ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.139 by root, Sun Nov 25 09:24:37 2007 UTC vs.
Revision 1.359 by root, Sun Oct 24 17:58:41 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
99#endif 159#endif
100 160
101#include <math.h> 161#include <math.h>
102#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
103#include <fcntl.h> 164#include <fcntl.h>
104#include <stddef.h> 165#include <stddef.h>
105 166
106#include <stdio.h> 167#include <stdio.h>
107 168
108#include <assert.h> 169#include <assert.h>
109#include <errno.h> 170#include <errno.h>
110#include <sys/types.h> 171#include <sys/types.h>
111#include <time.h> 172#include <time.h>
173#include <limits.h>
112 174
113#include <signal.h> 175#include <signal.h>
114 176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
115#ifndef _WIN32 185#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 186# include <sys/time.h>
118# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
119#else 189#else
190# include <io.h>
120# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 192# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
124# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
125#endif 242# endif
126 243#endif
127/**/
128 244
129#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
130# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
131#endif 251#endif
132 252
133#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
135#endif 263#endif
136 264
137#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 267#endif
140 268
141#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
142# ifdef _WIN32 270# ifdef _WIN32
143# define EV_USE_POLL 0 271# define EV_USE_POLL 0
144# else 272# else
145# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 274# endif
147#endif 275#endif
148 276
149#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
150# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
151#endif 283#endif
152 284
153#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
155#endif 287#endif
156 288
157#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 290# define EV_USE_PORT 0
159#endif 291#endif
160 292
161/**/ 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
162 364
163#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
166#endif 368#endif
168#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
171#endif 373#endif
172 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
173#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 397# include <winsock.h>
175#endif 398#endif
176 399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
177/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 455
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 458
184#ifdef EV_H 459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
185# include EV_H 460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
186#else
187# include "ev.h"
188#endif
189 461
190#if __GNUC__ >= 3 462#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 464# define noinline __attribute__ ((noinline))
193#else 465#else
194# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
195# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
196#endif 471#endif
197 472
198#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
200 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
203 490
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
206 493
207typedef ev_watcher *W; 494typedef ev_watcher *W;
208typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
209typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
210 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
212 520
213#ifdef _WIN32 521#ifdef _WIN32
214# include "ev_win32.c" 522# include "ev_win32.c"
215#endif 523#endif
216 524
217/*****************************************************************************/ 525/*****************************************************************************/
218 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
219static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
220 578
579void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 581{
223 syserr_cb = cb; 582 syserr_cb = cb;
224} 583}
225 584
226static void 585static void noinline
227syserr (const char *msg) 586ev_syserr (const char *msg)
228{ 587{
229 if (!msg) 588 if (!msg)
230 msg = "(libev) system error"; 589 msg = "(libev) system error";
231 590
232 if (syserr_cb) 591 if (syserr_cb)
233 syserr_cb (msg); 592 syserr_cb (msg);
234 else 593 else
235 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
236 perror (msg); 603 perror (msg);
604#endif
237 abort (); 605 abort ();
238 } 606 }
239} 607}
240 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
241static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 629
630void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 632{
245 alloc = cb; 633 alloc = cb;
246} 634}
247 635
248static void * 636inline_speed void *
249ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
250{ 638{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
252 640
253 if (!ptr && size) 641 if (!ptr && size)
254 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
256 abort (); 648 abort ();
257 } 649 }
258 650
259 return ptr; 651 return ptr;
260} 652}
262#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
264 656
265/*****************************************************************************/ 657/*****************************************************************************/
266 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
267typedef struct 663typedef struct
268{ 664{
269 WL head; 665 WL head;
270 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
271 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
272#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
273 SOCKET handle; 674 SOCKET handle;
274#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
275} ANFD; 679} ANFD;
276 680
681/* stores the pending event set for a given watcher */
277typedef struct 682typedef struct
278{ 683{
279 W w; 684 W w;
280 int events; 685 int events; /* the pending event set for the given watcher */
281} ANPENDING; 686} ANPENDING;
687
688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
690typedef struct
691{
692 WL head;
693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
714#endif
282 715
283#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
284 717
285 struct ev_loop 718 struct ev_loop
286 { 719 {
304 737
305 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
306 739
307#endif 740#endif
308 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
309/*****************************************************************************/ 754/*****************************************************************************/
310 755
756#ifndef EV_HAVE_EV_TIME
311ev_tstamp 757ev_tstamp
312ev_time (void) 758ev_time (void)
313{ 759{
314#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
315 struct timespec ts; 763 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 766 }
767#endif
768
319 struct timeval tv; 769 struct timeval tv;
320 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 772}
773#endif
324 774
325inline ev_tstamp 775inline_size ev_tstamp
326get_clock (void) 776get_clock (void)
327{ 777{
328#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
330 { 780 {
343{ 793{
344 return ev_rt_now; 794 return ev_rt_now;
345} 795}
346#endif 796#endif
347 797
348#define array_roundsize(type,n) (((n) | 4) & ~3) 798void
799ev_sleep (ev_tstamp delay)
800{
801 if (delay > 0.)
802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
821
822/*****************************************************************************/
823
824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
829array_nextsize (int elem, int cur, int cnt)
830{
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 {
840 ncur *= elem;
841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 ncur = ncur - sizeof (void *) * 4;
843 ncur /= elem;
844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 858
350#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 860 if (expect_false ((cnt) > (cur))) \
352 { \ 861 { \
353 int newcnt = cur; \ 862 int ocur_ = (cur); \
354 do \ 863 (base) = (type *)array_realloc \
355 { \ 864 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 865 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 866 }
364 867
868#if 0
365#define array_slim(type,stem) \ 869#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 871 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 872 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 875 }
876#endif
372 877
373#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 880
376/*****************************************************************************/ 881/*****************************************************************************/
377 882
378static void 883/* dummy callback for pending events */
379anfds_init (ANFD *base, int count) 884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 886{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 887}
390 888
391void 889void noinline
392ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
393{ 891{
394 W w_ = (W)w; 892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
395 894
396 if (expect_false (w_->pending)) 895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
397 { 898 {
899 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 902 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 903 }
401
402 w_->pending = ++pendingcnt [ABSPRI (w_)];
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406} 904}
407 905
408static void 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
409queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
410{ 923{
411 int i; 924 int i;
412 925
413 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
415} 928}
416 929
930/*****************************************************************************/
931
417inline void 932inline_speed void
418fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
419{ 934{
420 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
421 ev_io *w; 936 ev_io *w;
422 937
423 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 if (ev) 942 if (ev)
428 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
429 } 944 }
430} 945}
431 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
432void 958void
433ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
434{ 960{
961 if (fd >= 0 && fd < anfdmax)
435 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
436} 963}
437 964
438/*****************************************************************************/ 965/* make sure the external fd watch events are in-sync */
439 966/* with the kernel/libev internal state */
440inline void 967inline_size void
441fd_reify (EV_P) 968fd_reify (EV_P)
442{ 969{
443 int i; 970 int i;
444 971
445 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
446 { 973 {
447 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
449 ev_io *w; 976 ev_io *w;
450 977
451 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
452 980
453 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
454 events |= w->events;
455 982
456#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
457 if (events) 984 if (o_reify & EV__IOFDSET)
458 { 985 {
459 unsigned long argp; 986 unsigned long arg;
460 anfd->handle = _get_osfhandle (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
462 } 990 }
463#endif 991#endif
464 992
465 anfd->reify = 0; 993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
995 anfd->events = 0;
466 996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
467 backend_modify (EV_A_ fd, anfd->events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
468 anfd->events = events;
469 } 1006 }
470 1007
471 fdchangecnt = 0; 1008 fdchangecnt = 0;
472} 1009}
473 1010
474static void 1011/* something about the given fd changed */
1012inline_size void
475fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
476{ 1014{
477 if (expect_false (anfds [fd].reify)) 1015 unsigned char reify = anfds [fd].reify;
478 return;
479
480 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
481 1017
1018 if (expect_true (!reify))
1019 {
482 ++fdchangecnt; 1020 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
484 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
485} 1024}
486 1025
487static void 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
488fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
489{ 1029{
490 ev_io *w; 1030 ev_io *w;
491 1031
492 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
494 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 1036 }
497} 1037}
498 1038
1039/* check whether the given fd is actually valid, for error recovery */
499inline int 1040inline_size int
500fd_valid (int fd) 1041fd_valid (int fd)
501{ 1042{
502#ifdef _WIN32 1043#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
504#else 1045#else
505 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
506#endif 1047#endif
507} 1048}
508 1049
509/* called on EBADF to verify fds */ 1050/* called on EBADF to verify fds */
510static void 1051static void noinline
511fd_ebadf (EV_P) 1052fd_ebadf (EV_P)
512{ 1053{
513 int fd; 1054 int fd;
514 1055
515 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
516 if (anfds [fd].events) 1057 if (anfds [fd].events)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
518 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
519} 1060}
520 1061
521/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
522static void 1063static void noinline
523fd_enomem (EV_P) 1064fd_enomem (EV_P)
524{ 1065{
525 int fd; 1066 int fd;
526 1067
527 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
528 if (anfds [fd].events) 1069 if (anfds [fd].events)
529 { 1070 {
530 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
531 return; 1072 break;
532 } 1073 }
533} 1074}
534 1075
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
536static void 1077static void noinline
537fd_rearm_all (EV_P) 1078fd_rearm_all (EV_P)
538{ 1079{
539 int fd; 1080 int fd;
540 1081
541 /* this should be highly optimised to not do anything but set a flag */
542 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
543 if (anfds [fd].events) 1083 if (anfds [fd].events)
544 { 1084 {
545 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
546 fd_change (EV_A_ fd); 1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
547 } 1088 }
548} 1089}
549 1090
550/*****************************************************************************/ 1091/* used to prepare libev internal fd's */
551 1092/* this is not fork-safe */
552static void
553upheap (WT *heap, int k)
554{
555 WT w = heap [k];
556
557 while (k && heap [k >> 1]->at > w->at)
558 {
559 heap [k] = heap [k >> 1];
560 ((W)heap [k])->active = k + 1;
561 k >>= 1;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566
567}
568
569static void
570downheap (WT *heap, int N, int k)
571{
572 WT w = heap [k];
573
574 while (k < (N >> 1))
575 {
576 int j = k << 1;
577
578 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
579 ++j;
580
581 if (w->at <= heap [j]->at)
582 break;
583
584 heap [k] = heap [j];
585 ((W)heap [k])->active = k + 1;
586 k = j;
587 }
588
589 heap [k] = w;
590 ((W)heap [k])->active = k + 1;
591}
592
593inline void 1093inline_speed void
594adjustheap (WT *heap, int N, int k)
595{
596 upheap (heap, k);
597 downheap (heap, N, k);
598}
599
600/*****************************************************************************/
601
602typedef struct
603{
604 WL head;
605 sig_atomic_t volatile gotsig;
606} ANSIG;
607
608static ANSIG *signals;
609static int signalmax;
610
611static int sigpipe [2];
612static sig_atomic_t volatile gotsig;
613static ev_io sigev;
614
615static void
616signals_init (ANSIG *base, int count)
617{
618 while (count--)
619 {
620 base->head = 0;
621 base->gotsig = 0;
622
623 ++base;
624 }
625}
626
627static void
628sighandler (int signum)
629{
630#if _WIN32
631 signal (signum, sighandler);
632#endif
633
634 signals [signum - 1].gotsig = 1;
635
636 if (!gotsig)
637 {
638 int old_errno = errno;
639 gotsig = 1;
640 write (sigpipe [1], &signum, 1);
641 errno = old_errno;
642 }
643}
644
645void
646ev_feed_signal_event (EV_P_ int signum)
647{
648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
665static void
666sigcb (EV_P_ ev_io *iow, int revents)
667{
668 int signum;
669
670 read (sigpipe [0], &revents, 1);
671 gotsig = 0;
672
673 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1);
676}
677
678static void
679fd_intern (int fd) 1094fd_intern (int fd)
680{ 1095{
681#ifdef _WIN32 1096#ifdef _WIN32
682 int arg = 1; 1097 unsigned long arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
684#else 1099#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 1101 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 1102#endif
688} 1103}
689 1104
1105/*****************************************************************************/
1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
1268static void noinline
1269evpipe_init (EV_P)
1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
1290 fd_intern (evpipe [0]);
1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
1294
1295 ev_io_start (EV_A_ &pipe_w);
1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
690static void 1331static void
691siginit (EV_P) 1332pipecb (EV_P_ ev_io *iow, int revents)
692{ 1333{
693 fd_intern (sigpipe [0]); 1334 int i;
694 fd_intern (sigpipe [1]);
695 1335
696 ev_io_set (&sigev, sigpipe [0], EV_READ); 1336#if EV_USE_EVENTFD
697 ev_io_start (EV_A_ &sigev); 1337 if (evfd >= 0)
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
1349
1350 if (sig_pending)
1351 {
1352 sig_pending = 0;
1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
699} 1372}
700 1373
701/*****************************************************************************/ 1374/*****************************************************************************/
702 1375
703static ev_child *childs [PID_HASHSIZE]; 1376static void
1377ev_sighandler (int signum)
1378{
1379#if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381#endif
704 1382
705#ifndef _WIN32 1383#ifdef _WIN32
1384 signal (signum, ev_sighandler);
1385#endif
1386
1387 signals [signum - 1].pending = 1;
1388 evpipe_write (EV_A_ &sig_pending);
1389}
1390
1391void noinline
1392ev_feed_signal_event (EV_P_ int signum)
1393{
1394 WL w;
1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1401#if EV_MULTIPLICITY
1402 /* it is permissible to try to feed a signal to the wrong loop */
1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1404
1405 if (expect_false (signals [signum].loop != EV_A))
1406 return;
1407#endif
1408
1409 signals [signum].pending = 0;
1410
1411 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413}
1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
1437/*****************************************************************************/
1438
1439#if EV_CHILD_ENABLE
1440static WL childs [EV_PID_HASHSIZE];
706 1441
707static ev_signal childev; 1442static ev_signal childev;
1443
1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
1450child_reap (EV_P_ int chain, int pid, int status)
1451{
1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1454
1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
1459 {
1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1461 w->rpid = pid;
1462 w->rstatus = status;
1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1464 }
1465 }
1466}
708 1467
709#ifndef WCONTINUED 1468#ifndef WCONTINUED
710# define WCONTINUED 0 1469# define WCONTINUED 0
711#endif 1470#endif
712 1471
713static void 1472/* called on sigchld etc., calls waitpid */
714child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
715{
716 ev_child *w;
717
718 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid)
720 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid;
723 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 }
726}
727
728static void 1473static void
729childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
730{ 1475{
731 int pid, status; 1476 int pid, status;
732 1477
1478 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1479 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 1480 if (!WCONTINUED
1481 || errno != EINVAL
1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1483 return;
1484
735 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
738 1488
739 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1490 if ((EV_PID_HASHSIZE) > 1)
740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
741 }
742} 1492}
743 1493
744#endif 1494#endif
745 1495
746/*****************************************************************************/ 1496/*****************************************************************************/
747 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
748#if EV_USE_PORT 1501#if EV_USE_PORT
749# include "ev_port.c" 1502# include "ev_port.c"
750#endif 1503#endif
751#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
752# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
772{ 1525{
773 return EV_VERSION_MINOR; 1526 return EV_VERSION_MINOR;
774} 1527}
775 1528
776/* return true if we are running with elevated privileges and should ignore env variables */ 1529/* return true if we are running with elevated privileges and should ignore env variables */
777static int 1530int inline_size
778enable_secure (void) 1531enable_secure (void)
779{ 1532{
780#ifdef _WIN32 1533#ifdef _WIN32
781 return 0; 1534 return 0;
782#else 1535#else
808 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
811#endif 1564#endif
812#ifdef __APPLE__ 1565#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
814 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
815#endif 1572#endif
816 1573
817 return flags; 1574 return flags;
818} 1575}
819 1576
820unsigned int 1577unsigned int
821ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
822{ 1579{
823 return EVBACKEND_EPOLL 1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
824 | EVBACKEND_KQUEUE 1581
825 | EVBACKEND_PORT; 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
826} 1587}
827 1588
828unsigned int 1589unsigned int
829ev_backend (EV_P) 1590ev_backend (EV_P)
830{ 1591{
831 return backend; 1592 return backend;
832} 1593}
833 1594
834static void 1595#if EV_FEATURE_API
1596unsigned int
1597ev_iteration (EV_P)
1598{
1599 return loop_count;
1600}
1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1608void
1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1610{
1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1645static void noinline
835loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
836{ 1647{
837 if (!backend) 1648 if (!backend)
838 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
839#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
840 { 1662 {
841 struct timespec ts; 1663 struct timespec ts;
1664
842 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
843 have_monotonic = 1; 1666 have_monotonic = 1;
844 } 1667 }
845#endif 1668#endif
846 1669
847 ev_rt_now = ev_time (); 1670 /* pid check not overridable via env */
848 mn_now = get_clock (); 1671#ifndef _WIN32
849 now_floor = mn_now; 1672 if (flags & EVFLAG_FORKCHECK)
850 rtmn_diff = ev_rt_now - mn_now; 1673 curpid = getpid ();
1674#endif
851 1675
852 if (!(flags & EVFLAG_NOENV) 1676 if (!(flags & EVFLAG_NOENV)
853 && !enable_secure () 1677 && !enable_secure ()
854 && getenv ("LIBEV_FLAGS")) 1678 && getenv ("LIBEV_FLAGS"))
855 flags = atoi (getenv ("LIBEV_FLAGS")); 1679 flags = atoi (getenv ("LIBEV_FLAGS"));
856 1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
857 if (!(flags & 0x0000ffffUL)) 1704 if (!(flags & 0x0000ffffU))
858 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
859 1706
860 backend = 0; 1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
861#if EV_USE_PORT 1710#if EV_USE_PORT
862 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
863#endif 1712#endif
864#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
865 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
872#endif 1721#endif
873#if EV_USE_SELECT 1722#if EV_USE_SELECT
874 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
875#endif 1724#endif
876 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
877 ev_init (&sigev, sigcb); 1729 ev_init (&pipe_w, pipecb);
878 ev_set_priority (&sigev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
879 } 1732 }
880} 1733}
881 1734
882static void 1735/* free up a loop structure */
1736void
883loop_destroy (EV_P) 1737ev_loop_destroy (EV_P)
884{ 1738{
885 int i; 1739 int i;
886 1740
1741#if EV_CHILD_ENABLE
1742 if (ev_is_active (&childev))
1743 {
1744 ev_ref (EV_A); /* child watcher */
1745 ev_signal_stop (EV_A_ &childev);
1746 }
1747#endif
1748
1749 if (ev_is_active (&pipe_w))
1750 {
1751 /*ev_ref (EV_A);*/
1752 /*ev_io_stop (EV_A_ &pipe_w);*/
1753
1754#if EV_USE_EVENTFD
1755 if (evfd >= 0)
1756 close (evfd);
1757#endif
1758
1759 if (evpipe [0] >= 0)
1760 {
1761 EV_WIN32_CLOSE_FD (evpipe [0]);
1762 EV_WIN32_CLOSE_FD (evpipe [1]);
1763 }
1764 }
1765
1766#if EV_USE_SIGNALFD
1767 if (ev_is_active (&sigfd_w))
1768 close (sigfd);
1769#endif
1770
1771#if EV_USE_INOTIFY
1772 if (fs_fd >= 0)
1773 close (fs_fd);
1774#endif
1775
1776 if (backend_fd >= 0)
1777 close (backend_fd);
1778
1779#if EV_USE_IOCP
1780 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1781#endif
887#if EV_USE_PORT 1782#if EV_USE_PORT
888 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1783 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
889#endif 1784#endif
890#if EV_USE_KQUEUE 1785#if EV_USE_KQUEUE
891 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1786 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
899#if EV_USE_SELECT 1794#if EV_USE_SELECT
900 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1795 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
901#endif 1796#endif
902 1797
903 for (i = NUMPRI; i--; ) 1798 for (i = NUMPRI; i--; )
1799 {
904 array_free (pending, [i]); 1800 array_free (pending, [i]);
1801#if EV_IDLE_ENABLE
1802 array_free (idle, [i]);
1803#endif
1804 }
1805
1806 ev_free (anfds); anfds = 0; anfdmax = 0;
905 1807
906 /* have to use the microsoft-never-gets-it-right macro */ 1808 /* have to use the microsoft-never-gets-it-right macro */
1809 array_free (rfeed, EMPTY);
907 array_free (fdchange, EMPTY0); 1810 array_free (fdchange, EMPTY);
908 array_free (timer, EMPTY0); 1811 array_free (timer, EMPTY);
909#if EV_PERIODICS 1812#if EV_PERIODIC_ENABLE
910 array_free (periodic, EMPTY0); 1813 array_free (periodic, EMPTY);
911#endif 1814#endif
1815#if EV_FORK_ENABLE
912 array_free (idle, EMPTY0); 1816 array_free (fork, EMPTY);
1817#endif
913 array_free (prepare, EMPTY0); 1818 array_free (prepare, EMPTY);
914 array_free (check, EMPTY0); 1819 array_free (check, EMPTY);
1820#if EV_ASYNC_ENABLE
1821 array_free (async, EMPTY);
1822#endif
915 1823
916 backend = 0; 1824 backend = 0;
917}
918 1825
919static void 1826#if EV_MULTIPLICITY
1827 if (ev_is_default_loop (EV_A))
1828#endif
1829 ev_default_loop_ptr = 0;
1830#if EV_MULTIPLICITY
1831 else
1832 ev_free (EV_A);
1833#endif
1834}
1835
1836#if EV_USE_INOTIFY
1837inline_size void infy_fork (EV_P);
1838#endif
1839
1840inline_size void
920loop_fork (EV_P) 1841loop_fork (EV_P)
921{ 1842{
922#if EV_USE_PORT 1843#if EV_USE_PORT
923 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1844 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
924#endif 1845#endif
926 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1847 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
927#endif 1848#endif
928#if EV_USE_EPOLL 1849#if EV_USE_EPOLL
929 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1850 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
930#endif 1851#endif
1852#if EV_USE_INOTIFY
1853 infy_fork (EV_A);
1854#endif
931 1855
932 if (ev_is_active (&sigev)) 1856 if (ev_is_active (&pipe_w))
933 { 1857 {
934 /* default loop */ 1858 /* this "locks" the handlers against writing to the pipe */
1859 /* while we modify the fd vars */
1860 sig_pending = 1;
1861#if EV_ASYNC_ENABLE
1862 async_pending = 1;
1863#endif
935 1864
936 ev_ref (EV_A); 1865 ev_ref (EV_A);
937 ev_io_stop (EV_A_ &sigev); 1866 ev_io_stop (EV_A_ &pipe_w);
938 close (sigpipe [0]);
939 close (sigpipe [1]);
940 1867
941 while (pipe (sigpipe)) 1868#if EV_USE_EVENTFD
942 syserr ("(libev) error creating pipe"); 1869 if (evfd >= 0)
1870 close (evfd);
1871#endif
943 1872
1873 if (evpipe [0] >= 0)
1874 {
1875 EV_WIN32_CLOSE_FD (evpipe [0]);
1876 EV_WIN32_CLOSE_FD (evpipe [1]);
1877 }
1878
1879#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
944 siginit (EV_A); 1880 evpipe_init (EV_A);
1881 /* now iterate over everything, in case we missed something */
1882 pipecb (EV_A_ &pipe_w, EV_READ);
1883#endif
945 } 1884 }
946 1885
947 postfork = 0; 1886 postfork = 0;
948} 1887}
1888
1889#if EV_MULTIPLICITY
1890
1891struct ev_loop *
1892ev_loop_new (unsigned int flags)
1893{
1894 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1895
1896 memset (EV_A, 0, sizeof (struct ev_loop));
1897 loop_init (EV_A_ flags);
1898
1899 if (ev_backend (EV_A))
1900 return EV_A;
1901
1902 ev_free (EV_A);
1903 return 0;
1904}
1905
1906#endif /* multiplicity */
1907
1908#if EV_VERIFY
1909static void noinline
1910verify_watcher (EV_P_ W w)
1911{
1912 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1913
1914 if (w->pending)
1915 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1916}
1917
1918static void noinline
1919verify_heap (EV_P_ ANHE *heap, int N)
1920{
1921 int i;
1922
1923 for (i = HEAP0; i < N + HEAP0; ++i)
1924 {
1925 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1926 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1927 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1928
1929 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1930 }
1931}
1932
1933static void noinline
1934array_verify (EV_P_ W *ws, int cnt)
1935{
1936 while (cnt--)
1937 {
1938 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1939 verify_watcher (EV_A_ ws [cnt]);
1940 }
1941}
1942#endif
1943
1944#if EV_FEATURE_API
1945void
1946ev_verify (EV_P)
1947{
1948#if EV_VERIFY
1949 int i;
1950 WL w;
1951
1952 assert (activecnt >= -1);
1953
1954 assert (fdchangemax >= fdchangecnt);
1955 for (i = 0; i < fdchangecnt; ++i)
1956 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1957
1958 assert (anfdmax >= 0);
1959 for (i = 0; i < anfdmax; ++i)
1960 for (w = anfds [i].head; w; w = w->next)
1961 {
1962 verify_watcher (EV_A_ (W)w);
1963 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1964 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1965 }
1966
1967 assert (timermax >= timercnt);
1968 verify_heap (EV_A_ timers, timercnt);
1969
1970#if EV_PERIODIC_ENABLE
1971 assert (periodicmax >= periodiccnt);
1972 verify_heap (EV_A_ periodics, periodiccnt);
1973#endif
1974
1975 for (i = NUMPRI; i--; )
1976 {
1977 assert (pendingmax [i] >= pendingcnt [i]);
1978#if EV_IDLE_ENABLE
1979 assert (idleall >= 0);
1980 assert (idlemax [i] >= idlecnt [i]);
1981 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1982#endif
1983 }
1984
1985#if EV_FORK_ENABLE
1986 assert (forkmax >= forkcnt);
1987 array_verify (EV_A_ (W *)forks, forkcnt);
1988#endif
1989
1990#if EV_ASYNC_ENABLE
1991 assert (asyncmax >= asynccnt);
1992 array_verify (EV_A_ (W *)asyncs, asynccnt);
1993#endif
1994
1995#if EV_PREPARE_ENABLE
1996 assert (preparemax >= preparecnt);
1997 array_verify (EV_A_ (W *)prepares, preparecnt);
1998#endif
1999
2000#if EV_CHECK_ENABLE
2001 assert (checkmax >= checkcnt);
2002 array_verify (EV_A_ (W *)checks, checkcnt);
2003#endif
2004
2005# if 0
2006#if EV_CHILD_ENABLE
2007 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2008 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2009#endif
2010# endif
2011#endif
2012}
2013#endif
949 2014
950#if EV_MULTIPLICITY 2015#if EV_MULTIPLICITY
951struct ev_loop * 2016struct ev_loop *
952ev_loop_new (unsigned int flags)
953{
954 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
955
956 memset (loop, 0, sizeof (struct ev_loop));
957
958 loop_init (EV_A_ flags);
959
960 if (ev_backend (EV_A))
961 return loop;
962
963 return 0;
964}
965
966void
967ev_loop_destroy (EV_P)
968{
969 loop_destroy (EV_A);
970 ev_free (loop);
971}
972
973void
974ev_loop_fork (EV_P)
975{
976 postfork = 1;
977}
978
979#endif
980
981#if EV_MULTIPLICITY
982struct ev_loop *
983ev_default_loop_init (unsigned int flags)
984#else 2017#else
985int 2018int
2019#endif
986ev_default_loop (unsigned int flags) 2020ev_default_loop (unsigned int flags)
987#endif
988{ 2021{
989 if (sigpipe [0] == sigpipe [1])
990 if (pipe (sigpipe))
991 return 0;
992
993 if (!ev_default_loop_ptr) 2022 if (!ev_default_loop_ptr)
994 { 2023 {
995#if EV_MULTIPLICITY 2024#if EV_MULTIPLICITY
996 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2025 EV_P = ev_default_loop_ptr = &default_loop_struct;
997#else 2026#else
998 ev_default_loop_ptr = 1; 2027 ev_default_loop_ptr = 1;
999#endif 2028#endif
1000 2029
1001 loop_init (EV_A_ flags); 2030 loop_init (EV_A_ flags);
1002 2031
1003 if (ev_backend (EV_A)) 2032 if (ev_backend (EV_A))
1004 { 2033 {
1005 siginit (EV_A); 2034#if EV_CHILD_ENABLE
1006
1007#ifndef _WIN32
1008 ev_signal_init (&childev, childcb, SIGCHLD); 2035 ev_signal_init (&childev, childcb, SIGCHLD);
1009 ev_set_priority (&childev, EV_MAXPRI); 2036 ev_set_priority (&childev, EV_MAXPRI);
1010 ev_signal_start (EV_A_ &childev); 2037 ev_signal_start (EV_A_ &childev);
1011 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2038 ev_unref (EV_A); /* child watcher should not keep loop alive */
1012#endif 2039#endif
1017 2044
1018 return ev_default_loop_ptr; 2045 return ev_default_loop_ptr;
1019} 2046}
1020 2047
1021void 2048void
1022ev_default_destroy (void) 2049ev_loop_fork (EV_P)
1023{ 2050{
1024#if EV_MULTIPLICITY 2051 postfork = 1; /* must be in line with ev_default_fork */
1025 struct ev_loop *loop = ev_default_loop_ptr;
1026#endif
1027
1028#ifndef _WIN32
1029 ev_ref (EV_A); /* child watcher */
1030 ev_signal_stop (EV_A_ &childev);
1031#endif
1032
1033 ev_ref (EV_A); /* signal watcher */
1034 ev_io_stop (EV_A_ &sigev);
1035
1036 close (sigpipe [0]); sigpipe [0] = 0;
1037 close (sigpipe [1]); sigpipe [1] = 0;
1038
1039 loop_destroy (EV_A);
1040} 2052}
2053
2054/*****************************************************************************/
1041 2055
1042void 2056void
1043ev_default_fork (void) 2057ev_invoke (EV_P_ void *w, int revents)
1044{ 2058{
1045#if EV_MULTIPLICITY 2059 EV_CB_INVOKE ((W)w, revents);
1046 struct ev_loop *loop = ev_default_loop_ptr;
1047#endif
1048
1049 if (backend)
1050 postfork = 1;
1051} 2060}
1052 2061
1053/*****************************************************************************/ 2062unsigned int
1054 2063ev_pending_count (EV_P)
1055static int
1056any_pending (EV_P)
1057{ 2064{
1058 int pri; 2065 int pri;
2066 unsigned int count = 0;
1059 2067
1060 for (pri = NUMPRI; pri--; ) 2068 for (pri = NUMPRI; pri--; )
1061 if (pendingcnt [pri]) 2069 count += pendingcnt [pri];
1062 return 1;
1063 2070
1064 return 0; 2071 return count;
1065} 2072}
1066 2073
1067inline void 2074void noinline
1068call_pending (EV_P) 2075ev_invoke_pending (EV_P)
1069{ 2076{
1070 int pri; 2077 int pri;
1071 2078
1072 for (pri = NUMPRI; pri--; ) 2079 for (pri = NUMPRI; pri--; )
1073 while (pendingcnt [pri]) 2080 while (pendingcnt [pri])
1074 { 2081 {
1075 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2082 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1076 2083
1077 if (expect_true (p->w))
1078 {
1079 assert (("non-pending watcher on pending list", p->w->pending)); 2084 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2085 /* ^ this is no longer true, as pending_w could be here */
1080 2086
1081 p->w->pending = 0; 2087 p->w->pending = 0;
1082 EV_CB_INVOKE (p->w, p->events); 2088 EV_CB_INVOKE (p->w, p->events);
1083 } 2089 EV_FREQUENT_CHECK;
1084 } 2090 }
1085} 2091}
1086 2092
2093#if EV_IDLE_ENABLE
2094/* make idle watchers pending. this handles the "call-idle */
2095/* only when higher priorities are idle" logic */
1087inline void 2096inline_size void
2097idle_reify (EV_P)
2098{
2099 if (expect_false (idleall))
2100 {
2101 int pri;
2102
2103 for (pri = NUMPRI; pri--; )
2104 {
2105 if (pendingcnt [pri])
2106 break;
2107
2108 if (idlecnt [pri])
2109 {
2110 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2111 break;
2112 }
2113 }
2114 }
2115}
2116#endif
2117
2118/* make timers pending */
2119inline_size void
1088timers_reify (EV_P) 2120timers_reify (EV_P)
1089{ 2121{
2122 EV_FREQUENT_CHECK;
2123
1090 while (timercnt && ((WT)timers [0])->at <= mn_now) 2124 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1091 { 2125 {
1092 ev_timer *w = timers [0]; 2126 do
1093
1094 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1095
1096 /* first reschedule or stop timer */
1097 if (w->repeat)
1098 { 2127 {
2128 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2129
2130 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2131
2132 /* first reschedule or stop timer */
2133 if (w->repeat)
2134 {
2135 ev_at (w) += w->repeat;
2136 if (ev_at (w) < mn_now)
2137 ev_at (w) = mn_now;
2138
1099 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2139 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1100 2140
1101 ((WT)w)->at += w->repeat; 2141 ANHE_at_cache (timers [HEAP0]);
1102 if (((WT)w)->at < mn_now)
1103 ((WT)w)->at = mn_now;
1104
1105 downheap ((WT *)timers, timercnt, 0); 2142 downheap (timers, timercnt, HEAP0);
2143 }
2144 else
2145 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
1106 } 2149 }
1107 else 2150 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1108 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1109 2151
1110 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2152 feed_reverse_done (EV_A_ EV_TIMER);
1111 } 2153 }
1112} 2154}
1113 2155
1114#if EV_PERIODICS 2156#if EV_PERIODIC_ENABLE
2157/* make periodics pending */
1115inline void 2158inline_size void
1116periodics_reify (EV_P) 2159periodics_reify (EV_P)
1117{ 2160{
2161 EV_FREQUENT_CHECK;
2162
1118 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2163 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1119 { 2164 {
1120 ev_periodic *w = periodics [0]; 2165 int feed_count = 0;
1121 2166
2167 do
2168 {
2169 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2170
1122 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2171 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1123 2172
1124 /* first reschedule or stop timer */ 2173 /* first reschedule or stop timer */
2174 if (w->reschedule_cb)
2175 {
2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2177
2178 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2179
2180 ANHE_at_cache (periodics [HEAP0]);
2181 downheap (periodics, periodiccnt, HEAP0);
2182 }
2183 else if (w->interval)
2184 {
2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2186 /* if next trigger time is not sufficiently in the future, put it there */
2187 /* this might happen because of floating point inexactness */
2188 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2189 {
2190 ev_at (w) += w->interval;
2191
2192 /* if interval is unreasonably low we might still have a time in the past */
2193 /* so correct this. this will make the periodic very inexact, but the user */
2194 /* has effectively asked to get triggered more often than possible */
2195 if (ev_at (w) < ev_rt_now)
2196 ev_at (w) = ev_rt_now;
2197 }
2198
2199 ANHE_at_cache (periodics [HEAP0]);
2200 downheap (periodics, periodiccnt, HEAP0);
2201 }
2202 else
2203 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2204
2205 EV_FREQUENT_CHECK;
2206 feed_reverse (EV_A_ (W)w);
2207 }
2208 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2209
2210 feed_reverse_done (EV_A_ EV_PERIODIC);
2211 }
2212}
2213
2214/* simply recalculate all periodics */
2215/* TODO: maybe ensure that at least one event happens when jumping forward? */
2216static void noinline
2217periodics_reschedule (EV_P)
2218{
2219 int i;
2220
2221 /* adjust periodics after time jump */
2222 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2223 {
2224 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2225
1125 if (w->reschedule_cb) 2226 if (w->reschedule_cb)
2227 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2228 else if (w->interval)
2229 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2230
2231 ANHE_at_cache (periodics [i]);
2232 }
2233
2234 reheap (periodics, periodiccnt);
2235}
2236#endif
2237
2238/* adjust all timers by a given offset */
2239static void noinline
2240timers_reschedule (EV_P_ ev_tstamp adjust)
2241{
2242 int i;
2243
2244 for (i = 0; i < timercnt; ++i)
2245 {
2246 ANHE *he = timers + i + HEAP0;
2247 ANHE_w (*he)->at += adjust;
2248 ANHE_at_cache (*he);
2249 }
2250}
2251
2252/* fetch new monotonic and realtime times from the kernel */
2253/* also detect if there was a timejump, and act accordingly */
2254inline_speed void
2255time_update (EV_P_ ev_tstamp max_block)
2256{
2257#if EV_USE_MONOTONIC
2258 if (expect_true (have_monotonic))
2259 {
2260 int i;
2261 ev_tstamp odiff = rtmn_diff;
2262
2263 mn_now = get_clock ();
2264
2265 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2266 /* interpolate in the meantime */
2267 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1126 { 2268 {
1127 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2269 ev_rt_now = rtmn_diff + mn_now;
1128 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2270 return;
1129 downheap ((WT *)periodics, periodiccnt, 0);
1130 } 2271 }
1131 else if (w->interval)
1132 {
1133 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1134 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1135 downheap ((WT *)periodics, periodiccnt, 0);
1136 }
1137 else
1138 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1139 2272
1140 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1141 }
1142}
1143
1144static void
1145periodics_reschedule (EV_P)
1146{
1147 int i;
1148
1149 /* adjust periodics after time jump */
1150 for (i = 0; i < periodiccnt; ++i)
1151 {
1152 ev_periodic *w = periodics [i];
1153
1154 if (w->reschedule_cb)
1155 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1156 else if (w->interval)
1157 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1158 }
1159
1160 /* now rebuild the heap */
1161 for (i = periodiccnt >> 1; i--; )
1162 downheap ((WT *)periodics, periodiccnt, i);
1163}
1164#endif
1165
1166inline int
1167time_update_monotonic (EV_P)
1168{
1169 mn_now = get_clock ();
1170
1171 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1172 {
1173 ev_rt_now = rtmn_diff + mn_now;
1174 return 0;
1175 }
1176 else
1177 {
1178 now_floor = mn_now; 2273 now_floor = mn_now;
1179 ev_rt_now = ev_time (); 2274 ev_rt_now = ev_time ();
1180 return 1;
1181 }
1182}
1183 2275
1184inline void 2276 /* loop a few times, before making important decisions.
1185time_update (EV_P) 2277 * on the choice of "4": one iteration isn't enough,
1186{ 2278 * in case we get preempted during the calls to
1187 int i; 2279 * ev_time and get_clock. a second call is almost guaranteed
1188 2280 * to succeed in that case, though. and looping a few more times
1189#if EV_USE_MONOTONIC 2281 * doesn't hurt either as we only do this on time-jumps or
1190 if (expect_true (have_monotonic)) 2282 * in the unlikely event of having been preempted here.
1191 { 2283 */
1192 if (time_update_monotonic (EV_A)) 2284 for (i = 4; --i; )
1193 { 2285 {
1194 ev_tstamp odiff = rtmn_diff;
1195
1196 /* loop a few times, before making important decisions.
1197 * on the choice of "4": one iteration isn't enough,
1198 * in case we get preempted during the calls to
1199 * ev_time and get_clock. a second call is almost guarenteed
1200 * to succeed in that case, though. and looping a few more times
1201 * doesn't hurt either as we only do this on time-jumps or
1202 * in the unlikely event of getting preempted here.
1203 */
1204 for (i = 4; --i; )
1205 {
1206 rtmn_diff = ev_rt_now - mn_now; 2286 rtmn_diff = ev_rt_now - mn_now;
1207 2287
1208 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2288 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1209 return; /* all is well */ 2289 return; /* all is well */
1210 2290
1211 ev_rt_now = ev_time (); 2291 ev_rt_now = ev_time ();
1212 mn_now = get_clock (); 2292 mn_now = get_clock ();
1213 now_floor = mn_now; 2293 now_floor = mn_now;
1214 } 2294 }
1215 2295
2296 /* no timer adjustment, as the monotonic clock doesn't jump */
2297 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1216# if EV_PERIODICS 2298# if EV_PERIODIC_ENABLE
2299 periodics_reschedule (EV_A);
2300# endif
2301 }
2302 else
2303#endif
2304 {
2305 ev_rt_now = ev_time ();
2306
2307 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2308 {
2309 /* adjust timers. this is easy, as the offset is the same for all of them */
2310 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2311#if EV_PERIODIC_ENABLE
1217 periodics_reschedule (EV_A); 2312 periodics_reschedule (EV_A);
1218# endif 2313#endif
1219 /* no timer adjustment, as the monotonic clock doesn't jump */
1220 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1221 } 2314 }
1222 }
1223 else
1224#endif
1225 {
1226 ev_rt_now = ev_time ();
1227
1228 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1229 {
1230#if EV_PERIODICS
1231 periodics_reschedule (EV_A);
1232#endif
1233
1234 /* adjust timers. this is easy, as the offset is the same for all */
1235 for (i = 0; i < timercnt; ++i)
1236 ((WT)timers [i])->at += ev_rt_now - mn_now;
1237 }
1238 2315
1239 mn_now = ev_rt_now; 2316 mn_now = ev_rt_now;
1240 } 2317 }
1241} 2318}
1242 2319
1243void 2320void
1244ev_ref (EV_P)
1245{
1246 ++activecnt;
1247}
1248
1249void
1250ev_unref (EV_P)
1251{
1252 --activecnt;
1253}
1254
1255static int loop_done;
1256
1257void
1258ev_loop (EV_P_ int flags) 2321ev_run (EV_P_ int flags)
1259{ 2322{
1260 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2323#if EV_FEATURE_API
1261 ? EVUNLOOP_ONE 2324 ++loop_depth;
1262 : EVUNLOOP_CANCEL; 2325#endif
1263 2326
1264 while (activecnt) 2327 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2328
2329 loop_done = EVBREAK_CANCEL;
2330
2331 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2332
2333 do
1265 { 2334 {
2335#if EV_VERIFY >= 2
2336 ev_verify (EV_A);
2337#endif
2338
2339#ifndef _WIN32
2340 if (expect_false (curpid)) /* penalise the forking check even more */
2341 if (expect_false (getpid () != curpid))
2342 {
2343 curpid = getpid ();
2344 postfork = 1;
2345 }
2346#endif
2347
2348#if EV_FORK_ENABLE
2349 /* we might have forked, so queue fork handlers */
2350 if (expect_false (postfork))
2351 if (forkcnt)
2352 {
2353 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2354 EV_INVOKE_PENDING;
2355 }
2356#endif
2357
2358#if EV_PREPARE_ENABLE
1266 /* queue check watchers (and execute them) */ 2359 /* queue prepare watchers (and execute them) */
1267 if (expect_false (preparecnt)) 2360 if (expect_false (preparecnt))
1268 { 2361 {
1269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2362 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1270 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1271 } 2364 }
2365#endif
2366
2367 if (expect_false (loop_done))
2368 break;
1272 2369
1273 /* we might have forked, so reify kernel state if necessary */ 2370 /* we might have forked, so reify kernel state if necessary */
1274 if (expect_false (postfork)) 2371 if (expect_false (postfork))
1275 loop_fork (EV_A); 2372 loop_fork (EV_A);
1276 2373
1277 /* update fd-related kernel structures */ 2374 /* update fd-related kernel structures */
1278 fd_reify (EV_A); 2375 fd_reify (EV_A);
1279 2376
1280 /* calculate blocking time */ 2377 /* calculate blocking time */
1281 { 2378 {
1282 double block; 2379 ev_tstamp waittime = 0.;
2380 ev_tstamp sleeptime = 0.;
1283 2381
1284 if (flags & EVLOOP_NONBLOCK || idlecnt) 2382 /* remember old timestamp for io_blocktime calculation */
1285 block = 0.; /* do not block at all */ 2383 ev_tstamp prev_mn_now = mn_now;
1286 else 2384
2385 /* update time to cancel out callback processing overhead */
2386 time_update (EV_A_ 1e100);
2387
2388 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1287 { 2389 {
1288 /* update time to cancel out callback processing overhead */
1289#if EV_USE_MONOTONIC
1290 if (expect_true (have_monotonic))
1291 time_update_monotonic (EV_A);
1292 else
1293#endif
1294 {
1295 ev_rt_now = ev_time ();
1296 mn_now = ev_rt_now;
1297 }
1298
1299 block = MAX_BLOCKTIME; 2390 waittime = MAX_BLOCKTIME;
1300 2391
1301 if (timercnt) 2392 if (timercnt)
1302 { 2393 {
1303 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2394 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1304 if (block > to) block = to; 2395 if (waittime > to) waittime = to;
1305 } 2396 }
1306 2397
1307#if EV_PERIODICS 2398#if EV_PERIODIC_ENABLE
1308 if (periodiccnt) 2399 if (periodiccnt)
1309 { 2400 {
1310 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2401 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1311 if (block > to) block = to; 2402 if (waittime > to) waittime = to;
1312 } 2403 }
1313#endif 2404#endif
1314 2405
2406 /* don't let timeouts decrease the waittime below timeout_blocktime */
2407 if (expect_false (waittime < timeout_blocktime))
2408 waittime = timeout_blocktime;
2409
2410 /* extra check because io_blocktime is commonly 0 */
1315 if (expect_false (block < 0.)) block = 0.; 2411 if (expect_false (io_blocktime))
2412 {
2413 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2414
2415 if (sleeptime > waittime - backend_fudge)
2416 sleeptime = waittime - backend_fudge;
2417
2418 if (expect_true (sleeptime > 0.))
2419 {
2420 ev_sleep (sleeptime);
2421 waittime -= sleeptime;
2422 }
2423 }
1316 } 2424 }
1317 2425
2426#if EV_FEATURE_API
2427 ++loop_count;
2428#endif
2429 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1318 backend_poll (EV_A_ block); 2430 backend_poll (EV_A_ waittime);
2431 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2432
2433 /* update ev_rt_now, do magic */
2434 time_update (EV_A_ waittime + sleeptime);
1319 } 2435 }
1320
1321 /* update ev_rt_now, do magic */
1322 time_update (EV_A);
1323 2436
1324 /* queue pending timers and reschedule them */ 2437 /* queue pending timers and reschedule them */
1325 timers_reify (EV_A); /* relative timers called last */ 2438 timers_reify (EV_A); /* relative timers called last */
1326#if EV_PERIODICS 2439#if EV_PERIODIC_ENABLE
1327 periodics_reify (EV_A); /* absolute timers called first */ 2440 periodics_reify (EV_A); /* absolute timers called first */
1328#endif 2441#endif
1329 2442
2443#if EV_IDLE_ENABLE
1330 /* queue idle watchers unless other events are pending */ 2444 /* queue idle watchers unless other events are pending */
1331 if (idlecnt && !any_pending (EV_A)) 2445 idle_reify (EV_A);
1332 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2446#endif
1333 2447
2448#if EV_CHECK_ENABLE
1334 /* queue check watchers, to be executed first */ 2449 /* queue check watchers, to be executed first */
1335 if (expect_false (checkcnt)) 2450 if (expect_false (checkcnt))
1336 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2451 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2452#endif
1337 2453
1338 call_pending (EV_A); 2454 EV_INVOKE_PENDING;
1339
1340 if (expect_false (loop_done))
1341 break;
1342 } 2455 }
2456 while (expect_true (
2457 activecnt
2458 && !loop_done
2459 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2460 ));
1343 2461
1344 if (loop_done == EVUNLOOP_ONE) 2462 if (loop_done == EVBREAK_ONE)
1345 loop_done = EVUNLOOP_CANCEL; 2463 loop_done = EVBREAK_CANCEL;
2464
2465#if EV_FEATURE_API
2466 --loop_depth;
2467#endif
1346} 2468}
1347 2469
1348void 2470void
1349ev_unloop (EV_P_ int how) 2471ev_break (EV_P_ int how)
1350{ 2472{
1351 loop_done = how; 2473 loop_done = how;
1352} 2474}
1353 2475
2476void
2477ev_ref (EV_P)
2478{
2479 ++activecnt;
2480}
2481
2482void
2483ev_unref (EV_P)
2484{
2485 --activecnt;
2486}
2487
2488void
2489ev_now_update (EV_P)
2490{
2491 time_update (EV_A_ 1e100);
2492}
2493
2494void
2495ev_suspend (EV_P)
2496{
2497 ev_now_update (EV_A);
2498}
2499
2500void
2501ev_resume (EV_P)
2502{
2503 ev_tstamp mn_prev = mn_now;
2504
2505 ev_now_update (EV_A);
2506 timers_reschedule (EV_A_ mn_now - mn_prev);
2507#if EV_PERIODIC_ENABLE
2508 /* TODO: really do this? */
2509 periodics_reschedule (EV_A);
2510#endif
2511}
2512
1354/*****************************************************************************/ 2513/*****************************************************************************/
2514/* singly-linked list management, used when the expected list length is short */
1355 2515
1356inline void 2516inline_size void
1357wlist_add (WL *head, WL elem) 2517wlist_add (WL *head, WL elem)
1358{ 2518{
1359 elem->next = *head; 2519 elem->next = *head;
1360 *head = elem; 2520 *head = elem;
1361} 2521}
1362 2522
1363inline void 2523inline_size void
1364wlist_del (WL *head, WL elem) 2524wlist_del (WL *head, WL elem)
1365{ 2525{
1366 while (*head) 2526 while (*head)
1367 { 2527 {
1368 if (*head == elem) 2528 if (expect_true (*head == elem))
1369 { 2529 {
1370 *head = elem->next; 2530 *head = elem->next;
1371 return; 2531 break;
1372 } 2532 }
1373 2533
1374 head = &(*head)->next; 2534 head = &(*head)->next;
1375 } 2535 }
1376} 2536}
1377 2537
2538/* internal, faster, version of ev_clear_pending */
1378inline void 2539inline_speed void
1379ev_clear_pending (EV_P_ W w) 2540clear_pending (EV_P_ W w)
1380{ 2541{
1381 if (w->pending) 2542 if (w->pending)
1382 { 2543 {
1383 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2544 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1384 w->pending = 0; 2545 w->pending = 0;
1385 } 2546 }
1386} 2547}
1387 2548
2549int
2550ev_clear_pending (EV_P_ void *w)
2551{
2552 W w_ = (W)w;
2553 int pending = w_->pending;
2554
2555 if (expect_true (pending))
2556 {
2557 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2558 p->w = (W)&pending_w;
2559 w_->pending = 0;
2560 return p->events;
2561 }
2562 else
2563 return 0;
2564}
2565
1388inline void 2566inline_size void
2567pri_adjust (EV_P_ W w)
2568{
2569 int pri = ev_priority (w);
2570 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2571 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2572 ev_set_priority (w, pri);
2573}
2574
2575inline_speed void
1389ev_start (EV_P_ W w, int active) 2576ev_start (EV_P_ W w, int active)
1390{ 2577{
1391 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2578 pri_adjust (EV_A_ w);
1392 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1393
1394 w->active = active; 2579 w->active = active;
1395 ev_ref (EV_A); 2580 ev_ref (EV_A);
1396} 2581}
1397 2582
1398inline void 2583inline_size void
1399ev_stop (EV_P_ W w) 2584ev_stop (EV_P_ W w)
1400{ 2585{
1401 ev_unref (EV_A); 2586 ev_unref (EV_A);
1402 w->active = 0; 2587 w->active = 0;
1403} 2588}
1404 2589
1405/*****************************************************************************/ 2590/*****************************************************************************/
1406 2591
1407void 2592void noinline
1408ev_io_start (EV_P_ ev_io *w) 2593ev_io_start (EV_P_ ev_io *w)
1409{ 2594{
1410 int fd = w->fd; 2595 int fd = w->fd;
1411 2596
1412 if (expect_false (ev_is_active (w))) 2597 if (expect_false (ev_is_active (w)))
1413 return; 2598 return;
1414 2599
1415 assert (("ev_io_start called with negative fd", fd >= 0)); 2600 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2601 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2602
2603 EV_FREQUENT_CHECK;
1416 2604
1417 ev_start (EV_A_ (W)w, 1); 2605 ev_start (EV_A_ (W)w, 1);
1418 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2606 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1419 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2607 wlist_add (&anfds[fd].head, (WL)w);
1420 2608
1421 fd_change (EV_A_ fd); 2609 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1422} 2610 w->events &= ~EV__IOFDSET;
1423 2611
1424void 2612 EV_FREQUENT_CHECK;
2613}
2614
2615void noinline
1425ev_io_stop (EV_P_ ev_io *w) 2616ev_io_stop (EV_P_ ev_io *w)
1426{ 2617{
1427 ev_clear_pending (EV_A_ (W)w); 2618 clear_pending (EV_A_ (W)w);
1428 if (expect_false (!ev_is_active (w))) 2619 if (expect_false (!ev_is_active (w)))
1429 return; 2620 return;
1430 2621
1431 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2622 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1432 2623
2624 EV_FREQUENT_CHECK;
2625
1433 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2626 wlist_del (&anfds[w->fd].head, (WL)w);
1434 ev_stop (EV_A_ (W)w); 2627 ev_stop (EV_A_ (W)w);
1435 2628
1436 fd_change (EV_A_ w->fd); 2629 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1437}
1438 2630
1439void 2631 EV_FREQUENT_CHECK;
2632}
2633
2634void noinline
1440ev_timer_start (EV_P_ ev_timer *w) 2635ev_timer_start (EV_P_ ev_timer *w)
1441{ 2636{
1442 if (expect_false (ev_is_active (w))) 2637 if (expect_false (ev_is_active (w)))
1443 return; 2638 return;
1444 2639
1445 ((WT)w)->at += mn_now; 2640 ev_at (w) += mn_now;
1446 2641
1447 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2642 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1448 2643
2644 EV_FREQUENT_CHECK;
2645
2646 ++timercnt;
1449 ev_start (EV_A_ (W)w, ++timercnt); 2647 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1450 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2648 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1451 timers [timercnt - 1] = w; 2649 ANHE_w (timers [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)timers, timercnt - 1); 2650 ANHE_at_cache (timers [ev_active (w)]);
2651 upheap (timers, ev_active (w));
1453 2652
2653 EV_FREQUENT_CHECK;
2654
1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2655 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1455} 2656}
1456 2657
1457void 2658void noinline
1458ev_timer_stop (EV_P_ ev_timer *w) 2659ev_timer_stop (EV_P_ ev_timer *w)
1459{ 2660{
1460 ev_clear_pending (EV_A_ (W)w); 2661 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2662 if (expect_false (!ev_is_active (w)))
1462 return; 2663 return;
1463 2664
2665 EV_FREQUENT_CHECK;
2666
2667 {
2668 int active = ev_active (w);
2669
1464 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2670 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1465 2671
2672 --timercnt;
2673
1466 if (expect_true (((W)w)->active < timercnt--)) 2674 if (expect_true (active < timercnt + HEAP0))
1467 { 2675 {
1468 timers [((W)w)->active - 1] = timers [timercnt]; 2676 timers [active] = timers [timercnt + HEAP0];
1469 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2677 adjustheap (timers, timercnt, active);
1470 } 2678 }
2679 }
1471 2680
1472 ((WT)w)->at -= mn_now; 2681 ev_at (w) -= mn_now;
1473 2682
1474 ev_stop (EV_A_ (W)w); 2683 ev_stop (EV_A_ (W)w);
1475}
1476 2684
1477void 2685 EV_FREQUENT_CHECK;
2686}
2687
2688void noinline
1478ev_timer_again (EV_P_ ev_timer *w) 2689ev_timer_again (EV_P_ ev_timer *w)
1479{ 2690{
2691 EV_FREQUENT_CHECK;
2692
1480 if (ev_is_active (w)) 2693 if (ev_is_active (w))
1481 { 2694 {
1482 if (w->repeat) 2695 if (w->repeat)
1483 { 2696 {
1484 ((WT)w)->at = mn_now + w->repeat; 2697 ev_at (w) = mn_now + w->repeat;
2698 ANHE_at_cache (timers [ev_active (w)]);
1485 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2699 adjustheap (timers, timercnt, ev_active (w));
1486 } 2700 }
1487 else 2701 else
1488 ev_timer_stop (EV_A_ w); 2702 ev_timer_stop (EV_A_ w);
1489 } 2703 }
1490 else if (w->repeat) 2704 else if (w->repeat)
1491 { 2705 {
1492 w->at = w->repeat; 2706 ev_at (w) = w->repeat;
1493 ev_timer_start (EV_A_ w); 2707 ev_timer_start (EV_A_ w);
1494 } 2708 }
1495}
1496 2709
2710 EV_FREQUENT_CHECK;
2711}
2712
2713ev_tstamp
2714ev_timer_remaining (EV_P_ ev_timer *w)
2715{
2716 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2717}
2718
1497#if EV_PERIODICS 2719#if EV_PERIODIC_ENABLE
1498void 2720void noinline
1499ev_periodic_start (EV_P_ ev_periodic *w) 2721ev_periodic_start (EV_P_ ev_periodic *w)
1500{ 2722{
1501 if (expect_false (ev_is_active (w))) 2723 if (expect_false (ev_is_active (w)))
1502 return; 2724 return;
1503 2725
1504 if (w->reschedule_cb) 2726 if (w->reschedule_cb)
1505 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2727 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1506 else if (w->interval) 2728 else if (w->interval)
1507 { 2729 {
1508 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2730 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1509 /* this formula differs from the one in periodic_reify because we do not always round up */ 2731 /* this formula differs from the one in periodic_reify because we do not always round up */
1510 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2732 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 } 2733 }
2734 else
2735 ev_at (w) = w->offset;
1512 2736
2737 EV_FREQUENT_CHECK;
2738
2739 ++periodiccnt;
1513 ev_start (EV_A_ (W)w, ++periodiccnt); 2740 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1514 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2741 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1515 periodics [periodiccnt - 1] = w; 2742 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1516 upheap ((WT *)periodics, periodiccnt - 1); 2743 ANHE_at_cache (periodics [ev_active (w)]);
2744 upheap (periodics, ev_active (w));
1517 2745
2746 EV_FREQUENT_CHECK;
2747
1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2748 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1519} 2749}
1520 2750
1521void 2751void noinline
1522ev_periodic_stop (EV_P_ ev_periodic *w) 2752ev_periodic_stop (EV_P_ ev_periodic *w)
1523{ 2753{
1524 ev_clear_pending (EV_A_ (W)w); 2754 clear_pending (EV_A_ (W)w);
1525 if (expect_false (!ev_is_active (w))) 2755 if (expect_false (!ev_is_active (w)))
1526 return; 2756 return;
1527 2757
2758 EV_FREQUENT_CHECK;
2759
2760 {
2761 int active = ev_active (w);
2762
1528 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2763 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1529 2764
2765 --periodiccnt;
2766
1530 if (expect_true (((W)w)->active < periodiccnt--)) 2767 if (expect_true (active < periodiccnt + HEAP0))
1531 { 2768 {
1532 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2769 periodics [active] = periodics [periodiccnt + HEAP0];
1533 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2770 adjustheap (periodics, periodiccnt, active);
1534 } 2771 }
2772 }
1535 2773
1536 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
1537}
1538 2775
1539void 2776 EV_FREQUENT_CHECK;
2777}
2778
2779void noinline
1540ev_periodic_again (EV_P_ ev_periodic *w) 2780ev_periodic_again (EV_P_ ev_periodic *w)
1541{ 2781{
1542 /* TODO: use adjustheap and recalculation */ 2782 /* TODO: use adjustheap and recalculation */
1543 ev_periodic_stop (EV_A_ w); 2783 ev_periodic_stop (EV_A_ w);
1544 ev_periodic_start (EV_A_ w); 2784 ev_periodic_start (EV_A_ w);
1545} 2785}
1546#endif 2786#endif
1547 2787
2788#ifndef SA_RESTART
2789# define SA_RESTART 0
2790#endif
2791
2792#if EV_SIGNAL_ENABLE
2793
2794void noinline
2795ev_signal_start (EV_P_ ev_signal *w)
2796{
2797 if (expect_false (ev_is_active (w)))
2798 return;
2799
2800 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2801
2802#if EV_MULTIPLICITY
2803 assert (("libev: a signal must not be attached to two different loops",
2804 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2805
2806 signals [w->signum - 1].loop = EV_A;
2807#endif
2808
2809 EV_FREQUENT_CHECK;
2810
2811#if EV_USE_SIGNALFD
2812 if (sigfd == -2)
2813 {
2814 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2815 if (sigfd < 0 && errno == EINVAL)
2816 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2817
2818 if (sigfd >= 0)
2819 {
2820 fd_intern (sigfd); /* doing it twice will not hurt */
2821
2822 sigemptyset (&sigfd_set);
2823
2824 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2825 ev_set_priority (&sigfd_w, EV_MAXPRI);
2826 ev_io_start (EV_A_ &sigfd_w);
2827 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2828 }
2829 }
2830
2831 if (sigfd >= 0)
2832 {
2833 /* TODO: check .head */
2834 sigaddset (&sigfd_set, w->signum);
2835 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2836
2837 signalfd (sigfd, &sigfd_set, 0);
2838 }
2839#endif
2840
2841 ev_start (EV_A_ (W)w, 1);
2842 wlist_add (&signals [w->signum - 1].head, (WL)w);
2843
2844 if (!((WL)w)->next)
2845# if EV_USE_SIGNALFD
2846 if (sigfd < 0) /*TODO*/
2847# endif
2848 {
2849# ifdef _WIN32
2850 evpipe_init (EV_A);
2851
2852 signal (w->signum, ev_sighandler);
2853# else
2854 struct sigaction sa;
2855
2856 evpipe_init (EV_A);
2857
2858 sa.sa_handler = ev_sighandler;
2859 sigfillset (&sa.sa_mask);
2860 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2861 sigaction (w->signum, &sa, 0);
2862
2863 sigemptyset (&sa.sa_mask);
2864 sigaddset (&sa.sa_mask, w->signum);
2865 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2866#endif
2867 }
2868
2869 EV_FREQUENT_CHECK;
2870}
2871
2872void noinline
2873ev_signal_stop (EV_P_ ev_signal *w)
2874{
2875 clear_pending (EV_A_ (W)w);
2876 if (expect_false (!ev_is_active (w)))
2877 return;
2878
2879 EV_FREQUENT_CHECK;
2880
2881 wlist_del (&signals [w->signum - 1].head, (WL)w);
2882 ev_stop (EV_A_ (W)w);
2883
2884 if (!signals [w->signum - 1].head)
2885 {
2886#if EV_MULTIPLICITY
2887 signals [w->signum - 1].loop = 0; /* unattach from signal */
2888#endif
2889#if EV_USE_SIGNALFD
2890 if (sigfd >= 0)
2891 {
2892 sigset_t ss;
2893
2894 sigemptyset (&ss);
2895 sigaddset (&ss, w->signum);
2896 sigdelset (&sigfd_set, w->signum);
2897
2898 signalfd (sigfd, &sigfd_set, 0);
2899 sigprocmask (SIG_UNBLOCK, &ss, 0);
2900 }
2901 else
2902#endif
2903 signal (w->signum, SIG_DFL);
2904 }
2905
2906 EV_FREQUENT_CHECK;
2907}
2908
2909#endif
2910
2911#if EV_CHILD_ENABLE
2912
2913void
2914ev_child_start (EV_P_ ev_child *w)
2915{
2916#if EV_MULTIPLICITY
2917 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2918#endif
2919 if (expect_false (ev_is_active (w)))
2920 return;
2921
2922 EV_FREQUENT_CHECK;
2923
2924 ev_start (EV_A_ (W)w, 1);
2925 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2926
2927 EV_FREQUENT_CHECK;
2928}
2929
2930void
2931ev_child_stop (EV_P_ ev_child *w)
2932{
2933 clear_pending (EV_A_ (W)w);
2934 if (expect_false (!ev_is_active (w)))
2935 return;
2936
2937 EV_FREQUENT_CHECK;
2938
2939 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2943}
2944
2945#endif
2946
2947#if EV_STAT_ENABLE
2948
2949# ifdef _WIN32
2950# undef lstat
2951# define lstat(a,b) _stati64 (a,b)
2952# endif
2953
2954#define DEF_STAT_INTERVAL 5.0074891
2955#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2956#define MIN_STAT_INTERVAL 0.1074891
2957
2958static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2959
2960#if EV_USE_INOTIFY
2961
2962/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2963# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2964
2965static void noinline
2966infy_add (EV_P_ ev_stat *w)
2967{
2968 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2969
2970 if (w->wd >= 0)
2971 {
2972 struct statfs sfs;
2973
2974 /* now local changes will be tracked by inotify, but remote changes won't */
2975 /* unless the filesystem is known to be local, we therefore still poll */
2976 /* also do poll on <2.6.25, but with normal frequency */
2977
2978 if (!fs_2625)
2979 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2980 else if (!statfs (w->path, &sfs)
2981 && (sfs.f_type == 0x1373 /* devfs */
2982 || sfs.f_type == 0xEF53 /* ext2/3 */
2983 || sfs.f_type == 0x3153464a /* jfs */
2984 || sfs.f_type == 0x52654973 /* reiser3 */
2985 || sfs.f_type == 0x01021994 /* tempfs */
2986 || sfs.f_type == 0x58465342 /* xfs */))
2987 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2988 else
2989 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2990 }
2991 else
2992 {
2993 /* can't use inotify, continue to stat */
2994 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2995
2996 /* if path is not there, monitor some parent directory for speedup hints */
2997 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2998 /* but an efficiency issue only */
2999 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3000 {
3001 char path [4096];
3002 strcpy (path, w->path);
3003
3004 do
3005 {
3006 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3007 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3008
3009 char *pend = strrchr (path, '/');
3010
3011 if (!pend || pend == path)
3012 break;
3013
3014 *pend = 0;
3015 w->wd = inotify_add_watch (fs_fd, path, mask);
3016 }
3017 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3018 }
3019 }
3020
3021 if (w->wd >= 0)
3022 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3023
3024 /* now re-arm timer, if required */
3025 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3026 ev_timer_again (EV_A_ &w->timer);
3027 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3028}
3029
3030static void noinline
3031infy_del (EV_P_ ev_stat *w)
3032{
3033 int slot;
3034 int wd = w->wd;
3035
3036 if (wd < 0)
3037 return;
3038
3039 w->wd = -2;
3040 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3041 wlist_del (&fs_hash [slot].head, (WL)w);
3042
3043 /* remove this watcher, if others are watching it, they will rearm */
3044 inotify_rm_watch (fs_fd, wd);
3045}
3046
3047static void noinline
3048infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3049{
3050 if (slot < 0)
3051 /* overflow, need to check for all hash slots */
3052 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3053 infy_wd (EV_A_ slot, wd, ev);
3054 else
3055 {
3056 WL w_;
3057
3058 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3059 {
3060 ev_stat *w = (ev_stat *)w_;
3061 w_ = w_->next; /* lets us remove this watcher and all before it */
3062
3063 if (w->wd == wd || wd == -1)
3064 {
3065 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3066 {
3067 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3068 w->wd = -1;
3069 infy_add (EV_A_ w); /* re-add, no matter what */
3070 }
3071
3072 stat_timer_cb (EV_A_ &w->timer, 0);
3073 }
3074 }
3075 }
3076}
3077
3078static void
3079infy_cb (EV_P_ ev_io *w, int revents)
3080{
3081 char buf [EV_INOTIFY_BUFSIZE];
3082 int ofs;
3083 int len = read (fs_fd, buf, sizeof (buf));
3084
3085 for (ofs = 0; ofs < len; )
3086 {
3087 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3088 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3089 ofs += sizeof (struct inotify_event) + ev->len;
3090 }
3091}
3092
3093inline_size void
3094ev_check_2625 (EV_P)
3095{
3096 /* kernels < 2.6.25 are borked
3097 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3098 */
3099 if (ev_linux_version () < 0x020619)
3100 return;
3101
3102 fs_2625 = 1;
3103}
3104
3105inline_size int
3106infy_newfd (void)
3107{
3108#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3109 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3110 if (fd >= 0)
3111 return fd;
3112#endif
3113 return inotify_init ();
3114}
3115
3116inline_size void
3117infy_init (EV_P)
3118{
3119 if (fs_fd != -2)
3120 return;
3121
3122 fs_fd = -1;
3123
3124 ev_check_2625 (EV_A);
3125
3126 fs_fd = infy_newfd ();
3127
3128 if (fs_fd >= 0)
3129 {
3130 fd_intern (fs_fd);
3131 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3132 ev_set_priority (&fs_w, EV_MAXPRI);
3133 ev_io_start (EV_A_ &fs_w);
3134 ev_unref (EV_A);
3135 }
3136}
3137
3138inline_size void
3139infy_fork (EV_P)
3140{
3141 int slot;
3142
3143 if (fs_fd < 0)
3144 return;
3145
3146 ev_ref (EV_A);
3147 ev_io_stop (EV_A_ &fs_w);
3148 close (fs_fd);
3149 fs_fd = infy_newfd ();
3150
3151 if (fs_fd >= 0)
3152 {
3153 fd_intern (fs_fd);
3154 ev_io_set (&fs_w, fs_fd, EV_READ);
3155 ev_io_start (EV_A_ &fs_w);
3156 ev_unref (EV_A);
3157 }
3158
3159 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3160 {
3161 WL w_ = fs_hash [slot].head;
3162 fs_hash [slot].head = 0;
3163
3164 while (w_)
3165 {
3166 ev_stat *w = (ev_stat *)w_;
3167 w_ = w_->next; /* lets us add this watcher */
3168
3169 w->wd = -1;
3170
3171 if (fs_fd >= 0)
3172 infy_add (EV_A_ w); /* re-add, no matter what */
3173 else
3174 {
3175 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3176 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3177 ev_timer_again (EV_A_ &w->timer);
3178 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3179 }
3180 }
3181 }
3182}
3183
3184#endif
3185
3186#ifdef _WIN32
3187# define EV_LSTAT(p,b) _stati64 (p, b)
3188#else
3189# define EV_LSTAT(p,b) lstat (p, b)
3190#endif
3191
3192void
3193ev_stat_stat (EV_P_ ev_stat *w)
3194{
3195 if (lstat (w->path, &w->attr) < 0)
3196 w->attr.st_nlink = 0;
3197 else if (!w->attr.st_nlink)
3198 w->attr.st_nlink = 1;
3199}
3200
3201static void noinline
3202stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3203{
3204 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3205
3206 ev_statdata prev = w->attr;
3207 ev_stat_stat (EV_A_ w);
3208
3209 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3210 if (
3211 prev.st_dev != w->attr.st_dev
3212 || prev.st_ino != w->attr.st_ino
3213 || prev.st_mode != w->attr.st_mode
3214 || prev.st_nlink != w->attr.st_nlink
3215 || prev.st_uid != w->attr.st_uid
3216 || prev.st_gid != w->attr.st_gid
3217 || prev.st_rdev != w->attr.st_rdev
3218 || prev.st_size != w->attr.st_size
3219 || prev.st_atime != w->attr.st_atime
3220 || prev.st_mtime != w->attr.st_mtime
3221 || prev.st_ctime != w->attr.st_ctime
3222 ) {
3223 /* we only update w->prev on actual differences */
3224 /* in case we test more often than invoke the callback, */
3225 /* to ensure that prev is always different to attr */
3226 w->prev = prev;
3227
3228 #if EV_USE_INOTIFY
3229 if (fs_fd >= 0)
3230 {
3231 infy_del (EV_A_ w);
3232 infy_add (EV_A_ w);
3233 ev_stat_stat (EV_A_ w); /* avoid race... */
3234 }
3235 #endif
3236
3237 ev_feed_event (EV_A_ w, EV_STAT);
3238 }
3239}
3240
3241void
3242ev_stat_start (EV_P_ ev_stat *w)
3243{
3244 if (expect_false (ev_is_active (w)))
3245 return;
3246
3247 ev_stat_stat (EV_A_ w);
3248
3249 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3250 w->interval = MIN_STAT_INTERVAL;
3251
3252 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3253 ev_set_priority (&w->timer, ev_priority (w));
3254
3255#if EV_USE_INOTIFY
3256 infy_init (EV_A);
3257
3258 if (fs_fd >= 0)
3259 infy_add (EV_A_ w);
3260 else
3261#endif
3262 {
3263 ev_timer_again (EV_A_ &w->timer);
3264 ev_unref (EV_A);
3265 }
3266
3267 ev_start (EV_A_ (W)w, 1);
3268
3269 EV_FREQUENT_CHECK;
3270}
3271
3272void
3273ev_stat_stop (EV_P_ ev_stat *w)
3274{
3275 clear_pending (EV_A_ (W)w);
3276 if (expect_false (!ev_is_active (w)))
3277 return;
3278
3279 EV_FREQUENT_CHECK;
3280
3281#if EV_USE_INOTIFY
3282 infy_del (EV_A_ w);
3283#endif
3284
3285 if (ev_is_active (&w->timer))
3286 {
3287 ev_ref (EV_A);
3288 ev_timer_stop (EV_A_ &w->timer);
3289 }
3290
3291 ev_stop (EV_A_ (W)w);
3292
3293 EV_FREQUENT_CHECK;
3294}
3295#endif
3296
3297#if EV_IDLE_ENABLE
1548void 3298void
1549ev_idle_start (EV_P_ ev_idle *w) 3299ev_idle_start (EV_P_ ev_idle *w)
1550{ 3300{
1551 if (expect_false (ev_is_active (w))) 3301 if (expect_false (ev_is_active (w)))
1552 return; 3302 return;
1553 3303
3304 pri_adjust (EV_A_ (W)w);
3305
3306 EV_FREQUENT_CHECK;
3307
3308 {
3309 int active = ++idlecnt [ABSPRI (w)];
3310
3311 ++idleall;
1554 ev_start (EV_A_ (W)w, ++idlecnt); 3312 ev_start (EV_A_ (W)w, active);
3313
1555 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3314 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1556 idles [idlecnt - 1] = w; 3315 idles [ABSPRI (w)][active - 1] = w;
3316 }
3317
3318 EV_FREQUENT_CHECK;
1557} 3319}
1558 3320
1559void 3321void
1560ev_idle_stop (EV_P_ ev_idle *w) 3322ev_idle_stop (EV_P_ ev_idle *w)
1561{ 3323{
1562 ev_clear_pending (EV_A_ (W)w); 3324 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 3325 if (expect_false (!ev_is_active (w)))
1564 return; 3326 return;
1565 3327
3328 EV_FREQUENT_CHECK;
3329
1566 { 3330 {
1567 int active = ((W)w)->active; 3331 int active = ev_active (w);
1568 idles [active - 1] = idles [--idlecnt]; 3332
1569 ((W)idles [active - 1])->active = active; 3333 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3334 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3335
3336 ev_stop (EV_A_ (W)w);
3337 --idleall;
1570 } 3338 }
1571 3339
1572 ev_stop (EV_A_ (W)w); 3340 EV_FREQUENT_CHECK;
1573} 3341}
3342#endif
1574 3343
3344#if EV_PREPARE_ENABLE
1575void 3345void
1576ev_prepare_start (EV_P_ ev_prepare *w) 3346ev_prepare_start (EV_P_ ev_prepare *w)
1577{ 3347{
1578 if (expect_false (ev_is_active (w))) 3348 if (expect_false (ev_is_active (w)))
1579 return; 3349 return;
3350
3351 EV_FREQUENT_CHECK;
1580 3352
1581 ev_start (EV_A_ (W)w, ++preparecnt); 3353 ev_start (EV_A_ (W)w, ++preparecnt);
1582 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3354 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1583 prepares [preparecnt - 1] = w; 3355 prepares [preparecnt - 1] = w;
3356
3357 EV_FREQUENT_CHECK;
1584} 3358}
1585 3359
1586void 3360void
1587ev_prepare_stop (EV_P_ ev_prepare *w) 3361ev_prepare_stop (EV_P_ ev_prepare *w)
1588{ 3362{
1589 ev_clear_pending (EV_A_ (W)w); 3363 clear_pending (EV_A_ (W)w);
1590 if (expect_false (!ev_is_active (w))) 3364 if (expect_false (!ev_is_active (w)))
1591 return; 3365 return;
1592 3366
3367 EV_FREQUENT_CHECK;
3368
1593 { 3369 {
1594 int active = ((W)w)->active; 3370 int active = ev_active (w);
3371
1595 prepares [active - 1] = prepares [--preparecnt]; 3372 prepares [active - 1] = prepares [--preparecnt];
1596 ((W)prepares [active - 1])->active = active; 3373 ev_active (prepares [active - 1]) = active;
1597 } 3374 }
1598 3375
1599 ev_stop (EV_A_ (W)w); 3376 ev_stop (EV_A_ (W)w);
1600}
1601 3377
3378 EV_FREQUENT_CHECK;
3379}
3380#endif
3381
3382#if EV_CHECK_ENABLE
1602void 3383void
1603ev_check_start (EV_P_ ev_check *w) 3384ev_check_start (EV_P_ ev_check *w)
1604{ 3385{
1605 if (expect_false (ev_is_active (w))) 3386 if (expect_false (ev_is_active (w)))
1606 return; 3387 return;
3388
3389 EV_FREQUENT_CHECK;
1607 3390
1608 ev_start (EV_A_ (W)w, ++checkcnt); 3391 ev_start (EV_A_ (W)w, ++checkcnt);
1609 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3392 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1610 checks [checkcnt - 1] = w; 3393 checks [checkcnt - 1] = w;
3394
3395 EV_FREQUENT_CHECK;
1611} 3396}
1612 3397
1613void 3398void
1614ev_check_stop (EV_P_ ev_check *w) 3399ev_check_stop (EV_P_ ev_check *w)
1615{ 3400{
1616 ev_clear_pending (EV_A_ (W)w); 3401 clear_pending (EV_A_ (W)w);
1617 if (expect_false (!ev_is_active (w))) 3402 if (expect_false (!ev_is_active (w)))
1618 return; 3403 return;
1619 3404
3405 EV_FREQUENT_CHECK;
3406
1620 { 3407 {
1621 int active = ((W)w)->active; 3408 int active = ev_active (w);
3409
1622 checks [active - 1] = checks [--checkcnt]; 3410 checks [active - 1] = checks [--checkcnt];
1623 ((W)checks [active - 1])->active = active; 3411 ev_active (checks [active - 1]) = active;
1624 } 3412 }
1625 3413
1626 ev_stop (EV_A_ (W)w); 3414 ev_stop (EV_A_ (W)w);
1627}
1628 3415
1629#ifndef SA_RESTART 3416 EV_FREQUENT_CHECK;
1630# define SA_RESTART 0
1631#endif
1632
1633void
1634ev_signal_start (EV_P_ ev_signal *w)
1635{
1636#if EV_MULTIPLICITY
1637 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1638#endif
1639 if (expect_false (ev_is_active (w)))
1640 return;
1641
1642 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1643
1644 ev_start (EV_A_ (W)w, 1);
1645 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1646 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1647
1648 if (!((WL)w)->next)
1649 {
1650#if _WIN32
1651 signal (w->signum, sighandler);
1652#else
1653 struct sigaction sa;
1654 sa.sa_handler = sighandler;
1655 sigfillset (&sa.sa_mask);
1656 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1657 sigaction (w->signum, &sa, 0);
1658#endif
1659 }
1660} 3417}
1661
1662void
1663ev_signal_stop (EV_P_ ev_signal *w)
1664{
1665 ev_clear_pending (EV_A_ (W)w);
1666 if (expect_false (!ev_is_active (w)))
1667 return;
1668
1669 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1670 ev_stop (EV_A_ (W)w);
1671
1672 if (!signals [w->signum - 1].head)
1673 signal (w->signum, SIG_DFL);
1674}
1675
1676void
1677ev_child_start (EV_P_ ev_child *w)
1678{
1679#if EV_MULTIPLICITY
1680 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1681#endif 3418#endif
1682 if (expect_false (ev_is_active (w)))
1683 return;
1684 3419
1685 ev_start (EV_A_ (W)w, 1); 3420#if EV_EMBED_ENABLE
1686 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3421void noinline
1687}
1688
1689void
1690ev_child_stop (EV_P_ ev_child *w)
1691{
1692 ev_clear_pending (EV_A_ (W)w);
1693 if (expect_false (!ev_is_active (w)))
1694 return;
1695
1696 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1697 ev_stop (EV_A_ (W)w);
1698}
1699
1700#if EV_MULTIPLICITY
1701void
1702ev_embed_sweep (EV_P_ ev_embed *w) 3422ev_embed_sweep (EV_P_ ev_embed *w)
1703{ 3423{
1704 ev_loop (w->loop, EVLOOP_NONBLOCK); 3424 ev_run (w->other, EVRUN_NOWAIT);
1705} 3425}
1706 3426
1707static void 3427static void
1708embed_cb (EV_P_ ev_io *io, int revents) 3428embed_io_cb (EV_P_ ev_io *io, int revents)
1709{ 3429{
1710 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3430 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1711 3431
1712 if (ev_cb (w)) 3432 if (ev_cb (w))
1713 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3433 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1714 else 3434 else
1715 ev_embed_sweep (loop, w); 3435 ev_run (w->other, EVRUN_NOWAIT);
1716} 3436}
3437
3438static void
3439embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3440{
3441 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3442
3443 {
3444 EV_P = w->other;
3445
3446 while (fdchangecnt)
3447 {
3448 fd_reify (EV_A);
3449 ev_run (EV_A_ EVRUN_NOWAIT);
3450 }
3451 }
3452}
3453
3454static void
3455embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3456{
3457 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3458
3459 ev_embed_stop (EV_A_ w);
3460
3461 {
3462 EV_P = w->other;
3463
3464 ev_loop_fork (EV_A);
3465 ev_run (EV_A_ EVRUN_NOWAIT);
3466 }
3467
3468 ev_embed_start (EV_A_ w);
3469}
3470
3471#if 0
3472static void
3473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3474{
3475 ev_idle_stop (EV_A_ idle);
3476}
3477#endif
1717 3478
1718void 3479void
1719ev_embed_start (EV_P_ ev_embed *w) 3480ev_embed_start (EV_P_ ev_embed *w)
1720{ 3481{
1721 if (expect_false (ev_is_active (w))) 3482 if (expect_false (ev_is_active (w)))
1722 return; 3483 return;
1723 3484
1724 { 3485 {
1725 struct ev_loop *loop = w->loop; 3486 EV_P = w->other;
1726 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3487 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1727 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1728 } 3489 }
3490
3491 EV_FREQUENT_CHECK;
1729 3492
1730 ev_set_priority (&w->io, ev_priority (w)); 3493 ev_set_priority (&w->io, ev_priority (w));
1731 ev_io_start (EV_A_ &w->io); 3494 ev_io_start (EV_A_ &w->io);
3495
3496 ev_prepare_init (&w->prepare, embed_prepare_cb);
3497 ev_set_priority (&w->prepare, EV_MINPRI);
3498 ev_prepare_start (EV_A_ &w->prepare);
3499
3500 ev_fork_init (&w->fork, embed_fork_cb);
3501 ev_fork_start (EV_A_ &w->fork);
3502
3503 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3504
1732 ev_start (EV_A_ (W)w, 1); 3505 ev_start (EV_A_ (W)w, 1);
3506
3507 EV_FREQUENT_CHECK;
1733} 3508}
1734 3509
1735void 3510void
1736ev_embed_stop (EV_P_ ev_embed *w) 3511ev_embed_stop (EV_P_ ev_embed *w)
1737{ 3512{
1738 ev_clear_pending (EV_A_ (W)w); 3513 clear_pending (EV_A_ (W)w);
1739 if (expect_false (!ev_is_active (w))) 3514 if (expect_false (!ev_is_active (w)))
1740 return; 3515 return;
1741 3516
3517 EV_FREQUENT_CHECK;
3518
1742 ev_io_stop (EV_A_ &w->io); 3519 ev_io_stop (EV_A_ &w->io);
3520 ev_prepare_stop (EV_A_ &w->prepare);
3521 ev_fork_stop (EV_A_ &w->fork);
3522
1743 ev_stop (EV_A_ (W)w); 3523 ev_stop (EV_A_ (W)w);
3524
3525 EV_FREQUENT_CHECK;
3526}
3527#endif
3528
3529#if EV_FORK_ENABLE
3530void
3531ev_fork_start (EV_P_ ev_fork *w)
3532{
3533 if (expect_false (ev_is_active (w)))
3534 return;
3535
3536 EV_FREQUENT_CHECK;
3537
3538 ev_start (EV_A_ (W)w, ++forkcnt);
3539 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3540 forks [forkcnt - 1] = w;
3541
3542 EV_FREQUENT_CHECK;
3543}
3544
3545void
3546ev_fork_stop (EV_P_ ev_fork *w)
3547{
3548 clear_pending (EV_A_ (W)w);
3549 if (expect_false (!ev_is_active (w)))
3550 return;
3551
3552 EV_FREQUENT_CHECK;
3553
3554 {
3555 int active = ev_active (w);
3556
3557 forks [active - 1] = forks [--forkcnt];
3558 ev_active (forks [active - 1]) = active;
3559 }
3560
3561 ev_stop (EV_A_ (W)w);
3562
3563 EV_FREQUENT_CHECK;
3564}
3565#endif
3566
3567#if EV_ASYNC_ENABLE
3568void
3569ev_async_start (EV_P_ ev_async *w)
3570{
3571 if (expect_false (ev_is_active (w)))
3572 return;
3573
3574 w->sent = 0;
3575
3576 evpipe_init (EV_A);
3577
3578 EV_FREQUENT_CHECK;
3579
3580 ev_start (EV_A_ (W)w, ++asynccnt);
3581 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3582 asyncs [asynccnt - 1] = w;
3583
3584 EV_FREQUENT_CHECK;
3585}
3586
3587void
3588ev_async_stop (EV_P_ ev_async *w)
3589{
3590 clear_pending (EV_A_ (W)w);
3591 if (expect_false (!ev_is_active (w)))
3592 return;
3593
3594 EV_FREQUENT_CHECK;
3595
3596 {
3597 int active = ev_active (w);
3598
3599 asyncs [active - 1] = asyncs [--asynccnt];
3600 ev_active (asyncs [active - 1]) = active;
3601 }
3602
3603 ev_stop (EV_A_ (W)w);
3604
3605 EV_FREQUENT_CHECK;
3606}
3607
3608void
3609ev_async_send (EV_P_ ev_async *w)
3610{
3611 w->sent = 1;
3612 evpipe_write (EV_A_ &async_pending);
1744} 3613}
1745#endif 3614#endif
1746 3615
1747/*****************************************************************************/ 3616/*****************************************************************************/
1748 3617
1758once_cb (EV_P_ struct ev_once *once, int revents) 3627once_cb (EV_P_ struct ev_once *once, int revents)
1759{ 3628{
1760 void (*cb)(int revents, void *arg) = once->cb; 3629 void (*cb)(int revents, void *arg) = once->cb;
1761 void *arg = once->arg; 3630 void *arg = once->arg;
1762 3631
1763 ev_io_stop (EV_A_ &once->io); 3632 ev_io_stop (EV_A_ &once->io);
1764 ev_timer_stop (EV_A_ &once->to); 3633 ev_timer_stop (EV_A_ &once->to);
1765 ev_free (once); 3634 ev_free (once);
1766 3635
1767 cb (revents, arg); 3636 cb (revents, arg);
1768} 3637}
1769 3638
1770static void 3639static void
1771once_cb_io (EV_P_ ev_io *w, int revents) 3640once_cb_io (EV_P_ ev_io *w, int revents)
1772{ 3641{
1773 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3642 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3643
3644 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1774} 3645}
1775 3646
1776static void 3647static void
1777once_cb_to (EV_P_ ev_timer *w, int revents) 3648once_cb_to (EV_P_ ev_timer *w, int revents)
1778{ 3649{
1779 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3650 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3651
3652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1780} 3653}
1781 3654
1782void 3655void
1783ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3656ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1784{ 3657{
1785 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3658 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1786 3659
1787 if (expect_false (!once)) 3660 if (expect_false (!once))
1788 { 3661 {
1789 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3662 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1790 return; 3663 return;
1791 } 3664 }
1792 3665
1793 once->cb = cb; 3666 once->cb = cb;
1794 once->arg = arg; 3667 once->arg = arg;
1806 ev_timer_set (&once->to, timeout, 0.); 3679 ev_timer_set (&once->to, timeout, 0.);
1807 ev_timer_start (EV_A_ &once->to); 3680 ev_timer_start (EV_A_ &once->to);
1808 } 3681 }
1809} 3682}
1810 3683
1811#ifdef __cplusplus 3684/*****************************************************************************/
1812} 3685
3686#if EV_WALK_ENABLE
3687void
3688ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3689{
3690 int i, j;
3691 ev_watcher_list *wl, *wn;
3692
3693 if (types & (EV_IO | EV_EMBED))
3694 for (i = 0; i < anfdmax; ++i)
3695 for (wl = anfds [i].head; wl; )
3696 {
3697 wn = wl->next;
3698
3699#if EV_EMBED_ENABLE
3700 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3701 {
3702 if (types & EV_EMBED)
3703 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3704 }
3705 else
3706#endif
3707#if EV_USE_INOTIFY
3708 if (ev_cb ((ev_io *)wl) == infy_cb)
3709 ;
3710 else
3711#endif
3712 if ((ev_io *)wl != &pipe_w)
3713 if (types & EV_IO)
3714 cb (EV_A_ EV_IO, wl);
3715
3716 wl = wn;
3717 }
3718
3719 if (types & (EV_TIMER | EV_STAT))
3720 for (i = timercnt + HEAP0; i-- > HEAP0; )
3721#if EV_STAT_ENABLE
3722 /*TODO: timer is not always active*/
3723 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3724 {
3725 if (types & EV_STAT)
3726 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3727 }
3728 else
3729#endif
3730 if (types & EV_TIMER)
3731 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3732
3733#if EV_PERIODIC_ENABLE
3734 if (types & EV_PERIODIC)
3735 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3736 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3737#endif
3738
3739#if EV_IDLE_ENABLE
3740 if (types & EV_IDLE)
3741 for (j = NUMPRI; i--; )
3742 for (i = idlecnt [j]; i--; )
3743 cb (EV_A_ EV_IDLE, idles [j][i]);
3744#endif
3745
3746#if EV_FORK_ENABLE
3747 if (types & EV_FORK)
3748 for (i = forkcnt; i--; )
3749 if (ev_cb (forks [i]) != embed_fork_cb)
3750 cb (EV_A_ EV_FORK, forks [i]);
3751#endif
3752
3753#if EV_ASYNC_ENABLE
3754 if (types & EV_ASYNC)
3755 for (i = asynccnt; i--; )
3756 cb (EV_A_ EV_ASYNC, asyncs [i]);
3757#endif
3758
3759#if EV_PREPARE_ENABLE
3760 if (types & EV_PREPARE)
3761 for (i = preparecnt; i--; )
3762# if EV_EMBED_ENABLE
3763 if (ev_cb (prepares [i]) != embed_prepare_cb)
1813#endif 3764# endif
3765 cb (EV_A_ EV_PREPARE, prepares [i]);
3766#endif
1814 3767
3768#if EV_CHECK_ENABLE
3769 if (types & EV_CHECK)
3770 for (i = checkcnt; i--; )
3771 cb (EV_A_ EV_CHECK, checks [i]);
3772#endif
3773
3774#if EV_SIGNAL_ENABLE
3775 if (types & EV_SIGNAL)
3776 for (i = 0; i < EV_NSIG - 1; ++i)
3777 for (wl = signals [i].head; wl; )
3778 {
3779 wn = wl->next;
3780 cb (EV_A_ EV_SIGNAL, wl);
3781 wl = wn;
3782 }
3783#endif
3784
3785#if EV_CHILD_ENABLE
3786 if (types & EV_CHILD)
3787 for (i = (EV_PID_HASHSIZE); i--; )
3788 for (wl = childs [i]; wl; )
3789 {
3790 wn = wl->next;
3791 cb (EV_A_ EV_CHILD, wl);
3792 wl = wn;
3793 }
3794#endif
3795/* EV_STAT 0x00001000 /* stat data changed */
3796/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3797}
3798#endif
3799
3800#if EV_MULTIPLICITY
3801 #include "ev_wrap.h"
3802#endif
3803
3804EV_CPP(})
3805

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines