ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.359 by root, Sun Oct 24 17:58:41 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
130# endif 148# endif
131 149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
237# endif 314# endif
238#endif 315#endif
239 316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
241 364
242#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
245#endif 368#endif
259# include <sys/select.h> 382# include <sys/select.h>
260# endif 383# endif
261#endif 384#endif
262 385
263#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
264# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
265#endif 394#endif
266 395
267#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 397# include <winsock.h>
269#endif 398#endif
270 399
271#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
273int eventfd (unsigned int initval, int flags); 413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
274#endif 436#endif
275 437
276/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
277 445
278/* 446/*
279 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
285 */ 453 */
286#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
287 455
288#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
289#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
290/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
291 461
292#if __GNUC__ >= 4 462#if __GNUC__ >= 4
293# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
295#else 465#else
296# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
297# define noinline 467# define noinline
298# if __STDC_VERSION__ < 199901L 468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 469# define inline
300# endif 470# endif
301#endif 471#endif
302 472
303#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
304#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
305#define inline_size static inline 475#define inline_size static inline
306 476
307#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
308# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
309#else 487#else
310# define inline_speed static inline
311#endif
312
313#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
314#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
315 490
316#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
317#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
318 493
319typedef ev_watcher *W; 494typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
322 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
323#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
327#endif 519#endif
328 520
329#ifdef _WIN32 521#ifdef _WIN32
330# include "ev_win32.c" 522# include "ev_win32.c"
331#endif 523#endif
332 524
333/*****************************************************************************/ 525/*****************************************************************************/
334 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
335static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
336 578
337void 579void
338ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
339{ 581{
340 syserr_cb = cb; 582 syserr_cb = cb;
341} 583}
342 584
343static void noinline 585static void noinline
344syserr (const char *msg) 586ev_syserr (const char *msg)
345{ 587{
346 if (!msg) 588 if (!msg)
347 msg = "(libev) system error"; 589 msg = "(libev) system error";
348 590
349 if (syserr_cb) 591 if (syserr_cb)
350 syserr_cb (msg); 592 syserr_cb (msg);
351 else 593 else
352 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
353 perror (msg); 603 perror (msg);
604#endif
354 abort (); 605 abort ();
355 } 606 }
356} 607}
357 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
358static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 629
360void 630void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 632{
363 alloc = cb; 633 alloc = cb;
364} 634}
365 635
366inline_speed void * 636inline_speed void *
367ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
368{ 638{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
370 640
371 if (!ptr && size) 641 if (!ptr && size)
372 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
374 abort (); 648 abort ();
375 } 649 }
376 650
377 return ptr; 651 return ptr;
378} 652}
380#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
381#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
382 656
383/*****************************************************************************/ 657/*****************************************************************************/
384 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
385typedef struct 663typedef struct
386{ 664{
387 WL head; 665 WL head;
388 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
389 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
390#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
391 SOCKET handle; 674 SOCKET handle;
392#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
393} ANFD; 679} ANFD;
394 680
681/* stores the pending event set for a given watcher */
395typedef struct 682typedef struct
396{ 683{
397 W w; 684 W w;
398 int events; 685 int events; /* the pending event set for the given watcher */
399} ANPENDING; 686} ANPENDING;
400 687
401#if EV_USE_INOTIFY 688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
402typedef struct 690typedef struct
403{ 691{
404 WL head; 692 WL head;
405} ANFS; 693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
406#endif 714#endif
407 715
408#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
409 717
410 struct ev_loop 718 struct ev_loop
429 737
430 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
431 739
432#endif 740#endif
433 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
434/*****************************************************************************/ 754/*****************************************************************************/
435 755
756#ifndef EV_HAVE_EV_TIME
436ev_tstamp 757ev_tstamp
437ev_time (void) 758ev_time (void)
438{ 759{
439#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
440 struct timespec ts; 763 struct timespec ts;
441 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
442 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
443#else 766 }
767#endif
768
444 struct timeval tv; 769 struct timeval tv;
445 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
446 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
447#endif
448} 772}
773#endif
449 774
450ev_tstamp inline_size 775inline_size ev_tstamp
451get_clock (void) 776get_clock (void)
452{ 777{
453#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
454 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
455 { 780 {
476 if (delay > 0.) 801 if (delay > 0.)
477 { 802 {
478#if EV_USE_NANOSLEEP 803#if EV_USE_NANOSLEEP
479 struct timespec ts; 804 struct timespec ts;
480 805
481 ts.tv_sec = (time_t)delay; 806 EV_TS_SET (ts, delay);
482 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
483
484 nanosleep (&ts, 0); 807 nanosleep (&ts, 0);
485#elif defined(_WIN32) 808#elif defined(_WIN32)
486 Sleep ((unsigned long)(delay * 1e3)); 809 Sleep ((unsigned long)(delay * 1e3));
487#else 810#else
488 struct timeval tv; 811 struct timeval tv;
489 812
490 tv.tv_sec = (time_t)delay; 813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
491 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 814 /* something not guaranteed by newer posix versions, but guaranteed */
492 815 /* by older ones */
816 EV_TV_SET (tv, delay);
493 select (0, 0, 0, 0, &tv); 817 select (0, 0, 0, 0, &tv);
494#endif 818#endif
495 } 819 }
496} 820}
497 821
498/*****************************************************************************/ 822/*****************************************************************************/
499 823
500int inline_size 824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
501array_nextsize (int elem, int cur, int cnt) 829array_nextsize (int elem, int cur, int cnt)
502{ 830{
503 int ncur = cur + 1; 831 int ncur = cur + 1;
504 832
505 do 833 do
506 ncur <<= 1; 834 ncur <<= 1;
507 while (cnt > ncur); 835 while (cnt > ncur);
508 836
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 839 {
512 ncur *= elem; 840 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 842 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 843 ncur /= elem;
516 } 844 }
517 845
518 return ncur; 846 return ncur;
522array_realloc (int elem, void *base, int *cur, int cnt) 850array_realloc (int elem, void *base, int *cur, int cnt)
523{ 851{
524 *cur = array_nextsize (elem, *cur, cnt); 852 *cur = array_nextsize (elem, *cur, cnt);
525 return ev_realloc (base, elem * *cur); 853 return ev_realloc (base, elem * *cur);
526} 854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
527 858
528#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
529 if (expect_false ((cnt) > (cur))) \ 860 if (expect_false ((cnt) > (cur))) \
530 { \ 861 { \
531 int ocur_ = (cur); \ 862 int ocur_ = (cur); \
543 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
544 } 875 }
545#endif 876#endif
546 877
547#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
548 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
549 880
550/*****************************************************************************/ 881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
551 888
552void noinline 889void noinline
553ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
554{ 891{
555 W w_ = (W)w; 892 W w_ = (W)w;
564 pendings [pri][w_->pending - 1].w = w_; 901 pendings [pri][w_->pending - 1].w = w_;
565 pendings [pri][w_->pending - 1].events = revents; 902 pendings [pri][w_->pending - 1].events = revents;
566 } 903 }
567} 904}
568 905
569void inline_speed 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
570queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
571{ 923{
572 int i; 924 int i;
573 925
574 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
575 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
576} 928}
577 929
578/*****************************************************************************/ 930/*****************************************************************************/
579 931
580void inline_size 932inline_speed void
581anfds_init (ANFD *base, int count)
582{
583 while (count--)
584 {
585 base->head = 0;
586 base->events = EV_NONE;
587 base->reify = 0;
588
589 ++base;
590 }
591}
592
593void inline_speed
594fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
595{ 934{
596 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
597 ev_io *w; 936 ev_io *w;
598 937
599 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
603 if (ev) 942 if (ev)
604 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
605 } 944 }
606} 945}
607 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
608void 958void
609ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
610{ 960{
611 if (fd >= 0 && fd < anfdmax) 961 if (fd >= 0 && fd < anfdmax)
612 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
613} 963}
614 964
615void inline_size 965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
616fd_reify (EV_P) 968fd_reify (EV_P)
617{ 969{
618 int i; 970 int i;
619 971
620 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
621 { 973 {
622 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
623 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
624 ev_io *w; 976 ev_io *w;
625 977
626 unsigned char events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
627 980
628 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
629 events |= (unsigned char)w->events;
630 982
631#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
632 if (events) 984 if (o_reify & EV__IOFDSET)
633 { 985 {
634 unsigned long argp; 986 unsigned long arg;
635 #ifdef EV_FD_TO_WIN32_HANDLE
636 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
637 #else
638 anfd->handle = _get_osfhandle (fd);
639 #endif
640 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
641 } 990 }
642#endif 991#endif
643 992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
644 { 994 {
645 unsigned char o_events = anfd->events;
646 unsigned char o_reify = anfd->reify;
647
648 anfd->reify = 0;
649 anfd->events = events; 995 anfd->events = 0;
650 996
651 if (o_events != events || o_reify & EV_IOFDSET) 997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
652 backend_modify (EV_A_ fd, o_events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
653 }
654 } 1006 }
655 1007
656 fdchangecnt = 0; 1008 fdchangecnt = 0;
657} 1009}
658 1010
659void inline_size 1011/* something about the given fd changed */
1012inline_size void
660fd_change (EV_P_ int fd, int flags) 1013fd_change (EV_P_ int fd, int flags)
661{ 1014{
662 unsigned char reify = anfds [fd].reify; 1015 unsigned char reify = anfds [fd].reify;
663 anfds [fd].reify |= flags; 1016 anfds [fd].reify |= flags;
664 1017
668 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
669 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
670 } 1023 }
671} 1024}
672 1025
673void inline_speed 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
674fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
675{ 1029{
676 ev_io *w; 1030 ev_io *w;
677 1031
678 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
680 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
681 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
682 } 1036 }
683} 1037}
684 1038
685int inline_size 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
686fd_valid (int fd) 1041fd_valid (int fd)
687{ 1042{
688#ifdef _WIN32 1043#ifdef _WIN32
689 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
690#else 1045#else
691 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
692#endif 1047#endif
693} 1048}
694 1049
698{ 1053{
699 int fd; 1054 int fd;
700 1055
701 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
702 if (anfds [fd].events) 1057 if (anfds [fd].events)
703 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
704 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
705} 1060}
706 1061
707/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
708static void noinline 1063static void noinline
712 1067
713 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
714 if (anfds [fd].events) 1069 if (anfds [fd].events)
715 { 1070 {
716 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
717 return; 1072 break;
718 } 1073 }
719} 1074}
720 1075
721/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
722static void noinline 1077static void noinline
726 1081
727 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
728 if (anfds [fd].events) 1083 if (anfds [fd].events)
729 { 1084 {
730 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
1086 anfds [fd].emask = 0;
731 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
732 } 1088 }
733} 1089}
734 1090
735/*****************************************************************************/ 1091/* used to prepare libev internal fd's */
736 1092/* this is not fork-safe */
737void inline_speed 1093inline_speed void
738upheap (WT *heap, int k)
739{
740 WT w = heap [k];
741
742 while (k)
743 {
744 int p = (k - 1) >> 1;
745
746 if (heap [p]->at <= w->at)
747 break;
748
749 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1;
751 k = p;
752 }
753
754 heap [k] = w;
755 ((W)heap [k])->active = k + 1;
756}
757
758void inline_speed
759downheap (WT *heap, int N, int k)
760{
761 WT w = heap [k];
762
763 for (;;)
764 {
765 int c = (k << 1) + 1;
766
767 if (c >= N)
768 break;
769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
776 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1;
778
779 k = c;
780 }
781
782 heap [k] = w;
783 ((W)heap [k])->active = k + 1;
784}
785
786void inline_size
787adjustheap (WT *heap, int N, int k)
788{
789 upheap (heap, k);
790 downheap (heap, N, k);
791}
792
793/*****************************************************************************/
794
795typedef struct
796{
797 WL head;
798 EV_ATOMIC_T gotsig;
799} ANSIG;
800
801static ANSIG *signals;
802static int signalmax;
803
804static EV_ATOMIC_T gotsig;
805
806void inline_size
807signals_init (ANSIG *base, int count)
808{
809 while (count--)
810 {
811 base->head = 0;
812 base->gotsig = 0;
813
814 ++base;
815 }
816}
817
818/*****************************************************************************/
819
820void inline_speed
821fd_intern (int fd) 1094fd_intern (int fd)
822{ 1095{
823#ifdef _WIN32 1096#ifdef _WIN32
824 int arg = 1; 1097 unsigned long arg = 1;
825 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
826#else 1099#else
827 fcntl (fd, F_SETFD, FD_CLOEXEC); 1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
828 fcntl (fd, F_SETFL, O_NONBLOCK); 1101 fcntl (fd, F_SETFL, O_NONBLOCK);
829#endif 1102#endif
830} 1103}
831 1104
1105/*****************************************************************************/
1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
832static void noinline 1268static void noinline
833evpipe_init (EV_P) 1269evpipe_init (EV_P)
834{ 1270{
835 if (!ev_is_active (&pipeev)) 1271 if (!ev_is_active (&pipe_w))
836 { 1272 {
837#if EV_USE_EVENTFD 1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
838 if ((evfd = eventfd (0, 0)) >= 0) 1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
839 { 1279 {
840 evpipe [0] = -1; 1280 evpipe [0] = -1;
841 fd_intern (evfd); 1281 fd_intern (evfd); /* doing it twice doesn't hurt */
842 ev_io_set (&pipeev, evfd, EV_READ); 1282 ev_io_set (&pipe_w, evfd, EV_READ);
843 } 1283 }
844 else 1284 else
845#endif 1285# endif
846 { 1286 {
847 while (pipe (evpipe)) 1287 while (pipe (evpipe))
848 syserr ("(libev) error creating signal/async pipe"); 1288 ev_syserr ("(libev) error creating signal/async pipe");
849 1289
850 fd_intern (evpipe [0]); 1290 fd_intern (evpipe [0]);
851 fd_intern (evpipe [1]); 1291 fd_intern (evpipe [1]);
852 ev_io_set (&pipeev, evpipe [0], EV_READ); 1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
853 } 1293 }
854 1294
855 ev_io_start (EV_A_ &pipeev); 1295 ev_io_start (EV_A_ &pipe_w);
856 ev_unref (EV_A); /* watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* watcher should not keep loop alive */
857 } 1297 }
858} 1298}
859 1299
860void inline_size 1300inline_size void
861evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
862{ 1302{
863 if (!*flag) 1303 if (!*flag)
864 { 1304 {
865 int old_errno = errno; /* save errno because write might clobber it */ 1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
866 1307
867 *flag = 1; 1308 *flag = 1;
868 1309
869#if EV_USE_EVENTFD 1310#if EV_USE_EVENTFD
870 if (evfd >= 0) 1311 if (evfd >= 0)
872 uint64_t counter = 1; 1313 uint64_t counter = 1;
873 write (evfd, &counter, sizeof (uint64_t)); 1314 write (evfd, &counter, sizeof (uint64_t));
874 } 1315 }
875 else 1316 else
876#endif 1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
877 write (evpipe [1], &old_errno, 1); 1323 write (evpipe [1], &dummy, 1);
878 1324
879 errno = old_errno; 1325 errno = old_errno;
880 } 1326 }
881} 1327}
882 1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
883static void 1331static void
884pipecb (EV_P_ ev_io *iow, int revents) 1332pipecb (EV_P_ ev_io *iow, int revents)
885{ 1333{
1334 int i;
1335
886#if EV_USE_EVENTFD 1336#if EV_USE_EVENTFD
887 if (evfd >= 0) 1337 if (evfd >= 0)
888 { 1338 {
889 uint64_t counter = 1; 1339 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1340 read (evfd, &counter, sizeof (uint64_t));
891 } 1341 }
892 else 1342 else
893#endif 1343#endif
894 { 1344 {
895 char dummy; 1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
896 read (evpipe [0], &dummy, 1); 1347 read (evpipe [0], &dummy, 1);
897 } 1348 }
898 1349
899 if (gotsig && ev_is_default_loop (EV_A)) 1350 if (sig_pending)
900 { 1351 {
901 int signum; 1352 sig_pending = 0;
902 gotsig = 0;
903 1353
904 for (signum = signalmax; signum--; ) 1354 for (i = EV_NSIG - 1; i--; )
905 if (signals [signum].gotsig) 1355 if (expect_false (signals [i].pending))
906 ev_feed_signal_event (EV_A_ signum + 1); 1356 ev_feed_signal_event (EV_A_ i + 1);
907 } 1357 }
908 1358
909#if EV_ASYNC_ENABLE 1359#if EV_ASYNC_ENABLE
910 if (gotasync) 1360 if (async_pending)
911 { 1361 {
912 int i; 1362 async_pending = 0;
913 gotasync = 0;
914 1363
915 for (i = asynccnt; i--; ) 1364 for (i = asynccnt; i--; )
916 if (asyncs [i]->sent) 1365 if (asyncs [i]->sent)
917 { 1366 {
918 asyncs [i]->sent = 0; 1367 asyncs [i]->sent = 0;
926 1375
927static void 1376static void
928ev_sighandler (int signum) 1377ev_sighandler (int signum)
929{ 1378{
930#if EV_MULTIPLICITY 1379#if EV_MULTIPLICITY
931 struct ev_loop *loop = &default_loop_struct; 1380 EV_P = signals [signum - 1].loop;
932#endif 1381#endif
933 1382
934#if _WIN32 1383#ifdef _WIN32
935 signal (signum, ev_sighandler); 1384 signal (signum, ev_sighandler);
936#endif 1385#endif
937 1386
938 signals [signum - 1].gotsig = 1; 1387 signals [signum - 1].pending = 1;
939 evpipe_write (EV_A_ &gotsig); 1388 evpipe_write (EV_A_ &sig_pending);
940} 1389}
941 1390
942void noinline 1391void noinline
943ev_feed_signal_event (EV_P_ int signum) 1392ev_feed_signal_event (EV_P_ int signum)
944{ 1393{
945 WL w; 1394 WL w;
946 1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
947#if EV_MULTIPLICITY 1401#if EV_MULTIPLICITY
948 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1402 /* it is permissible to try to feed a signal to the wrong loop */
949#endif 1403 /* or, likely more useful, feeding a signal nobody is waiting for */
950 1404
951 --signum; 1405 if (expect_false (signals [signum].loop != EV_A))
952
953 if (signum < 0 || signum >= signalmax)
954 return; 1406 return;
1407#endif
955 1408
956 signals [signum].gotsig = 0; 1409 signals [signum].pending = 0;
957 1410
958 for (w = signals [signum].head; w; w = w->next) 1411 for (w = signals [signum].head; w; w = w->next)
959 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
960} 1413}
961 1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
962/*****************************************************************************/ 1437/*****************************************************************************/
963 1438
1439#if EV_CHILD_ENABLE
964static WL childs [EV_PID_HASHSIZE]; 1440static WL childs [EV_PID_HASHSIZE];
965
966#ifndef _WIN32
967 1441
968static ev_signal childev; 1442static ev_signal childev;
969 1443
970#ifndef WIFCONTINUED 1444#ifndef WIFCONTINUED
971# define WIFCONTINUED(status) 0 1445# define WIFCONTINUED(status) 0
972#endif 1446#endif
973 1447
974void inline_speed 1448/* handle a single child status event */
1449inline_speed void
975child_reap (EV_P_ int chain, int pid, int status) 1450child_reap (EV_P_ int chain, int pid, int status)
976{ 1451{
977 ev_child *w; 1452 ev_child *w;
978 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
979 1454
980 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
981 { 1456 {
982 if ((w->pid == pid || !w->pid) 1457 if ((w->pid == pid || !w->pid)
983 && (!traced || (w->flags & 1))) 1458 && (!traced || (w->flags & 1)))
984 { 1459 {
985 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
992 1467
993#ifndef WCONTINUED 1468#ifndef WCONTINUED
994# define WCONTINUED 0 1469# define WCONTINUED 0
995#endif 1470#endif
996 1471
1472/* called on sigchld etc., calls waitpid */
997static void 1473static void
998childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
999{ 1475{
1000 int pid, status; 1476 int pid, status;
1001 1477
1009 /* make sure we are called again until all children have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1010 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
1011 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1012 1488
1013 child_reap (EV_A_ pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1014 if (EV_PID_HASHSIZE > 1) 1490 if ((EV_PID_HASHSIZE) > 1)
1015 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1016} 1492}
1017 1493
1018#endif 1494#endif
1019 1495
1020/*****************************************************************************/ 1496/*****************************************************************************/
1021 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1022#if EV_USE_PORT 1501#if EV_USE_PORT
1023# include "ev_port.c" 1502# include "ev_port.c"
1024#endif 1503#endif
1025#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
1026# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
1082 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
1083 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1084 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
1085#endif 1564#endif
1086#ifdef __APPLE__ 1565#ifdef __APPLE__
1087 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
1088 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1089#endif 1572#endif
1090 1573
1091 return flags; 1574 return flags;
1092} 1575}
1093 1576
1095ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
1096{ 1579{
1097 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1098 1581
1099 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1100 /* please fix it and tell me how to detect the fix */ 1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1101 flags &= ~EVBACKEND_EPOLL; 1584 flags &= ~EVBACKEND_EPOLL;
1102 1585
1103 return flags; 1586 return flags;
1104} 1587}
1105 1588
1106unsigned int 1589unsigned int
1107ev_backend (EV_P) 1590ev_backend (EV_P)
1108{ 1591{
1109 return backend; 1592 return backend;
1110} 1593}
1111 1594
1595#if EV_FEATURE_API
1112unsigned int 1596unsigned int
1113ev_loop_count (EV_P) 1597ev_iteration (EV_P)
1114{ 1598{
1115 return loop_count; 1599 return loop_count;
1600}
1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1116} 1606}
1117 1607
1118void 1608void
1119ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1120{ 1610{
1125ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1126{ 1616{
1127 timeout_blocktime = interval; 1617 timeout_blocktime = interval;
1128} 1618}
1129 1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1130static void noinline 1645static void noinline
1131loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
1132{ 1647{
1133 if (!backend) 1648 if (!backend)
1134 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
1135#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1136 { 1662 {
1137 struct timespec ts; 1663 struct timespec ts;
1664
1138 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1139 have_monotonic = 1; 1666 have_monotonic = 1;
1140 } 1667 }
1141#endif 1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1142 1680
1143 ev_rt_now = ev_time (); 1681 ev_rt_now = ev_time ();
1144 mn_now = get_clock (); 1682 mn_now = get_clock ();
1145 now_floor = mn_now; 1683 now_floor = mn_now;
1146 rtmn_diff = ev_rt_now - mn_now; 1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1147 1688
1148 io_blocktime = 0.; 1689 io_blocktime = 0.;
1149 timeout_blocktime = 0.; 1690 timeout_blocktime = 0.;
1150 backend = 0; 1691 backend = 0;
1151 backend_fd = -1; 1692 backend_fd = -1;
1152 gotasync = 0; 1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1153#if EV_USE_INOTIFY 1697#if EV_USE_INOTIFY
1154 fs_fd = -2; 1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1155#endif 1699#endif
1156 1700#if EV_USE_SIGNALFD
1157 /* pid check not overridable via env */ 1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1158#ifndef _WIN32
1159 if (flags & EVFLAG_FORKCHECK)
1160 curpid = getpid ();
1161#endif 1702#endif
1162 1703
1163 if (!(flags & EVFLAG_NOENV)
1164 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS"));
1167
1168 if (!(flags & 0x0000ffffUL)) 1704 if (!(flags & 0x0000ffffU))
1169 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
1170 1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1171#if EV_USE_PORT 1710#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1712#endif
1174#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
1175 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1182#endif 1721#endif
1183#if EV_USE_SELECT 1722#if EV_USE_SELECT
1184 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1185#endif 1724#endif
1186 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1187 ev_init (&pipeev, pipecb); 1729 ev_init (&pipe_w, pipecb);
1188 ev_set_priority (&pipeev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1189 } 1732 }
1190} 1733}
1191 1734
1192static void noinline 1735/* free up a loop structure */
1736void
1193loop_destroy (EV_P) 1737ev_loop_destroy (EV_P)
1194{ 1738{
1195 int i; 1739 int i;
1196 1740
1741#if EV_CHILD_ENABLE
1742 if (ev_is_active (&childev))
1743 {
1744 ev_ref (EV_A); /* child watcher */
1745 ev_signal_stop (EV_A_ &childev);
1746 }
1747#endif
1748
1197 if (ev_is_active (&pipeev)) 1749 if (ev_is_active (&pipe_w))
1198 { 1750 {
1199 ev_ref (EV_A); /* signal watcher */ 1751 /*ev_ref (EV_A);*/
1200 ev_io_stop (EV_A_ &pipeev); 1752 /*ev_io_stop (EV_A_ &pipe_w);*/
1201 1753
1202#if EV_USE_EVENTFD 1754#if EV_USE_EVENTFD
1203 if (evfd >= 0) 1755 if (evfd >= 0)
1204 close (evfd); 1756 close (evfd);
1205#endif 1757#endif
1206 1758
1207 if (evpipe [0] >= 0) 1759 if (evpipe [0] >= 0)
1208 { 1760 {
1209 close (evpipe [0]); 1761 EV_WIN32_CLOSE_FD (evpipe [0]);
1210 close (evpipe [1]); 1762 EV_WIN32_CLOSE_FD (evpipe [1]);
1211 } 1763 }
1212 } 1764 }
1765
1766#if EV_USE_SIGNALFD
1767 if (ev_is_active (&sigfd_w))
1768 close (sigfd);
1769#endif
1213 1770
1214#if EV_USE_INOTIFY 1771#if EV_USE_INOTIFY
1215 if (fs_fd >= 0) 1772 if (fs_fd >= 0)
1216 close (fs_fd); 1773 close (fs_fd);
1217#endif 1774#endif
1218 1775
1219 if (backend_fd >= 0) 1776 if (backend_fd >= 0)
1220 close (backend_fd); 1777 close (backend_fd);
1221 1778
1779#if EV_USE_IOCP
1780 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1781#endif
1222#if EV_USE_PORT 1782#if EV_USE_PORT
1223 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1783 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1224#endif 1784#endif
1225#if EV_USE_KQUEUE 1785#if EV_USE_KQUEUE
1226 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1786 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1241#if EV_IDLE_ENABLE 1801#if EV_IDLE_ENABLE
1242 array_free (idle, [i]); 1802 array_free (idle, [i]);
1243#endif 1803#endif
1244 } 1804 }
1245 1805
1246 ev_free (anfds); anfdmax = 0; 1806 ev_free (anfds); anfds = 0; anfdmax = 0;
1247 1807
1248 /* have to use the microsoft-never-gets-it-right macro */ 1808 /* have to use the microsoft-never-gets-it-right macro */
1809 array_free (rfeed, EMPTY);
1249 array_free (fdchange, EMPTY); 1810 array_free (fdchange, EMPTY);
1250 array_free (timer, EMPTY); 1811 array_free (timer, EMPTY);
1251#if EV_PERIODIC_ENABLE 1812#if EV_PERIODIC_ENABLE
1252 array_free (periodic, EMPTY); 1813 array_free (periodic, EMPTY);
1253#endif 1814#endif
1259#if EV_ASYNC_ENABLE 1820#if EV_ASYNC_ENABLE
1260 array_free (async, EMPTY); 1821 array_free (async, EMPTY);
1261#endif 1822#endif
1262 1823
1263 backend = 0; 1824 backend = 0;
1264}
1265 1825
1826#if EV_MULTIPLICITY
1827 if (ev_is_default_loop (EV_A))
1828#endif
1829 ev_default_loop_ptr = 0;
1830#if EV_MULTIPLICITY
1831 else
1832 ev_free (EV_A);
1833#endif
1834}
1835
1836#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1837inline_size void infy_fork (EV_P);
1838#endif
1267 1839
1268void inline_size 1840inline_size void
1269loop_fork (EV_P) 1841loop_fork (EV_P)
1270{ 1842{
1271#if EV_USE_PORT 1843#if EV_USE_PORT
1272 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1844 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1273#endif 1845#endif
1279#endif 1851#endif
1280#if EV_USE_INOTIFY 1852#if EV_USE_INOTIFY
1281 infy_fork (EV_A); 1853 infy_fork (EV_A);
1282#endif 1854#endif
1283 1855
1284 if (ev_is_active (&pipeev)) 1856 if (ev_is_active (&pipe_w))
1285 { 1857 {
1286 /* this "locks" the handlers against writing to the pipe */ 1858 /* this "locks" the handlers against writing to the pipe */
1287 /* while we modify the fd vars */ 1859 /* while we modify the fd vars */
1288 gotsig = 1; 1860 sig_pending = 1;
1289#if EV_ASYNC_ENABLE 1861#if EV_ASYNC_ENABLE
1290 gotasync = 1; 1862 async_pending = 1;
1291#endif 1863#endif
1292 1864
1293 ev_ref (EV_A); 1865 ev_ref (EV_A);
1294 ev_io_stop (EV_A_ &pipeev); 1866 ev_io_stop (EV_A_ &pipe_w);
1295 1867
1296#if EV_USE_EVENTFD 1868#if EV_USE_EVENTFD
1297 if (evfd >= 0) 1869 if (evfd >= 0)
1298 close (evfd); 1870 close (evfd);
1299#endif 1871#endif
1300 1872
1301 if (evpipe [0] >= 0) 1873 if (evpipe [0] >= 0)
1302 { 1874 {
1303 close (evpipe [0]); 1875 EV_WIN32_CLOSE_FD (evpipe [0]);
1304 close (evpipe [1]); 1876 EV_WIN32_CLOSE_FD (evpipe [1]);
1305 } 1877 }
1306 1878
1879#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1307 evpipe_init (EV_A); 1880 evpipe_init (EV_A);
1308 /* now iterate over everything, in case we missed something */ 1881 /* now iterate over everything, in case we missed something */
1309 pipecb (EV_A_ &pipeev, EV_READ); 1882 pipecb (EV_A_ &pipe_w, EV_READ);
1883#endif
1310 } 1884 }
1311 1885
1312 postfork = 0; 1886 postfork = 0;
1313} 1887}
1888
1889#if EV_MULTIPLICITY
1890
1891struct ev_loop *
1892ev_loop_new (unsigned int flags)
1893{
1894 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1895
1896 memset (EV_A, 0, sizeof (struct ev_loop));
1897 loop_init (EV_A_ flags);
1898
1899 if (ev_backend (EV_A))
1900 return EV_A;
1901
1902 ev_free (EV_A);
1903 return 0;
1904}
1905
1906#endif /* multiplicity */
1907
1908#if EV_VERIFY
1909static void noinline
1910verify_watcher (EV_P_ W w)
1911{
1912 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1913
1914 if (w->pending)
1915 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1916}
1917
1918static void noinline
1919verify_heap (EV_P_ ANHE *heap, int N)
1920{
1921 int i;
1922
1923 for (i = HEAP0; i < N + HEAP0; ++i)
1924 {
1925 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1926 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1927 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1928
1929 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1930 }
1931}
1932
1933static void noinline
1934array_verify (EV_P_ W *ws, int cnt)
1935{
1936 while (cnt--)
1937 {
1938 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1939 verify_watcher (EV_A_ ws [cnt]);
1940 }
1941}
1942#endif
1943
1944#if EV_FEATURE_API
1945void
1946ev_verify (EV_P)
1947{
1948#if EV_VERIFY
1949 int i;
1950 WL w;
1951
1952 assert (activecnt >= -1);
1953
1954 assert (fdchangemax >= fdchangecnt);
1955 for (i = 0; i < fdchangecnt; ++i)
1956 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1957
1958 assert (anfdmax >= 0);
1959 for (i = 0; i < anfdmax; ++i)
1960 for (w = anfds [i].head; w; w = w->next)
1961 {
1962 verify_watcher (EV_A_ (W)w);
1963 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1964 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1965 }
1966
1967 assert (timermax >= timercnt);
1968 verify_heap (EV_A_ timers, timercnt);
1969
1970#if EV_PERIODIC_ENABLE
1971 assert (periodicmax >= periodiccnt);
1972 verify_heap (EV_A_ periodics, periodiccnt);
1973#endif
1974
1975 for (i = NUMPRI; i--; )
1976 {
1977 assert (pendingmax [i] >= pendingcnt [i]);
1978#if EV_IDLE_ENABLE
1979 assert (idleall >= 0);
1980 assert (idlemax [i] >= idlecnt [i]);
1981 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1982#endif
1983 }
1984
1985#if EV_FORK_ENABLE
1986 assert (forkmax >= forkcnt);
1987 array_verify (EV_A_ (W *)forks, forkcnt);
1988#endif
1989
1990#if EV_ASYNC_ENABLE
1991 assert (asyncmax >= asynccnt);
1992 array_verify (EV_A_ (W *)asyncs, asynccnt);
1993#endif
1994
1995#if EV_PREPARE_ENABLE
1996 assert (preparemax >= preparecnt);
1997 array_verify (EV_A_ (W *)prepares, preparecnt);
1998#endif
1999
2000#if EV_CHECK_ENABLE
2001 assert (checkmax >= checkcnt);
2002 array_verify (EV_A_ (W *)checks, checkcnt);
2003#endif
2004
2005# if 0
2006#if EV_CHILD_ENABLE
2007 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2008 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2009#endif
2010# endif
2011#endif
2012}
2013#endif
1314 2014
1315#if EV_MULTIPLICITY 2015#if EV_MULTIPLICITY
1316struct ev_loop * 2016struct ev_loop *
1317ev_loop_new (unsigned int flags)
1318{
1319 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1320
1321 memset (loop, 0, sizeof (struct ev_loop));
1322
1323 loop_init (EV_A_ flags);
1324
1325 if (ev_backend (EV_A))
1326 return loop;
1327
1328 return 0;
1329}
1330
1331void
1332ev_loop_destroy (EV_P)
1333{
1334 loop_destroy (EV_A);
1335 ev_free (loop);
1336}
1337
1338void
1339ev_loop_fork (EV_P)
1340{
1341 postfork = 1; /* must be in line with ev_default_fork */
1342}
1343
1344#endif
1345
1346#if EV_MULTIPLICITY
1347struct ev_loop *
1348ev_default_loop_init (unsigned int flags)
1349#else 2017#else
1350int 2018int
2019#endif
1351ev_default_loop (unsigned int flags) 2020ev_default_loop (unsigned int flags)
1352#endif
1353{ 2021{
1354 if (!ev_default_loop_ptr) 2022 if (!ev_default_loop_ptr)
1355 { 2023 {
1356#if EV_MULTIPLICITY 2024#if EV_MULTIPLICITY
1357 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2025 EV_P = ev_default_loop_ptr = &default_loop_struct;
1358#else 2026#else
1359 ev_default_loop_ptr = 1; 2027 ev_default_loop_ptr = 1;
1360#endif 2028#endif
1361 2029
1362 loop_init (EV_A_ flags); 2030 loop_init (EV_A_ flags);
1363 2031
1364 if (ev_backend (EV_A)) 2032 if (ev_backend (EV_A))
1365 { 2033 {
1366#ifndef _WIN32 2034#if EV_CHILD_ENABLE
1367 ev_signal_init (&childev, childcb, SIGCHLD); 2035 ev_signal_init (&childev, childcb, SIGCHLD);
1368 ev_set_priority (&childev, EV_MAXPRI); 2036 ev_set_priority (&childev, EV_MAXPRI);
1369 ev_signal_start (EV_A_ &childev); 2037 ev_signal_start (EV_A_ &childev);
1370 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2038 ev_unref (EV_A); /* child watcher should not keep loop alive */
1371#endif 2039#endif
1376 2044
1377 return ev_default_loop_ptr; 2045 return ev_default_loop_ptr;
1378} 2046}
1379 2047
1380void 2048void
1381ev_default_destroy (void) 2049ev_loop_fork (EV_P)
1382{ 2050{
1383#if EV_MULTIPLICITY
1384 struct ev_loop *loop = ev_default_loop_ptr;
1385#endif
1386
1387#ifndef _WIN32
1388 ev_ref (EV_A); /* child watcher */
1389 ev_signal_stop (EV_A_ &childev);
1390#endif
1391
1392 loop_destroy (EV_A);
1393}
1394
1395void
1396ev_default_fork (void)
1397{
1398#if EV_MULTIPLICITY
1399 struct ev_loop *loop = ev_default_loop_ptr;
1400#endif
1401
1402 if (backend)
1403 postfork = 1; /* must be in line with ev_loop_fork */ 2051 postfork = 1; /* must be in line with ev_default_fork */
1404} 2052}
1405 2053
1406/*****************************************************************************/ 2054/*****************************************************************************/
1407 2055
1408void 2056void
1409ev_invoke (EV_P_ void *w, int revents) 2057ev_invoke (EV_P_ void *w, int revents)
1410{ 2058{
1411 EV_CB_INVOKE ((W)w, revents); 2059 EV_CB_INVOKE ((W)w, revents);
1412} 2060}
1413 2061
1414void inline_speed 2062unsigned int
1415call_pending (EV_P) 2063ev_pending_count (EV_P)
2064{
2065 int pri;
2066 unsigned int count = 0;
2067
2068 for (pri = NUMPRI; pri--; )
2069 count += pendingcnt [pri];
2070
2071 return count;
2072}
2073
2074void noinline
2075ev_invoke_pending (EV_P)
1416{ 2076{
1417 int pri; 2077 int pri;
1418 2078
1419 for (pri = NUMPRI; pri--; ) 2079 for (pri = NUMPRI; pri--; )
1420 while (pendingcnt [pri]) 2080 while (pendingcnt [pri])
1421 { 2081 {
1422 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2082 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1423 2083
1424 if (expect_true (p->w))
1425 {
1426 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2084 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2085 /* ^ this is no longer true, as pending_w could be here */
1427 2086
1428 p->w->pending = 0; 2087 p->w->pending = 0;
1429 EV_CB_INVOKE (p->w, p->events); 2088 EV_CB_INVOKE (p->w, p->events);
1430 } 2089 EV_FREQUENT_CHECK;
1431 } 2090 }
1432} 2091}
1433 2092
1434void inline_size
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513
1514#if EV_IDLE_ENABLE 2093#if EV_IDLE_ENABLE
1515void inline_size 2094/* make idle watchers pending. this handles the "call-idle */
2095/* only when higher priorities are idle" logic */
2096inline_size void
1516idle_reify (EV_P) 2097idle_reify (EV_P)
1517{ 2098{
1518 if (expect_false (idleall)) 2099 if (expect_false (idleall))
1519 { 2100 {
1520 int pri; 2101 int pri;
1532 } 2113 }
1533 } 2114 }
1534} 2115}
1535#endif 2116#endif
1536 2117
1537void inline_speed 2118/* make timers pending */
2119inline_size void
2120timers_reify (EV_P)
2121{
2122 EV_FREQUENT_CHECK;
2123
2124 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2125 {
2126 do
2127 {
2128 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2129
2130 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2131
2132 /* first reschedule or stop timer */
2133 if (w->repeat)
2134 {
2135 ev_at (w) += w->repeat;
2136 if (ev_at (w) < mn_now)
2137 ev_at (w) = mn_now;
2138
2139 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2140
2141 ANHE_at_cache (timers [HEAP0]);
2142 downheap (timers, timercnt, HEAP0);
2143 }
2144 else
2145 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2146
2147 EV_FREQUENT_CHECK;
2148 feed_reverse (EV_A_ (W)w);
2149 }
2150 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2151
2152 feed_reverse_done (EV_A_ EV_TIMER);
2153 }
2154}
2155
2156#if EV_PERIODIC_ENABLE
2157/* make periodics pending */
2158inline_size void
2159periodics_reify (EV_P)
2160{
2161 EV_FREQUENT_CHECK;
2162
2163 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2164 {
2165 int feed_count = 0;
2166
2167 do
2168 {
2169 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2170
2171 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2172
2173 /* first reschedule or stop timer */
2174 if (w->reschedule_cb)
2175 {
2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2177
2178 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2179
2180 ANHE_at_cache (periodics [HEAP0]);
2181 downheap (periodics, periodiccnt, HEAP0);
2182 }
2183 else if (w->interval)
2184 {
2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2186 /* if next trigger time is not sufficiently in the future, put it there */
2187 /* this might happen because of floating point inexactness */
2188 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2189 {
2190 ev_at (w) += w->interval;
2191
2192 /* if interval is unreasonably low we might still have a time in the past */
2193 /* so correct this. this will make the periodic very inexact, but the user */
2194 /* has effectively asked to get triggered more often than possible */
2195 if (ev_at (w) < ev_rt_now)
2196 ev_at (w) = ev_rt_now;
2197 }
2198
2199 ANHE_at_cache (periodics [HEAP0]);
2200 downheap (periodics, periodiccnt, HEAP0);
2201 }
2202 else
2203 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2204
2205 EV_FREQUENT_CHECK;
2206 feed_reverse (EV_A_ (W)w);
2207 }
2208 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2209
2210 feed_reverse_done (EV_A_ EV_PERIODIC);
2211 }
2212}
2213
2214/* simply recalculate all periodics */
2215/* TODO: maybe ensure that at least one event happens when jumping forward? */
2216static void noinline
2217periodics_reschedule (EV_P)
2218{
2219 int i;
2220
2221 /* adjust periodics after time jump */
2222 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2223 {
2224 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2225
2226 if (w->reschedule_cb)
2227 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2228 else if (w->interval)
2229 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2230
2231 ANHE_at_cache (periodics [i]);
2232 }
2233
2234 reheap (periodics, periodiccnt);
2235}
2236#endif
2237
2238/* adjust all timers by a given offset */
2239static void noinline
2240timers_reschedule (EV_P_ ev_tstamp adjust)
2241{
2242 int i;
2243
2244 for (i = 0; i < timercnt; ++i)
2245 {
2246 ANHE *he = timers + i + HEAP0;
2247 ANHE_w (*he)->at += adjust;
2248 ANHE_at_cache (*he);
2249 }
2250}
2251
2252/* fetch new monotonic and realtime times from the kernel */
2253/* also detect if there was a timejump, and act accordingly */
2254inline_speed void
1538time_update (EV_P_ ev_tstamp max_block) 2255time_update (EV_P_ ev_tstamp max_block)
1539{ 2256{
1540 int i;
1541
1542#if EV_USE_MONOTONIC 2257#if EV_USE_MONOTONIC
1543 if (expect_true (have_monotonic)) 2258 if (expect_true (have_monotonic))
1544 { 2259 {
2260 int i;
1545 ev_tstamp odiff = rtmn_diff; 2261 ev_tstamp odiff = rtmn_diff;
1546 2262
1547 mn_now = get_clock (); 2263 mn_now = get_clock ();
1548 2264
1549 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2265 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1567 */ 2283 */
1568 for (i = 4; --i; ) 2284 for (i = 4; --i; )
1569 { 2285 {
1570 rtmn_diff = ev_rt_now - mn_now; 2286 rtmn_diff = ev_rt_now - mn_now;
1571 2287
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2288 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 2289 return; /* all is well */
1574 2290
1575 ev_rt_now = ev_time (); 2291 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 2292 mn_now = get_clock ();
1577 now_floor = mn_now; 2293 now_floor = mn_now;
1578 } 2294 }
1579 2295
2296 /* no timer adjustment, as the monotonic clock doesn't jump */
2297 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1580# if EV_PERIODIC_ENABLE 2298# if EV_PERIODIC_ENABLE
1581 periodics_reschedule (EV_A); 2299 periodics_reschedule (EV_A);
1582# endif 2300# endif
1583 /* no timer adjustment, as the monotonic clock doesn't jump */
1584 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1585 } 2301 }
1586 else 2302 else
1587#endif 2303#endif
1588 { 2304 {
1589 ev_rt_now = ev_time (); 2305 ev_rt_now = ev_time ();
1590 2306
1591 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2307 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1592 { 2308 {
2309 /* adjust timers. this is easy, as the offset is the same for all of them */
2310 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1593#if EV_PERIODIC_ENABLE 2311#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 2312 periodics_reschedule (EV_A);
1595#endif 2313#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i)
1598 ((WT)timers [i])->at += ev_rt_now - mn_now;
1599 } 2314 }
1600 2315
1601 mn_now = ev_rt_now; 2316 mn_now = ev_rt_now;
1602 } 2317 }
1603} 2318}
1604 2319
1605void 2320void
1606ev_ref (EV_P)
1607{
1608 ++activecnt;
1609}
1610
1611void
1612ev_unref (EV_P)
1613{
1614 --activecnt;
1615}
1616
1617static int loop_done;
1618
1619void
1620ev_loop (EV_P_ int flags) 2321ev_run (EV_P_ int flags)
1621{ 2322{
2323#if EV_FEATURE_API
2324 ++loop_depth;
2325#endif
2326
2327 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2328
1622 loop_done = EVUNLOOP_CANCEL; 2329 loop_done = EVBREAK_CANCEL;
1623 2330
1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2331 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1625 2332
1626 do 2333 do
1627 { 2334 {
2335#if EV_VERIFY >= 2
2336 ev_verify (EV_A);
2337#endif
2338
1628#ifndef _WIN32 2339#ifndef _WIN32
1629 if (expect_false (curpid)) /* penalise the forking check even more */ 2340 if (expect_false (curpid)) /* penalise the forking check even more */
1630 if (expect_false (getpid () != curpid)) 2341 if (expect_false (getpid () != curpid))
1631 { 2342 {
1632 curpid = getpid (); 2343 curpid = getpid ();
1638 /* we might have forked, so queue fork handlers */ 2349 /* we might have forked, so queue fork handlers */
1639 if (expect_false (postfork)) 2350 if (expect_false (postfork))
1640 if (forkcnt) 2351 if (forkcnt)
1641 { 2352 {
1642 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2353 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1643 call_pending (EV_A); 2354 EV_INVOKE_PENDING;
1644 } 2355 }
1645#endif 2356#endif
1646 2357
2358#if EV_PREPARE_ENABLE
1647 /* queue prepare watchers (and execute them) */ 2359 /* queue prepare watchers (and execute them) */
1648 if (expect_false (preparecnt)) 2360 if (expect_false (preparecnt))
1649 { 2361 {
1650 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2362 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1651 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1652 } 2364 }
2365#endif
1653 2366
1654 if (expect_false (!activecnt)) 2367 if (expect_false (loop_done))
1655 break; 2368 break;
1656 2369
1657 /* we might have forked, so reify kernel state if necessary */ 2370 /* we might have forked, so reify kernel state if necessary */
1658 if (expect_false (postfork)) 2371 if (expect_false (postfork))
1659 loop_fork (EV_A); 2372 loop_fork (EV_A);
1664 /* calculate blocking time */ 2377 /* calculate blocking time */
1665 { 2378 {
1666 ev_tstamp waittime = 0.; 2379 ev_tstamp waittime = 0.;
1667 ev_tstamp sleeptime = 0.; 2380 ev_tstamp sleeptime = 0.;
1668 2381
2382 /* remember old timestamp for io_blocktime calculation */
2383 ev_tstamp prev_mn_now = mn_now;
2384
2385 /* update time to cancel out callback processing overhead */
2386 time_update (EV_A_ 1e100);
2387
1669 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2388 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1670 { 2389 {
1671 /* update time to cancel out callback processing overhead */
1672 time_update (EV_A_ 1e100);
1673
1674 waittime = MAX_BLOCKTIME; 2390 waittime = MAX_BLOCKTIME;
1675 2391
1676 if (timercnt) 2392 if (timercnt)
1677 { 2393 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2394 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1679 if (waittime > to) waittime = to; 2395 if (waittime > to) waittime = to;
1680 } 2396 }
1681 2397
1682#if EV_PERIODIC_ENABLE 2398#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 2399 if (periodiccnt)
1684 { 2400 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2401 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1686 if (waittime > to) waittime = to; 2402 if (waittime > to) waittime = to;
1687 } 2403 }
1688#endif 2404#endif
1689 2405
2406 /* don't let timeouts decrease the waittime below timeout_blocktime */
1690 if (expect_false (waittime < timeout_blocktime)) 2407 if (expect_false (waittime < timeout_blocktime))
1691 waittime = timeout_blocktime; 2408 waittime = timeout_blocktime;
1692 2409
1693 sleeptime = waittime - backend_fudge; 2410 /* extra check because io_blocktime is commonly 0 */
1694
1695 if (expect_true (sleeptime > io_blocktime)) 2411 if (expect_false (io_blocktime))
1696 sleeptime = io_blocktime;
1697
1698 if (sleeptime)
1699 { 2412 {
2413 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2414
2415 if (sleeptime > waittime - backend_fudge)
2416 sleeptime = waittime - backend_fudge;
2417
2418 if (expect_true (sleeptime > 0.))
2419 {
1700 ev_sleep (sleeptime); 2420 ev_sleep (sleeptime);
1701 waittime -= sleeptime; 2421 waittime -= sleeptime;
2422 }
1702 } 2423 }
1703 } 2424 }
1704 2425
2426#if EV_FEATURE_API
1705 ++loop_count; 2427 ++loop_count;
2428#endif
2429 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1706 backend_poll (EV_A_ waittime); 2430 backend_poll (EV_A_ waittime);
2431 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1707 2432
1708 /* update ev_rt_now, do magic */ 2433 /* update ev_rt_now, do magic */
1709 time_update (EV_A_ waittime + sleeptime); 2434 time_update (EV_A_ waittime + sleeptime);
1710 } 2435 }
1711 2436
1718#if EV_IDLE_ENABLE 2443#if EV_IDLE_ENABLE
1719 /* queue idle watchers unless other events are pending */ 2444 /* queue idle watchers unless other events are pending */
1720 idle_reify (EV_A); 2445 idle_reify (EV_A);
1721#endif 2446#endif
1722 2447
2448#if EV_CHECK_ENABLE
1723 /* queue check watchers, to be executed first */ 2449 /* queue check watchers, to be executed first */
1724 if (expect_false (checkcnt)) 2450 if (expect_false (checkcnt))
1725 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2451 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2452#endif
1726 2453
1727 call_pending (EV_A); 2454 EV_INVOKE_PENDING;
1728 } 2455 }
1729 while (expect_true ( 2456 while (expect_true (
1730 activecnt 2457 activecnt
1731 && !loop_done 2458 && !loop_done
1732 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2459 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1733 )); 2460 ));
1734 2461
1735 if (loop_done == EVUNLOOP_ONE) 2462 if (loop_done == EVBREAK_ONE)
1736 loop_done = EVUNLOOP_CANCEL; 2463 loop_done = EVBREAK_CANCEL;
2464
2465#if EV_FEATURE_API
2466 --loop_depth;
2467#endif
1737} 2468}
1738 2469
1739void 2470void
1740ev_unloop (EV_P_ int how) 2471ev_break (EV_P_ int how)
1741{ 2472{
1742 loop_done = how; 2473 loop_done = how;
1743} 2474}
1744 2475
2476void
2477ev_ref (EV_P)
2478{
2479 ++activecnt;
2480}
2481
2482void
2483ev_unref (EV_P)
2484{
2485 --activecnt;
2486}
2487
2488void
2489ev_now_update (EV_P)
2490{
2491 time_update (EV_A_ 1e100);
2492}
2493
2494void
2495ev_suspend (EV_P)
2496{
2497 ev_now_update (EV_A);
2498}
2499
2500void
2501ev_resume (EV_P)
2502{
2503 ev_tstamp mn_prev = mn_now;
2504
2505 ev_now_update (EV_A);
2506 timers_reschedule (EV_A_ mn_now - mn_prev);
2507#if EV_PERIODIC_ENABLE
2508 /* TODO: really do this? */
2509 periodics_reschedule (EV_A);
2510#endif
2511}
2512
1745/*****************************************************************************/ 2513/*****************************************************************************/
2514/* singly-linked list management, used when the expected list length is short */
1746 2515
1747void inline_size 2516inline_size void
1748wlist_add (WL *head, WL elem) 2517wlist_add (WL *head, WL elem)
1749{ 2518{
1750 elem->next = *head; 2519 elem->next = *head;
1751 *head = elem; 2520 *head = elem;
1752} 2521}
1753 2522
1754void inline_size 2523inline_size void
1755wlist_del (WL *head, WL elem) 2524wlist_del (WL *head, WL elem)
1756{ 2525{
1757 while (*head) 2526 while (*head)
1758 { 2527 {
1759 if (*head == elem) 2528 if (expect_true (*head == elem))
1760 { 2529 {
1761 *head = elem->next; 2530 *head = elem->next;
1762 return; 2531 break;
1763 } 2532 }
1764 2533
1765 head = &(*head)->next; 2534 head = &(*head)->next;
1766 } 2535 }
1767} 2536}
1768 2537
1769void inline_speed 2538/* internal, faster, version of ev_clear_pending */
2539inline_speed void
1770clear_pending (EV_P_ W w) 2540clear_pending (EV_P_ W w)
1771{ 2541{
1772 if (w->pending) 2542 if (w->pending)
1773 { 2543 {
1774 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2544 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1775 w->pending = 0; 2545 w->pending = 0;
1776 } 2546 }
1777} 2547}
1778 2548
1779int 2549int
1783 int pending = w_->pending; 2553 int pending = w_->pending;
1784 2554
1785 if (expect_true (pending)) 2555 if (expect_true (pending))
1786 { 2556 {
1787 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2557 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2558 p->w = (W)&pending_w;
1788 w_->pending = 0; 2559 w_->pending = 0;
1789 p->w = 0;
1790 return p->events; 2560 return p->events;
1791 } 2561 }
1792 else 2562 else
1793 return 0; 2563 return 0;
1794} 2564}
1795 2565
1796void inline_size 2566inline_size void
1797pri_adjust (EV_P_ W w) 2567pri_adjust (EV_P_ W w)
1798{ 2568{
1799 int pri = w->priority; 2569 int pri = ev_priority (w);
1800 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2570 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1801 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2571 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1802 w->priority = pri; 2572 ev_set_priority (w, pri);
1803} 2573}
1804 2574
1805void inline_speed 2575inline_speed void
1806ev_start (EV_P_ W w, int active) 2576ev_start (EV_P_ W w, int active)
1807{ 2577{
1808 pri_adjust (EV_A_ w); 2578 pri_adjust (EV_A_ w);
1809 w->active = active; 2579 w->active = active;
1810 ev_ref (EV_A); 2580 ev_ref (EV_A);
1811} 2581}
1812 2582
1813void inline_size 2583inline_size void
1814ev_stop (EV_P_ W w) 2584ev_stop (EV_P_ W w)
1815{ 2585{
1816 ev_unref (EV_A); 2586 ev_unref (EV_A);
1817 w->active = 0; 2587 w->active = 0;
1818} 2588}
1825 int fd = w->fd; 2595 int fd = w->fd;
1826 2596
1827 if (expect_false (ev_is_active (w))) 2597 if (expect_false (ev_is_active (w)))
1828 return; 2598 return;
1829 2599
1830 assert (("ev_io_start called with negative fd", fd >= 0)); 2600 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2601 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2602
2603 EV_FREQUENT_CHECK;
1831 2604
1832 ev_start (EV_A_ (W)w, 1); 2605 ev_start (EV_A_ (W)w, 1);
1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2606 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1834 wlist_add (&anfds[fd].head, (WL)w); 2607 wlist_add (&anfds[fd].head, (WL)w);
1835 2608
1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2609 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1837 w->events &= ~EV_IOFDSET; 2610 w->events &= ~EV__IOFDSET;
2611
2612 EV_FREQUENT_CHECK;
1838} 2613}
1839 2614
1840void noinline 2615void noinline
1841ev_io_stop (EV_P_ ev_io *w) 2616ev_io_stop (EV_P_ ev_io *w)
1842{ 2617{
1843 clear_pending (EV_A_ (W)w); 2618 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 2619 if (expect_false (!ev_is_active (w)))
1845 return; 2620 return;
1846 2621
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2622 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2623
2624 EV_FREQUENT_CHECK;
1848 2625
1849 wlist_del (&anfds[w->fd].head, (WL)w); 2626 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 2627 ev_stop (EV_A_ (W)w);
1851 2628
1852 fd_change (EV_A_ w->fd, 1); 2629 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2630
2631 EV_FREQUENT_CHECK;
1853} 2632}
1854 2633
1855void noinline 2634void noinline
1856ev_timer_start (EV_P_ ev_timer *w) 2635ev_timer_start (EV_P_ ev_timer *w)
1857{ 2636{
1858 if (expect_false (ev_is_active (w))) 2637 if (expect_false (ev_is_active (w)))
1859 return; 2638 return;
1860 2639
1861 ((WT)w)->at += mn_now; 2640 ev_at (w) += mn_now;
1862 2641
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2642 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2643
2644 EV_FREQUENT_CHECK;
2645
2646 ++timercnt;
1865 ev_start (EV_A_ (W)w, ++timercnt); 2647 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2648 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2649 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2650 ANHE_at_cache (timers [ev_active (w)]);
2651 upheap (timers, ev_active (w));
1869 2652
2653 EV_FREQUENT_CHECK;
2654
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2655 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2656}
1872 2657
1873void noinline 2658void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2659ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2660{
1876 clear_pending (EV_A_ (W)w); 2661 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2662 if (expect_false (!ev_is_active (w)))
1878 return; 2663 return;
1879 2664
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2665 EV_FREQUENT_CHECK;
1881 2666
1882 { 2667 {
1883 int active = ((W)w)->active; 2668 int active = ev_active (w);
1884 2669
2670 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2671
2672 --timercnt;
2673
1885 if (expect_true (--active < --timercnt)) 2674 if (expect_true (active < timercnt + HEAP0))
1886 { 2675 {
1887 timers [active] = timers [timercnt]; 2676 timers [active] = timers [timercnt + HEAP0];
1888 adjustheap (timers, timercnt, active); 2677 adjustheap (timers, timercnt, active);
1889 } 2678 }
1890 } 2679 }
1891 2680
1892 ((WT)w)->at -= mn_now; 2681 ev_at (w) -= mn_now;
1893 2682
1894 ev_stop (EV_A_ (W)w); 2683 ev_stop (EV_A_ (W)w);
2684
2685 EV_FREQUENT_CHECK;
1895} 2686}
1896 2687
1897void noinline 2688void noinline
1898ev_timer_again (EV_P_ ev_timer *w) 2689ev_timer_again (EV_P_ ev_timer *w)
1899{ 2690{
2691 EV_FREQUENT_CHECK;
2692
1900 if (ev_is_active (w)) 2693 if (ev_is_active (w))
1901 { 2694 {
1902 if (w->repeat) 2695 if (w->repeat)
1903 { 2696 {
1904 ((WT)w)->at = mn_now + w->repeat; 2697 ev_at (w) = mn_now + w->repeat;
2698 ANHE_at_cache (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2699 adjustheap (timers, timercnt, ev_active (w));
1906 } 2700 }
1907 else 2701 else
1908 ev_timer_stop (EV_A_ w); 2702 ev_timer_stop (EV_A_ w);
1909 } 2703 }
1910 else if (w->repeat) 2704 else if (w->repeat)
1911 { 2705 {
1912 w->at = w->repeat; 2706 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2707 ev_timer_start (EV_A_ w);
1914 } 2708 }
2709
2710 EV_FREQUENT_CHECK;
2711}
2712
2713ev_tstamp
2714ev_timer_remaining (EV_P_ ev_timer *w)
2715{
2716 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1915} 2717}
1916 2718
1917#if EV_PERIODIC_ENABLE 2719#if EV_PERIODIC_ENABLE
1918void noinline 2720void noinline
1919ev_periodic_start (EV_P_ ev_periodic *w) 2721ev_periodic_start (EV_P_ ev_periodic *w)
1920{ 2722{
1921 if (expect_false (ev_is_active (w))) 2723 if (expect_false (ev_is_active (w)))
1922 return; 2724 return;
1923 2725
1924 if (w->reschedule_cb) 2726 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2727 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2728 else if (w->interval)
1927 { 2729 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2730 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2731 /* this formula differs from the one in periodic_reify because we do not always round up */
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2732 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2733 }
1932 else 2734 else
1933 ((WT)w)->at = w->offset; 2735 ev_at (w) = w->offset;
1934 2736
2737 EV_FREQUENT_CHECK;
2738
2739 ++periodiccnt;
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2740 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2741 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2742 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2743 ANHE_at_cache (periodics [ev_active (w)]);
2744 upheap (periodics, ev_active (w));
1939 2745
2746 EV_FREQUENT_CHECK;
2747
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2748 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2749}
1942 2750
1943void noinline 2751void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2752ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2753{
1946 clear_pending (EV_A_ (W)w); 2754 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2755 if (expect_false (!ev_is_active (w)))
1948 return; 2756 return;
1949 2757
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2758 EV_FREQUENT_CHECK;
1951 2759
1952 { 2760 {
1953 int active = ((W)w)->active; 2761 int active = ev_active (w);
1954 2762
2763 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2764
2765 --periodiccnt;
2766
1955 if (expect_true (--active < --periodiccnt)) 2767 if (expect_true (active < periodiccnt + HEAP0))
1956 { 2768 {
1957 periodics [active] = periodics [periodiccnt]; 2769 periodics [active] = periodics [periodiccnt + HEAP0];
1958 adjustheap (periodics, periodiccnt, active); 2770 adjustheap (periodics, periodiccnt, active);
1959 } 2771 }
1960 } 2772 }
1961 2773
1962 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
1963} 2777}
1964 2778
1965void noinline 2779void noinline
1966ev_periodic_again (EV_P_ ev_periodic *w) 2780ev_periodic_again (EV_P_ ev_periodic *w)
1967{ 2781{
1973 2787
1974#ifndef SA_RESTART 2788#ifndef SA_RESTART
1975# define SA_RESTART 0 2789# define SA_RESTART 0
1976#endif 2790#endif
1977 2791
2792#if EV_SIGNAL_ENABLE
2793
1978void noinline 2794void noinline
1979ev_signal_start (EV_P_ ev_signal *w) 2795ev_signal_start (EV_P_ ev_signal *w)
1980{ 2796{
1981#if EV_MULTIPLICITY
1982 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1983#endif
1984 if (expect_false (ev_is_active (w))) 2797 if (expect_false (ev_is_active (w)))
1985 return; 2798 return;
1986 2799
1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2800 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1988 2801
1989 evpipe_init (EV_A); 2802#if EV_MULTIPLICITY
2803 assert (("libev: a signal must not be attached to two different loops",
2804 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1990 2805
2806 signals [w->signum - 1].loop = EV_A;
2807#endif
2808
2809 EV_FREQUENT_CHECK;
2810
2811#if EV_USE_SIGNALFD
2812 if (sigfd == -2)
1991 { 2813 {
1992#ifndef _WIN32 2814 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1993 sigset_t full, prev; 2815 if (sigfd < 0 && errno == EINVAL)
1994 sigfillset (&full); 2816 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1995 sigprocmask (SIG_SETMASK, &full, &prev);
1996#endif
1997 2817
1998 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2818 if (sigfd >= 0)
2819 {
2820 fd_intern (sigfd); /* doing it twice will not hurt */
1999 2821
2000#ifndef _WIN32 2822 sigemptyset (&sigfd_set);
2001 sigprocmask (SIG_SETMASK, &prev, 0); 2823
2002#endif 2824 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2825 ev_set_priority (&sigfd_w, EV_MAXPRI);
2826 ev_io_start (EV_A_ &sigfd_w);
2827 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2828 }
2003 } 2829 }
2830
2831 if (sigfd >= 0)
2832 {
2833 /* TODO: check .head */
2834 sigaddset (&sigfd_set, w->signum);
2835 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2836
2837 signalfd (sigfd, &sigfd_set, 0);
2838 }
2839#endif
2004 2840
2005 ev_start (EV_A_ (W)w, 1); 2841 ev_start (EV_A_ (W)w, 1);
2006 wlist_add (&signals [w->signum - 1].head, (WL)w); 2842 wlist_add (&signals [w->signum - 1].head, (WL)w);
2007 2843
2008 if (!((WL)w)->next) 2844 if (!((WL)w)->next)
2845# if EV_USE_SIGNALFD
2846 if (sigfd < 0) /*TODO*/
2847# endif
2009 { 2848 {
2010#if _WIN32 2849# ifdef _WIN32
2850 evpipe_init (EV_A);
2851
2011 signal (w->signum, ev_sighandler); 2852 signal (w->signum, ev_sighandler);
2012#else 2853# else
2013 struct sigaction sa; 2854 struct sigaction sa;
2855
2856 evpipe_init (EV_A);
2857
2014 sa.sa_handler = ev_sighandler; 2858 sa.sa_handler = ev_sighandler;
2015 sigfillset (&sa.sa_mask); 2859 sigfillset (&sa.sa_mask);
2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2860 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2017 sigaction (w->signum, &sa, 0); 2861 sigaction (w->signum, &sa, 0);
2862
2863 sigemptyset (&sa.sa_mask);
2864 sigaddset (&sa.sa_mask, w->signum);
2865 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2018#endif 2866#endif
2019 } 2867 }
2868
2869 EV_FREQUENT_CHECK;
2020} 2870}
2021 2871
2022void noinline 2872void noinline
2023ev_signal_stop (EV_P_ ev_signal *w) 2873ev_signal_stop (EV_P_ ev_signal *w)
2024{ 2874{
2025 clear_pending (EV_A_ (W)w); 2875 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2876 if (expect_false (!ev_is_active (w)))
2027 return; 2877 return;
2028 2878
2879 EV_FREQUENT_CHECK;
2880
2029 wlist_del (&signals [w->signum - 1].head, (WL)w); 2881 wlist_del (&signals [w->signum - 1].head, (WL)w);
2030 ev_stop (EV_A_ (W)w); 2882 ev_stop (EV_A_ (W)w);
2031 2883
2032 if (!signals [w->signum - 1].head) 2884 if (!signals [w->signum - 1].head)
2885 {
2886#if EV_MULTIPLICITY
2887 signals [w->signum - 1].loop = 0; /* unattach from signal */
2888#endif
2889#if EV_USE_SIGNALFD
2890 if (sigfd >= 0)
2891 {
2892 sigset_t ss;
2893
2894 sigemptyset (&ss);
2895 sigaddset (&ss, w->signum);
2896 sigdelset (&sigfd_set, w->signum);
2897
2898 signalfd (sigfd, &sigfd_set, 0);
2899 sigprocmask (SIG_UNBLOCK, &ss, 0);
2900 }
2901 else
2902#endif
2033 signal (w->signum, SIG_DFL); 2903 signal (w->signum, SIG_DFL);
2904 }
2905
2906 EV_FREQUENT_CHECK;
2034} 2907}
2908
2909#endif
2910
2911#if EV_CHILD_ENABLE
2035 2912
2036void 2913void
2037ev_child_start (EV_P_ ev_child *w) 2914ev_child_start (EV_P_ ev_child *w)
2038{ 2915{
2039#if EV_MULTIPLICITY 2916#if EV_MULTIPLICITY
2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2917 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2041#endif 2918#endif
2042 if (expect_false (ev_is_active (w))) 2919 if (expect_false (ev_is_active (w)))
2043 return; 2920 return;
2044 2921
2922 EV_FREQUENT_CHECK;
2923
2045 ev_start (EV_A_ (W)w, 1); 2924 ev_start (EV_A_ (W)w, 1);
2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2925 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2926
2927 EV_FREQUENT_CHECK;
2047} 2928}
2048 2929
2049void 2930void
2050ev_child_stop (EV_P_ ev_child *w) 2931ev_child_stop (EV_P_ ev_child *w)
2051{ 2932{
2052 clear_pending (EV_A_ (W)w); 2933 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2934 if (expect_false (!ev_is_active (w)))
2054 return; 2935 return;
2055 2936
2937 EV_FREQUENT_CHECK;
2938
2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2939 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2057 ev_stop (EV_A_ (W)w); 2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2058} 2943}
2944
2945#endif
2059 2946
2060#if EV_STAT_ENABLE 2947#if EV_STAT_ENABLE
2061 2948
2062# ifdef _WIN32 2949# ifdef _WIN32
2063# undef lstat 2950# undef lstat
2064# define lstat(a,b) _stati64 (a,b) 2951# define lstat(a,b) _stati64 (a,b)
2065# endif 2952# endif
2066 2953
2067#define DEF_STAT_INTERVAL 5.0074891 2954#define DEF_STAT_INTERVAL 5.0074891
2955#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2068#define MIN_STAT_INTERVAL 0.1074891 2956#define MIN_STAT_INTERVAL 0.1074891
2069 2957
2070static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2958static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2071 2959
2072#if EV_USE_INOTIFY 2960#if EV_USE_INOTIFY
2073# define EV_INOTIFY_BUFSIZE 8192 2961
2962/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2963# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2074 2964
2075static void noinline 2965static void noinline
2076infy_add (EV_P_ ev_stat *w) 2966infy_add (EV_P_ ev_stat *w)
2077{ 2967{
2078 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2968 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2079 2969
2080 if (w->wd < 0) 2970 if (w->wd >= 0)
2971 {
2972 struct statfs sfs;
2973
2974 /* now local changes will be tracked by inotify, but remote changes won't */
2975 /* unless the filesystem is known to be local, we therefore still poll */
2976 /* also do poll on <2.6.25, but with normal frequency */
2977
2978 if (!fs_2625)
2979 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2980 else if (!statfs (w->path, &sfs)
2981 && (sfs.f_type == 0x1373 /* devfs */
2982 || sfs.f_type == 0xEF53 /* ext2/3 */
2983 || sfs.f_type == 0x3153464a /* jfs */
2984 || sfs.f_type == 0x52654973 /* reiser3 */
2985 || sfs.f_type == 0x01021994 /* tempfs */
2986 || sfs.f_type == 0x58465342 /* xfs */))
2987 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2988 else
2989 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2081 { 2990 }
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2991 else
2992 {
2993 /* can't use inotify, continue to stat */
2994 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2083 2995
2084 /* monitor some parent directory for speedup hints */ 2996 /* if path is not there, monitor some parent directory for speedup hints */
2997 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2998 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2999 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 3000 {
2087 char path [4096]; 3001 char path [4096];
2088 strcpy (path, w->path); 3002 strcpy (path, w->path);
2089 3003
2092 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3006 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2093 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3007 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2094 3008
2095 char *pend = strrchr (path, '/'); 3009 char *pend = strrchr (path, '/');
2096 3010
2097 if (!pend) 3011 if (!pend || pend == path)
2098 break; /* whoops, no '/', complain to your admin */ 3012 break;
2099 3013
2100 *pend = 0; 3014 *pend = 0;
2101 w->wd = inotify_add_watch (fs_fd, path, mask); 3015 w->wd = inotify_add_watch (fs_fd, path, mask);
2102 } 3016 }
2103 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3017 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2104 } 3018 }
2105 } 3019 }
2106 else
2107 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2108 3020
2109 if (w->wd >= 0) 3021 if (w->wd >= 0)
2110 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3022 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3023
3024 /* now re-arm timer, if required */
3025 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3026 ev_timer_again (EV_A_ &w->timer);
3027 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2111} 3028}
2112 3029
2113static void noinline 3030static void noinline
2114infy_del (EV_P_ ev_stat *w) 3031infy_del (EV_P_ ev_stat *w)
2115{ 3032{
2118 3035
2119 if (wd < 0) 3036 if (wd < 0)
2120 return; 3037 return;
2121 3038
2122 w->wd = -2; 3039 w->wd = -2;
2123 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3040 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2124 wlist_del (&fs_hash [slot].head, (WL)w); 3041 wlist_del (&fs_hash [slot].head, (WL)w);
2125 3042
2126 /* remove this watcher, if others are watching it, they will rearm */ 3043 /* remove this watcher, if others are watching it, they will rearm */
2127 inotify_rm_watch (fs_fd, wd); 3044 inotify_rm_watch (fs_fd, wd);
2128} 3045}
2129 3046
2130static void noinline 3047static void noinline
2131infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3048infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2132{ 3049{
2133 if (slot < 0) 3050 if (slot < 0)
2134 /* overflow, need to check for all hahs slots */ 3051 /* overflow, need to check for all hash slots */
2135 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3052 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2136 infy_wd (EV_A_ slot, wd, ev); 3053 infy_wd (EV_A_ slot, wd, ev);
2137 else 3054 else
2138 { 3055 {
2139 WL w_; 3056 WL w_;
2140 3057
2141 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3058 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2142 { 3059 {
2143 ev_stat *w = (ev_stat *)w_; 3060 ev_stat *w = (ev_stat *)w_;
2144 w_ = w_->next; /* lets us remove this watcher and all before it */ 3061 w_ = w_->next; /* lets us remove this watcher and all before it */
2145 3062
2146 if (w->wd == wd || wd == -1) 3063 if (w->wd == wd || wd == -1)
2147 { 3064 {
2148 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3065 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2149 { 3066 {
3067 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2150 w->wd = -1; 3068 w->wd = -1;
2151 infy_add (EV_A_ w); /* re-add, no matter what */ 3069 infy_add (EV_A_ w); /* re-add, no matter what */
2152 } 3070 }
2153 3071
2154 stat_timer_cb (EV_A_ &w->timer, 0); 3072 stat_timer_cb (EV_A_ &w->timer, 0);
2159 3077
2160static void 3078static void
2161infy_cb (EV_P_ ev_io *w, int revents) 3079infy_cb (EV_P_ ev_io *w, int revents)
2162{ 3080{
2163 char buf [EV_INOTIFY_BUFSIZE]; 3081 char buf [EV_INOTIFY_BUFSIZE];
2164 struct inotify_event *ev = (struct inotify_event *)buf;
2165 int ofs; 3082 int ofs;
2166 int len = read (fs_fd, buf, sizeof (buf)); 3083 int len = read (fs_fd, buf, sizeof (buf));
2167 3084
2168 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3085 for (ofs = 0; ofs < len; )
3086 {
3087 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2169 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3088 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3089 ofs += sizeof (struct inotify_event) + ev->len;
3090 }
2170} 3091}
2171 3092
2172void inline_size 3093inline_size void
3094ev_check_2625 (EV_P)
3095{
3096 /* kernels < 2.6.25 are borked
3097 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3098 */
3099 if (ev_linux_version () < 0x020619)
3100 return;
3101
3102 fs_2625 = 1;
3103}
3104
3105inline_size int
3106infy_newfd (void)
3107{
3108#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3109 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3110 if (fd >= 0)
3111 return fd;
3112#endif
3113 return inotify_init ();
3114}
3115
3116inline_size void
2173infy_init (EV_P) 3117infy_init (EV_P)
2174{ 3118{
2175 if (fs_fd != -2) 3119 if (fs_fd != -2)
2176 return; 3120 return;
2177 3121
3122 fs_fd = -1;
3123
3124 ev_check_2625 (EV_A);
3125
2178 fs_fd = inotify_init (); 3126 fs_fd = infy_newfd ();
2179 3127
2180 if (fs_fd >= 0) 3128 if (fs_fd >= 0)
2181 { 3129 {
3130 fd_intern (fs_fd);
2182 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3131 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2183 ev_set_priority (&fs_w, EV_MAXPRI); 3132 ev_set_priority (&fs_w, EV_MAXPRI);
2184 ev_io_start (EV_A_ &fs_w); 3133 ev_io_start (EV_A_ &fs_w);
3134 ev_unref (EV_A);
2185 } 3135 }
2186} 3136}
2187 3137
2188void inline_size 3138inline_size void
2189infy_fork (EV_P) 3139infy_fork (EV_P)
2190{ 3140{
2191 int slot; 3141 int slot;
2192 3142
2193 if (fs_fd < 0) 3143 if (fs_fd < 0)
2194 return; 3144 return;
2195 3145
3146 ev_ref (EV_A);
3147 ev_io_stop (EV_A_ &fs_w);
2196 close (fs_fd); 3148 close (fs_fd);
2197 fs_fd = inotify_init (); 3149 fs_fd = infy_newfd ();
2198 3150
3151 if (fs_fd >= 0)
3152 {
3153 fd_intern (fs_fd);
3154 ev_io_set (&fs_w, fs_fd, EV_READ);
3155 ev_io_start (EV_A_ &fs_w);
3156 ev_unref (EV_A);
3157 }
3158
2199 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3159 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2200 { 3160 {
2201 WL w_ = fs_hash [slot].head; 3161 WL w_ = fs_hash [slot].head;
2202 fs_hash [slot].head = 0; 3162 fs_hash [slot].head = 0;
2203 3163
2204 while (w_) 3164 while (w_)
2209 w->wd = -1; 3169 w->wd = -1;
2210 3170
2211 if (fs_fd >= 0) 3171 if (fs_fd >= 0)
2212 infy_add (EV_A_ w); /* re-add, no matter what */ 3172 infy_add (EV_A_ w); /* re-add, no matter what */
2213 else 3173 else
3174 {
3175 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3176 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2214 ev_timer_start (EV_A_ &w->timer); 3177 ev_timer_again (EV_A_ &w->timer);
3178 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3179 }
2215 } 3180 }
2216
2217 } 3181 }
2218} 3182}
2219 3183
3184#endif
3185
3186#ifdef _WIN32
3187# define EV_LSTAT(p,b) _stati64 (p, b)
3188#else
3189# define EV_LSTAT(p,b) lstat (p, b)
2220#endif 3190#endif
2221 3191
2222void 3192void
2223ev_stat_stat (EV_P_ ev_stat *w) 3193ev_stat_stat (EV_P_ ev_stat *w)
2224{ 3194{
2231static void noinline 3201static void noinline
2232stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3202stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2233{ 3203{
2234 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3204 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2235 3205
2236 /* we copy this here each the time so that */ 3206 ev_statdata prev = w->attr;
2237 /* prev has the old value when the callback gets invoked */
2238 w->prev = w->attr;
2239 ev_stat_stat (EV_A_ w); 3207 ev_stat_stat (EV_A_ w);
2240 3208
2241 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3209 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2242 if ( 3210 if (
2243 w->prev.st_dev != w->attr.st_dev 3211 prev.st_dev != w->attr.st_dev
2244 || w->prev.st_ino != w->attr.st_ino 3212 || prev.st_ino != w->attr.st_ino
2245 || w->prev.st_mode != w->attr.st_mode 3213 || prev.st_mode != w->attr.st_mode
2246 || w->prev.st_nlink != w->attr.st_nlink 3214 || prev.st_nlink != w->attr.st_nlink
2247 || w->prev.st_uid != w->attr.st_uid 3215 || prev.st_uid != w->attr.st_uid
2248 || w->prev.st_gid != w->attr.st_gid 3216 || prev.st_gid != w->attr.st_gid
2249 || w->prev.st_rdev != w->attr.st_rdev 3217 || prev.st_rdev != w->attr.st_rdev
2250 || w->prev.st_size != w->attr.st_size 3218 || prev.st_size != w->attr.st_size
2251 || w->prev.st_atime != w->attr.st_atime 3219 || prev.st_atime != w->attr.st_atime
2252 || w->prev.st_mtime != w->attr.st_mtime 3220 || prev.st_mtime != w->attr.st_mtime
2253 || w->prev.st_ctime != w->attr.st_ctime 3221 || prev.st_ctime != w->attr.st_ctime
2254 ) { 3222 ) {
3223 /* we only update w->prev on actual differences */
3224 /* in case we test more often than invoke the callback, */
3225 /* to ensure that prev is always different to attr */
3226 w->prev = prev;
3227
2255 #if EV_USE_INOTIFY 3228 #if EV_USE_INOTIFY
3229 if (fs_fd >= 0)
3230 {
2256 infy_del (EV_A_ w); 3231 infy_del (EV_A_ w);
2257 infy_add (EV_A_ w); 3232 infy_add (EV_A_ w);
2258 ev_stat_stat (EV_A_ w); /* avoid race... */ 3233 ev_stat_stat (EV_A_ w); /* avoid race... */
3234 }
2259 #endif 3235 #endif
2260 3236
2261 ev_feed_event (EV_A_ w, EV_STAT); 3237 ev_feed_event (EV_A_ w, EV_STAT);
2262 } 3238 }
2263} 3239}
2266ev_stat_start (EV_P_ ev_stat *w) 3242ev_stat_start (EV_P_ ev_stat *w)
2267{ 3243{
2268 if (expect_false (ev_is_active (w))) 3244 if (expect_false (ev_is_active (w)))
2269 return; 3245 return;
2270 3246
2271 /* since we use memcmp, we need to clear any padding data etc. */
2272 memset (&w->prev, 0, sizeof (ev_statdata));
2273 memset (&w->attr, 0, sizeof (ev_statdata));
2274
2275 ev_stat_stat (EV_A_ w); 3247 ev_stat_stat (EV_A_ w);
2276 3248
3249 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2277 if (w->interval < MIN_STAT_INTERVAL) 3250 w->interval = MIN_STAT_INTERVAL;
2278 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2279 3251
2280 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3252 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2281 ev_set_priority (&w->timer, ev_priority (w)); 3253 ev_set_priority (&w->timer, ev_priority (w));
2282 3254
2283#if EV_USE_INOTIFY 3255#if EV_USE_INOTIFY
2284 infy_init (EV_A); 3256 infy_init (EV_A);
2285 3257
2286 if (fs_fd >= 0) 3258 if (fs_fd >= 0)
2287 infy_add (EV_A_ w); 3259 infy_add (EV_A_ w);
2288 else 3260 else
2289#endif 3261#endif
3262 {
2290 ev_timer_start (EV_A_ &w->timer); 3263 ev_timer_again (EV_A_ &w->timer);
3264 ev_unref (EV_A);
3265 }
2291 3266
2292 ev_start (EV_A_ (W)w, 1); 3267 ev_start (EV_A_ (W)w, 1);
3268
3269 EV_FREQUENT_CHECK;
2293} 3270}
2294 3271
2295void 3272void
2296ev_stat_stop (EV_P_ ev_stat *w) 3273ev_stat_stop (EV_P_ ev_stat *w)
2297{ 3274{
2298 clear_pending (EV_A_ (W)w); 3275 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w))) 3276 if (expect_false (!ev_is_active (w)))
2300 return; 3277 return;
2301 3278
3279 EV_FREQUENT_CHECK;
3280
2302#if EV_USE_INOTIFY 3281#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w); 3282 infy_del (EV_A_ w);
2304#endif 3283#endif
3284
3285 if (ev_is_active (&w->timer))
3286 {
3287 ev_ref (EV_A);
2305 ev_timer_stop (EV_A_ &w->timer); 3288 ev_timer_stop (EV_A_ &w->timer);
3289 }
2306 3290
2307 ev_stop (EV_A_ (W)w); 3291 ev_stop (EV_A_ (W)w);
3292
3293 EV_FREQUENT_CHECK;
2308} 3294}
2309#endif 3295#endif
2310 3296
2311#if EV_IDLE_ENABLE 3297#if EV_IDLE_ENABLE
2312void 3298void
2315 if (expect_false (ev_is_active (w))) 3301 if (expect_false (ev_is_active (w)))
2316 return; 3302 return;
2317 3303
2318 pri_adjust (EV_A_ (W)w); 3304 pri_adjust (EV_A_ (W)w);
2319 3305
3306 EV_FREQUENT_CHECK;
3307
2320 { 3308 {
2321 int active = ++idlecnt [ABSPRI (w)]; 3309 int active = ++idlecnt [ABSPRI (w)];
2322 3310
2323 ++idleall; 3311 ++idleall;
2324 ev_start (EV_A_ (W)w, active); 3312 ev_start (EV_A_ (W)w, active);
2325 3313
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3314 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w; 3315 idles [ABSPRI (w)][active - 1] = w;
2328 } 3316 }
3317
3318 EV_FREQUENT_CHECK;
2329} 3319}
2330 3320
2331void 3321void
2332ev_idle_stop (EV_P_ ev_idle *w) 3322ev_idle_stop (EV_P_ ev_idle *w)
2333{ 3323{
2334 clear_pending (EV_A_ (W)w); 3324 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 3325 if (expect_false (!ev_is_active (w)))
2336 return; 3326 return;
2337 3327
3328 EV_FREQUENT_CHECK;
3329
2338 { 3330 {
2339 int active = ((W)w)->active; 3331 int active = ev_active (w);
2340 3332
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3333 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3334 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 3335
2344 ev_stop (EV_A_ (W)w); 3336 ev_stop (EV_A_ (W)w);
2345 --idleall; 3337 --idleall;
2346 } 3338 }
2347}
2348#endif
2349 3339
3340 EV_FREQUENT_CHECK;
3341}
3342#endif
3343
3344#if EV_PREPARE_ENABLE
2350void 3345void
2351ev_prepare_start (EV_P_ ev_prepare *w) 3346ev_prepare_start (EV_P_ ev_prepare *w)
2352{ 3347{
2353 if (expect_false (ev_is_active (w))) 3348 if (expect_false (ev_is_active (w)))
2354 return; 3349 return;
3350
3351 EV_FREQUENT_CHECK;
2355 3352
2356 ev_start (EV_A_ (W)w, ++preparecnt); 3353 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3354 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w; 3355 prepares [preparecnt - 1] = w;
3356
3357 EV_FREQUENT_CHECK;
2359} 3358}
2360 3359
2361void 3360void
2362ev_prepare_stop (EV_P_ ev_prepare *w) 3361ev_prepare_stop (EV_P_ ev_prepare *w)
2363{ 3362{
2364 clear_pending (EV_A_ (W)w); 3363 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 3364 if (expect_false (!ev_is_active (w)))
2366 return; 3365 return;
2367 3366
3367 EV_FREQUENT_CHECK;
3368
2368 { 3369 {
2369 int active = ((W)w)->active; 3370 int active = ev_active (w);
3371
2370 prepares [active - 1] = prepares [--preparecnt]; 3372 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 3373 ev_active (prepares [active - 1]) = active;
2372 } 3374 }
2373 3375
2374 ev_stop (EV_A_ (W)w); 3376 ev_stop (EV_A_ (W)w);
2375}
2376 3377
3378 EV_FREQUENT_CHECK;
3379}
3380#endif
3381
3382#if EV_CHECK_ENABLE
2377void 3383void
2378ev_check_start (EV_P_ ev_check *w) 3384ev_check_start (EV_P_ ev_check *w)
2379{ 3385{
2380 if (expect_false (ev_is_active (w))) 3386 if (expect_false (ev_is_active (w)))
2381 return; 3387 return;
3388
3389 EV_FREQUENT_CHECK;
2382 3390
2383 ev_start (EV_A_ (W)w, ++checkcnt); 3391 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3392 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w; 3393 checks [checkcnt - 1] = w;
3394
3395 EV_FREQUENT_CHECK;
2386} 3396}
2387 3397
2388void 3398void
2389ev_check_stop (EV_P_ ev_check *w) 3399ev_check_stop (EV_P_ ev_check *w)
2390{ 3400{
2391 clear_pending (EV_A_ (W)w); 3401 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 3402 if (expect_false (!ev_is_active (w)))
2393 return; 3403 return;
2394 3404
3405 EV_FREQUENT_CHECK;
3406
2395 { 3407 {
2396 int active = ((W)w)->active; 3408 int active = ev_active (w);
3409
2397 checks [active - 1] = checks [--checkcnt]; 3410 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 3411 ev_active (checks [active - 1]) = active;
2399 } 3412 }
2400 3413
2401 ev_stop (EV_A_ (W)w); 3414 ev_stop (EV_A_ (W)w);
3415
3416 EV_FREQUENT_CHECK;
2402} 3417}
3418#endif
2403 3419
2404#if EV_EMBED_ENABLE 3420#if EV_EMBED_ENABLE
2405void noinline 3421void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w) 3422ev_embed_sweep (EV_P_ ev_embed *w)
2407{ 3423{
2408 ev_loop (w->other, EVLOOP_NONBLOCK); 3424 ev_run (w->other, EVRUN_NOWAIT);
2409} 3425}
2410 3426
2411static void 3427static void
2412embed_io_cb (EV_P_ ev_io *io, int revents) 3428embed_io_cb (EV_P_ ev_io *io, int revents)
2413{ 3429{
2414 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3430 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2415 3431
2416 if (ev_cb (w)) 3432 if (ev_cb (w))
2417 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3433 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2418 else 3434 else
2419 ev_loop (w->other, EVLOOP_NONBLOCK); 3435 ev_run (w->other, EVRUN_NOWAIT);
2420} 3436}
2421 3437
2422static void 3438static void
2423embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3439embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2424{ 3440{
2425 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3441 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2426 3442
2427 { 3443 {
2428 struct ev_loop *loop = w->other; 3444 EV_P = w->other;
2429 3445
2430 while (fdchangecnt) 3446 while (fdchangecnt)
2431 { 3447 {
2432 fd_reify (EV_A); 3448 fd_reify (EV_A);
2433 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3449 ev_run (EV_A_ EVRUN_NOWAIT);
2434 } 3450 }
2435 } 3451 }
3452}
3453
3454static void
3455embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3456{
3457 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3458
3459 ev_embed_stop (EV_A_ w);
3460
3461 {
3462 EV_P = w->other;
3463
3464 ev_loop_fork (EV_A);
3465 ev_run (EV_A_ EVRUN_NOWAIT);
3466 }
3467
3468 ev_embed_start (EV_A_ w);
2436} 3469}
2437 3470
2438#if 0 3471#if 0
2439static void 3472static void
2440embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2448{ 3481{
2449 if (expect_false (ev_is_active (w))) 3482 if (expect_false (ev_is_active (w)))
2450 return; 3483 return;
2451 3484
2452 { 3485 {
2453 struct ev_loop *loop = w->other; 3486 EV_P = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3487 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 } 3489 }
3490
3491 EV_FREQUENT_CHECK;
2457 3492
2458 ev_set_priority (&w->io, ev_priority (w)); 3493 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io); 3494 ev_io_start (EV_A_ &w->io);
2460 3495
2461 ev_prepare_init (&w->prepare, embed_prepare_cb); 3496 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI); 3497 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare); 3498 ev_prepare_start (EV_A_ &w->prepare);
2464 3499
3500 ev_fork_init (&w->fork, embed_fork_cb);
3501 ev_fork_start (EV_A_ &w->fork);
3502
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3503 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466 3504
2467 ev_start (EV_A_ (W)w, 1); 3505 ev_start (EV_A_ (W)w, 1);
3506
3507 EV_FREQUENT_CHECK;
2468} 3508}
2469 3509
2470void 3510void
2471ev_embed_stop (EV_P_ ev_embed *w) 3511ev_embed_stop (EV_P_ ev_embed *w)
2472{ 3512{
2473 clear_pending (EV_A_ (W)w); 3513 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w))) 3514 if (expect_false (!ev_is_active (w)))
2475 return; 3515 return;
2476 3516
3517 EV_FREQUENT_CHECK;
3518
2477 ev_io_stop (EV_A_ &w->io); 3519 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare); 3520 ev_prepare_stop (EV_A_ &w->prepare);
3521 ev_fork_stop (EV_A_ &w->fork);
2479 3522
2480 ev_stop (EV_A_ (W)w); 3523 ev_stop (EV_A_ (W)w);
3524
3525 EV_FREQUENT_CHECK;
2481} 3526}
2482#endif 3527#endif
2483 3528
2484#if EV_FORK_ENABLE 3529#if EV_FORK_ENABLE
2485void 3530void
2486ev_fork_start (EV_P_ ev_fork *w) 3531ev_fork_start (EV_P_ ev_fork *w)
2487{ 3532{
2488 if (expect_false (ev_is_active (w))) 3533 if (expect_false (ev_is_active (w)))
2489 return; 3534 return;
2490 3535
3536 EV_FREQUENT_CHECK;
3537
2491 ev_start (EV_A_ (W)w, ++forkcnt); 3538 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3539 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w; 3540 forks [forkcnt - 1] = w;
3541
3542 EV_FREQUENT_CHECK;
2494} 3543}
2495 3544
2496void 3545void
2497ev_fork_stop (EV_P_ ev_fork *w) 3546ev_fork_stop (EV_P_ ev_fork *w)
2498{ 3547{
2499 clear_pending (EV_A_ (W)w); 3548 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 3549 if (expect_false (!ev_is_active (w)))
2501 return; 3550 return;
2502 3551
3552 EV_FREQUENT_CHECK;
3553
2503 { 3554 {
2504 int active = ((W)w)->active; 3555 int active = ev_active (w);
3556
2505 forks [active - 1] = forks [--forkcnt]; 3557 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 3558 ev_active (forks [active - 1]) = active;
2507 } 3559 }
2508 3560
2509 ev_stop (EV_A_ (W)w); 3561 ev_stop (EV_A_ (W)w);
3562
3563 EV_FREQUENT_CHECK;
2510} 3564}
2511#endif 3565#endif
2512 3566
2513#if EV_ASYNC_ENABLE 3567#if EV_ASYNC_ENABLE
2514void 3568void
2515ev_async_start (EV_P_ ev_async *w) 3569ev_async_start (EV_P_ ev_async *w)
2516{ 3570{
2517 if (expect_false (ev_is_active (w))) 3571 if (expect_false (ev_is_active (w)))
2518 return; 3572 return;
2519 3573
3574 w->sent = 0;
3575
2520 evpipe_init (EV_A); 3576 evpipe_init (EV_A);
3577
3578 EV_FREQUENT_CHECK;
2521 3579
2522 ev_start (EV_A_ (W)w, ++asynccnt); 3580 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3581 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w; 3582 asyncs [asynccnt - 1] = w;
3583
3584 EV_FREQUENT_CHECK;
2525} 3585}
2526 3586
2527void 3587void
2528ev_async_stop (EV_P_ ev_async *w) 3588ev_async_stop (EV_P_ ev_async *w)
2529{ 3589{
2530 clear_pending (EV_A_ (W)w); 3590 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 3591 if (expect_false (!ev_is_active (w)))
2532 return; 3592 return;
2533 3593
3594 EV_FREQUENT_CHECK;
3595
2534 { 3596 {
2535 int active = ((W)w)->active; 3597 int active = ev_active (w);
3598
2536 asyncs [active - 1] = asyncs [--asynccnt]; 3599 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 3600 ev_active (asyncs [active - 1]) = active;
2538 } 3601 }
2539 3602
2540 ev_stop (EV_A_ (W)w); 3603 ev_stop (EV_A_ (W)w);
3604
3605 EV_FREQUENT_CHECK;
2541} 3606}
2542 3607
2543void 3608void
2544ev_async_send (EV_P_ ev_async *w) 3609ev_async_send (EV_P_ ev_async *w)
2545{ 3610{
2546 w->sent = 1; 3611 w->sent = 1;
2547 evpipe_write (EV_A_ &gotasync); 3612 evpipe_write (EV_A_ &async_pending);
2548} 3613}
2549#endif 3614#endif
2550 3615
2551/*****************************************************************************/ 3616/*****************************************************************************/
2552 3617
2562once_cb (EV_P_ struct ev_once *once, int revents) 3627once_cb (EV_P_ struct ev_once *once, int revents)
2563{ 3628{
2564 void (*cb)(int revents, void *arg) = once->cb; 3629 void (*cb)(int revents, void *arg) = once->cb;
2565 void *arg = once->arg; 3630 void *arg = once->arg;
2566 3631
2567 ev_io_stop (EV_A_ &once->io); 3632 ev_io_stop (EV_A_ &once->io);
2568 ev_timer_stop (EV_A_ &once->to); 3633 ev_timer_stop (EV_A_ &once->to);
2569 ev_free (once); 3634 ev_free (once);
2570 3635
2571 cb (revents, arg); 3636 cb (revents, arg);
2572} 3637}
2573 3638
2574static void 3639static void
2575once_cb_io (EV_P_ ev_io *w, int revents) 3640once_cb_io (EV_P_ ev_io *w, int revents)
2576{ 3641{
2577 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3642 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3643
3644 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2578} 3645}
2579 3646
2580static void 3647static void
2581once_cb_to (EV_P_ ev_timer *w, int revents) 3648once_cb_to (EV_P_ ev_timer *w, int revents)
2582{ 3649{
2583 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3650 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3651
3652 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2584} 3653}
2585 3654
2586void 3655void
2587ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3656ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2588{ 3657{
2589 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3658 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2590 3659
2591 if (expect_false (!once)) 3660 if (expect_false (!once))
2592 { 3661 {
2593 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3662 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2594 return; 3663 return;
2595 } 3664 }
2596 3665
2597 once->cb = cb; 3666 once->cb = cb;
2598 once->arg = arg; 3667 once->arg = arg;
2610 ev_timer_set (&once->to, timeout, 0.); 3679 ev_timer_set (&once->to, timeout, 0.);
2611 ev_timer_start (EV_A_ &once->to); 3680 ev_timer_start (EV_A_ &once->to);
2612 } 3681 }
2613} 3682}
2614 3683
3684/*****************************************************************************/
3685
3686#if EV_WALK_ENABLE
3687void
3688ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3689{
3690 int i, j;
3691 ev_watcher_list *wl, *wn;
3692
3693 if (types & (EV_IO | EV_EMBED))
3694 for (i = 0; i < anfdmax; ++i)
3695 for (wl = anfds [i].head; wl; )
3696 {
3697 wn = wl->next;
3698
3699#if EV_EMBED_ENABLE
3700 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3701 {
3702 if (types & EV_EMBED)
3703 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3704 }
3705 else
3706#endif
3707#if EV_USE_INOTIFY
3708 if (ev_cb ((ev_io *)wl) == infy_cb)
3709 ;
3710 else
3711#endif
3712 if ((ev_io *)wl != &pipe_w)
3713 if (types & EV_IO)
3714 cb (EV_A_ EV_IO, wl);
3715
3716 wl = wn;
3717 }
3718
3719 if (types & (EV_TIMER | EV_STAT))
3720 for (i = timercnt + HEAP0; i-- > HEAP0; )
3721#if EV_STAT_ENABLE
3722 /*TODO: timer is not always active*/
3723 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3724 {
3725 if (types & EV_STAT)
3726 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3727 }
3728 else
3729#endif
3730 if (types & EV_TIMER)
3731 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3732
3733#if EV_PERIODIC_ENABLE
3734 if (types & EV_PERIODIC)
3735 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3736 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3737#endif
3738
3739#if EV_IDLE_ENABLE
3740 if (types & EV_IDLE)
3741 for (j = NUMPRI; i--; )
3742 for (i = idlecnt [j]; i--; )
3743 cb (EV_A_ EV_IDLE, idles [j][i]);
3744#endif
3745
3746#if EV_FORK_ENABLE
3747 if (types & EV_FORK)
3748 for (i = forkcnt; i--; )
3749 if (ev_cb (forks [i]) != embed_fork_cb)
3750 cb (EV_A_ EV_FORK, forks [i]);
3751#endif
3752
3753#if EV_ASYNC_ENABLE
3754 if (types & EV_ASYNC)
3755 for (i = asynccnt; i--; )
3756 cb (EV_A_ EV_ASYNC, asyncs [i]);
3757#endif
3758
3759#if EV_PREPARE_ENABLE
3760 if (types & EV_PREPARE)
3761 for (i = preparecnt; i--; )
3762# if EV_EMBED_ENABLE
3763 if (ev_cb (prepares [i]) != embed_prepare_cb)
3764# endif
3765 cb (EV_A_ EV_PREPARE, prepares [i]);
3766#endif
3767
3768#if EV_CHECK_ENABLE
3769 if (types & EV_CHECK)
3770 for (i = checkcnt; i--; )
3771 cb (EV_A_ EV_CHECK, checks [i]);
3772#endif
3773
3774#if EV_SIGNAL_ENABLE
3775 if (types & EV_SIGNAL)
3776 for (i = 0; i < EV_NSIG - 1; ++i)
3777 for (wl = signals [i].head; wl; )
3778 {
3779 wn = wl->next;
3780 cb (EV_A_ EV_SIGNAL, wl);
3781 wl = wn;
3782 }
3783#endif
3784
3785#if EV_CHILD_ENABLE
3786 if (types & EV_CHILD)
3787 for (i = (EV_PID_HASHSIZE); i--; )
3788 for (wl = childs [i]; wl; )
3789 {
3790 wn = wl->next;
3791 cb (EV_A_ EV_CHILD, wl);
3792 wl = wn;
3793 }
3794#endif
3795/* EV_STAT 0x00001000 /* stat data changed */
3796/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3797}
3798#endif
3799
2615#if EV_MULTIPLICITY 3800#if EV_MULTIPLICITY
2616 #include "ev_wrap.h" 3801 #include "ev_wrap.h"
2617#endif 3802#endif
2618 3803
2619#ifdef __cplusplus 3804EV_CPP(})
2620}
2621#endif
2622 3805

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines