FREQUENT_CHECK;
2741
2742 ++periodiccnt;
1959 ev_start (EV_A_ (W)w, ++periodiccnt); 2743 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1960 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2744 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1961 periodics [periodiccnt - 1] = (WT)w; 2745 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1962 upheap (periodics, periodiccnt - 1); 2746 ANHE_at_cache (periodics [ev_active (w)]);
2747 upheap (periodics, ev_active (w));
1963 2748
2749 EV_FREQUENT_CHECK;
2750
1964 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2751 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1965} 2752}
1966 2753
1967void noinline 2754void noinline
1968ev_periodic_stop (EV_P_ ev_periodic *w) 2755ev_periodic_stop (EV_P_ ev_periodic *w)
1969{ 2756{
1970 clear_pending (EV_A_ (W)w); 2757 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2758 if (expect_false (!ev_is_active (w)))
1972 return; 2759 return;
1973 2760
1974 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2761 EV_FREQUENT_CHECK;
1975 2762
1976 { 2763 {
1977 int active = ((W)w)->active; 2764 int active = ev_active (w);
1978 2765
2766 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2767
2768 --periodiccnt;
2769
1979 if (expect_true (--active < --periodiccnt)) 2770 if (expect_true (active < periodiccnt + HEAP0))
1980 { 2771 {
1981 periodics [active] = periodics [periodiccnt]; 2772 periodics [active] = periodics [periodiccnt + HEAP0];
1982 adjustheap (periodics, periodiccnt, active); 2773 adjustheap (periodics, periodiccnt, active);
1983 } 2774 }
1984 } 2775 }
1985 2776
1986 ev_stop (EV_A_ (W)w); 2777 ev_stop (EV_A_ (W)w);
2778
2779 EV_FREQUENT_CHECK;
1987} 2780}
1988 2781
1989void noinline 2782void noinline
1990ev_periodic_again (EV_P_ ev_periodic *w) 2783ev_periodic_again (EV_P_ ev_periodic *w)
1991{ 2784{
1997 2790
1998#ifndef SA_RESTART 2791#ifndef SA_RESTART
1999# define SA_RESTART 0 2792# define SA_RESTART 0
2000#endif 2793#endif
2001 2794
2795#if EV_SIGNAL_ENABLE
2796
2002void noinline 2797void noinline
2003ev_signal_start (EV_P_ ev_signal *w) 2798ev_signal_start (EV_P_ ev_signal *w)
2004{ 2799{
2005#if EV_MULTIPLICITY
2006 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2007#endif
2008 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
2009 return; 2801 return;
2010 2802
2011 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2803 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2012 2804
2013 evpipe_init (EV_A); 2805#if EV_MULTIPLICITY
2806 assert (("libev: a signal must not be attached to two different loops",
2807 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2014 2808
2809 signals [w->signum - 1].loop = EV_A;
2810#endif
2811
2812 EV_FREQUENT_CHECK;
2813
2814#if EV_USE_SIGNALFD
2815 if (sigfd == -2)
2015 { 2816 {
2016#ifndef _WIN32 2817 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2017 sigset_t full, prev; 2818 if (sigfd < 0 && errno == EINVAL)
2018 sigfillset (&full); 2819 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2019 sigprocmask (SIG_SETMASK, &full, &prev);
2020#endif
2021 2820
2022 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2821 if (sigfd >= 0)
2822 {
2823 fd_intern (sigfd); /* doing it twice will not hurt */
2023 2824
2024#ifndef _WIN32 2825 sigemptyset (&sigfd_set);
2025 sigprocmask (SIG_SETMASK, &prev, 0); 2826
2026#endif 2827 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2828 ev_set_priority (&sigfd_w, EV_MAXPRI);
2829 ev_io_start (EV_A_ &sigfd_w);
2830 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2831 }
2027 } 2832 }
2833
2834 if (sigfd >= 0)
2835 {
2836 /* TODO: check .head */
2837 sigaddset (&sigfd_set, w->signum);
2838 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2839
2840 signalfd (sigfd, &sigfd_set, 0);
2841 }
2842#endif
2028 2843
2029 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2030 wlist_add (&signals [w->signum - 1].head, (WL)w); 2845 wlist_add (&signals [w->signum - 1].head, (WL)w);
2031 2846
2032 if (!((WL)w)->next) 2847 if (!((WL)w)->next)
2848# if EV_USE_SIGNALFD
2849 if (sigfd < 0) /*TODO*/
2850# endif
2033 { 2851 {
2034#if _WIN32 2852# ifdef _WIN32
2853 evpipe_init (EV_A);
2854
2035 signal (w->signum, ev_sighandler); 2855 signal (w->signum, ev_sighandler);
2036#else 2856# else
2037 struct sigaction sa; 2857 struct sigaction sa;
2858
2859 evpipe_init (EV_A);
2860
2038 sa.sa_handler = ev_sighandler; 2861 sa.sa_handler = ev_sighandler;
2039 sigfillset (&sa.sa_mask); 2862 sigfillset (&sa.sa_mask);
2040 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2863 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2041 sigaction (w->signum, &sa, 0); 2864 sigaction (w->signum, &sa, 0);
2865
2866 sigemptyset (&sa.sa_mask);
2867 sigaddset (&sa.sa_mask, w->signum);
2868 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2042#endif 2869#endif
2043 } 2870 }
2871
2872 EV_FREQUENT_CHECK;
2044} 2873}
2045 2874
2046void noinline 2875void noinline
2047ev_signal_stop (EV_P_ ev_signal *w) 2876ev_signal_stop (EV_P_ ev_signal *w)
2048{ 2877{
2049 clear_pending (EV_A_ (W)w); 2878 clear_pending (EV_A_ (W)w);
2050 if (expect_false (!ev_is_active (w))) 2879 if (expect_false (!ev_is_active (w)))
2051 return; 2880 return;
2052 2881
2882 EV_FREQUENT_CHECK;
2883
2053 wlist_del (&signals [w->signum - 1].head, (WL)w); 2884 wlist_del (&signals [w->signum - 1].head, (WL)w);
2054 ev_stop (EV_A_ (W)w); 2885 ev_stop (EV_A_ (W)w);
2055 2886
2056 if (!signals [w->signum - 1].head) 2887 if (!signals [w->signum - 1].head)
2888 {
2889#if EV_MULTIPLICITY
2890 signals [w->signum - 1].loop = 0; /* unattach from signal */
2891#endif
2892#if EV_USE_SIGNALFD
2893 if (sigfd >= 0)
2894 {
2895 sigset_t ss;
2896
2897 sigemptyset (&ss);
2898 sigaddset (&ss, w->signum);
2899 sigdelset (&sigfd_set, w->signum);
2900
2901 signalfd (sigfd, &sigfd_set, 0);
2902 sigprocmask (SIG_UNBLOCK, &ss, 0);
2903 }
2904 else
2905#endif
2057 signal (w->signum, SIG_DFL); 2906 signal (w->signum, SIG_DFL);
2907 }
2908
2909 EV_FREQUENT_CHECK;
2058} 2910}
2911
2912#endif
2913
2914#if EV_CHILD_ENABLE
2059 2915
2060void 2916void
2061ev_child_start (EV_P_ ev_child *w) 2917ev_child_start (EV_P_ ev_child *w)
2062{ 2918{
2063#if EV_MULTIPLICITY 2919#if EV_MULTIPLICITY
2064 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2920 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2065#endif 2921#endif
2066 if (expect_false (ev_is_active (w))) 2922 if (expect_false (ev_is_active (w)))
2067 return; 2923 return;
2068 2924
2925 EV_FREQUENT_CHECK;
2926
2069 ev_start (EV_A_ (W)w, 1); 2927 ev_start (EV_A_ (W)w, 1);
2070 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2928 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2929
2930 EV_FREQUENT_CHECK;
2071} 2931}
2072 2932
2073void 2933void
2074ev_child_stop (EV_P_ ev_child *w) 2934ev_child_stop (EV_P_ ev_child *w)
2075{ 2935{
2076 clear_pending (EV_A_ (W)w); 2936 clear_pending (EV_A_ (W)w);
2077 if (expect_false (!ev_is_active (w))) 2937 if (expect_false (!ev_is_active (w)))
2078 return; 2938 return;
2079 2939
2940 EV_FREQUENT_CHECK;
2941
2080 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2942 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2081 ev_stop (EV_A_ (W)w); 2943 ev_stop (EV_A_ (W)w);
2944
2945 EV_FREQUENT_CHECK;
2082} 2946}
2947
2948#endif
2083 2949
2084#if EV_STAT_ENABLE 2950#if EV_STAT_ENABLE
2085 2951
2086# ifdef _WIN32 2952# ifdef _WIN32
2087# undef lstat 2953# undef lstat
2088# define lstat(a,b) _stati64 (a,b) 2954# define lstat(a,b) _stati64 (a,b)
2089# endif 2955# endif
2090 2956
2091#define DEF_STAT_INTERVAL 5.0074891 2957#define DEF_STAT_INTERVAL 5.0074891
2958#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2092#define MIN_STAT_INTERVAL 0.1074891 2959#define MIN_STAT_INTERVAL 0.1074891
2093 2960
2094static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2961static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2095 2962
2096#if EV_USE_INOTIFY 2963#if EV_USE_INOTIFY
2097# define EV_INOTIFY_BUFSIZE 8192 2964
2965/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2966# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2098 2967
2099static void noinline 2968static void noinline
2100infy_add (EV_P_ ev_stat *w) 2969infy_add (EV_P_ ev_stat *w)
2101{ 2970{
2102 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2971 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2103 2972
2104 if (w->wd < 0) 2973 if (w->wd >= 0)
2974 {
2975 struct statfs sfs;
2976
2977 /* now local changes will be tracked by inotify, but remote changes won't */
2978 /* unless the filesystem is known to be local, we therefore still poll */
2979 /* also do poll on <2.6.25, but with normal frequency */
2980
2981 if (!fs_2625)
2982 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2983 else if (!statfs (w->path, &sfs)
2984 && (sfs.f_type == 0x1373 /* devfs */
2985 || sfs.f_type == 0xEF53 /* ext2/3 */
2986 || sfs.f_type == 0x3153464a /* jfs */
2987 || sfs.f_type == 0x52654973 /* reiser3 */
2988 || sfs.f_type == 0x01021994 /* tempfs */
2989 || sfs.f_type == 0x58465342 /* xfs */))
2990 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2991 else
2992 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2105 { 2993 }
2106 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2994 else
2995 {
2996 /* can't use inotify, continue to stat */
2997 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2107 2998
2108 /* monitor some parent directory for speedup hints */ 2999 /* if path is not there, monitor some parent directory for speedup hints */
3000 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3001 /* but an efficiency issue only */
2109 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3002 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2110 { 3003 {
2111 char path [4096]; 3004 char path [4096];
2112 strcpy (path, w->path); 3005 strcpy (path, w->path);
2113 3006
2116 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3009 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2117 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3010 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2118 3011
2119 char *pend = strrchr (path, '/'); 3012 char *pend = strrchr (path, '/');
2120 3013
2121 if (!pend) 3014 if (!pend || pend == path)
2122 break; /* whoops, no '/', complain to your admin */ 3015 break;
2123 3016
2124 *pend = 0; 3017 *pend = 0;
2125 w->wd = inotify_add_watch (fs_fd, path, mask); 3018 w->wd = inotify_add_watch (fs_fd, path, mask);
2126 } 3019 }
2127 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3020 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2128 } 3021 }
2129 } 3022 }
2130 else
2131 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2132 3023
2133 if (w->wd >= 0) 3024 if (w->wd >= 0)
2134 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3025 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3026
3027 /* now re-arm timer, if required */
3028 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3029 ev_timer_again (EV_A_ &w->timer);
3030 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2135} 3031}
2136 3032
2137static void noinline 3033static void noinline
2138infy_del (EV_P_ ev_stat *w) 3034infy_del (EV_P_ ev_stat *w)
2139{ 3035{
2142 3038
2143 if (wd < 0) 3039 if (wd < 0)
2144 return; 3040 return;
2145 3041
2146 w->wd = -2; 3042 w->wd = -2;
2147 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3043 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2148 wlist_del (&fs_hash [slot].head, (WL)w); 3044 wlist_del (&fs_hash [slot].head, (WL)w);
2149 3045
2150 /* remove this watcher, if others are watching it, they will rearm */ 3046 /* remove this watcher, if others are watching it, they will rearm */
2151 inotify_rm_watch (fs_fd, wd); 3047 inotify_rm_watch (fs_fd, wd);
2152} 3048}
2153 3049
2154static void noinline 3050static void noinline
2155infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3051infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2156{ 3052{
2157 if (slot < 0) 3053 if (slot < 0)
2158 /* overflow, need to check for all hahs slots */ 3054 /* overflow, need to check for all hash slots */
2159 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3055 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2160 infy_wd (EV_A_ slot, wd, ev); 3056 infy_wd (EV_A_ slot, wd, ev);
2161 else 3057 else
2162 { 3058 {
2163 WL w_; 3059 WL w_;
2164 3060
2165 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3061 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2166 { 3062 {
2167 ev_stat *w = (ev_stat *)w_; 3063 ev_stat *w = (ev_stat *)w_;
2168 w_ = w_->next; /* lets us remove this watcher and all before it */ 3064 w_ = w_->next; /* lets us remove this watcher and all before it */
2169 3065
2170 if (w->wd == wd || wd == -1) 3066 if (w->wd == wd || wd == -1)
2171 { 3067 {
2172 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3068 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2173 { 3069 {
3070 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2174 w->wd = -1; 3071 w->wd = -1;
2175 infy_add (EV_A_ w); /* re-add, no matter what */ 3072 infy_add (EV_A_ w); /* re-add, no matter what */
2176 } 3073 }
2177 3074
2178 stat_timer_cb (EV_A_ &w->timer, 0); 3075 stat_timer_cb (EV_A_ &w->timer, 0);
2183 3080
2184static void 3081static void
2185infy_cb (EV_P_ ev_io *w, int revents) 3082infy_cb (EV_P_ ev_io *w, int revents)
2186{ 3083{
2187 char buf [EV_INOTIFY_BUFSIZE]; 3084 char buf [EV_INOTIFY_BUFSIZE];
2188 struct inotify_event *ev = (struct inotify_event *)buf;
2189 int ofs; 3085 int ofs;
2190 int len = read (fs_fd, buf, sizeof (buf)); 3086 int len = read (fs_fd, buf, sizeof (buf));
2191 3087
2192 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3088 for (ofs = 0; ofs < len; )
3089 {
3090 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2193 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3091 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3092 ofs += sizeof (struct inotify_event) + ev->len;
3093 }
2194} 3094}
2195 3095
2196void inline_size 3096inline_size void
3097ev_check_2625 (EV_P)
3098{
3099 /* kernels < 2.6.25 are borked
3100 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3101 */
3102 if (ev_linux_version () < 0x020619)
3103 return;
3104
3105 fs_2625 = 1;
3106}
3107
3108inline_size int
3109infy_newfd (void)
3110{
3111#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3112 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3113 if (fd >= 0)
3114 return fd;
3115#endif
3116 return inotify_init ();
3117}
3118
3119inline_size void
2197infy_init (EV_P) 3120infy_init (EV_P)
2198{ 3121{
2199 if (fs_fd != -2) 3122 if (fs_fd != -2)
2200 return; 3123 return;
2201 3124
3125 fs_fd = -1;
3126
3127 ev_check_2625 (EV_A);
3128
2202 fs_fd = inotify_init (); 3129 fs_fd = infy_newfd ();
2203 3130
2204 if (fs_fd >= 0) 3131 if (fs_fd >= 0)
2205 { 3132 {
3133 fd_intern (fs_fd);
2206 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3134 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2207 ev_set_priority (&fs_w, EV_MAXPRI); 3135 ev_set_priority (&fs_w, EV_MAXPRI);
2208 ev_io_start (EV_A_ &fs_w); 3136 ev_io_start (EV_A_ &fs_w);
3137 ev_unref (EV_A);
2209 } 3138 }
2210} 3139}
2211 3140
2212void inline_size 3141inline_size void
2213infy_fork (EV_P) 3142infy_fork (EV_P)
2214{ 3143{
2215 int slot; 3144 int slot;
2216 3145
2217 if (fs_fd < 0) 3146 if (fs_fd < 0)
2218 return; 3147 return;
2219 3148
3149 ev_ref (EV_A);
3150 ev_io_stop (EV_A_ &fs_w);
2220 close (fs_fd); 3151 close (fs_fd);
2221 fs_fd = inotify_init (); 3152 fs_fd = infy_newfd ();
2222 3153
3154 if (fs_fd >= 0)
3155 {
3156 fd_intern (fs_fd);
3157 ev_io_set (&fs_w, fs_fd, EV_READ);
3158 ev_io_start (EV_A_ &fs_w);
3159 ev_unref (EV_A);
3160 }
3161
2223 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3162 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2224 { 3163 {
2225 WL w_ = fs_hash [slot].head; 3164 WL w_ = fs_hash [slot].head;
2226 fs_hash [slot].head = 0; 3165 fs_hash [slot].head = 0;
2227 3166
2228 while (w_) 3167 while (w_)
2233 w->wd = -1; 3172 w->wd = -1;
2234 3173
2235 if (fs_fd >= 0) 3174 if (fs_fd >= 0)
2236 infy_add (EV_A_ w); /* re-add, no matter what */ 3175 infy_add (EV_A_ w); /* re-add, no matter what */
2237 else 3176 else
3177 {
3178 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3179 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2238 ev_timer_start (EV_A_ &w->timer); 3180 ev_timer_again (EV_A_ &w->timer);
3181 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3182 }
2239 } 3183 }
2240
2241 } 3184 }
2242} 3185}
2243 3186
3187#endif
3188
3189#ifdef _WIN32
3190# define EV_LSTAT(p,b) _stati64 (p, b)
3191#else
3192# define EV_LSTAT(p,b) lstat (p, b)
2244#endif 3193#endif
2245 3194
2246void 3195void
2247ev_stat_stat (EV_P_ ev_stat *w) 3196ev_stat_stat (EV_P_ ev_stat *w)
2248{ 3197{
2255static void noinline 3204static void noinline
2256stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3205stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2257{ 3206{
2258 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3207 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2259 3208
2260 /* we copy this here each the time so that */ 3209 ev_statdata prev = w->attr;
2261 /* prev has the old value when the callback gets invoked */
2262 w->prev = w->attr;
2263 ev_stat_stat (EV_A_ w); 3210 ev_stat_stat (EV_A_ w);
2264 3211
2265 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3212 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2266 if ( 3213 if (
2267 w->prev.st_dev != w->attr.st_dev 3214 prev.st_dev != w->attr.st_dev
2268 || w->prev.st_ino != w->attr.st_ino 3215 || prev.st_ino != w->attr.st_ino
2269 || w->prev.st_mode != w->attr.st_mode 3216 || prev.st_mode != w->attr.st_mode
2270 || w->prev.st_nlink != w->attr.st_nlink 3217 || prev.st_nlink != w->attr.st_nlink
2271 || w->prev.st_uid != w->attr.st_uid 3218 || prev.st_uid != w->attr.st_uid
2272 || w->prev.st_gid != w->attr.st_gid 3219 || prev.st_gid != w->attr.st_gid
2273 || w->prev.st_rdev != w->attr.st_rdev 3220 || prev.st_rdev != w->attr.st_rdev
2274 || w->prev.st_size != w->attr.st_size 3221 || prev.st_size != w->attr.st_size
2275 || w->prev.st_atime != w->attr.st_atime 3222 || prev.st_atime != w->attr.st_atime
2276 || w->prev.st_mtime != w->attr.st_mtime 3223 || prev.st_mtime != w->attr.st_mtime
2277 || w->prev.st_ctime != w->attr.st_ctime 3224 || prev.st_ctime != w->attr.st_ctime
2278 ) { 3225 ) {
3226 /* we only update w->prev on actual differences */
3227 /* in case we test more often than invoke the callback, */
3228 /* to ensure that prev is always different to attr */
3229 w->prev = prev;
3230
2279 #if EV_USE_INOTIFY 3231 #if EV_USE_INOTIFY
3232 if (fs_fd >= 0)
3233 {
2280 infy_del (EV_A_ w); 3234 infy_del (EV_A_ w);
2281 infy_add (EV_A_ w); 3235 infy_add (EV_A_ w);
2282 ev_stat_stat (EV_A_ w); /* avoid race... */ 3236 ev_stat_stat (EV_A_ w); /* avoid race... */
3237 }
2283 #endif 3238 #endif
2284 3239
2285 ev_feed_event (EV_A_ w, EV_STAT); 3240 ev_feed_event (EV_A_ w, EV_STAT);
2286 } 3241 }
2287} 3242}
2290ev_stat_start (EV_P_ ev_stat *w) 3245ev_stat_start (EV_P_ ev_stat *w)
2291{ 3246{
2292 if (expect_false (ev_is_active (w))) 3247 if (expect_false (ev_is_active (w)))
2293 return; 3248 return;
2294 3249
2295 /* since we use memcmp, we need to clear any padding data etc. */
2296 memset (&w->prev, 0, sizeof (ev_statdata));
2297 memset (&w->attr, 0, sizeof (ev_statdata));
2298
2299 ev_stat_stat (EV_A_ w); 3250 ev_stat_stat (EV_A_ w);
2300 3251
3252 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2301 if (w->interval < MIN_STAT_INTERVAL) 3253 w->interval = MIN_STAT_INTERVAL;
2302 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2303 3254
2304 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3255 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2305 ev_set_priority (&w->timer, ev_priority (w)); 3256 ev_set_priority (&w->timer, ev_priority (w));
2306 3257
2307#if EV_USE_INOTIFY 3258#if EV_USE_INOTIFY
2308 infy_init (EV_A); 3259 infy_init (EV_A);
2309 3260
2310 if (fs_fd >= 0) 3261 if (fs_fd >= 0)
2311 infy_add (EV_A_ w); 3262 infy_add (EV_A_ w);
2312 else 3263 else
2313#endif 3264#endif
3265 {
2314 ev_timer_start (EV_A_ &w->timer); 3266 ev_timer_again (EV_A_ &w->timer);
3267 ev_unref (EV_A);
3268 }
2315 3269
2316 ev_start (EV_A_ (W)w, 1); 3270 ev_start (EV_A_ (W)w, 1);
3271
3272 EV_FREQUENT_CHECK;
2317} 3273}
2318 3274
2319void 3275void
2320ev_stat_stop (EV_P_ ev_stat *w) 3276ev_stat_stop (EV_P_ ev_stat *w)
2321{ 3277{
2322 clear_pending (EV_A_ (W)w); 3278 clear_pending (EV_A_ (W)w);
2323 if (expect_false (!ev_is_active (w))) 3279 if (expect_false (!ev_is_active (w)))
2324 return; 3280 return;
2325 3281
3282 EV_FREQUENT_CHECK;
3283
2326#if EV_USE_INOTIFY 3284#if EV_USE_INOTIFY
2327 infy_del (EV_A_ w); 3285 infy_del (EV_A_ w);
2328#endif 3286#endif
3287
3288 if (ev_is_active (&w->timer))
3289 {
3290 ev_ref (EV_A);
2329 ev_timer_stop (EV_A_ &w->timer); 3291 ev_timer_stop (EV_A_ &w->timer);
3292 }
2330 3293
2331 ev_stop (EV_A_ (W)w); 3294 ev_stop (EV_A_ (W)w);
3295
3296 EV_FREQUENT_CHECK;
2332} 3297}
2333#endif 3298#endif
2334 3299
2335#if EV_IDLE_ENABLE 3300#if EV_IDLE_ENABLE
2336void 3301void
2338{ 3303{
2339 if (expect_false (ev_is_active (w))) 3304 if (expect_false (ev_is_active (w)))
2340 return; 3305 return;
2341 3306
2342 pri_adjust (EV_A_ (W)w); 3307 pri_adjust (EV_A_ (W)w);
3308
3309 EV_FREQUENT_CHECK;
2343 3310
2344 { 3311 {
2345 int active = ++idlecnt [ABSPRI (w)]; 3312 int active = ++idlecnt [ABSPRI (w)];
2346 3313
2347 ++idleall; 3314 ++idleall;
2348 ev_start (EV_A_ (W)w, active); 3315 ev_start (EV_A_ (W)w, active);
2349 3316
2350 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3317 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2351 idles [ABSPRI (w)][active - 1] = w; 3318 idles [ABSPRI (w)][active - 1] = w;
2352 } 3319 }
3320
3321 EV_FREQUENT_CHECK;
2353} 3322}
2354 3323
2355void 3324void
2356ev_idle_stop (EV_P_ ev_idle *w) 3325ev_idle_stop (EV_P_ ev_idle *w)
2357{ 3326{
2358 clear_pending (EV_A_ (W)w); 3327 clear_pending (EV_A_ (W)w);
2359 if (expect_false (!ev_is_active (w))) 3328 if (expect_false (!ev_is_active (w)))
2360 return; 3329 return;
2361 3330
3331 EV_FREQUENT_CHECK;
3332
2362 { 3333 {
2363 int active = ((W)w)->active; 3334 int active = ev_active (w);
2364 3335
2365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3336 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2366 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3337 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2367 3338
2368 ev_stop (EV_A_ (W)w); 3339 ev_stop (EV_A_ (W)w);
2369 --idleall; 3340 --idleall;
2370 } 3341 }
2371}
2372#endif
2373 3342
3343 EV_FREQUENT_CHECK;
3344}
3345#endif
3346
3347#if EV_PREPARE_ENABLE
2374void 3348void
2375ev_prepare_start (EV_P_ ev_prepare *w) 3349ev_prepare_start (EV_P_ ev_prepare *w)
2376{ 3350{
2377 if (expect_false (ev_is_active (w))) 3351 if (expect_false (ev_is_active (w)))
2378 return; 3352 return;
3353
3354 EV_FREQUENT_CHECK;
2379 3355
2380 ev_start (EV_A_ (W)w, ++preparecnt); 3356 ev_start (EV_A_ (W)w, ++preparecnt);
2381 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2382 prepares [preparecnt - 1] = w; 3358 prepares [preparecnt - 1] = w;
3359
3360 EV_FREQUENT_CHECK;
2383} 3361}
2384 3362
2385void 3363void
2386ev_prepare_stop (EV_P_ ev_prepare *w) 3364ev_prepare_stop (EV_P_ ev_prepare *w)
2387{ 3365{
2388 clear_pending (EV_A_ (W)w); 3366 clear_pending (EV_A_ (W)w);
2389 if (expect_false (!ev_is_active (w))) 3367 if (expect_false (!ev_is_active (w)))
2390 return; 3368 return;
2391 3369
3370 EV_FREQUENT_CHECK;
3371
2392 { 3372 {
2393 int active = ((W)w)->active; 3373 int active = ev_active (w);
3374
2394 prepares [active - 1] = prepares [--preparecnt]; 3375 prepares [active - 1] = prepares [--preparecnt];
2395 ((W)prepares [active - 1])->active = active; 3376 ev_active (prepares [active - 1]) = active;
2396 } 3377 }
2397 3378
2398 ev_stop (EV_A_ (W)w); 3379 ev_stop (EV_A_ (W)w);
2399}
2400 3380
3381 EV_FREQUENT_CHECK;
3382}
3383#endif
3384
3385#if EV_CHECK_ENABLE
2401void 3386void
2402ev_check_start (EV_P_ ev_check *w) 3387ev_check_start (EV_P_ ev_check *w)
2403{ 3388{
2404 if (expect_false (ev_is_active (w))) 3389 if (expect_false (ev_is_active (w)))
2405 return; 3390 return;
3391
3392 EV_FREQUENT_CHECK;
2406 3393
2407 ev_start (EV_A_ (W)w, ++checkcnt); 3394 ev_start (EV_A_ (W)w, ++checkcnt);
2408 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3395 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2409 checks [checkcnt - 1] = w; 3396 checks [checkcnt - 1] = w;
3397
3398 EV_FREQUENT_CHECK;
2410} 3399}
2411 3400
2412void 3401void
2413ev_check_stop (EV_P_ ev_check *w) 3402ev_check_stop (EV_P_ ev_check *w)
2414{ 3403{
2415 clear_pending (EV_A_ (W)w); 3404 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 3405 if (expect_false (!ev_is_active (w)))
2417 return; 3406 return;
2418 3407
3408 EV_FREQUENT_CHECK;
3409
2419 { 3410 {
2420 int active = ((W)w)->active; 3411 int active = ev_active (w);
3412
2421 checks [active - 1] = checks [--checkcnt]; 3413 checks [active - 1] = checks [--checkcnt];
2422 ((W)checks [active - 1])->active = active; 3414 ev_active (checks [active - 1]) = active;
2423 } 3415 }
2424 3416
2425 ev_stop (EV_A_ (W)w); 3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
2426} 3420}
3421#endif
2427 3422
2428#if EV_EMBED_ENABLE 3423#if EV_EMBED_ENABLE
2429void noinline 3424void noinline
2430ev_embed_sweep (EV_P_ ev_embed *w) 3425ev_embed_sweep (EV_P_ ev_embed *w)
2431{ 3426{
2432 ev_loop (w->other, EVLOOP_NONBLOCK); 3427 ev_run (w->other, EVRUN_NOWAIT);
2433} 3428}
2434 3429
2435static void 3430static void
2436embed_io_cb (EV_P_ ev_io *io, int revents) 3431embed_io_cb (EV_P_ ev_io *io, int revents)
2437{ 3432{
2438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3433 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2439 3434
2440 if (ev_cb (w)) 3435 if (ev_cb (w))
2441 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3436 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2442 else 3437 else
2443 ev_loop (w->other, EVLOOP_NONBLOCK); 3438 ev_run (w->other, EVRUN_NOWAIT);
2444} 3439}
2445 3440
2446static void 3441static void
2447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3442embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2448{ 3443{
2449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3444 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2450 3445
2451 { 3446 {
2452 struct ev_loop *loop = w->other; 3447 EV_P = w->other;
2453 3448
2454 while (fdchangecnt) 3449 while (fdchangecnt)
2455 { 3450 {
2456 fd_reify (EV_A); 3451 fd_reify (EV_A);
2457 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3452 ev_run (EV_A_ EVRUN_NOWAIT);
2458 } 3453 }
2459 } 3454 }
3455}
3456
3457static void
3458embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3459{
3460 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3461
3462 ev_embed_stop (EV_A_ w);
3463
3464 {
3465 EV_P = w->other;
3466
3467 ev_loop_fork (EV_A);
3468 ev_run (EV_A_ EVRUN_NOWAIT);
3469 }
3470
3471 ev_embed_start (EV_A_ w);
2460} 3472}
2461 3473
2462#if 0 3474#if 0
2463static void 3475static void
2464embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3476embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2472{ 3484{
2473 if (expect_false (ev_is_active (w))) 3485 if (expect_false (ev_is_active (w)))
2474 return; 3486 return;
2475 3487
2476 { 3488 {
2477 struct ev_loop *loop = w->other; 3489 EV_P = w->other;
2478 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3490 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2480 } 3492 }
3493
3494 EV_FREQUENT_CHECK;
2481 3495
2482 ev_set_priority (&w->io, ev_priority (w)); 3496 ev_set_priority (&w->io, ev_priority (w));
2483 ev_io_start (EV_A_ &w->io); 3497 ev_io_start (EV_A_ &w->io);
2484 3498
2485 ev_prepare_init (&w->prepare, embed_prepare_cb); 3499 ev_prepare_init (&w->prepare, embed_prepare_cb);
2486 ev_set_priority (&w->prepare, EV_MINPRI); 3500 ev_set_priority (&w->prepare, EV_MINPRI);
2487 ev_prepare_start (EV_A_ &w->prepare); 3501 ev_prepare_start (EV_A_ &w->prepare);
2488 3502
3503 ev_fork_init (&w->fork, embed_fork_cb);
3504 ev_fork_start (EV_A_ &w->fork);
3505
2489 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3506 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2490 3507
2491 ev_start (EV_A_ (W)w, 1); 3508 ev_start (EV_A_ (W)w, 1);
3509
3510 EV_FREQUENT_CHECK;
2492} 3511}
2493 3512
2494void 3513void
2495ev_embed_stop (EV_P_ ev_embed *w) 3514ev_embed_stop (EV_P_ ev_embed *w)
2496{ 3515{
2497 clear_pending (EV_A_ (W)w); 3516 clear_pending (EV_A_ (W)w);
2498 if (expect_false (!ev_is_active (w))) 3517 if (expect_false (!ev_is_active (w)))
2499 return; 3518 return;
2500 3519
3520 EV_FREQUENT_CHECK;
3521
2501 ev_io_stop (EV_A_ &w->io); 3522 ev_io_stop (EV_A_ &w->io);
2502 ev_prepare_stop (EV_A_ &w->prepare); 3523 ev_prepare_stop (EV_A_ &w->prepare);
3524 ev_fork_stop (EV_A_ &w->fork);
2503 3525
2504 ev_stop (EV_A_ (W)w); 3526 ev_stop (EV_A_ (W)w);
3527
3528 EV_FREQUENT_CHECK;
2505} 3529}
2506#endif 3530#endif
2507 3531
2508#if EV_FORK_ENABLE 3532#if EV_FORK_ENABLE
2509void 3533void
2510ev_fork_start (EV_P_ ev_fork *w) 3534ev_fork_start (EV_P_ ev_fork *w)
2511{ 3535{
2512 if (expect_false (ev_is_active (w))) 3536 if (expect_false (ev_is_active (w)))
2513 return; 3537 return;
3538
3539 EV_FREQUENT_CHECK;
2514 3540
2515 ev_start (EV_A_ (W)w, ++forkcnt); 3541 ev_start (EV_A_ (W)w, ++forkcnt);
2516 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3542 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2517 forks [forkcnt - 1] = w; 3543 forks [forkcnt - 1] = w;
3544
3545 EV_FREQUENT_CHECK;
2518} 3546}
2519 3547
2520void 3548void
2521ev_fork_stop (EV_P_ ev_fork *w) 3549ev_fork_stop (EV_P_ ev_fork *w)
2522{ 3550{
2523 clear_pending (EV_A_ (W)w); 3551 clear_pending (EV_A_ (W)w);
2524 if (expect_false (!ev_is_active (w))) 3552 if (expect_false (!ev_is_active (w)))
2525 return; 3553 return;
2526 3554
3555 EV_FREQUENT_CHECK;
3556
2527 { 3557 {
2528 int active = ((W)w)->active; 3558 int active = ev_active (w);
3559
2529 forks [active - 1] = forks [--forkcnt]; 3560 forks [active - 1] = forks [--forkcnt];
2530 ((W)forks [active - 1])->active = active; 3561 ev_active (forks [active - 1]) = active;
2531 } 3562 }
2532 3563
2533 ev_stop (EV_A_ (W)w); 3564 ev_stop (EV_A_ (W)w);
3565
3566 EV_FREQUENT_CHECK;
2534} 3567}
2535#endif 3568#endif
2536 3569
2537#if EV_ASYNC_ENABLE 3570#if EV_ASYNC_ENABLE
2538void 3571void
2539ev_async_start (EV_P_ ev_async *w) 3572ev_async_start (EV_P_ ev_async *w)
2540{ 3573{
2541 if (expect_false (ev_is_active (w))) 3574 if (expect_false (ev_is_active (w)))
2542 return; 3575 return;
2543 3576
3577 w->sent = 0;
3578
2544 evpipe_init (EV_A); 3579 evpipe_init (EV_A);
3580
3581 EV_FREQUENT_CHECK;
2545 3582
2546 ev_start (EV_A_ (W)w, ++asynccnt); 3583 ev_start (EV_A_ (W)w, ++asynccnt);
2547 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3584 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2548 asyncs [asynccnt - 1] = w; 3585 asyncs [asynccnt - 1] = w;
3586
3587 EV_FREQUENT_CHECK;
2549} 3588}
2550 3589
2551void 3590void
2552ev_async_stop (EV_P_ ev_async *w) 3591ev_async_stop (EV_P_ ev_async *w)
2553{ 3592{
2554 clear_pending (EV_A_ (W)w); 3593 clear_pending (EV_A_ (W)w);
2555 if (expect_false (!ev_is_active (w))) 3594 if (expect_false (!ev_is_active (w)))
2556 return; 3595 return;
2557 3596
3597 EV_FREQUENT_CHECK;
3598
2558 { 3599 {
2559 int active = ((W)w)->active; 3600 int active = ev_active (w);
3601
2560 asyncs [active - 1] = asyncs [--asynccnt]; 3602 asyncs [active - 1] = asyncs [--asynccnt];
2561 ((W)asyncs [active - 1])->active = active; 3603 ev_active (asyncs [active - 1]) = active;
2562 } 3604 }
2563 3605
2564 ev_stop (EV_A_ (W)w); 3606 ev_stop (EV_A_ (W)w);
3607
3608 EV_FREQUENT_CHECK;
2565} 3609}
2566 3610
2567void 3611void
2568ev_async_send (EV_P_ ev_async *w) 3612ev_async_send (EV_P_ ev_async *w)
2569{ 3613{
2570 w->sent = 1; 3614 w->sent = 1;
2571 evpipe_write (EV_A_ &gotasync); 3615 evpipe_write (EV_A_ &async_pending);
2572} 3616}
2573#endif 3617#endif
2574 3618
2575/*****************************************************************************/ 3619/*****************************************************************************/
2576 3620
2586once_cb (EV_P_ struct ev_once *once, int revents) 3630once_cb (EV_P_ struct ev_once *once, int revents)
2587{ 3631{
2588 void (*cb)(int revents, void *arg) = once->cb; 3632 void (*cb)(int revents, void *arg) = once->cb;
2589 void *arg = once->arg; 3633 void *arg = once->arg;
2590 3634
2591 ev_io_stop (EV_A_ &once->io); 3635 ev_io_stop (EV_A_ &once->io);
2592 ev_timer_stop (EV_A_ &once->to); 3636 ev_timer_stop (EV_A_ &once->to);
2593 ev_free (once); 3637 ev_free (once);
2594 3638
2595 cb (revents, arg); 3639 cb (revents, arg);
2596} 3640}
2597 3641
2598static void 3642static void
2599once_cb_io (EV_P_ ev_io *w, int revents) 3643once_cb_io (EV_P_ ev_io *w, int revents)
2600{ 3644{
2601 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3645 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3646
3647 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2602} 3648}
2603 3649
2604static void 3650static void
2605once_cb_to (EV_P_ ev_timer *w, int revents) 3651once_cb_to (EV_P_ ev_timer *w, int revents)
2606{ 3652{
2607 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3653 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3654
3655 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2608} 3656}
2609 3657
2610void 3658void
2611ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3659ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2612{ 3660{
2613 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3661 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2614 3662
2615 if (expect_false (!once)) 3663 if (expect_false (!once))
2616 { 3664 {
2617 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3665 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2618 return; 3666 return;
2619 } 3667 }
2620 3668
2621 once->cb = cb; 3669 once->cb = cb;
2622 once->arg = arg; 3670 once->arg = arg;
2634 ev_timer_set (&once->to, timeout, 0.); 3682 ev_timer_set (&once->to, timeout, 0.);
2635 ev_timer_start (EV_A_ &once->to); 3683 ev_timer_start (EV_A_ &once->to);
2636 } 3684 }
2637} 3685}
2638 3686
3687/*****************************************************************************/
3688
3689#if EV_WALK_ENABLE
3690void
3691ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3692{
3693 int i, j;
3694 ev_watcher_list *wl, *wn;
3695
3696 if (types & (EV_IO | EV_EMBED))
3697 for (i = 0; i < anfdmax; ++i)
3698 for (wl = anfds [i].head; wl; )
3699 {
3700 wn = wl->next;
3701
3702#if EV_EMBED_ENABLE
3703 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3704 {
3705 if (types & EV_EMBED)
3706 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3707 }
3708 else
3709#endif
3710#if EV_USE_INOTIFY
3711 if (ev_cb ((ev_io *)wl) == infy_cb)
3712 ;
3713 else
3714#endif
3715 if ((ev_io *)wl != &pipe_w)
3716 if (types & EV_IO)
3717 cb (EV_A_ EV_IO, wl);
3718
3719 wl = wn;
3720 }
3721
3722 if (types & (EV_TIMER | EV_STAT))
3723 for (i = timercnt + HEAP0; i-- > HEAP0; )
3724#if EV_STAT_ENABLE
3725 /*TODO: timer is not always active*/
3726 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3727 {
3728 if (types & EV_STAT)
3729 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3730 }
3731 else
3732#endif
3733 if (types & EV_TIMER)
3734 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3735
3736#if EV_PERIODIC_ENABLE
3737 if (types & EV_PERIODIC)
3738 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3739 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3740#endif
3741
3742#if EV_IDLE_ENABLE
3743 if (types & EV_IDLE)
3744 for (j = NUMPRI; i--; )
3745 for (i = idlecnt [j]; i--; )
3746 cb (EV_A_ EV_IDLE, idles [j][i]);
3747#endif
3748
3749#if EV_FORK_ENABLE
3750 if (types & EV_FORK)
3751 for (i = forkcnt; i--; )
3752 if (ev_cb (forks [i]) != embed_fork_cb)
3753 cb (EV_A_ EV_FORK, forks [i]);
3754#endif
3755
3756#if EV_ASYNC_ENABLE
3757 if (types & EV_ASYNC)
3758 for (i = asynccnt; i--; )
3759 cb (EV_A_ EV_ASYNC, asyncs [i]);
3760#endif
3761
3762#if EV_PREPARE_ENABLE
3763 if (types & EV_PREPARE)
3764 for (i = preparecnt; i--; )
3765# if EV_EMBED_ENABLE
3766 if (ev_cb (prepares [i]) != embed_prepare_cb)
3767# endif
3768 cb (EV_A_ EV_PREPARE, prepares [i]);
3769#endif
3770
3771#if EV_CHECK_ENABLE
3772 if (types & EV_CHECK)
3773 for (i = checkcnt; i--; )
3774 cb (EV_A_ EV_CHECK, checks [i]);
3775#endif
3776
3777#if EV_SIGNAL_ENABLE
3778 if (types & EV_SIGNAL)
3779 for (i = 0; i < EV_NSIG - 1; ++i)
3780 for (wl = signals [i].head; wl; )
3781 {
3782 wn = wl->next;
3783 cb (EV_A_ EV_SIGNAL, wl);
3784 wl = wn;
3785 }
3786#endif
3787
3788#if EV_CHILD_ENABLE
3789 if (types & EV_CHILD)
3790 for (i = (EV_PID_HASHSIZE); i--; )
3791 for (wl = childs [i]; wl; )
3792 {
3793 wn = wl->next;
3794 cb (EV_A_ EV_CHILD, wl);
3795 wl = wn;
3796 }
3797#endif
3798/* EV_STAT 0x00001000 /* stat data changed */
3799/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3800}
3801#endif
3802
2639#if EV_MULTIPLICITY 3803#if EV_MULTIPLICITY
2640 #include "ev_wrap.h" 3804 #include "ev_wrap.h"
2641#endif 3805#endif
2642 3806
2643#ifdef __cplusplus 3807EV_CPP(})
2644}
2645#endif
2646 3808

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines