ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.162 by root, Mon Dec 3 13:41:24 2007 UTC vs.
Revision 1.359 by root, Sun Oct 24 17:58:41 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
202#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
205#endif 373#endif
206 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
207#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 397# include <winsock.h>
209#endif 398#endif
210 399
211#if !EV_STAT_ENABLE 400#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
213#endif 405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
214 415
215#if EV_USE_INOTIFY 416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
217#endif 436#endif
218 437
219/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 455
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
225#if __GNUC__ >= 3 462#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 465#else
236# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
240#endif 471#endif
241 472
242#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
244 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
247 490
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
250 493
251typedef ev_watcher *W; 494typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
254 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
256 520
257#ifdef _WIN32 521#ifdef _WIN32
258# include "ev_win32.c" 522# include "ev_win32.c"
259#endif 523#endif
260 524
261/*****************************************************************************/ 525/*****************************************************************************/
262 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
263static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
264 578
265void 579void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 581{
268 syserr_cb = cb; 582 syserr_cb = cb;
269} 583}
270 584
271static void noinline 585static void noinline
272syserr (const char *msg) 586ev_syserr (const char *msg)
273{ 587{
274 if (!msg) 588 if (!msg)
275 msg = "(libev) system error"; 589 msg = "(libev) system error";
276 590
277 if (syserr_cb) 591 if (syserr_cb)
278 syserr_cb (msg); 592 syserr_cb (msg);
279 else 593 else
280 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
281 perror (msg); 603 perror (msg);
604#endif
282 abort (); 605 abort ();
283 } 606 }
284} 607}
285 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
286static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 629
288void 630void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 632{
291 alloc = cb; 633 alloc = cb;
292} 634}
293 635
294inline_speed void * 636inline_speed void *
295ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
296{ 638{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
298 640
299 if (!ptr && size) 641 if (!ptr && size)
300 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
302 abort (); 648 abort ();
303 } 649 }
304 650
305 return ptr; 651 return ptr;
306} 652}
308#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
310 656
311/*****************************************************************************/ 657/*****************************************************************************/
312 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
313typedef struct 663typedef struct
314{ 664{
315 WL head; 665 WL head;
316 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
318#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 674 SOCKET handle;
320#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
321} ANFD; 679} ANFD;
322 680
681/* stores the pending event set for a given watcher */
323typedef struct 682typedef struct
324{ 683{
325 W w; 684 W w;
326 int events; 685 int events; /* the pending event set for the given watcher */
327} ANPENDING; 686} ANPENDING;
328 687
329#if EV_USE_INOTIFY 688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
330typedef struct 690typedef struct
331{ 691{
332 WL head; 692 WL head;
333} ANFS; 693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
334#endif 714#endif
335 715
336#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
337 717
338 struct ev_loop 718 struct ev_loop
357 737
358 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
359 739
360#endif 740#endif
361 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
362/*****************************************************************************/ 754/*****************************************************************************/
363 755
756#ifndef EV_HAVE_EV_TIME
364ev_tstamp 757ev_tstamp
365ev_time (void) 758ev_time (void)
366{ 759{
367#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
368 struct timespec ts; 763 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 766 }
767#endif
768
372 struct timeval tv; 769 struct timeval tv;
373 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 772}
773#endif
377 774
378ev_tstamp inline_size 775inline_size ev_tstamp
379get_clock (void) 776get_clock (void)
380{ 777{
381#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
383 { 780 {
396{ 793{
397 return ev_rt_now; 794 return ev_rt_now;
398} 795}
399#endif 796#endif
400 797
401#define array_roundsize(type,n) (((n) | 4) & ~3) 798void
799ev_sleep (ev_tstamp delay)
800{
801 if (delay > 0.)
802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
821
822/*****************************************************************************/
823
824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
829array_nextsize (int elem, int cur, int cnt)
830{
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 {
840 ncur *= elem;
841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 ncur = ncur - sizeof (void *) * 4;
843 ncur /= elem;
844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 858
403#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 860 if (expect_false ((cnt) > (cur))) \
405 { \ 861 { \
406 int newcnt = cur; \ 862 int ocur_ = (cur); \
407 do \ 863 (base) = (type *)array_realloc \
408 { \ 864 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 865 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 866 }
417 867
868#if 0
418#define array_slim(type,stem) \ 869#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 871 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 872 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 875 }
876#endif
425 877
426#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 880
429/*****************************************************************************/ 881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
430 888
431void noinline 889void noinline
432ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
433{ 891{
434 W w_ = (W)w; 892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
435 894
436 if (expect_false (w_->pending)) 895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
437 { 898 {
899 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 902 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 903 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 904}
447 905
448void inline_size 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 923{
451 int i; 924 int i;
452 925
453 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
455} 928}
456 929
457/*****************************************************************************/ 930/*****************************************************************************/
458 931
459void inline_size 932inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
474{ 934{
475 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
476 ev_io *w; 936 ev_io *w;
477 937
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 942 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
484 } 944 }
485} 945}
486 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
487void 958void
488ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 960{
961 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
491} 963}
492 964
493void inline_size 965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
494fd_reify (EV_P) 968fd_reify (EV_P)
495{ 969{
496 int i; 970 int i;
497 971
498 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
499 { 973 {
500 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
502 ev_io *w; 976 ev_io *w;
503 977
504 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
505 980
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
507 events |= w->events;
508 982
509#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
510 if (events) 984 if (o_reify & EV__IOFDSET)
511 { 985 {
512 unsigned long argp; 986 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
515 } 990 }
516#endif 991#endif
517 992
518 anfd->reify = 0; 993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
995 anfd->events = 0;
519 996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
520 backend_modify (EV_A_ fd, anfd->events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
521 anfd->events = events;
522 } 1006 }
523 1007
524 fdchangecnt = 0; 1008 fdchangecnt = 0;
525} 1009}
526 1010
527void inline_size 1011/* something about the given fd changed */
1012inline_size void
528fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
529{ 1014{
530 if (expect_false (anfds [fd].reify)) 1015 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
534 1017
1018 if (expect_true (!reify))
1019 {
535 ++fdchangecnt; 1020 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
538} 1024}
539 1025
540void inline_speed 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
541fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
542{ 1029{
543 ev_io *w; 1030 ev_io *w;
544 1031
545 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 1036 }
550} 1037}
551 1038
552int inline_size 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
553fd_valid (int fd) 1041fd_valid (int fd)
554{ 1042{
555#ifdef _WIN32 1043#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 1045#else
558 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
559#endif 1047#endif
560} 1048}
561 1049
565{ 1053{
566 int fd; 1054 int fd;
567 1055
568 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 1057 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
572} 1060}
573 1061
574/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 1063static void noinline
579 1067
580 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 1069 if (anfds [fd].events)
582 { 1070 {
583 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
584 return; 1072 break;
585 } 1073 }
586} 1074}
587 1075
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1077static void noinline
593 1081
594 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 1083 if (anfds [fd].events)
596 { 1084 {
597 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
599 } 1088 }
600} 1089}
601 1090
602/*****************************************************************************/ 1091/* used to prepare libev internal fd's */
603 1092/* this is not fork-safe */
604void inline_speed 1093inline_speed void
605upheap (WT *heap, int k)
606{
607 WT w = heap [k];
608
609 while (k && heap [k >> 1]->at > w->at)
610 {
611 heap [k] = heap [k >> 1];
612 ((W)heap [k])->active = k + 1;
613 k >>= 1;
614 }
615
616 heap [k] = w;
617 ((W)heap [k])->active = k + 1;
618
619}
620
621void inline_speed
622downheap (WT *heap, int N, int k)
623{
624 WT w = heap [k];
625
626 while (k < (N >> 1))
627 {
628 int j = k << 1;
629
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break;
635
636 heap [k] = heap [j];
637 ((W)heap [k])->active = k + 1;
638 k = j;
639 }
640
641 heap [k] = w;
642 ((W)heap [k])->active = k + 1;
643}
644
645void inline_size
646adjustheap (WT *heap, int N, int k)
647{
648 upheap (heap, k);
649 downheap (heap, N, k);
650}
651
652/*****************************************************************************/
653
654typedef struct
655{
656 WL head;
657 sig_atomic_t volatile gotsig;
658} ANSIG;
659
660static ANSIG *signals;
661static int signalmax;
662
663static int sigpipe [2];
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666
667void inline_size
668signals_init (ANSIG *base, int count)
669{
670 while (count--)
671 {
672 base->head = 0;
673 base->gotsig = 0;
674
675 ++base;
676 }
677}
678
679static void
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd) 1094fd_intern (int fd)
732{ 1095{
733#ifdef _WIN32 1096#ifdef _WIN32
734 int arg = 1; 1097 unsigned long arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
736#else 1099#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC); 1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 1101 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 1102#endif
740} 1103}
741 1104
1105/*****************************************************************************/
1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
742static void noinline 1268static void noinline
743siginit (EV_P) 1269evpipe_init (EV_P)
744{ 1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
745 fd_intern (sigpipe [0]); 1290 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
747 1294
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 1295 ev_io_start (EV_A_ &pipe_w);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
1331static void
1332pipecb (EV_P_ ev_io *iow, int revents)
1333{
1334 int i;
1335
1336#if EV_USE_EVENTFD
1337 if (evfd >= 0)
1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
1349
1350 if (sig_pending)
1351 {
1352 sig_pending = 0;
1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
751} 1372}
752 1373
753/*****************************************************************************/ 1374/*****************************************************************************/
754 1375
755static ev_child *childs [EV_PID_HASHSIZE]; 1376static void
1377ev_sighandler (int signum)
1378{
1379#if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381#endif
756 1382
757#ifndef _WIN32 1383#ifdef _WIN32
1384 signal (signum, ev_sighandler);
1385#endif
1386
1387 signals [signum - 1].pending = 1;
1388 evpipe_write (EV_A_ &sig_pending);
1389}
1390
1391void noinline
1392ev_feed_signal_event (EV_P_ int signum)
1393{
1394 WL w;
1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1401#if EV_MULTIPLICITY
1402 /* it is permissible to try to feed a signal to the wrong loop */
1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1404
1405 if (expect_false (signals [signum].loop != EV_A))
1406 return;
1407#endif
1408
1409 signals [signum].pending = 0;
1410
1411 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413}
1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
1437/*****************************************************************************/
1438
1439#if EV_CHILD_ENABLE
1440static WL childs [EV_PID_HASHSIZE];
758 1441
759static ev_signal childev; 1442static ev_signal childev;
760 1443
761void inline_speed 1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1450child_reap (EV_P_ int chain, int pid, int status)
763{ 1451{
764 ev_child *w; 1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1454
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
767 if (w->pid == pid || !w->pid) 1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
768 { 1459 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1461 w->rpid = pid;
771 w->rstatus = status; 1462 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1464 }
1465 }
774} 1466}
775 1467
776#ifndef WCONTINUED 1468#ifndef WCONTINUED
777# define WCONTINUED 0 1469# define WCONTINUED 0
778#endif 1470#endif
779 1471
1472/* called on sigchld etc., calls waitpid */
780static void 1473static void
781childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
782{ 1475{
783 int pid, status; 1476 int pid, status;
784 1477
787 if (!WCONTINUED 1480 if (!WCONTINUED
788 || errno != EINVAL 1481 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1483 return;
791 1484
792 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1488
796 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1490 if ((EV_PID_HASHSIZE) > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1492}
800 1493
801#endif 1494#endif
802 1495
803/*****************************************************************************/ 1496/*****************************************************************************/
804 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
805#if EV_USE_PORT 1501#if EV_USE_PORT
806# include "ev_port.c" 1502# include "ev_port.c"
807#endif 1503#endif
808#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
809# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
865 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
868#endif 1564#endif
869#ifdef __APPLE__ 1565#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
871 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
872#endif 1572#endif
873 1573
874 return flags; 1574 return flags;
875} 1575}
876 1576
877unsigned int 1577unsigned int
878ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
879{ 1579{
880 return EVBACKEND_EPOLL 1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1581
882 | EVBACKEND_PORT; 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
883} 1587}
884 1588
885unsigned int 1589unsigned int
886ev_backend (EV_P) 1590ev_backend (EV_P)
887{ 1591{
888 return backend; 1592 return backend;
889} 1593}
890 1594
1595#if EV_FEATURE_API
891unsigned int 1596unsigned int
892ev_loop_count (EV_P) 1597ev_iteration (EV_P)
893{ 1598{
894 return loop_count; 1599 return loop_count;
895} 1600}
896 1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1608void
1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1610{
1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
897static void noinline 1645static void noinline
898loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
899{ 1647{
900 if (!backend) 1648 if (!backend)
901 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
902#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
903 { 1662 {
904 struct timespec ts; 1663 struct timespec ts;
1664
905 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
906 have_monotonic = 1; 1666 have_monotonic = 1;
907 } 1667 }
908#endif 1668#endif
909
910 ev_rt_now = ev_time ();
911 mn_now = get_clock ();
912 now_floor = mn_now;
913 rtmn_diff = ev_rt_now - mn_now;
914 1669
915 /* pid check not overridable via env */ 1670 /* pid check not overridable via env */
916#ifndef _WIN32 1671#ifndef _WIN32
917 if (flags & EVFLAG_FORKCHECK) 1672 if (flags & EVFLAG_FORKCHECK)
918 curpid = getpid (); 1673 curpid = getpid ();
921 if (!(flags & EVFLAG_NOENV) 1676 if (!(flags & EVFLAG_NOENV)
922 && !enable_secure () 1677 && !enable_secure ()
923 && getenv ("LIBEV_FLAGS")) 1678 && getenv ("LIBEV_FLAGS"))
924 flags = atoi (getenv ("LIBEV_FLAGS")); 1679 flags = atoi (getenv ("LIBEV_FLAGS"));
925 1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
926 if (!(flags & 0x0000ffffUL)) 1704 if (!(flags & 0x0000ffffU))
927 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
928 1706
929 backend = 0;
930 backend_fd = -1;
931#if EV_USE_INOTIFY 1707#if EV_USE_IOCP
932 fs_fd = -2; 1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
933#endif 1709#endif
934
935#if EV_USE_PORT 1710#if EV_USE_PORT
936 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
937#endif 1712#endif
938#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
939 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
946#endif 1721#endif
947#if EV_USE_SELECT 1722#if EV_USE_SELECT
948 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
949#endif 1724#endif
950 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
951 ev_init (&sigev, sigcb); 1729 ev_init (&pipe_w, pipecb);
952 ev_set_priority (&sigev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
953 } 1732 }
954} 1733}
955 1734
956static void noinline 1735/* free up a loop structure */
1736void
957loop_destroy (EV_P) 1737ev_loop_destroy (EV_P)
958{ 1738{
959 int i; 1739 int i;
1740
1741#if EV_CHILD_ENABLE
1742 if (ev_is_active (&childev))
1743 {
1744 ev_ref (EV_A); /* child watcher */
1745 ev_signal_stop (EV_A_ &childev);
1746 }
1747#endif
1748
1749 if (ev_is_active (&pipe_w))
1750 {
1751 /*ev_ref (EV_A);*/
1752 /*ev_io_stop (EV_A_ &pipe_w);*/
1753
1754#if EV_USE_EVENTFD
1755 if (evfd >= 0)
1756 close (evfd);
1757#endif
1758
1759 if (evpipe [0] >= 0)
1760 {
1761 EV_WIN32_CLOSE_FD (evpipe [0]);
1762 EV_WIN32_CLOSE_FD (evpipe [1]);
1763 }
1764 }
1765
1766#if EV_USE_SIGNALFD
1767 if (ev_is_active (&sigfd_w))
1768 close (sigfd);
1769#endif
960 1770
961#if EV_USE_INOTIFY 1771#if EV_USE_INOTIFY
962 if (fs_fd >= 0) 1772 if (fs_fd >= 0)
963 close (fs_fd); 1773 close (fs_fd);
964#endif 1774#endif
965 1775
966 if (backend_fd >= 0) 1776 if (backend_fd >= 0)
967 close (backend_fd); 1777 close (backend_fd);
968 1778
1779#if EV_USE_IOCP
1780 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1781#endif
969#if EV_USE_PORT 1782#if EV_USE_PORT
970 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1783 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
971#endif 1784#endif
972#if EV_USE_KQUEUE 1785#if EV_USE_KQUEUE
973 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1786 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
981#if EV_USE_SELECT 1794#if EV_USE_SELECT
982 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1795 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
983#endif 1796#endif
984 1797
985 for (i = NUMPRI; i--; ) 1798 for (i = NUMPRI; i--; )
1799 {
986 array_free (pending, [i]); 1800 array_free (pending, [i]);
1801#if EV_IDLE_ENABLE
1802 array_free (idle, [i]);
1803#endif
1804 }
1805
1806 ev_free (anfds); anfds = 0; anfdmax = 0;
987 1807
988 /* have to use the microsoft-never-gets-it-right macro */ 1808 /* have to use the microsoft-never-gets-it-right macro */
1809 array_free (rfeed, EMPTY);
989 array_free (fdchange, EMPTY0); 1810 array_free (fdchange, EMPTY);
990 array_free (timer, EMPTY0); 1811 array_free (timer, EMPTY);
991#if EV_PERIODIC_ENABLE 1812#if EV_PERIODIC_ENABLE
992 array_free (periodic, EMPTY0); 1813 array_free (periodic, EMPTY);
993#endif 1814#endif
1815#if EV_FORK_ENABLE
994 array_free (idle, EMPTY0); 1816 array_free (fork, EMPTY);
1817#endif
995 array_free (prepare, EMPTY0); 1818 array_free (prepare, EMPTY);
996 array_free (check, EMPTY0); 1819 array_free (check, EMPTY);
1820#if EV_ASYNC_ENABLE
1821 array_free (async, EMPTY);
1822#endif
997 1823
998 backend = 0; 1824 backend = 0;
999}
1000 1825
1826#if EV_MULTIPLICITY
1827 if (ev_is_default_loop (EV_A))
1828#endif
1829 ev_default_loop_ptr = 0;
1830#if EV_MULTIPLICITY
1831 else
1832 ev_free (EV_A);
1833#endif
1834}
1835
1836#if EV_USE_INOTIFY
1001void inline_size infy_fork (EV_P); 1837inline_size void infy_fork (EV_P);
1838#endif
1002 1839
1003void inline_size 1840inline_size void
1004loop_fork (EV_P) 1841loop_fork (EV_P)
1005{ 1842{
1006#if EV_USE_PORT 1843#if EV_USE_PORT
1007 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1844 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1008#endif 1845#endif
1014#endif 1851#endif
1015#if EV_USE_INOTIFY 1852#if EV_USE_INOTIFY
1016 infy_fork (EV_A); 1853 infy_fork (EV_A);
1017#endif 1854#endif
1018 1855
1019 if (ev_is_active (&sigev)) 1856 if (ev_is_active (&pipe_w))
1020 { 1857 {
1021 /* default loop */ 1858 /* this "locks" the handlers against writing to the pipe */
1859 /* while we modify the fd vars */
1860 sig_pending = 1;
1861#if EV_ASYNC_ENABLE
1862 async_pending = 1;
1863#endif
1022 1864
1023 ev_ref (EV_A); 1865 ev_ref (EV_A);
1024 ev_io_stop (EV_A_ &sigev); 1866 ev_io_stop (EV_A_ &pipe_w);
1025 close (sigpipe [0]);
1026 close (sigpipe [1]);
1027 1867
1028 while (pipe (sigpipe)) 1868#if EV_USE_EVENTFD
1029 syserr ("(libev) error creating pipe"); 1869 if (evfd >= 0)
1870 close (evfd);
1871#endif
1030 1872
1873 if (evpipe [0] >= 0)
1874 {
1875 EV_WIN32_CLOSE_FD (evpipe [0]);
1876 EV_WIN32_CLOSE_FD (evpipe [1]);
1877 }
1878
1879#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1031 siginit (EV_A); 1880 evpipe_init (EV_A);
1881 /* now iterate over everything, in case we missed something */
1882 pipecb (EV_A_ &pipe_w, EV_READ);
1883#endif
1032 } 1884 }
1033 1885
1034 postfork = 0; 1886 postfork = 0;
1035} 1887}
1888
1889#if EV_MULTIPLICITY
1890
1891struct ev_loop *
1892ev_loop_new (unsigned int flags)
1893{
1894 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1895
1896 memset (EV_A, 0, sizeof (struct ev_loop));
1897 loop_init (EV_A_ flags);
1898
1899 if (ev_backend (EV_A))
1900 return EV_A;
1901
1902 ev_free (EV_A);
1903 return 0;
1904}
1905
1906#endif /* multiplicity */
1907
1908#if EV_VERIFY
1909static void noinline
1910verify_watcher (EV_P_ W w)
1911{
1912 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1913
1914 if (w->pending)
1915 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1916}
1917
1918static void noinline
1919verify_heap (EV_P_ ANHE *heap, int N)
1920{
1921 int i;
1922
1923 for (i = HEAP0; i < N + HEAP0; ++i)
1924 {
1925 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1926 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1927 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1928
1929 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1930 }
1931}
1932
1933static void noinline
1934array_verify (EV_P_ W *ws, int cnt)
1935{
1936 while (cnt--)
1937 {
1938 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1939 verify_watcher (EV_A_ ws [cnt]);
1940 }
1941}
1942#endif
1943
1944#if EV_FEATURE_API
1945void
1946ev_verify (EV_P)
1947{
1948#if EV_VERIFY
1949 int i;
1950 WL w;
1951
1952 assert (activecnt >= -1);
1953
1954 assert (fdchangemax >= fdchangecnt);
1955 for (i = 0; i < fdchangecnt; ++i)
1956 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1957
1958 assert (anfdmax >= 0);
1959 for (i = 0; i < anfdmax; ++i)
1960 for (w = anfds [i].head; w; w = w->next)
1961 {
1962 verify_watcher (EV_A_ (W)w);
1963 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1964 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1965 }
1966
1967 assert (timermax >= timercnt);
1968 verify_heap (EV_A_ timers, timercnt);
1969
1970#if EV_PERIODIC_ENABLE
1971 assert (periodicmax >= periodiccnt);
1972 verify_heap (EV_A_ periodics, periodiccnt);
1973#endif
1974
1975 for (i = NUMPRI; i--; )
1976 {
1977 assert (pendingmax [i] >= pendingcnt [i]);
1978#if EV_IDLE_ENABLE
1979 assert (idleall >= 0);
1980 assert (idlemax [i] >= idlecnt [i]);
1981 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1982#endif
1983 }
1984
1985#if EV_FORK_ENABLE
1986 assert (forkmax >= forkcnt);
1987 array_verify (EV_A_ (W *)forks, forkcnt);
1988#endif
1989
1990#if EV_ASYNC_ENABLE
1991 assert (asyncmax >= asynccnt);
1992 array_verify (EV_A_ (W *)asyncs, asynccnt);
1993#endif
1994
1995#if EV_PREPARE_ENABLE
1996 assert (preparemax >= preparecnt);
1997 array_verify (EV_A_ (W *)prepares, preparecnt);
1998#endif
1999
2000#if EV_CHECK_ENABLE
2001 assert (checkmax >= checkcnt);
2002 array_verify (EV_A_ (W *)checks, checkcnt);
2003#endif
2004
2005# if 0
2006#if EV_CHILD_ENABLE
2007 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2008 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2009#endif
2010# endif
2011#endif
2012}
2013#endif
1036 2014
1037#if EV_MULTIPLICITY 2015#if EV_MULTIPLICITY
1038struct ev_loop * 2016struct ev_loop *
1039ev_loop_new (unsigned int flags)
1040{
1041 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1042
1043 memset (loop, 0, sizeof (struct ev_loop));
1044
1045 loop_init (EV_A_ flags);
1046
1047 if (ev_backend (EV_A))
1048 return loop;
1049
1050 return 0;
1051}
1052
1053void
1054ev_loop_destroy (EV_P)
1055{
1056 loop_destroy (EV_A);
1057 ev_free (loop);
1058}
1059
1060void
1061ev_loop_fork (EV_P)
1062{
1063 postfork = 1;
1064}
1065
1066#endif
1067
1068#if EV_MULTIPLICITY
1069struct ev_loop *
1070ev_default_loop_init (unsigned int flags)
1071#else 2017#else
1072int 2018int
2019#endif
1073ev_default_loop (unsigned int flags) 2020ev_default_loop (unsigned int flags)
1074#endif
1075{ 2021{
1076 if (sigpipe [0] == sigpipe [1])
1077 if (pipe (sigpipe))
1078 return 0;
1079
1080 if (!ev_default_loop_ptr) 2022 if (!ev_default_loop_ptr)
1081 { 2023 {
1082#if EV_MULTIPLICITY 2024#if EV_MULTIPLICITY
1083 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2025 EV_P = ev_default_loop_ptr = &default_loop_struct;
1084#else 2026#else
1085 ev_default_loop_ptr = 1; 2027 ev_default_loop_ptr = 1;
1086#endif 2028#endif
1087 2029
1088 loop_init (EV_A_ flags); 2030 loop_init (EV_A_ flags);
1089 2031
1090 if (ev_backend (EV_A)) 2032 if (ev_backend (EV_A))
1091 { 2033 {
1092 siginit (EV_A); 2034#if EV_CHILD_ENABLE
1093
1094#ifndef _WIN32
1095 ev_signal_init (&childev, childcb, SIGCHLD); 2035 ev_signal_init (&childev, childcb, SIGCHLD);
1096 ev_set_priority (&childev, EV_MAXPRI); 2036 ev_set_priority (&childev, EV_MAXPRI);
1097 ev_signal_start (EV_A_ &childev); 2037 ev_signal_start (EV_A_ &childev);
1098 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2038 ev_unref (EV_A); /* child watcher should not keep loop alive */
1099#endif 2039#endif
1104 2044
1105 return ev_default_loop_ptr; 2045 return ev_default_loop_ptr;
1106} 2046}
1107 2047
1108void 2048void
1109ev_default_destroy (void) 2049ev_loop_fork (EV_P)
1110{ 2050{
1111#if EV_MULTIPLICITY 2051 postfork = 1; /* must be in line with ev_default_fork */
1112 struct ev_loop *loop = ev_default_loop_ptr;
1113#endif
1114
1115#ifndef _WIN32
1116 ev_ref (EV_A); /* child watcher */
1117 ev_signal_stop (EV_A_ &childev);
1118#endif
1119
1120 ev_ref (EV_A); /* signal watcher */
1121 ev_io_stop (EV_A_ &sigev);
1122
1123 close (sigpipe [0]); sigpipe [0] = 0;
1124 close (sigpipe [1]); sigpipe [1] = 0;
1125
1126 loop_destroy (EV_A);
1127} 2052}
2053
2054/*****************************************************************************/
1128 2055
1129void 2056void
1130ev_default_fork (void) 2057ev_invoke (EV_P_ void *w, int revents)
1131{ 2058{
1132#if EV_MULTIPLICITY 2059 EV_CB_INVOKE ((W)w, revents);
1133 struct ev_loop *loop = ev_default_loop_ptr;
1134#endif
1135
1136 if (backend)
1137 postfork = 1;
1138} 2060}
1139 2061
1140/*****************************************************************************/ 2062unsigned int
1141 2063ev_pending_count (EV_P)
1142int inline_size
1143any_pending (EV_P)
1144{ 2064{
1145 int pri; 2065 int pri;
2066 unsigned int count = 0;
1146 2067
1147 for (pri = NUMPRI; pri--; ) 2068 for (pri = NUMPRI; pri--; )
1148 if (pendingcnt [pri]) 2069 count += pendingcnt [pri];
1149 return 1;
1150 2070
1151 return 0; 2071 return count;
1152} 2072}
1153 2073
1154void inline_speed 2074void noinline
1155call_pending (EV_P) 2075ev_invoke_pending (EV_P)
1156{ 2076{
1157 int pri; 2077 int pri;
1158 2078
1159 for (pri = NUMPRI; pri--; ) 2079 for (pri = NUMPRI; pri--; )
1160 while (pendingcnt [pri]) 2080 while (pendingcnt [pri])
1161 { 2081 {
1162 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2082 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1163 2083
1164 if (expect_true (p->w))
1165 {
1166 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2084 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2085 /* ^ this is no longer true, as pending_w could be here */
1167 2086
1168 p->w->pending = 0; 2087 p->w->pending = 0;
1169 EV_CB_INVOKE (p->w, p->events); 2088 EV_CB_INVOKE (p->w, p->events);
1170 } 2089 EV_FREQUENT_CHECK;
1171 } 2090 }
1172} 2091}
1173 2092
1174void inline_size 2093#if EV_IDLE_ENABLE
2094/* make idle watchers pending. this handles the "call-idle */
2095/* only when higher priorities are idle" logic */
2096inline_size void
2097idle_reify (EV_P)
2098{
2099 if (expect_false (idleall))
2100 {
2101 int pri;
2102
2103 for (pri = NUMPRI; pri--; )
2104 {
2105 if (pendingcnt [pri])
2106 break;
2107
2108 if (idlecnt [pri])
2109 {
2110 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2111 break;
2112 }
2113 }
2114 }
2115}
2116#endif
2117
2118/* make timers pending */
2119inline_size void
1175timers_reify (EV_P) 2120timers_reify (EV_P)
1176{ 2121{
2122 EV_FREQUENT_CHECK;
2123
1177 while (timercnt && ((WT)timers [0])->at <= mn_now) 2124 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1178 { 2125 {
1179 ev_timer *w = timers [0]; 2126 do
1180
1181 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1182
1183 /* first reschedule or stop timer */
1184 if (w->repeat)
1185 { 2127 {
2128 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2129
2130 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2131
2132 /* first reschedule or stop timer */
2133 if (w->repeat)
2134 {
2135 ev_at (w) += w->repeat;
2136 if (ev_at (w) < mn_now)
2137 ev_at (w) = mn_now;
2138
1186 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2139 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1187 2140
1188 ((WT)w)->at += w->repeat; 2141 ANHE_at_cache (timers [HEAP0]);
1189 if (((WT)w)->at < mn_now)
1190 ((WT)w)->at = mn_now;
1191
1192 downheap ((WT *)timers, timercnt, 0); 2142 downheap (timers, timercnt, HEAP0);
2143 }
2144 else
2145 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
1193 } 2149 }
1194 else 2150 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1195 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1196 2151
1197 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2152 feed_reverse_done (EV_A_ EV_TIMER);
1198 } 2153 }
1199} 2154}
1200 2155
1201#if EV_PERIODIC_ENABLE 2156#if EV_PERIODIC_ENABLE
1202void inline_size 2157/* make periodics pending */
2158inline_size void
1203periodics_reify (EV_P) 2159periodics_reify (EV_P)
1204{ 2160{
2161 EV_FREQUENT_CHECK;
2162
1205 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2163 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1206 { 2164 {
1207 ev_periodic *w = periodics [0]; 2165 int feed_count = 0;
1208 2166
1209 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2167 do
1210
1211 /* first reschedule or stop timer */
1212 if (w->reschedule_cb)
1213 { 2168 {
2169 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2170
2171 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2172
2173 /* first reschedule or stop timer */
2174 if (w->reschedule_cb)
2175 {
1214 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2177
1215 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2178 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2179
2180 ANHE_at_cache (periodics [HEAP0]);
1216 downheap ((WT *)periodics, periodiccnt, 0); 2181 downheap (periodics, periodiccnt, HEAP0);
2182 }
2183 else if (w->interval)
2184 {
2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2186 /* if next trigger time is not sufficiently in the future, put it there */
2187 /* this might happen because of floating point inexactness */
2188 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2189 {
2190 ev_at (w) += w->interval;
2191
2192 /* if interval is unreasonably low we might still have a time in the past */
2193 /* so correct this. this will make the periodic very inexact, but the user */
2194 /* has effectively asked to get triggered more often than possible */
2195 if (ev_at (w) < ev_rt_now)
2196 ev_at (w) = ev_rt_now;
2197 }
2198
2199 ANHE_at_cache (periodics [HEAP0]);
2200 downheap (periodics, periodiccnt, HEAP0);
2201 }
2202 else
2203 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2204
2205 EV_FREQUENT_CHECK;
2206 feed_reverse (EV_A_ (W)w);
1217 } 2207 }
1218 else if (w->interval) 2208 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1219 {
1220 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1221 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1222 downheap ((WT *)periodics, periodiccnt, 0);
1223 }
1224 else
1225 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1226 2209
1227 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2210 feed_reverse_done (EV_A_ EV_PERIODIC);
1228 } 2211 }
1229} 2212}
1230 2213
2214/* simply recalculate all periodics */
2215/* TODO: maybe ensure that at least one event happens when jumping forward? */
1231static void noinline 2216static void noinline
1232periodics_reschedule (EV_P) 2217periodics_reschedule (EV_P)
1233{ 2218{
1234 int i; 2219 int i;
1235 2220
1236 /* adjust periodics after time jump */ 2221 /* adjust periodics after time jump */
1237 for (i = 0; i < periodiccnt; ++i) 2222 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1238 { 2223 {
1239 ev_periodic *w = periodics [i]; 2224 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1240 2225
1241 if (w->reschedule_cb) 2226 if (w->reschedule_cb)
1242 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2227 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1243 else if (w->interval) 2228 else if (w->interval)
1244 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2229 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2230
2231 ANHE_at_cache (periodics [i]);
2232 }
2233
2234 reheap (periodics, periodiccnt);
2235}
2236#endif
2237
2238/* adjust all timers by a given offset */
2239static void noinline
2240timers_reschedule (EV_P_ ev_tstamp adjust)
2241{
2242 int i;
2243
2244 for (i = 0; i < timercnt; ++i)
1245 } 2245 {
1246 2246 ANHE *he = timers + i + HEAP0;
1247 /* now rebuild the heap */ 2247 ANHE_w (*he)->at += adjust;
1248 for (i = periodiccnt >> 1; i--; ) 2248 ANHE_at_cache (*he);
1249 downheap ((WT *)periodics, periodiccnt, i); 2249 }
1250} 2250}
1251#endif
1252 2251
1253int inline_size 2252/* fetch new monotonic and realtime times from the kernel */
1254time_update_monotonic (EV_P) 2253/* also detect if there was a timejump, and act accordingly */
2254inline_speed void
2255time_update (EV_P_ ev_tstamp max_block)
1255{ 2256{
2257#if EV_USE_MONOTONIC
2258 if (expect_true (have_monotonic))
2259 {
2260 int i;
2261 ev_tstamp odiff = rtmn_diff;
2262
1256 mn_now = get_clock (); 2263 mn_now = get_clock ();
1257 2264
2265 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2266 /* interpolate in the meantime */
1258 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2267 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1259 { 2268 {
1260 ev_rt_now = rtmn_diff + mn_now; 2269 ev_rt_now = rtmn_diff + mn_now;
1261 return 0; 2270 return;
1262 } 2271 }
1263 else 2272
1264 {
1265 now_floor = mn_now; 2273 now_floor = mn_now;
1266 ev_rt_now = ev_time (); 2274 ev_rt_now = ev_time ();
1267 return 1;
1268 }
1269}
1270 2275
1271void inline_size 2276 /* loop a few times, before making important decisions.
1272time_update (EV_P) 2277 * on the choice of "4": one iteration isn't enough,
1273{ 2278 * in case we get preempted during the calls to
1274 int i; 2279 * ev_time and get_clock. a second call is almost guaranteed
1275 2280 * to succeed in that case, though. and looping a few more times
1276#if EV_USE_MONOTONIC 2281 * doesn't hurt either as we only do this on time-jumps or
1277 if (expect_true (have_monotonic)) 2282 * in the unlikely event of having been preempted here.
1278 { 2283 */
1279 if (time_update_monotonic (EV_A)) 2284 for (i = 4; --i; )
1280 { 2285 {
1281 ev_tstamp odiff = rtmn_diff;
1282
1283 /* loop a few times, before making important decisions.
1284 * on the choice of "4": one iteration isn't enough,
1285 * in case we get preempted during the calls to
1286 * ev_time and get_clock. a second call is almost guaranteed
1287 * to succeed in that case, though. and looping a few more times
1288 * doesn't hurt either as we only do this on time-jumps or
1289 * in the unlikely event of having been preempted here.
1290 */
1291 for (i = 4; --i; )
1292 {
1293 rtmn_diff = ev_rt_now - mn_now; 2286 rtmn_diff = ev_rt_now - mn_now;
1294 2287
1295 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2288 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1296 return; /* all is well */ 2289 return; /* all is well */
1297 2290
1298 ev_rt_now = ev_time (); 2291 ev_rt_now = ev_time ();
1299 mn_now = get_clock (); 2292 mn_now = get_clock ();
1300 now_floor = mn_now; 2293 now_floor = mn_now;
1301 } 2294 }
1302 2295
2296 /* no timer adjustment, as the monotonic clock doesn't jump */
2297 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1303# if EV_PERIODIC_ENABLE 2298# if EV_PERIODIC_ENABLE
1304 periodics_reschedule (EV_A); 2299 periodics_reschedule (EV_A);
1305# endif 2300# endif
1306 /* no timer adjustment, as the monotonic clock doesn't jump */
1307 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1308 }
1309 } 2301 }
1310 else 2302 else
1311#endif 2303#endif
1312 { 2304 {
1313 ev_rt_now = ev_time (); 2305 ev_rt_now = ev_time ();
1314 2306
1315 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2307 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1316 { 2308 {
2309 /* adjust timers. this is easy, as the offset is the same for all of them */
2310 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1317#if EV_PERIODIC_ENABLE 2311#if EV_PERIODIC_ENABLE
1318 periodics_reschedule (EV_A); 2312 periodics_reschedule (EV_A);
1319#endif 2313#endif
1320
1321 /* adjust timers. this is easy, as the offset is the same for all of them */
1322 for (i = 0; i < timercnt; ++i)
1323 ((WT)timers [i])->at += ev_rt_now - mn_now;
1324 } 2314 }
1325 2315
1326 mn_now = ev_rt_now; 2316 mn_now = ev_rt_now;
1327 } 2317 }
1328} 2318}
1329 2319
1330void 2320void
1331ev_ref (EV_P)
1332{
1333 ++activecnt;
1334}
1335
1336void
1337ev_unref (EV_P)
1338{
1339 --activecnt;
1340}
1341
1342static int loop_done;
1343
1344void
1345ev_loop (EV_P_ int flags) 2321ev_run (EV_P_ int flags)
1346{ 2322{
1347 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2323#if EV_FEATURE_API
1348 ? EVUNLOOP_ONE 2324 ++loop_depth;
1349 : EVUNLOOP_CANCEL; 2325#endif
1350 2326
2327 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2328
2329 loop_done = EVBREAK_CANCEL;
2330
1351 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2331 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1352 2332
1353 do 2333 do
1354 { 2334 {
2335#if EV_VERIFY >= 2
2336 ev_verify (EV_A);
2337#endif
2338
1355#ifndef _WIN32 2339#ifndef _WIN32
1356 if (expect_false (curpid)) /* penalise the forking check even more */ 2340 if (expect_false (curpid)) /* penalise the forking check even more */
1357 if (expect_false (getpid () != curpid)) 2341 if (expect_false (getpid () != curpid))
1358 { 2342 {
1359 curpid = getpid (); 2343 curpid = getpid ();
1365 /* we might have forked, so queue fork handlers */ 2349 /* we might have forked, so queue fork handlers */
1366 if (expect_false (postfork)) 2350 if (expect_false (postfork))
1367 if (forkcnt) 2351 if (forkcnt)
1368 { 2352 {
1369 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2353 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1370 call_pending (EV_A); 2354 EV_INVOKE_PENDING;
1371 } 2355 }
1372#endif 2356#endif
1373 2357
2358#if EV_PREPARE_ENABLE
1374 /* queue check watchers (and execute them) */ 2359 /* queue prepare watchers (and execute them) */
1375 if (expect_false (preparecnt)) 2360 if (expect_false (preparecnt))
1376 { 2361 {
1377 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2362 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1378 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1379 } 2364 }
2365#endif
1380 2366
1381 if (expect_false (!activecnt)) 2367 if (expect_false (loop_done))
1382 break; 2368 break;
1383 2369
1384 /* we might have forked, so reify kernel state if necessary */ 2370 /* we might have forked, so reify kernel state if necessary */
1385 if (expect_false (postfork)) 2371 if (expect_false (postfork))
1386 loop_fork (EV_A); 2372 loop_fork (EV_A);
1388 /* update fd-related kernel structures */ 2374 /* update fd-related kernel structures */
1389 fd_reify (EV_A); 2375 fd_reify (EV_A);
1390 2376
1391 /* calculate blocking time */ 2377 /* calculate blocking time */
1392 { 2378 {
1393 ev_tstamp block; 2379 ev_tstamp waittime = 0.;
2380 ev_tstamp sleeptime = 0.;
1394 2381
2382 /* remember old timestamp for io_blocktime calculation */
2383 ev_tstamp prev_mn_now = mn_now;
2384
2385 /* update time to cancel out callback processing overhead */
2386 time_update (EV_A_ 1e100);
2387
1395 if (expect_false (flags & EVLOOP_NONBLOCK || idlecnt || !activecnt)) 2388 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1396 block = 0.; /* do not block at all */
1397 else
1398 { 2389 {
1399 /* update time to cancel out callback processing overhead */
1400#if EV_USE_MONOTONIC
1401 if (expect_true (have_monotonic))
1402 time_update_monotonic (EV_A);
1403 else
1404#endif
1405 {
1406 ev_rt_now = ev_time ();
1407 mn_now = ev_rt_now;
1408 }
1409
1410 block = MAX_BLOCKTIME; 2390 waittime = MAX_BLOCKTIME;
1411 2391
1412 if (timercnt) 2392 if (timercnt)
1413 { 2393 {
1414 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2394 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1415 if (block > to) block = to; 2395 if (waittime > to) waittime = to;
1416 } 2396 }
1417 2397
1418#if EV_PERIODIC_ENABLE 2398#if EV_PERIODIC_ENABLE
1419 if (periodiccnt) 2399 if (periodiccnt)
1420 { 2400 {
1421 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2401 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1422 if (block > to) block = to; 2402 if (waittime > to) waittime = to;
1423 } 2403 }
1424#endif 2404#endif
1425 2405
2406 /* don't let timeouts decrease the waittime below timeout_blocktime */
2407 if (expect_false (waittime < timeout_blocktime))
2408 waittime = timeout_blocktime;
2409
2410 /* extra check because io_blocktime is commonly 0 */
1426 if (expect_false (block < 0.)) block = 0.; 2411 if (expect_false (io_blocktime))
2412 {
2413 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2414
2415 if (sleeptime > waittime - backend_fudge)
2416 sleeptime = waittime - backend_fudge;
2417
2418 if (expect_true (sleeptime > 0.))
2419 {
2420 ev_sleep (sleeptime);
2421 waittime -= sleeptime;
2422 }
2423 }
1427 } 2424 }
1428 2425
2426#if EV_FEATURE_API
1429 ++loop_count; 2427 ++loop_count;
2428#endif
2429 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1430 backend_poll (EV_A_ block); 2430 backend_poll (EV_A_ waittime);
2431 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2432
2433 /* update ev_rt_now, do magic */
2434 time_update (EV_A_ waittime + sleeptime);
1431 } 2435 }
1432
1433 /* update ev_rt_now, do magic */
1434 time_update (EV_A);
1435 2436
1436 /* queue pending timers and reschedule them */ 2437 /* queue pending timers and reschedule them */
1437 timers_reify (EV_A); /* relative timers called last */ 2438 timers_reify (EV_A); /* relative timers called last */
1438#if EV_PERIODIC_ENABLE 2439#if EV_PERIODIC_ENABLE
1439 periodics_reify (EV_A); /* absolute timers called first */ 2440 periodics_reify (EV_A); /* absolute timers called first */
1440#endif 2441#endif
1441 2442
2443#if EV_IDLE_ENABLE
1442 /* queue idle watchers unless other events are pending */ 2444 /* queue idle watchers unless other events are pending */
1443 if (idlecnt && !any_pending (EV_A)) 2445 idle_reify (EV_A);
1444 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2446#endif
1445 2447
2448#if EV_CHECK_ENABLE
1446 /* queue check watchers, to be executed first */ 2449 /* queue check watchers, to be executed first */
1447 if (expect_false (checkcnt)) 2450 if (expect_false (checkcnt))
1448 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2451 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2452#endif
1449 2453
1450 call_pending (EV_A); 2454 EV_INVOKE_PENDING;
1451
1452 } 2455 }
1453 while (expect_true (activecnt && !loop_done)); 2456 while (expect_true (
2457 activecnt
2458 && !loop_done
2459 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2460 ));
1454 2461
1455 if (loop_done == EVUNLOOP_ONE) 2462 if (loop_done == EVBREAK_ONE)
1456 loop_done = EVUNLOOP_CANCEL; 2463 loop_done = EVBREAK_CANCEL;
2464
2465#if EV_FEATURE_API
2466 --loop_depth;
2467#endif
1457} 2468}
1458 2469
1459void 2470void
1460ev_unloop (EV_P_ int how) 2471ev_break (EV_P_ int how)
1461{ 2472{
1462 loop_done = how; 2473 loop_done = how;
1463} 2474}
1464 2475
2476void
2477ev_ref (EV_P)
2478{
2479 ++activecnt;
2480}
2481
2482void
2483ev_unref (EV_P)
2484{
2485 --activecnt;
2486}
2487
2488void
2489ev_now_update (EV_P)
2490{
2491 time_update (EV_A_ 1e100);
2492}
2493
2494void
2495ev_suspend (EV_P)
2496{
2497 ev_now_update (EV_A);
2498}
2499
2500void
2501ev_resume (EV_P)
2502{
2503 ev_tstamp mn_prev = mn_now;
2504
2505 ev_now_update (EV_A);
2506 timers_reschedule (EV_A_ mn_now - mn_prev);
2507#if EV_PERIODIC_ENABLE
2508 /* TODO: really do this? */
2509 periodics_reschedule (EV_A);
2510#endif
2511}
2512
1465/*****************************************************************************/ 2513/*****************************************************************************/
2514/* singly-linked list management, used when the expected list length is short */
1466 2515
1467void inline_size 2516inline_size void
1468wlist_add (WL *head, WL elem) 2517wlist_add (WL *head, WL elem)
1469{ 2518{
1470 elem->next = *head; 2519 elem->next = *head;
1471 *head = elem; 2520 *head = elem;
1472} 2521}
1473 2522
1474void inline_size 2523inline_size void
1475wlist_del (WL *head, WL elem) 2524wlist_del (WL *head, WL elem)
1476{ 2525{
1477 while (*head) 2526 while (*head)
1478 { 2527 {
1479 if (*head == elem) 2528 if (expect_true (*head == elem))
1480 { 2529 {
1481 *head = elem->next; 2530 *head = elem->next;
1482 return; 2531 break;
1483 } 2532 }
1484 2533
1485 head = &(*head)->next; 2534 head = &(*head)->next;
1486 } 2535 }
1487} 2536}
1488 2537
1489void inline_speed 2538/* internal, faster, version of ev_clear_pending */
2539inline_speed void
1490ev_clear_pending (EV_P_ W w) 2540clear_pending (EV_P_ W w)
1491{ 2541{
1492 if (w->pending) 2542 if (w->pending)
1493 { 2543 {
1494 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2544 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1495 w->pending = 0; 2545 w->pending = 0;
1496 } 2546 }
1497} 2547}
1498 2548
1499void inline_speed 2549int
2550ev_clear_pending (EV_P_ void *w)
2551{
2552 W w_ = (W)w;
2553 int pending = w_->pending;
2554
2555 if (expect_true (pending))
2556 {
2557 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2558 p->w = (W)&pending_w;
2559 w_->pending = 0;
2560 return p->events;
2561 }
2562 else
2563 return 0;
2564}
2565
2566inline_size void
2567pri_adjust (EV_P_ W w)
2568{
2569 int pri = ev_priority (w);
2570 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2571 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2572 ev_set_priority (w, pri);
2573}
2574
2575inline_speed void
1500ev_start (EV_P_ W w, int active) 2576ev_start (EV_P_ W w, int active)
1501{ 2577{
1502 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2578 pri_adjust (EV_A_ w);
1503 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1504
1505 w->active = active; 2579 w->active = active;
1506 ev_ref (EV_A); 2580 ev_ref (EV_A);
1507} 2581}
1508 2582
1509void inline_size 2583inline_size void
1510ev_stop (EV_P_ W w) 2584ev_stop (EV_P_ W w)
1511{ 2585{
1512 ev_unref (EV_A); 2586 ev_unref (EV_A);
1513 w->active = 0; 2587 w->active = 0;
1514} 2588}
1515 2589
1516/*****************************************************************************/ 2590/*****************************************************************************/
1517 2591
1518void 2592void noinline
1519ev_io_start (EV_P_ ev_io *w) 2593ev_io_start (EV_P_ ev_io *w)
1520{ 2594{
1521 int fd = w->fd; 2595 int fd = w->fd;
1522 2596
1523 if (expect_false (ev_is_active (w))) 2597 if (expect_false (ev_is_active (w)))
1524 return; 2598 return;
1525 2599
1526 assert (("ev_io_start called with negative fd", fd >= 0)); 2600 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2601 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2602
2603 EV_FREQUENT_CHECK;
1527 2604
1528 ev_start (EV_A_ (W)w, 1); 2605 ev_start (EV_A_ (W)w, 1);
1529 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2606 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1530 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2607 wlist_add (&anfds[fd].head, (WL)w);
1531 2608
1532 fd_change (EV_A_ fd); 2609 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1533} 2610 w->events &= ~EV__IOFDSET;
1534 2611
1535void 2612 EV_FREQUENT_CHECK;
2613}
2614
2615void noinline
1536ev_io_stop (EV_P_ ev_io *w) 2616ev_io_stop (EV_P_ ev_io *w)
1537{ 2617{
1538 ev_clear_pending (EV_A_ (W)w); 2618 clear_pending (EV_A_ (W)w);
1539 if (expect_false (!ev_is_active (w))) 2619 if (expect_false (!ev_is_active (w)))
1540 return; 2620 return;
1541 2621
1542 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2622 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1543 2623
2624 EV_FREQUENT_CHECK;
2625
1544 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2626 wlist_del (&anfds[w->fd].head, (WL)w);
1545 ev_stop (EV_A_ (W)w); 2627 ev_stop (EV_A_ (W)w);
1546 2628
1547 fd_change (EV_A_ w->fd); 2629 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1548}
1549 2630
1550void 2631 EV_FREQUENT_CHECK;
2632}
2633
2634void noinline
1551ev_timer_start (EV_P_ ev_timer *w) 2635ev_timer_start (EV_P_ ev_timer *w)
1552{ 2636{
1553 if (expect_false (ev_is_active (w))) 2637 if (expect_false (ev_is_active (w)))
1554 return; 2638 return;
1555 2639
1556 ((WT)w)->at += mn_now; 2640 ev_at (w) += mn_now;
1557 2641
1558 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2642 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1559 2643
2644 EV_FREQUENT_CHECK;
2645
2646 ++timercnt;
1560 ev_start (EV_A_ (W)w, ++timercnt); 2647 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1561 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2648 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1562 timers [timercnt - 1] = w; 2649 ANHE_w (timers [ev_active (w)]) = (WT)w;
1563 upheap ((WT *)timers, timercnt - 1); 2650 ANHE_at_cache (timers [ev_active (w)]);
2651 upheap (timers, ev_active (w));
1564 2652
2653 EV_FREQUENT_CHECK;
2654
1565 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2655 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1566} 2656}
1567 2657
1568void 2658void noinline
1569ev_timer_stop (EV_P_ ev_timer *w) 2659ev_timer_stop (EV_P_ ev_timer *w)
1570{ 2660{
1571 ev_clear_pending (EV_A_ (W)w); 2661 clear_pending (EV_A_ (W)w);
1572 if (expect_false (!ev_is_active (w))) 2662 if (expect_false (!ev_is_active (w)))
1573 return; 2663 return;
1574 2664
1575 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2665 EV_FREQUENT_CHECK;
1576 2666
1577 { 2667 {
1578 int active = ((W)w)->active; 2668 int active = ev_active (w);
1579 2669
2670 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2671
2672 --timercnt;
2673
1580 if (expect_true (--active < --timercnt)) 2674 if (expect_true (active < timercnt + HEAP0))
1581 { 2675 {
1582 timers [active] = timers [timercnt]; 2676 timers [active] = timers [timercnt + HEAP0];
1583 adjustheap ((WT *)timers, timercnt, active); 2677 adjustheap (timers, timercnt, active);
1584 } 2678 }
1585 } 2679 }
1586 2680
1587 ((WT)w)->at -= mn_now; 2681 ev_at (w) -= mn_now;
1588 2682
1589 ev_stop (EV_A_ (W)w); 2683 ev_stop (EV_A_ (W)w);
1590}
1591 2684
1592void 2685 EV_FREQUENT_CHECK;
2686}
2687
2688void noinline
1593ev_timer_again (EV_P_ ev_timer *w) 2689ev_timer_again (EV_P_ ev_timer *w)
1594{ 2690{
2691 EV_FREQUENT_CHECK;
2692
1595 if (ev_is_active (w)) 2693 if (ev_is_active (w))
1596 { 2694 {
1597 if (w->repeat) 2695 if (w->repeat)
1598 { 2696 {
1599 ((WT)w)->at = mn_now + w->repeat; 2697 ev_at (w) = mn_now + w->repeat;
2698 ANHE_at_cache (timers [ev_active (w)]);
1600 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2699 adjustheap (timers, timercnt, ev_active (w));
1601 } 2700 }
1602 else 2701 else
1603 ev_timer_stop (EV_A_ w); 2702 ev_timer_stop (EV_A_ w);
1604 } 2703 }
1605 else if (w->repeat) 2704 else if (w->repeat)
1606 { 2705 {
1607 w->at = w->repeat; 2706 ev_at (w) = w->repeat;
1608 ev_timer_start (EV_A_ w); 2707 ev_timer_start (EV_A_ w);
1609 } 2708 }
2709
2710 EV_FREQUENT_CHECK;
2711}
2712
2713ev_tstamp
2714ev_timer_remaining (EV_P_ ev_timer *w)
2715{
2716 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1610} 2717}
1611 2718
1612#if EV_PERIODIC_ENABLE 2719#if EV_PERIODIC_ENABLE
1613void 2720void noinline
1614ev_periodic_start (EV_P_ ev_periodic *w) 2721ev_periodic_start (EV_P_ ev_periodic *w)
1615{ 2722{
1616 if (expect_false (ev_is_active (w))) 2723 if (expect_false (ev_is_active (w)))
1617 return; 2724 return;
1618 2725
1619 if (w->reschedule_cb) 2726 if (w->reschedule_cb)
1620 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2727 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1621 else if (w->interval) 2728 else if (w->interval)
1622 { 2729 {
1623 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2730 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1624 /* this formula differs from the one in periodic_reify because we do not always round up */ 2731 /* this formula differs from the one in periodic_reify because we do not always round up */
1625 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2732 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1626 } 2733 }
2734 else
2735 ev_at (w) = w->offset;
1627 2736
2737 EV_FREQUENT_CHECK;
2738
2739 ++periodiccnt;
1628 ev_start (EV_A_ (W)w, ++periodiccnt); 2740 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1629 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2741 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1630 periodics [periodiccnt - 1] = w; 2742 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)periodics, periodiccnt - 1); 2743 ANHE_at_cache (periodics [ev_active (w)]);
2744 upheap (periodics, ev_active (w));
1632 2745
2746 EV_FREQUENT_CHECK;
2747
1633 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2748 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1634} 2749}
1635 2750
1636void 2751void noinline
1637ev_periodic_stop (EV_P_ ev_periodic *w) 2752ev_periodic_stop (EV_P_ ev_periodic *w)
1638{ 2753{
1639 ev_clear_pending (EV_A_ (W)w); 2754 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 2755 if (expect_false (!ev_is_active (w)))
1641 return; 2756 return;
1642 2757
1643 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2758 EV_FREQUENT_CHECK;
1644 2759
1645 { 2760 {
1646 int active = ((W)w)->active; 2761 int active = ev_active (w);
1647 2762
2763 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2764
2765 --periodiccnt;
2766
1648 if (expect_true (--active < --periodiccnt)) 2767 if (expect_true (active < periodiccnt + HEAP0))
1649 { 2768 {
1650 periodics [active] = periodics [periodiccnt]; 2769 periodics [active] = periodics [periodiccnt + HEAP0];
1651 adjustheap ((WT *)periodics, periodiccnt, active); 2770 adjustheap (periodics, periodiccnt, active);
1652 } 2771 }
1653 } 2772 }
1654 2773
1655 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
1656}
1657 2775
1658void 2776 EV_FREQUENT_CHECK;
2777}
2778
2779void noinline
1659ev_periodic_again (EV_P_ ev_periodic *w) 2780ev_periodic_again (EV_P_ ev_periodic *w)
1660{ 2781{
1661 /* TODO: use adjustheap and recalculation */ 2782 /* TODO: use adjustheap and recalculation */
1662 ev_periodic_stop (EV_A_ w); 2783 ev_periodic_stop (EV_A_ w);
1663 ev_periodic_start (EV_A_ w); 2784 ev_periodic_start (EV_A_ w);
1666 2787
1667#ifndef SA_RESTART 2788#ifndef SA_RESTART
1668# define SA_RESTART 0 2789# define SA_RESTART 0
1669#endif 2790#endif
1670 2791
1671void 2792#if EV_SIGNAL_ENABLE
2793
2794void noinline
1672ev_signal_start (EV_P_ ev_signal *w) 2795ev_signal_start (EV_P_ ev_signal *w)
1673{ 2796{
1674#if EV_MULTIPLICITY
1675 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1676#endif
1677 if (expect_false (ev_is_active (w))) 2797 if (expect_false (ev_is_active (w)))
1678 return; 2798 return;
1679 2799
1680 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2800 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2801
2802#if EV_MULTIPLICITY
2803 assert (("libev: a signal must not be attached to two different loops",
2804 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2805
2806 signals [w->signum - 1].loop = EV_A;
2807#endif
2808
2809 EV_FREQUENT_CHECK;
2810
2811#if EV_USE_SIGNALFD
2812 if (sigfd == -2)
2813 {
2814 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2815 if (sigfd < 0 && errno == EINVAL)
2816 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2817
2818 if (sigfd >= 0)
2819 {
2820 fd_intern (sigfd); /* doing it twice will not hurt */
2821
2822 sigemptyset (&sigfd_set);
2823
2824 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2825 ev_set_priority (&sigfd_w, EV_MAXPRI);
2826 ev_io_start (EV_A_ &sigfd_w);
2827 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2828 }
2829 }
2830
2831 if (sigfd >= 0)
2832 {
2833 /* TODO: check .head */
2834 sigaddset (&sigfd_set, w->signum);
2835 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2836
2837 signalfd (sigfd, &sigfd_set, 0);
2838 }
2839#endif
1681 2840
1682 ev_start (EV_A_ (W)w, 1); 2841 ev_start (EV_A_ (W)w, 1);
1683 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1684 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2842 wlist_add (&signals [w->signum - 1].head, (WL)w);
1685 2843
1686 if (!((WL)w)->next) 2844 if (!((WL)w)->next)
2845# if EV_USE_SIGNALFD
2846 if (sigfd < 0) /*TODO*/
2847# endif
1687 { 2848 {
1688#if _WIN32 2849# ifdef _WIN32
2850 evpipe_init (EV_A);
2851
1689 signal (w->signum, sighandler); 2852 signal (w->signum, ev_sighandler);
1690#else 2853# else
1691 struct sigaction sa; 2854 struct sigaction sa;
2855
2856 evpipe_init (EV_A);
2857
1692 sa.sa_handler = sighandler; 2858 sa.sa_handler = ev_sighandler;
1693 sigfillset (&sa.sa_mask); 2859 sigfillset (&sa.sa_mask);
1694 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2860 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1695 sigaction (w->signum, &sa, 0); 2861 sigaction (w->signum, &sa, 0);
2862
2863 sigemptyset (&sa.sa_mask);
2864 sigaddset (&sa.sa_mask, w->signum);
2865 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1696#endif 2866#endif
1697 } 2867 }
1698}
1699 2868
1700void 2869 EV_FREQUENT_CHECK;
2870}
2871
2872void noinline
1701ev_signal_stop (EV_P_ ev_signal *w) 2873ev_signal_stop (EV_P_ ev_signal *w)
1702{ 2874{
1703 ev_clear_pending (EV_A_ (W)w); 2875 clear_pending (EV_A_ (W)w);
1704 if (expect_false (!ev_is_active (w))) 2876 if (expect_false (!ev_is_active (w)))
1705 return; 2877 return;
1706 2878
2879 EV_FREQUENT_CHECK;
2880
1707 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2881 wlist_del (&signals [w->signum - 1].head, (WL)w);
1708 ev_stop (EV_A_ (W)w); 2882 ev_stop (EV_A_ (W)w);
1709 2883
1710 if (!signals [w->signum - 1].head) 2884 if (!signals [w->signum - 1].head)
2885 {
2886#if EV_MULTIPLICITY
2887 signals [w->signum - 1].loop = 0; /* unattach from signal */
2888#endif
2889#if EV_USE_SIGNALFD
2890 if (sigfd >= 0)
2891 {
2892 sigset_t ss;
2893
2894 sigemptyset (&ss);
2895 sigaddset (&ss, w->signum);
2896 sigdelset (&sigfd_set, w->signum);
2897
2898 signalfd (sigfd, &sigfd_set, 0);
2899 sigprocmask (SIG_UNBLOCK, &ss, 0);
2900 }
2901 else
2902#endif
1711 signal (w->signum, SIG_DFL); 2903 signal (w->signum, SIG_DFL);
2904 }
2905
2906 EV_FREQUENT_CHECK;
1712} 2907}
2908
2909#endif
2910
2911#if EV_CHILD_ENABLE
1713 2912
1714void 2913void
1715ev_child_start (EV_P_ ev_child *w) 2914ev_child_start (EV_P_ ev_child *w)
1716{ 2915{
1717#if EV_MULTIPLICITY 2916#if EV_MULTIPLICITY
1718 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2917 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1719#endif 2918#endif
1720 if (expect_false (ev_is_active (w))) 2919 if (expect_false (ev_is_active (w)))
1721 return; 2920 return;
1722 2921
2922 EV_FREQUENT_CHECK;
2923
1723 ev_start (EV_A_ (W)w, 1); 2924 ev_start (EV_A_ (W)w, 1);
1724 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2925 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2926
2927 EV_FREQUENT_CHECK;
1725} 2928}
1726 2929
1727void 2930void
1728ev_child_stop (EV_P_ ev_child *w) 2931ev_child_stop (EV_P_ ev_child *w)
1729{ 2932{
1730 ev_clear_pending (EV_A_ (W)w); 2933 clear_pending (EV_A_ (W)w);
1731 if (expect_false (!ev_is_active (w))) 2934 if (expect_false (!ev_is_active (w)))
1732 return; 2935 return;
1733 2936
2937 EV_FREQUENT_CHECK;
2938
1734 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2939 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1735 ev_stop (EV_A_ (W)w); 2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
1736} 2943}
2944
2945#endif
1737 2946
1738#if EV_STAT_ENABLE 2947#if EV_STAT_ENABLE
1739 2948
1740# ifdef _WIN32 2949# ifdef _WIN32
1741# undef lstat 2950# undef lstat
1742# define lstat(a,b) _stati64 (a,b) 2951# define lstat(a,b) _stati64 (a,b)
1743# endif 2952# endif
1744 2953
1745#define DEF_STAT_INTERVAL 5.0074891 2954#define DEF_STAT_INTERVAL 5.0074891
2955#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1746#define MIN_STAT_INTERVAL 0.1074891 2956#define MIN_STAT_INTERVAL 0.1074891
1747 2957
1748static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2958static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1749 2959
1750#if EV_USE_INOTIFY 2960#if EV_USE_INOTIFY
1751# define EV_INOTIFY_BUFSIZE 8192 2961
2962/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2963# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1752 2964
1753static void noinline 2965static void noinline
1754infy_add (EV_P_ ev_stat *w) 2966infy_add (EV_P_ ev_stat *w)
1755{ 2967{
1756 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2968 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1757 2969
1758 if (w->wd < 0) 2970 if (w->wd >= 0)
2971 {
2972 struct statfs sfs;
2973
2974 /* now local changes will be tracked by inotify, but remote changes won't */
2975 /* unless the filesystem is known to be local, we therefore still poll */
2976 /* also do poll on <2.6.25, but with normal frequency */
2977
2978 if (!fs_2625)
2979 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2980 else if (!statfs (w->path, &sfs)
2981 && (sfs.f_type == 0x1373 /* devfs */
2982 || sfs.f_type == 0xEF53 /* ext2/3 */
2983 || sfs.f_type == 0x3153464a /* jfs */
2984 || sfs.f_type == 0x52654973 /* reiser3 */
2985 || sfs.f_type == 0x01021994 /* tempfs */
2986 || sfs.f_type == 0x58465342 /* xfs */))
2987 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2988 else
2989 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1759 { 2990 }
1760 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2991 else
2992 {
2993 /* can't use inotify, continue to stat */
2994 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1761 2995
1762 /* monitor some parent directory for speedup hints */ 2996 /* if path is not there, monitor some parent directory for speedup hints */
2997 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2998 /* but an efficiency issue only */
1763 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2999 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1764 { 3000 {
1765 char path [4096]; 3001 char path [4096];
1766 strcpy (path, w->path); 3002 strcpy (path, w->path);
1767 3003
1770 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3006 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1771 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3007 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1772 3008
1773 char *pend = strrchr (path, '/'); 3009 char *pend = strrchr (path, '/');
1774 3010
1775 if (!pend) 3011 if (!pend || pend == path)
1776 break; /* whoops, no '/', complain to your admin */ 3012 break;
1777 3013
1778 *pend = 0; 3014 *pend = 0;
1779 w->wd = inotify_add_watch (fs_fd, path, mask); 3015 w->wd = inotify_add_watch (fs_fd, path, mask);
1780 } 3016 }
1781 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3017 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1782 } 3018 }
1783 } 3019 }
1784 else
1785 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1786 3020
1787 if (w->wd >= 0) 3021 if (w->wd >= 0)
1788 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3022 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3023
3024 /* now re-arm timer, if required */
3025 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3026 ev_timer_again (EV_A_ &w->timer);
3027 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1789} 3028}
1790 3029
1791static void noinline 3030static void noinline
1792infy_del (EV_P_ ev_stat *w) 3031infy_del (EV_P_ ev_stat *w)
1793{ 3032{
1796 3035
1797 if (wd < 0) 3036 if (wd < 0)
1798 return; 3037 return;
1799 3038
1800 w->wd = -2; 3039 w->wd = -2;
1801 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3040 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1802 wlist_del (&fs_hash [slot].head, (WL)w); 3041 wlist_del (&fs_hash [slot].head, (WL)w);
1803 3042
1804 /* remove this watcher, if others are watching it, they will rearm */ 3043 /* remove this watcher, if others are watching it, they will rearm */
1805 inotify_rm_watch (fs_fd, wd); 3044 inotify_rm_watch (fs_fd, wd);
1806} 3045}
1807 3046
1808static void noinline 3047static void noinline
1809infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3048infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1810{ 3049{
1811 if (slot < 0) 3050 if (slot < 0)
1812 /* overflow, need to check for all hahs slots */ 3051 /* overflow, need to check for all hash slots */
1813 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3052 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1814 infy_wd (EV_A_ slot, wd, ev); 3053 infy_wd (EV_A_ slot, wd, ev);
1815 else 3054 else
1816 { 3055 {
1817 WL w_; 3056 WL w_;
1818 3057
1819 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3058 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1820 { 3059 {
1821 ev_stat *w = (ev_stat *)w_; 3060 ev_stat *w = (ev_stat *)w_;
1822 w_ = w_->next; /* lets us remove this watcher and all before it */ 3061 w_ = w_->next; /* lets us remove this watcher and all before it */
1823 3062
1824 if (w->wd == wd || wd == -1) 3063 if (w->wd == wd || wd == -1)
1825 { 3064 {
1826 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3065 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1827 { 3066 {
3067 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1828 w->wd = -1; 3068 w->wd = -1;
1829 infy_add (EV_A_ w); /* re-add, no matter what */ 3069 infy_add (EV_A_ w); /* re-add, no matter what */
1830 } 3070 }
1831 3071
1832 stat_timer_cb (EV_A_ &w->timer, 0); 3072 stat_timer_cb (EV_A_ &w->timer, 0);
1837 3077
1838static void 3078static void
1839infy_cb (EV_P_ ev_io *w, int revents) 3079infy_cb (EV_P_ ev_io *w, int revents)
1840{ 3080{
1841 char buf [EV_INOTIFY_BUFSIZE]; 3081 char buf [EV_INOTIFY_BUFSIZE];
1842 struct inotify_event *ev = (struct inotify_event *)buf;
1843 int ofs; 3082 int ofs;
1844 int len = read (fs_fd, buf, sizeof (buf)); 3083 int len = read (fs_fd, buf, sizeof (buf));
1845 3084
1846 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3085 for (ofs = 0; ofs < len; )
3086 {
3087 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1847 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3088 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3089 ofs += sizeof (struct inotify_event) + ev->len;
3090 }
1848} 3091}
1849 3092
1850void inline_size 3093inline_size void
3094ev_check_2625 (EV_P)
3095{
3096 /* kernels < 2.6.25 are borked
3097 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3098 */
3099 if (ev_linux_version () < 0x020619)
3100 return;
3101
3102 fs_2625 = 1;
3103}
3104
3105inline_size int
3106infy_newfd (void)
3107{
3108#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3109 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3110 if (fd >= 0)
3111 return fd;
3112#endif
3113 return inotify_init ();
3114}
3115
3116inline_size void
1851infy_init (EV_P) 3117infy_init (EV_P)
1852{ 3118{
1853 if (fs_fd != -2) 3119 if (fs_fd != -2)
1854 return; 3120 return;
1855 3121
3122 fs_fd = -1;
3123
3124 ev_check_2625 (EV_A);
3125
1856 fs_fd = inotify_init (); 3126 fs_fd = infy_newfd ();
1857 3127
1858 if (fs_fd >= 0) 3128 if (fs_fd >= 0)
1859 { 3129 {
3130 fd_intern (fs_fd);
1860 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3131 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1861 ev_set_priority (&fs_w, EV_MAXPRI); 3132 ev_set_priority (&fs_w, EV_MAXPRI);
1862 ev_io_start (EV_A_ &fs_w); 3133 ev_io_start (EV_A_ &fs_w);
3134 ev_unref (EV_A);
1863 } 3135 }
1864} 3136}
1865 3137
1866void inline_size 3138inline_size void
1867infy_fork (EV_P) 3139infy_fork (EV_P)
1868{ 3140{
1869 int slot; 3141 int slot;
1870 3142
1871 if (fs_fd < 0) 3143 if (fs_fd < 0)
1872 return; 3144 return;
1873 3145
3146 ev_ref (EV_A);
3147 ev_io_stop (EV_A_ &fs_w);
1874 close (fs_fd); 3148 close (fs_fd);
1875 fs_fd = inotify_init (); 3149 fs_fd = infy_newfd ();
1876 3150
3151 if (fs_fd >= 0)
3152 {
3153 fd_intern (fs_fd);
3154 ev_io_set (&fs_w, fs_fd, EV_READ);
3155 ev_io_start (EV_A_ &fs_w);
3156 ev_unref (EV_A);
3157 }
3158
1877 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3159 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1878 { 3160 {
1879 WL w_ = fs_hash [slot].head; 3161 WL w_ = fs_hash [slot].head;
1880 fs_hash [slot].head = 0; 3162 fs_hash [slot].head = 0;
1881 3163
1882 while (w_) 3164 while (w_)
1887 w->wd = -1; 3169 w->wd = -1;
1888 3170
1889 if (fs_fd >= 0) 3171 if (fs_fd >= 0)
1890 infy_add (EV_A_ w); /* re-add, no matter what */ 3172 infy_add (EV_A_ w); /* re-add, no matter what */
1891 else 3173 else
3174 {
3175 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3176 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1892 ev_timer_start (EV_A_ &w->timer); 3177 ev_timer_again (EV_A_ &w->timer);
3178 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3179 }
1893 } 3180 }
1894
1895 } 3181 }
1896} 3182}
1897 3183
3184#endif
3185
3186#ifdef _WIN32
3187# define EV_LSTAT(p,b) _stati64 (p, b)
3188#else
3189# define EV_LSTAT(p,b) lstat (p, b)
1898#endif 3190#endif
1899 3191
1900void 3192void
1901ev_stat_stat (EV_P_ ev_stat *w) 3193ev_stat_stat (EV_P_ ev_stat *w)
1902{ 3194{
1909static void noinline 3201static void noinline
1910stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3202stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1911{ 3203{
1912 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3204 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1913 3205
1914 /* we copy this here each the time so that */ 3206 ev_statdata prev = w->attr;
1915 /* prev has the old value when the callback gets invoked */
1916 w->prev = w->attr;
1917 ev_stat_stat (EV_A_ w); 3207 ev_stat_stat (EV_A_ w);
1918 3208
1919 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3209 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1920 if ( 3210 if (
1921 w->prev.st_dev != w->attr.st_dev 3211 prev.st_dev != w->attr.st_dev
1922 || w->prev.st_ino != w->attr.st_ino 3212 || prev.st_ino != w->attr.st_ino
1923 || w->prev.st_mode != w->attr.st_mode 3213 || prev.st_mode != w->attr.st_mode
1924 || w->prev.st_nlink != w->attr.st_nlink 3214 || prev.st_nlink != w->attr.st_nlink
1925 || w->prev.st_uid != w->attr.st_uid 3215 || prev.st_uid != w->attr.st_uid
1926 || w->prev.st_gid != w->attr.st_gid 3216 || prev.st_gid != w->attr.st_gid
1927 || w->prev.st_rdev != w->attr.st_rdev 3217 || prev.st_rdev != w->attr.st_rdev
1928 || w->prev.st_size != w->attr.st_size 3218 || prev.st_size != w->attr.st_size
1929 || w->prev.st_atime != w->attr.st_atime 3219 || prev.st_atime != w->attr.st_atime
1930 || w->prev.st_mtime != w->attr.st_mtime 3220 || prev.st_mtime != w->attr.st_mtime
1931 || w->prev.st_ctime != w->attr.st_ctime 3221 || prev.st_ctime != w->attr.st_ctime
1932 ) { 3222 ) {
3223 /* we only update w->prev on actual differences */
3224 /* in case we test more often than invoke the callback, */
3225 /* to ensure that prev is always different to attr */
3226 w->prev = prev;
3227
1933 #if EV_USE_INOTIFY 3228 #if EV_USE_INOTIFY
3229 if (fs_fd >= 0)
3230 {
1934 infy_del (EV_A_ w); 3231 infy_del (EV_A_ w);
1935 infy_add (EV_A_ w); 3232 infy_add (EV_A_ w);
1936 ev_stat_stat (EV_A_ w); /* avoid race... */ 3233 ev_stat_stat (EV_A_ w); /* avoid race... */
3234 }
1937 #endif 3235 #endif
1938 3236
1939 ev_feed_event (EV_A_ w, EV_STAT); 3237 ev_feed_event (EV_A_ w, EV_STAT);
1940 } 3238 }
1941} 3239}
1944ev_stat_start (EV_P_ ev_stat *w) 3242ev_stat_start (EV_P_ ev_stat *w)
1945{ 3243{
1946 if (expect_false (ev_is_active (w))) 3244 if (expect_false (ev_is_active (w)))
1947 return; 3245 return;
1948 3246
1949 /* since we use memcmp, we need to clear any padding data etc. */
1950 memset (&w->prev, 0, sizeof (ev_statdata));
1951 memset (&w->attr, 0, sizeof (ev_statdata));
1952
1953 ev_stat_stat (EV_A_ w); 3247 ev_stat_stat (EV_A_ w);
1954 3248
3249 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1955 if (w->interval < MIN_STAT_INTERVAL) 3250 w->interval = MIN_STAT_INTERVAL;
1956 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1957 3251
1958 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3252 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1959 ev_set_priority (&w->timer, ev_priority (w)); 3253 ev_set_priority (&w->timer, ev_priority (w));
1960 3254
1961#if EV_USE_INOTIFY 3255#if EV_USE_INOTIFY
1962 infy_init (EV_A); 3256 infy_init (EV_A);
1963 3257
1964 if (fs_fd >= 0) 3258 if (fs_fd >= 0)
1965 infy_add (EV_A_ w); 3259 infy_add (EV_A_ w);
1966 else 3260 else
1967#endif 3261#endif
3262 {
1968 ev_timer_start (EV_A_ &w->timer); 3263 ev_timer_again (EV_A_ &w->timer);
3264 ev_unref (EV_A);
3265 }
1969 3266
1970 ev_start (EV_A_ (W)w, 1); 3267 ev_start (EV_A_ (W)w, 1);
3268
3269 EV_FREQUENT_CHECK;
1971} 3270}
1972 3271
1973void 3272void
1974ev_stat_stop (EV_P_ ev_stat *w) 3273ev_stat_stop (EV_P_ ev_stat *w)
1975{ 3274{
1976 ev_clear_pending (EV_A_ (W)w); 3275 clear_pending (EV_A_ (W)w);
1977 if (expect_false (!ev_is_active (w))) 3276 if (expect_false (!ev_is_active (w)))
1978 return; 3277 return;
1979 3278
3279 EV_FREQUENT_CHECK;
3280
1980#if EV_USE_INOTIFY 3281#if EV_USE_INOTIFY
1981 infy_del (EV_A_ w); 3282 infy_del (EV_A_ w);
1982#endif 3283#endif
3284
3285 if (ev_is_active (&w->timer))
3286 {
3287 ev_ref (EV_A);
1983 ev_timer_stop (EV_A_ &w->timer); 3288 ev_timer_stop (EV_A_ &w->timer);
3289 }
1984 3290
1985 ev_stop (EV_A_ (W)w); 3291 ev_stop (EV_A_ (W)w);
1986}
1987#endif
1988 3292
3293 EV_FREQUENT_CHECK;
3294}
3295#endif
3296
3297#if EV_IDLE_ENABLE
1989void 3298void
1990ev_idle_start (EV_P_ ev_idle *w) 3299ev_idle_start (EV_P_ ev_idle *w)
1991{ 3300{
1992 if (expect_false (ev_is_active (w))) 3301 if (expect_false (ev_is_active (w)))
1993 return; 3302 return;
1994 3303
3304 pri_adjust (EV_A_ (W)w);
3305
3306 EV_FREQUENT_CHECK;
3307
3308 {
3309 int active = ++idlecnt [ABSPRI (w)];
3310
3311 ++idleall;
1995 ev_start (EV_A_ (W)w, ++idlecnt); 3312 ev_start (EV_A_ (W)w, active);
3313
1996 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3314 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1997 idles [idlecnt - 1] = w; 3315 idles [ABSPRI (w)][active - 1] = w;
3316 }
3317
3318 EV_FREQUENT_CHECK;
1998} 3319}
1999 3320
2000void 3321void
2001ev_idle_stop (EV_P_ ev_idle *w) 3322ev_idle_stop (EV_P_ ev_idle *w)
2002{ 3323{
2003 ev_clear_pending (EV_A_ (W)w); 3324 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 3325 if (expect_false (!ev_is_active (w)))
2005 return; 3326 return;
2006 3327
3328 EV_FREQUENT_CHECK;
3329
2007 { 3330 {
2008 int active = ((W)w)->active; 3331 int active = ev_active (w);
2009 idles [active - 1] = idles [--idlecnt]; 3332
2010 ((W)idles [active - 1])->active = active; 3333 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3334 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3335
3336 ev_stop (EV_A_ (W)w);
3337 --idleall;
2011 } 3338 }
2012 3339
2013 ev_stop (EV_A_ (W)w); 3340 EV_FREQUENT_CHECK;
2014} 3341}
3342#endif
2015 3343
3344#if EV_PREPARE_ENABLE
2016void 3345void
2017ev_prepare_start (EV_P_ ev_prepare *w) 3346ev_prepare_start (EV_P_ ev_prepare *w)
2018{ 3347{
2019 if (expect_false (ev_is_active (w))) 3348 if (expect_false (ev_is_active (w)))
2020 return; 3349 return;
3350
3351 EV_FREQUENT_CHECK;
2021 3352
2022 ev_start (EV_A_ (W)w, ++preparecnt); 3353 ev_start (EV_A_ (W)w, ++preparecnt);
2023 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3354 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2024 prepares [preparecnt - 1] = w; 3355 prepares [preparecnt - 1] = w;
3356
3357 EV_FREQUENT_CHECK;
2025} 3358}
2026 3359
2027void 3360void
2028ev_prepare_stop (EV_P_ ev_prepare *w) 3361ev_prepare_stop (EV_P_ ev_prepare *w)
2029{ 3362{
2030 ev_clear_pending (EV_A_ (W)w); 3363 clear_pending (EV_A_ (W)w);
2031 if (expect_false (!ev_is_active (w))) 3364 if (expect_false (!ev_is_active (w)))
2032 return; 3365 return;
2033 3366
3367 EV_FREQUENT_CHECK;
3368
2034 { 3369 {
2035 int active = ((W)w)->active; 3370 int active = ev_active (w);
3371
2036 prepares [active - 1] = prepares [--preparecnt]; 3372 prepares [active - 1] = prepares [--preparecnt];
2037 ((W)prepares [active - 1])->active = active; 3373 ev_active (prepares [active - 1]) = active;
2038 } 3374 }
2039 3375
2040 ev_stop (EV_A_ (W)w); 3376 ev_stop (EV_A_ (W)w);
2041}
2042 3377
3378 EV_FREQUENT_CHECK;
3379}
3380#endif
3381
3382#if EV_CHECK_ENABLE
2043void 3383void
2044ev_check_start (EV_P_ ev_check *w) 3384ev_check_start (EV_P_ ev_check *w)
2045{ 3385{
2046 if (expect_false (ev_is_active (w))) 3386 if (expect_false (ev_is_active (w)))
2047 return; 3387 return;
3388
3389 EV_FREQUENT_CHECK;
2048 3390
2049 ev_start (EV_A_ (W)w, ++checkcnt); 3391 ev_start (EV_A_ (W)w, ++checkcnt);
2050 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3392 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2051 checks [checkcnt - 1] = w; 3393 checks [checkcnt - 1] = w;
3394
3395 EV_FREQUENT_CHECK;
2052} 3396}
2053 3397
2054void 3398void
2055ev_check_stop (EV_P_ ev_check *w) 3399ev_check_stop (EV_P_ ev_check *w)
2056{ 3400{
2057 ev_clear_pending (EV_A_ (W)w); 3401 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 3402 if (expect_false (!ev_is_active (w)))
2059 return; 3403 return;
2060 3404
3405 EV_FREQUENT_CHECK;
3406
2061 { 3407 {
2062 int active = ((W)w)->active; 3408 int active = ev_active (w);
3409
2063 checks [active - 1] = checks [--checkcnt]; 3410 checks [active - 1] = checks [--checkcnt];
2064 ((W)checks [active - 1])->active = active; 3411 ev_active (checks [active - 1]) = active;
2065 } 3412 }
2066 3413
2067 ev_stop (EV_A_ (W)w); 3414 ev_stop (EV_A_ (W)w);
3415
3416 EV_FREQUENT_CHECK;
2068} 3417}
3418#endif
2069 3419
2070#if EV_EMBED_ENABLE 3420#if EV_EMBED_ENABLE
2071void noinline 3421void noinline
2072ev_embed_sweep (EV_P_ ev_embed *w) 3422ev_embed_sweep (EV_P_ ev_embed *w)
2073{ 3423{
2074 ev_loop (w->loop, EVLOOP_NONBLOCK); 3424 ev_run (w->other, EVRUN_NOWAIT);
2075} 3425}
2076 3426
2077static void 3427static void
2078embed_cb (EV_P_ ev_io *io, int revents) 3428embed_io_cb (EV_P_ ev_io *io, int revents)
2079{ 3429{
2080 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3430 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2081 3431
2082 if (ev_cb (w)) 3432 if (ev_cb (w))
2083 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3433 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2084 else 3434 else
2085 ev_embed_sweep (loop, w); 3435 ev_run (w->other, EVRUN_NOWAIT);
2086} 3436}
3437
3438static void
3439embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3440{
3441 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3442
3443 {
3444 EV_P = w->other;
3445
3446 while (fdchangecnt)
3447 {
3448 fd_reify (EV_A);
3449 ev_run (EV_A_ EVRUN_NOWAIT);
3450 }
3451 }
3452}
3453
3454static void
3455embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3456{
3457 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3458
3459 ev_embed_stop (EV_A_ w);
3460
3461 {
3462 EV_P = w->other;
3463
3464 ev_loop_fork (EV_A);
3465 ev_run (EV_A_ EVRUN_NOWAIT);
3466 }
3467
3468 ev_embed_start (EV_A_ w);
3469}
3470
3471#if 0
3472static void
3473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3474{
3475 ev_idle_stop (EV_A_ idle);
3476}
3477#endif
2087 3478
2088void 3479void
2089ev_embed_start (EV_P_ ev_embed *w) 3480ev_embed_start (EV_P_ ev_embed *w)
2090{ 3481{
2091 if (expect_false (ev_is_active (w))) 3482 if (expect_false (ev_is_active (w)))
2092 return; 3483 return;
2093 3484
2094 { 3485 {
2095 struct ev_loop *loop = w->loop; 3486 EV_P = w->other;
2096 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3487 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2097 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2098 } 3489 }
3490
3491 EV_FREQUENT_CHECK;
2099 3492
2100 ev_set_priority (&w->io, ev_priority (w)); 3493 ev_set_priority (&w->io, ev_priority (w));
2101 ev_io_start (EV_A_ &w->io); 3494 ev_io_start (EV_A_ &w->io);
2102 3495
3496 ev_prepare_init (&w->prepare, embed_prepare_cb);
3497 ev_set_priority (&w->prepare, EV_MINPRI);
3498 ev_prepare_start (EV_A_ &w->prepare);
3499
3500 ev_fork_init (&w->fork, embed_fork_cb);
3501 ev_fork_start (EV_A_ &w->fork);
3502
3503 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3504
2103 ev_start (EV_A_ (W)w, 1); 3505 ev_start (EV_A_ (W)w, 1);
3506
3507 EV_FREQUENT_CHECK;
2104} 3508}
2105 3509
2106void 3510void
2107ev_embed_stop (EV_P_ ev_embed *w) 3511ev_embed_stop (EV_P_ ev_embed *w)
2108{ 3512{
2109 ev_clear_pending (EV_A_ (W)w); 3513 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 3514 if (expect_false (!ev_is_active (w)))
2111 return; 3515 return;
2112 3516
3517 EV_FREQUENT_CHECK;
3518
2113 ev_io_stop (EV_A_ &w->io); 3519 ev_io_stop (EV_A_ &w->io);
3520 ev_prepare_stop (EV_A_ &w->prepare);
3521 ev_fork_stop (EV_A_ &w->fork);
2114 3522
2115 ev_stop (EV_A_ (W)w); 3523 ev_stop (EV_A_ (W)w);
3524
3525 EV_FREQUENT_CHECK;
2116} 3526}
2117#endif 3527#endif
2118 3528
2119#if EV_FORK_ENABLE 3529#if EV_FORK_ENABLE
2120void 3530void
2121ev_fork_start (EV_P_ ev_fork *w) 3531ev_fork_start (EV_P_ ev_fork *w)
2122{ 3532{
2123 if (expect_false (ev_is_active (w))) 3533 if (expect_false (ev_is_active (w)))
2124 return; 3534 return;
2125 3535
3536 EV_FREQUENT_CHECK;
3537
2126 ev_start (EV_A_ (W)w, ++forkcnt); 3538 ev_start (EV_A_ (W)w, ++forkcnt);
2127 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3539 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2128 forks [forkcnt - 1] = w; 3540 forks [forkcnt - 1] = w;
3541
3542 EV_FREQUENT_CHECK;
2129} 3543}
2130 3544
2131void 3545void
2132ev_fork_stop (EV_P_ ev_fork *w) 3546ev_fork_stop (EV_P_ ev_fork *w)
2133{ 3547{
2134 ev_clear_pending (EV_A_ (W)w); 3548 clear_pending (EV_A_ (W)w);
2135 if (expect_false (!ev_is_active (w))) 3549 if (expect_false (!ev_is_active (w)))
2136 return; 3550 return;
2137 3551
3552 EV_FREQUENT_CHECK;
3553
2138 { 3554 {
2139 int active = ((W)w)->active; 3555 int active = ev_active (w);
3556
2140 forks [active - 1] = forks [--forkcnt]; 3557 forks [active - 1] = forks [--forkcnt];
2141 ((W)forks [active - 1])->active = active; 3558 ev_active (forks [active - 1]) = active;
2142 } 3559 }
2143 3560
2144 ev_stop (EV_A_ (W)w); 3561 ev_stop (EV_A_ (W)w);
3562
3563 EV_FREQUENT_CHECK;
3564}
3565#endif
3566
3567#if EV_ASYNC_ENABLE
3568void
3569ev_async_start (EV_P_ ev_async *w)
3570{
3571 if (expect_false (ev_is_active (w)))
3572 return;
3573
3574 w->sent = 0;
3575
3576 evpipe_init (EV_A);
3577
3578 EV_FREQUENT_CHECK;
3579
3580 ev_start (EV_A_ (W)w, ++asynccnt);
3581 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3582 asyncs [asynccnt - 1] = w;
3583
3584 EV_FREQUENT_CHECK;
3585}
3586
3587void
3588ev_async_stop (EV_P_ ev_async *w)
3589{
3590 clear_pending (EV_A_ (W)w);
3591 if (expect_false (!ev_is_active (w)))
3592 return;
3593
3594 EV_FREQUENT_CHECK;
3595
3596 {
3597 int active = ev_active (w);
3598
3599 asyncs [active - 1] = asyncs [--asynccnt];
3600 ev_active (asyncs [active - 1]) = active;
3601 }
3602
3603 ev_stop (EV_A_ (W)w);
3604
3605 EV_FREQUENT_CHECK;
3606}
3607
3608void
3609ev_async_send (EV_P_ ev_async *w)
3610{
3611 w->sent = 1;
3612 evpipe_write (EV_A_ &async_pending);
2145} 3613}
2146#endif 3614#endif
2147 3615
2148/*****************************************************************************/ 3616/*****************************************************************************/
2149 3617
2159once_cb (EV_P_ struct ev_once *once, int revents) 3627once_cb (EV_P_ struct ev_once *once, int revents)
2160{ 3628{
2161 void (*cb)(int revents, void *arg) = once->cb; 3629 void (*cb)(int revents, void *arg) = once->cb;
2162 void *arg = once->arg; 3630 void *arg = once->arg;
2163 3631
2164 ev_io_stop (EV_A_ &once->io); 3632 ev_io_stop (EV_A_ &once->io);
2165 ev_timer_stop (EV_A_ &once->to); 3633 ev_timer_stop (EV_A_ &once->to);
2166 ev_free (once); 3634 ev_free (once);
2167 3635
2168 cb (revents, arg); 3636 cb (revents, arg);
2169} 3637}
2170 3638
2171static void 3639static void
2172once_cb_io (EV_P_ ev_io *w, int revents) 3640once_cb_io (EV_P_ ev_io *w, int revents)
2173{ 3641{
2174 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3642 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3643
3644 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2175} 3645}
2176 3646
2177static void 3647static void
2178once_cb_to (EV_P_ ev_timer *w, int revents) 3648once_cb_to (EV_P_ ev_timer *w, int revents)
2179{ 3649{
2180 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3650 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3651
3652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2181} 3653}
2182 3654
2183void 3655void
2184ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3656ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2185{ 3657{
2186 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3658 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2187 3659
2188 if (expect_false (!once)) 3660 if (expect_false (!once))
2189 { 3661 {
2190 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3662 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2191 return; 3663 return;
2192 } 3664 }
2193 3665
2194 once->cb = cb; 3666 once->cb = cb;
2195 once->arg = arg; 3667 once->arg = arg;
2207 ev_timer_set (&once->to, timeout, 0.); 3679 ev_timer_set (&once->to, timeout, 0.);
2208 ev_timer_start (EV_A_ &once->to); 3680 ev_timer_start (EV_A_ &once->to);
2209 } 3681 }
2210} 3682}
2211 3683
2212#ifdef __cplusplus 3684/*****************************************************************************/
2213} 3685
3686#if EV_WALK_ENABLE
3687void
3688ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3689{
3690 int i, j;
3691 ev_watcher_list *wl, *wn;
3692
3693 if (types & (EV_IO | EV_EMBED))
3694 for (i = 0; i < anfdmax; ++i)
3695 for (wl = anfds [i].head; wl; )
3696 {
3697 wn = wl->next;
3698
3699#if EV_EMBED_ENABLE
3700 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3701 {
3702 if (types & EV_EMBED)
3703 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3704 }
3705 else
3706#endif
3707#if EV_USE_INOTIFY
3708 if (ev_cb ((ev_io *)wl) == infy_cb)
3709 ;
3710 else
3711#endif
3712 if ((ev_io *)wl != &pipe_w)
3713 if (types & EV_IO)
3714 cb (EV_A_ EV_IO, wl);
3715
3716 wl = wn;
3717 }
3718
3719 if (types & (EV_TIMER | EV_STAT))
3720 for (i = timercnt + HEAP0; i-- > HEAP0; )
3721#if EV_STAT_ENABLE
3722 /*TODO: timer is not always active*/
3723 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3724 {
3725 if (types & EV_STAT)
3726 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3727 }
3728 else
3729#endif
3730 if (types & EV_TIMER)
3731 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3732
3733#if EV_PERIODIC_ENABLE
3734 if (types & EV_PERIODIC)
3735 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3736 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3737#endif
3738
3739#if EV_IDLE_ENABLE
3740 if (types & EV_IDLE)
3741 for (j = NUMPRI; i--; )
3742 for (i = idlecnt [j]; i--; )
3743 cb (EV_A_ EV_IDLE, idles [j][i]);
3744#endif
3745
3746#if EV_FORK_ENABLE
3747 if (types & EV_FORK)
3748 for (i = forkcnt; i--; )
3749 if (ev_cb (forks [i]) != embed_fork_cb)
3750 cb (EV_A_ EV_FORK, forks [i]);
3751#endif
3752
3753#if EV_ASYNC_ENABLE
3754 if (types & EV_ASYNC)
3755 for (i = asynccnt; i--; )
3756 cb (EV_A_ EV_ASYNC, asyncs [i]);
3757#endif
3758
3759#if EV_PREPARE_ENABLE
3760 if (types & EV_PREPARE)
3761 for (i = preparecnt; i--; )
3762# if EV_EMBED_ENABLE
3763 if (ev_cb (prepares [i]) != embed_prepare_cb)
2214#endif 3764# endif
3765 cb (EV_A_ EV_PREPARE, prepares [i]);
3766#endif
2215 3767
3768#if EV_CHECK_ENABLE
3769 if (types & EV_CHECK)
3770 for (i = checkcnt; i--; )
3771 cb (EV_A_ EV_CHECK, checks [i]);
3772#endif
3773
3774#if EV_SIGNAL_ENABLE
3775 if (types & EV_SIGNAL)
3776 for (i = 0; i < EV_NSIG - 1; ++i)
3777 for (wl = signals [i].head; wl; )
3778 {
3779 wn = wl->next;
3780 cb (EV_A_ EV_SIGNAL, wl);
3781 wl = wn;
3782 }
3783#endif
3784
3785#if EV_CHILD_ENABLE
3786 if (types & EV_CHILD)
3787 for (i = (EV_PID_HASHSIZE); i--; )
3788 for (wl = childs [i]; wl; )
3789 {
3790 wn = wl->next;
3791 cb (EV_A_ EV_CHILD, wl);
3792 wl = wn;
3793 }
3794#endif
3795/* EV_STAT 0x00001000 /* stat data changed */
3796/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3797}
3798#endif
3799
3800#if EV_MULTIPLICITY
3801 #include "ev_wrap.h"
3802#endif
3803
3804EV_CPP(})
3805

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines