ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.36 by root, Thu Nov 1 13:11:11 2007 UTC vs.
Revision 1.271 by root, Mon Nov 3 12:13:15 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
31#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
33#endif 132#endif
34 133
35#include <math.h> 134#include <math.h>
36#include <stdlib.h> 135#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 136#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 137#include <stddef.h>
41 138
42#include <stdio.h> 139#include <stdio.h>
43 140
44#include <assert.h> 141#include <assert.h>
45#include <errno.h> 142#include <errno.h>
46#include <sys/types.h> 143#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 144#include <time.h>
50 145
146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# include <io.h>
160# define WIN32_LEAN_AND_MEAN
161# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1
164# endif
165#endif
166
167/* this block tries to deduce configuration from header-defined symbols and defaults */
168
51#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
52# ifdef CLOCK_MONOTONIC 170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
53# define EV_USE_MONOTONIC 1 171# define EV_USE_MONOTONIC 1
172# else
173# define EV_USE_MONOTONIC 0
174# endif
175#endif
176
177#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
54# endif 186# endif
55#endif 187#endif
56 188
57#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
59#endif 191#endif
60 192
193#ifndef EV_USE_POLL
194# ifdef _WIN32
195# define EV_USE_POLL 0
196# else
197# define EV_USE_POLL 1
198# endif
199#endif
200
61#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
62# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
207#endif
208
209#ifndef EV_USE_KQUEUE
210# define EV_USE_KQUEUE 0
211#endif
212
213#ifndef EV_USE_PORT
214# define EV_USE_PORT 0
215#endif
216
217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
221# define EV_USE_INOTIFY 0
222# endif
223#endif
224
225#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif
232
233#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif
240
241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
268
269#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0
63#endif 272#endif
64 273
65#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
275# undef EV_USE_REALTIME
66# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
67#endif 277#endif
68#ifndef EV_USE_REALTIME 278
69# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
70#endif 287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h>
293# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
301#if EV_SELECT_IS_WINSOCKET
302# include <winsock.h>
303#endif
304
305#if EV_USE_EVENTFD
306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h>
308# ifdef __cplusplus
309extern "C" {
310# endif
311int eventfd (unsigned int initval, int flags);
312# ifdef __cplusplus
313}
314# endif
315#endif
316
317/**/
318
319#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
321#else
322# define EV_FREQUENT_CHECK do { } while (0)
323#endif
324
325/*
326 * This is used to avoid floating point rounding problems.
327 * It is added to ev_rt_now when scheduling periodics
328 * to ensure progress, time-wise, even when rounding
329 * errors are against us.
330 * This value is good at least till the year 4000.
331 * Better solutions welcome.
332 */
333#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
71 334
72#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
73#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
74#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
75#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
76 338
77#include "ev.h" 339#if __GNUC__ >= 4
340# define expect(expr,value) __builtin_expect ((expr),(value))
341# define noinline __attribute__ ((noinline))
342#else
343# define expect(expr,value) (expr)
344# define noinline
345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
346# define inline
347# endif
348#endif
78 349
350#define expect_false(expr) expect ((expr) != 0, 0)
351#define expect_true(expr) expect ((expr) != 0, 1)
352#define inline_size static inline
353
354#if EV_MINIMAL
355# define inline_speed static noinline
356#else
357# define inline_speed static inline
358#endif
359
360#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
361#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
362
363#define EMPTY /* required for microsofts broken pseudo-c compiler */
364#define EMPTY2(a,b) /* used to suppress some warnings */
365
79typedef struct ev_watcher *W; 366typedef ev_watcher *W;
80typedef struct ev_watcher_list *WL; 367typedef ev_watcher_list *WL;
81typedef struct ev_watcher_time *WT; 368typedef ev_watcher_time *WT;
82 369
83static ev_tstamp now, diff; /* monotonic clock */ 370#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at
372
373#if EV_USE_MONOTONIC
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */
376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
377#endif
378
379#ifdef _WIN32
380# include "ev_win32.c"
381#endif
382
383/*****************************************************************************/
384
385static void (*syserr_cb)(const char *msg);
386
387void
388ev_set_syserr_cb (void (*cb)(const char *msg))
389{
390 syserr_cb = cb;
391}
392
393static void noinline
394ev_syserr (const char *msg)
395{
396 if (!msg)
397 msg = "(libev) system error";
398
399 if (syserr_cb)
400 syserr_cb (msg);
401 else
402 {
403 perror (msg);
404 abort ();
405 }
406}
407
408static void *
409ev_realloc_emul (void *ptr, long size)
410{
411 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and
413 * the single unix specification, so work around them here.
414 */
415
416 if (size)
417 return realloc (ptr, size);
418
419 free (ptr);
420 return 0;
421}
422
423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
424
425void
426ev_set_allocator (void *(*cb)(void *ptr, long size))
427{
428 alloc = cb;
429}
430
431inline_speed void *
432ev_realloc (void *ptr, long size)
433{
434 ptr = alloc (ptr, size);
435
436 if (!ptr && size)
437 {
438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
439 abort ();
440 }
441
442 return ptr;
443}
444
445#define ev_malloc(size) ev_realloc (0, (size))
446#define ev_free(ptr) ev_realloc ((ptr), 0)
447
448/*****************************************************************************/
449
450typedef struct
451{
452 WL head;
453 unsigned char events;
454 unsigned char reify;
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused;
457#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif
460#if EV_SELECT_IS_WINSOCKET
461 SOCKET handle;
462#endif
463} ANFD;
464
465typedef struct
466{
467 W w;
468 int events;
469} ANPENDING;
470
471#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */
473typedef struct
474{
475 WL head;
476} ANFS;
477#endif
478
479/* Heap Entry */
480#if EV_HEAP_CACHE_AT
481 typedef struct {
482 ev_tstamp at;
483 WT w;
484 } ANHE;
485
486 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else
490 typedef WT ANHE;
491
492 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he)
495#endif
496
497#if EV_MULTIPLICITY
498
499 struct ev_loop
500 {
501 ev_tstamp ev_rt_now;
502 #define ev_rt_now ((loop)->ev_rt_now)
503 #define VAR(name,decl) decl;
504 #include "ev_vars.h"
505 #undef VAR
506 };
507 #include "ev_wrap.h"
508
509 static struct ev_loop default_loop_struct;
510 struct ev_loop *ev_default_loop_ptr;
511
512#else
513
84ev_tstamp ev_now; 514 ev_tstamp ev_rt_now;
85int ev_method; 515 #define VAR(name,decl) static decl;
516 #include "ev_vars.h"
517 #undef VAR
86 518
87static int have_monotonic; /* runtime */ 519 static int ev_default_loop_ptr;
88 520
89static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 521#endif
90static void (*method_modify)(int fd, int oev, int nev);
91static void (*method_poll)(ev_tstamp timeout);
92 522
93/*****************************************************************************/ 523/*****************************************************************************/
94 524
95ev_tstamp 525ev_tstamp
96ev_time (void) 526ev_time (void)
104 gettimeofday (&tv, 0); 534 gettimeofday (&tv, 0);
105 return tv.tv_sec + tv.tv_usec * 1e-6; 535 return tv.tv_sec + tv.tv_usec * 1e-6;
106#endif 536#endif
107} 537}
108 538
109static ev_tstamp 539ev_tstamp inline_size
110get_clock (void) 540get_clock (void)
111{ 541{
112#if EV_USE_MONOTONIC 542#if EV_USE_MONOTONIC
113 if (have_monotonic) 543 if (expect_true (have_monotonic))
114 { 544 {
115 struct timespec ts; 545 struct timespec ts;
116 clock_gettime (CLOCK_MONOTONIC, &ts); 546 clock_gettime (CLOCK_MONOTONIC, &ts);
117 return ts.tv_sec + ts.tv_nsec * 1e-9; 547 return ts.tv_sec + ts.tv_nsec * 1e-9;
118 } 548 }
119#endif 549#endif
120 550
121 return ev_time (); 551 return ev_time ();
122} 552}
123 553
124#define array_roundsize(base,n) ((n) | 4 & ~3) 554#if EV_MULTIPLICITY
555ev_tstamp
556ev_now (EV_P)
557{
558 return ev_rt_now;
559}
560#endif
125 561
126#define array_needsize(base,cur,cnt,init) \ 562void
127 if ((cnt) > cur) \ 563ev_sleep (ev_tstamp delay)
128 { \ 564{
129 int newcnt = cur; \ 565 if (delay > 0.)
130 do \
131 { \
132 newcnt = array_roundsize (base, newcnt << 1); \
133 } \
134 while ((cnt) > newcnt); \
135 \
136 base = realloc (base, sizeof (*base) * (newcnt)); \
137 init (base + cur, newcnt - cur); \
138 cur = newcnt; \
139 } 566 {
567#if EV_USE_NANOSLEEP
568 struct timespec ts;
569
570 ts.tv_sec = (time_t)delay;
571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
572
573 nanosleep (&ts, 0);
574#elif defined(_WIN32)
575 Sleep ((unsigned long)(delay * 1e3));
576#else
577 struct timeval tv;
578
579 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */
585 select (0, 0, 0, 0, &tv);
586#endif
587 }
588}
140 589
141/*****************************************************************************/ 590/*****************************************************************************/
142 591
143typedef struct 592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
144{
145 struct ev_io *head;
146 unsigned char events;
147 unsigned char reify;
148} ANFD;
149 593
150static ANFD *anfds; 594int inline_size
151static int anfdmax; 595array_nextsize (int elem, int cur, int cnt)
152
153static void
154anfds_init (ANFD *base, int count)
155{ 596{
156 while (count--) 597 int ncur = cur + 1;
157 {
158 base->head = 0;
159 base->events = EV_NONE;
160 base->reify = 0;
161 598
162 ++base; 599 do
600 ncur <<= 1;
601 while (cnt > ncur);
602
603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
163 } 605 {
164} 606 ncur *= elem;
165 607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
166typedef struct 608 ncur = ncur - sizeof (void *) * 4;
167{ 609 ncur /= elem;
168 W w;
169 int events;
170} ANPENDING;
171
172static ANPENDING *pendings;
173static int pendingmax, pendingcnt;
174
175static void
176event (W w, int events)
177{
178 if (w->pending)
179 { 610 }
611
612 return ncur;
613}
614
615static noinline void *
616array_realloc (int elem, void *base, int *cur, int cnt)
617{
618 *cur = array_nextsize (elem, *cur, cnt);
619 return ev_realloc (base, elem * *cur);
620}
621
622#define array_init_zero(base,count) \
623 memset ((void *)(base), 0, sizeof (*(base)) * (count))
624
625#define array_needsize(type,base,cur,cnt,init) \
626 if (expect_false ((cnt) > (cur))) \
627 { \
628 int ocur_ = (cur); \
629 (base) = (type *)array_realloc \
630 (sizeof (type), (base), &(cur), (cnt)); \
631 init ((base) + (ocur_), (cur) - ocur_); \
632 }
633
634#if 0
635#define array_slim(type,stem) \
636 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
637 { \
638 stem ## max = array_roundsize (stem ## cnt >> 1); \
639 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
640 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
641 }
642#endif
643
644#define array_free(stem, idx) \
645 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
646
647/*****************************************************************************/
648
649void noinline
650ev_feed_event (EV_P_ void *w, int revents)
651{
652 W w_ = (W)w;
653 int pri = ABSPRI (w_);
654
655 if (expect_false (w_->pending))
656 pendings [pri][w_->pending - 1].events |= revents;
657 else
658 {
659 w_->pending = ++pendingcnt [pri];
660 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
661 pendings [pri][w_->pending - 1].w = w_;
180 pendings [w->pending - 1].events |= events; 662 pendings [pri][w_->pending - 1].events = revents;
181 return;
182 } 663 }
183
184 w->pending = ++pendingcnt;
185 array_needsize (pendings, pendingmax, pendingcnt, );
186 pendings [pendingcnt - 1].w = w;
187 pendings [pendingcnt - 1].events = events;
188} 664}
189 665
190static void 666void inline_speed
191queue_events (W *events, int eventcnt, int type) 667queue_events (EV_P_ W *events, int eventcnt, int type)
192{ 668{
193 int i; 669 int i;
194 670
195 for (i = 0; i < eventcnt; ++i) 671 for (i = 0; i < eventcnt; ++i)
196 event (events [i], type); 672 ev_feed_event (EV_A_ events [i], type);
197} 673}
198 674
199static void 675/*****************************************************************************/
676
677void inline_speed
200fd_event (int fd, int events) 678fd_event (EV_P_ int fd, int revents)
201{ 679{
202 ANFD *anfd = anfds + fd; 680 ANFD *anfd = anfds + fd;
203 struct ev_io *w; 681 ev_io *w;
204 682
205 for (w = anfd->head; w; w = w->next) 683 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
206 { 684 {
207 int ev = w->events & events; 685 int ev = w->events & revents;
208 686
209 if (ev) 687 if (ev)
210 event ((W)w, ev); 688 ev_feed_event (EV_A_ (W)w, ev);
211 } 689 }
212} 690}
213 691
214/*****************************************************************************/ 692void
693ev_feed_fd_event (EV_P_ int fd, int revents)
694{
695 if (fd >= 0 && fd < anfdmax)
696 fd_event (EV_A_ fd, revents);
697}
215 698
216static int *fdchanges; 699void inline_size
217static int fdchangemax, fdchangecnt; 700fd_reify (EV_P)
218
219static void
220fd_reify (void)
221{ 701{
222 int i; 702 int i;
223 703
224 for (i = 0; i < fdchangecnt; ++i) 704 for (i = 0; i < fdchangecnt; ++i)
225 { 705 {
226 int fd = fdchanges [i]; 706 int fd = fdchanges [i];
227 ANFD *anfd = anfds + fd; 707 ANFD *anfd = anfds + fd;
228 struct ev_io *w; 708 ev_io *w;
229 709
230 int events = 0; 710 unsigned char events = 0;
231 711
232 for (w = anfd->head; w; w = w->next) 712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
233 events |= w->events; 713 events |= (unsigned char)w->events;
234 714
235 anfd->reify = 0; 715#if EV_SELECT_IS_WINSOCKET
236 716 if (events)
237 if (anfd->events != events)
238 { 717 {
239 method_modify (fd, anfd->events, events); 718 unsigned long arg;
240 anfd->events = events; 719 #ifdef EV_FD_TO_WIN32_HANDLE
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
721 #else
722 anfd->handle = _get_osfhandle (fd);
723 #endif
724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
241 } 725 }
726#endif
727
728 {
729 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify;
731
732 anfd->reify = 0;
733 anfd->events = events;
734
735 if (o_events != events || o_reify & EV_IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events);
737 }
242 } 738 }
243 739
244 fdchangecnt = 0; 740 fdchangecnt = 0;
245} 741}
246 742
247static void 743void inline_size
248fd_change (int fd) 744fd_change (EV_P_ int fd, int flags)
249{ 745{
250 if (anfds [fd].reify || fdchangecnt < 0) 746 unsigned char reify = anfds [fd].reify;
251 return;
252
253 anfds [fd].reify = 1; 747 anfds [fd].reify |= flags;
254 748
749 if (expect_true (!reify))
750 {
255 ++fdchangecnt; 751 ++fdchangecnt;
256 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
257 fdchanges [fdchangecnt - 1] = fd; 753 fdchanges [fdchangecnt - 1] = fd;
754 }
755}
756
757void inline_speed
758fd_kill (EV_P_ int fd)
759{
760 ev_io *w;
761
762 while ((w = (ev_io *)anfds [fd].head))
763 {
764 ev_io_stop (EV_A_ w);
765 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
766 }
767}
768
769int inline_size
770fd_valid (int fd)
771{
772#ifdef _WIN32
773 return _get_osfhandle (fd) != -1;
774#else
775 return fcntl (fd, F_GETFD) != -1;
776#endif
258} 777}
259 778
260/* called on EBADF to verify fds */ 779/* called on EBADF to verify fds */
261static void 780static void noinline
262fd_recheck (void) 781fd_ebadf (EV_P)
263{ 782{
264 int fd; 783 int fd;
265 784
266 for (fd = 0; fd < anfdmax; ++fd) 785 for (fd = 0; fd < anfdmax; ++fd)
267 if (anfds [fd].events) 786 if (anfds [fd].events)
268 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 787 if (!fd_valid (fd) && errno == EBADF)
269 while (anfds [fd].head) 788 fd_kill (EV_A_ fd);
789}
790
791/* called on ENOMEM in select/poll to kill some fds and retry */
792static void noinline
793fd_enomem (EV_P)
794{
795 int fd;
796
797 for (fd = anfdmax; fd--; )
798 if (anfds [fd].events)
270 { 799 {
271 ev_io_stop (anfds [fd].head); 800 fd_kill (EV_A_ fd);
272 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 801 return;
273 } 802 }
803}
804
805/* usually called after fork if backend needs to re-arm all fds from scratch */
806static void noinline
807fd_rearm_all (EV_P)
808{
809 int fd;
810
811 for (fd = 0; fd < anfdmax; ++fd)
812 if (anfds [fd].events)
813 {
814 anfds [fd].events = 0;
815 anfds [fd].emask = 0;
816 fd_change (EV_A_ fd, EV_IOFDSET | 1);
817 }
274} 818}
275 819
276/*****************************************************************************/ 820/*****************************************************************************/
277 821
278static struct ev_timer **timers; 822/*
279static int timermax, timercnt; 823 * the heap functions want a real array index. array index 0 uis guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree.
826 */
280 827
281static struct ev_periodic **periodics; 828/*
282static int periodicmax, periodiccnt; 829 * at the moment we allow libev the luxury of two heaps,
830 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
831 * which is more cache-efficient.
832 * the difference is about 5% with 50000+ watchers.
833 */
834#if EV_USE_4HEAP
283 835
284static void 836#define DHEAP 4
285upheap (WT *timers, int k) 837#define HEAP0 (DHEAP - 1) /* index of first element in heap */
286{ 838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
287 WT w = timers [k]; 839#define UPHEAP_DONE(p,k) ((p) == (k))
288 840
289 while (k && timers [k >> 1]->at > w->at) 841/* away from the root */
290 { 842void inline_speed
291 timers [k] = timers [k >> 1];
292 timers [k]->active = k + 1;
293 k >>= 1;
294 }
295
296 timers [k] = w;
297 timers [k]->active = k + 1;
298
299}
300
301static void
302downheap (WT *timers, int N, int k) 843downheap (ANHE *heap, int N, int k)
303{ 844{
304 WT w = timers [k]; 845 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0;
305 847
306 while (k < (N >> 1)) 848 for (;;)
307 { 849 {
308 int j = k << 1; 850 ev_tstamp minat;
851 ANHE *minpos;
852 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
309 853
310 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 854 /* find minimum child */
855 if (expect_true (pos + DHEAP - 1 < E))
311 ++j; 856 {
312 857 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
313 if (w->at <= timers [j]->at) 858 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else if (pos < E)
863 {
864 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
865 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
866 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
867 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
868 }
869 else
314 break; 870 break;
315 871
316 timers [k] = timers [j]; 872 if (ANHE_at (he) <= minat)
317 timers [k]->active = k + 1; 873 break;
874
875 heap [k] = *minpos;
876 ev_active (ANHE_w (*minpos)) = k;
877
878 k = minpos - heap;
879 }
880
881 heap [k] = he;
882 ev_active (ANHE_w (he)) = k;
883}
884
885#else /* 4HEAP */
886
887#define HEAP0 1
888#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p))
890
891/* away from the root */
892void inline_speed
893downheap (ANHE *heap, int N, int k)
894{
895 ANHE he = heap [k];
896
897 for (;;)
898 {
899 int c = k << 1;
900
901 if (c > N + HEAP0 - 1)
902 break;
903
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0;
906
907 if (ANHE_at (he) <= ANHE_at (heap [c]))
908 break;
909
910 heap [k] = heap [c];
911 ev_active (ANHE_w (heap [k])) = k;
912
318 k = j; 913 k = c;
914 }
915
916 heap [k] = he;
917 ev_active (ANHE_w (he)) = k;
918}
919#endif
920
921/* towards the root */
922void inline_speed
923upheap (ANHE *heap, int k)
924{
925 ANHE he = heap [k];
926
927 for (;;)
319 } 928 {
929 int p = HPARENT (k);
320 930
321 timers [k] = w; 931 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
322 timers [k]->active = k + 1; 932 break;
933
934 heap [k] = heap [p];
935 ev_active (ANHE_w (heap [k])) = k;
936 k = p;
937 }
938
939 heap [k] = he;
940 ev_active (ANHE_w (he)) = k;
941}
942
943void inline_size
944adjustheap (ANHE *heap, int N, int k)
945{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
947 upheap (heap, k);
948 else
949 downheap (heap, N, k);
950}
951
952/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size
954reheap (ANHE *heap, int N)
955{
956 int i;
957
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
959 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
960 for (i = 0; i < N; ++i)
961 upheap (heap, i + HEAP0);
323} 962}
324 963
325/*****************************************************************************/ 964/*****************************************************************************/
326 965
327typedef struct 966typedef struct
328{ 967{
329 struct ev_signal *head; 968 WL head;
330 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
331} ANSIG; 970} ANSIG;
332 971
333static ANSIG *signals; 972static ANSIG *signals;
334static int signalmax; 973static int signalmax;
335 974
336static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
337static sig_atomic_t volatile gotsig; 976
338static struct ev_io sigev; 977/*****************************************************************************/
978
979void inline_speed
980fd_intern (int fd)
981{
982#ifdef _WIN32
983 unsigned long arg = 1;
984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
985#else
986 fcntl (fd, F_SETFD, FD_CLOEXEC);
987 fcntl (fd, F_SETFL, O_NONBLOCK);
988#endif
989}
990
991static void noinline
992evpipe_init (EV_P)
993{
994 if (!ev_is_active (&pipeev))
995 {
996#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0)
998 {
999 evpipe [0] = -1;
1000 fd_intern (evfd);
1001 ev_io_set (&pipeev, evfd, EV_READ);
1002 }
1003 else
1004#endif
1005 {
1006 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe");
1008
1009 fd_intern (evpipe [0]);
1010 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ);
1012 }
1013
1014 ev_io_start (EV_A_ &pipeev);
1015 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 }
1017}
1018
1019void inline_size
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{
1022 if (!*flag)
1023 {
1024 int old_errno = errno; /* save errno because write might clobber it */
1025
1026 *flag = 1;
1027
1028#if EV_USE_EVENTFD
1029 if (evfd >= 0)
1030 {
1031 uint64_t counter = 1;
1032 write (evfd, &counter, sizeof (uint64_t));
1033 }
1034 else
1035#endif
1036 write (evpipe [1], &old_errno, 1);
1037
1038 errno = old_errno;
1039 }
1040}
339 1041
340static void 1042static void
341signals_init (ANSIG *base, int count) 1043pipecb (EV_P_ ev_io *iow, int revents)
342{ 1044{
343 while (count--) 1045#if EV_USE_EVENTFD
1046 if (evfd >= 0)
1047 {
1048 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t));
344 { 1050 }
345 base->head = 0; 1051 else
1052#endif
1053 {
1054 char dummy;
1055 read (evpipe [0], &dummy, 1);
1056 }
1057
1058 if (gotsig && ev_is_default_loop (EV_A))
1059 {
1060 int signum;
346 base->gotsig = 0; 1061 gotsig = 0;
347 1062
348 ++base; 1063 for (signum = signalmax; signum--; )
1064 if (signals [signum].gotsig)
1065 ev_feed_signal_event (EV_A_ signum + 1);
1066 }
1067
1068#if EV_ASYNC_ENABLE
1069 if (gotasync)
349 } 1070 {
1071 int i;
1072 gotasync = 0;
1073
1074 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent)
1076 {
1077 asyncs [i]->sent = 0;
1078 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1079 }
1080 }
1081#endif
350} 1082}
1083
1084/*****************************************************************************/
351 1085
352static void 1086static void
353sighandler (int signum) 1087ev_sighandler (int signum)
354{ 1088{
1089#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct;
1091#endif
1092
1093#if _WIN32
1094 signal (signum, ev_sighandler);
1095#endif
1096
355 signals [signum - 1].gotsig = 1; 1097 signals [signum - 1].gotsig = 1;
356 1098 evpipe_write (EV_A_ &gotsig);
357 if (!gotsig)
358 {
359 gotsig = 1;
360 write (sigpipe [1], &signum, 1);
361 }
362} 1099}
363 1100
364static void 1101void noinline
365sigcb (struct ev_io *iow, int revents) 1102ev_feed_signal_event (EV_P_ int signum)
366{ 1103{
367 struct ev_signal *w; 1104 WL w;
368 int sig;
369 1105
370 read (sigpipe [0], &revents, 1); 1106#if EV_MULTIPLICITY
371 gotsig = 0; 1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
372 1109
373 for (sig = signalmax; sig--; ) 1110 --signum;
374 if (signals [sig].gotsig) 1111
375 { 1112 if (signum < 0 || signum >= signalmax)
1113 return;
1114
376 signals [sig].gotsig = 0; 1115 signals [signum].gotsig = 0;
377 1116
378 for (w = signals [sig].head; w; w = w->next) 1117 for (w = signals [signum].head; w; w = w->next)
379 event ((W)w, EV_SIGNAL); 1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
380 }
381}
382
383static void
384siginit (void)
385{
386 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
387 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
388
389 /* rather than sort out wether we really need nb, set it */
390 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
391 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
392
393 ev_io_set (&sigev, sigpipe [0], EV_READ);
394 ev_io_start (&sigev);
395} 1119}
396 1120
397/*****************************************************************************/ 1121/*****************************************************************************/
398 1122
399static struct ev_idle **idles; 1123static WL childs [EV_PID_HASHSIZE];
400static int idlemax, idlecnt;
401 1124
402static struct ev_prepare **prepares; 1125#ifndef _WIN32
403static int preparemax, preparecnt;
404 1126
405static struct ev_check **checks;
406static int checkmax, checkcnt;
407
408/*****************************************************************************/
409
410static struct ev_child *childs [PID_HASHSIZE];
411static struct ev_signal childev; 1127static ev_signal childev;
1128
1129#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0
1131#endif
1132
1133void inline_speed
1134child_reap (EV_P_ int chain, int pid, int status)
1135{
1136 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1138
1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 {
1141 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1)))
1143 {
1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1145 w->rpid = pid;
1146 w->rstatus = status;
1147 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1148 }
1149 }
1150}
412 1151
413#ifndef WCONTINUED 1152#ifndef WCONTINUED
414# define WCONTINUED 0 1153# define WCONTINUED 0
415#endif 1154#endif
416 1155
417static void 1156static void
418childcb (struct ev_signal *sw, int revents) 1157childcb (EV_P_ ev_signal *sw, int revents)
419{ 1158{
420 struct ev_child *w;
421 int pid, status; 1159 int pid, status;
422 1160
1161 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
423 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1162 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
424 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1163 if (!WCONTINUED
425 if (w->pid == pid || w->pid == -1) 1164 || errno != EINVAL
426 { 1165 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
427 w->status = status; 1166 return;
428 event ((W)w, EV_CHILD); 1167
429 } 1168 /* make sure we are called again until all children have been reaped */
1169 /* we need to do it this way so that the callback gets called before we continue */
1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1171
1172 child_reap (EV_A_ pid, pid, status);
1173 if (EV_PID_HASHSIZE > 1)
1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
430} 1175}
1176
1177#endif
431 1178
432/*****************************************************************************/ 1179/*****************************************************************************/
433 1180
1181#if EV_USE_PORT
1182# include "ev_port.c"
1183#endif
1184#if EV_USE_KQUEUE
1185# include "ev_kqueue.c"
1186#endif
434#if EV_USE_EPOLL 1187#if EV_USE_EPOLL
435# include "ev_epoll.c" 1188# include "ev_epoll.c"
436#endif 1189#endif
1190#if EV_USE_POLL
1191# include "ev_poll.c"
1192#endif
437#if EV_USE_SELECT 1193#if EV_USE_SELECT
438# include "ev_select.c" 1194# include "ev_select.c"
439#endif 1195#endif
440 1196
441int 1197int
448ev_version_minor (void) 1204ev_version_minor (void)
449{ 1205{
450 return EV_VERSION_MINOR; 1206 return EV_VERSION_MINOR;
451} 1207}
452 1208
453int ev_init (int flags) 1209/* return true if we are running with elevated privileges and should ignore env variables */
1210int inline_size
1211enable_secure (void)
454{ 1212{
455 if (!ev_method) 1213#ifdef _WIN32
1214 return 0;
1215#else
1216 return getuid () != geteuid ()
1217 || getgid () != getegid ();
1218#endif
1219}
1220
1221unsigned int
1222ev_supported_backends (void)
1223{
1224 unsigned int flags = 0;
1225
1226 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1227 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1228 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1229 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1230 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1231
1232 return flags;
1233}
1234
1235unsigned int
1236ev_recommended_backends (void)
1237{
1238 unsigned int flags = ev_supported_backends ();
1239
1240#ifndef __NetBSD__
1241 /* kqueue is borked on everything but netbsd apparently */
1242 /* it usually doesn't work correctly on anything but sockets and pipes */
1243 flags &= ~EVBACKEND_KQUEUE;
1244#endif
1245#ifdef __APPLE__
1246 // flags &= ~EVBACKEND_KQUEUE; for documentation
1247 flags &= ~EVBACKEND_POLL;
1248#endif
1249
1250 return flags;
1251}
1252
1253unsigned int
1254ev_embeddable_backends (void)
1255{
1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1257
1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1259 /* please fix it and tell me how to detect the fix */
1260 flags &= ~EVBACKEND_EPOLL;
1261
1262 return flags;
1263}
1264
1265unsigned int
1266ev_backend (EV_P)
1267{
1268 return backend;
1269}
1270
1271unsigned int
1272ev_loop_count (EV_P)
1273{
1274 return loop_count;
1275}
1276
1277void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1279{
1280 io_blocktime = interval;
1281}
1282
1283void
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 timeout_blocktime = interval;
1287}
1288
1289static void noinline
1290loop_init (EV_P_ unsigned int flags)
1291{
1292 if (!backend)
456 { 1293 {
457#if EV_USE_MONOTONIC 1294#if EV_USE_MONOTONIC
458 { 1295 {
459 struct timespec ts; 1296 struct timespec ts;
460 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
461 have_monotonic = 1; 1298 have_monotonic = 1;
462 } 1299 }
463#endif 1300#endif
464 1301
465 ev_now = ev_time (); 1302 ev_rt_now = ev_time ();
466 now = get_clock (); 1303 mn_now = get_clock ();
1304 now_floor = mn_now;
467 diff = ev_now - now; 1305 rtmn_diff = ev_rt_now - mn_now;
468 1306
469 if (pipe (sigpipe)) 1307 io_blocktime = 0.;
470 return 0; 1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif
471 1315
472 ev_method = EVMETHOD_NONE; 1316 /* pid check not overridable via env */
1317#ifndef _WIN32
1318 if (flags & EVFLAG_FORKCHECK)
1319 curpid = getpid ();
1320#endif
1321
1322 if (!(flags & EVFLAG_NOENV)
1323 && !enable_secure ()
1324 && getenv ("LIBEV_FLAGS"))
1325 flags = atoi (getenv ("LIBEV_FLAGS"));
1326
1327 if (!(flags & 0x0000ffffU))
1328 flags |= ev_recommended_backends ();
1329
1330#if EV_USE_PORT
1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1332#endif
1333#if EV_USE_KQUEUE
1334 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1335#endif
473#if EV_USE_EPOLL 1336#if EV_USE_EPOLL
474 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 1337 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1338#endif
1339#if EV_USE_POLL
1340 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
475#endif 1341#endif
476#if EV_USE_SELECT 1342#if EV_USE_SELECT
477 if (ev_method == EVMETHOD_NONE) select_init (flags); 1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
478#endif 1344#endif
479 1345
480 if (ev_method) 1346 ev_init (&pipeev, pipecb);
1347 ev_set_priority (&pipeev, EV_MAXPRI);
1348 }
1349}
1350
1351static void noinline
1352loop_destroy (EV_P)
1353{
1354 int i;
1355
1356 if (ev_is_active (&pipeev))
1357 {
1358 ev_ref (EV_A); /* signal watcher */
1359 ev_io_stop (EV_A_ &pipeev);
1360
1361#if EV_USE_EVENTFD
1362 if (evfd >= 0)
1363 close (evfd);
1364#endif
1365
1366 if (evpipe [0] >= 0)
481 { 1367 {
482 ev_watcher_init (&sigev, sigcb); 1368 close (evpipe [0]);
483 siginit (); 1369 close (evpipe [1]);
1370 }
1371 }
484 1372
1373#if EV_USE_INOTIFY
1374 if (fs_fd >= 0)
1375 close (fs_fd);
1376#endif
1377
1378 if (backend_fd >= 0)
1379 close (backend_fd);
1380
1381#if EV_USE_PORT
1382 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1383#endif
1384#if EV_USE_KQUEUE
1385 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1386#endif
1387#if EV_USE_EPOLL
1388 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1389#endif
1390#if EV_USE_POLL
1391 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1392#endif
1393#if EV_USE_SELECT
1394 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1395#endif
1396
1397 for (i = NUMPRI; i--; )
1398 {
1399 array_free (pending, [i]);
1400#if EV_IDLE_ENABLE
1401 array_free (idle, [i]);
1402#endif
1403 }
1404
1405 ev_free (anfds); anfdmax = 0;
1406
1407 /* have to use the microsoft-never-gets-it-right macro */
1408 array_free (fdchange, EMPTY);
1409 array_free (timer, EMPTY);
1410#if EV_PERIODIC_ENABLE
1411 array_free (periodic, EMPTY);
1412#endif
1413#if EV_FORK_ENABLE
1414 array_free (fork, EMPTY);
1415#endif
1416 array_free (prepare, EMPTY);
1417 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY);
1420#endif
1421
1422 backend = 0;
1423}
1424
1425#if EV_USE_INOTIFY
1426void inline_size infy_fork (EV_P);
1427#endif
1428
1429void inline_size
1430loop_fork (EV_P)
1431{
1432#if EV_USE_PORT
1433 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1434#endif
1435#if EV_USE_KQUEUE
1436 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1437#endif
1438#if EV_USE_EPOLL
1439 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1440#endif
1441#if EV_USE_INOTIFY
1442 infy_fork (EV_A);
1443#endif
1444
1445 if (ev_is_active (&pipeev))
1446 {
1447 /* this "locks" the handlers against writing to the pipe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
1453
1454 ev_ref (EV_A);
1455 ev_io_stop (EV_A_ &pipeev);
1456
1457#if EV_USE_EVENTFD
1458 if (evfd >= 0)
1459 close (evfd);
1460#endif
1461
1462 if (evpipe [0] >= 0)
1463 {
1464 close (evpipe [0]);
1465 close (evpipe [1]);
1466 }
1467
1468 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ);
1471 }
1472
1473 postfork = 0;
1474}
1475
1476#if EV_MULTIPLICITY
1477
1478struct ev_loop *
1479ev_loop_new (unsigned int flags)
1480{
1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1482
1483 memset (loop, 0, sizeof (struct ev_loop));
1484
1485 loop_init (EV_A_ flags);
1486
1487 if (ev_backend (EV_A))
1488 return loop;
1489
1490 return 0;
1491}
1492
1493void
1494ev_loop_destroy (EV_P)
1495{
1496 loop_destroy (EV_A);
1497 ev_free (loop);
1498}
1499
1500void
1501ev_loop_fork (EV_P)
1502{
1503 postfork = 1; /* must be in line with ev_default_fork */
1504}
1505
1506#if EV_VERIFY
1507static void noinline
1508verify_watcher (EV_P_ W w)
1509{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511
1512 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514}
1515
1516static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N)
1518{
1519 int i;
1520
1521 for (i = HEAP0; i < N + HEAP0; ++i)
1522 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 }
1529}
1530
1531static void noinline
1532array_verify (EV_P_ W *ws, int cnt)
1533{
1534 while (cnt--)
1535 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]);
1538 }
1539}
1540#endif
1541
1542void
1543ev_loop_verify (EV_P)
1544{
1545#if EV_VERIFY
1546 int i;
1547 WL w;
1548
1549 assert (activecnt >= -1);
1550
1551 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1554
1555 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next)
1558 {
1559 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 }
1563
1564 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt);
1566
1567#if EV_PERIODIC_ENABLE
1568 assert (periodicmax >= periodiccnt);
1569 verify_heap (EV_A_ periodics, periodiccnt);
1570#endif
1571
1572 for (i = NUMPRI; i--; )
1573 {
1574 assert (pendingmax [i] >= pendingcnt [i]);
1575#if EV_IDLE_ENABLE
1576 assert (idleall >= 0);
1577 assert (idlemax [i] >= idlecnt [i]);
1578 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1579#endif
1580 }
1581
1582#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif
1586
1587#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif
1591
1592 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt);
1594
1595 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt);
1597
1598# if 0
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1601# endif
1602#endif
1603}
1604
1605#endif /* multiplicity */
1606
1607#if EV_MULTIPLICITY
1608struct ev_loop *
1609ev_default_loop_init (unsigned int flags)
1610#else
1611int
1612ev_default_loop (unsigned int flags)
1613#endif
1614{
1615 if (!ev_default_loop_ptr)
1616 {
1617#if EV_MULTIPLICITY
1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1619#else
1620 ev_default_loop_ptr = 1;
1621#endif
1622
1623 loop_init (EV_A_ flags);
1624
1625 if (ev_backend (EV_A))
1626 {
1627#ifndef _WIN32
485 ev_signal_init (&childev, childcb, SIGCHLD); 1628 ev_signal_init (&childev, childcb, SIGCHLD);
1629 ev_set_priority (&childev, EV_MAXPRI);
486 ev_signal_start (&childev); 1630 ev_signal_start (EV_A_ &childev);
1631 ev_unref (EV_A); /* child watcher should not keep loop alive */
1632#endif
487 } 1633 }
1634 else
1635 ev_default_loop_ptr = 0;
488 } 1636 }
489 1637
490 return ev_method; 1638 return ev_default_loop_ptr;
1639}
1640
1641void
1642ev_default_destroy (void)
1643{
1644#if EV_MULTIPLICITY
1645 struct ev_loop *loop = ev_default_loop_ptr;
1646#endif
1647
1648 ev_default_loop_ptr = 0;
1649
1650#ifndef _WIN32
1651 ev_ref (EV_A); /* child watcher */
1652 ev_signal_stop (EV_A_ &childev);
1653#endif
1654
1655 loop_destroy (EV_A);
1656}
1657
1658void
1659ev_default_fork (void)
1660{
1661#if EV_MULTIPLICITY
1662 struct ev_loop *loop = ev_default_loop_ptr;
1663#endif
1664
1665 postfork = 1; /* must be in line with ev_loop_fork */
491} 1666}
492 1667
493/*****************************************************************************/ 1668/*****************************************************************************/
494 1669
495void 1670void
496ev_fork_prepare (void) 1671ev_invoke (EV_P_ void *w, int revents)
497{ 1672{
498 /* nop */ 1673 EV_CB_INVOKE ((W)w, revents);
499} 1674}
500 1675
501void 1676void inline_speed
502ev_fork_parent (void)
503{
504 /* nop */
505}
506
507void
508ev_fork_child (void)
509{
510#if EV_USE_EPOLL
511 if (ev_method == EVMETHOD_EPOLL)
512 epoll_postfork_child ();
513#endif
514
515 ev_io_stop (&sigev);
516 close (sigpipe [0]);
517 close (sigpipe [1]);
518 pipe (sigpipe);
519 siginit ();
520}
521
522/*****************************************************************************/
523
524static void
525call_pending (void) 1677call_pending (EV_P)
526{ 1678{
1679 int pri;
1680
1681 for (pri = NUMPRI; pri--; )
527 while (pendingcnt) 1682 while (pendingcnt [pri])
528 { 1683 {
529 ANPENDING *p = pendings + --pendingcnt; 1684 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
530 1685
531 if (p->w) 1686 if (expect_true (p->w))
1687 {
1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1689
1690 p->w->pending = 0;
1691 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK;
1693 }
1694 }
1695}
1696
1697#if EV_IDLE_ENABLE
1698void inline_size
1699idle_reify (EV_P)
1700{
1701 if (expect_false (idleall))
1702 {
1703 int pri;
1704
1705 for (pri = NUMPRI; pri--; )
532 { 1706 {
533 p->w->pending = 0; 1707 if (pendingcnt [pri])
534 p->w->cb (p->w, p->events); 1708 break;
1709
1710 if (idlecnt [pri])
1711 {
1712 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1713 break;
1714 }
535 } 1715 }
536 } 1716 }
537} 1717}
1718#endif
538 1719
539static void 1720void inline_size
540timers_reify (void) 1721timers_reify (EV_P)
541{ 1722{
1723 EV_FREQUENT_CHECK;
1724
542 while (timercnt && timers [0]->at <= now) 1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
543 { 1726 {
544 struct ev_timer *w = timers [0]; 1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
545 1730
546 /* first reschedule or stop timer */ 1731 /* first reschedule or stop timer */
547 if (w->repeat) 1732 if (w->repeat)
548 { 1733 {
1734 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now;
1737
549 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
550 w->at = now + w->repeat; 1739
1740 ANHE_at_cache (timers [HEAP0]);
551 downheap ((WT *)timers, timercnt, 0); 1741 downheap (timers, timercnt, HEAP0);
552 } 1742 }
553 else 1743 else
554 ev_timer_stop (w); /* nonrepeating: stop timer */ 1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
555 1745
1746 EV_FREQUENT_CHECK;
556 event ((W)w, EV_TIMEOUT); 1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
557 } 1748 }
558} 1749}
559 1750
560static void 1751#if EV_PERIODIC_ENABLE
1752void inline_size
561periodics_reify (void) 1753periodics_reify (EV_P)
562{ 1754{
1755 EV_FREQUENT_CHECK;
1756
563 while (periodiccnt && periodics [0]->at <= ev_now) 1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
564 { 1758 {
565 struct ev_periodic *w = periodics [0]; 1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1760
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
566 1762
567 /* first reschedule or stop timer */ 1763 /* first reschedule or stop timer */
568 if (w->interval) 1764 if (w->reschedule_cb)
569 { 1765 {
570 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
571 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1767
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769
1770 ANHE_at_cache (periodics [HEAP0]);
572 downheap ((WT *)periodics, periodiccnt, 0); 1771 downheap (periodics, periodiccnt, HEAP0);
1772 }
1773 else if (w->interval)
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
573 } 1791 }
574 else 1792 else
575 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
576 1794
1795 EV_FREQUENT_CHECK;
577 event ((W)w, EV_PERIODIC); 1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
578 } 1797 }
579} 1798}
580 1799
581static void 1800static void noinline
582periodics_reschedule (ev_tstamp diff) 1801periodics_reschedule (EV_P)
583{ 1802{
584 int i; 1803 int i;
585 1804
586 /* adjust periodics after time jump */ 1805 /* adjust periodics after time jump */
587 for (i = 0; i < periodiccnt; ++i) 1806 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
588 { 1807 {
589 struct ev_periodic *w = periodics [i]; 1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
590 1809
1810 if (w->reschedule_cb)
1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
591 if (w->interval) 1812 else if (w->interval)
1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1814
1815 ANHE_at_cache (periodics [i]);
1816 }
1817
1818 reheap (periodics, periodiccnt);
1819}
1820#endif
1821
1822void inline_speed
1823time_update (EV_P_ ev_tstamp max_block)
1824{
1825 int i;
1826
1827#if EV_USE_MONOTONIC
1828 if (expect_true (have_monotonic))
1829 {
1830 ev_tstamp odiff = rtmn_diff;
1831
1832 mn_now = get_clock ();
1833
1834 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1835 /* interpolate in the meantime */
1836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
592 { 1837 {
593 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1838 ev_rt_now = rtmn_diff + mn_now;
1839 return;
1840 }
594 1841
595 if (fabs (diff) >= 1e-4) 1842 now_floor = mn_now;
1843 ev_rt_now = ev_time ();
1844
1845 /* loop a few times, before making important decisions.
1846 * on the choice of "4": one iteration isn't enough,
1847 * in case we get preempted during the calls to
1848 * ev_time and get_clock. a second call is almost guaranteed
1849 * to succeed in that case, though. and looping a few more times
1850 * doesn't hurt either as we only do this on time-jumps or
1851 * in the unlikely event of having been preempted here.
1852 */
1853 for (i = 4; --i; )
1854 {
1855 rtmn_diff = ev_rt_now - mn_now;
1856
1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1858 return; /* all is well */
1859
1860 ev_rt_now = ev_time ();
1861 mn_now = get_clock ();
1862 now_floor = mn_now;
1863 }
1864
1865# if EV_PERIODIC_ENABLE
1866 periodics_reschedule (EV_A);
1867# endif
1868 /* no timer adjustment, as the monotonic clock doesn't jump */
1869 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1870 }
1871 else
1872#endif
1873 {
1874 ev_rt_now = ev_time ();
1875
1876 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1877 {
1878#if EV_PERIODIC_ENABLE
1879 periodics_reschedule (EV_A);
1880#endif
1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1882 for (i = 0; i < timercnt; ++i)
596 { 1883 {
597 ev_periodic_stop (w); 1884 ANHE *he = timers + i + HEAP0;
598 ev_periodic_start (w); 1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
599 1886 ANHE_at_cache (*he);
600 i = 0; /* restart loop, inefficient, but time jumps should be rare */
601 } 1887 }
602 } 1888 }
603 }
604}
605 1889
606static void 1890 mn_now = ev_rt_now;
607time_update (void)
608{
609 int i;
610
611 ev_now = ev_time ();
612
613 if (have_monotonic)
614 { 1891 }
615 ev_tstamp odiff = diff; 1892}
616 1893
617 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1894void
1895ev_ref (EV_P)
1896{
1897 ++activecnt;
1898}
1899
1900void
1901ev_unref (EV_P)
1902{
1903 --activecnt;
1904}
1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1912static int loop_done;
1913
1914void
1915ev_loop (EV_P_ int flags)
1916{
1917 loop_done = EVUNLOOP_CANCEL;
1918
1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1920
1921 do
1922 {
1923#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A);
1925#endif
1926
1927#ifndef _WIN32
1928 if (expect_false (curpid)) /* penalise the forking check even more */
1929 if (expect_false (getpid () != curpid))
1930 {
1931 curpid = getpid ();
1932 postfork = 1;
1933 }
1934#endif
1935
1936#if EV_FORK_ENABLE
1937 /* we might have forked, so queue fork handlers */
1938 if (expect_false (postfork))
1939 if (forkcnt)
1940 {
1941 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1942 call_pending (EV_A);
1943 }
1944#endif
1945
1946 /* queue prepare watchers (and execute them) */
1947 if (expect_false (preparecnt))
618 { 1948 {
619 now = get_clock (); 1949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
620 diff = ev_now - now; 1950 call_pending (EV_A);
621
622 if (fabs (odiff - diff) < MIN_TIMEJUMP)
623 return; /* all is well */
624
625 ev_now = ev_time ();
626 } 1951 }
627 1952
628 periodics_reschedule (diff - odiff); 1953 if (expect_false (!activecnt))
629 /* no timer adjustment, as the monotonic clock doesn't jump */ 1954 break;
630 }
631 else
632 {
633 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
634 {
635 periodics_reschedule (ev_now - now);
636 1955
637 /* adjust timers. this is easy, as the offset is the same for all */ 1956 /* we might have forked, so reify kernel state if necessary */
638 for (i = 0; i < timercnt; ++i) 1957 if (expect_false (postfork))
639 timers [i]->at += diff; 1958 loop_fork (EV_A);
640 }
641
642 now = ev_now;
643 }
644}
645
646int ev_loop_done;
647
648void ev_loop (int flags)
649{
650 double block;
651 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
652
653 do
654 {
655 /* queue check watchers (and execute them) */
656 if (preparecnt)
657 {
658 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
659 call_pending ();
660 }
661 1959
662 /* update fd-related kernel structures */ 1960 /* update fd-related kernel structures */
663 fd_reify (); 1961 fd_reify (EV_A);
664 1962
665 /* calculate blocking time */ 1963 /* calculate blocking time */
1964 {
1965 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.;
666 1967
667 /* we only need this for !monotonic clockor timers, but as we basically 1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
668 always have timers, we just calculate it always */
669 ev_now = ev_time ();
670
671 if (flags & EVLOOP_NONBLOCK || idlecnt)
672 block = 0.;
673 else
674 { 1969 {
1970 /* update time to cancel out callback processing overhead */
1971 time_update (EV_A_ 1e100);
1972
675 block = MAX_BLOCKTIME; 1973 waittime = MAX_BLOCKTIME;
676 1974
677 if (timercnt) 1975 if (timercnt)
678 { 1976 {
679 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
680 if (block > to) block = to; 1978 if (waittime > to) waittime = to;
681 } 1979 }
682 1980
1981#if EV_PERIODIC_ENABLE
683 if (periodiccnt) 1982 if (periodiccnt)
684 { 1983 {
685 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
686 if (block > to) block = to; 1985 if (waittime > to) waittime = to;
687 } 1986 }
1987#endif
688 1988
689 if (block < 0.) block = 0.; 1989 if (expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime;
1991
1992 sleeptime = waittime - backend_fudge;
1993
1994 if (expect_true (sleeptime > io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 {
1999 ev_sleep (sleeptime);
2000 waittime -= sleeptime;
2001 }
690 } 2002 }
691 2003
692 method_poll (block); 2004 ++loop_count;
2005 backend_poll (EV_A_ waittime);
693 2006
694 /* update ev_now, do magic */ 2007 /* update ev_rt_now, do magic */
695 time_update (); 2008 time_update (EV_A_ waittime + sleeptime);
2009 }
696 2010
697 /* queue pending timers and reschedule them */ 2011 /* queue pending timers and reschedule them */
698 timers_reify (); /* relative timers called last */ 2012 timers_reify (EV_A); /* relative timers called last */
2013#if EV_PERIODIC_ENABLE
699 periodics_reify (); /* absolute timers called first */ 2014 periodics_reify (EV_A); /* absolute timers called first */
2015#endif
700 2016
2017#if EV_IDLE_ENABLE
701 /* queue idle watchers unless io or timers are pending */ 2018 /* queue idle watchers unless other events are pending */
702 if (!pendingcnt) 2019 idle_reify (EV_A);
703 queue_events ((W *)idles, idlecnt, EV_IDLE); 2020#endif
704 2021
705 /* queue check watchers, to be executed first */ 2022 /* queue check watchers, to be executed first */
706 if (checkcnt) 2023 if (expect_false (checkcnt))
707 queue_events ((W *)checks, checkcnt, EV_CHECK); 2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
708 2025
709 call_pending (); 2026 call_pending (EV_A);
710 } 2027 }
711 while (!ev_loop_done); 2028 while (expect_true (
2029 activecnt
2030 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2032 ));
712 2033
713 if (ev_loop_done != 2) 2034 if (loop_done == EVUNLOOP_ONE)
2035 loop_done = EVUNLOOP_CANCEL;
2036}
2037
2038void
2039ev_unloop (EV_P_ int how)
2040{
714 ev_loop_done = 0; 2041 loop_done = how;
715} 2042}
716 2043
717/*****************************************************************************/ 2044/*****************************************************************************/
718 2045
719static void 2046void inline_size
720wlist_add (WL *head, WL elem) 2047wlist_add (WL *head, WL elem)
721{ 2048{
722 elem->next = *head; 2049 elem->next = *head;
723 *head = elem; 2050 *head = elem;
724} 2051}
725 2052
726static void 2053void inline_size
727wlist_del (WL *head, WL elem) 2054wlist_del (WL *head, WL elem)
728{ 2055{
729 while (*head) 2056 while (*head)
730 { 2057 {
731 if (*head == elem) 2058 if (*head == elem)
736 2063
737 head = &(*head)->next; 2064 head = &(*head)->next;
738 } 2065 }
739} 2066}
740 2067
741static void 2068void inline_speed
742ev_clear_pending (W w) 2069clear_pending (EV_P_ W w)
743{ 2070{
744 if (w->pending) 2071 if (w->pending)
745 { 2072 {
746 pendings [w->pending - 1].w = 0; 2073 pendings [ABSPRI (w)][w->pending - 1].w = 0;
747 w->pending = 0; 2074 w->pending = 0;
748 } 2075 }
749} 2076}
750 2077
751static void 2078int
2079ev_clear_pending (EV_P_ void *w)
2080{
2081 W w_ = (W)w;
2082 int pending = w_->pending;
2083
2084 if (expect_true (pending))
2085 {
2086 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2087 w_->pending = 0;
2088 p->w = 0;
2089 return p->events;
2090 }
2091 else
2092 return 0;
2093}
2094
2095void inline_size
2096pri_adjust (EV_P_ W w)
2097{
2098 int pri = w->priority;
2099 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2100 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2101 w->priority = pri;
2102}
2103
2104void inline_speed
752ev_start (W w, int active) 2105ev_start (EV_P_ W w, int active)
753{ 2106{
2107 pri_adjust (EV_A_ w);
754 w->active = active; 2108 w->active = active;
2109 ev_ref (EV_A);
755} 2110}
756 2111
757static void 2112void inline_size
758ev_stop (W w) 2113ev_stop (EV_P_ W w)
759{ 2114{
2115 ev_unref (EV_A);
760 w->active = 0; 2116 w->active = 0;
761} 2117}
762 2118
763/*****************************************************************************/ 2119/*****************************************************************************/
764 2120
765void 2121void noinline
766ev_io_start (struct ev_io *w) 2122ev_io_start (EV_P_ ev_io *w)
767{ 2123{
2124 int fd = w->fd;
2125
768 if (ev_is_active (w)) 2126 if (expect_false (ev_is_active (w)))
769 return; 2127 return;
770 2128
771 int fd = w->fd;
772
773 assert (("ev_io_start called with negative fd", fd >= 0)); 2129 assert (("ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
774 2131
2132 EV_FREQUENT_CHECK;
2133
775 ev_start ((W)w, 1); 2134 ev_start (EV_A_ (W)w, 1);
776 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
777 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2136 wlist_add (&anfds[fd].head, (WL)w);
778 2137
779 fd_change (fd); 2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
780} 2139 w->events &= ~EV_IOFDSET;
781 2140
782void 2141 EV_FREQUENT_CHECK;
2142}
2143
2144void noinline
783ev_io_stop (struct ev_io *w) 2145ev_io_stop (EV_P_ ev_io *w)
784{ 2146{
785 ev_clear_pending ((W)w); 2147 clear_pending (EV_A_ (W)w);
786 if (!ev_is_active (w)) 2148 if (expect_false (!ev_is_active (w)))
787 return; 2149 return;
788 2150
2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2152
2153 EV_FREQUENT_CHECK;
2154
789 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2155 wlist_del (&anfds[w->fd].head, (WL)w);
790 ev_stop ((W)w); 2156 ev_stop (EV_A_ (W)w);
791 2157
792 fd_change (w->fd); 2158 fd_change (EV_A_ w->fd, 1);
793}
794 2159
795void 2160 EV_FREQUENT_CHECK;
2161}
2162
2163void noinline
796ev_timer_start (struct ev_timer *w) 2164ev_timer_start (EV_P_ ev_timer *w)
797{ 2165{
798 if (ev_is_active (w)) 2166 if (expect_false (ev_is_active (w)))
799 return; 2167 return;
800 2168
801 w->at += now; 2169 ev_at (w) += mn_now;
802 2170
803 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
804 2172
805 ev_start ((W)w, ++timercnt); 2173 EV_FREQUENT_CHECK;
806 array_needsize (timers, timermax, timercnt, );
807 timers [timercnt - 1] = w;
808 upheap ((WT *)timers, timercnt - 1);
809}
810 2174
811void 2175 ++timercnt;
2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2178 ANHE_w (timers [ev_active (w)]) = (WT)w;
2179 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w));
2181
2182 EV_FREQUENT_CHECK;
2183
2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2185}
2186
2187void noinline
812ev_timer_stop (struct ev_timer *w) 2188ev_timer_stop (EV_P_ ev_timer *w)
813{ 2189{
814 ev_clear_pending ((W)w); 2190 clear_pending (EV_A_ (W)w);
815 if (!ev_is_active (w)) 2191 if (expect_false (!ev_is_active (w)))
816 return; 2192 return;
817 2193
818 if (w->active < timercnt--) 2194 EV_FREQUENT_CHECK;
2195
2196 {
2197 int active = ev_active (w);
2198
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200
2201 --timercnt;
2202
2203 if (expect_true (active < timercnt + HEAP0))
819 { 2204 {
820 timers [w->active - 1] = timers [timercnt]; 2205 timers [active] = timers [timercnt + HEAP0];
821 downheap ((WT *)timers, timercnt, w->active - 1); 2206 adjustheap (timers, timercnt, active);
822 } 2207 }
2208 }
823 2209
824 w->at = w->repeat; 2210 EV_FREQUENT_CHECK;
825 2211
2212 ev_at (w) -= mn_now;
2213
826 ev_stop ((W)w); 2214 ev_stop (EV_A_ (W)w);
827} 2215}
828 2216
829void 2217void noinline
830ev_timer_again (struct ev_timer *w) 2218ev_timer_again (EV_P_ ev_timer *w)
831{ 2219{
2220 EV_FREQUENT_CHECK;
2221
832 if (ev_is_active (w)) 2222 if (ev_is_active (w))
833 { 2223 {
834 if (w->repeat) 2224 if (w->repeat)
835 { 2225 {
836 w->at = now + w->repeat; 2226 ev_at (w) = mn_now + w->repeat;
2227 ANHE_at_cache (timers [ev_active (w)]);
837 downheap ((WT *)timers, timercnt, w->active - 1); 2228 adjustheap (timers, timercnt, ev_active (w));
838 } 2229 }
839 else 2230 else
840 ev_timer_stop (w); 2231 ev_timer_stop (EV_A_ w);
841 } 2232 }
842 else if (w->repeat) 2233 else if (w->repeat)
2234 {
2235 ev_at (w) = w->repeat;
843 ev_timer_start (w); 2236 ev_timer_start (EV_A_ w);
844} 2237 }
845 2238
846void 2239 EV_FREQUENT_CHECK;
2240}
2241
2242#if EV_PERIODIC_ENABLE
2243void noinline
847ev_periodic_start (struct ev_periodic *w) 2244ev_periodic_start (EV_P_ ev_periodic *w)
848{ 2245{
849 if (ev_is_active (w)) 2246 if (expect_false (ev_is_active (w)))
850 return; 2247 return;
851 2248
2249 if (w->reschedule_cb)
2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2251 else if (w->interval)
2252 {
852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
853
854 /* this formula differs from the one in periodic_reify because we do not always round up */ 2254 /* this formula differs from the one in periodic_reify because we do not always round up */
855 if (w->interval)
856 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2256 }
2257 else
2258 ev_at (w) = w->offset;
857 2259
2260 EV_FREQUENT_CHECK;
2261
2262 ++periodiccnt;
858 ev_start ((W)w, ++periodiccnt); 2263 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
859 array_needsize (periodics, periodicmax, periodiccnt, ); 2264 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
860 periodics [periodiccnt - 1] = w; 2265 ANHE_w (periodics [ev_active (w)]) = (WT)w;
861 upheap ((WT *)periodics, periodiccnt - 1); 2266 ANHE_at_cache (periodics [ev_active (w)]);
862} 2267 upheap (periodics, ev_active (w));
863 2268
864void 2269 EV_FREQUENT_CHECK;
2270
2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2272}
2273
2274void noinline
865ev_periodic_stop (struct ev_periodic *w) 2275ev_periodic_stop (EV_P_ ev_periodic *w)
866{ 2276{
867 ev_clear_pending ((W)w); 2277 clear_pending (EV_A_ (W)w);
868 if (!ev_is_active (w)) 2278 if (expect_false (!ev_is_active (w)))
869 return; 2279 return;
870 2280
871 if (w->active < periodiccnt--) 2281 EV_FREQUENT_CHECK;
2282
2283 {
2284 int active = ev_active (w);
2285
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287
2288 --periodiccnt;
2289
2290 if (expect_true (active < periodiccnt + HEAP0))
872 { 2291 {
873 periodics [w->active - 1] = periodics [periodiccnt]; 2292 periodics [active] = periodics [periodiccnt + HEAP0];
874 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2293 adjustheap (periodics, periodiccnt, active);
875 } 2294 }
2295 }
876 2296
2297 EV_FREQUENT_CHECK;
2298
877 ev_stop ((W)w); 2299 ev_stop (EV_A_ (W)w);
878} 2300}
879 2301
880void 2302void noinline
2303ev_periodic_again (EV_P_ ev_periodic *w)
2304{
2305 /* TODO: use adjustheap and recalculation */
2306 ev_periodic_stop (EV_A_ w);
2307 ev_periodic_start (EV_A_ w);
2308}
2309#endif
2310
2311#ifndef SA_RESTART
2312# define SA_RESTART 0
2313#endif
2314
2315void noinline
881ev_signal_start (struct ev_signal *w) 2316ev_signal_start (EV_P_ ev_signal *w)
882{ 2317{
2318#if EV_MULTIPLICITY
2319 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2320#endif
883 if (ev_is_active (w)) 2321 if (expect_false (ev_is_active (w)))
884 return; 2322 return;
885 2323
886 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
887 2325
2326 evpipe_init (EV_A);
2327
2328 EV_FREQUENT_CHECK;
2329
2330 {
2331#ifndef _WIN32
2332 sigset_t full, prev;
2333 sigfillset (&full);
2334 sigprocmask (SIG_SETMASK, &full, &prev);
2335#endif
2336
2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2338
2339#ifndef _WIN32
2340 sigprocmask (SIG_SETMASK, &prev, 0);
2341#endif
2342 }
2343
888 ev_start ((W)w, 1); 2344 ev_start (EV_A_ (W)w, 1);
889 array_needsize (signals, signalmax, w->signum, signals_init);
890 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2345 wlist_add (&signals [w->signum - 1].head, (WL)w);
891 2346
892 if (!w->next) 2347 if (!((WL)w)->next)
893 { 2348 {
2349#if _WIN32
2350 signal (w->signum, ev_sighandler);
2351#else
894 struct sigaction sa; 2352 struct sigaction sa;
895 sa.sa_handler = sighandler; 2353 sa.sa_handler = ev_sighandler;
896 sigfillset (&sa.sa_mask); 2354 sigfillset (&sa.sa_mask);
897 sa.sa_flags = 0; 2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
898 sigaction (w->signum, &sa, 0); 2356 sigaction (w->signum, &sa, 0);
2357#endif
899 } 2358 }
900}
901 2359
902void 2360 EV_FREQUENT_CHECK;
2361}
2362
2363void noinline
903ev_signal_stop (struct ev_signal *w) 2364ev_signal_stop (EV_P_ ev_signal *w)
904{ 2365{
905 ev_clear_pending ((W)w); 2366 clear_pending (EV_A_ (W)w);
906 if (!ev_is_active (w)) 2367 if (expect_false (!ev_is_active (w)))
907 return; 2368 return;
908 2369
2370 EV_FREQUENT_CHECK;
2371
909 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2372 wlist_del (&signals [w->signum - 1].head, (WL)w);
910 ev_stop ((W)w); 2373 ev_stop (EV_A_ (W)w);
911 2374
912 if (!signals [w->signum - 1].head) 2375 if (!signals [w->signum - 1].head)
913 signal (w->signum, SIG_DFL); 2376 signal (w->signum, SIG_DFL);
914}
915 2377
2378 EV_FREQUENT_CHECK;
2379}
2380
916void 2381void
917ev_idle_start (struct ev_idle *w) 2382ev_child_start (EV_P_ ev_child *w)
918{ 2383{
2384#if EV_MULTIPLICITY
2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2386#endif
919 if (ev_is_active (w)) 2387 if (expect_false (ev_is_active (w)))
920 return; 2388 return;
921 2389
922 ev_start ((W)w, ++idlecnt); 2390 EV_FREQUENT_CHECK;
923 array_needsize (idles, idlemax, idlecnt, );
924 idles [idlecnt - 1] = w;
925}
926 2391
2392 ev_start (EV_A_ (W)w, 1);
2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2394
2395 EV_FREQUENT_CHECK;
2396}
2397
927void 2398void
928ev_idle_stop (struct ev_idle *w) 2399ev_child_stop (EV_P_ ev_child *w)
929{ 2400{
930 ev_clear_pending ((W)w); 2401 clear_pending (EV_A_ (W)w);
931 if (ev_is_active (w)) 2402 if (expect_false (!ev_is_active (w)))
932 return; 2403 return;
933 2404
934 idles [w->active - 1] = idles [--idlecnt]; 2405 EV_FREQUENT_CHECK;
2406
2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
935 ev_stop ((W)w); 2408 ev_stop (EV_A_ (W)w);
936}
937 2409
938void 2410 EV_FREQUENT_CHECK;
939ev_prepare_start (struct ev_prepare *w) 2411}
2412
2413#if EV_STAT_ENABLE
2414
2415# ifdef _WIN32
2416# undef lstat
2417# define lstat(a,b) _stati64 (a,b)
2418# endif
2419
2420#define DEF_STAT_INTERVAL 5.0074891
2421#define MIN_STAT_INTERVAL 0.1074891
2422
2423static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2424
2425#if EV_USE_INOTIFY
2426# define EV_INOTIFY_BUFSIZE 8192
2427
2428static void noinline
2429infy_add (EV_P_ ev_stat *w)
940{ 2430{
941 if (ev_is_active (w)) 2431 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2432
2433 if (w->wd < 0)
2434 {
2435 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2436
2437 /* monitor some parent directory for speedup hints */
2438 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2439 /* but an efficiency issue only */
2440 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2441 {
2442 char path [4096];
2443 strcpy (path, w->path);
2444
2445 do
2446 {
2447 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2448 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2449
2450 char *pend = strrchr (path, '/');
2451
2452 if (!pend)
2453 break; /* whoops, no '/', complain to your admin */
2454
2455 *pend = 0;
2456 w->wd = inotify_add_watch (fs_fd, path, mask);
2457 }
2458 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2459 }
2460 }
2461 else
2462 todo, on nfs etc., we need to poll every 60s or so
2463 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2464
2465 if (w->wd >= 0)
2466 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2467}
2468
2469static void noinline
2470infy_del (EV_P_ ev_stat *w)
2471{
2472 int slot;
2473 int wd = w->wd;
2474
2475 if (wd < 0)
942 return; 2476 return;
943 2477
2478 w->wd = -2;
2479 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2480 wlist_del (&fs_hash [slot].head, (WL)w);
2481
2482 /* remove this watcher, if others are watching it, they will rearm */
2483 inotify_rm_watch (fs_fd, wd);
2484}
2485
2486static void noinline
2487infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2488{
2489 if (slot < 0)
2490 /* overflow, need to check for all hash slots */
2491 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2492 infy_wd (EV_A_ slot, wd, ev);
2493 else
2494 {
2495 WL w_;
2496
2497 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2498 {
2499 ev_stat *w = (ev_stat *)w_;
2500 w_ = w_->next; /* lets us remove this watcher and all before it */
2501
2502 if (w->wd == wd || wd == -1)
2503 {
2504 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2505 {
2506 w->wd = -1;
2507 infy_add (EV_A_ w); /* re-add, no matter what */
2508 }
2509
2510 stat_timer_cb (EV_A_ &w->timer, 0);
2511 }
2512 }
2513 }
2514}
2515
2516static void
2517infy_cb (EV_P_ ev_io *w, int revents)
2518{
2519 char buf [EV_INOTIFY_BUFSIZE];
2520 struct inotify_event *ev = (struct inotify_event *)buf;
2521 int ofs;
2522 int len = read (fs_fd, buf, sizeof (buf));
2523
2524 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2525 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2526}
2527
2528void inline_size
2529infy_init (EV_P)
2530{
2531 if (fs_fd != -2)
2532 return;
2533
2534 /* kernels < 2.6.25 are borked
2535 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2536 */
2537 {
2538 struct utsname buf;
2539 int major, minor, micro;
2540
2541 fs_fd = -1;
2542
2543 if (uname (&buf))
2544 return;
2545
2546 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2547 return;
2548
2549 if (major < 2
2550 || (major == 2 && minor < 6)
2551 || (major == 2 && minor == 6 && micro < 25))
2552 return;
2553 }
2554
2555 fs_fd = inotify_init ();
2556
2557 if (fs_fd >= 0)
2558 {
2559 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2560 ev_set_priority (&fs_w, EV_MAXPRI);
2561 ev_io_start (EV_A_ &fs_w);
2562 }
2563}
2564
2565void inline_size
2566infy_fork (EV_P)
2567{
2568 int slot;
2569
2570 if (fs_fd < 0)
2571 return;
2572
2573 close (fs_fd);
2574 fs_fd = inotify_init ();
2575
2576 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2577 {
2578 WL w_ = fs_hash [slot].head;
2579 fs_hash [slot].head = 0;
2580
2581 while (w_)
2582 {
2583 ev_stat *w = (ev_stat *)w_;
2584 w_ = w_->next; /* lets us add this watcher */
2585
2586 w->wd = -1;
2587
2588 if (fs_fd >= 0)
2589 infy_add (EV_A_ w); /* re-add, no matter what */
2590 else
2591 ev_timer_start (EV_A_ &w->timer);
2592 }
2593 }
2594}
2595
2596#endif
2597
2598#ifdef _WIN32
2599# define EV_LSTAT(p,b) _stati64 (p, b)
2600#else
2601# define EV_LSTAT(p,b) lstat (p, b)
2602#endif
2603
2604void
2605ev_stat_stat (EV_P_ ev_stat *w)
2606{
2607 if (lstat (w->path, &w->attr) < 0)
2608 w->attr.st_nlink = 0;
2609 else if (!w->attr.st_nlink)
2610 w->attr.st_nlink = 1;
2611}
2612
2613static void noinline
2614stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2615{
2616 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2617
2618 /* we copy this here each the time so that */
2619 /* prev has the old value when the callback gets invoked */
2620 w->prev = w->attr;
2621 ev_stat_stat (EV_A_ w);
2622
2623 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2624 if (
2625 w->prev.st_dev != w->attr.st_dev
2626 || w->prev.st_ino != w->attr.st_ino
2627 || w->prev.st_mode != w->attr.st_mode
2628 || w->prev.st_nlink != w->attr.st_nlink
2629 || w->prev.st_uid != w->attr.st_uid
2630 || w->prev.st_gid != w->attr.st_gid
2631 || w->prev.st_rdev != w->attr.st_rdev
2632 || w->prev.st_size != w->attr.st_size
2633 || w->prev.st_atime != w->attr.st_atime
2634 || w->prev.st_mtime != w->attr.st_mtime
2635 || w->prev.st_ctime != w->attr.st_ctime
2636 ) {
2637 #if EV_USE_INOTIFY
2638 if (fs_fd >= 0)
2639 {
2640 infy_del (EV_A_ w);
2641 infy_add (EV_A_ w);
2642 ev_stat_stat (EV_A_ w); /* avoid race... */
2643 }
2644 #endif
2645
2646 ev_feed_event (EV_A_ w, EV_STAT);
2647 }
2648}
2649
2650void
2651ev_stat_start (EV_P_ ev_stat *w)
2652{
2653 if (expect_false (ev_is_active (w)))
2654 return;
2655
2656 /* since we use memcmp, we need to clear any padding data etc. */
2657 memset (&w->prev, 0, sizeof (ev_statdata));
2658 memset (&w->attr, 0, sizeof (ev_statdata));
2659
2660 ev_stat_stat (EV_A_ w);
2661
2662 if (w->interval < MIN_STAT_INTERVAL)
2663 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2664
2665 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2666 ev_set_priority (&w->timer, ev_priority (w));
2667
2668#if EV_USE_INOTIFY
2669 infy_init (EV_A);
2670
2671 if (fs_fd >= 0)
2672 infy_add (EV_A_ w);
2673 else
2674#endif
2675 ev_timer_start (EV_A_ &w->timer);
2676
2677 ev_start (EV_A_ (W)w, 1);
2678
2679 EV_FREQUENT_CHECK;
2680}
2681
2682void
2683ev_stat_stop (EV_P_ ev_stat *w)
2684{
2685 clear_pending (EV_A_ (W)w);
2686 if (expect_false (!ev_is_active (w)))
2687 return;
2688
2689 EV_FREQUENT_CHECK;
2690
2691#if EV_USE_INOTIFY
2692 infy_del (EV_A_ w);
2693#endif
2694 ev_timer_stop (EV_A_ &w->timer);
2695
2696 ev_stop (EV_A_ (W)w);
2697
2698 EV_FREQUENT_CHECK;
2699}
2700#endif
2701
2702#if EV_IDLE_ENABLE
2703void
2704ev_idle_start (EV_P_ ev_idle *w)
2705{
2706 if (expect_false (ev_is_active (w)))
2707 return;
2708
2709 pri_adjust (EV_A_ (W)w);
2710
2711 EV_FREQUENT_CHECK;
2712
2713 {
2714 int active = ++idlecnt [ABSPRI (w)];
2715
2716 ++idleall;
2717 ev_start (EV_A_ (W)w, active);
2718
2719 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2720 idles [ABSPRI (w)][active - 1] = w;
2721 }
2722
2723 EV_FREQUENT_CHECK;
2724}
2725
2726void
2727ev_idle_stop (EV_P_ ev_idle *w)
2728{
2729 clear_pending (EV_A_ (W)w);
2730 if (expect_false (!ev_is_active (w)))
2731 return;
2732
2733 EV_FREQUENT_CHECK;
2734
2735 {
2736 int active = ev_active (w);
2737
2738 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2739 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2740
2741 ev_stop (EV_A_ (W)w);
2742 --idleall;
2743 }
2744
2745 EV_FREQUENT_CHECK;
2746}
2747#endif
2748
2749void
2750ev_prepare_start (EV_P_ ev_prepare *w)
2751{
2752 if (expect_false (ev_is_active (w)))
2753 return;
2754
2755 EV_FREQUENT_CHECK;
2756
944 ev_start ((W)w, ++preparecnt); 2757 ev_start (EV_A_ (W)w, ++preparecnt);
945 array_needsize (prepares, preparemax, preparecnt, ); 2758 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
946 prepares [preparecnt - 1] = w; 2759 prepares [preparecnt - 1] = w;
947}
948 2760
2761 EV_FREQUENT_CHECK;
2762}
2763
949void 2764void
950ev_prepare_stop (struct ev_prepare *w) 2765ev_prepare_stop (EV_P_ ev_prepare *w)
951{ 2766{
952 ev_clear_pending ((W)w); 2767 clear_pending (EV_A_ (W)w);
953 if (ev_is_active (w)) 2768 if (expect_false (!ev_is_active (w)))
954 return; 2769 return;
955 2770
2771 EV_FREQUENT_CHECK;
2772
2773 {
2774 int active = ev_active (w);
2775
956 prepares [w->active - 1] = prepares [--preparecnt]; 2776 prepares [active - 1] = prepares [--preparecnt];
2777 ev_active (prepares [active - 1]) = active;
2778 }
2779
957 ev_stop ((W)w); 2780 ev_stop (EV_A_ (W)w);
958}
959 2781
2782 EV_FREQUENT_CHECK;
2783}
2784
960void 2785void
961ev_check_start (struct ev_check *w) 2786ev_check_start (EV_P_ ev_check *w)
962{ 2787{
963 if (ev_is_active (w)) 2788 if (expect_false (ev_is_active (w)))
964 return; 2789 return;
965 2790
2791 EV_FREQUENT_CHECK;
2792
966 ev_start ((W)w, ++checkcnt); 2793 ev_start (EV_A_ (W)w, ++checkcnt);
967 array_needsize (checks, checkmax, checkcnt, ); 2794 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
968 checks [checkcnt - 1] = w; 2795 checks [checkcnt - 1] = w;
969}
970 2796
2797 EV_FREQUENT_CHECK;
2798}
2799
971void 2800void
972ev_check_stop (struct ev_check *w) 2801ev_check_stop (EV_P_ ev_check *w)
973{ 2802{
974 ev_clear_pending ((W)w); 2803 clear_pending (EV_A_ (W)w);
975 if (ev_is_active (w)) 2804 if (expect_false (!ev_is_active (w)))
976 return; 2805 return;
977 2806
2807 EV_FREQUENT_CHECK;
2808
2809 {
2810 int active = ev_active (w);
2811
978 checks [w->active - 1] = checks [--checkcnt]; 2812 checks [active - 1] = checks [--checkcnt];
2813 ev_active (checks [active - 1]) = active;
2814 }
2815
979 ev_stop ((W)w); 2816 ev_stop (EV_A_ (W)w);
980}
981 2817
982void 2818 EV_FREQUENT_CHECK;
983ev_child_start (struct ev_child *w) 2819}
2820
2821#if EV_EMBED_ENABLE
2822void noinline
2823ev_embed_sweep (EV_P_ ev_embed *w)
984{ 2824{
2825 ev_loop (w->other, EVLOOP_NONBLOCK);
2826}
2827
2828static void
2829embed_io_cb (EV_P_ ev_io *io, int revents)
2830{
2831 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2832
985 if (ev_is_active (w)) 2833 if (ev_cb (w))
2834 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2835 else
2836 ev_loop (w->other, EVLOOP_NONBLOCK);
2837}
2838
2839static void
2840embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2841{
2842 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2843
2844 {
2845 struct ev_loop *loop = w->other;
2846
2847 while (fdchangecnt)
2848 {
2849 fd_reify (EV_A);
2850 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2851 }
2852 }
2853}
2854
2855static void
2856embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2857{
2858 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2859
2860 {
2861 struct ev_loop *loop = w->other;
2862
2863 ev_loop_fork (EV_A);
2864 }
2865}
2866
2867#if 0
2868static void
2869embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2870{
2871 ev_idle_stop (EV_A_ idle);
2872}
2873#endif
2874
2875void
2876ev_embed_start (EV_P_ ev_embed *w)
2877{
2878 if (expect_false (ev_is_active (w)))
986 return; 2879 return;
987 2880
2881 {
2882 struct ev_loop *loop = w->other;
2883 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2884 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2885 }
2886
2887 EV_FREQUENT_CHECK;
2888
2889 ev_set_priority (&w->io, ev_priority (w));
2890 ev_io_start (EV_A_ &w->io);
2891
2892 ev_prepare_init (&w->prepare, embed_prepare_cb);
2893 ev_set_priority (&w->prepare, EV_MINPRI);
2894 ev_prepare_start (EV_A_ &w->prepare);
2895
2896 ev_fork_init (&w->fork, embed_fork_cb);
2897 ev_fork_start (EV_A_ &w->fork);
2898
2899 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2900
988 ev_start ((W)w, 1); 2901 ev_start (EV_A_ (W)w, 1);
989 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
990}
991 2902
2903 EV_FREQUENT_CHECK;
2904}
2905
992void 2906void
993ev_child_stop (struct ev_child *w) 2907ev_embed_stop (EV_P_ ev_embed *w)
994{ 2908{
995 ev_clear_pending ((W)w); 2909 clear_pending (EV_A_ (W)w);
996 if (ev_is_active (w)) 2910 if (expect_false (!ev_is_active (w)))
997 return; 2911 return;
998 2912
999 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2913 EV_FREQUENT_CHECK;
2914
2915 ev_io_stop (EV_A_ &w->io);
2916 ev_prepare_stop (EV_A_ &w->prepare);
2917 ev_fork_stop (EV_A_ &w->fork);
2918
2919 EV_FREQUENT_CHECK;
2920}
2921#endif
2922
2923#if EV_FORK_ENABLE
2924void
2925ev_fork_start (EV_P_ ev_fork *w)
2926{
2927 if (expect_false (ev_is_active (w)))
2928 return;
2929
2930 EV_FREQUENT_CHECK;
2931
2932 ev_start (EV_A_ (W)w, ++forkcnt);
2933 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2934 forks [forkcnt - 1] = w;
2935
2936 EV_FREQUENT_CHECK;
2937}
2938
2939void
2940ev_fork_stop (EV_P_ ev_fork *w)
2941{
2942 clear_pending (EV_A_ (W)w);
2943 if (expect_false (!ev_is_active (w)))
2944 return;
2945
2946 EV_FREQUENT_CHECK;
2947
2948 {
2949 int active = ev_active (w);
2950
2951 forks [active - 1] = forks [--forkcnt];
2952 ev_active (forks [active - 1]) = active;
2953 }
2954
1000 ev_stop ((W)w); 2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
1001} 2958}
2959#endif
2960
2961#if EV_ASYNC_ENABLE
2962void
2963ev_async_start (EV_P_ ev_async *w)
2964{
2965 if (expect_false (ev_is_active (w)))
2966 return;
2967
2968 evpipe_init (EV_A);
2969
2970 EV_FREQUENT_CHECK;
2971
2972 ev_start (EV_A_ (W)w, ++asynccnt);
2973 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2974 asyncs [asynccnt - 1] = w;
2975
2976 EV_FREQUENT_CHECK;
2977}
2978
2979void
2980ev_async_stop (EV_P_ ev_async *w)
2981{
2982 clear_pending (EV_A_ (W)w);
2983 if (expect_false (!ev_is_active (w)))
2984 return;
2985
2986 EV_FREQUENT_CHECK;
2987
2988 {
2989 int active = ev_active (w);
2990
2991 asyncs [active - 1] = asyncs [--asynccnt];
2992 ev_active (asyncs [active - 1]) = active;
2993 }
2994
2995 ev_stop (EV_A_ (W)w);
2996
2997 EV_FREQUENT_CHECK;
2998}
2999
3000void
3001ev_async_send (EV_P_ ev_async *w)
3002{
3003 w->sent = 1;
3004 evpipe_write (EV_A_ &gotasync);
3005}
3006#endif
1002 3007
1003/*****************************************************************************/ 3008/*****************************************************************************/
1004 3009
1005struct ev_once 3010struct ev_once
1006{ 3011{
1007 struct ev_io io; 3012 ev_io io;
1008 struct ev_timer to; 3013 ev_timer to;
1009 void (*cb)(int revents, void *arg); 3014 void (*cb)(int revents, void *arg);
1010 void *arg; 3015 void *arg;
1011}; 3016};
1012 3017
1013static void 3018static void
1014once_cb (struct ev_once *once, int revents) 3019once_cb (EV_P_ struct ev_once *once, int revents)
1015{ 3020{
1016 void (*cb)(int revents, void *arg) = once->cb; 3021 void (*cb)(int revents, void *arg) = once->cb;
1017 void *arg = once->arg; 3022 void *arg = once->arg;
1018 3023
1019 ev_io_stop (&once->io); 3024 ev_io_stop (EV_A_ &once->io);
1020 ev_timer_stop (&once->to); 3025 ev_timer_stop (EV_A_ &once->to);
1021 free (once); 3026 ev_free (once);
1022 3027
1023 cb (revents, arg); 3028 cb (revents, arg);
1024} 3029}
1025 3030
1026static void 3031static void
1027once_cb_io (struct ev_io *w, int revents) 3032once_cb_io (EV_P_ ev_io *w, int revents)
1028{ 3033{
1029 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3034 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3035
3036 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1030} 3037}
1031 3038
1032static void 3039static void
1033once_cb_to (struct ev_timer *w, int revents) 3040once_cb_to (EV_P_ ev_timer *w, int revents)
1034{ 3041{
1035 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3042 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1036}
1037 3043
3044 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3045}
3046
1038void 3047void
1039ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3048ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1040{ 3049{
1041 struct ev_once *once = malloc (sizeof (struct ev_once)); 3050 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1042 3051
1043 if (!once) 3052 if (expect_false (!once))
3053 {
1044 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3054 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1045 else 3055 return;
1046 { 3056 }
3057
1047 once->cb = cb; 3058 once->cb = cb;
1048 once->arg = arg; 3059 once->arg = arg;
1049 3060
1050 ev_watcher_init (&once->io, once_cb_io); 3061 ev_init (&once->io, once_cb_io);
1051 if (fd >= 0) 3062 if (fd >= 0)
1052 { 3063 {
1053 ev_io_set (&once->io, fd, events); 3064 ev_io_set (&once->io, fd, events);
1054 ev_io_start (&once->io); 3065 ev_io_start (EV_A_ &once->io);
1055 } 3066 }
1056 3067
1057 ev_watcher_init (&once->to, once_cb_to); 3068 ev_init (&once->to, once_cb_to);
1058 if (timeout >= 0.) 3069 if (timeout >= 0.)
1059 { 3070 {
1060 ev_timer_set (&once->to, timeout, 0.); 3071 ev_timer_set (&once->to, timeout, 0.);
1061 ev_timer_start (&once->to); 3072 ev_timer_start (EV_A_ &once->to);
1062 }
1063 }
1064}
1065
1066/*****************************************************************************/
1067
1068#if 0
1069
1070struct ev_io wio;
1071
1072static void
1073sin_cb (struct ev_io *w, int revents)
1074{
1075 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1076}
1077
1078static void
1079ocb (struct ev_timer *w, int revents)
1080{
1081 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1082 ev_timer_stop (w);
1083 ev_timer_start (w);
1084}
1085
1086static void
1087scb (struct ev_signal *w, int revents)
1088{
1089 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1090 ev_io_stop (&wio);
1091 ev_io_start (&wio);
1092}
1093
1094static void
1095gcb (struct ev_signal *w, int revents)
1096{
1097 fprintf (stderr, "generic %x\n", revents);
1098
1099}
1100
1101int main (void)
1102{
1103 ev_init (0);
1104
1105 ev_io_init (&wio, sin_cb, 0, EV_READ);
1106 ev_io_start (&wio);
1107
1108 struct ev_timer t[10000];
1109
1110#if 0
1111 int i;
1112 for (i = 0; i < 10000; ++i)
1113 { 3073 }
1114 struct ev_timer *w = t + i;
1115 ev_watcher_init (w, ocb, i);
1116 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1117 ev_timer_start (w);
1118 if (drand48 () < 0.5)
1119 ev_timer_stop (w);
1120 }
1121#endif
1122
1123 struct ev_timer t1;
1124 ev_timer_init (&t1, ocb, 5, 10);
1125 ev_timer_start (&t1);
1126
1127 struct ev_signal sig;
1128 ev_signal_init (&sig, scb, SIGQUIT);
1129 ev_signal_start (&sig);
1130
1131 struct ev_check cw;
1132 ev_check_init (&cw, gcb);
1133 ev_check_start (&cw);
1134
1135 struct ev_idle iw;
1136 ev_idle_init (&iw, gcb);
1137 ev_idle_start (&iw);
1138
1139 ev_loop (0);
1140
1141 return 0;
1142} 3074}
1143 3075
3076#if EV_MULTIPLICITY
3077 #include "ev_wrap.h"
1144#endif 3078#endif
1145 3079
3080#ifdef __cplusplus
3081}
3082#endif
1146 3083
1147
1148

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines