ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC vs.
Revision 1.357 by root, Sat Oct 23 22:25:44 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
33 61
34# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
63# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
65# endif
66# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
75# endif
37# endif 76# endif
38 77
78# if HAVE_NANOSLEEP
79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
85# endif
86
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 93# define EV_USE_SELECT 0
41# endif 94# endif
42 95
43# if HAVE_POLL && HAVE_POLL_H 96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
44# define EV_USE_POLL 1 102# define EV_USE_POLL 0
45# endif 103# endif
46 104
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 111# define EV_USE_EPOLL 0
49# endif 112# endif
50 113
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 120# define EV_USE_KQUEUE 0
53# endif 121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
54 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
55#endif 159#endif
56 160
57#include <math.h> 161#include <math.h>
58#include <stdlib.h> 162#include <stdlib.h>
59#include <unistd.h> 163#include <string.h>
60#include <fcntl.h> 164#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 165#include <stddef.h>
63 166
64#include <stdio.h> 167#include <stdio.h>
65 168
66#include <assert.h> 169#include <assert.h>
67#include <errno.h> 170#include <errno.h>
68#include <sys/types.h> 171#include <sys/types.h>
172#include <time.h>
173#include <limits.h>
174
175#include <signal.h>
176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
69#ifndef WIN32 185#ifndef _WIN32
186# include <sys/time.h>
70# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
189#else
190# include <io.h>
191# define WIN32_LEAN_AND_MEAN
192# include <windows.h>
193# ifndef EV_SELECT_IS_WINSOCKET
194# define EV_SELECT_IS_WINSOCKET 1
71#endif 195# endif
72#include <sys/time.h> 196# undef EV_AVOID_STDIO
73#include <time.h> 197#endif
74 198
75/**/ 199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
76 244
77#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
78# define EV_USE_MONOTONIC 1 249# define EV_USE_MONOTONIC 0
250# endif
251#endif
252
253#ifndef EV_USE_REALTIME
254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
79#endif 263#endif
80 264
81#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
83#endif 267#endif
84 268
85#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 270# ifdef _WIN32
271# define EV_USE_POLL 0
272# else
273# define EV_USE_POLL EV_FEATURE_BACKENDS
274# endif
87#endif 275#endif
88 276
89#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
90# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
91#endif 283#endif
92 284
93#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
95#endif 287#endif
96 288
289#ifndef EV_USE_PORT
290# define EV_USE_PORT 0
291#endif
292
97#ifndef EV_USE_WIN32 293#ifndef EV_USE_INOTIFY
98# ifdef WIN32 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
100# else 296# else
101# define EV_USE_WIN32 0 297# define EV_USE_INOTIFY 0
102# endif 298# endif
103#endif 299#endif
104 300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
105#ifndef EV_USE_REALTIME 309#ifndef EV_USE_EVENTFD
106# define EV_USE_REALTIME 1 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
107#endif 314# endif
315#endif
108 316
109/**/ 317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
110 364
111#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
114#endif 368#endif
116#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
119#endif 373#endif
120 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
396#if EV_SELECT_IS_WINSOCKET
397# include <winsock.h>
398#endif
399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
121/**/ 438/**/
122 439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 458
128#include "ev.h" 459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
129 461
130#if __GNUC__ >= 3 462#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 464# define noinline __attribute__ ((noinline))
133#else 465#else
134# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
135# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
136#endif 471#endif
137 472
138#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
140 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
143 490
491#define EMPTY /* required for microsofts broken pseudo-c compiler */
492#define EMPTY2(a,b) /* used to suppress some warnings */
493
144typedef struct ev_watcher *W; 494typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
147 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
520
521#ifdef _WIN32
522# include "ev_win32.c"
523#endif
149 524
150/*****************************************************************************/ 525/*****************************************************************************/
151 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 struct utsname buf;
536 unsigned int v;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
577static void (*syserr_cb)(const char *msg);
578
579void
580ev_set_syserr_cb (void (*cb)(const char *msg))
581{
582 syserr_cb = cb;
583}
584
585static void noinline
586ev_syserr (const char *msg)
587{
588 if (!msg)
589 msg = "(libev) system error";
590
591 if (syserr_cb)
592 syserr_cb (msg);
593 else
594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
603 perror (msg);
604#endif
605 abort ();
606 }
607}
608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
629
630void
631ev_set_allocator (void *(*cb)(void *ptr, long size))
632{
633 alloc = cb;
634}
635
636inline_speed void *
637ev_realloc (void *ptr, long size)
638{
639 ptr = alloc (ptr, size);
640
641 if (!ptr && size)
642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
648 abort ();
649 }
650
651 return ptr;
652}
653
654#define ev_malloc(size) ev_realloc (0, (size))
655#define ev_free(ptr) ev_realloc ((ptr), 0)
656
657/*****************************************************************************/
658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
152typedef struct 663typedef struct
153{ 664{
154 struct ev_watcher_list *head; 665 WL head;
155 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
156 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
674 SOCKET handle;
675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
157} ANFD; 679} ANFD;
158 680
681/* stores the pending event set for a given watcher */
159typedef struct 682typedef struct
160{ 683{
161 W w; 684 W w;
162 int events; 685 int events; /* the pending event set for the given watcher */
163} ANPENDING; 686} ANPENDING;
164 687
688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
690typedef struct
691{
692 WL head;
693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
714#endif
715
165#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
166 717
167struct ev_loop 718 struct ev_loop
168{ 719 {
720 ev_tstamp ev_rt_now;
721 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 722 #define VAR(name,decl) decl;
170# include "ev_vars.h" 723 #include "ev_vars.h"
171};
172# undef VAR 724 #undef VAR
725 };
173# include "ev_wrap.h" 726 #include "ev_wrap.h"
727
728 static struct ev_loop default_loop_struct;
729 struct ev_loop *ev_default_loop_ptr;
174 730
175#else 731#else
176 732
733 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 734 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 735 #include "ev_vars.h"
179# undef VAR 736 #undef VAR
180 737
738 static int ev_default_loop_ptr;
739
181#endif 740#endif
741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
182 753
183/*****************************************************************************/ 754/*****************************************************************************/
184 755
185inline ev_tstamp 756#ifndef EV_HAVE_EV_TIME
757ev_tstamp
186ev_time (void) 758ev_time (void)
187{ 759{
188#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
189 struct timespec ts; 763 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
191 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
192#else 766 }
767#endif
768
193 struct timeval tv; 769 struct timeval tv;
194 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif
197} 772}
773#endif
198 774
199inline ev_tstamp 775inline_size ev_tstamp
200get_clock (void) 776get_clock (void)
201{ 777{
202#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
204 { 780 {
209#endif 785#endif
210 786
211 return ev_time (); 787 return ev_time ();
212} 788}
213 789
790#if EV_MULTIPLICITY
214ev_tstamp 791ev_tstamp
215ev_now (EV_P) 792ev_now (EV_P)
216{ 793{
217 return rt_now; 794 return ev_rt_now;
218} 795}
796#endif
219 797
220#define array_roundsize(base,n) ((n) | 4 & ~3) 798void
221 799ev_sleep (ev_tstamp delay)
222#define array_needsize(base,cur,cnt,init) \ 800{
223 if (expect_false ((cnt) > cur)) \ 801 if (delay > 0.)
224 { \
225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \
233 init (base + cur, newcnt - cur); \
234 cur = newcnt; \
235 } 802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
236 821
237/*****************************************************************************/ 822/*****************************************************************************/
238 823
239static void 824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
240anfds_init (ANFD *base, int count)
241{
242 while (count--)
243 {
244 base->head = 0;
245 base->events = EV_NONE;
246 base->reify = 0;
247 825
248 ++base; 826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
829array_nextsize (int elem, int cur, int cnt)
830{
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
249 } 839 {
250} 840 ncur *= elem;
251 841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
252static void 842 ncur = ncur - sizeof (void *) * 4;
253event (EV_P_ W w, int events) 843 ncur /= elem;
254{
255 if (w->pending)
256 { 844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
858
859#define array_needsize(type,base,cur,cnt,init) \
860 if (expect_false ((cnt) > (cur))) \
861 { \
862 int ocur_ = (cur); \
863 (base) = (type *)array_realloc \
864 (sizeof (type), (base), &(cur), (cnt)); \
865 init ((base) + (ocur_), (cur) - ocur_); \
866 }
867
868#if 0
869#define array_slim(type,stem) \
870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
871 { \
872 stem ## max = array_roundsize (stem ## cnt >> 1); \
873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
875 }
876#endif
877
878#define array_free(stem, idx) \
879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
880
881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
888
889void noinline
890ev_feed_event (EV_P_ void *w, int revents)
891{
892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
894
895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
898 {
899 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_;
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 902 pendings [pri][w_->pending - 1].events = revents;
258 return;
259 } 903 }
260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265} 904}
266 905
267static void 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
268queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 923{
270 int i; 924 int i;
271 925
272 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
274} 928}
275 929
276static void 930/*****************************************************************************/
931
932inline_speed void
277fd_event (EV_P_ int fd, int events) 933fd_event_nocheck (EV_P_ int fd, int revents)
278{ 934{
279 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 936 ev_io *w;
281 937
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
283 { 939 {
284 int ev = w->events & events; 940 int ev = w->events & revents;
285 941
286 if (ev) 942 if (ev)
287 event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
288 } 944 }
289} 945}
290 946
291/*****************************************************************************/ 947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
292 953
293static void 954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
958void
959ev_feed_fd_event (EV_P_ int fd, int revents)
960{
961 if (fd >= 0 && fd < anfdmax)
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
294fd_reify (EV_P) 968fd_reify (EV_P)
295{ 969{
296 int i; 970 int i;
297 971
298 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
299 { 973 {
300 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
302 struct ev_io *w; 976 ev_io *w;
303 977
304 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
305 980
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events;
308
309 anfd->reify = 0; 981 anfd->reify = 0;
310 982
311 if (anfd->events != events) 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
984 if (o_reify & EV__IOFDSET)
312 { 985 {
313 method_modify (EV_A_ fd, anfd->events, events); 986 unsigned long arg;
314 anfd->events = events; 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
315 } 990 }
991#endif
992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
995 anfd->events = 0;
996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
1005 backend_modify (EV_A_ fd, o_events, anfd->events);
316 } 1006 }
317 1007
318 fdchangecnt = 0; 1008 fdchangecnt = 0;
319} 1009}
320 1010
321static void 1011/* something about the given fd changed */
1012inline_size void
322fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
323{ 1014{
324 if (anfds [fd].reify || fdchangecnt < 0) 1015 unsigned char reify = anfds [fd].reify;
325 return;
326
327 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
328 1017
1018 if (expect_true (!reify))
1019 {
329 ++fdchangecnt; 1020 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
332} 1024}
333 1025
334static void 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
335fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
336{ 1029{
337 struct ev_io *w; 1030 ev_io *w;
338 1031
339 while ((w = (struct ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
340 { 1033 {
341 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 1036 }
1037}
1038
1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
1041fd_valid (int fd)
1042{
1043#ifdef _WIN32
1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1045#else
1046 return fcntl (fd, F_GETFD) != -1;
1047#endif
344} 1048}
345 1049
346/* called on EBADF to verify fds */ 1050/* called on EBADF to verify fds */
347static void 1051static void noinline
348fd_ebadf (EV_P) 1052fd_ebadf (EV_P)
349{ 1053{
350 int fd; 1054 int fd;
351 1055
352 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 1057 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
355 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
356} 1060}
357 1061
358/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 1063static void noinline
360fd_enomem (EV_P) 1064fd_enomem (EV_P)
361{ 1065{
362 int fd; 1066 int fd;
363 1067
364 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 1069 if (anfds [fd].events)
366 { 1070 {
367 close (fd);
368 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
369 return; 1072 break;
370 } 1073 }
371} 1074}
372 1075
373/* susually called after fork if method needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 1077static void noinline
375fd_rearm_all (EV_P) 1078fd_rearm_all (EV_P)
376{ 1079{
377 int fd; 1080 int fd;
378 1081
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events) 1083 if (anfds [fd].events)
382 { 1084 {
383 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
384 fd_change (EV_A_ fd); 1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
385 } 1088 }
386} 1089}
387 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
388/*****************************************************************************/ 1105/*****************************************************************************/
389 1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
1268static void noinline
1269evpipe_init (EV_P)
1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
1290 fd_intern (evpipe [0]);
1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
1294
1295 ev_io_start (EV_A_ &pipe_w);
1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
390static void 1331static void
391upheap (WT *heap, int k) 1332pipecb (EV_P_ ev_io *iow, int revents)
392{ 1333{
393 WT w = heap [k]; 1334 int i;
394 1335
395 while (k && heap [k >> 1]->at > w->at) 1336#if EV_USE_EVENTFD
396 { 1337 if (evfd >= 0)
397 heap [k] = heap [k >> 1];
398 ((W)heap [k])->active = k + 1;
399 k >>= 1;
400 } 1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
401 1349
402 heap [k] = w; 1350 if (sig_pending)
403 ((W)heap [k])->active = k + 1; 1351 {
1352 sig_pending = 0;
404 1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
405} 1372}
1373
1374/*****************************************************************************/
406 1375
407static void 1376static void
408downheap (WT *heap, int N, int k) 1377ev_sighandler (int signum)
409{ 1378{
410 WT w = heap [k]; 1379#if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381#endif
411 1382
412 while (k < (N >> 1)) 1383#ifdef _WIN32
413 { 1384 signal (signum, ev_sighandler);
414 int j = k << 1; 1385#endif
415 1386
416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1387 signals [signum - 1].pending = 1;
417 ++j; 1388 evpipe_write (EV_A_ &sig_pending);
1389}
418 1390
419 if (w->at <= heap [j]->at) 1391void noinline
1392ev_feed_signal_event (EV_P_ int signum)
1393{
1394 WL w;
1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1401#if EV_MULTIPLICITY
1402 /* it is permissible to try to feed a signal to the wrong loop */
1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1404
1405 if (expect_false (signals [signum].loop != EV_A))
1406 return;
1407#endif
1408
1409 signals [signum].pending = 0;
1410
1411 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413}
1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
420 break; 1430 break;
421
422 heap [k] = heap [j];
423 ((W)heap [k])->active = k + 1;
424 k = j;
425 } 1431 }
426
427 heap [k] = w;
428 ((W)heap [k])->active = k + 1;
429} 1432}
1433#endif
1434
1435#endif
430 1436
431/*****************************************************************************/ 1437/*****************************************************************************/
432 1438
433typedef struct 1439#if EV_CHILD_ENABLE
434{ 1440static WL childs [EV_PID_HASHSIZE];
435 struct ev_watcher_list *head;
436 sig_atomic_t volatile gotsig;
437} ANSIG;
438 1441
439static ANSIG *signals;
440static int signalmax;
441
442static int sigpipe [2];
443static sig_atomic_t volatile gotsig;
444static struct ev_io sigev;
445
446static void
447signals_init (ANSIG *base, int count)
448{
449 while (count--)
450 {
451 base->head = 0;
452 base->gotsig = 0;
453
454 ++base;
455 }
456}
457
458static void
459sighandler (int signum)
460{
461 signals [signum - 1].gotsig = 1;
462
463 if (!gotsig)
464 {
465 int old_errno = errno;
466 gotsig = 1;
467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
469 }
470}
471
472static void
473sigcb (EV_P_ struct ev_io *iow, int revents)
474{
475 struct ev_watcher_list *w;
476 int signum;
477
478 read (sigpipe [0], &revents, 1);
479 gotsig = 0;
480
481 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig)
483 {
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489}
490
491static void
492siginit (EV_P)
493{
494#ifndef WIN32
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502
503 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
506}
507
508/*****************************************************************************/
509
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 1442static ev_signal childev;
1443
1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
1450child_reap (EV_P_ int chain, int pid, int status)
1451{
1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1454
1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
1459 {
1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1461 w->rpid = pid;
1462 w->rstatus = status;
1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1464 }
1465 }
1466}
514 1467
515#ifndef WCONTINUED 1468#ifndef WCONTINUED
516# define WCONTINUED 0 1469# define WCONTINUED 0
517#endif 1470#endif
518 1471
1472/* called on sigchld etc., calls waitpid */
519static void 1473static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 w->priority = sw->priority; /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
536{ 1475{
537 int pid, status; 1476 int pid, status;
538 1477
1478 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1479 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 1480 if (!WCONTINUED
1481 || errno != EINVAL
1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1483 return;
1484
541 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1486 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 1488
544 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1490 if ((EV_PID_HASHSIZE) > 1)
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 }
547} 1492}
548 1493
549#endif 1494#endif
550 1495
551/*****************************************************************************/ 1496/*****************************************************************************/
552 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1501#if EV_USE_PORT
1502# include "ev_port.c"
1503#endif
553#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
555#endif 1506#endif
556#if EV_USE_EPOLL 1507#if EV_USE_EPOLL
557# include "ev_epoll.c" 1508# include "ev_epoll.c"
574{ 1525{
575 return EV_VERSION_MINOR; 1526 return EV_VERSION_MINOR;
576} 1527}
577 1528
578/* return true if we are running with elevated privileges and should ignore env variables */ 1529/* return true if we are running with elevated privileges and should ignore env variables */
579static int 1530int inline_size
580enable_secure (void) 1531enable_secure (void)
581{ 1532{
582#ifdef WIN32 1533#ifdef _WIN32
583 return 0; 1534 return 0;
584#else 1535#else
585 return getuid () != geteuid () 1536 return getuid () != geteuid ()
586 || getgid () != getegid (); 1537 || getgid () != getegid ();
587#endif 1538#endif
588} 1539}
589 1540
590int 1541unsigned int
1542ev_supported_backends (void)
1543{
1544 unsigned int flags = 0;
1545
1546 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1547 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1548 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1549 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1550 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1551
1552 return flags;
1553}
1554
1555unsigned int
1556ev_recommended_backends (void)
1557{
1558 unsigned int flags = ev_supported_backends ();
1559
1560#ifndef __NetBSD__
1561 /* kqueue is borked on everything but netbsd apparently */
1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1563 flags &= ~EVBACKEND_KQUEUE;
1564#endif
1565#ifdef __APPLE__
1566 /* only select works correctly on that "unix-certified" platform */
1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1572#endif
1573
1574 return flags;
1575}
1576
1577unsigned int
1578ev_embeddable_backends (void)
1579{
1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1581
1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
1587}
1588
1589unsigned int
1590ev_backend (EV_P)
1591{
1592 return backend;
1593}
1594
1595#if EV_FEATURE_API
1596unsigned int
1597ev_iteration (EV_P)
1598{
1599 return loop_count;
1600}
1601
1602unsigned int
591ev_method (EV_P) 1603ev_depth (EV_P)
592{ 1604{
593 return method; 1605 return loop_depth;
594} 1606}
595 1607
596static void 1608void
597loop_init (EV_P_ int methods) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
598{ 1610{
599 if (!method) 1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1645static void noinline
1646loop_init (EV_P_ unsigned int flags)
1647{
1648 if (!backend)
600 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
601#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1662 {
1663 struct timespec ts;
1664
1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1666 have_monotonic = 1;
1667 }
1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
1704 if (!(flags & 0x0000ffffU))
1705 flags |= ev_recommended_backends ();
1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1710#if EV_USE_PORT
1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1712#endif
1713#if EV_USE_KQUEUE
1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1715#endif
1716#if EV_USE_EPOLL
1717 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1718#endif
1719#if EV_USE_POLL
1720 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1721#endif
1722#if EV_USE_SELECT
1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1724#endif
1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1729 ev_init (&pipe_w, pipecb);
1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1732 }
1733}
1734
1735/* free up a loop structure */
1736static void noinline
1737loop_destroy (EV_P)
1738{
1739 int i;
1740
1741 if (ev_is_active (&pipe_w))
1742 {
1743 /*ev_ref (EV_A);*/
1744 /*ev_io_stop (EV_A_ &pipe_w);*/
1745
1746#if EV_USE_EVENTFD
1747 if (evfd >= 0)
1748 close (evfd);
1749#endif
1750
1751 if (evpipe [0] >= 0)
1752 {
1753 EV_WIN32_CLOSE_FD (evpipe [0]);
1754 EV_WIN32_CLOSE_FD (evpipe [1]);
1755 }
1756 }
1757
1758#if EV_USE_SIGNALFD
1759 if (ev_is_active (&sigfd_w))
1760 close (sigfd);
1761#endif
1762
1763#if EV_USE_INOTIFY
1764 if (fs_fd >= 0)
1765 close (fs_fd);
1766#endif
1767
1768 if (backend_fd >= 0)
1769 close (backend_fd);
1770
1771#if EV_USE_IOCP
1772 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1773#endif
1774#if EV_USE_PORT
1775 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1776#endif
1777#if EV_USE_KQUEUE
1778 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1779#endif
1780#if EV_USE_EPOLL
1781 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1782#endif
1783#if EV_USE_POLL
1784 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1785#endif
1786#if EV_USE_SELECT
1787 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1788#endif
1789
1790 for (i = NUMPRI; i--; )
1791 {
1792 array_free (pending, [i]);
1793#if EV_IDLE_ENABLE
1794 array_free (idle, [i]);
1795#endif
1796 }
1797
1798 ev_free (anfds); anfds = 0; anfdmax = 0;
1799
1800 /* have to use the microsoft-never-gets-it-right macro */
1801 array_free (rfeed, EMPTY);
1802 array_free (fdchange, EMPTY);
1803 array_free (timer, EMPTY);
1804#if EV_PERIODIC_ENABLE
1805 array_free (periodic, EMPTY);
1806#endif
1807#if EV_FORK_ENABLE
1808 array_free (fork, EMPTY);
1809#endif
1810 array_free (prepare, EMPTY);
1811 array_free (check, EMPTY);
1812#if EV_ASYNC_ENABLE
1813 array_free (async, EMPTY);
1814#endif
1815
1816 backend = 0;
1817}
1818
1819#if EV_USE_INOTIFY
1820inline_size void infy_fork (EV_P);
1821#endif
1822
1823inline_size void
1824loop_fork (EV_P)
1825{
1826#if EV_USE_PORT
1827 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1828#endif
1829#if EV_USE_KQUEUE
1830 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1831#endif
1832#if EV_USE_EPOLL
1833 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1834#endif
1835#if EV_USE_INOTIFY
1836 infy_fork (EV_A);
1837#endif
1838
1839 if (ev_is_active (&pipe_w))
1840 {
1841 /* this "locks" the handlers against writing to the pipe */
1842 /* while we modify the fd vars */
1843 sig_pending = 1;
1844#if EV_ASYNC_ENABLE
1845 async_pending = 1;
1846#endif
1847
1848 ev_ref (EV_A);
1849 ev_io_stop (EV_A_ &pipe_w);
1850
1851#if EV_USE_EVENTFD
1852 if (evfd >= 0)
1853 close (evfd);
1854#endif
1855
1856 if (evpipe [0] >= 0)
1857 {
1858 EV_WIN32_CLOSE_FD (evpipe [0]);
1859 EV_WIN32_CLOSE_FD (evpipe [1]);
1860 }
1861
1862#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1863 evpipe_init (EV_A);
1864 /* now iterate over everything, in case we missed something */
1865 pipecb (EV_A_ &pipe_w, EV_READ);
1866#endif
1867 }
1868
1869 postfork = 0;
1870}
1871
1872#if EV_MULTIPLICITY
1873
1874struct ev_loop *
1875ev_loop_new (unsigned int flags)
1876{
1877 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1878
1879 memset (EV_A, 0, sizeof (struct ev_loop));
1880 loop_init (EV_A_ flags);
1881
1882 if (ev_backend (EV_A))
1883 return EV_A;
1884
1885 return 0;
1886}
1887
1888void
1889ev_loop_destroy (EV_P)
1890{
1891 loop_destroy (EV_A);
1892 ev_free (loop);
1893}
1894
1895void
1896ev_loop_fork (EV_P)
1897{
1898 postfork = 1; /* must be in line with ev_default_fork */
1899}
1900#endif /* multiplicity */
1901
1902#if EV_VERIFY
1903static void noinline
1904verify_watcher (EV_P_ W w)
1905{
1906 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1907
1908 if (w->pending)
1909 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1910}
1911
1912static void noinline
1913verify_heap (EV_P_ ANHE *heap, int N)
1914{
1915 int i;
1916
1917 for (i = HEAP0; i < N + HEAP0; ++i)
1918 {
1919 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1920 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1921 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1922
1923 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1924 }
1925}
1926
1927static void noinline
1928array_verify (EV_P_ W *ws, int cnt)
1929{
1930 while (cnt--)
1931 {
1932 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1933 verify_watcher (EV_A_ ws [cnt]);
1934 }
1935}
1936#endif
1937
1938#if EV_FEATURE_API
1939void
1940ev_verify (EV_P)
1941{
1942#if EV_VERIFY
1943 int i;
1944 WL w;
1945
1946 assert (activecnt >= -1);
1947
1948 assert (fdchangemax >= fdchangecnt);
1949 for (i = 0; i < fdchangecnt; ++i)
1950 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1951
1952 assert (anfdmax >= 0);
1953 for (i = 0; i < anfdmax; ++i)
1954 for (w = anfds [i].head; w; w = w->next)
602 { 1955 {
603 struct timespec ts; 1956 verify_watcher (EV_A_ (W)w);
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1957 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
605 have_monotonic = 1; 1958 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
606 } 1959 }
1960
1961 assert (timermax >= timercnt);
1962 verify_heap (EV_A_ timers, timercnt);
1963
1964#if EV_PERIODIC_ENABLE
1965 assert (periodicmax >= periodiccnt);
1966 verify_heap (EV_A_ periodics, periodiccnt);
1967#endif
1968
1969 for (i = NUMPRI; i--; )
1970 {
1971 assert (pendingmax [i] >= pendingcnt [i]);
1972#if EV_IDLE_ENABLE
1973 assert (idleall >= 0);
1974 assert (idlemax [i] >= idlecnt [i]);
1975 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1976#endif
1977 }
1978
1979#if EV_FORK_ENABLE
1980 assert (forkmax >= forkcnt);
1981 array_verify (EV_A_ (W *)forks, forkcnt);
1982#endif
1983
1984#if EV_ASYNC_ENABLE
1985 assert (asyncmax >= asynccnt);
1986 array_verify (EV_A_ (W *)asyncs, asynccnt);
1987#endif
1988
1989#if EV_PREPARE_ENABLE
1990 assert (preparemax >= preparecnt);
1991 array_verify (EV_A_ (W *)prepares, preparecnt);
1992#endif
1993
1994#if EV_CHECK_ENABLE
1995 assert (checkmax >= checkcnt);
1996 array_verify (EV_A_ (W *)checks, checkcnt);
1997#endif
1998
1999# if 0
2000#if EV_CHILD_ENABLE
2001 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2002 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2003#endif
607#endif 2004# endif
608
609 rt_now = ev_time ();
610 mn_now = get_clock ();
611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif 2005#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637} 2006}
638
639void
640loop_destroy (EV_P)
641{
642#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif 2007#endif
645#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif
648#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif
651#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653#endif
654#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif
657
658 method = 0;
659 /*TODO*/
660}
661
662void
663loop_fork (EV_P)
664{
665 /*TODO*/
666#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif
672}
673 2008
674#if EV_MULTIPLICITY 2009#if EV_MULTIPLICITY
675struct ev_loop * 2010struct ev_loop *
676ev_loop_new (int methods) 2011ev_default_loop_init (unsigned int flags)
677{ 2012#else
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 2013int
679 2014ev_default_loop (unsigned int flags)
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif 2015#endif
702 2016{
2017 if (!ev_default_loop_ptr)
2018 {
703#if EV_MULTIPLICITY 2019#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct; 2020 EV_P = ev_default_loop_ptr = &default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else 2021#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop)
720 {
721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1; 2022 ev_default_loop_ptr = 1;
725#endif 2023#endif
726 2024
727 loop_init (EV_A_ methods); 2025 loop_init (EV_A_ flags);
728 2026
729 if (ev_method (EV_A)) 2027 if (ev_backend (EV_A))
730 { 2028 {
731 ev_watcher_init (&sigev, sigcb); 2029#if EV_CHILD_ENABLE
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A);
734
735#ifndef WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 2030 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 2031 ev_set_priority (&childev, EV_MAXPRI);
738 ev_signal_start (EV_A_ &childev); 2032 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2033 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif 2034#endif
741 } 2035 }
742 else 2036 else
743 default_loop = 0; 2037 ev_default_loop_ptr = 0;
744 } 2038 }
745 2039
746 return default_loop; 2040 return ev_default_loop_ptr;
747} 2041}
748 2042
749void 2043void
750ev_default_destroy (void) 2044ev_default_destroy (void)
751{ 2045{
752#if EV_MULTIPLICITY 2046#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 2047 EV_P = ev_default_loop_ptr;
754#endif 2048#endif
755 2049
2050 ev_default_loop_ptr = 0;
2051
2052#if EV_CHILD_ENABLE
756 ev_ref (EV_A); /* child watcher */ 2053 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 2054 ev_signal_stop (EV_A_ &childev);
758 2055#endif
759 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764 2056
765 loop_destroy (EV_A); 2057 loop_destroy (EV_A);
766} 2058}
767 2059
768void 2060void
769ev_default_fork (void) 2061ev_default_fork (void)
770{ 2062{
771#if EV_MULTIPLICITY 2063#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 2064 EV_P = ev_default_loop_ptr;
773#endif 2065#endif
774 2066
775 loop_fork (EV_A); 2067 postfork = 1; /* must be in line with ev_loop_fork */
776
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 2068}
785 2069
786/*****************************************************************************/ 2070/*****************************************************************************/
787 2071
788static void 2072void
789call_pending (EV_P) 2073ev_invoke (EV_P_ void *w, int revents)
2074{
2075 EV_CB_INVOKE ((W)w, revents);
2076}
2077
2078unsigned int
2079ev_pending_count (EV_P)
2080{
2081 int pri;
2082 unsigned int count = 0;
2083
2084 for (pri = NUMPRI; pri--; )
2085 count += pendingcnt [pri];
2086
2087 return count;
2088}
2089
2090void noinline
2091ev_invoke_pending (EV_P)
790{ 2092{
791 int pri; 2093 int pri;
792 2094
793 for (pri = NUMPRI; pri--; ) 2095 for (pri = NUMPRI; pri--; )
794 while (pendingcnt [pri]) 2096 while (pendingcnt [pri])
795 { 2097 {
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2098 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 2099
798 if (p->w) 2100 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
799 { 2101 /* ^ this is no longer true, as pending_w could be here */
2102
800 p->w->pending = 0; 2103 p->w->pending = 0;
801 p->w->cb (EV_A_ p->w, p->events); 2104 EV_CB_INVOKE (p->w, p->events);
802 } 2105 EV_FREQUENT_CHECK;
803 } 2106 }
804} 2107}
805 2108
806static void 2109#if EV_IDLE_ENABLE
2110/* make idle watchers pending. this handles the "call-idle */
2111/* only when higher priorities are idle" logic */
2112inline_size void
807timers_reify (EV_P) 2113idle_reify (EV_P)
808{ 2114{
809 while (timercnt && timers [0]->at <= mn_now) 2115 if (expect_false (idleall))
810 { 2116 {
811 struct ev_timer *w = timers [0]; 2117 int pri;
812 2118
813 assert (("inactive timer on timer heap detected", ev_is_active (w))); 2119 for (pri = NUMPRI; pri--; )
814
815 /* first reschedule or stop timer */
816 if (w->repeat)
817 { 2120 {
818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2121 if (pendingcnt [pri])
819 w->at = mn_now + w->repeat; 2122 break;
820 downheap ((WT *)timers, timercnt, 0);
821 }
822 else
823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
824 2123
825 event (EV_A_ (W)w, EV_TIMEOUT); 2124 if (idlecnt [pri])
826 }
827}
828
829static void
830periodics_reify (EV_P)
831{
832 while (periodiccnt && periodics [0]->at <= rt_now)
833 {
834 struct ev_periodic *w = periodics [0];
835
836 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
837
838 /* first reschedule or stop timer */
839 if (w->interval)
840 {
841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
843 downheap ((WT *)periodics, periodiccnt, 0);
844 }
845 else
846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
847
848 event (EV_A_ (W)w, EV_PERIODIC);
849 }
850}
851
852static void
853periodics_reschedule (EV_P)
854{
855 int i;
856
857 /* adjust periodics after time jump */
858 for (i = 0; i < periodiccnt; ++i)
859 {
860 struct ev_periodic *w = periodics [i];
861
862 if (w->interval)
863 {
864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
865
866 if (fabs (diff) >= 1e-4)
867 { 2125 {
868 ev_periodic_stop (EV_A_ w); 2126 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
869 ev_periodic_start (EV_A_ w); 2127 break;
870
871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
872 } 2128 }
873 } 2129 }
874 } 2130 }
875} 2131}
2132#endif
876 2133
877inline int 2134/* make timers pending */
878time_update_monotonic (EV_P) 2135inline_size void
2136timers_reify (EV_P)
879{ 2137{
880 mn_now = get_clock (); 2138 EV_FREQUENT_CHECK;
881 2139
882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2140 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
883 {
884 rt_now = rtmn_diff + mn_now;
885 return 0;
886 } 2141 {
887 else 2142 do
2143 {
2144 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2145
2146 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2147
2148 /* first reschedule or stop timer */
2149 if (w->repeat)
2150 {
2151 ev_at (w) += w->repeat;
2152 if (ev_at (w) < mn_now)
2153 ev_at (w) = mn_now;
2154
2155 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2156
2157 ANHE_at_cache (timers [HEAP0]);
2158 downheap (timers, timercnt, HEAP0);
2159 }
2160 else
2161 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2162
2163 EV_FREQUENT_CHECK;
2164 feed_reverse (EV_A_ (W)w);
2165 }
2166 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2167
2168 feed_reverse_done (EV_A_ EV_TIMER);
888 { 2169 }
889 now_floor = mn_now; 2170}
890 rt_now = ev_time (); 2171
891 return 1; 2172#if EV_PERIODIC_ENABLE
2173/* make periodics pending */
2174inline_size void
2175periodics_reify (EV_P)
2176{
2177 EV_FREQUENT_CHECK;
2178
2179 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
892 } 2180 {
893} 2181 int feed_count = 0;
894 2182
895static void 2183 do
896time_update (EV_P) 2184 {
2185 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2186
2187 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2188
2189 /* first reschedule or stop timer */
2190 if (w->reschedule_cb)
2191 {
2192 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2193
2194 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2195
2196 ANHE_at_cache (periodics [HEAP0]);
2197 downheap (periodics, periodiccnt, HEAP0);
2198 }
2199 else if (w->interval)
2200 {
2201 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2202 /* if next trigger time is not sufficiently in the future, put it there */
2203 /* this might happen because of floating point inexactness */
2204 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2205 {
2206 ev_at (w) += w->interval;
2207
2208 /* if interval is unreasonably low we might still have a time in the past */
2209 /* so correct this. this will make the periodic very inexact, but the user */
2210 /* has effectively asked to get triggered more often than possible */
2211 if (ev_at (w) < ev_rt_now)
2212 ev_at (w) = ev_rt_now;
2213 }
2214
2215 ANHE_at_cache (periodics [HEAP0]);
2216 downheap (periodics, periodiccnt, HEAP0);
2217 }
2218 else
2219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2220
2221 EV_FREQUENT_CHECK;
2222 feed_reverse (EV_A_ (W)w);
2223 }
2224 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2225
2226 feed_reverse_done (EV_A_ EV_PERIODIC);
2227 }
2228}
2229
2230/* simply recalculate all periodics */
2231/* TODO: maybe ensure that at least one event happens when jumping forward? */
2232static void noinline
2233periodics_reschedule (EV_P)
897{ 2234{
898 int i; 2235 int i;
899 2236
2237 /* adjust periodics after time jump */
2238 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2239 {
2240 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2241
2242 if (w->reschedule_cb)
2243 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2244 else if (w->interval)
2245 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2246
2247 ANHE_at_cache (periodics [i]);
2248 }
2249
2250 reheap (periodics, periodiccnt);
2251}
2252#endif
2253
2254/* adjust all timers by a given offset */
2255static void noinline
2256timers_reschedule (EV_P_ ev_tstamp adjust)
2257{
2258 int i;
2259
2260 for (i = 0; i < timercnt; ++i)
2261 {
2262 ANHE *he = timers + i + HEAP0;
2263 ANHE_w (*he)->at += adjust;
2264 ANHE_at_cache (*he);
2265 }
2266}
2267
2268/* fetch new monotonic and realtime times from the kernel */
2269/* also detect if there was a timejump, and act accordingly */
2270inline_speed void
2271time_update (EV_P_ ev_tstamp max_block)
2272{
900#if EV_USE_MONOTONIC 2273#if EV_USE_MONOTONIC
901 if (expect_true (have_monotonic)) 2274 if (expect_true (have_monotonic))
902 { 2275 {
903 if (time_update_monotonic (EV_A)) 2276 int i;
2277 ev_tstamp odiff = rtmn_diff;
2278
2279 mn_now = get_clock ();
2280
2281 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2282 /* interpolate in the meantime */
2283 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
904 { 2284 {
905 ev_tstamp odiff = rtmn_diff; 2285 ev_rt_now = rtmn_diff + mn_now;
2286 return;
2287 }
906 2288
2289 now_floor = mn_now;
2290 ev_rt_now = ev_time ();
2291
907 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2292 /* loop a few times, before making important decisions.
2293 * on the choice of "4": one iteration isn't enough,
2294 * in case we get preempted during the calls to
2295 * ev_time and get_clock. a second call is almost guaranteed
2296 * to succeed in that case, though. and looping a few more times
2297 * doesn't hurt either as we only do this on time-jumps or
2298 * in the unlikely event of having been preempted here.
2299 */
2300 for (i = 4; --i; )
908 { 2301 {
909 rtmn_diff = rt_now - mn_now; 2302 rtmn_diff = ev_rt_now - mn_now;
910 2303
911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2304 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
912 return; /* all is well */ 2305 return; /* all is well */
913 2306
914 rt_now = ev_time (); 2307 ev_rt_now = ev_time ();
915 mn_now = get_clock (); 2308 mn_now = get_clock ();
916 now_floor = mn_now; 2309 now_floor = mn_now;
917 } 2310 }
918 2311
2312 /* no timer adjustment, as the monotonic clock doesn't jump */
2313 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2314# if EV_PERIODIC_ENABLE
2315 periodics_reschedule (EV_A);
2316# endif
2317 }
2318 else
2319#endif
2320 {
2321 ev_rt_now = ev_time ();
2322
2323 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2324 {
2325 /* adjust timers. this is easy, as the offset is the same for all of them */
2326 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2327#if EV_PERIODIC_ENABLE
919 periodics_reschedule (EV_A); 2328 periodics_reschedule (EV_A);
920 /* no timer adjustment, as the monotonic clock doesn't jump */ 2329#endif
921 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
922 } 2330 }
923 }
924 else
925#endif
926 {
927 rt_now = ev_time ();
928 2331
929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
930 {
931 periodics_reschedule (EV_A);
932
933 /* adjust timers. this is easy, as the offset is the same for all */
934 for (i = 0; i < timercnt; ++i)
935 timers [i]->at += rt_now - mn_now;
936 }
937
938 mn_now = rt_now; 2332 mn_now = ev_rt_now;
939 } 2333 }
940} 2334}
941 2335
942void 2336void
943ev_ref (EV_P)
944{
945 ++activecnt;
946}
947
948void
949ev_unref (EV_P)
950{
951 --activecnt;
952}
953
954static int loop_done;
955
956void
957ev_loop (EV_P_ int flags) 2337ev_run (EV_P_ int flags)
958{ 2338{
959 double block; 2339#if EV_FEATURE_API
960 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2340 ++loop_depth;
2341#endif
2342
2343 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2344
2345 loop_done = EVBREAK_CANCEL;
2346
2347 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
961 2348
962 do 2349 do
963 { 2350 {
2351#if EV_VERIFY >= 2
2352 ev_verify (EV_A);
2353#endif
2354
2355#ifndef _WIN32
2356 if (expect_false (curpid)) /* penalise the forking check even more */
2357 if (expect_false (getpid () != curpid))
2358 {
2359 curpid = getpid ();
2360 postfork = 1;
2361 }
2362#endif
2363
2364#if EV_FORK_ENABLE
2365 /* we might have forked, so queue fork handlers */
2366 if (expect_false (postfork))
2367 if (forkcnt)
2368 {
2369 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2370 EV_INVOKE_PENDING;
2371 }
2372#endif
2373
2374#if EV_PREPARE_ENABLE
964 /* queue check watchers (and execute them) */ 2375 /* queue prepare watchers (and execute them) */
965 if (expect_false (preparecnt)) 2376 if (expect_false (preparecnt))
966 { 2377 {
967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2378 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
968 call_pending (EV_A); 2379 EV_INVOKE_PENDING;
969 } 2380 }
2381#endif
2382
2383 if (expect_false (loop_done))
2384 break;
2385
2386 /* we might have forked, so reify kernel state if necessary */
2387 if (expect_false (postfork))
2388 loop_fork (EV_A);
970 2389
971 /* update fd-related kernel structures */ 2390 /* update fd-related kernel structures */
972 fd_reify (EV_A); 2391 fd_reify (EV_A);
973 2392
974 /* calculate blocking time */ 2393 /* calculate blocking time */
2394 {
2395 ev_tstamp waittime = 0.;
2396 ev_tstamp sleeptime = 0.;
975 2397
976 /* we only need this for !monotonic clockor timers, but as we basically 2398 /* remember old timestamp for io_blocktime calculation */
977 always have timers, we just calculate it always */ 2399 ev_tstamp prev_mn_now = mn_now;
978#if EV_USE_MONOTONIC 2400
979 if (expect_true (have_monotonic)) 2401 /* update time to cancel out callback processing overhead */
980 time_update_monotonic (EV_A); 2402 time_update (EV_A_ 1e100);
981 else 2403
982#endif 2404 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
983 { 2405 {
984 rt_now = ev_time ();
985 mn_now = rt_now;
986 }
987
988 if (flags & EVLOOP_NONBLOCK || idlecnt)
989 block = 0.;
990 else
991 {
992 block = MAX_BLOCKTIME; 2406 waittime = MAX_BLOCKTIME;
993 2407
994 if (timercnt) 2408 if (timercnt)
995 { 2409 {
996 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 2410 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
997 if (block > to) block = to; 2411 if (waittime > to) waittime = to;
998 } 2412 }
999 2413
2414#if EV_PERIODIC_ENABLE
1000 if (periodiccnt) 2415 if (periodiccnt)
1001 { 2416 {
1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 2417 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1003 if (block > to) block = to; 2418 if (waittime > to) waittime = to;
1004 } 2419 }
2420#endif
1005 2421
1006 if (block < 0.) block = 0.; 2422 /* don't let timeouts decrease the waittime below timeout_blocktime */
2423 if (expect_false (waittime < timeout_blocktime))
2424 waittime = timeout_blocktime;
2425
2426 /* extra check because io_blocktime is commonly 0 */
2427 if (expect_false (io_blocktime))
2428 {
2429 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2430
2431 if (sleeptime > waittime - backend_fudge)
2432 sleeptime = waittime - backend_fudge;
2433
2434 if (expect_true (sleeptime > 0.))
2435 {
2436 ev_sleep (sleeptime);
2437 waittime -= sleeptime;
2438 }
2439 }
1007 } 2440 }
1008 2441
1009 method_poll (EV_A_ block); 2442#if EV_FEATURE_API
2443 ++loop_count;
2444#endif
2445 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2446 backend_poll (EV_A_ waittime);
2447 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1010 2448
1011 /* update rt_now, do magic */ 2449 /* update ev_rt_now, do magic */
1012 time_update (EV_A); 2450 time_update (EV_A_ waittime + sleeptime);
2451 }
1013 2452
1014 /* queue pending timers and reschedule them */ 2453 /* queue pending timers and reschedule them */
1015 timers_reify (EV_A); /* relative timers called last */ 2454 timers_reify (EV_A); /* relative timers called last */
2455#if EV_PERIODIC_ENABLE
1016 periodics_reify (EV_A); /* absolute timers called first */ 2456 periodics_reify (EV_A); /* absolute timers called first */
2457#endif
1017 2458
2459#if EV_IDLE_ENABLE
1018 /* queue idle watchers unless io or timers are pending */ 2460 /* queue idle watchers unless other events are pending */
1019 if (!pendingcnt) 2461 idle_reify (EV_A);
1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2462#endif
1021 2463
2464#if EV_CHECK_ENABLE
1022 /* queue check watchers, to be executed first */ 2465 /* queue check watchers, to be executed first */
1023 if (checkcnt) 2466 if (expect_false (checkcnt))
1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2467 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2468#endif
1025 2469
1026 call_pending (EV_A); 2470 EV_INVOKE_PENDING;
1027 } 2471 }
1028 while (activecnt && !loop_done); 2472 while (expect_true (
2473 activecnt
2474 && !loop_done
2475 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2476 ));
1029 2477
1030 if (loop_done != 2) 2478 if (loop_done == EVBREAK_ONE)
1031 loop_done = 0; 2479 loop_done = EVBREAK_CANCEL;
1032}
1033 2480
2481#if EV_FEATURE_API
2482 --loop_depth;
2483#endif
2484}
2485
1034void 2486void
1035ev_unloop (EV_P_ int how) 2487ev_break (EV_P_ int how)
1036{ 2488{
1037 loop_done = how; 2489 loop_done = how;
1038} 2490}
1039 2491
2492void
2493ev_ref (EV_P)
2494{
2495 ++activecnt;
2496}
2497
2498void
2499ev_unref (EV_P)
2500{
2501 --activecnt;
2502}
2503
2504void
2505ev_now_update (EV_P)
2506{
2507 time_update (EV_A_ 1e100);
2508}
2509
2510void
2511ev_suspend (EV_P)
2512{
2513 ev_now_update (EV_A);
2514}
2515
2516void
2517ev_resume (EV_P)
2518{
2519 ev_tstamp mn_prev = mn_now;
2520
2521 ev_now_update (EV_A);
2522 timers_reschedule (EV_A_ mn_now - mn_prev);
2523#if EV_PERIODIC_ENABLE
2524 /* TODO: really do this? */
2525 periodics_reschedule (EV_A);
2526#endif
2527}
2528
1040/*****************************************************************************/ 2529/*****************************************************************************/
2530/* singly-linked list management, used when the expected list length is short */
1041 2531
1042inline void 2532inline_size void
1043wlist_add (WL *head, WL elem) 2533wlist_add (WL *head, WL elem)
1044{ 2534{
1045 elem->next = *head; 2535 elem->next = *head;
1046 *head = elem; 2536 *head = elem;
1047} 2537}
1048 2538
1049inline void 2539inline_size void
1050wlist_del (WL *head, WL elem) 2540wlist_del (WL *head, WL elem)
1051{ 2541{
1052 while (*head) 2542 while (*head)
1053 { 2543 {
1054 if (*head == elem) 2544 if (expect_true (*head == elem))
1055 { 2545 {
1056 *head = elem->next; 2546 *head = elem->next;
1057 return; 2547 break;
1058 } 2548 }
1059 2549
1060 head = &(*head)->next; 2550 head = &(*head)->next;
1061 } 2551 }
1062} 2552}
1063 2553
2554/* internal, faster, version of ev_clear_pending */
1064inline void 2555inline_speed void
1065ev_clear_pending (EV_P_ W w) 2556clear_pending (EV_P_ W w)
1066{ 2557{
1067 if (w->pending) 2558 if (w->pending)
1068 { 2559 {
1069 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2560 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1070 w->pending = 0; 2561 w->pending = 0;
1071 } 2562 }
1072} 2563}
1073 2564
2565int
2566ev_clear_pending (EV_P_ void *w)
2567{
2568 W w_ = (W)w;
2569 int pending = w_->pending;
2570
2571 if (expect_true (pending))
2572 {
2573 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2574 p->w = (W)&pending_w;
2575 w_->pending = 0;
2576 return p->events;
2577 }
2578 else
2579 return 0;
2580}
2581
1074inline void 2582inline_size void
2583pri_adjust (EV_P_ W w)
2584{
2585 int pri = ev_priority (w);
2586 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2587 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2588 ev_set_priority (w, pri);
2589}
2590
2591inline_speed void
1075ev_start (EV_P_ W w, int active) 2592ev_start (EV_P_ W w, int active)
1076{ 2593{
1077 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2594 pri_adjust (EV_A_ w);
1078 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1079
1080 w->active = active; 2595 w->active = active;
1081 ev_ref (EV_A); 2596 ev_ref (EV_A);
1082} 2597}
1083 2598
1084inline void 2599inline_size void
1085ev_stop (EV_P_ W w) 2600ev_stop (EV_P_ W w)
1086{ 2601{
1087 ev_unref (EV_A); 2602 ev_unref (EV_A);
1088 w->active = 0; 2603 w->active = 0;
1089} 2604}
1090 2605
1091/*****************************************************************************/ 2606/*****************************************************************************/
1092 2607
1093void 2608void noinline
1094ev_io_start (EV_P_ struct ev_io *w) 2609ev_io_start (EV_P_ ev_io *w)
1095{ 2610{
1096 int fd = w->fd; 2611 int fd = w->fd;
1097 2612
1098 if (ev_is_active (w)) 2613 if (expect_false (ev_is_active (w)))
1099 return; 2614 return;
1100 2615
1101 assert (("ev_io_start called with negative fd", fd >= 0)); 2616 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2617 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2618
2619 EV_FREQUENT_CHECK;
1102 2620
1103 ev_start (EV_A_ (W)w, 1); 2621 ev_start (EV_A_ (W)w, 1);
1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2622 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1105 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2623 wlist_add (&anfds[fd].head, (WL)w);
1106 2624
1107 fd_change (EV_A_ fd); 2625 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1108} 2626 w->events &= ~EV__IOFDSET;
1109 2627
1110void 2628 EV_FREQUENT_CHECK;
2629}
2630
2631void noinline
1111ev_io_stop (EV_P_ struct ev_io *w) 2632ev_io_stop (EV_P_ ev_io *w)
1112{ 2633{
1113 ev_clear_pending (EV_A_ (W)w); 2634 clear_pending (EV_A_ (W)w);
1114 if (!ev_is_active (w)) 2635 if (expect_false (!ev_is_active (w)))
1115 return; 2636 return;
1116 2637
2638 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2639
2640 EV_FREQUENT_CHECK;
2641
1117 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2642 wlist_del (&anfds[w->fd].head, (WL)w);
1118 ev_stop (EV_A_ (W)w); 2643 ev_stop (EV_A_ (W)w);
1119 2644
1120 fd_change (EV_A_ w->fd); 2645 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1121}
1122 2646
1123void 2647 EV_FREQUENT_CHECK;
2648}
2649
2650void noinline
1124ev_timer_start (EV_P_ struct ev_timer *w) 2651ev_timer_start (EV_P_ ev_timer *w)
1125{ 2652{
1126 if (ev_is_active (w)) 2653 if (expect_false (ev_is_active (w)))
1127 return; 2654 return;
1128 2655
1129 w->at += mn_now; 2656 ev_at (w) += mn_now;
1130 2657
1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2658 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1132 2659
2660 EV_FREQUENT_CHECK;
2661
2662 ++timercnt;
1133 ev_start (EV_A_ (W)w, ++timercnt); 2663 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1134 array_needsize (timers, timermax, timercnt, ); 2664 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1135 timers [timercnt - 1] = w; 2665 ANHE_w (timers [ev_active (w)]) = (WT)w;
1136 upheap ((WT *)timers, timercnt - 1); 2666 ANHE_at_cache (timers [ev_active (w)]);
2667 upheap (timers, ev_active (w));
1137 2668
2669 EV_FREQUENT_CHECK;
2670
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2671 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1139} 2672}
1140 2673
1141void 2674void noinline
1142ev_timer_stop (EV_P_ struct ev_timer *w) 2675ev_timer_stop (EV_P_ ev_timer *w)
1143{ 2676{
1144 ev_clear_pending (EV_A_ (W)w); 2677 clear_pending (EV_A_ (W)w);
1145 if (!ev_is_active (w)) 2678 if (expect_false (!ev_is_active (w)))
1146 return; 2679 return;
1147 2680
2681 EV_FREQUENT_CHECK;
2682
2683 {
2684 int active = ev_active (w);
2685
1148 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2686 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1149 2687
1150 if (((W)w)->active < timercnt--) 2688 --timercnt;
2689
2690 if (expect_true (active < timercnt + HEAP0))
1151 { 2691 {
1152 timers [((W)w)->active - 1] = timers [timercnt]; 2692 timers [active] = timers [timercnt + HEAP0];
1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2693 adjustheap (timers, timercnt, active);
1154 } 2694 }
2695 }
1155 2696
1156 w->at = w->repeat; 2697 ev_at (w) -= mn_now;
1157 2698
1158 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
1159}
1160 2700
1161void 2701 EV_FREQUENT_CHECK;
2702}
2703
2704void noinline
1162ev_timer_again (EV_P_ struct ev_timer *w) 2705ev_timer_again (EV_P_ ev_timer *w)
1163{ 2706{
2707 EV_FREQUENT_CHECK;
2708
1164 if (ev_is_active (w)) 2709 if (ev_is_active (w))
1165 { 2710 {
1166 if (w->repeat) 2711 if (w->repeat)
1167 { 2712 {
1168 w->at = mn_now + w->repeat; 2713 ev_at (w) = mn_now + w->repeat;
1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2714 ANHE_at_cache (timers [ev_active (w)]);
2715 adjustheap (timers, timercnt, ev_active (w));
1170 } 2716 }
1171 else 2717 else
1172 ev_timer_stop (EV_A_ w); 2718 ev_timer_stop (EV_A_ w);
1173 } 2719 }
1174 else if (w->repeat) 2720 else if (w->repeat)
2721 {
2722 ev_at (w) = w->repeat;
1175 ev_timer_start (EV_A_ w); 2723 ev_timer_start (EV_A_ w);
1176} 2724 }
1177 2725
1178void 2726 EV_FREQUENT_CHECK;
2727}
2728
2729ev_tstamp
2730ev_timer_remaining (EV_P_ ev_timer *w)
2731{
2732 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2733}
2734
2735#if EV_PERIODIC_ENABLE
2736void noinline
1179ev_periodic_start (EV_P_ struct ev_periodic *w) 2737ev_periodic_start (EV_P_ ev_periodic *w)
1180{ 2738{
1181 if (ev_is_active (w)) 2739 if (expect_false (ev_is_active (w)))
1182 return; 2740 return;
1183 2741
2742 if (w->reschedule_cb)
2743 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2744 else if (w->interval)
2745 {
1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2746 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1185
1186 /* this formula differs from the one in periodic_reify because we do not always round up */ 2747 /* this formula differs from the one in periodic_reify because we do not always round up */
1187 if (w->interval)
1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2748 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2749 }
2750 else
2751 ev_at (w) = w->offset;
1189 2752
2753 EV_FREQUENT_CHECK;
2754
2755 ++periodiccnt;
1190 ev_start (EV_A_ (W)w, ++periodiccnt); 2756 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1191 array_needsize (periodics, periodicmax, periodiccnt, ); 2757 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1192 periodics [periodiccnt - 1] = w; 2758 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1193 upheap ((WT *)periodics, periodiccnt - 1); 2759 ANHE_at_cache (periodics [ev_active (w)]);
2760 upheap (periodics, ev_active (w));
1194 2761
2762 EV_FREQUENT_CHECK;
2763
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2764 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1196} 2765}
1197 2766
1198void 2767void noinline
1199ev_periodic_stop (EV_P_ struct ev_periodic *w) 2768ev_periodic_stop (EV_P_ ev_periodic *w)
1200{ 2769{
1201 ev_clear_pending (EV_A_ (W)w); 2770 clear_pending (EV_A_ (W)w);
1202 if (!ev_is_active (w)) 2771 if (expect_false (!ev_is_active (w)))
1203 return; 2772 return;
1204 2773
2774 EV_FREQUENT_CHECK;
2775
2776 {
2777 int active = ev_active (w);
2778
1205 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2779 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1206 2780
1207 if (((W)w)->active < periodiccnt--) 2781 --periodiccnt;
2782
2783 if (expect_true (active < periodiccnt + HEAP0))
1208 { 2784 {
1209 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2785 periodics [active] = periodics [periodiccnt + HEAP0];
1210 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2786 adjustheap (periodics, periodiccnt, active);
1211 } 2787 }
2788 }
1212 2789
1213 ev_stop (EV_A_ (W)w); 2790 ev_stop (EV_A_ (W)w);
1214}
1215 2791
1216void 2792 EV_FREQUENT_CHECK;
1217ev_idle_start (EV_P_ struct ev_idle *w)
1218{
1219 if (ev_is_active (w))
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, );
1224 idles [idlecnt - 1] = w;
1225} 2793}
1226 2794
1227void 2795void noinline
1228ev_idle_stop (EV_P_ struct ev_idle *w) 2796ev_periodic_again (EV_P_ ev_periodic *w)
1229{ 2797{
1230 ev_clear_pending (EV_A_ (W)w); 2798 /* TODO: use adjustheap and recalculation */
1231 if (ev_is_active (w))
1232 return;
1233
1234 idles [((W)w)->active - 1] = idles [--idlecnt];
1235 ev_stop (EV_A_ (W)w); 2799 ev_periodic_stop (EV_A_ w);
2800 ev_periodic_start (EV_A_ w);
1236} 2801}
1237 2802#endif
1238void
1239ev_prepare_start (EV_P_ struct ev_prepare *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, );
1246 prepares [preparecnt - 1] = w;
1247}
1248
1249void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260void
1261ev_check_start (EV_P_ struct ev_check *w)
1262{
1263 if (ev_is_active (w))
1264 return;
1265
1266 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, );
1268 checks [checkcnt - 1] = w;
1269}
1270
1271void
1272ev_check_stop (EV_P_ struct ev_check *w)
1273{
1274 ev_clear_pending (EV_A_ (W)w);
1275 if (ev_is_active (w))
1276 return;
1277
1278 checks [((W)w)->active - 1] = checks [--checkcnt];
1279 ev_stop (EV_A_ (W)w);
1280}
1281 2803
1282#ifndef SA_RESTART 2804#ifndef SA_RESTART
1283# define SA_RESTART 0 2805# define SA_RESTART 0
1284#endif 2806#endif
1285 2807
1286void 2808#if EV_SIGNAL_ENABLE
2809
2810void noinline
1287ev_signal_start (EV_P_ struct ev_signal *w) 2811ev_signal_start (EV_P_ ev_signal *w)
1288{ 2812{
2813 if (expect_false (ev_is_active (w)))
2814 return;
2815
2816 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2817
1289#if EV_MULTIPLICITY 2818#if EV_MULTIPLICITY
1290 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2819 assert (("libev: a signal must not be attached to two different loops",
2820 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2821
2822 signals [w->signum - 1].loop = EV_A;
2823#endif
2824
2825 EV_FREQUENT_CHECK;
2826
2827#if EV_USE_SIGNALFD
2828 if (sigfd == -2)
2829 {
2830 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2831 if (sigfd < 0 && errno == EINVAL)
2832 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2833
2834 if (sigfd >= 0)
2835 {
2836 fd_intern (sigfd); /* doing it twice will not hurt */
2837
2838 sigemptyset (&sigfd_set);
2839
2840 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2841 ev_set_priority (&sigfd_w, EV_MAXPRI);
2842 ev_io_start (EV_A_ &sigfd_w);
2843 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2844 }
2845 }
2846
2847 if (sigfd >= 0)
2848 {
2849 /* TODO: check .head */
2850 sigaddset (&sigfd_set, w->signum);
2851 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2852
2853 signalfd (sigfd, &sigfd_set, 0);
2854 }
2855#endif
2856
2857 ev_start (EV_A_ (W)w, 1);
2858 wlist_add (&signals [w->signum - 1].head, (WL)w);
2859
2860 if (!((WL)w)->next)
2861# if EV_USE_SIGNALFD
2862 if (sigfd < 0) /*TODO*/
1291#endif 2863# endif
1292 if (ev_is_active (w)) 2864 {
2865# ifdef _WIN32
2866 evpipe_init (EV_A);
2867
2868 signal (w->signum, ev_sighandler);
2869# else
2870 struct sigaction sa;
2871
2872 evpipe_init (EV_A);
2873
2874 sa.sa_handler = ev_sighandler;
2875 sigfillset (&sa.sa_mask);
2876 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2877 sigaction (w->signum, &sa, 0);
2878
2879 sigemptyset (&sa.sa_mask);
2880 sigaddset (&sa.sa_mask, w->signum);
2881 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2882#endif
2883 }
2884
2885 EV_FREQUENT_CHECK;
2886}
2887
2888void noinline
2889ev_signal_stop (EV_P_ ev_signal *w)
2890{
2891 clear_pending (EV_A_ (W)w);
2892 if (expect_false (!ev_is_active (w)))
1293 return; 2893 return;
1294 2894
1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2895 EV_FREQUENT_CHECK;
2896
2897 wlist_del (&signals [w->signum - 1].head, (WL)w);
2898 ev_stop (EV_A_ (W)w);
2899
2900 if (!signals [w->signum - 1].head)
2901 {
2902#if EV_MULTIPLICITY
2903 signals [w->signum - 1].loop = 0; /* unattach from signal */
2904#endif
2905#if EV_USE_SIGNALFD
2906 if (sigfd >= 0)
2907 {
2908 sigset_t ss;
2909
2910 sigemptyset (&ss);
2911 sigaddset (&ss, w->signum);
2912 sigdelset (&sigfd_set, w->signum);
2913
2914 signalfd (sigfd, &sigfd_set, 0);
2915 sigprocmask (SIG_UNBLOCK, &ss, 0);
2916 }
2917 else
2918#endif
2919 signal (w->signum, SIG_DFL);
2920 }
2921
2922 EV_FREQUENT_CHECK;
2923}
2924
2925#endif
2926
2927#if EV_CHILD_ENABLE
2928
2929void
2930ev_child_start (EV_P_ ev_child *w)
2931{
2932#if EV_MULTIPLICITY
2933 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2934#endif
2935 if (expect_false (ev_is_active (w)))
2936 return;
2937
2938 EV_FREQUENT_CHECK;
1296 2939
1297 ev_start (EV_A_ (W)w, 1); 2940 ev_start (EV_A_ (W)w, 1);
1298 array_needsize (signals, signalmax, w->signum, signals_init); 2941 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1300 2942
1301 if (!w->next) 2943 EV_FREQUENT_CHECK;
1302 {
1303 struct sigaction sa;
1304 sa.sa_handler = sighandler;
1305 sigfillset (&sa.sa_mask);
1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1307 sigaction (w->signum, &sa, 0);
1308 }
1309} 2944}
1310 2945
1311void 2946void
1312ev_signal_stop (EV_P_ struct ev_signal *w) 2947ev_child_stop (EV_P_ ev_child *w)
1313{ 2948{
1314 ev_clear_pending (EV_A_ (W)w); 2949 clear_pending (EV_A_ (W)w);
1315 if (!ev_is_active (w)) 2950 if (expect_false (!ev_is_active (w)))
1316 return; 2951 return;
1317 2952
1318 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2953 EV_FREQUENT_CHECK;
2954
2955 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1319 ev_stop (EV_A_ (W)w); 2956 ev_stop (EV_A_ (W)w);
1320 2957
1321 if (!signals [w->signum - 1].head) 2958 EV_FREQUENT_CHECK;
1322 signal (w->signum, SIG_DFL);
1323} 2959}
1324 2960
1325void 2961#endif
1326ev_child_start (EV_P_ struct ev_child *w) 2962
1327{ 2963#if EV_STAT_ENABLE
1328#if EV_MULTIPLICITY 2964
1329 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2965# ifdef _WIN32
2966# undef lstat
2967# define lstat(a,b) _stati64 (a,b)
1330#endif 2968# endif
1331 if (ev_is_active (w)) 2969
2970#define DEF_STAT_INTERVAL 5.0074891
2971#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2972#define MIN_STAT_INTERVAL 0.1074891
2973
2974static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2975
2976#if EV_USE_INOTIFY
2977
2978/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2979# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2980
2981static void noinline
2982infy_add (EV_P_ ev_stat *w)
2983{
2984 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2985
2986 if (w->wd >= 0)
2987 {
2988 struct statfs sfs;
2989
2990 /* now local changes will be tracked by inotify, but remote changes won't */
2991 /* unless the filesystem is known to be local, we therefore still poll */
2992 /* also do poll on <2.6.25, but with normal frequency */
2993
2994 if (!fs_2625)
2995 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2996 else if (!statfs (w->path, &sfs)
2997 && (sfs.f_type == 0x1373 /* devfs */
2998 || sfs.f_type == 0xEF53 /* ext2/3 */
2999 || sfs.f_type == 0x3153464a /* jfs */
3000 || sfs.f_type == 0x52654973 /* reiser3 */
3001 || sfs.f_type == 0x01021994 /* tempfs */
3002 || sfs.f_type == 0x58465342 /* xfs */))
3003 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3004 else
3005 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3006 }
3007 else
3008 {
3009 /* can't use inotify, continue to stat */
3010 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3011
3012 /* if path is not there, monitor some parent directory for speedup hints */
3013 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3014 /* but an efficiency issue only */
3015 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3016 {
3017 char path [4096];
3018 strcpy (path, w->path);
3019
3020 do
3021 {
3022 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3023 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3024
3025 char *pend = strrchr (path, '/');
3026
3027 if (!pend || pend == path)
3028 break;
3029
3030 *pend = 0;
3031 w->wd = inotify_add_watch (fs_fd, path, mask);
3032 }
3033 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3034 }
3035 }
3036
3037 if (w->wd >= 0)
3038 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3039
3040 /* now re-arm timer, if required */
3041 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3042 ev_timer_again (EV_A_ &w->timer);
3043 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3044}
3045
3046static void noinline
3047infy_del (EV_P_ ev_stat *w)
3048{
3049 int slot;
3050 int wd = w->wd;
3051
3052 if (wd < 0)
1332 return; 3053 return;
1333 3054
3055 w->wd = -2;
3056 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3057 wlist_del (&fs_hash [slot].head, (WL)w);
3058
3059 /* remove this watcher, if others are watching it, they will rearm */
3060 inotify_rm_watch (fs_fd, wd);
3061}
3062
3063static void noinline
3064infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3065{
3066 if (slot < 0)
3067 /* overflow, need to check for all hash slots */
3068 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3069 infy_wd (EV_A_ slot, wd, ev);
3070 else
3071 {
3072 WL w_;
3073
3074 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3075 {
3076 ev_stat *w = (ev_stat *)w_;
3077 w_ = w_->next; /* lets us remove this watcher and all before it */
3078
3079 if (w->wd == wd || wd == -1)
3080 {
3081 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3082 {
3083 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3084 w->wd = -1;
3085 infy_add (EV_A_ w); /* re-add, no matter what */
3086 }
3087
3088 stat_timer_cb (EV_A_ &w->timer, 0);
3089 }
3090 }
3091 }
3092}
3093
3094static void
3095infy_cb (EV_P_ ev_io *w, int revents)
3096{
3097 char buf [EV_INOTIFY_BUFSIZE];
3098 int ofs;
3099 int len = read (fs_fd, buf, sizeof (buf));
3100
3101 for (ofs = 0; ofs < len; )
3102 {
3103 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3104 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3105 ofs += sizeof (struct inotify_event) + ev->len;
3106 }
3107}
3108
3109inline_size void
3110ev_check_2625 (EV_P)
3111{
3112 /* kernels < 2.6.25 are borked
3113 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3114 */
3115 if (ev_linux_version () < 0x020619)
3116 return;
3117
3118 fs_2625 = 1;
3119}
3120
3121inline_size int
3122infy_newfd (void)
3123{
3124#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3125 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3126 if (fd >= 0)
3127 return fd;
3128#endif
3129 return inotify_init ();
3130}
3131
3132inline_size void
3133infy_init (EV_P)
3134{
3135 if (fs_fd != -2)
3136 return;
3137
3138 fs_fd = -1;
3139
3140 ev_check_2625 (EV_A);
3141
3142 fs_fd = infy_newfd ();
3143
3144 if (fs_fd >= 0)
3145 {
3146 fd_intern (fs_fd);
3147 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3148 ev_set_priority (&fs_w, EV_MAXPRI);
3149 ev_io_start (EV_A_ &fs_w);
3150 ev_unref (EV_A);
3151 }
3152}
3153
3154inline_size void
3155infy_fork (EV_P)
3156{
3157 int slot;
3158
3159 if (fs_fd < 0)
3160 return;
3161
3162 ev_ref (EV_A);
3163 ev_io_stop (EV_A_ &fs_w);
3164 close (fs_fd);
3165 fs_fd = infy_newfd ();
3166
3167 if (fs_fd >= 0)
3168 {
3169 fd_intern (fs_fd);
3170 ev_io_set (&fs_w, fs_fd, EV_READ);
3171 ev_io_start (EV_A_ &fs_w);
3172 ev_unref (EV_A);
3173 }
3174
3175 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3176 {
3177 WL w_ = fs_hash [slot].head;
3178 fs_hash [slot].head = 0;
3179
3180 while (w_)
3181 {
3182 ev_stat *w = (ev_stat *)w_;
3183 w_ = w_->next; /* lets us add this watcher */
3184
3185 w->wd = -1;
3186
3187 if (fs_fd >= 0)
3188 infy_add (EV_A_ w); /* re-add, no matter what */
3189 else
3190 {
3191 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3192 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3193 ev_timer_again (EV_A_ &w->timer);
3194 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3195 }
3196 }
3197 }
3198}
3199
3200#endif
3201
3202#ifdef _WIN32
3203# define EV_LSTAT(p,b) _stati64 (p, b)
3204#else
3205# define EV_LSTAT(p,b) lstat (p, b)
3206#endif
3207
3208void
3209ev_stat_stat (EV_P_ ev_stat *w)
3210{
3211 if (lstat (w->path, &w->attr) < 0)
3212 w->attr.st_nlink = 0;
3213 else if (!w->attr.st_nlink)
3214 w->attr.st_nlink = 1;
3215}
3216
3217static void noinline
3218stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3219{
3220 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3221
3222 ev_statdata prev = w->attr;
3223 ev_stat_stat (EV_A_ w);
3224
3225 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3226 if (
3227 prev.st_dev != w->attr.st_dev
3228 || prev.st_ino != w->attr.st_ino
3229 || prev.st_mode != w->attr.st_mode
3230 || prev.st_nlink != w->attr.st_nlink
3231 || prev.st_uid != w->attr.st_uid
3232 || prev.st_gid != w->attr.st_gid
3233 || prev.st_rdev != w->attr.st_rdev
3234 || prev.st_size != w->attr.st_size
3235 || prev.st_atime != w->attr.st_atime
3236 || prev.st_mtime != w->attr.st_mtime
3237 || prev.st_ctime != w->attr.st_ctime
3238 ) {
3239 /* we only update w->prev on actual differences */
3240 /* in case we test more often than invoke the callback, */
3241 /* to ensure that prev is always different to attr */
3242 w->prev = prev;
3243
3244 #if EV_USE_INOTIFY
3245 if (fs_fd >= 0)
3246 {
3247 infy_del (EV_A_ w);
3248 infy_add (EV_A_ w);
3249 ev_stat_stat (EV_A_ w); /* avoid race... */
3250 }
3251 #endif
3252
3253 ev_feed_event (EV_A_ w, EV_STAT);
3254 }
3255}
3256
3257void
3258ev_stat_start (EV_P_ ev_stat *w)
3259{
3260 if (expect_false (ev_is_active (w)))
3261 return;
3262
3263 ev_stat_stat (EV_A_ w);
3264
3265 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3266 w->interval = MIN_STAT_INTERVAL;
3267
3268 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3269 ev_set_priority (&w->timer, ev_priority (w));
3270
3271#if EV_USE_INOTIFY
3272 infy_init (EV_A);
3273
3274 if (fs_fd >= 0)
3275 infy_add (EV_A_ w);
3276 else
3277#endif
3278 {
3279 ev_timer_again (EV_A_ &w->timer);
3280 ev_unref (EV_A);
3281 }
3282
1334 ev_start (EV_A_ (W)w, 1); 3283 ev_start (EV_A_ (W)w, 1);
1335 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1336}
1337 3284
3285 EV_FREQUENT_CHECK;
3286}
3287
1338void 3288void
1339ev_child_stop (EV_P_ struct ev_child *w) 3289ev_stat_stop (EV_P_ ev_stat *w)
1340{ 3290{
1341 ev_clear_pending (EV_A_ (W)w); 3291 clear_pending (EV_A_ (W)w);
1342 if (ev_is_active (w)) 3292 if (expect_false (!ev_is_active (w)))
1343 return; 3293 return;
1344 3294
1345 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3295 EV_FREQUENT_CHECK;
3296
3297#if EV_USE_INOTIFY
3298 infy_del (EV_A_ w);
3299#endif
3300
3301 if (ev_is_active (&w->timer))
3302 {
3303 ev_ref (EV_A);
3304 ev_timer_stop (EV_A_ &w->timer);
3305 }
3306
1346 ev_stop (EV_A_ (W)w); 3307 ev_stop (EV_A_ (W)w);
3308
3309 EV_FREQUENT_CHECK;
1347} 3310}
3311#endif
3312
3313#if EV_IDLE_ENABLE
3314void
3315ev_idle_start (EV_P_ ev_idle *w)
3316{
3317 if (expect_false (ev_is_active (w)))
3318 return;
3319
3320 pri_adjust (EV_A_ (W)w);
3321
3322 EV_FREQUENT_CHECK;
3323
3324 {
3325 int active = ++idlecnt [ABSPRI (w)];
3326
3327 ++idleall;
3328 ev_start (EV_A_ (W)w, active);
3329
3330 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3331 idles [ABSPRI (w)][active - 1] = w;
3332 }
3333
3334 EV_FREQUENT_CHECK;
3335}
3336
3337void
3338ev_idle_stop (EV_P_ ev_idle *w)
3339{
3340 clear_pending (EV_A_ (W)w);
3341 if (expect_false (!ev_is_active (w)))
3342 return;
3343
3344 EV_FREQUENT_CHECK;
3345
3346 {
3347 int active = ev_active (w);
3348
3349 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3350 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3351
3352 ev_stop (EV_A_ (W)w);
3353 --idleall;
3354 }
3355
3356 EV_FREQUENT_CHECK;
3357}
3358#endif
3359
3360#if EV_PREPARE_ENABLE
3361void
3362ev_prepare_start (EV_P_ ev_prepare *w)
3363{
3364 if (expect_false (ev_is_active (w)))
3365 return;
3366
3367 EV_FREQUENT_CHECK;
3368
3369 ev_start (EV_A_ (W)w, ++preparecnt);
3370 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3371 prepares [preparecnt - 1] = w;
3372
3373 EV_FREQUENT_CHECK;
3374}
3375
3376void
3377ev_prepare_stop (EV_P_ ev_prepare *w)
3378{
3379 clear_pending (EV_A_ (W)w);
3380 if (expect_false (!ev_is_active (w)))
3381 return;
3382
3383 EV_FREQUENT_CHECK;
3384
3385 {
3386 int active = ev_active (w);
3387
3388 prepares [active - 1] = prepares [--preparecnt];
3389 ev_active (prepares [active - 1]) = active;
3390 }
3391
3392 ev_stop (EV_A_ (W)w);
3393
3394 EV_FREQUENT_CHECK;
3395}
3396#endif
3397
3398#if EV_CHECK_ENABLE
3399void
3400ev_check_start (EV_P_ ev_check *w)
3401{
3402 if (expect_false (ev_is_active (w)))
3403 return;
3404
3405 EV_FREQUENT_CHECK;
3406
3407 ev_start (EV_A_ (W)w, ++checkcnt);
3408 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3409 checks [checkcnt - 1] = w;
3410
3411 EV_FREQUENT_CHECK;
3412}
3413
3414void
3415ev_check_stop (EV_P_ ev_check *w)
3416{
3417 clear_pending (EV_A_ (W)w);
3418 if (expect_false (!ev_is_active (w)))
3419 return;
3420
3421 EV_FREQUENT_CHECK;
3422
3423 {
3424 int active = ev_active (w);
3425
3426 checks [active - 1] = checks [--checkcnt];
3427 ev_active (checks [active - 1]) = active;
3428 }
3429
3430 ev_stop (EV_A_ (W)w);
3431
3432 EV_FREQUENT_CHECK;
3433}
3434#endif
3435
3436#if EV_EMBED_ENABLE
3437void noinline
3438ev_embed_sweep (EV_P_ ev_embed *w)
3439{
3440 ev_run (w->other, EVRUN_NOWAIT);
3441}
3442
3443static void
3444embed_io_cb (EV_P_ ev_io *io, int revents)
3445{
3446 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3447
3448 if (ev_cb (w))
3449 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3450 else
3451 ev_run (w->other, EVRUN_NOWAIT);
3452}
3453
3454static void
3455embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3456{
3457 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3458
3459 {
3460 EV_P = w->other;
3461
3462 while (fdchangecnt)
3463 {
3464 fd_reify (EV_A);
3465 ev_run (EV_A_ EVRUN_NOWAIT);
3466 }
3467 }
3468}
3469
3470static void
3471embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3472{
3473 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3474
3475 ev_embed_stop (EV_A_ w);
3476
3477 {
3478 EV_P = w->other;
3479
3480 ev_loop_fork (EV_A);
3481 ev_run (EV_A_ EVRUN_NOWAIT);
3482 }
3483
3484 ev_embed_start (EV_A_ w);
3485}
3486
3487#if 0
3488static void
3489embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3490{
3491 ev_idle_stop (EV_A_ idle);
3492}
3493#endif
3494
3495void
3496ev_embed_start (EV_P_ ev_embed *w)
3497{
3498 if (expect_false (ev_is_active (w)))
3499 return;
3500
3501 {
3502 EV_P = w->other;
3503 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3504 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3505 }
3506
3507 EV_FREQUENT_CHECK;
3508
3509 ev_set_priority (&w->io, ev_priority (w));
3510 ev_io_start (EV_A_ &w->io);
3511
3512 ev_prepare_init (&w->prepare, embed_prepare_cb);
3513 ev_set_priority (&w->prepare, EV_MINPRI);
3514 ev_prepare_start (EV_A_ &w->prepare);
3515
3516 ev_fork_init (&w->fork, embed_fork_cb);
3517 ev_fork_start (EV_A_ &w->fork);
3518
3519 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3520
3521 ev_start (EV_A_ (W)w, 1);
3522
3523 EV_FREQUENT_CHECK;
3524}
3525
3526void
3527ev_embed_stop (EV_P_ ev_embed *w)
3528{
3529 clear_pending (EV_A_ (W)w);
3530 if (expect_false (!ev_is_active (w)))
3531 return;
3532
3533 EV_FREQUENT_CHECK;
3534
3535 ev_io_stop (EV_A_ &w->io);
3536 ev_prepare_stop (EV_A_ &w->prepare);
3537 ev_fork_stop (EV_A_ &w->fork);
3538
3539 ev_stop (EV_A_ (W)w);
3540
3541 EV_FREQUENT_CHECK;
3542}
3543#endif
3544
3545#if EV_FORK_ENABLE
3546void
3547ev_fork_start (EV_P_ ev_fork *w)
3548{
3549 if (expect_false (ev_is_active (w)))
3550 return;
3551
3552 EV_FREQUENT_CHECK;
3553
3554 ev_start (EV_A_ (W)w, ++forkcnt);
3555 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3556 forks [forkcnt - 1] = w;
3557
3558 EV_FREQUENT_CHECK;
3559}
3560
3561void
3562ev_fork_stop (EV_P_ ev_fork *w)
3563{
3564 clear_pending (EV_A_ (W)w);
3565 if (expect_false (!ev_is_active (w)))
3566 return;
3567
3568 EV_FREQUENT_CHECK;
3569
3570 {
3571 int active = ev_active (w);
3572
3573 forks [active - 1] = forks [--forkcnt];
3574 ev_active (forks [active - 1]) = active;
3575 }
3576
3577 ev_stop (EV_A_ (W)w);
3578
3579 EV_FREQUENT_CHECK;
3580}
3581#endif
3582
3583#if EV_ASYNC_ENABLE
3584void
3585ev_async_start (EV_P_ ev_async *w)
3586{
3587 if (expect_false (ev_is_active (w)))
3588 return;
3589
3590 w->sent = 0;
3591
3592 evpipe_init (EV_A);
3593
3594 EV_FREQUENT_CHECK;
3595
3596 ev_start (EV_A_ (W)w, ++asynccnt);
3597 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3598 asyncs [asynccnt - 1] = w;
3599
3600 EV_FREQUENT_CHECK;
3601}
3602
3603void
3604ev_async_stop (EV_P_ ev_async *w)
3605{
3606 clear_pending (EV_A_ (W)w);
3607 if (expect_false (!ev_is_active (w)))
3608 return;
3609
3610 EV_FREQUENT_CHECK;
3611
3612 {
3613 int active = ev_active (w);
3614
3615 asyncs [active - 1] = asyncs [--asynccnt];
3616 ev_active (asyncs [active - 1]) = active;
3617 }
3618
3619 ev_stop (EV_A_ (W)w);
3620
3621 EV_FREQUENT_CHECK;
3622}
3623
3624void
3625ev_async_send (EV_P_ ev_async *w)
3626{
3627 w->sent = 1;
3628 evpipe_write (EV_A_ &async_pending);
3629}
3630#endif
1348 3631
1349/*****************************************************************************/ 3632/*****************************************************************************/
1350 3633
1351struct ev_once 3634struct ev_once
1352{ 3635{
1353 struct ev_io io; 3636 ev_io io;
1354 struct ev_timer to; 3637 ev_timer to;
1355 void (*cb)(int revents, void *arg); 3638 void (*cb)(int revents, void *arg);
1356 void *arg; 3639 void *arg;
1357}; 3640};
1358 3641
1359static void 3642static void
1360once_cb (EV_P_ struct ev_once *once, int revents) 3643once_cb (EV_P_ struct ev_once *once, int revents)
1361{ 3644{
1362 void (*cb)(int revents, void *arg) = once->cb; 3645 void (*cb)(int revents, void *arg) = once->cb;
1363 void *arg = once->arg; 3646 void *arg = once->arg;
1364 3647
1365 ev_io_stop (EV_A_ &once->io); 3648 ev_io_stop (EV_A_ &once->io);
1366 ev_timer_stop (EV_A_ &once->to); 3649 ev_timer_stop (EV_A_ &once->to);
1367 free (once); 3650 ev_free (once);
1368 3651
1369 cb (revents, arg); 3652 cb (revents, arg);
1370} 3653}
1371 3654
1372static void 3655static void
1373once_cb_io (EV_P_ struct ev_io *w, int revents) 3656once_cb_io (EV_P_ ev_io *w, int revents)
1374{ 3657{
1375 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3658 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3659
3660 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1376} 3661}
1377 3662
1378static void 3663static void
1379once_cb_to (EV_P_ struct ev_timer *w, int revents) 3664once_cb_to (EV_P_ ev_timer *w, int revents)
1380{ 3665{
1381 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3666 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3667
3668 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1382} 3669}
1383 3670
1384void 3671void
1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3672ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1386{ 3673{
1387 struct ev_once *once = malloc (sizeof (struct ev_once)); 3674 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1388 3675
1389 if (!once) 3676 if (expect_false (!once))
3677 {
1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3678 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1391 else 3679 return;
1392 { 3680 }
3681
1393 once->cb = cb; 3682 once->cb = cb;
1394 once->arg = arg; 3683 once->arg = arg;
1395 3684
1396 ev_watcher_init (&once->io, once_cb_io); 3685 ev_init (&once->io, once_cb_io);
1397 if (fd >= 0) 3686 if (fd >= 0)
3687 {
3688 ev_io_set (&once->io, fd, events);
3689 ev_io_start (EV_A_ &once->io);
3690 }
3691
3692 ev_init (&once->to, once_cb_to);
3693 if (timeout >= 0.)
3694 {
3695 ev_timer_set (&once->to, timeout, 0.);
3696 ev_timer_start (EV_A_ &once->to);
3697 }
3698}
3699
3700/*****************************************************************************/
3701
3702#if EV_WALK_ENABLE
3703void
3704ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3705{
3706 int i, j;
3707 ev_watcher_list *wl, *wn;
3708
3709 if (types & (EV_IO | EV_EMBED))
3710 for (i = 0; i < anfdmax; ++i)
3711 for (wl = anfds [i].head; wl; )
1398 { 3712 {
1399 ev_io_set (&once->io, fd, events); 3713 wn = wl->next;
1400 ev_io_start (EV_A_ &once->io); 3714
3715#if EV_EMBED_ENABLE
3716 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3717 {
3718 if (types & EV_EMBED)
3719 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3720 }
3721 else
3722#endif
3723#if EV_USE_INOTIFY
3724 if (ev_cb ((ev_io *)wl) == infy_cb)
3725 ;
3726 else
3727#endif
3728 if ((ev_io *)wl != &pipe_w)
3729 if (types & EV_IO)
3730 cb (EV_A_ EV_IO, wl);
3731
3732 wl = wn;
1401 } 3733 }
1402 3734
1403 ev_watcher_init (&once->to, once_cb_to); 3735 if (types & (EV_TIMER | EV_STAT))
1404 if (timeout >= 0.) 3736 for (i = timercnt + HEAP0; i-- > HEAP0; )
3737#if EV_STAT_ENABLE
3738 /*TODO: timer is not always active*/
3739 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1405 { 3740 {
1406 ev_timer_set (&once->to, timeout, 0.); 3741 if (types & EV_STAT)
1407 ev_timer_start (EV_A_ &once->to); 3742 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1408 } 3743 }
1409 } 3744 else
1410} 3745#endif
3746 if (types & EV_TIMER)
3747 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1411 3748
3749#if EV_PERIODIC_ENABLE
3750 if (types & EV_PERIODIC)
3751 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3752 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3753#endif
3754
3755#if EV_IDLE_ENABLE
3756 if (types & EV_IDLE)
3757 for (j = NUMPRI; i--; )
3758 for (i = idlecnt [j]; i--; )
3759 cb (EV_A_ EV_IDLE, idles [j][i]);
3760#endif
3761
3762#if EV_FORK_ENABLE
3763 if (types & EV_FORK)
3764 for (i = forkcnt; i--; )
3765 if (ev_cb (forks [i]) != embed_fork_cb)
3766 cb (EV_A_ EV_FORK, forks [i]);
3767#endif
3768
3769#if EV_ASYNC_ENABLE
3770 if (types & EV_ASYNC)
3771 for (i = asynccnt; i--; )
3772 cb (EV_A_ EV_ASYNC, asyncs [i]);
3773#endif
3774
3775#if EV_PREPARE_ENABLE
3776 if (types & EV_PREPARE)
3777 for (i = preparecnt; i--; )
3778# if EV_EMBED_ENABLE
3779 if (ev_cb (prepares [i]) != embed_prepare_cb)
3780# endif
3781 cb (EV_A_ EV_PREPARE, prepares [i]);
3782#endif
3783
3784#if EV_CHECK_ENABLE
3785 if (types & EV_CHECK)
3786 for (i = checkcnt; i--; )
3787 cb (EV_A_ EV_CHECK, checks [i]);
3788#endif
3789
3790#if EV_SIGNAL_ENABLE
3791 if (types & EV_SIGNAL)
3792 for (i = 0; i < EV_NSIG - 1; ++i)
3793 for (wl = signals [i].head; wl; )
3794 {
3795 wn = wl->next;
3796 cb (EV_A_ EV_SIGNAL, wl);
3797 wl = wn;
3798 }
3799#endif
3800
3801#if EV_CHILD_ENABLE
3802 if (types & EV_CHILD)
3803 for (i = (EV_PID_HASHSIZE); i--; )
3804 for (wl = childs [i]; wl; )
3805 {
3806 wn = wl->next;
3807 cb (EV_A_ EV_CHILD, wl);
3808 wl = wn;
3809 }
3810#endif
3811/* EV_STAT 0x00001000 /* stat data changed */
3812/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3813}
3814#endif
3815
3816#if EV_MULTIPLICITY
3817 #include "ev_wrap.h"
3818#endif
3819
3820EV_CPP(})
3821

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines