ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.36 by root, Thu Nov 1 13:11:11 2007 UTC vs.
Revision 1.249 by root, Wed May 21 23:30:52 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
31#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
33#endif 132#endif
34 133
35#include <math.h> 134#include <math.h>
36#include <stdlib.h> 135#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 136#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 137#include <stddef.h>
41 138
42#include <stdio.h> 139#include <stdio.h>
43 140
44#include <assert.h> 141#include <assert.h>
45#include <errno.h> 142#include <errno.h>
46#include <sys/types.h> 143#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 144#include <time.h>
50 145
146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
163# endif
164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
167
51#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
52# ifdef CLOCK_MONOTONIC
53# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
54# endif 170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
55#endif 178#endif
56 179
57#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
59#endif 182#endif
60 183
184#ifndef EV_USE_POLL
185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
190#endif
191
61#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
62# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
198#endif
199
200#ifndef EV_USE_KQUEUE
201# define EV_USE_KQUEUE 0
202#endif
203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 1
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_USE_4HEAP
247# define EV_USE_4HEAP !EV_MINIMAL
248#endif
249
250#ifndef EV_HEAP_CACHE_AT
251# define EV_HEAP_CACHE_AT !EV_MINIMAL
252#endif
253
254/* this block fixes any misconfiguration where we know we run into trouble otherwise */
255
256#ifndef CLOCK_MONOTONIC
257# undef EV_USE_MONOTONIC
258# define EV_USE_MONOTONIC 0
63#endif 259#endif
64 260
65#ifndef CLOCK_REALTIME 261#ifndef CLOCK_REALTIME
262# undef EV_USE_REALTIME
66# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME 0
67#endif 264#endif
68#ifndef EV_USE_REALTIME 265
69# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 266#if !EV_STAT_ENABLE
267# undef EV_USE_INOTIFY
268# define EV_USE_INOTIFY 0
269#endif
270
271#if !EV_USE_NANOSLEEP
272# ifndef _WIN32
273# include <sys/select.h>
70#endif 274# endif
275#endif
276
277#if EV_USE_INOTIFY
278# include <sys/inotify.h>
279#endif
280
281#if EV_SELECT_IS_WINSOCKET
282# include <winsock.h>
283#endif
284
285#if EV_USE_EVENTFD
286/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
287# include <stdint.h>
288# ifdef __cplusplus
289extern "C" {
290# endif
291int eventfd (unsigned int initval, int flags);
292# ifdef __cplusplus
293}
294# endif
295#endif
296
297/**/
298
299/* EV_VERIFY: enable internal consistency checks
300 * undefined or zero: no verification done or available
301 * 1 or higher: ev_loop_verify function available
302 * 2 or higher: ev_loop_verify is called frequently
303 */
304#if EV_VERIFY >= 1
305# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
306#else
307# define EV_FREQUENT_CHECK do { } while (0)
308#endif
309
310/*
311 * This is used to avoid floating point rounding problems.
312 * It is added to ev_rt_now when scheduling periodics
313 * to ensure progress, time-wise, even when rounding
314 * errors are against us.
315 * This value is good at least till the year 4000.
316 * Better solutions welcome.
317 */
318#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
71 319
72#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 320#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
73#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 321#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
74#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
75#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 322/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
76 323
77#include "ev.h" 324#if __GNUC__ >= 4
325# define expect(expr,value) __builtin_expect ((expr),(value))
326# define noinline __attribute__ ((noinline))
327#else
328# define expect(expr,value) (expr)
329# define noinline
330# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
331# define inline
332# endif
333#endif
78 334
335#define expect_false(expr) expect ((expr) != 0, 0)
336#define expect_true(expr) expect ((expr) != 0, 1)
337#define inline_size static inline
338
339#if EV_MINIMAL
340# define inline_speed static noinline
341#else
342# define inline_speed static inline
343#endif
344
345#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
346#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
347
348#define EMPTY /* required for microsofts broken pseudo-c compiler */
349#define EMPTY2(a,b) /* used to suppress some warnings */
350
79typedef struct ev_watcher *W; 351typedef ev_watcher *W;
80typedef struct ev_watcher_list *WL; 352typedef ev_watcher_list *WL;
81typedef struct ev_watcher_time *WT; 353typedef ev_watcher_time *WT;
82 354
83static ev_tstamp now, diff; /* monotonic clock */ 355#define ev_active(w) ((W)(w))->active
356#define ev_at(w) ((WT)(w))->at
357
358#if EV_USE_MONOTONIC
359/* sig_atomic_t is used to avoid per-thread variables or locking but still */
360/* giving it a reasonably high chance of working on typical architetcures */
361static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
362#endif
363
364#ifdef _WIN32
365# include "ev_win32.c"
366#endif
367
368/*****************************************************************************/
369
370static void (*syserr_cb)(const char *msg);
371
372void
373ev_set_syserr_cb (void (*cb)(const char *msg))
374{
375 syserr_cb = cb;
376}
377
378static void noinline
379syserr (const char *msg)
380{
381 if (!msg)
382 msg = "(libev) system error";
383
384 if (syserr_cb)
385 syserr_cb (msg);
386 else
387 {
388 perror (msg);
389 abort ();
390 }
391}
392
393static void *
394ev_realloc_emul (void *ptr, long size)
395{
396 /* some systems, notably openbsd and darwin, fail to properly
397 * implement realloc (x, 0) (as required by both ansi c-98 and
398 * the single unix specification, so work around them here.
399 */
400
401 if (size)
402 return realloc (ptr, size);
403
404 free (ptr);
405 return 0;
406}
407
408static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
409
410void
411ev_set_allocator (void *(*cb)(void *ptr, long size))
412{
413 alloc = cb;
414}
415
416inline_speed void *
417ev_realloc (void *ptr, long size)
418{
419 ptr = alloc (ptr, size);
420
421 if (!ptr && size)
422 {
423 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
424 abort ();
425 }
426
427 return ptr;
428}
429
430#define ev_malloc(size) ev_realloc (0, (size))
431#define ev_free(ptr) ev_realloc ((ptr), 0)
432
433/*****************************************************************************/
434
435typedef struct
436{
437 WL head;
438 unsigned char events;
439 unsigned char reify;
440#if EV_SELECT_IS_WINSOCKET
441 SOCKET handle;
442#endif
443} ANFD;
444
445typedef struct
446{
447 W w;
448 int events;
449} ANPENDING;
450
451#if EV_USE_INOTIFY
452/* hash table entry per inotify-id */
453typedef struct
454{
455 WL head;
456} ANFS;
457#endif
458
459/* Heap Entry */
460#if EV_HEAP_CACHE_AT
461 typedef struct {
462 ev_tstamp at;
463 WT w;
464 } ANHE;
465
466 #define ANHE_w(he) (he).w /* access watcher, read-write */
467 #define ANHE_at(he) (he).at /* access cached at, read-only */
468 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
469#else
470 typedef WT ANHE;
471
472 #define ANHE_w(he) (he)
473 #define ANHE_at(he) (he)->at
474 #define ANHE_at_cache(he)
475#endif
476
477#if EV_MULTIPLICITY
478
479 struct ev_loop
480 {
481 ev_tstamp ev_rt_now;
482 #define ev_rt_now ((loop)->ev_rt_now)
483 #define VAR(name,decl) decl;
484 #include "ev_vars.h"
485 #undef VAR
486 };
487 #include "ev_wrap.h"
488
489 static struct ev_loop default_loop_struct;
490 struct ev_loop *ev_default_loop_ptr;
491
492#else
493
84ev_tstamp ev_now; 494 ev_tstamp ev_rt_now;
85int ev_method; 495 #define VAR(name,decl) static decl;
496 #include "ev_vars.h"
497 #undef VAR
86 498
87static int have_monotonic; /* runtime */ 499 static int ev_default_loop_ptr;
88 500
89static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 501#endif
90static void (*method_modify)(int fd, int oev, int nev);
91static void (*method_poll)(ev_tstamp timeout);
92 502
93/*****************************************************************************/ 503/*****************************************************************************/
94 504
95ev_tstamp 505ev_tstamp
96ev_time (void) 506ev_time (void)
104 gettimeofday (&tv, 0); 514 gettimeofday (&tv, 0);
105 return tv.tv_sec + tv.tv_usec * 1e-6; 515 return tv.tv_sec + tv.tv_usec * 1e-6;
106#endif 516#endif
107} 517}
108 518
109static ev_tstamp 519ev_tstamp inline_size
110get_clock (void) 520get_clock (void)
111{ 521{
112#if EV_USE_MONOTONIC 522#if EV_USE_MONOTONIC
113 if (have_monotonic) 523 if (expect_true (have_monotonic))
114 { 524 {
115 struct timespec ts; 525 struct timespec ts;
116 clock_gettime (CLOCK_MONOTONIC, &ts); 526 clock_gettime (CLOCK_MONOTONIC, &ts);
117 return ts.tv_sec + ts.tv_nsec * 1e-9; 527 return ts.tv_sec + ts.tv_nsec * 1e-9;
118 } 528 }
119#endif 529#endif
120 530
121 return ev_time (); 531 return ev_time ();
122} 532}
123 533
124#define array_roundsize(base,n) ((n) | 4 & ~3) 534#if EV_MULTIPLICITY
535ev_tstamp
536ev_now (EV_P)
537{
538 return ev_rt_now;
539}
540#endif
125 541
126#define array_needsize(base,cur,cnt,init) \ 542void
127 if ((cnt) > cur) \ 543ev_sleep (ev_tstamp delay)
128 { \ 544{
129 int newcnt = cur; \ 545 if (delay > 0.)
130 do \
131 { \
132 newcnt = array_roundsize (base, newcnt << 1); \
133 } \
134 while ((cnt) > newcnt); \
135 \
136 base = realloc (base, sizeof (*base) * (newcnt)); \
137 init (base + cur, newcnt - cur); \
138 cur = newcnt; \
139 } 546 {
547#if EV_USE_NANOSLEEP
548 struct timespec ts;
549
550 ts.tv_sec = (time_t)delay;
551 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
552
553 nanosleep (&ts, 0);
554#elif defined(_WIN32)
555 Sleep ((unsigned long)(delay * 1e3));
556#else
557 struct timeval tv;
558
559 tv.tv_sec = (time_t)delay;
560 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
561
562 select (0, 0, 0, 0, &tv);
563#endif
564 }
565}
140 566
141/*****************************************************************************/ 567/*****************************************************************************/
142 568
143typedef struct 569#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
144{
145 struct ev_io *head;
146 unsigned char events;
147 unsigned char reify;
148} ANFD;
149 570
150static ANFD *anfds; 571int inline_size
151static int anfdmax; 572array_nextsize (int elem, int cur, int cnt)
573{
574 int ncur = cur + 1;
152 575
153static void 576 do
577 ncur <<= 1;
578 while (cnt > ncur);
579
580 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
581 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
582 {
583 ncur *= elem;
584 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
585 ncur = ncur - sizeof (void *) * 4;
586 ncur /= elem;
587 }
588
589 return ncur;
590}
591
592static noinline void *
593array_realloc (int elem, void *base, int *cur, int cnt)
594{
595 *cur = array_nextsize (elem, *cur, cnt);
596 return ev_realloc (base, elem * *cur);
597}
598
599#define array_needsize(type,base,cur,cnt,init) \
600 if (expect_false ((cnt) > (cur))) \
601 { \
602 int ocur_ = (cur); \
603 (base) = (type *)array_realloc \
604 (sizeof (type), (base), &(cur), (cnt)); \
605 init ((base) + (ocur_), (cur) - ocur_); \
606 }
607
608#if 0
609#define array_slim(type,stem) \
610 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
611 { \
612 stem ## max = array_roundsize (stem ## cnt >> 1); \
613 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
614 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
615 }
616#endif
617
618#define array_free(stem, idx) \
619 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
620
621/*****************************************************************************/
622
623void noinline
624ev_feed_event (EV_P_ void *w, int revents)
625{
626 W w_ = (W)w;
627 int pri = ABSPRI (w_);
628
629 if (expect_false (w_->pending))
630 pendings [pri][w_->pending - 1].events |= revents;
631 else
632 {
633 w_->pending = ++pendingcnt [pri];
634 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
635 pendings [pri][w_->pending - 1].w = w_;
636 pendings [pri][w_->pending - 1].events = revents;
637 }
638}
639
640void inline_speed
641queue_events (EV_P_ W *events, int eventcnt, int type)
642{
643 int i;
644
645 for (i = 0; i < eventcnt; ++i)
646 ev_feed_event (EV_A_ events [i], type);
647}
648
649/*****************************************************************************/
650
651void inline_size
154anfds_init (ANFD *base, int count) 652anfds_init (ANFD *base, int count)
155{ 653{
156 while (count--) 654 while (count--)
157 { 655 {
158 base->head = 0; 656 base->head = 0;
161 659
162 ++base; 660 ++base;
163 } 661 }
164} 662}
165 663
166typedef struct 664void inline_speed
167{
168 W w;
169 int events;
170} ANPENDING;
171
172static ANPENDING *pendings;
173static int pendingmax, pendingcnt;
174
175static void
176event (W w, int events)
177{
178 if (w->pending)
179 {
180 pendings [w->pending - 1].events |= events;
181 return;
182 }
183
184 w->pending = ++pendingcnt;
185 array_needsize (pendings, pendingmax, pendingcnt, );
186 pendings [pendingcnt - 1].w = w;
187 pendings [pendingcnt - 1].events = events;
188}
189
190static void
191queue_events (W *events, int eventcnt, int type)
192{
193 int i;
194
195 for (i = 0; i < eventcnt; ++i)
196 event (events [i], type);
197}
198
199static void
200fd_event (int fd, int events) 665fd_event (EV_P_ int fd, int revents)
201{ 666{
202 ANFD *anfd = anfds + fd; 667 ANFD *anfd = anfds + fd;
203 struct ev_io *w; 668 ev_io *w;
204 669
205 for (w = anfd->head; w; w = w->next) 670 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
206 { 671 {
207 int ev = w->events & events; 672 int ev = w->events & revents;
208 673
209 if (ev) 674 if (ev)
210 event ((W)w, ev); 675 ev_feed_event (EV_A_ (W)w, ev);
211 } 676 }
212} 677}
213 678
214/*****************************************************************************/ 679void
680ev_feed_fd_event (EV_P_ int fd, int revents)
681{
682 if (fd >= 0 && fd < anfdmax)
683 fd_event (EV_A_ fd, revents);
684}
215 685
216static int *fdchanges; 686void inline_size
217static int fdchangemax, fdchangecnt; 687fd_reify (EV_P)
218
219static void
220fd_reify (void)
221{ 688{
222 int i; 689 int i;
223 690
224 for (i = 0; i < fdchangecnt; ++i) 691 for (i = 0; i < fdchangecnt; ++i)
225 { 692 {
226 int fd = fdchanges [i]; 693 int fd = fdchanges [i];
227 ANFD *anfd = anfds + fd; 694 ANFD *anfd = anfds + fd;
228 struct ev_io *w; 695 ev_io *w;
229 696
230 int events = 0; 697 unsigned char events = 0;
231 698
232 for (w = anfd->head; w; w = w->next) 699 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
233 events |= w->events; 700 events |= (unsigned char)w->events;
234 701
235 anfd->reify = 0; 702#if EV_SELECT_IS_WINSOCKET
236 703 if (events)
237 if (anfd->events != events)
238 { 704 {
239 method_modify (fd, anfd->events, events); 705 unsigned long argp;
240 anfd->events = events; 706 #ifdef EV_FD_TO_WIN32_HANDLE
707 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
708 #else
709 anfd->handle = _get_osfhandle (fd);
710 #endif
711 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
241 } 712 }
713#endif
714
715 {
716 unsigned char o_events = anfd->events;
717 unsigned char o_reify = anfd->reify;
718
719 anfd->reify = 0;
720 anfd->events = events;
721
722 if (o_events != events || o_reify & EV_IOFDSET)
723 backend_modify (EV_A_ fd, o_events, events);
724 }
242 } 725 }
243 726
244 fdchangecnt = 0; 727 fdchangecnt = 0;
245} 728}
246 729
247static void 730void inline_size
248fd_change (int fd) 731fd_change (EV_P_ int fd, int flags)
249{ 732{
250 if (anfds [fd].reify || fdchangecnt < 0) 733 unsigned char reify = anfds [fd].reify;
251 return;
252
253 anfds [fd].reify = 1; 734 anfds [fd].reify |= flags;
254 735
736 if (expect_true (!reify))
737 {
255 ++fdchangecnt; 738 ++fdchangecnt;
256 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 739 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
257 fdchanges [fdchangecnt - 1] = fd; 740 fdchanges [fdchangecnt - 1] = fd;
741 }
742}
743
744void inline_speed
745fd_kill (EV_P_ int fd)
746{
747 ev_io *w;
748
749 while ((w = (ev_io *)anfds [fd].head))
750 {
751 ev_io_stop (EV_A_ w);
752 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
753 }
754}
755
756int inline_size
757fd_valid (int fd)
758{
759#ifdef _WIN32
760 return _get_osfhandle (fd) != -1;
761#else
762 return fcntl (fd, F_GETFD) != -1;
763#endif
258} 764}
259 765
260/* called on EBADF to verify fds */ 766/* called on EBADF to verify fds */
261static void 767static void noinline
262fd_recheck (void) 768fd_ebadf (EV_P)
263{ 769{
264 int fd; 770 int fd;
265 771
266 for (fd = 0; fd < anfdmax; ++fd) 772 for (fd = 0; fd < anfdmax; ++fd)
267 if (anfds [fd].events) 773 if (anfds [fd].events)
268 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 774 if (!fd_valid (fd) == -1 && errno == EBADF)
269 while (anfds [fd].head) 775 fd_kill (EV_A_ fd);
776}
777
778/* called on ENOMEM in select/poll to kill some fds and retry */
779static void noinline
780fd_enomem (EV_P)
781{
782 int fd;
783
784 for (fd = anfdmax; fd--; )
785 if (anfds [fd].events)
270 { 786 {
271 ev_io_stop (anfds [fd].head); 787 fd_kill (EV_A_ fd);
272 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 788 return;
273 } 789 }
790}
791
792/* usually called after fork if backend needs to re-arm all fds from scratch */
793static void noinline
794fd_rearm_all (EV_P)
795{
796 int fd;
797
798 for (fd = 0; fd < anfdmax; ++fd)
799 if (anfds [fd].events)
800 {
801 anfds [fd].events = 0;
802 fd_change (EV_A_ fd, EV_IOFDSET | 1);
803 }
274} 804}
275 805
276/*****************************************************************************/ 806/*****************************************************************************/
277 807
278static struct ev_timer **timers; 808/*
279static int timermax, timercnt; 809 * the heap functions want a real array index. array index 0 uis guaranteed to not
810 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
811 * the branching factor of the d-tree.
812 */
280 813
281static struct ev_periodic **periodics; 814/*
282static int periodicmax, periodiccnt; 815 * at the moment we allow libev the luxury of two heaps,
816 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
817 * which is more cache-efficient.
818 * the difference is about 5% with 50000+ watchers.
819 */
820#if EV_USE_4HEAP
283 821
822#define DHEAP 4
823#define HEAP0 (DHEAP - 1) /* index of first element in heap */
824#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
825#define UPHEAP_DONE(p,k) ((p) == (k))
826
827/* away from the root */
828void inline_speed
829downheap (ANHE *heap, int N, int k)
830{
831 ANHE he = heap [k];
832 ANHE *E = heap + N + HEAP0;
833
834 for (;;)
835 {
836 ev_tstamp minat;
837 ANHE *minpos;
838 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
839
840 /* find minimum child */
841 if (expect_true (pos + DHEAP - 1 < E))
842 {
843 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
846 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
847 }
848 else if (pos < E)
849 {
850 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else
856 break;
857
858 if (ANHE_at (he) <= minat)
859 break;
860
861 heap [k] = *minpos;
862 ev_active (ANHE_w (*minpos)) = k;
863
864 k = minpos - heap;
865 }
866
867 heap [k] = he;
868 ev_active (ANHE_w (he)) = k;
869}
870
871#else /* 4HEAP */
872
873#define HEAP0 1
874#define HPARENT(k) ((k) >> 1)
875#define UPHEAP_DONE(p,k) (!(p))
876
877/* away from the root */
878void inline_speed
879downheap (ANHE *heap, int N, int k)
880{
881 ANHE he = heap [k];
882
883 for (;;)
884 {
885 int c = k << 1;
886
887 if (c > N + HEAP0 - 1)
888 break;
889
890 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
891 ? 1 : 0;
892
893 if (ANHE_at (he) <= ANHE_at (heap [c]))
894 break;
895
896 heap [k] = heap [c];
897 ev_active (ANHE_w (heap [k])) = k;
898
899 k = c;
900 }
901
902 heap [k] = he;
903 ev_active (ANHE_w (he)) = k;
904}
905#endif
906
907/* towards the root */
908void inline_speed
909upheap (ANHE *heap, int k)
910{
911 ANHE he = heap [k];
912
913 for (;;)
914 {
915 int p = HPARENT (k);
916
917 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
918 break;
919
920 heap [k] = heap [p];
921 ev_active (ANHE_w (heap [k])) = k;
922 k = p;
923 }
924
925 heap [k] = he;
926 ev_active (ANHE_w (he)) = k;
927}
928
929void inline_size
930adjustheap (ANHE *heap, int N, int k)
931{
932 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
933 upheap (heap, k);
934 else
935 downheap (heap, N, k);
936}
937
938/* rebuild the heap: this function is used only once and executed rarely */
939void inline_size
940reheap (ANHE *heap, int N)
941{
942 int i;
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
947}
948
949#if EV_VERIFY
284static void 950static void
285upheap (WT *timers, int k) 951checkheap (ANHE *heap, int N)
286{ 952{
287 WT w = timers [k]; 953 int i;
288 954
289 while (k && timers [k >> 1]->at > w->at) 955 for (i = HEAP0; i < N + HEAP0; ++i)
290 {
291 timers [k] = timers [k >> 1];
292 timers [k]->active = k + 1;
293 k >>= 1;
294 } 956 {
295 957 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
296 timers [k] = w; 958 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
297 timers [k]->active = k + 1; 959 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
298
299}
300
301static void
302downheap (WT *timers, int N, int k)
303{
304 WT w = timers [k];
305
306 while (k < (N >> 1))
307 { 960 }
308 int j = k << 1;
309
310 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
311 ++j;
312
313 if (w->at <= timers [j]->at)
314 break;
315
316 timers [k] = timers [j];
317 timers [k]->active = k + 1;
318 k = j;
319 }
320
321 timers [k] = w;
322 timers [k]->active = k + 1;
323} 961}
962#endif
324 963
325/*****************************************************************************/ 964/*****************************************************************************/
326 965
327typedef struct 966typedef struct
328{ 967{
329 struct ev_signal *head; 968 WL head;
330 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
331} ANSIG; 970} ANSIG;
332 971
333static ANSIG *signals; 972static ANSIG *signals;
334static int signalmax; 973static int signalmax;
335 974
336static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
337static sig_atomic_t volatile gotsig;
338static struct ev_io sigev;
339 976
340static void 977void inline_size
341signals_init (ANSIG *base, int count) 978signals_init (ANSIG *base, int count)
342{ 979{
343 while (count--) 980 while (count--)
344 { 981 {
345 base->head = 0; 982 base->head = 0;
347 984
348 ++base; 985 ++base;
349 } 986 }
350} 987}
351 988
989/*****************************************************************************/
990
991void inline_speed
992fd_intern (int fd)
993{
994#ifdef _WIN32
995 int arg = 1;
996 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
997#else
998 fcntl (fd, F_SETFD, FD_CLOEXEC);
999 fcntl (fd, F_SETFL, O_NONBLOCK);
1000#endif
1001}
1002
1003static void noinline
1004evpipe_init (EV_P)
1005{
1006 if (!ev_is_active (&pipeev))
1007 {
1008#if EV_USE_EVENTFD
1009 if ((evfd = eventfd (0, 0)) >= 0)
1010 {
1011 evpipe [0] = -1;
1012 fd_intern (evfd);
1013 ev_io_set (&pipeev, evfd, EV_READ);
1014 }
1015 else
1016#endif
1017 {
1018 while (pipe (evpipe))
1019 syserr ("(libev) error creating signal/async pipe");
1020
1021 fd_intern (evpipe [0]);
1022 fd_intern (evpipe [1]);
1023 ev_io_set (&pipeev, evpipe [0], EV_READ);
1024 }
1025
1026 ev_io_start (EV_A_ &pipeev);
1027 ev_unref (EV_A); /* watcher should not keep loop alive */
1028 }
1029}
1030
1031void inline_size
1032evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1033{
1034 if (!*flag)
1035 {
1036 int old_errno = errno; /* save errno because write might clobber it */
1037
1038 *flag = 1;
1039
1040#if EV_USE_EVENTFD
1041 if (evfd >= 0)
1042 {
1043 uint64_t counter = 1;
1044 write (evfd, &counter, sizeof (uint64_t));
1045 }
1046 else
1047#endif
1048 write (evpipe [1], &old_errno, 1);
1049
1050 errno = old_errno;
1051 }
1052}
1053
352static void 1054static void
1055pipecb (EV_P_ ev_io *iow, int revents)
1056{
1057#if EV_USE_EVENTFD
1058 if (evfd >= 0)
1059 {
1060 uint64_t counter;
1061 read (evfd, &counter, sizeof (uint64_t));
1062 }
1063 else
1064#endif
1065 {
1066 char dummy;
1067 read (evpipe [0], &dummy, 1);
1068 }
1069
1070 if (gotsig && ev_is_default_loop (EV_A))
1071 {
1072 int signum;
1073 gotsig = 0;
1074
1075 for (signum = signalmax; signum--; )
1076 if (signals [signum].gotsig)
1077 ev_feed_signal_event (EV_A_ signum + 1);
1078 }
1079
1080#if EV_ASYNC_ENABLE
1081 if (gotasync)
1082 {
1083 int i;
1084 gotasync = 0;
1085
1086 for (i = asynccnt; i--; )
1087 if (asyncs [i]->sent)
1088 {
1089 asyncs [i]->sent = 0;
1090 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1091 }
1092 }
1093#endif
1094}
1095
1096/*****************************************************************************/
1097
1098static void
353sighandler (int signum) 1099ev_sighandler (int signum)
354{ 1100{
1101#if EV_MULTIPLICITY
1102 struct ev_loop *loop = &default_loop_struct;
1103#endif
1104
1105#if _WIN32
1106 signal (signum, ev_sighandler);
1107#endif
1108
355 signals [signum - 1].gotsig = 1; 1109 signals [signum - 1].gotsig = 1;
356 1110 evpipe_write (EV_A_ &gotsig);
357 if (!gotsig)
358 {
359 gotsig = 1;
360 write (sigpipe [1], &signum, 1);
361 }
362} 1111}
363 1112
364static void 1113void noinline
365sigcb (struct ev_io *iow, int revents) 1114ev_feed_signal_event (EV_P_ int signum)
366{ 1115{
367 struct ev_signal *w; 1116 WL w;
368 int sig;
369 1117
370 read (sigpipe [0], &revents, 1); 1118#if EV_MULTIPLICITY
371 gotsig = 0; 1119 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1120#endif
372 1121
373 for (sig = signalmax; sig--; ) 1122 --signum;
374 if (signals [sig].gotsig) 1123
375 { 1124 if (signum < 0 || signum >= signalmax)
1125 return;
1126
376 signals [sig].gotsig = 0; 1127 signals [signum].gotsig = 0;
377 1128
378 for (w = signals [sig].head; w; w = w->next) 1129 for (w = signals [signum].head; w; w = w->next)
379 event ((W)w, EV_SIGNAL); 1130 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
380 }
381}
382
383static void
384siginit (void)
385{
386 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
387 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
388
389 /* rather than sort out wether we really need nb, set it */
390 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
391 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
392
393 ev_io_set (&sigev, sigpipe [0], EV_READ);
394 ev_io_start (&sigev);
395} 1131}
396 1132
397/*****************************************************************************/ 1133/*****************************************************************************/
398 1134
399static struct ev_idle **idles; 1135static WL childs [EV_PID_HASHSIZE];
400static int idlemax, idlecnt;
401 1136
402static struct ev_prepare **prepares; 1137#ifndef _WIN32
403static int preparemax, preparecnt;
404 1138
405static struct ev_check **checks;
406static int checkmax, checkcnt;
407
408/*****************************************************************************/
409
410static struct ev_child *childs [PID_HASHSIZE];
411static struct ev_signal childev; 1139static ev_signal childev;
1140
1141#ifndef WIFCONTINUED
1142# define WIFCONTINUED(status) 0
1143#endif
1144
1145void inline_speed
1146child_reap (EV_P_ int chain, int pid, int status)
1147{
1148 ev_child *w;
1149 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1150
1151 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1152 {
1153 if ((w->pid == pid || !w->pid)
1154 && (!traced || (w->flags & 1)))
1155 {
1156 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1157 w->rpid = pid;
1158 w->rstatus = status;
1159 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1160 }
1161 }
1162}
412 1163
413#ifndef WCONTINUED 1164#ifndef WCONTINUED
414# define WCONTINUED 0 1165# define WCONTINUED 0
415#endif 1166#endif
416 1167
417static void 1168static void
418childcb (struct ev_signal *sw, int revents) 1169childcb (EV_P_ ev_signal *sw, int revents)
419{ 1170{
420 struct ev_child *w;
421 int pid, status; 1171 int pid, status;
422 1172
1173 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
423 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1174 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
424 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1175 if (!WCONTINUED
425 if (w->pid == pid || w->pid == -1) 1176 || errno != EINVAL
426 { 1177 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
427 w->status = status; 1178 return;
428 event ((W)w, EV_CHILD); 1179
429 } 1180 /* make sure we are called again until all children have been reaped */
1181 /* we need to do it this way so that the callback gets called before we continue */
1182 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1183
1184 child_reap (EV_A_ pid, pid, status);
1185 if (EV_PID_HASHSIZE > 1)
1186 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
430} 1187}
1188
1189#endif
431 1190
432/*****************************************************************************/ 1191/*****************************************************************************/
433 1192
1193#if EV_USE_PORT
1194# include "ev_port.c"
1195#endif
1196#if EV_USE_KQUEUE
1197# include "ev_kqueue.c"
1198#endif
434#if EV_USE_EPOLL 1199#if EV_USE_EPOLL
435# include "ev_epoll.c" 1200# include "ev_epoll.c"
436#endif 1201#endif
1202#if EV_USE_POLL
1203# include "ev_poll.c"
1204#endif
437#if EV_USE_SELECT 1205#if EV_USE_SELECT
438# include "ev_select.c" 1206# include "ev_select.c"
439#endif 1207#endif
440 1208
441int 1209int
448ev_version_minor (void) 1216ev_version_minor (void)
449{ 1217{
450 return EV_VERSION_MINOR; 1218 return EV_VERSION_MINOR;
451} 1219}
452 1220
453int ev_init (int flags) 1221/* return true if we are running with elevated privileges and should ignore env variables */
1222int inline_size
1223enable_secure (void)
454{ 1224{
455 if (!ev_method) 1225#ifdef _WIN32
1226 return 0;
1227#else
1228 return getuid () != geteuid ()
1229 || getgid () != getegid ();
1230#endif
1231}
1232
1233unsigned int
1234ev_supported_backends (void)
1235{
1236 unsigned int flags = 0;
1237
1238 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1239 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1240 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1241 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1242 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1243
1244 return flags;
1245}
1246
1247unsigned int
1248ev_recommended_backends (void)
1249{
1250 unsigned int flags = ev_supported_backends ();
1251
1252#ifndef __NetBSD__
1253 /* kqueue is borked on everything but netbsd apparently */
1254 /* it usually doesn't work correctly on anything but sockets and pipes */
1255 flags &= ~EVBACKEND_KQUEUE;
1256#endif
1257#ifdef __APPLE__
1258 // flags &= ~EVBACKEND_KQUEUE; for documentation
1259 flags &= ~EVBACKEND_POLL;
1260#endif
1261
1262 return flags;
1263}
1264
1265unsigned int
1266ev_embeddable_backends (void)
1267{
1268 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1269
1270 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1271 /* please fix it and tell me how to detect the fix */
1272 flags &= ~EVBACKEND_EPOLL;
1273
1274 return flags;
1275}
1276
1277unsigned int
1278ev_backend (EV_P)
1279{
1280 return backend;
1281}
1282
1283unsigned int
1284ev_loop_count (EV_P)
1285{
1286 return loop_count;
1287}
1288
1289void
1290ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 io_blocktime = interval;
1293}
1294
1295void
1296ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1297{
1298 timeout_blocktime = interval;
1299}
1300
1301static void noinline
1302loop_init (EV_P_ unsigned int flags)
1303{
1304 if (!backend)
456 { 1305 {
457#if EV_USE_MONOTONIC 1306#if EV_USE_MONOTONIC
458 { 1307 {
459 struct timespec ts; 1308 struct timespec ts;
460 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1309 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
461 have_monotonic = 1; 1310 have_monotonic = 1;
462 } 1311 }
463#endif 1312#endif
464 1313
465 ev_now = ev_time (); 1314 ev_rt_now = ev_time ();
466 now = get_clock (); 1315 mn_now = get_clock ();
1316 now_floor = mn_now;
467 diff = ev_now - now; 1317 rtmn_diff = ev_rt_now - mn_now;
468 1318
469 if (pipe (sigpipe)) 1319 io_blocktime = 0.;
470 return 0; 1320 timeout_blocktime = 0.;
1321 backend = 0;
1322 backend_fd = -1;
1323 gotasync = 0;
1324#if EV_USE_INOTIFY
1325 fs_fd = -2;
1326#endif
471 1327
472 ev_method = EVMETHOD_NONE; 1328 /* pid check not overridable via env */
1329#ifndef _WIN32
1330 if (flags & EVFLAG_FORKCHECK)
1331 curpid = getpid ();
1332#endif
1333
1334 if (!(flags & EVFLAG_NOENV)
1335 && !enable_secure ()
1336 && getenv ("LIBEV_FLAGS"))
1337 flags = atoi (getenv ("LIBEV_FLAGS"));
1338
1339 if (!(flags & 0x0000ffffU))
1340 flags |= ev_recommended_backends ();
1341
1342#if EV_USE_PORT
1343 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1344#endif
1345#if EV_USE_KQUEUE
1346 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1347#endif
473#if EV_USE_EPOLL 1348#if EV_USE_EPOLL
474 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 1349 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1350#endif
1351#if EV_USE_POLL
1352 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
475#endif 1353#endif
476#if EV_USE_SELECT 1354#if EV_USE_SELECT
477 if (ev_method == EVMETHOD_NONE) select_init (flags); 1355 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
478#endif 1356#endif
479 1357
480 if (ev_method) 1358 ev_init (&pipeev, pipecb);
1359 ev_set_priority (&pipeev, EV_MAXPRI);
1360 }
1361}
1362
1363static void noinline
1364loop_destroy (EV_P)
1365{
1366 int i;
1367
1368 if (ev_is_active (&pipeev))
1369 {
1370 ev_ref (EV_A); /* signal watcher */
1371 ev_io_stop (EV_A_ &pipeev);
1372
1373#if EV_USE_EVENTFD
1374 if (evfd >= 0)
1375 close (evfd);
1376#endif
1377
1378 if (evpipe [0] >= 0)
481 { 1379 {
482 ev_watcher_init (&sigev, sigcb); 1380 close (evpipe [0]);
483 siginit (); 1381 close (evpipe [1]);
1382 }
1383 }
484 1384
1385#if EV_USE_INOTIFY
1386 if (fs_fd >= 0)
1387 close (fs_fd);
1388#endif
1389
1390 if (backend_fd >= 0)
1391 close (backend_fd);
1392
1393#if EV_USE_PORT
1394 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1395#endif
1396#if EV_USE_KQUEUE
1397 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1398#endif
1399#if EV_USE_EPOLL
1400 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1401#endif
1402#if EV_USE_POLL
1403 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1404#endif
1405#if EV_USE_SELECT
1406 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1407#endif
1408
1409 for (i = NUMPRI; i--; )
1410 {
1411 array_free (pending, [i]);
1412#if EV_IDLE_ENABLE
1413 array_free (idle, [i]);
1414#endif
1415 }
1416
1417 ev_free (anfds); anfdmax = 0;
1418
1419 /* have to use the microsoft-never-gets-it-right macro */
1420 array_free (fdchange, EMPTY);
1421 array_free (timer, EMPTY);
1422#if EV_PERIODIC_ENABLE
1423 array_free (periodic, EMPTY);
1424#endif
1425#if EV_FORK_ENABLE
1426 array_free (fork, EMPTY);
1427#endif
1428 array_free (prepare, EMPTY);
1429 array_free (check, EMPTY);
1430#if EV_ASYNC_ENABLE
1431 array_free (async, EMPTY);
1432#endif
1433
1434 backend = 0;
1435}
1436
1437#if EV_USE_INOTIFY
1438void inline_size infy_fork (EV_P);
1439#endif
1440
1441void inline_size
1442loop_fork (EV_P)
1443{
1444#if EV_USE_PORT
1445 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1446#endif
1447#if EV_USE_KQUEUE
1448 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1449#endif
1450#if EV_USE_EPOLL
1451 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1452#endif
1453#if EV_USE_INOTIFY
1454 infy_fork (EV_A);
1455#endif
1456
1457 if (ev_is_active (&pipeev))
1458 {
1459 /* this "locks" the handlers against writing to the pipe */
1460 /* while we modify the fd vars */
1461 gotsig = 1;
1462#if EV_ASYNC_ENABLE
1463 gotasync = 1;
1464#endif
1465
1466 ev_ref (EV_A);
1467 ev_io_stop (EV_A_ &pipeev);
1468
1469#if EV_USE_EVENTFD
1470 if (evfd >= 0)
1471 close (evfd);
1472#endif
1473
1474 if (evpipe [0] >= 0)
1475 {
1476 close (evpipe [0]);
1477 close (evpipe [1]);
1478 }
1479
1480 evpipe_init (EV_A);
1481 /* now iterate over everything, in case we missed something */
1482 pipecb (EV_A_ &pipeev, EV_READ);
1483 }
1484
1485 postfork = 0;
1486}
1487
1488#if EV_MULTIPLICITY
1489struct ev_loop *
1490ev_loop_new (unsigned int flags)
1491{
1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1493
1494 memset (loop, 0, sizeof (struct ev_loop));
1495
1496 loop_init (EV_A_ flags);
1497
1498 if (ev_backend (EV_A))
1499 return loop;
1500
1501 return 0;
1502}
1503
1504void
1505ev_loop_destroy (EV_P)
1506{
1507 loop_destroy (EV_A);
1508 ev_free (loop);
1509}
1510
1511void
1512ev_loop_fork (EV_P)
1513{
1514 postfork = 1; /* must be in line with ev_default_fork */
1515}
1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1524
1525static void
1526ev_loop_verify (EV_P)
1527{
1528 int i;
1529
1530 checkheap (timers, timercnt);
1531#if EV_PERIODIC_ENABLE
1532 checkheap (periodics, periodiccnt);
1533#endif
1534
1535#if EV_IDLE_ENABLE
1536 for (i = NUMPRI; i--; )
1537 array_check ((W **)idles [i], idlecnt [i]);
1538#endif
1539#if EV_FORK_ENABLE
1540 array_check ((W **)forks, forkcnt);
1541#endif
1542 array_check ((W **)prepares, preparecnt);
1543 array_check ((W **)checks, checkcnt);
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547}
1548#endif
1549
1550#endif
1551
1552#if EV_MULTIPLICITY
1553struct ev_loop *
1554ev_default_loop_init (unsigned int flags)
1555#else
1556int
1557ev_default_loop (unsigned int flags)
1558#endif
1559{
1560 if (!ev_default_loop_ptr)
1561 {
1562#if EV_MULTIPLICITY
1563 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1564#else
1565 ev_default_loop_ptr = 1;
1566#endif
1567
1568 loop_init (EV_A_ flags);
1569
1570 if (ev_backend (EV_A))
1571 {
1572#ifndef _WIN32
485 ev_signal_init (&childev, childcb, SIGCHLD); 1573 ev_signal_init (&childev, childcb, SIGCHLD);
1574 ev_set_priority (&childev, EV_MAXPRI);
486 ev_signal_start (&childev); 1575 ev_signal_start (EV_A_ &childev);
1576 ev_unref (EV_A); /* child watcher should not keep loop alive */
1577#endif
487 } 1578 }
1579 else
1580 ev_default_loop_ptr = 0;
488 } 1581 }
489 1582
490 return ev_method; 1583 return ev_default_loop_ptr;
1584}
1585
1586void
1587ev_default_destroy (void)
1588{
1589#if EV_MULTIPLICITY
1590 struct ev_loop *loop = ev_default_loop_ptr;
1591#endif
1592
1593#ifndef _WIN32
1594 ev_ref (EV_A); /* child watcher */
1595 ev_signal_stop (EV_A_ &childev);
1596#endif
1597
1598 loop_destroy (EV_A);
1599}
1600
1601void
1602ev_default_fork (void)
1603{
1604#if EV_MULTIPLICITY
1605 struct ev_loop *loop = ev_default_loop_ptr;
1606#endif
1607
1608 if (backend)
1609 postfork = 1; /* must be in line with ev_loop_fork */
491} 1610}
492 1611
493/*****************************************************************************/ 1612/*****************************************************************************/
494 1613
495void 1614void
496ev_fork_prepare (void) 1615ev_invoke (EV_P_ void *w, int revents)
497{ 1616{
498 /* nop */ 1617 EV_CB_INVOKE ((W)w, revents);
499} 1618}
500 1619
501void 1620void inline_speed
502ev_fork_parent (void)
503{
504 /* nop */
505}
506
507void
508ev_fork_child (void)
509{
510#if EV_USE_EPOLL
511 if (ev_method == EVMETHOD_EPOLL)
512 epoll_postfork_child ();
513#endif
514
515 ev_io_stop (&sigev);
516 close (sigpipe [0]);
517 close (sigpipe [1]);
518 pipe (sigpipe);
519 siginit ();
520}
521
522/*****************************************************************************/
523
524static void
525call_pending (void) 1621call_pending (EV_P)
526{ 1622{
1623 int pri;
1624
1625 EV_FREQUENT_CHECK;
1626
1627 for (pri = NUMPRI; pri--; )
527 while (pendingcnt) 1628 while (pendingcnt [pri])
528 { 1629 {
529 ANPENDING *p = pendings + --pendingcnt; 1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
530 1631
531 if (p->w) 1632 if (expect_true (p->w))
1633 {
1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1635
1636 p->w->pending = 0;
1637 EV_CB_INVOKE (p->w, p->events);
1638 }
1639 }
1640
1641 EV_FREQUENT_CHECK;
1642}
1643
1644#if EV_IDLE_ENABLE
1645void inline_size
1646idle_reify (EV_P)
1647{
1648 if (expect_false (idleall))
1649 {
1650 int pri;
1651
1652 for (pri = NUMPRI; pri--; )
532 { 1653 {
533 p->w->pending = 0; 1654 if (pendingcnt [pri])
534 p->w->cb (p->w, p->events); 1655 break;
1656
1657 if (idlecnt [pri])
1658 {
1659 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1660 break;
1661 }
535 } 1662 }
536 } 1663 }
537} 1664}
1665#endif
538 1666
539static void 1667void inline_size
540timers_reify (void) 1668timers_reify (EV_P)
541{ 1669{
1670 EV_FREQUENT_CHECK;
1671
542 while (timercnt && timers [0]->at <= now) 1672 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
543 { 1673 {
544 struct ev_timer *w = timers [0]; 1674 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1675
1676 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
545 1677
546 /* first reschedule or stop timer */ 1678 /* first reschedule or stop timer */
547 if (w->repeat) 1679 if (w->repeat)
548 { 1680 {
1681 ev_at (w) += w->repeat;
1682 if (ev_at (w) < mn_now)
1683 ev_at (w) = mn_now;
1684
549 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1685 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
550 w->at = now + w->repeat; 1686
1687 ANHE_at_cache (timers [HEAP0]);
551 downheap ((WT *)timers, timercnt, 0); 1688 downheap (timers, timercnt, HEAP0);
552 } 1689 }
553 else 1690 else
554 ev_timer_stop (w); /* nonrepeating: stop timer */ 1691 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
555 1692
1693 EV_FREQUENT_CHECK;
556 event ((W)w, EV_TIMEOUT); 1694 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
557 } 1695 }
558} 1696}
559 1697
560static void 1698#if EV_PERIODIC_ENABLE
1699void inline_size
561periodics_reify (void) 1700periodics_reify (EV_P)
562{ 1701{
1702 EV_FREQUENT_CHECK;
563 while (periodiccnt && periodics [0]->at <= ev_now) 1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
564 { 1704 {
565 struct ev_periodic *w = periodics [0]; 1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
566 1708
567 /* first reschedule or stop timer */ 1709 /* first reschedule or stop timer */
568 if (w->interval) 1710 if (w->reschedule_cb)
569 { 1711 {
570 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
571 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
572 downheap ((WT *)periodics, periodiccnt, 0); 1717 downheap (periodics, periodiccnt, HEAP0);
1718 EV_FREQUENT_CHECK;
1719 }
1720 else if (w->interval)
1721 {
1722 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1723 /* if next trigger time is not sufficiently in the future, put it there */
1724 /* this might happen because of floating point inexactness */
1725 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1726 {
1727 ev_at (w) += w->interval;
1728
1729 /* if interval is unreasonably low we might still have a time in the past */
1730 /* so correct this. this will make the periodic very inexact, but the user */
1731 /* has effectively asked to get triggered more often than possible */
1732 if (ev_at (w) < ev_rt_now)
1733 ev_at (w) = ev_rt_now;
1734 }
1735
1736 ANHE_at_cache (periodics [HEAP0]);
1737 downheap (periodics, periodiccnt, HEAP0);
573 } 1738 }
574 else 1739 else
575 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1740 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
576 1741
1742 EV_FREQUENT_CHECK;
577 event ((W)w, EV_PERIODIC); 1743 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
578 } 1744 }
579} 1745}
580 1746
581static void 1747static void noinline
582periodics_reschedule (ev_tstamp diff) 1748periodics_reschedule (EV_P)
583{ 1749{
584 int i; 1750 int i;
585 1751
586 /* adjust periodics after time jump */ 1752 /* adjust periodics after time jump */
587 for (i = 0; i < periodiccnt; ++i) 1753 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
588 { 1754 {
589 struct ev_periodic *w = periodics [i]; 1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
590 1756
1757 if (w->reschedule_cb)
1758 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
591 if (w->interval) 1759 else if (w->interval)
1760 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1761
1762 ANHE_at_cache (periodics [i]);
1763 }
1764
1765 reheap (periodics, periodiccnt);
1766}
1767#endif
1768
1769void inline_speed
1770time_update (EV_P_ ev_tstamp max_block)
1771{
1772 int i;
1773
1774#if EV_USE_MONOTONIC
1775 if (expect_true (have_monotonic))
1776 {
1777 ev_tstamp odiff = rtmn_diff;
1778
1779 mn_now = get_clock ();
1780
1781 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1782 /* interpolate in the meantime */
1783 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
592 { 1784 {
593 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1785 ev_rt_now = rtmn_diff + mn_now;
1786 return;
1787 }
594 1788
595 if (fabs (diff) >= 1e-4) 1789 now_floor = mn_now;
1790 ev_rt_now = ev_time ();
1791
1792 /* loop a few times, before making important decisions.
1793 * on the choice of "4": one iteration isn't enough,
1794 * in case we get preempted during the calls to
1795 * ev_time and get_clock. a second call is almost guaranteed
1796 * to succeed in that case, though. and looping a few more times
1797 * doesn't hurt either as we only do this on time-jumps or
1798 * in the unlikely event of having been preempted here.
1799 */
1800 for (i = 4; --i; )
1801 {
1802 rtmn_diff = ev_rt_now - mn_now;
1803
1804 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1805 return; /* all is well */
1806
1807 ev_rt_now = ev_time ();
1808 mn_now = get_clock ();
1809 now_floor = mn_now;
1810 }
1811
1812# if EV_PERIODIC_ENABLE
1813 periodics_reschedule (EV_A);
1814# endif
1815 /* no timer adjustment, as the monotonic clock doesn't jump */
1816 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1817 }
1818 else
1819#endif
1820 {
1821 ev_rt_now = ev_time ();
1822
1823 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1824 {
1825#if EV_PERIODIC_ENABLE
1826 periodics_reschedule (EV_A);
1827#endif
1828 /* adjust timers. this is easy, as the offset is the same for all of them */
1829 for (i = 0; i < timercnt; ++i)
596 { 1830 {
597 ev_periodic_stop (w); 1831 ANHE *he = timers + i + HEAP0;
598 ev_periodic_start (w); 1832 ANHE_w (*he)->at += ev_rt_now - mn_now;
599 1833 ANHE_at_cache (*he);
600 i = 0; /* restart loop, inefficient, but time jumps should be rare */
601 } 1834 }
602 } 1835 }
603 }
604}
605 1836
606static void 1837 mn_now = ev_rt_now;
607time_update (void)
608{
609 int i;
610
611 ev_now = ev_time ();
612
613 if (have_monotonic)
614 { 1838 }
615 ev_tstamp odiff = diff; 1839}
616 1840
617 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1841void
1842ev_ref (EV_P)
1843{
1844 ++activecnt;
1845}
1846
1847void
1848ev_unref (EV_P)
1849{
1850 --activecnt;
1851}
1852
1853static int loop_done;
1854
1855void
1856ev_loop (EV_P_ int flags)
1857{
1858 loop_done = EVUNLOOP_CANCEL;
1859
1860 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1861
1862 do
1863 {
1864#ifndef _WIN32
1865 if (expect_false (curpid)) /* penalise the forking check even more */
1866 if (expect_false (getpid () != curpid))
1867 {
1868 curpid = getpid ();
1869 postfork = 1;
1870 }
1871#endif
1872
1873#if EV_FORK_ENABLE
1874 /* we might have forked, so queue fork handlers */
1875 if (expect_false (postfork))
1876 if (forkcnt)
1877 {
1878 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1879 call_pending (EV_A);
1880 }
1881#endif
1882
1883 /* queue prepare watchers (and execute them) */
1884 if (expect_false (preparecnt))
618 { 1885 {
619 now = get_clock (); 1886 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
620 diff = ev_now - now; 1887 call_pending (EV_A);
621
622 if (fabs (odiff - diff) < MIN_TIMEJUMP)
623 return; /* all is well */
624
625 ev_now = ev_time ();
626 } 1888 }
627 1889
628 periodics_reschedule (diff - odiff); 1890 if (expect_false (!activecnt))
629 /* no timer adjustment, as the monotonic clock doesn't jump */ 1891 break;
630 }
631 else
632 {
633 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
634 {
635 periodics_reschedule (ev_now - now);
636 1892
637 /* adjust timers. this is easy, as the offset is the same for all */ 1893 /* we might have forked, so reify kernel state if necessary */
638 for (i = 0; i < timercnt; ++i) 1894 if (expect_false (postfork))
639 timers [i]->at += diff; 1895 loop_fork (EV_A);
640 }
641
642 now = ev_now;
643 }
644}
645
646int ev_loop_done;
647
648void ev_loop (int flags)
649{
650 double block;
651 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
652
653 do
654 {
655 /* queue check watchers (and execute them) */
656 if (preparecnt)
657 {
658 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
659 call_pending ();
660 }
661 1896
662 /* update fd-related kernel structures */ 1897 /* update fd-related kernel structures */
663 fd_reify (); 1898 fd_reify (EV_A);
664 1899
665 /* calculate blocking time */ 1900 /* calculate blocking time */
1901 {
1902 ev_tstamp waittime = 0.;
1903 ev_tstamp sleeptime = 0.;
666 1904
667 /* we only need this for !monotonic clockor timers, but as we basically 1905 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
668 always have timers, we just calculate it always */
669 ev_now = ev_time ();
670
671 if (flags & EVLOOP_NONBLOCK || idlecnt)
672 block = 0.;
673 else
674 { 1906 {
1907 /* update time to cancel out callback processing overhead */
1908 time_update (EV_A_ 1e100);
1909
675 block = MAX_BLOCKTIME; 1910 waittime = MAX_BLOCKTIME;
676 1911
677 if (timercnt) 1912 if (timercnt)
678 { 1913 {
679 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1914 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
680 if (block > to) block = to; 1915 if (waittime > to) waittime = to;
681 } 1916 }
682 1917
1918#if EV_PERIODIC_ENABLE
683 if (periodiccnt) 1919 if (periodiccnt)
684 { 1920 {
685 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1921 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
686 if (block > to) block = to; 1922 if (waittime > to) waittime = to;
687 } 1923 }
1924#endif
688 1925
689 if (block < 0.) block = 0.; 1926 if (expect_false (waittime < timeout_blocktime))
1927 waittime = timeout_blocktime;
1928
1929 sleeptime = waittime - backend_fudge;
1930
1931 if (expect_true (sleeptime > io_blocktime))
1932 sleeptime = io_blocktime;
1933
1934 if (sleeptime)
1935 {
1936 ev_sleep (sleeptime);
1937 waittime -= sleeptime;
1938 }
690 } 1939 }
691 1940
692 method_poll (block); 1941 ++loop_count;
1942 backend_poll (EV_A_ waittime);
693 1943
694 /* update ev_now, do magic */ 1944 /* update ev_rt_now, do magic */
695 time_update (); 1945 time_update (EV_A_ waittime + sleeptime);
1946 }
696 1947
697 /* queue pending timers and reschedule them */ 1948 /* queue pending timers and reschedule them */
698 timers_reify (); /* relative timers called last */ 1949 timers_reify (EV_A); /* relative timers called last */
1950#if EV_PERIODIC_ENABLE
699 periodics_reify (); /* absolute timers called first */ 1951 periodics_reify (EV_A); /* absolute timers called first */
1952#endif
700 1953
1954#if EV_IDLE_ENABLE
701 /* queue idle watchers unless io or timers are pending */ 1955 /* queue idle watchers unless other events are pending */
702 if (!pendingcnt) 1956 idle_reify (EV_A);
703 queue_events ((W *)idles, idlecnt, EV_IDLE); 1957#endif
704 1958
705 /* queue check watchers, to be executed first */ 1959 /* queue check watchers, to be executed first */
706 if (checkcnt) 1960 if (expect_false (checkcnt))
707 queue_events ((W *)checks, checkcnt, EV_CHECK); 1961 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
708 1962
709 call_pending (); 1963 call_pending (EV_A);
710 } 1964 }
711 while (!ev_loop_done); 1965 while (expect_true (
1966 activecnt
1967 && !loop_done
1968 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1969 ));
712 1970
713 if (ev_loop_done != 2) 1971 if (loop_done == EVUNLOOP_ONE)
1972 loop_done = EVUNLOOP_CANCEL;
1973}
1974
1975void
1976ev_unloop (EV_P_ int how)
1977{
714 ev_loop_done = 0; 1978 loop_done = how;
715} 1979}
716 1980
717/*****************************************************************************/ 1981/*****************************************************************************/
718 1982
719static void 1983void inline_size
720wlist_add (WL *head, WL elem) 1984wlist_add (WL *head, WL elem)
721{ 1985{
722 elem->next = *head; 1986 elem->next = *head;
723 *head = elem; 1987 *head = elem;
724} 1988}
725 1989
726static void 1990void inline_size
727wlist_del (WL *head, WL elem) 1991wlist_del (WL *head, WL elem)
728{ 1992{
729 while (*head) 1993 while (*head)
730 { 1994 {
731 if (*head == elem) 1995 if (*head == elem)
736 2000
737 head = &(*head)->next; 2001 head = &(*head)->next;
738 } 2002 }
739} 2003}
740 2004
741static void 2005void inline_speed
742ev_clear_pending (W w) 2006clear_pending (EV_P_ W w)
743{ 2007{
744 if (w->pending) 2008 if (w->pending)
745 { 2009 {
746 pendings [w->pending - 1].w = 0; 2010 pendings [ABSPRI (w)][w->pending - 1].w = 0;
747 w->pending = 0; 2011 w->pending = 0;
748 } 2012 }
749} 2013}
750 2014
751static void 2015int
2016ev_clear_pending (EV_P_ void *w)
2017{
2018 W w_ = (W)w;
2019 int pending = w_->pending;
2020
2021 if (expect_true (pending))
2022 {
2023 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2024 w_->pending = 0;
2025 p->w = 0;
2026 return p->events;
2027 }
2028 else
2029 return 0;
2030}
2031
2032void inline_size
2033pri_adjust (EV_P_ W w)
2034{
2035 int pri = w->priority;
2036 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2037 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2038 w->priority = pri;
2039}
2040
2041void inline_speed
752ev_start (W w, int active) 2042ev_start (EV_P_ W w, int active)
753{ 2043{
2044 pri_adjust (EV_A_ w);
754 w->active = active; 2045 w->active = active;
2046 ev_ref (EV_A);
755} 2047}
756 2048
757static void 2049void inline_size
758ev_stop (W w) 2050ev_stop (EV_P_ W w)
759{ 2051{
2052 ev_unref (EV_A);
760 w->active = 0; 2053 w->active = 0;
761} 2054}
762 2055
763/*****************************************************************************/ 2056/*****************************************************************************/
764 2057
765void 2058void noinline
766ev_io_start (struct ev_io *w) 2059ev_io_start (EV_P_ ev_io *w)
767{ 2060{
2061 int fd = w->fd;
2062
768 if (ev_is_active (w)) 2063 if (expect_false (ev_is_active (w)))
769 return; 2064 return;
770 2065
771 int fd = w->fd;
772
773 assert (("ev_io_start called with negative fd", fd >= 0)); 2066 assert (("ev_io_start called with negative fd", fd >= 0));
774 2067
2068 EV_FREQUENT_CHECK;
2069
775 ev_start ((W)w, 1); 2070 ev_start (EV_A_ (W)w, 1);
776 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2071 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
777 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2072 wlist_add (&anfds[fd].head, (WL)w);
778 2073
779 fd_change (fd); 2074 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
780} 2075 w->events &= ~EV_IOFDSET;
781 2076
782void 2077 EV_FREQUENT_CHECK;
2078}
2079
2080void noinline
783ev_io_stop (struct ev_io *w) 2081ev_io_stop (EV_P_ ev_io *w)
784{ 2082{
785 ev_clear_pending ((W)w); 2083 clear_pending (EV_A_ (W)w);
786 if (!ev_is_active (w)) 2084 if (expect_false (!ev_is_active (w)))
787 return; 2085 return;
788 2086
2087 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2088
2089 EV_FREQUENT_CHECK;
2090
789 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2091 wlist_del (&anfds[w->fd].head, (WL)w);
790 ev_stop ((W)w); 2092 ev_stop (EV_A_ (W)w);
791 2093
792 fd_change (w->fd); 2094 fd_change (EV_A_ w->fd, 1);
793}
794 2095
795void 2096 EV_FREQUENT_CHECK;
2097}
2098
2099void noinline
796ev_timer_start (struct ev_timer *w) 2100ev_timer_start (EV_P_ ev_timer *w)
797{ 2101{
798 if (ev_is_active (w)) 2102 if (expect_false (ev_is_active (w)))
799 return; 2103 return;
800 2104
801 w->at += now; 2105 ev_at (w) += mn_now;
802 2106
803 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2107 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
804 2108
805 ev_start ((W)w, ++timercnt); 2109 EV_FREQUENT_CHECK;
806 array_needsize (timers, timermax, timercnt, );
807 timers [timercnt - 1] = w;
808 upheap ((WT *)timers, timercnt - 1);
809}
810 2110
811void 2111 ++timercnt;
2112 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2113 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (timers [ev_active (w)]) = (WT)w;
2115 ANHE_at_cache (timers [ev_active (w)]);
2116 upheap (timers, ev_active (w));
2117
2118 EV_FREQUENT_CHECK;
2119
2120 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2121}
2122
2123void noinline
812ev_timer_stop (struct ev_timer *w) 2124ev_timer_stop (EV_P_ ev_timer *w)
813{ 2125{
814 ev_clear_pending ((W)w); 2126 clear_pending (EV_A_ (W)w);
815 if (!ev_is_active (w)) 2127 if (expect_false (!ev_is_active (w)))
816 return; 2128 return;
817 2129
818 if (w->active < timercnt--) 2130 EV_FREQUENT_CHECK;
2131
2132 {
2133 int active = ev_active (w);
2134
2135 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2136
2137 --timercnt;
2138
2139 if (expect_true (active < timercnt + HEAP0))
819 { 2140 {
820 timers [w->active - 1] = timers [timercnt]; 2141 timers [active] = timers [timercnt + HEAP0];
821 downheap ((WT *)timers, timercnt, w->active - 1); 2142 adjustheap (timers, timercnt, active);
822 } 2143 }
2144 }
823 2145
824 w->at = w->repeat; 2146 EV_FREQUENT_CHECK;
825 2147
2148 ev_at (w) -= mn_now;
2149
826 ev_stop ((W)w); 2150 ev_stop (EV_A_ (W)w);
827} 2151}
828 2152
829void 2153void noinline
830ev_timer_again (struct ev_timer *w) 2154ev_timer_again (EV_P_ ev_timer *w)
831{ 2155{
2156 EV_FREQUENT_CHECK;
2157
832 if (ev_is_active (w)) 2158 if (ev_is_active (w))
833 { 2159 {
834 if (w->repeat) 2160 if (w->repeat)
835 { 2161 {
836 w->at = now + w->repeat; 2162 ev_at (w) = mn_now + w->repeat;
2163 ANHE_at_cache (timers [ev_active (w)]);
837 downheap ((WT *)timers, timercnt, w->active - 1); 2164 adjustheap (timers, timercnt, ev_active (w));
838 } 2165 }
839 else 2166 else
840 ev_timer_stop (w); 2167 ev_timer_stop (EV_A_ w);
841 } 2168 }
842 else if (w->repeat) 2169 else if (w->repeat)
2170 {
2171 ev_at (w) = w->repeat;
843 ev_timer_start (w); 2172 ev_timer_start (EV_A_ w);
844} 2173 }
845 2174
846void 2175 EV_FREQUENT_CHECK;
2176}
2177
2178#if EV_PERIODIC_ENABLE
2179void noinline
847ev_periodic_start (struct ev_periodic *w) 2180ev_periodic_start (EV_P_ ev_periodic *w)
848{ 2181{
849 if (ev_is_active (w)) 2182 if (expect_false (ev_is_active (w)))
850 return; 2183 return;
851 2184
2185 if (w->reschedule_cb)
2186 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2187 else if (w->interval)
2188 {
852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2189 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
853
854 /* this formula differs from the one in periodic_reify because we do not always round up */ 2190 /* this formula differs from the one in periodic_reify because we do not always round up */
855 if (w->interval)
856 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2191 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2192 }
2193 else
2194 ev_at (w) = w->offset;
857 2195
2196 EV_FREQUENT_CHECK;
2197
2198 ++periodiccnt;
858 ev_start ((W)w, ++periodiccnt); 2199 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
859 array_needsize (periodics, periodicmax, periodiccnt, ); 2200 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
860 periodics [periodiccnt - 1] = w; 2201 ANHE_w (periodics [ev_active (w)]) = (WT)w;
861 upheap ((WT *)periodics, periodiccnt - 1); 2202 ANHE_at_cache (periodics [ev_active (w)]);
862} 2203 upheap (periodics, ev_active (w));
863 2204
864void 2205 EV_FREQUENT_CHECK;
2206
2207 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2208}
2209
2210void noinline
865ev_periodic_stop (struct ev_periodic *w) 2211ev_periodic_stop (EV_P_ ev_periodic *w)
866{ 2212{
867 ev_clear_pending ((W)w); 2213 clear_pending (EV_A_ (W)w);
868 if (!ev_is_active (w)) 2214 if (expect_false (!ev_is_active (w)))
869 return; 2215 return;
870 2216
871 if (w->active < periodiccnt--) 2217 EV_FREQUENT_CHECK;
2218
2219 {
2220 int active = ev_active (w);
2221
2222 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2223
2224 --periodiccnt;
2225
2226 if (expect_true (active < periodiccnt + HEAP0))
872 { 2227 {
873 periodics [w->active - 1] = periodics [periodiccnt]; 2228 periodics [active] = periodics [periodiccnt + HEAP0];
874 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2229 adjustheap (periodics, periodiccnt, active);
875 } 2230 }
2231 }
876 2232
2233 EV_FREQUENT_CHECK;
2234
877 ev_stop ((W)w); 2235 ev_stop (EV_A_ (W)w);
878} 2236}
879 2237
880void 2238void noinline
2239ev_periodic_again (EV_P_ ev_periodic *w)
2240{
2241 /* TODO: use adjustheap and recalculation */
2242 ev_periodic_stop (EV_A_ w);
2243 ev_periodic_start (EV_A_ w);
2244}
2245#endif
2246
2247#ifndef SA_RESTART
2248# define SA_RESTART 0
2249#endif
2250
2251void noinline
881ev_signal_start (struct ev_signal *w) 2252ev_signal_start (EV_P_ ev_signal *w)
882{ 2253{
2254#if EV_MULTIPLICITY
2255 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2256#endif
883 if (ev_is_active (w)) 2257 if (expect_false (ev_is_active (w)))
884 return; 2258 return;
885 2259
886 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2260 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
887 2261
888 ev_start ((W)w, 1); 2262 evpipe_init (EV_A);
2263
2264 EV_FREQUENT_CHECK;
2265
2266 {
2267#ifndef _WIN32
2268 sigset_t full, prev;
2269 sigfillset (&full);
2270 sigprocmask (SIG_SETMASK, &full, &prev);
2271#endif
2272
889 array_needsize (signals, signalmax, w->signum, signals_init); 2273 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2274
2275#ifndef _WIN32
2276 sigprocmask (SIG_SETMASK, &prev, 0);
2277#endif
2278 }
2279
2280 ev_start (EV_A_ (W)w, 1);
890 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2281 wlist_add (&signals [w->signum - 1].head, (WL)w);
891 2282
892 if (!w->next) 2283 if (!((WL)w)->next)
893 { 2284 {
2285#if _WIN32
2286 signal (w->signum, ev_sighandler);
2287#else
894 struct sigaction sa; 2288 struct sigaction sa;
895 sa.sa_handler = sighandler; 2289 sa.sa_handler = ev_sighandler;
896 sigfillset (&sa.sa_mask); 2290 sigfillset (&sa.sa_mask);
897 sa.sa_flags = 0; 2291 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
898 sigaction (w->signum, &sa, 0); 2292 sigaction (w->signum, &sa, 0);
2293#endif
899 } 2294 }
900}
901 2295
902void 2296 EV_FREQUENT_CHECK;
2297}
2298
2299void noinline
903ev_signal_stop (struct ev_signal *w) 2300ev_signal_stop (EV_P_ ev_signal *w)
904{ 2301{
905 ev_clear_pending ((W)w); 2302 clear_pending (EV_A_ (W)w);
906 if (!ev_is_active (w)) 2303 if (expect_false (!ev_is_active (w)))
907 return; 2304 return;
908 2305
2306 EV_FREQUENT_CHECK;
2307
909 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2308 wlist_del (&signals [w->signum - 1].head, (WL)w);
910 ev_stop ((W)w); 2309 ev_stop (EV_A_ (W)w);
911 2310
912 if (!signals [w->signum - 1].head) 2311 if (!signals [w->signum - 1].head)
913 signal (w->signum, SIG_DFL); 2312 signal (w->signum, SIG_DFL);
914}
915 2313
2314 EV_FREQUENT_CHECK;
2315}
2316
916void 2317void
917ev_idle_start (struct ev_idle *w) 2318ev_child_start (EV_P_ ev_child *w)
918{ 2319{
2320#if EV_MULTIPLICITY
2321 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2322#endif
919 if (ev_is_active (w)) 2323 if (expect_false (ev_is_active (w)))
920 return; 2324 return;
921 2325
922 ev_start ((W)w, ++idlecnt); 2326 EV_FREQUENT_CHECK;
923 array_needsize (idles, idlemax, idlecnt, );
924 idles [idlecnt - 1] = w;
925}
926 2327
2328 ev_start (EV_A_ (W)w, 1);
2329 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2330
2331 EV_FREQUENT_CHECK;
2332}
2333
927void 2334void
928ev_idle_stop (struct ev_idle *w) 2335ev_child_stop (EV_P_ ev_child *w)
929{ 2336{
930 ev_clear_pending ((W)w); 2337 clear_pending (EV_A_ (W)w);
931 if (ev_is_active (w)) 2338 if (expect_false (!ev_is_active (w)))
932 return; 2339 return;
933 2340
934 idles [w->active - 1] = idles [--idlecnt]; 2341 EV_FREQUENT_CHECK;
2342
2343 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
935 ev_stop ((W)w); 2344 ev_stop (EV_A_ (W)w);
936}
937 2345
938void 2346 EV_FREQUENT_CHECK;
939ev_prepare_start (struct ev_prepare *w) 2347}
2348
2349#if EV_STAT_ENABLE
2350
2351# ifdef _WIN32
2352# undef lstat
2353# define lstat(a,b) _stati64 (a,b)
2354# endif
2355
2356#define DEF_STAT_INTERVAL 5.0074891
2357#define MIN_STAT_INTERVAL 0.1074891
2358
2359static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2360
2361#if EV_USE_INOTIFY
2362# define EV_INOTIFY_BUFSIZE 8192
2363
2364static void noinline
2365infy_add (EV_P_ ev_stat *w)
940{ 2366{
941 if (ev_is_active (w)) 2367 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2368
2369 if (w->wd < 0)
2370 {
2371 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2372
2373 /* monitor some parent directory for speedup hints */
2374 /* note that exceeding the hardcoded limit is not a correctness issue, */
2375 /* but an efficiency issue only */
2376 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2377 {
2378 char path [4096];
2379 strcpy (path, w->path);
2380
2381 do
2382 {
2383 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2384 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2385
2386 char *pend = strrchr (path, '/');
2387
2388 if (!pend)
2389 break; /* whoops, no '/', complain to your admin */
2390
2391 *pend = 0;
2392 w->wd = inotify_add_watch (fs_fd, path, mask);
2393 }
2394 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2395 }
2396 }
2397 else
2398 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2399
2400 if (w->wd >= 0)
2401 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2402}
2403
2404static void noinline
2405infy_del (EV_P_ ev_stat *w)
2406{
2407 int slot;
2408 int wd = w->wd;
2409
2410 if (wd < 0)
942 return; 2411 return;
943 2412
2413 w->wd = -2;
2414 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2415 wlist_del (&fs_hash [slot].head, (WL)w);
2416
2417 /* remove this watcher, if others are watching it, they will rearm */
2418 inotify_rm_watch (fs_fd, wd);
2419}
2420
2421static void noinline
2422infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2423{
2424 if (slot < 0)
2425 /* overflow, need to check for all hahs slots */
2426 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2427 infy_wd (EV_A_ slot, wd, ev);
2428 else
2429 {
2430 WL w_;
2431
2432 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2433 {
2434 ev_stat *w = (ev_stat *)w_;
2435 w_ = w_->next; /* lets us remove this watcher and all before it */
2436
2437 if (w->wd == wd || wd == -1)
2438 {
2439 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2440 {
2441 w->wd = -1;
2442 infy_add (EV_A_ w); /* re-add, no matter what */
2443 }
2444
2445 stat_timer_cb (EV_A_ &w->timer, 0);
2446 }
2447 }
2448 }
2449}
2450
2451static void
2452infy_cb (EV_P_ ev_io *w, int revents)
2453{
2454 char buf [EV_INOTIFY_BUFSIZE];
2455 struct inotify_event *ev = (struct inotify_event *)buf;
2456 int ofs;
2457 int len = read (fs_fd, buf, sizeof (buf));
2458
2459 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2460 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2461}
2462
2463void inline_size
2464infy_init (EV_P)
2465{
2466 if (fs_fd != -2)
2467 return;
2468
2469 fs_fd = inotify_init ();
2470
2471 if (fs_fd >= 0)
2472 {
2473 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2474 ev_set_priority (&fs_w, EV_MAXPRI);
2475 ev_io_start (EV_A_ &fs_w);
2476 }
2477}
2478
2479void inline_size
2480infy_fork (EV_P)
2481{
2482 int slot;
2483
2484 if (fs_fd < 0)
2485 return;
2486
2487 close (fs_fd);
2488 fs_fd = inotify_init ();
2489
2490 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2491 {
2492 WL w_ = fs_hash [slot].head;
2493 fs_hash [slot].head = 0;
2494
2495 while (w_)
2496 {
2497 ev_stat *w = (ev_stat *)w_;
2498 w_ = w_->next; /* lets us add this watcher */
2499
2500 w->wd = -1;
2501
2502 if (fs_fd >= 0)
2503 infy_add (EV_A_ w); /* re-add, no matter what */
2504 else
2505 ev_timer_start (EV_A_ &w->timer);
2506 }
2507
2508 }
2509}
2510
2511#endif
2512
2513void
2514ev_stat_stat (EV_P_ ev_stat *w)
2515{
2516 if (lstat (w->path, &w->attr) < 0)
2517 w->attr.st_nlink = 0;
2518 else if (!w->attr.st_nlink)
2519 w->attr.st_nlink = 1;
2520}
2521
2522static void noinline
2523stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2524{
2525 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2526
2527 /* we copy this here each the time so that */
2528 /* prev has the old value when the callback gets invoked */
2529 w->prev = w->attr;
2530 ev_stat_stat (EV_A_ w);
2531
2532 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2533 if (
2534 w->prev.st_dev != w->attr.st_dev
2535 || w->prev.st_ino != w->attr.st_ino
2536 || w->prev.st_mode != w->attr.st_mode
2537 || w->prev.st_nlink != w->attr.st_nlink
2538 || w->prev.st_uid != w->attr.st_uid
2539 || w->prev.st_gid != w->attr.st_gid
2540 || w->prev.st_rdev != w->attr.st_rdev
2541 || w->prev.st_size != w->attr.st_size
2542 || w->prev.st_atime != w->attr.st_atime
2543 || w->prev.st_mtime != w->attr.st_mtime
2544 || w->prev.st_ctime != w->attr.st_ctime
2545 ) {
2546 #if EV_USE_INOTIFY
2547 infy_del (EV_A_ w);
2548 infy_add (EV_A_ w);
2549 ev_stat_stat (EV_A_ w); /* avoid race... */
2550 #endif
2551
2552 ev_feed_event (EV_A_ w, EV_STAT);
2553 }
2554}
2555
2556void
2557ev_stat_start (EV_P_ ev_stat *w)
2558{
2559 if (expect_false (ev_is_active (w)))
2560 return;
2561
2562 /* since we use memcmp, we need to clear any padding data etc. */
2563 memset (&w->prev, 0, sizeof (ev_statdata));
2564 memset (&w->attr, 0, sizeof (ev_statdata));
2565
2566 ev_stat_stat (EV_A_ w);
2567
2568 if (w->interval < MIN_STAT_INTERVAL)
2569 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2570
2571 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2572 ev_set_priority (&w->timer, ev_priority (w));
2573
2574#if EV_USE_INOTIFY
2575 infy_init (EV_A);
2576
2577 if (fs_fd >= 0)
2578 infy_add (EV_A_ w);
2579 else
2580#endif
2581 ev_timer_start (EV_A_ &w->timer);
2582
2583 ev_start (EV_A_ (W)w, 1);
2584
2585 EV_FREQUENT_CHECK;
2586}
2587
2588void
2589ev_stat_stop (EV_P_ ev_stat *w)
2590{
2591 clear_pending (EV_A_ (W)w);
2592 if (expect_false (!ev_is_active (w)))
2593 return;
2594
2595 EV_FREQUENT_CHECK;
2596
2597#if EV_USE_INOTIFY
2598 infy_del (EV_A_ w);
2599#endif
2600 ev_timer_stop (EV_A_ &w->timer);
2601
2602 ev_stop (EV_A_ (W)w);
2603
2604 EV_FREQUENT_CHECK;
2605}
2606#endif
2607
2608#if EV_IDLE_ENABLE
2609void
2610ev_idle_start (EV_P_ ev_idle *w)
2611{
2612 if (expect_false (ev_is_active (w)))
2613 return;
2614
2615 pri_adjust (EV_A_ (W)w);
2616
2617 EV_FREQUENT_CHECK;
2618
2619 {
2620 int active = ++idlecnt [ABSPRI (w)];
2621
2622 ++idleall;
2623 ev_start (EV_A_ (W)w, active);
2624
2625 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2626 idles [ABSPRI (w)][active - 1] = w;
2627 }
2628
2629 EV_FREQUENT_CHECK;
2630}
2631
2632void
2633ev_idle_stop (EV_P_ ev_idle *w)
2634{
2635 clear_pending (EV_A_ (W)w);
2636 if (expect_false (!ev_is_active (w)))
2637 return;
2638
2639 EV_FREQUENT_CHECK;
2640
2641 {
2642 int active = ev_active (w);
2643
2644 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2645 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2646
2647 ev_stop (EV_A_ (W)w);
2648 --idleall;
2649 }
2650
2651 EV_FREQUENT_CHECK;
2652}
2653#endif
2654
2655void
2656ev_prepare_start (EV_P_ ev_prepare *w)
2657{
2658 if (expect_false (ev_is_active (w)))
2659 return;
2660
2661 EV_FREQUENT_CHECK;
2662
944 ev_start ((W)w, ++preparecnt); 2663 ev_start (EV_A_ (W)w, ++preparecnt);
945 array_needsize (prepares, preparemax, preparecnt, ); 2664 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
946 prepares [preparecnt - 1] = w; 2665 prepares [preparecnt - 1] = w;
947}
948 2666
2667 EV_FREQUENT_CHECK;
2668}
2669
949void 2670void
950ev_prepare_stop (struct ev_prepare *w) 2671ev_prepare_stop (EV_P_ ev_prepare *w)
951{ 2672{
952 ev_clear_pending ((W)w); 2673 clear_pending (EV_A_ (W)w);
953 if (ev_is_active (w)) 2674 if (expect_false (!ev_is_active (w)))
954 return; 2675 return;
955 2676
2677 EV_FREQUENT_CHECK;
2678
2679 {
2680 int active = ev_active (w);
2681
956 prepares [w->active - 1] = prepares [--preparecnt]; 2682 prepares [active - 1] = prepares [--preparecnt];
2683 ev_active (prepares [active - 1]) = active;
2684 }
2685
957 ev_stop ((W)w); 2686 ev_stop (EV_A_ (W)w);
958}
959 2687
2688 EV_FREQUENT_CHECK;
2689}
2690
960void 2691void
961ev_check_start (struct ev_check *w) 2692ev_check_start (EV_P_ ev_check *w)
962{ 2693{
963 if (ev_is_active (w)) 2694 if (expect_false (ev_is_active (w)))
964 return; 2695 return;
965 2696
2697 EV_FREQUENT_CHECK;
2698
966 ev_start ((W)w, ++checkcnt); 2699 ev_start (EV_A_ (W)w, ++checkcnt);
967 array_needsize (checks, checkmax, checkcnt, ); 2700 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
968 checks [checkcnt - 1] = w; 2701 checks [checkcnt - 1] = w;
969}
970 2702
2703 EV_FREQUENT_CHECK;
2704}
2705
971void 2706void
972ev_check_stop (struct ev_check *w) 2707ev_check_stop (EV_P_ ev_check *w)
973{ 2708{
974 ev_clear_pending ((W)w); 2709 clear_pending (EV_A_ (W)w);
975 if (ev_is_active (w)) 2710 if (expect_false (!ev_is_active (w)))
976 return; 2711 return;
977 2712
2713 EV_FREQUENT_CHECK;
2714
2715 {
2716 int active = ev_active (w);
2717
978 checks [w->active - 1] = checks [--checkcnt]; 2718 checks [active - 1] = checks [--checkcnt];
2719 ev_active (checks [active - 1]) = active;
2720 }
2721
979 ev_stop ((W)w); 2722 ev_stop (EV_A_ (W)w);
980}
981 2723
982void 2724 EV_FREQUENT_CHECK;
983ev_child_start (struct ev_child *w) 2725}
2726
2727#if EV_EMBED_ENABLE
2728void noinline
2729ev_embed_sweep (EV_P_ ev_embed *w)
984{ 2730{
2731 ev_loop (w->other, EVLOOP_NONBLOCK);
2732}
2733
2734static void
2735embed_io_cb (EV_P_ ev_io *io, int revents)
2736{
2737 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2738
985 if (ev_is_active (w)) 2739 if (ev_cb (w))
2740 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2741 else
2742 ev_loop (w->other, EVLOOP_NONBLOCK);
2743}
2744
2745static void
2746embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2747{
2748 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2749
2750 {
2751 struct ev_loop *loop = w->other;
2752
2753 while (fdchangecnt)
2754 {
2755 fd_reify (EV_A);
2756 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2757 }
2758 }
2759}
2760
2761#if 0
2762static void
2763embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2764{
2765 ev_idle_stop (EV_A_ idle);
2766}
2767#endif
2768
2769void
2770ev_embed_start (EV_P_ ev_embed *w)
2771{
2772 if (expect_false (ev_is_active (w)))
986 return; 2773 return;
987 2774
2775 {
2776 struct ev_loop *loop = w->other;
2777 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2778 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2779 }
2780
2781 EV_FREQUENT_CHECK;
2782
2783 ev_set_priority (&w->io, ev_priority (w));
2784 ev_io_start (EV_A_ &w->io);
2785
2786 ev_prepare_init (&w->prepare, embed_prepare_cb);
2787 ev_set_priority (&w->prepare, EV_MINPRI);
2788 ev_prepare_start (EV_A_ &w->prepare);
2789
2790 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2791
988 ev_start ((W)w, 1); 2792 ev_start (EV_A_ (W)w, 1);
989 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
990}
991 2793
2794 EV_FREQUENT_CHECK;
2795}
2796
992void 2797void
993ev_child_stop (struct ev_child *w) 2798ev_embed_stop (EV_P_ ev_embed *w)
994{ 2799{
995 ev_clear_pending ((W)w); 2800 clear_pending (EV_A_ (W)w);
996 if (ev_is_active (w)) 2801 if (expect_false (!ev_is_active (w)))
997 return; 2802 return;
998 2803
999 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2804 EV_FREQUENT_CHECK;
2805
2806 ev_io_stop (EV_A_ &w->io);
2807 ev_prepare_stop (EV_A_ &w->prepare);
2808
1000 ev_stop ((W)w); 2809 ev_stop (EV_A_ (W)w);
2810
2811 EV_FREQUENT_CHECK;
1001} 2812}
2813#endif
2814
2815#if EV_FORK_ENABLE
2816void
2817ev_fork_start (EV_P_ ev_fork *w)
2818{
2819 if (expect_false (ev_is_active (w)))
2820 return;
2821
2822 EV_FREQUENT_CHECK;
2823
2824 ev_start (EV_A_ (W)w, ++forkcnt);
2825 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2826 forks [forkcnt - 1] = w;
2827
2828 EV_FREQUENT_CHECK;
2829}
2830
2831void
2832ev_fork_stop (EV_P_ ev_fork *w)
2833{
2834 clear_pending (EV_A_ (W)w);
2835 if (expect_false (!ev_is_active (w)))
2836 return;
2837
2838 EV_FREQUENT_CHECK;
2839
2840 {
2841 int active = ev_active (w);
2842
2843 forks [active - 1] = forks [--forkcnt];
2844 ev_active (forks [active - 1]) = active;
2845 }
2846
2847 ev_stop (EV_A_ (W)w);
2848
2849 EV_FREQUENT_CHECK;
2850}
2851#endif
2852
2853#if EV_ASYNC_ENABLE
2854void
2855ev_async_start (EV_P_ ev_async *w)
2856{
2857 if (expect_false (ev_is_active (w)))
2858 return;
2859
2860 evpipe_init (EV_A);
2861
2862 EV_FREQUENT_CHECK;
2863
2864 ev_start (EV_A_ (W)w, ++asynccnt);
2865 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2866 asyncs [asynccnt - 1] = w;
2867
2868 EV_FREQUENT_CHECK;
2869}
2870
2871void
2872ev_async_stop (EV_P_ ev_async *w)
2873{
2874 clear_pending (EV_A_ (W)w);
2875 if (expect_false (!ev_is_active (w)))
2876 return;
2877
2878 EV_FREQUENT_CHECK;
2879
2880 {
2881 int active = ev_active (w);
2882
2883 asyncs [active - 1] = asyncs [--asynccnt];
2884 ev_active (asyncs [active - 1]) = active;
2885 }
2886
2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2890}
2891
2892void
2893ev_async_send (EV_P_ ev_async *w)
2894{
2895 w->sent = 1;
2896 evpipe_write (EV_A_ &gotasync);
2897}
2898#endif
1002 2899
1003/*****************************************************************************/ 2900/*****************************************************************************/
1004 2901
1005struct ev_once 2902struct ev_once
1006{ 2903{
1007 struct ev_io io; 2904 ev_io io;
1008 struct ev_timer to; 2905 ev_timer to;
1009 void (*cb)(int revents, void *arg); 2906 void (*cb)(int revents, void *arg);
1010 void *arg; 2907 void *arg;
1011}; 2908};
1012 2909
1013static void 2910static void
1014once_cb (struct ev_once *once, int revents) 2911once_cb (EV_P_ struct ev_once *once, int revents)
1015{ 2912{
1016 void (*cb)(int revents, void *arg) = once->cb; 2913 void (*cb)(int revents, void *arg) = once->cb;
1017 void *arg = once->arg; 2914 void *arg = once->arg;
1018 2915
1019 ev_io_stop (&once->io); 2916 ev_io_stop (EV_A_ &once->io);
1020 ev_timer_stop (&once->to); 2917 ev_timer_stop (EV_A_ &once->to);
1021 free (once); 2918 ev_free (once);
1022 2919
1023 cb (revents, arg); 2920 cb (revents, arg);
1024} 2921}
1025 2922
1026static void 2923static void
1027once_cb_io (struct ev_io *w, int revents) 2924once_cb_io (EV_P_ ev_io *w, int revents)
1028{ 2925{
1029 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2926 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1030} 2927}
1031 2928
1032static void 2929static void
1033once_cb_to (struct ev_timer *w, int revents) 2930once_cb_to (EV_P_ ev_timer *w, int revents)
1034{ 2931{
1035 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2932 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1036} 2933}
1037 2934
1038void 2935void
1039ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2936ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1040{ 2937{
1041 struct ev_once *once = malloc (sizeof (struct ev_once)); 2938 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1042 2939
1043 if (!once) 2940 if (expect_false (!once))
2941 {
1044 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2942 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1045 else 2943 return;
1046 { 2944 }
2945
1047 once->cb = cb; 2946 once->cb = cb;
1048 once->arg = arg; 2947 once->arg = arg;
1049 2948
1050 ev_watcher_init (&once->io, once_cb_io); 2949 ev_init (&once->io, once_cb_io);
1051 if (fd >= 0) 2950 if (fd >= 0)
1052 { 2951 {
1053 ev_io_set (&once->io, fd, events); 2952 ev_io_set (&once->io, fd, events);
1054 ev_io_start (&once->io); 2953 ev_io_start (EV_A_ &once->io);
1055 } 2954 }
1056 2955
1057 ev_watcher_init (&once->to, once_cb_to); 2956 ev_init (&once->to, once_cb_to);
1058 if (timeout >= 0.) 2957 if (timeout >= 0.)
1059 { 2958 {
1060 ev_timer_set (&once->to, timeout, 0.); 2959 ev_timer_set (&once->to, timeout, 0.);
1061 ev_timer_start (&once->to); 2960 ev_timer_start (EV_A_ &once->to);
1062 }
1063 }
1064}
1065
1066/*****************************************************************************/
1067
1068#if 0
1069
1070struct ev_io wio;
1071
1072static void
1073sin_cb (struct ev_io *w, int revents)
1074{
1075 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1076}
1077
1078static void
1079ocb (struct ev_timer *w, int revents)
1080{
1081 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1082 ev_timer_stop (w);
1083 ev_timer_start (w);
1084}
1085
1086static void
1087scb (struct ev_signal *w, int revents)
1088{
1089 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1090 ev_io_stop (&wio);
1091 ev_io_start (&wio);
1092}
1093
1094static void
1095gcb (struct ev_signal *w, int revents)
1096{
1097 fprintf (stderr, "generic %x\n", revents);
1098
1099}
1100
1101int main (void)
1102{
1103 ev_init (0);
1104
1105 ev_io_init (&wio, sin_cb, 0, EV_READ);
1106 ev_io_start (&wio);
1107
1108 struct ev_timer t[10000];
1109
1110#if 0
1111 int i;
1112 for (i = 0; i < 10000; ++i)
1113 { 2961 }
1114 struct ev_timer *w = t + i;
1115 ev_watcher_init (w, ocb, i);
1116 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1117 ev_timer_start (w);
1118 if (drand48 () < 0.5)
1119 ev_timer_stop (w);
1120 }
1121#endif
1122
1123 struct ev_timer t1;
1124 ev_timer_init (&t1, ocb, 5, 10);
1125 ev_timer_start (&t1);
1126
1127 struct ev_signal sig;
1128 ev_signal_init (&sig, scb, SIGQUIT);
1129 ev_signal_start (&sig);
1130
1131 struct ev_check cw;
1132 ev_check_init (&cw, gcb);
1133 ev_check_start (&cw);
1134
1135 struct ev_idle iw;
1136 ev_idle_init (&iw, gcb);
1137 ev_idle_start (&iw);
1138
1139 ev_loop (0);
1140
1141 return 0;
1142} 2962}
1143 2963
2964#if EV_MULTIPLICITY
2965 #include "ev_wrap.h"
1144#endif 2966#endif
1145 2967
2968#ifdef __cplusplus
2969}
2970#endif
1146 2971
1147
1148

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines