ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.36 by root, Thu Nov 1 13:11:11 2007 UTC vs.
Revision 1.330 by root, Tue Mar 9 08:46:17 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
31#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
33#endif 154#endif
34 155
35#include <math.h> 156#include <math.h>
36#include <stdlib.h> 157#include <stdlib.h>
37#include <unistd.h> 158#include <string.h>
38#include <fcntl.h> 159#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 160#include <stddef.h>
41 161
42#include <stdio.h> 162#include <stdio.h>
43 163
44#include <assert.h> 164#include <assert.h>
45#include <errno.h> 165#include <errno.h>
46#include <sys/types.h> 166#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 167#include <time.h>
168#include <limits.h>
169
170#include <signal.h>
171
172#ifdef EV_H
173# include EV_H
174#else
175# include "ev.h"
176#endif
177
178#ifndef _WIN32
179# include <sys/time.h>
180# include <sys/wait.h>
181# include <unistd.h>
182#else
183# include <io.h>
184# define WIN32_LEAN_AND_MEAN
185# include <windows.h>
186# ifndef EV_SELECT_IS_WINSOCKET
187# define EV_SELECT_IS_WINSOCKET 1
188# endif
189#endif
190
191/* this block tries to deduce configuration from header-defined symbols and defaults */
192
193/* try to deduce the maximum number of signals on this platform */
194#if defined (EV_NSIG)
195/* use what's provided */
196#elif defined (NSIG)
197# define EV_NSIG (NSIG)
198#elif defined(_NSIG)
199# define EV_NSIG (_NSIG)
200#elif defined (SIGMAX)
201# define EV_NSIG (SIGMAX+1)
202#elif defined (SIG_MAX)
203# define EV_NSIG (SIG_MAX+1)
204#elif defined (_SIG_MAX)
205# define EV_NSIG (_SIG_MAX+1)
206#elif defined (MAXSIG)
207# define EV_NSIG (MAXSIG+1)
208#elif defined (MAX_SIG)
209# define EV_NSIG (MAX_SIG+1)
210#elif defined (SIGARRAYSIZE)
211# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
212#elif defined (_sys_nsig)
213# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
214#else
215# error "unable to find value for NSIG, please report"
216/* to make it compile regardless, just remove the above line */
217# define EV_NSIG 65
218#endif
219
220#ifndef EV_USE_CLOCK_SYSCALL
221# if __linux && __GLIBC__ >= 2
222# define EV_USE_CLOCK_SYSCALL 1
223# else
224# define EV_USE_CLOCK_SYSCALL 0
225# endif
226#endif
50 227
51#ifndef EV_USE_MONOTONIC 228#ifndef EV_USE_MONOTONIC
52# ifdef CLOCK_MONOTONIC 229# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
53# define EV_USE_MONOTONIC 1 230# define EV_USE_MONOTONIC 1
231# else
232# define EV_USE_MONOTONIC 0
233# endif
234#endif
235
236#ifndef EV_USE_REALTIME
237# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
238#endif
239
240#ifndef EV_USE_NANOSLEEP
241# if _POSIX_C_SOURCE >= 199309L
242# define EV_USE_NANOSLEEP 1
243# else
244# define EV_USE_NANOSLEEP 0
54# endif 245# endif
55#endif 246#endif
56 247
57#ifndef EV_USE_SELECT 248#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 249# define EV_USE_SELECT 1
59#endif 250#endif
60 251
252#ifndef EV_USE_POLL
253# ifdef _WIN32
254# define EV_USE_POLL 0
255# else
256# define EV_USE_POLL 1
257# endif
258#endif
259
61#ifndef EV_USE_EPOLL 260#ifndef EV_USE_EPOLL
261# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
262# define EV_USE_EPOLL 1
263# else
62# define EV_USE_EPOLL 0 264# define EV_USE_EPOLL 0
265# endif
266#endif
267
268#ifndef EV_USE_KQUEUE
269# define EV_USE_KQUEUE 0
270#endif
271
272#ifndef EV_USE_PORT
273# define EV_USE_PORT 0
274#endif
275
276#ifndef EV_USE_INOTIFY
277# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
278# define EV_USE_INOTIFY 1
279# else
280# define EV_USE_INOTIFY 0
281# endif
282#endif
283
284#ifndef EV_PID_HASHSIZE
285# if EV_MINIMAL
286# define EV_PID_HASHSIZE 1
287# else
288# define EV_PID_HASHSIZE 16
289# endif
290#endif
291
292#ifndef EV_INOTIFY_HASHSIZE
293# if EV_MINIMAL
294# define EV_INOTIFY_HASHSIZE 1
295# else
296# define EV_INOTIFY_HASHSIZE 16
297# endif
298#endif
299
300#ifndef EV_USE_EVENTFD
301# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
302# define EV_USE_EVENTFD 1
303# else
304# define EV_USE_EVENTFD 0
305# endif
306#endif
307
308#ifndef EV_USE_SIGNALFD
309# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
310# define EV_USE_SIGNALFD 1
311# else
312# define EV_USE_SIGNALFD 0
313# endif
314#endif
315
316#if 0 /* debugging */
317# define EV_VERIFY 3
318# define EV_USE_4HEAP 1
319# define EV_HEAP_CACHE_AT 1
320#endif
321
322#ifndef EV_VERIFY
323# define EV_VERIFY !EV_MINIMAL
324#endif
325
326#ifndef EV_USE_4HEAP
327# define EV_USE_4HEAP !EV_MINIMAL
328#endif
329
330#ifndef EV_HEAP_CACHE_AT
331# define EV_HEAP_CACHE_AT !EV_MINIMAL
332#endif
333
334/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
335/* which makes programs even slower. might work on other unices, too. */
336#if EV_USE_CLOCK_SYSCALL
337# include <syscall.h>
338# ifdef SYS_clock_gettime
339# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
340# undef EV_USE_MONOTONIC
341# define EV_USE_MONOTONIC 1
342# else
343# undef EV_USE_CLOCK_SYSCALL
344# define EV_USE_CLOCK_SYSCALL 0
345# endif
346#endif
347
348/* this block fixes any misconfiguration where we know we run into trouble otherwise */
349
350#ifdef _AIX
351/* AIX has a completely broken poll.h header */
352# undef EV_USE_POLL
353# define EV_USE_POLL 0
354#endif
355
356#ifndef CLOCK_MONOTONIC
357# undef EV_USE_MONOTONIC
358# define EV_USE_MONOTONIC 0
63#endif 359#endif
64 360
65#ifndef CLOCK_REALTIME 361#ifndef CLOCK_REALTIME
362# undef EV_USE_REALTIME
66# define EV_USE_REALTIME 0 363# define EV_USE_REALTIME 0
67#endif 364#endif
68#ifndef EV_USE_REALTIME 365
69# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 366#if !EV_STAT_ENABLE
367# undef EV_USE_INOTIFY
368# define EV_USE_INOTIFY 0
369#endif
370
371#if !EV_USE_NANOSLEEP
372# ifndef _WIN32
373# include <sys/select.h>
70#endif 374# endif
375#endif
376
377#if EV_USE_INOTIFY
378# include <sys/utsname.h>
379# include <sys/statfs.h>
380# include <sys/inotify.h>
381/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
382# ifndef IN_DONT_FOLLOW
383# undef EV_USE_INOTIFY
384# define EV_USE_INOTIFY 0
385# endif
386#endif
387
388#if EV_SELECT_IS_WINSOCKET
389# include <winsock.h>
390#endif
391
392#if EV_USE_EVENTFD
393/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
394# include <stdint.h>
395# ifndef EFD_NONBLOCK
396# define EFD_NONBLOCK O_NONBLOCK
397# endif
398# ifndef EFD_CLOEXEC
399# ifdef O_CLOEXEC
400# define EFD_CLOEXEC O_CLOEXEC
401# else
402# define EFD_CLOEXEC 02000000
403# endif
404# endif
405# ifdef __cplusplus
406extern "C" {
407# endif
408int (eventfd) (unsigned int initval, int flags);
409# ifdef __cplusplus
410}
411# endif
412#endif
413
414#if EV_USE_SIGNALFD
415/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
416# include <stdint.h>
417# ifndef SFD_NONBLOCK
418# define SFD_NONBLOCK O_NONBLOCK
419# endif
420# ifndef SFD_CLOEXEC
421# ifdef O_CLOEXEC
422# define SFD_CLOEXEC O_CLOEXEC
423# else
424# define SFD_CLOEXEC 02000000
425# endif
426# endif
427# ifdef __cplusplus
428extern "C" {
429# endif
430int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437# ifdef __cplusplus
438}
439# endif
440#endif
441
442
443/**/
444
445#if EV_VERIFY >= 3
446# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
447#else
448# define EV_FREQUENT_CHECK do { } while (0)
449#endif
450
451/*
452 * This is used to avoid floating point rounding problems.
453 * It is added to ev_rt_now when scheduling periodics
454 * to ensure progress, time-wise, even when rounding
455 * errors are against us.
456 * This value is good at least till the year 4000.
457 * Better solutions welcome.
458 */
459#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
71 460
72#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 461#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
73#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 462#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
74#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
75#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
76 463
77#include "ev.h" 464#if __GNUC__ >= 4
465# define expect(expr,value) __builtin_expect ((expr),(value))
466# define noinline __attribute__ ((noinline))
467#else
468# define expect(expr,value) (expr)
469# define noinline
470# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
471# define inline
472# endif
473#endif
78 474
475#define expect_false(expr) expect ((expr) != 0, 0)
476#define expect_true(expr) expect ((expr) != 0, 1)
477#define inline_size static inline
478
479#if EV_MINIMAL
480# define inline_speed static noinline
481#else
482# define inline_speed static inline
483#endif
484
485#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
486
487#if EV_MINPRI == EV_MAXPRI
488# define ABSPRI(w) (((W)w), 0)
489#else
490# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
491#endif
492
493#define EMPTY /* required for microsofts broken pseudo-c compiler */
494#define EMPTY2(a,b) /* used to suppress some warnings */
495
79typedef struct ev_watcher *W; 496typedef ev_watcher *W;
80typedef struct ev_watcher_list *WL; 497typedef ev_watcher_list *WL;
81typedef struct ev_watcher_time *WT; 498typedef ev_watcher_time *WT;
82 499
83static ev_tstamp now, diff; /* monotonic clock */ 500#define ev_active(w) ((W)(w))->active
84ev_tstamp ev_now; 501#define ev_at(w) ((WT)(w))->at
85int ev_method;
86 502
87static int have_monotonic; /* runtime */ 503#if EV_USE_REALTIME
504/* sig_atomic_t is used to avoid per-thread variables or locking but still */
505/* giving it a reasonably high chance of working on typical architetcures */
506static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
507#endif
88 508
89static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 509#if EV_USE_MONOTONIC
90static void (*method_modify)(int fd, int oev, int nev); 510static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
91static void (*method_poll)(ev_tstamp timeout); 511#endif
512
513#ifndef EV_FD_TO_WIN32_HANDLE
514# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
515#endif
516#ifndef EV_WIN32_HANDLE_TO_FD
517# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
518#endif
519#ifndef EV_WIN32_CLOSE_FD
520# define EV_WIN32_CLOSE_FD(fd) close (fd)
521#endif
522
523#ifdef _WIN32
524# include "ev_win32.c"
525#endif
92 526
93/*****************************************************************************/ 527/*****************************************************************************/
94 528
529static void (*syserr_cb)(const char *msg);
530
531void
532ev_set_syserr_cb (void (*cb)(const char *msg))
533{
534 syserr_cb = cb;
535}
536
537static void noinline
538ev_syserr (const char *msg)
539{
540 if (!msg)
541 msg = "(libev) system error";
542
543 if (syserr_cb)
544 syserr_cb (msg);
545 else
546 {
547#if EV_AVOID_STDIO
548 write (STDERR_FILENO, msg, strlen (msg));
549 write (STDERR_FILENO, ": ", 2);
550 msg = strerror (errno);
551 write (STDERR_FILENO, msg, strlen (msg));
552 write (STDERR_FILENO, "\n", 1);
553#else
554 perror (msg);
555#endif
556 abort ();
557 }
558}
559
560static void *
561ev_realloc_emul (void *ptr, long size)
562{
563 /* some systems, notably openbsd and darwin, fail to properly
564 * implement realloc (x, 0) (as required by both ansi c-98 and
565 * the single unix specification, so work around them here.
566 */
567
568 if (size)
569 return realloc (ptr, size);
570
571 free (ptr);
572 return 0;
573}
574
575static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
576
577void
578ev_set_allocator (void *(*cb)(void *ptr, long size))
579{
580 alloc = cb;
581}
582
583inline_speed void *
584ev_realloc (void *ptr, long size)
585{
586 ptr = alloc (ptr, size);
587
588 if (!ptr && size)
589 {
590#if EV_AVOID_STDIO
591 write (STDERR_FILENO, "libev: memory allocation failed, aborting.",
592 sizeof ("libev: memory allocation failed, aborting.") - 1);
593#else
594 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
595#endif
596 abort ();
597 }
598
599 return ptr;
600}
601
602#define ev_malloc(size) ev_realloc (0, (size))
603#define ev_free(ptr) ev_realloc ((ptr), 0)
604
605/*****************************************************************************/
606
607/* set in reify when reification needed */
608#define EV_ANFD_REIFY 1
609
610/* file descriptor info structure */
611typedef struct
612{
613 WL head;
614 unsigned char events; /* the events watched for */
615 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
616 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
617 unsigned char unused;
618#if EV_USE_EPOLL
619 unsigned int egen; /* generation counter to counter epoll bugs */
620#endif
621#if EV_SELECT_IS_WINSOCKET
622 SOCKET handle;
623#endif
624} ANFD;
625
626/* stores the pending event set for a given watcher */
627typedef struct
628{
629 W w;
630 int events; /* the pending event set for the given watcher */
631} ANPENDING;
632
633#if EV_USE_INOTIFY
634/* hash table entry per inotify-id */
635typedef struct
636{
637 WL head;
638} ANFS;
639#endif
640
641/* Heap Entry */
642#if EV_HEAP_CACHE_AT
643 /* a heap element */
644 typedef struct {
645 ev_tstamp at;
646 WT w;
647 } ANHE;
648
649 #define ANHE_w(he) (he).w /* access watcher, read-write */
650 #define ANHE_at(he) (he).at /* access cached at, read-only */
651 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
652#else
653 /* a heap element */
654 typedef WT ANHE;
655
656 #define ANHE_w(he) (he)
657 #define ANHE_at(he) (he)->at
658 #define ANHE_at_cache(he)
659#endif
660
661#if EV_MULTIPLICITY
662
663 struct ev_loop
664 {
665 ev_tstamp ev_rt_now;
666 #define ev_rt_now ((loop)->ev_rt_now)
667 #define VAR(name,decl) decl;
668 #include "ev_vars.h"
669 #undef VAR
670 };
671 #include "ev_wrap.h"
672
673 static struct ev_loop default_loop_struct;
674 struct ev_loop *ev_default_loop_ptr;
675
676#else
677
678 ev_tstamp ev_rt_now;
679 #define VAR(name,decl) static decl;
680 #include "ev_vars.h"
681 #undef VAR
682
683 static int ev_default_loop_ptr;
684
685#endif
686
687#if EV_MINIMAL < 2
688# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
689# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
690# define EV_INVOKE_PENDING invoke_cb (EV_A)
691#else
692# define EV_RELEASE_CB (void)0
693# define EV_ACQUIRE_CB (void)0
694# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
695#endif
696
697#define EVUNLOOP_RECURSE 0x80
698
699/*****************************************************************************/
700
701#ifndef EV_HAVE_EV_TIME
95ev_tstamp 702ev_tstamp
96ev_time (void) 703ev_time (void)
97{ 704{
98#if EV_USE_REALTIME 705#if EV_USE_REALTIME
706 if (expect_true (have_realtime))
707 {
99 struct timespec ts; 708 struct timespec ts;
100 clock_gettime (CLOCK_REALTIME, &ts); 709 clock_gettime (CLOCK_REALTIME, &ts);
101 return ts.tv_sec + ts.tv_nsec * 1e-9; 710 return ts.tv_sec + ts.tv_nsec * 1e-9;
102#else 711 }
712#endif
713
103 struct timeval tv; 714 struct timeval tv;
104 gettimeofday (&tv, 0); 715 gettimeofday (&tv, 0);
105 return tv.tv_sec + tv.tv_usec * 1e-6; 716 return tv.tv_sec + tv.tv_usec * 1e-6;
106#endif
107} 717}
718#endif
108 719
109static ev_tstamp 720inline_size ev_tstamp
110get_clock (void) 721get_clock (void)
111{ 722{
112#if EV_USE_MONOTONIC 723#if EV_USE_MONOTONIC
113 if (have_monotonic) 724 if (expect_true (have_monotonic))
114 { 725 {
115 struct timespec ts; 726 struct timespec ts;
116 clock_gettime (CLOCK_MONOTONIC, &ts); 727 clock_gettime (CLOCK_MONOTONIC, &ts);
117 return ts.tv_sec + ts.tv_nsec * 1e-9; 728 return ts.tv_sec + ts.tv_nsec * 1e-9;
118 } 729 }
119#endif 730#endif
120 731
121 return ev_time (); 732 return ev_time ();
122} 733}
123 734
124#define array_roundsize(base,n) ((n) | 4 & ~3) 735#if EV_MULTIPLICITY
736ev_tstamp
737ev_now (EV_P)
738{
739 return ev_rt_now;
740}
741#endif
125 742
126#define array_needsize(base,cur,cnt,init) \ 743void
127 if ((cnt) > cur) \ 744ev_sleep (ev_tstamp delay)
128 { \ 745{
129 int newcnt = cur; \ 746 if (delay > 0.)
130 do \
131 { \
132 newcnt = array_roundsize (base, newcnt << 1); \
133 } \
134 while ((cnt) > newcnt); \
135 \
136 base = realloc (base, sizeof (*base) * (newcnt)); \
137 init (base + cur, newcnt - cur); \
138 cur = newcnt; \
139 } 747 {
748#if EV_USE_NANOSLEEP
749 struct timespec ts;
750
751 ts.tv_sec = (time_t)delay;
752 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
753
754 nanosleep (&ts, 0);
755#elif defined(_WIN32)
756 Sleep ((unsigned long)(delay * 1e3));
757#else
758 struct timeval tv;
759
760 tv.tv_sec = (time_t)delay;
761 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
762
763 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
764 /* something not guaranteed by newer posix versions, but guaranteed */
765 /* by older ones */
766 select (0, 0, 0, 0, &tv);
767#endif
768 }
769}
140 770
141/*****************************************************************************/ 771/*****************************************************************************/
142 772
143typedef struct 773#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
144{
145 struct ev_io *head;
146 unsigned char events;
147 unsigned char reify;
148} ANFD;
149 774
150static ANFD *anfds; 775/* find a suitable new size for the given array, */
151static int anfdmax; 776/* hopefully by rounding to a ncie-to-malloc size */
152 777inline_size int
153static void 778array_nextsize (int elem, int cur, int cnt)
154anfds_init (ANFD *base, int count)
155{ 779{
156 while (count--) 780 int ncur = cur + 1;
157 {
158 base->head = 0;
159 base->events = EV_NONE;
160 base->reify = 0;
161 781
162 ++base; 782 do
783 ncur <<= 1;
784 while (cnt > ncur);
785
786 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
787 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
163 } 788 {
164} 789 ncur *= elem;
165 790 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
166typedef struct 791 ncur = ncur - sizeof (void *) * 4;
167{ 792 ncur /= elem;
168 W w;
169 int events;
170} ANPENDING;
171
172static ANPENDING *pendings;
173static int pendingmax, pendingcnt;
174
175static void
176event (W w, int events)
177{
178 if (w->pending)
179 { 793 }
794
795 return ncur;
796}
797
798static noinline void *
799array_realloc (int elem, void *base, int *cur, int cnt)
800{
801 *cur = array_nextsize (elem, *cur, cnt);
802 return ev_realloc (base, elem * *cur);
803}
804
805#define array_init_zero(base,count) \
806 memset ((void *)(base), 0, sizeof (*(base)) * (count))
807
808#define array_needsize(type,base,cur,cnt,init) \
809 if (expect_false ((cnt) > (cur))) \
810 { \
811 int ocur_ = (cur); \
812 (base) = (type *)array_realloc \
813 (sizeof (type), (base), &(cur), (cnt)); \
814 init ((base) + (ocur_), (cur) - ocur_); \
815 }
816
817#if 0
818#define array_slim(type,stem) \
819 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
820 { \
821 stem ## max = array_roundsize (stem ## cnt >> 1); \
822 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
823 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
824 }
825#endif
826
827#define array_free(stem, idx) \
828 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
829
830/*****************************************************************************/
831
832/* dummy callback for pending events */
833static void noinline
834pendingcb (EV_P_ ev_prepare *w, int revents)
835{
836}
837
838void noinline
839ev_feed_event (EV_P_ void *w, int revents)
840{
841 W w_ = (W)w;
842 int pri = ABSPRI (w_);
843
844 if (expect_false (w_->pending))
845 pendings [pri][w_->pending - 1].events |= revents;
846 else
847 {
848 w_->pending = ++pendingcnt [pri];
849 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
850 pendings [pri][w_->pending - 1].w = w_;
180 pendings [w->pending - 1].events |= events; 851 pendings [pri][w_->pending - 1].events = revents;
181 return;
182 } 852 }
183
184 w->pending = ++pendingcnt;
185 array_needsize (pendings, pendingmax, pendingcnt, );
186 pendings [pendingcnt - 1].w = w;
187 pendings [pendingcnt - 1].events = events;
188} 853}
189 854
190static void 855inline_speed void
856feed_reverse (EV_P_ W w)
857{
858 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
859 rfeeds [rfeedcnt++] = w;
860}
861
862inline_size void
863feed_reverse_done (EV_P_ int revents)
864{
865 do
866 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
867 while (rfeedcnt);
868}
869
870inline_speed void
191queue_events (W *events, int eventcnt, int type) 871queue_events (EV_P_ W *events, int eventcnt, int type)
192{ 872{
193 int i; 873 int i;
194 874
195 for (i = 0; i < eventcnt; ++i) 875 for (i = 0; i < eventcnt; ++i)
196 event (events [i], type); 876 ev_feed_event (EV_A_ events [i], type);
197} 877}
198 878
199static void 879/*****************************************************************************/
880
881inline_speed void
200fd_event (int fd, int events) 882fd_event_nc (EV_P_ int fd, int revents)
201{ 883{
202 ANFD *anfd = anfds + fd; 884 ANFD *anfd = anfds + fd;
203 struct ev_io *w; 885 ev_io *w;
204 886
205 for (w = anfd->head; w; w = w->next) 887 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
206 { 888 {
207 int ev = w->events & events; 889 int ev = w->events & revents;
208 890
209 if (ev) 891 if (ev)
210 event ((W)w, ev); 892 ev_feed_event (EV_A_ (W)w, ev);
211 } 893 }
212} 894}
213 895
214/*****************************************************************************/ 896/* do not submit kernel events for fds that have reify set */
897/* because that means they changed while we were polling for new events */
898inline_speed void
899fd_event (EV_P_ int fd, int revents)
900{
901 ANFD *anfd = anfds + fd;
215 902
216static int *fdchanges; 903 if (expect_true (!anfd->reify))
217static int fdchangemax, fdchangecnt; 904 fd_event_nc (EV_A_ fd, revents);
905}
218 906
219static void 907void
220fd_reify (void) 908ev_feed_fd_event (EV_P_ int fd, int revents)
909{
910 if (fd >= 0 && fd < anfdmax)
911 fd_event_nc (EV_A_ fd, revents);
912}
913
914/* make sure the external fd watch events are in-sync */
915/* with the kernel/libev internal state */
916inline_size void
917fd_reify (EV_P)
221{ 918{
222 int i; 919 int i;
223 920
224 for (i = 0; i < fdchangecnt; ++i) 921 for (i = 0; i < fdchangecnt; ++i)
225 { 922 {
226 int fd = fdchanges [i]; 923 int fd = fdchanges [i];
227 ANFD *anfd = anfds + fd; 924 ANFD *anfd = anfds + fd;
228 struct ev_io *w; 925 ev_io *w;
229 926
230 int events = 0; 927 unsigned char events = 0;
231 928
232 for (w = anfd->head; w; w = w->next) 929 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
233 events |= w->events; 930 events |= (unsigned char)w->events;
234 931
235 anfd->reify = 0; 932#if EV_SELECT_IS_WINSOCKET
236 933 if (events)
237 if (anfd->events != events)
238 { 934 {
239 method_modify (fd, anfd->events, events); 935 unsigned long arg;
240 anfd->events = events; 936 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
937 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
241 } 938 }
939#endif
940
941 {
942 unsigned char o_events = anfd->events;
943 unsigned char o_reify = anfd->reify;
944
945 anfd->reify = 0;
946 anfd->events = events;
947
948 if (o_events != events || o_reify & EV__IOFDSET)
949 backend_modify (EV_A_ fd, o_events, events);
950 }
242 } 951 }
243 952
244 fdchangecnt = 0; 953 fdchangecnt = 0;
245} 954}
246 955
247static void 956/* something about the given fd changed */
248fd_change (int fd) 957inline_size void
958fd_change (EV_P_ int fd, int flags)
249{ 959{
250 if (anfds [fd].reify || fdchangecnt < 0) 960 unsigned char reify = anfds [fd].reify;
251 return;
252
253 anfds [fd].reify = 1; 961 anfds [fd].reify |= flags;
254 962
963 if (expect_true (!reify))
964 {
255 ++fdchangecnt; 965 ++fdchangecnt;
256 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 966 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
257 fdchanges [fdchangecnt - 1] = fd; 967 fdchanges [fdchangecnt - 1] = fd;
968 }
969}
970
971/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
972inline_speed void
973fd_kill (EV_P_ int fd)
974{
975 ev_io *w;
976
977 while ((w = (ev_io *)anfds [fd].head))
978 {
979 ev_io_stop (EV_A_ w);
980 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
981 }
982}
983
984/* check whether the given fd is atcually valid, for error recovery */
985inline_size int
986fd_valid (int fd)
987{
988#ifdef _WIN32
989 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
990#else
991 return fcntl (fd, F_GETFD) != -1;
992#endif
258} 993}
259 994
260/* called on EBADF to verify fds */ 995/* called on EBADF to verify fds */
261static void 996static void noinline
262fd_recheck (void) 997fd_ebadf (EV_P)
263{ 998{
264 int fd; 999 int fd;
265 1000
266 for (fd = 0; fd < anfdmax; ++fd) 1001 for (fd = 0; fd < anfdmax; ++fd)
267 if (anfds [fd].events) 1002 if (anfds [fd].events)
268 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1003 if (!fd_valid (fd) && errno == EBADF)
269 while (anfds [fd].head) 1004 fd_kill (EV_A_ fd);
1005}
1006
1007/* called on ENOMEM in select/poll to kill some fds and retry */
1008static void noinline
1009fd_enomem (EV_P)
1010{
1011 int fd;
1012
1013 for (fd = anfdmax; fd--; )
1014 if (anfds [fd].events)
1015 {
1016 fd_kill (EV_A_ fd);
1017 break;
1018 }
1019}
1020
1021/* usually called after fork if backend needs to re-arm all fds from scratch */
1022static void noinline
1023fd_rearm_all (EV_P)
1024{
1025 int fd;
1026
1027 for (fd = 0; fd < anfdmax; ++fd)
1028 if (anfds [fd].events)
1029 {
1030 anfds [fd].events = 0;
1031 anfds [fd].emask = 0;
1032 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1033 }
1034}
1035
1036/*****************************************************************************/
1037
1038/*
1039 * the heap functions want a real array index. array index 0 uis guaranteed to not
1040 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1041 * the branching factor of the d-tree.
1042 */
1043
1044/*
1045 * at the moment we allow libev the luxury of two heaps,
1046 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1047 * which is more cache-efficient.
1048 * the difference is about 5% with 50000+ watchers.
1049 */
1050#if EV_USE_4HEAP
1051
1052#define DHEAP 4
1053#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1054#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1055#define UPHEAP_DONE(p,k) ((p) == (k))
1056
1057/* away from the root */
1058inline_speed void
1059downheap (ANHE *heap, int N, int k)
1060{
1061 ANHE he = heap [k];
1062 ANHE *E = heap + N + HEAP0;
1063
1064 for (;;)
1065 {
1066 ev_tstamp minat;
1067 ANHE *minpos;
1068 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1069
1070 /* find minimum child */
1071 if (expect_true (pos + DHEAP - 1 < E))
1072 {
1073 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1074 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1075 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1076 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1077 }
1078 else if (pos < E)
1079 {
1080 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1081 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1082 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1083 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1084 }
1085 else
1086 break;
1087
1088 if (ANHE_at (he) <= minat)
1089 break;
1090
1091 heap [k] = *minpos;
1092 ev_active (ANHE_w (*minpos)) = k;
1093
1094 k = minpos - heap;
1095 }
1096
1097 heap [k] = he;
1098 ev_active (ANHE_w (he)) = k;
1099}
1100
1101#else /* 4HEAP */
1102
1103#define HEAP0 1
1104#define HPARENT(k) ((k) >> 1)
1105#define UPHEAP_DONE(p,k) (!(p))
1106
1107/* away from the root */
1108inline_speed void
1109downheap (ANHE *heap, int N, int k)
1110{
1111 ANHE he = heap [k];
1112
1113 for (;;)
1114 {
1115 int c = k << 1;
1116
1117 if (c >= N + HEAP0)
1118 break;
1119
1120 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1121 ? 1 : 0;
1122
1123 if (ANHE_at (he) <= ANHE_at (heap [c]))
1124 break;
1125
1126 heap [k] = heap [c];
1127 ev_active (ANHE_w (heap [k])) = k;
1128
1129 k = c;
1130 }
1131
1132 heap [k] = he;
1133 ev_active (ANHE_w (he)) = k;
1134}
1135#endif
1136
1137/* towards the root */
1138inline_speed void
1139upheap (ANHE *heap, int k)
1140{
1141 ANHE he = heap [k];
1142
1143 for (;;)
1144 {
1145 int p = HPARENT (k);
1146
1147 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1148 break;
1149
1150 heap [k] = heap [p];
1151 ev_active (ANHE_w (heap [k])) = k;
1152 k = p;
1153 }
1154
1155 heap [k] = he;
1156 ev_active (ANHE_w (he)) = k;
1157}
1158
1159/* move an element suitably so it is in a correct place */
1160inline_size void
1161adjustheap (ANHE *heap, int N, int k)
1162{
1163 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1164 upheap (heap, k);
1165 else
1166 downheap (heap, N, k);
1167}
1168
1169/* rebuild the heap: this function is used only once and executed rarely */
1170inline_size void
1171reheap (ANHE *heap, int N)
1172{
1173 int i;
1174
1175 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1176 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1177 for (i = 0; i < N; ++i)
1178 upheap (heap, i + HEAP0);
1179}
1180
1181/*****************************************************************************/
1182
1183/* associate signal watchers to a signal signal */
1184typedef struct
1185{
1186 EV_ATOMIC_T pending;
1187#if EV_MULTIPLICITY
1188 EV_P;
1189#endif
1190 WL head;
1191} ANSIG;
1192
1193static ANSIG signals [EV_NSIG - 1];
1194
1195/*****************************************************************************/
1196
1197/* used to prepare libev internal fd's */
1198/* this is not fork-safe */
1199inline_speed void
1200fd_intern (int fd)
1201{
1202#ifdef _WIN32
1203 unsigned long arg = 1;
1204 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1205#else
1206 fcntl (fd, F_SETFD, FD_CLOEXEC);
1207 fcntl (fd, F_SETFL, O_NONBLOCK);
1208#endif
1209}
1210
1211static void noinline
1212evpipe_init (EV_P)
1213{
1214 if (!ev_is_active (&pipe_w))
1215 {
1216#if EV_USE_EVENTFD
1217 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1218 if (evfd < 0 && errno == EINVAL)
1219 evfd = eventfd (0, 0);
1220
1221 if (evfd >= 0)
1222 {
1223 evpipe [0] = -1;
1224 fd_intern (evfd); /* doing it twice doesn't hurt */
1225 ev_io_set (&pipe_w, evfd, EV_READ);
1226 }
1227 else
1228#endif
1229 {
1230 while (pipe (evpipe))
1231 ev_syserr ("(libev) error creating signal/async pipe");
1232
1233 fd_intern (evpipe [0]);
1234 fd_intern (evpipe [1]);
1235 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1236 }
1237
1238 ev_io_start (EV_A_ &pipe_w);
1239 ev_unref (EV_A); /* watcher should not keep loop alive */
1240 }
1241}
1242
1243inline_size void
1244evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1245{
1246 if (!*flag)
1247 {
1248 int old_errno = errno; /* save errno because write might clobber it */
1249
1250 *flag = 1;
1251
1252#if EV_USE_EVENTFD
1253 if (evfd >= 0)
1254 {
1255 uint64_t counter = 1;
1256 write (evfd, &counter, sizeof (uint64_t));
1257 }
1258 else
1259#endif
1260 write (evpipe [1], &old_errno, 1);
1261
1262 errno = old_errno;
1263 }
1264}
1265
1266/* called whenever the libev signal pipe */
1267/* got some events (signal, async) */
1268static void
1269pipecb (EV_P_ ev_io *iow, int revents)
1270{
1271 int i;
1272
1273#if EV_USE_EVENTFD
1274 if (evfd >= 0)
1275 {
1276 uint64_t counter;
1277 read (evfd, &counter, sizeof (uint64_t));
1278 }
1279 else
1280#endif
1281 {
1282 char dummy;
1283 read (evpipe [0], &dummy, 1);
1284 }
1285
1286 if (sig_pending)
1287 {
1288 sig_pending = 0;
1289
1290 for (i = EV_NSIG - 1; i--; )
1291 if (expect_false (signals [i].pending))
1292 ev_feed_signal_event (EV_A_ i + 1);
1293 }
1294
1295#if EV_ASYNC_ENABLE
1296 if (async_pending)
1297 {
1298 async_pending = 0;
1299
1300 for (i = asynccnt; i--; )
1301 if (asyncs [i]->sent)
270 { 1302 {
271 ev_io_stop (anfds [fd].head); 1303 asyncs [i]->sent = 0;
272 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 1304 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
273 } 1305 }
1306 }
1307#endif
274} 1308}
275 1309
276/*****************************************************************************/ 1310/*****************************************************************************/
277 1311
278static struct ev_timer **timers;
279static int timermax, timercnt;
280
281static struct ev_periodic **periodics;
282static int periodicmax, periodiccnt;
283
284static void 1312static void
285upheap (WT *timers, int k) 1313ev_sighandler (int signum)
286{ 1314{
287 WT w = timers [k]; 1315#if EV_MULTIPLICITY
1316 EV_P = signals [signum - 1].loop;
1317#endif
288 1318
289 while (k && timers [k >> 1]->at > w->at) 1319#ifdef _WIN32
290 { 1320 signal (signum, ev_sighandler);
291 timers [k] = timers [k >> 1]; 1321#endif
292 timers [k]->active = k + 1;
293 k >>= 1;
294 }
295 1322
296 timers [k] = w; 1323 signals [signum - 1].pending = 1;
297 timers [k]->active = k + 1; 1324 evpipe_write (EV_A_ &sig_pending);
298
299} 1325}
300 1326
1327void noinline
1328ev_feed_signal_event (EV_P_ int signum)
1329{
1330 WL w;
1331
1332 if (expect_false (signum <= 0 || signum > EV_NSIG))
1333 return;
1334
1335 --signum;
1336
1337#if EV_MULTIPLICITY
1338 /* it is permissible to try to feed a signal to the wrong loop */
1339 /* or, likely more useful, feeding a signal nobody is waiting for */
1340
1341 if (expect_false (signals [signum].loop != EV_A))
1342 return;
1343#endif
1344
1345 signals [signum].pending = 0;
1346
1347 for (w = signals [signum].head; w; w = w->next)
1348 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1349}
1350
1351#if EV_USE_SIGNALFD
301static void 1352static void
302downheap (WT *timers, int N, int k) 1353sigfdcb (EV_P_ ev_io *iow, int revents)
303{ 1354{
304 WT w = timers [k]; 1355 struct signalfd_siginfo si[2], *sip; /* these structs are big */
305 1356
306 while (k < (N >> 1)) 1357 for (;;)
307 { 1358 {
308 int j = k << 1; 1359 ssize_t res = read (sigfd, si, sizeof (si));
309 1360
310 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 1361 /* not ISO-C, as res might be -1, but works with SuS */
311 ++j; 1362 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1363 ev_feed_signal_event (EV_A_ sip->ssi_signo);
312 1364
313 if (w->at <= timers [j]->at) 1365 if (res < (ssize_t)sizeof (si))
314 break; 1366 break;
315
316 timers [k] = timers [j];
317 timers [k]->active = k + 1;
318 k = j;
319 } 1367 }
320
321 timers [k] = w;
322 timers [k]->active = k + 1;
323} 1368}
1369#endif
324 1370
325/*****************************************************************************/ 1371/*****************************************************************************/
326 1372
327typedef struct 1373static WL childs [EV_PID_HASHSIZE];
328{
329 struct ev_signal *head;
330 sig_atomic_t volatile gotsig;
331} ANSIG;
332 1374
333static ANSIG *signals; 1375#ifndef _WIN32
334static int signalmax;
335 1376
336static int sigpipe [2];
337static sig_atomic_t volatile gotsig;
338static struct ev_io sigev;
339
340static void
341signals_init (ANSIG *base, int count)
342{
343 while (count--)
344 {
345 base->head = 0;
346 base->gotsig = 0;
347
348 ++base;
349 }
350}
351
352static void
353sighandler (int signum)
354{
355 signals [signum - 1].gotsig = 1;
356
357 if (!gotsig)
358 {
359 gotsig = 1;
360 write (sigpipe [1], &signum, 1);
361 }
362}
363
364static void
365sigcb (struct ev_io *iow, int revents)
366{
367 struct ev_signal *w;
368 int sig;
369
370 read (sigpipe [0], &revents, 1);
371 gotsig = 0;
372
373 for (sig = signalmax; sig--; )
374 if (signals [sig].gotsig)
375 {
376 signals [sig].gotsig = 0;
377
378 for (w = signals [sig].head; w; w = w->next)
379 event ((W)w, EV_SIGNAL);
380 }
381}
382
383static void
384siginit (void)
385{
386 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
387 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
388
389 /* rather than sort out wether we really need nb, set it */
390 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
391 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
392
393 ev_io_set (&sigev, sigpipe [0], EV_READ);
394 ev_io_start (&sigev);
395}
396
397/*****************************************************************************/
398
399static struct ev_idle **idles;
400static int idlemax, idlecnt;
401
402static struct ev_prepare **prepares;
403static int preparemax, preparecnt;
404
405static struct ev_check **checks;
406static int checkmax, checkcnt;
407
408/*****************************************************************************/
409
410static struct ev_child *childs [PID_HASHSIZE];
411static struct ev_signal childev; 1377static ev_signal childev;
1378
1379#ifndef WIFCONTINUED
1380# define WIFCONTINUED(status) 0
1381#endif
1382
1383/* handle a single child status event */
1384inline_speed void
1385child_reap (EV_P_ int chain, int pid, int status)
1386{
1387 ev_child *w;
1388 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1389
1390 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1391 {
1392 if ((w->pid == pid || !w->pid)
1393 && (!traced || (w->flags & 1)))
1394 {
1395 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1396 w->rpid = pid;
1397 w->rstatus = status;
1398 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1399 }
1400 }
1401}
412 1402
413#ifndef WCONTINUED 1403#ifndef WCONTINUED
414# define WCONTINUED 0 1404# define WCONTINUED 0
415#endif 1405#endif
416 1406
1407/* called on sigchld etc., calls waitpid */
417static void 1408static void
418childcb (struct ev_signal *sw, int revents) 1409childcb (EV_P_ ev_signal *sw, int revents)
419{ 1410{
420 struct ev_child *w;
421 int pid, status; 1411 int pid, status;
422 1412
1413 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
423 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1414 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
424 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1415 if (!WCONTINUED
425 if (w->pid == pid || w->pid == -1) 1416 || errno != EINVAL
426 { 1417 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
427 w->status = status; 1418 return;
428 event ((W)w, EV_CHILD); 1419
429 } 1420 /* make sure we are called again until all children have been reaped */
1421 /* we need to do it this way so that the callback gets called before we continue */
1422 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1423
1424 child_reap (EV_A_ pid, pid, status);
1425 if (EV_PID_HASHSIZE > 1)
1426 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
430} 1427}
1428
1429#endif
431 1430
432/*****************************************************************************/ 1431/*****************************************************************************/
433 1432
1433#if EV_USE_PORT
1434# include "ev_port.c"
1435#endif
1436#if EV_USE_KQUEUE
1437# include "ev_kqueue.c"
1438#endif
434#if EV_USE_EPOLL 1439#if EV_USE_EPOLL
435# include "ev_epoll.c" 1440# include "ev_epoll.c"
436#endif 1441#endif
1442#if EV_USE_POLL
1443# include "ev_poll.c"
1444#endif
437#if EV_USE_SELECT 1445#if EV_USE_SELECT
438# include "ev_select.c" 1446# include "ev_select.c"
439#endif 1447#endif
440 1448
441int 1449int
448ev_version_minor (void) 1456ev_version_minor (void)
449{ 1457{
450 return EV_VERSION_MINOR; 1458 return EV_VERSION_MINOR;
451} 1459}
452 1460
453int ev_init (int flags) 1461/* return true if we are running with elevated privileges and should ignore env variables */
1462int inline_size
1463enable_secure (void)
454{ 1464{
455 if (!ev_method) 1465#ifdef _WIN32
1466 return 0;
1467#else
1468 return getuid () != geteuid ()
1469 || getgid () != getegid ();
1470#endif
1471}
1472
1473unsigned int
1474ev_supported_backends (void)
1475{
1476 unsigned int flags = 0;
1477
1478 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1479 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1480 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1481 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1482 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1483
1484 return flags;
1485}
1486
1487unsigned int
1488ev_recommended_backends (void)
1489{
1490 unsigned int flags = ev_supported_backends ();
1491
1492#ifndef __NetBSD__
1493 /* kqueue is borked on everything but netbsd apparently */
1494 /* it usually doesn't work correctly on anything but sockets and pipes */
1495 flags &= ~EVBACKEND_KQUEUE;
1496#endif
1497#ifdef __APPLE__
1498 /* only select works correctly on that "unix-certified" platform */
1499 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1500 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1501#endif
1502
1503 return flags;
1504}
1505
1506unsigned int
1507ev_embeddable_backends (void)
1508{
1509 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1510
1511 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1512 /* please fix it and tell me how to detect the fix */
1513 flags &= ~EVBACKEND_EPOLL;
1514
1515 return flags;
1516}
1517
1518unsigned int
1519ev_backend (EV_P)
1520{
1521 return backend;
1522}
1523
1524#if EV_MINIMAL < 2
1525unsigned int
1526ev_loop_count (EV_P)
1527{
1528 return loop_count;
1529}
1530
1531unsigned int
1532ev_loop_depth (EV_P)
1533{
1534 return loop_depth;
1535}
1536
1537void
1538ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1539{
1540 io_blocktime = interval;
1541}
1542
1543void
1544ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1545{
1546 timeout_blocktime = interval;
1547}
1548
1549void
1550ev_set_userdata (EV_P_ void *data)
1551{
1552 userdata = data;
1553}
1554
1555void *
1556ev_userdata (EV_P)
1557{
1558 return userdata;
1559}
1560
1561void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1562{
1563 invoke_cb = invoke_pending_cb;
1564}
1565
1566void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1567{
1568 release_cb = release;
1569 acquire_cb = acquire;
1570}
1571#endif
1572
1573/* initialise a loop structure, must be zero-initialised */
1574static void noinline
1575loop_init (EV_P_ unsigned int flags)
1576{
1577 if (!backend)
456 { 1578 {
1579#if EV_USE_REALTIME
1580 if (!have_realtime)
1581 {
1582 struct timespec ts;
1583
1584 if (!clock_gettime (CLOCK_REALTIME, &ts))
1585 have_realtime = 1;
1586 }
1587#endif
1588
457#if EV_USE_MONOTONIC 1589#if EV_USE_MONOTONIC
1590 if (!have_monotonic)
1591 {
1592 struct timespec ts;
1593
1594 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1595 have_monotonic = 1;
1596 }
1597#endif
1598
1599 /* pid check not overridable via env */
1600#ifndef _WIN32
1601 if (flags & EVFLAG_FORKCHECK)
1602 curpid = getpid ();
1603#endif
1604
1605 if (!(flags & EVFLAG_NOENV)
1606 && !enable_secure ()
1607 && getenv ("LIBEV_FLAGS"))
1608 flags = atoi (getenv ("LIBEV_FLAGS"));
1609
1610 ev_rt_now = ev_time ();
1611 mn_now = get_clock ();
1612 now_floor = mn_now;
1613 rtmn_diff = ev_rt_now - mn_now;
1614#if EV_MINIMAL < 2
1615 invoke_cb = ev_invoke_pending;
1616#endif
1617
1618 io_blocktime = 0.;
1619 timeout_blocktime = 0.;
1620 backend = 0;
1621 backend_fd = -1;
1622 sig_pending = 0;
1623#if EV_ASYNC_ENABLE
1624 async_pending = 0;
1625#endif
1626#if EV_USE_INOTIFY
1627 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1628#endif
1629#if EV_USE_SIGNALFD
1630 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1631#endif
1632
1633 if (!(flags & 0x0000ffffU))
1634 flags |= ev_recommended_backends ();
1635
1636#if EV_USE_PORT
1637 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1638#endif
1639#if EV_USE_KQUEUE
1640 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1641#endif
1642#if EV_USE_EPOLL
1643 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1644#endif
1645#if EV_USE_POLL
1646 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1647#endif
1648#if EV_USE_SELECT
1649 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1650#endif
1651
1652 ev_prepare_init (&pending_w, pendingcb);
1653
1654 ev_init (&pipe_w, pipecb);
1655 ev_set_priority (&pipe_w, EV_MAXPRI);
1656 }
1657}
1658
1659/* free up a loop structure */
1660static void noinline
1661loop_destroy (EV_P)
1662{
1663 int i;
1664
1665 if (ev_is_active (&pipe_w))
1666 {
1667 /*ev_ref (EV_A);*/
1668 /*ev_io_stop (EV_A_ &pipe_w);*/
1669
1670#if EV_USE_EVENTFD
1671 if (evfd >= 0)
1672 close (evfd);
1673#endif
1674
1675 if (evpipe [0] >= 0)
1676 {
1677 EV_WIN32_CLOSE_FD (evpipe [0]);
1678 EV_WIN32_CLOSE_FD (evpipe [1]);
1679 }
1680 }
1681
1682#if EV_USE_SIGNALFD
1683 if (ev_is_active (&sigfd_w))
1684 close (sigfd);
1685#endif
1686
1687#if EV_USE_INOTIFY
1688 if (fs_fd >= 0)
1689 close (fs_fd);
1690#endif
1691
1692 if (backend_fd >= 0)
1693 close (backend_fd);
1694
1695#if EV_USE_PORT
1696 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1697#endif
1698#if EV_USE_KQUEUE
1699 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1700#endif
1701#if EV_USE_EPOLL
1702 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1703#endif
1704#if EV_USE_POLL
1705 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1706#endif
1707#if EV_USE_SELECT
1708 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1709#endif
1710
1711 for (i = NUMPRI; i--; )
1712 {
1713 array_free (pending, [i]);
1714#if EV_IDLE_ENABLE
1715 array_free (idle, [i]);
1716#endif
1717 }
1718
1719 ev_free (anfds); anfds = 0; anfdmax = 0;
1720
1721 /* have to use the microsoft-never-gets-it-right macro */
1722 array_free (rfeed, EMPTY);
1723 array_free (fdchange, EMPTY);
1724 array_free (timer, EMPTY);
1725#if EV_PERIODIC_ENABLE
1726 array_free (periodic, EMPTY);
1727#endif
1728#if EV_FORK_ENABLE
1729 array_free (fork, EMPTY);
1730#endif
1731 array_free (prepare, EMPTY);
1732 array_free (check, EMPTY);
1733#if EV_ASYNC_ENABLE
1734 array_free (async, EMPTY);
1735#endif
1736
1737 backend = 0;
1738}
1739
1740#if EV_USE_INOTIFY
1741inline_size void infy_fork (EV_P);
1742#endif
1743
1744inline_size void
1745loop_fork (EV_P)
1746{
1747#if EV_USE_PORT
1748 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1749#endif
1750#if EV_USE_KQUEUE
1751 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1752#endif
1753#if EV_USE_EPOLL
1754 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1755#endif
1756#if EV_USE_INOTIFY
1757 infy_fork (EV_A);
1758#endif
1759
1760 if (ev_is_active (&pipe_w))
1761 {
1762 /* this "locks" the handlers against writing to the pipe */
1763 /* while we modify the fd vars */
1764 sig_pending = 1;
1765#if EV_ASYNC_ENABLE
1766 async_pending = 1;
1767#endif
1768
1769 ev_ref (EV_A);
1770 ev_io_stop (EV_A_ &pipe_w);
1771
1772#if EV_USE_EVENTFD
1773 if (evfd >= 0)
1774 close (evfd);
1775#endif
1776
1777 if (evpipe [0] >= 0)
1778 {
1779 EV_WIN32_CLOSE_FD (evpipe [0]);
1780 EV_WIN32_CLOSE_FD (evpipe [1]);
1781 }
1782
1783 evpipe_init (EV_A);
1784 /* now iterate over everything, in case we missed something */
1785 pipecb (EV_A_ &pipe_w, EV_READ);
1786 }
1787
1788 postfork = 0;
1789}
1790
1791#if EV_MULTIPLICITY
1792
1793struct ev_loop *
1794ev_loop_new (unsigned int flags)
1795{
1796 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1797
1798 memset (EV_A, 0, sizeof (struct ev_loop));
1799 loop_init (EV_A_ flags);
1800
1801 if (ev_backend (EV_A))
1802 return EV_A;
1803
1804 return 0;
1805}
1806
1807void
1808ev_loop_destroy (EV_P)
1809{
1810 loop_destroy (EV_A);
1811 ev_free (loop);
1812}
1813
1814void
1815ev_loop_fork (EV_P)
1816{
1817 postfork = 1; /* must be in line with ev_default_fork */
1818}
1819#endif /* multiplicity */
1820
1821#if EV_VERIFY
1822static void noinline
1823verify_watcher (EV_P_ W w)
1824{
1825 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1826
1827 if (w->pending)
1828 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1829}
1830
1831static void noinline
1832verify_heap (EV_P_ ANHE *heap, int N)
1833{
1834 int i;
1835
1836 for (i = HEAP0; i < N + HEAP0; ++i)
1837 {
1838 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1839 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1840 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1841
1842 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1843 }
1844}
1845
1846static void noinline
1847array_verify (EV_P_ W *ws, int cnt)
1848{
1849 while (cnt--)
1850 {
1851 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1852 verify_watcher (EV_A_ ws [cnt]);
1853 }
1854}
1855#endif
1856
1857#if EV_MINIMAL < 2
1858void
1859ev_loop_verify (EV_P)
1860{
1861#if EV_VERIFY
1862 int i;
1863 WL w;
1864
1865 assert (activecnt >= -1);
1866
1867 assert (fdchangemax >= fdchangecnt);
1868 for (i = 0; i < fdchangecnt; ++i)
1869 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1870
1871 assert (anfdmax >= 0);
1872 for (i = 0; i < anfdmax; ++i)
1873 for (w = anfds [i].head; w; w = w->next)
458 { 1874 {
459 struct timespec ts; 1875 verify_watcher (EV_A_ (W)w);
460 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1876 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
461 have_monotonic = 1; 1877 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
462 } 1878 }
1879
1880 assert (timermax >= timercnt);
1881 verify_heap (EV_A_ timers, timercnt);
1882
1883#if EV_PERIODIC_ENABLE
1884 assert (periodicmax >= periodiccnt);
1885 verify_heap (EV_A_ periodics, periodiccnt);
1886#endif
1887
1888 for (i = NUMPRI; i--; )
1889 {
1890 assert (pendingmax [i] >= pendingcnt [i]);
1891#if EV_IDLE_ENABLE
1892 assert (idleall >= 0);
1893 assert (idlemax [i] >= idlecnt [i]);
1894 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1895#endif
1896 }
1897
1898#if EV_FORK_ENABLE
1899 assert (forkmax >= forkcnt);
1900 array_verify (EV_A_ (W *)forks, forkcnt);
1901#endif
1902
1903#if EV_ASYNC_ENABLE
1904 assert (asyncmax >= asynccnt);
1905 array_verify (EV_A_ (W *)asyncs, asynccnt);
1906#endif
1907
1908 assert (preparemax >= preparecnt);
1909 array_verify (EV_A_ (W *)prepares, preparecnt);
1910
1911 assert (checkmax >= checkcnt);
1912 array_verify (EV_A_ (W *)checks, checkcnt);
1913
1914# if 0
1915 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1916 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
463#endif 1917# endif
464
465 ev_now = ev_time ();
466 now = get_clock ();
467 diff = ev_now - now;
468
469 if (pipe (sigpipe))
470 return 0;
471
472 ev_method = EVMETHOD_NONE;
473#if EV_USE_EPOLL
474 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
475#endif 1918#endif
476#if EV_USE_SELECT 1919}
477 if (ev_method == EVMETHOD_NONE) select_init (flags);
478#endif 1920#endif
479 1921
480 if (ev_method) 1922#if EV_MULTIPLICITY
1923struct ev_loop *
1924ev_default_loop_init (unsigned int flags)
1925#else
1926int
1927ev_default_loop (unsigned int flags)
1928#endif
1929{
1930 if (!ev_default_loop_ptr)
1931 {
1932#if EV_MULTIPLICITY
1933 EV_P = ev_default_loop_ptr = &default_loop_struct;
1934#else
1935 ev_default_loop_ptr = 1;
1936#endif
1937
1938 loop_init (EV_A_ flags);
1939
1940 if (ev_backend (EV_A))
481 { 1941 {
482 ev_watcher_init (&sigev, sigcb); 1942#ifndef _WIN32
483 siginit ();
484
485 ev_signal_init (&childev, childcb, SIGCHLD); 1943 ev_signal_init (&childev, childcb, SIGCHLD);
1944 ev_set_priority (&childev, EV_MAXPRI);
486 ev_signal_start (&childev); 1945 ev_signal_start (EV_A_ &childev);
1946 ev_unref (EV_A); /* child watcher should not keep loop alive */
1947#endif
487 } 1948 }
1949 else
1950 ev_default_loop_ptr = 0;
488 } 1951 }
489 1952
490 return ev_method; 1953 return ev_default_loop_ptr;
1954}
1955
1956void
1957ev_default_destroy (void)
1958{
1959#if EV_MULTIPLICITY
1960 EV_P = ev_default_loop_ptr;
1961#endif
1962
1963 ev_default_loop_ptr = 0;
1964
1965#ifndef _WIN32
1966 ev_ref (EV_A); /* child watcher */
1967 ev_signal_stop (EV_A_ &childev);
1968#endif
1969
1970 loop_destroy (EV_A);
1971}
1972
1973void
1974ev_default_fork (void)
1975{
1976#if EV_MULTIPLICITY
1977 EV_P = ev_default_loop_ptr;
1978#endif
1979
1980 postfork = 1; /* must be in line with ev_loop_fork */
491} 1981}
492 1982
493/*****************************************************************************/ 1983/*****************************************************************************/
494 1984
495void 1985void
496ev_fork_prepare (void) 1986ev_invoke (EV_P_ void *w, int revents)
497{ 1987{
498 /* nop */ 1988 EV_CB_INVOKE ((W)w, revents);
499} 1989}
500 1990
501void 1991unsigned int
502ev_fork_parent (void) 1992ev_pending_count (EV_P)
503{ 1993{
504 /* nop */ 1994 int pri;
505} 1995 unsigned int count = 0;
506 1996
507void 1997 for (pri = NUMPRI; pri--; )
508ev_fork_child (void) 1998 count += pendingcnt [pri];
1999
2000 return count;
2001}
2002
2003void noinline
2004ev_invoke_pending (EV_P)
509{ 2005{
510#if EV_USE_EPOLL 2006 int pri;
511 if (ev_method == EVMETHOD_EPOLL) 2007
512 epoll_postfork_child (); 2008 for (pri = NUMPRI; pri--; )
2009 while (pendingcnt [pri])
2010 {
2011 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2012
2013 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2014 /* ^ this is no longer true, as pending_w could be here */
2015
2016 p->w->pending = 0;
2017 EV_CB_INVOKE (p->w, p->events);
2018 EV_FREQUENT_CHECK;
2019 }
2020}
2021
2022#if EV_IDLE_ENABLE
2023/* make idle watchers pending. this handles the "call-idle */
2024/* only when higher priorities are idle" logic */
2025inline_size void
2026idle_reify (EV_P)
2027{
2028 if (expect_false (idleall))
2029 {
2030 int pri;
2031
2032 for (pri = NUMPRI; pri--; )
2033 {
2034 if (pendingcnt [pri])
2035 break;
2036
2037 if (idlecnt [pri])
2038 {
2039 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2040 break;
2041 }
2042 }
2043 }
2044}
2045#endif
2046
2047/* make timers pending */
2048inline_size void
2049timers_reify (EV_P)
2050{
2051 EV_FREQUENT_CHECK;
2052
2053 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2054 {
2055 do
2056 {
2057 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2058
2059 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2060
2061 /* first reschedule or stop timer */
2062 if (w->repeat)
2063 {
2064 ev_at (w) += w->repeat;
2065 if (ev_at (w) < mn_now)
2066 ev_at (w) = mn_now;
2067
2068 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2069
2070 ANHE_at_cache (timers [HEAP0]);
2071 downheap (timers, timercnt, HEAP0);
2072 }
2073 else
2074 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2075
2076 EV_FREQUENT_CHECK;
2077 feed_reverse (EV_A_ (W)w);
2078 }
2079 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2080
2081 feed_reverse_done (EV_A_ EV_TIMEOUT);
2082 }
2083}
2084
2085#if EV_PERIODIC_ENABLE
2086/* make periodics pending */
2087inline_size void
2088periodics_reify (EV_P)
2089{
2090 EV_FREQUENT_CHECK;
2091
2092 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2093 {
2094 int feed_count = 0;
2095
2096 do
2097 {
2098 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2099
2100 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2101
2102 /* first reschedule or stop timer */
2103 if (w->reschedule_cb)
2104 {
2105 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2106
2107 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2108
2109 ANHE_at_cache (periodics [HEAP0]);
2110 downheap (periodics, periodiccnt, HEAP0);
2111 }
2112 else if (w->interval)
2113 {
2114 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2115 /* if next trigger time is not sufficiently in the future, put it there */
2116 /* this might happen because of floating point inexactness */
2117 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2118 {
2119 ev_at (w) += w->interval;
2120
2121 /* if interval is unreasonably low we might still have a time in the past */
2122 /* so correct this. this will make the periodic very inexact, but the user */
2123 /* has effectively asked to get triggered more often than possible */
2124 if (ev_at (w) < ev_rt_now)
2125 ev_at (w) = ev_rt_now;
2126 }
2127
2128 ANHE_at_cache (periodics [HEAP0]);
2129 downheap (periodics, periodiccnt, HEAP0);
2130 }
2131 else
2132 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2133
2134 EV_FREQUENT_CHECK;
2135 feed_reverse (EV_A_ (W)w);
2136 }
2137 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2138
2139 feed_reverse_done (EV_A_ EV_PERIODIC);
2140 }
2141}
2142
2143/* simply recalculate all periodics */
2144/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2145static void noinline
2146periodics_reschedule (EV_P)
2147{
2148 int i;
2149
2150 /* adjust periodics after time jump */
2151 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2152 {
2153 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2154
2155 if (w->reschedule_cb)
2156 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2157 else if (w->interval)
2158 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2159
2160 ANHE_at_cache (periodics [i]);
2161 }
2162
2163 reheap (periodics, periodiccnt);
2164}
2165#endif
2166
2167/* adjust all timers by a given offset */
2168static void noinline
2169timers_reschedule (EV_P_ ev_tstamp adjust)
2170{
2171 int i;
2172
2173 for (i = 0; i < timercnt; ++i)
2174 {
2175 ANHE *he = timers + i + HEAP0;
2176 ANHE_w (*he)->at += adjust;
2177 ANHE_at_cache (*he);
2178 }
2179}
2180
2181/* fetch new monotonic and realtime times from the kernel */
2182/* also detect if there was a timejump, and act accordingly */
2183inline_speed void
2184time_update (EV_P_ ev_tstamp max_block)
2185{
2186#if EV_USE_MONOTONIC
2187 if (expect_true (have_monotonic))
2188 {
2189 int i;
2190 ev_tstamp odiff = rtmn_diff;
2191
2192 mn_now = get_clock ();
2193
2194 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2195 /* interpolate in the meantime */
2196 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2197 {
2198 ev_rt_now = rtmn_diff + mn_now;
2199 return;
2200 }
2201
2202 now_floor = mn_now;
2203 ev_rt_now = ev_time ();
2204
2205 /* loop a few times, before making important decisions.
2206 * on the choice of "4": one iteration isn't enough,
2207 * in case we get preempted during the calls to
2208 * ev_time and get_clock. a second call is almost guaranteed
2209 * to succeed in that case, though. and looping a few more times
2210 * doesn't hurt either as we only do this on time-jumps or
2211 * in the unlikely event of having been preempted here.
2212 */
2213 for (i = 4; --i; )
2214 {
2215 rtmn_diff = ev_rt_now - mn_now;
2216
2217 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2218 return; /* all is well */
2219
2220 ev_rt_now = ev_time ();
2221 mn_now = get_clock ();
2222 now_floor = mn_now;
2223 }
2224
2225 /* no timer adjustment, as the monotonic clock doesn't jump */
2226 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2227# if EV_PERIODIC_ENABLE
2228 periodics_reschedule (EV_A);
513#endif 2229# endif
2230 }
2231 else
2232#endif
2233 {
2234 ev_rt_now = ev_time ();
514 2235
515 ev_io_stop (&sigev); 2236 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
516 close (sigpipe [0]); 2237 {
517 close (sigpipe [1]); 2238 /* adjust timers. this is easy, as the offset is the same for all of them */
518 pipe (sigpipe); 2239 timers_reschedule (EV_A_ ev_rt_now - mn_now);
519 siginit (); 2240#if EV_PERIODIC_ENABLE
2241 periodics_reschedule (EV_A);
2242#endif
2243 }
2244
2245 mn_now = ev_rt_now;
2246 }
2247}
2248
2249void
2250ev_loop (EV_P_ int flags)
2251{
2252#if EV_MINIMAL < 2
2253 ++loop_depth;
2254#endif
2255
2256 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2257
2258 loop_done = EVUNLOOP_CANCEL;
2259
2260 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2261
2262 do
2263 {
2264#if EV_VERIFY >= 2
2265 ev_loop_verify (EV_A);
2266#endif
2267
2268#ifndef _WIN32
2269 if (expect_false (curpid)) /* penalise the forking check even more */
2270 if (expect_false (getpid () != curpid))
2271 {
2272 curpid = getpid ();
2273 postfork = 1;
2274 }
2275#endif
2276
2277#if EV_FORK_ENABLE
2278 /* we might have forked, so queue fork handlers */
2279 if (expect_false (postfork))
2280 if (forkcnt)
2281 {
2282 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2283 EV_INVOKE_PENDING;
2284 }
2285#endif
2286
2287 /* queue prepare watchers (and execute them) */
2288 if (expect_false (preparecnt))
2289 {
2290 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2291 EV_INVOKE_PENDING;
2292 }
2293
2294 if (expect_false (loop_done))
2295 break;
2296
2297 /* we might have forked, so reify kernel state if necessary */
2298 if (expect_false (postfork))
2299 loop_fork (EV_A);
2300
2301 /* update fd-related kernel structures */
2302 fd_reify (EV_A);
2303
2304 /* calculate blocking time */
2305 {
2306 ev_tstamp waittime = 0.;
2307 ev_tstamp sleeptime = 0.;
2308
2309 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2310 {
2311 /* remember old timestamp for io_blocktime calculation */
2312 ev_tstamp prev_mn_now = mn_now;
2313
2314 /* update time to cancel out callback processing overhead */
2315 time_update (EV_A_ 1e100);
2316
2317 waittime = MAX_BLOCKTIME;
2318
2319 if (timercnt)
2320 {
2321 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2322 if (waittime > to) waittime = to;
2323 }
2324
2325#if EV_PERIODIC_ENABLE
2326 if (periodiccnt)
2327 {
2328 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2329 if (waittime > to) waittime = to;
2330 }
2331#endif
2332
2333 /* don't let timeouts decrease the waittime below timeout_blocktime */
2334 if (expect_false (waittime < timeout_blocktime))
2335 waittime = timeout_blocktime;
2336
2337 /* extra check because io_blocktime is commonly 0 */
2338 if (expect_false (io_blocktime))
2339 {
2340 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2341
2342 if (sleeptime > waittime - backend_fudge)
2343 sleeptime = waittime - backend_fudge;
2344
2345 if (expect_true (sleeptime > 0.))
2346 {
2347 ev_sleep (sleeptime);
2348 waittime -= sleeptime;
2349 }
2350 }
2351 }
2352
2353#if EV_MINIMAL < 2
2354 ++loop_count;
2355#endif
2356 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2357 backend_poll (EV_A_ waittime);
2358 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2359
2360 /* update ev_rt_now, do magic */
2361 time_update (EV_A_ waittime + sleeptime);
2362 }
2363
2364 /* queue pending timers and reschedule them */
2365 timers_reify (EV_A); /* relative timers called last */
2366#if EV_PERIODIC_ENABLE
2367 periodics_reify (EV_A); /* absolute timers called first */
2368#endif
2369
2370#if EV_IDLE_ENABLE
2371 /* queue idle watchers unless other events are pending */
2372 idle_reify (EV_A);
2373#endif
2374
2375 /* queue check watchers, to be executed first */
2376 if (expect_false (checkcnt))
2377 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2378
2379 EV_INVOKE_PENDING;
2380 }
2381 while (expect_true (
2382 activecnt
2383 && !loop_done
2384 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2385 ));
2386
2387 if (loop_done == EVUNLOOP_ONE)
2388 loop_done = EVUNLOOP_CANCEL;
2389
2390#if EV_MINIMAL < 2
2391 --loop_depth;
2392#endif
2393}
2394
2395void
2396ev_unloop (EV_P_ int how)
2397{
2398 loop_done = how;
2399}
2400
2401void
2402ev_ref (EV_P)
2403{
2404 ++activecnt;
2405}
2406
2407void
2408ev_unref (EV_P)
2409{
2410 --activecnt;
2411}
2412
2413void
2414ev_now_update (EV_P)
2415{
2416 time_update (EV_A_ 1e100);
2417}
2418
2419void
2420ev_suspend (EV_P)
2421{
2422 ev_now_update (EV_A);
2423}
2424
2425void
2426ev_resume (EV_P)
2427{
2428 ev_tstamp mn_prev = mn_now;
2429
2430 ev_now_update (EV_A);
2431 timers_reschedule (EV_A_ mn_now - mn_prev);
2432#if EV_PERIODIC_ENABLE
2433 /* TODO: really do this? */
2434 periodics_reschedule (EV_A);
2435#endif
520} 2436}
521 2437
522/*****************************************************************************/ 2438/*****************************************************************************/
2439/* singly-linked list management, used when the expected list length is short */
523 2440
524static void 2441inline_size void
525call_pending (void) 2442wlist_add (WL *head, WL elem)
526{ 2443{
527 while (pendingcnt) 2444 elem->next = *head;
528 { 2445 *head = elem;
529 ANPENDING *p = pendings + --pendingcnt; 2446}
530 2447
531 if (p->w) 2448inline_size void
2449wlist_del (WL *head, WL elem)
2450{
2451 while (*head)
2452 {
2453 if (expect_true (*head == elem))
532 { 2454 {
533 p->w->pending = 0; 2455 *head = elem->next;
534 p->w->cb (p->w, p->events); 2456 break;
535 } 2457 }
2458
2459 head = &(*head)->next;
2460 }
2461}
2462
2463/* internal, faster, version of ev_clear_pending */
2464inline_speed void
2465clear_pending (EV_P_ W w)
2466{
2467 if (w->pending)
536 } 2468 {
2469 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2470 w->pending = 0;
2471 }
537} 2472}
538 2473
539static void 2474int
540timers_reify (void) 2475ev_clear_pending (EV_P_ void *w)
541{ 2476{
542 while (timercnt && timers [0]->at <= now) 2477 W w_ = (W)w;
2478 int pending = w_->pending;
2479
2480 if (expect_true (pending))
2481 {
2482 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2483 p->w = (W)&pending_w;
2484 w_->pending = 0;
2485 return p->events;
2486 }
2487 else
2488 return 0;
2489}
2490
2491inline_size void
2492pri_adjust (EV_P_ W w)
2493{
2494 int pri = ev_priority (w);
2495 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2496 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2497 ev_set_priority (w, pri);
2498}
2499
2500inline_speed void
2501ev_start (EV_P_ W w, int active)
2502{
2503 pri_adjust (EV_A_ w);
2504 w->active = active;
2505 ev_ref (EV_A);
2506}
2507
2508inline_size void
2509ev_stop (EV_P_ W w)
2510{
2511 ev_unref (EV_A);
2512 w->active = 0;
2513}
2514
2515/*****************************************************************************/
2516
2517void noinline
2518ev_io_start (EV_P_ ev_io *w)
2519{
2520 int fd = w->fd;
2521
2522 if (expect_false (ev_is_active (w)))
2523 return;
2524
2525 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2526 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2527
2528 EV_FREQUENT_CHECK;
2529
2530 ev_start (EV_A_ (W)w, 1);
2531 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2532 wlist_add (&anfds[fd].head, (WL)w);
2533
2534 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2535 w->events &= ~EV__IOFDSET;
2536
2537 EV_FREQUENT_CHECK;
2538}
2539
2540void noinline
2541ev_io_stop (EV_P_ ev_io *w)
2542{
2543 clear_pending (EV_A_ (W)w);
2544 if (expect_false (!ev_is_active (w)))
2545 return;
2546
2547 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2548
2549 EV_FREQUENT_CHECK;
2550
2551 wlist_del (&anfds[w->fd].head, (WL)w);
2552 ev_stop (EV_A_ (W)w);
2553
2554 fd_change (EV_A_ w->fd, 1);
2555
2556 EV_FREQUENT_CHECK;
2557}
2558
2559void noinline
2560ev_timer_start (EV_P_ ev_timer *w)
2561{
2562 if (expect_false (ev_is_active (w)))
2563 return;
2564
2565 ev_at (w) += mn_now;
2566
2567 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2568
2569 EV_FREQUENT_CHECK;
2570
2571 ++timercnt;
2572 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2573 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2574 ANHE_w (timers [ev_active (w)]) = (WT)w;
2575 ANHE_at_cache (timers [ev_active (w)]);
2576 upheap (timers, ev_active (w));
2577
2578 EV_FREQUENT_CHECK;
2579
2580 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2581}
2582
2583void noinline
2584ev_timer_stop (EV_P_ ev_timer *w)
2585{
2586 clear_pending (EV_A_ (W)w);
2587 if (expect_false (!ev_is_active (w)))
2588 return;
2589
2590 EV_FREQUENT_CHECK;
2591
2592 {
2593 int active = ev_active (w);
2594
2595 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2596
2597 --timercnt;
2598
2599 if (expect_true (active < timercnt + HEAP0))
543 { 2600 {
544 struct ev_timer *w = timers [0]; 2601 timers [active] = timers [timercnt + HEAP0];
2602 adjustheap (timers, timercnt, active);
2603 }
2604 }
545 2605
546 /* first reschedule or stop timer */ 2606 ev_at (w) -= mn_now;
2607
2608 ev_stop (EV_A_ (W)w);
2609
2610 EV_FREQUENT_CHECK;
2611}
2612
2613void noinline
2614ev_timer_again (EV_P_ ev_timer *w)
2615{
2616 EV_FREQUENT_CHECK;
2617
2618 if (ev_is_active (w))
2619 {
547 if (w->repeat) 2620 if (w->repeat)
548 { 2621 {
549 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
550 w->at = now + w->repeat; 2622 ev_at (w) = mn_now + w->repeat;
551 downheap ((WT *)timers, timercnt, 0); 2623 ANHE_at_cache (timers [ev_active (w)]);
2624 adjustheap (timers, timercnt, ev_active (w));
552 } 2625 }
553 else 2626 else
554 ev_timer_stop (w); /* nonrepeating: stop timer */ 2627 ev_timer_stop (EV_A_ w);
555
556 event ((W)w, EV_TIMEOUT);
557 }
558}
559
560static void
561periodics_reify (void)
562{
563 while (periodiccnt && periodics [0]->at <= ev_now)
564 { 2628 }
565 struct ev_periodic *w = periodics [0]; 2629 else if (w->repeat)
2630 {
2631 ev_at (w) = w->repeat;
2632 ev_timer_start (EV_A_ w);
2633 }
566 2634
567 /* first reschedule or stop timer */ 2635 EV_FREQUENT_CHECK;
2636}
2637
2638ev_tstamp
2639ev_timer_remaining (EV_P_ ev_timer *w)
2640{
2641 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2642}
2643
2644#if EV_PERIODIC_ENABLE
2645void noinline
2646ev_periodic_start (EV_P_ ev_periodic *w)
2647{
2648 if (expect_false (ev_is_active (w)))
2649 return;
2650
2651 if (w->reschedule_cb)
2652 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
568 if (w->interval) 2653 else if (w->interval)
2654 {
2655 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2656 /* this formula differs from the one in periodic_reify because we do not always round up */
2657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2658 }
2659 else
2660 ev_at (w) = w->offset;
2661
2662 EV_FREQUENT_CHECK;
2663
2664 ++periodiccnt;
2665 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2666 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2667 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2668 ANHE_at_cache (periodics [ev_active (w)]);
2669 upheap (periodics, ev_active (w));
2670
2671 EV_FREQUENT_CHECK;
2672
2673 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2674}
2675
2676void noinline
2677ev_periodic_stop (EV_P_ ev_periodic *w)
2678{
2679 clear_pending (EV_A_ (W)w);
2680 if (expect_false (!ev_is_active (w)))
2681 return;
2682
2683 EV_FREQUENT_CHECK;
2684
2685 {
2686 int active = ev_active (w);
2687
2688 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2689
2690 --periodiccnt;
2691
2692 if (expect_true (active < periodiccnt + HEAP0))
2693 {
2694 periodics [active] = periodics [periodiccnt + HEAP0];
2695 adjustheap (periodics, periodiccnt, active);
2696 }
2697 }
2698
2699 ev_stop (EV_A_ (W)w);
2700
2701 EV_FREQUENT_CHECK;
2702}
2703
2704void noinline
2705ev_periodic_again (EV_P_ ev_periodic *w)
2706{
2707 /* TODO: use adjustheap and recalculation */
2708 ev_periodic_stop (EV_A_ w);
2709 ev_periodic_start (EV_A_ w);
2710}
2711#endif
2712
2713#ifndef SA_RESTART
2714# define SA_RESTART 0
2715#endif
2716
2717void noinline
2718ev_signal_start (EV_P_ ev_signal *w)
2719{
2720 if (expect_false (ev_is_active (w)))
2721 return;
2722
2723 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2724
2725#if EV_MULTIPLICITY
2726 assert (("libev: a signal must not be attached to two different loops",
2727 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2728
2729 signals [w->signum - 1].loop = EV_A;
2730#endif
2731
2732 EV_FREQUENT_CHECK;
2733
2734#if EV_USE_SIGNALFD
2735 if (sigfd == -2)
2736 {
2737 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2738 if (sigfd < 0 && errno == EINVAL)
2739 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2740
2741 if (sigfd >= 0)
569 { 2742 {
570 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 2743 fd_intern (sigfd); /* doing it twice will not hurt */
571 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 2744
572 downheap ((WT *)periodics, periodiccnt, 0); 2745 sigemptyset (&sigfd_set);
2746
2747 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2748 ev_set_priority (&sigfd_w, EV_MAXPRI);
2749 ev_io_start (EV_A_ &sigfd_w);
2750 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2751 }
2752 }
2753
2754 if (sigfd >= 0)
2755 {
2756 /* TODO: check .head */
2757 sigaddset (&sigfd_set, w->signum);
2758 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2759
2760 signalfd (sigfd, &sigfd_set, 0);
2761 }
2762#endif
2763
2764 ev_start (EV_A_ (W)w, 1);
2765 wlist_add (&signals [w->signum - 1].head, (WL)w);
2766
2767 if (!((WL)w)->next)
2768# if EV_USE_SIGNALFD
2769 if (sigfd < 0) /*TODO*/
2770# endif
2771 {
2772# ifdef _WIN32
2773 evpipe_init (EV_A);
2774
2775 signal (w->signum, ev_sighandler);
2776# else
2777 struct sigaction sa;
2778
2779 evpipe_init (EV_A);
2780
2781 sa.sa_handler = ev_sighandler;
2782 sigfillset (&sa.sa_mask);
2783 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2784 sigaction (w->signum, &sa, 0);
2785
2786 sigemptyset (&sa.sa_mask);
2787 sigaddset (&sa.sa_mask, w->signum);
2788 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2789#endif
2790 }
2791
2792 EV_FREQUENT_CHECK;
2793}
2794
2795void noinline
2796ev_signal_stop (EV_P_ ev_signal *w)
2797{
2798 clear_pending (EV_A_ (W)w);
2799 if (expect_false (!ev_is_active (w)))
2800 return;
2801
2802 EV_FREQUENT_CHECK;
2803
2804 wlist_del (&signals [w->signum - 1].head, (WL)w);
2805 ev_stop (EV_A_ (W)w);
2806
2807 if (!signals [w->signum - 1].head)
2808 {
2809#if EV_MULTIPLICITY
2810 signals [w->signum - 1].loop = 0; /* unattach from signal */
2811#endif
2812#if EV_USE_SIGNALFD
2813 if (sigfd >= 0)
2814 {
2815 sigset_t ss;
2816
2817 sigemptyset (&ss);
2818 sigaddset (&ss, w->signum);
2819 sigdelset (&sigfd_set, w->signum);
2820
2821 signalfd (sigfd, &sigfd_set, 0);
2822 sigprocmask (SIG_UNBLOCK, &ss, 0);
573 } 2823 }
574 else 2824 else
575 ev_periodic_stop (w); /* nonrepeating: stop timer */ 2825#endif
576 2826 signal (w->signum, SIG_DFL);
577 event ((W)w, EV_PERIODIC);
578 }
579}
580
581static void
582periodics_reschedule (ev_tstamp diff)
583{
584 int i;
585
586 /* adjust periodics after time jump */
587 for (i = 0; i < periodiccnt; ++i)
588 { 2827 }
589 struct ev_periodic *w = periodics [i];
590 2828
591 if (w->interval) 2829 EV_FREQUENT_CHECK;
2830}
2831
2832void
2833ev_child_start (EV_P_ ev_child *w)
2834{
2835#if EV_MULTIPLICITY
2836 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2837#endif
2838 if (expect_false (ev_is_active (w)))
2839 return;
2840
2841 EV_FREQUENT_CHECK;
2842
2843 ev_start (EV_A_ (W)w, 1);
2844 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2845
2846 EV_FREQUENT_CHECK;
2847}
2848
2849void
2850ev_child_stop (EV_P_ ev_child *w)
2851{
2852 clear_pending (EV_A_ (W)w);
2853 if (expect_false (!ev_is_active (w)))
2854 return;
2855
2856 EV_FREQUENT_CHECK;
2857
2858 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2859 ev_stop (EV_A_ (W)w);
2860
2861 EV_FREQUENT_CHECK;
2862}
2863
2864#if EV_STAT_ENABLE
2865
2866# ifdef _WIN32
2867# undef lstat
2868# define lstat(a,b) _stati64 (a,b)
2869# endif
2870
2871#define DEF_STAT_INTERVAL 5.0074891
2872#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2873#define MIN_STAT_INTERVAL 0.1074891
2874
2875static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2876
2877#if EV_USE_INOTIFY
2878
2879/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2880# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2881
2882static void noinline
2883infy_add (EV_P_ ev_stat *w)
2884{
2885 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2886
2887 if (w->wd >= 0)
2888 {
2889 struct statfs sfs;
2890
2891 /* now local changes will be tracked by inotify, but remote changes won't */
2892 /* unless the filesystem is known to be local, we therefore still poll */
2893 /* also do poll on <2.6.25, but with normal frequency */
2894
2895 if (!fs_2625)
2896 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2897 else if (!statfs (w->path, &sfs)
2898 && (sfs.f_type == 0x1373 /* devfs */
2899 || sfs.f_type == 0xEF53 /* ext2/3 */
2900 || sfs.f_type == 0x3153464a /* jfs */
2901 || sfs.f_type == 0x52654973 /* reiser3 */
2902 || sfs.f_type == 0x01021994 /* tempfs */
2903 || sfs.f_type == 0x58465342 /* xfs */))
2904 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2905 else
2906 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2907 }
2908 else
2909 {
2910 /* can't use inotify, continue to stat */
2911 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2912
2913 /* if path is not there, monitor some parent directory for speedup hints */
2914 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2915 /* but an efficiency issue only */
2916 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
592 { 2917 {
593 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 2918 char path [4096];
2919 strcpy (path, w->path);
594 2920
595 if (fabs (diff) >= 1e-4) 2921 do
596 { 2922 {
597 ev_periodic_stop (w); 2923 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
598 ev_periodic_start (w); 2924 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
599 2925
600 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 2926 char *pend = strrchr (path, '/');
2927
2928 if (!pend || pend == path)
2929 break;
2930
2931 *pend = 0;
2932 w->wd = inotify_add_watch (fs_fd, path, mask);
2933 }
2934 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2935 }
2936 }
2937
2938 if (w->wd >= 0)
2939 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2940
2941 /* now re-arm timer, if required */
2942 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2943 ev_timer_again (EV_A_ &w->timer);
2944 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2945}
2946
2947static void noinline
2948infy_del (EV_P_ ev_stat *w)
2949{
2950 int slot;
2951 int wd = w->wd;
2952
2953 if (wd < 0)
2954 return;
2955
2956 w->wd = -2;
2957 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2958 wlist_del (&fs_hash [slot].head, (WL)w);
2959
2960 /* remove this watcher, if others are watching it, they will rearm */
2961 inotify_rm_watch (fs_fd, wd);
2962}
2963
2964static void noinline
2965infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2966{
2967 if (slot < 0)
2968 /* overflow, need to check for all hash slots */
2969 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2970 infy_wd (EV_A_ slot, wd, ev);
2971 else
2972 {
2973 WL w_;
2974
2975 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2976 {
2977 ev_stat *w = (ev_stat *)w_;
2978 w_ = w_->next; /* lets us remove this watcher and all before it */
2979
2980 if (w->wd == wd || wd == -1)
2981 {
2982 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2983 {
2984 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2985 w->wd = -1;
2986 infy_add (EV_A_ w); /* re-add, no matter what */
2987 }
2988
2989 stat_timer_cb (EV_A_ &w->timer, 0);
601 } 2990 }
602 } 2991 }
603 } 2992 }
604} 2993}
605 2994
606static void 2995static void
607time_update (void) 2996infy_cb (EV_P_ ev_io *w, int revents)
608{ 2997{
2998 char buf [EV_INOTIFY_BUFSIZE];
2999 int ofs;
3000 int len = read (fs_fd, buf, sizeof (buf));
3001
3002 for (ofs = 0; ofs < len; )
3003 {
3004 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3005 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3006 ofs += sizeof (struct inotify_event) + ev->len;
3007 }
3008}
3009
3010inline_size unsigned int
3011ev_linux_version (void)
3012{
3013 struct utsname buf;
3014 unsigned int v;
609 int i; 3015 int i;
3016 char *p = buf.release;
610 3017
611 ev_now = ev_time (); 3018 if (uname (&buf))
3019 return 0;
612 3020
613 if (have_monotonic) 3021 for (i = 3+1; --i; )
614 { 3022 {
615 ev_tstamp odiff = diff; 3023 unsigned int c = 0;
616 3024
617 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 3025 for (;;)
618 { 3026 {
619 now = get_clock (); 3027 if (*p >= '0' && *p <= '9')
620 diff = ev_now - now; 3028 c = c * 10 + *p++ - '0';
621 3029 else
622 if (fabs (odiff - diff) < MIN_TIMEJUMP) 3030 {
623 return; /* all is well */ 3031 p += *p == '.';
624 3032 break;
625 ev_now = ev_time (); 3033 }
626 } 3034 }
627 3035
628 periodics_reschedule (diff - odiff); 3036 v = (v << 8) | c;
629 /* no timer adjustment, as the monotonic clock doesn't jump */ 3037 }
3038
3039 return v;
3040}
3041
3042inline_size void
3043ev_check_2625 (EV_P)
3044{
3045 /* kernels < 2.6.25 are borked
3046 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3047 */
3048 if (ev_linux_version () < 0x020619)
3049 return;
3050
3051 fs_2625 = 1;
3052}
3053
3054inline_size int
3055infy_newfd (void)
3056{
3057#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3058 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3059 if (fd >= 0)
3060 return fd;
3061#endif
3062 return inotify_init ();
3063}
3064
3065inline_size void
3066infy_init (EV_P)
3067{
3068 if (fs_fd != -2)
3069 return;
3070
3071 fs_fd = -1;
3072
3073 ev_check_2625 (EV_A);
3074
3075 fs_fd = infy_newfd ();
3076
3077 if (fs_fd >= 0)
630 } 3078 {
3079 fd_intern (fs_fd);
3080 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3081 ev_set_priority (&fs_w, EV_MAXPRI);
3082 ev_io_start (EV_A_ &fs_w);
3083 ev_unref (EV_A);
3084 }
3085}
3086
3087inline_size void
3088infy_fork (EV_P)
3089{
3090 int slot;
3091
3092 if (fs_fd < 0)
3093 return;
3094
3095 ev_ref (EV_A);
3096 ev_io_stop (EV_A_ &fs_w);
3097 close (fs_fd);
3098 fs_fd = infy_newfd ();
3099
3100 if (fs_fd >= 0)
3101 {
3102 fd_intern (fs_fd);
3103 ev_io_set (&fs_w, fs_fd, EV_READ);
3104 ev_io_start (EV_A_ &fs_w);
3105 ev_unref (EV_A);
3106 }
3107
3108 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3109 {
3110 WL w_ = fs_hash [slot].head;
3111 fs_hash [slot].head = 0;
3112
3113 while (w_)
3114 {
3115 ev_stat *w = (ev_stat *)w_;
3116 w_ = w_->next; /* lets us add this watcher */
3117
3118 w->wd = -1;
3119
3120 if (fs_fd >= 0)
3121 infy_add (EV_A_ w); /* re-add, no matter what */
3122 else
3123 {
3124 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3125 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3126 ev_timer_again (EV_A_ &w->timer);
3127 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3128 }
3129 }
3130 }
3131}
3132
3133#endif
3134
3135#ifdef _WIN32
3136# define EV_LSTAT(p,b) _stati64 (p, b)
3137#else
3138# define EV_LSTAT(p,b) lstat (p, b)
3139#endif
3140
3141void
3142ev_stat_stat (EV_P_ ev_stat *w)
3143{
3144 if (lstat (w->path, &w->attr) < 0)
3145 w->attr.st_nlink = 0;
3146 else if (!w->attr.st_nlink)
3147 w->attr.st_nlink = 1;
3148}
3149
3150static void noinline
3151stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3152{
3153 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3154
3155 ev_statdata prev = w->attr;
3156 ev_stat_stat (EV_A_ w);
3157
3158 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3159 if (
3160 prev.st_dev != w->attr.st_dev
3161 || prev.st_ino != w->attr.st_ino
3162 || prev.st_mode != w->attr.st_mode
3163 || prev.st_nlink != w->attr.st_nlink
3164 || prev.st_uid != w->attr.st_uid
3165 || prev.st_gid != w->attr.st_gid
3166 || prev.st_rdev != w->attr.st_rdev
3167 || prev.st_size != w->attr.st_size
3168 || prev.st_atime != w->attr.st_atime
3169 || prev.st_mtime != w->attr.st_mtime
3170 || prev.st_ctime != w->attr.st_ctime
3171 ) {
3172 /* we only update w->prev on actual differences */
3173 /* in case we test more often than invoke the callback, */
3174 /* to ensure that prev is always different to attr */
3175 w->prev = prev;
3176
3177 #if EV_USE_INOTIFY
3178 if (fs_fd >= 0)
3179 {
3180 infy_del (EV_A_ w);
3181 infy_add (EV_A_ w);
3182 ev_stat_stat (EV_A_ w); /* avoid race... */
3183 }
3184 #endif
3185
3186 ev_feed_event (EV_A_ w, EV_STAT);
3187 }
3188}
3189
3190void
3191ev_stat_start (EV_P_ ev_stat *w)
3192{
3193 if (expect_false (ev_is_active (w)))
3194 return;
3195
3196 ev_stat_stat (EV_A_ w);
3197
3198 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3199 w->interval = MIN_STAT_INTERVAL;
3200
3201 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3202 ev_set_priority (&w->timer, ev_priority (w));
3203
3204#if EV_USE_INOTIFY
3205 infy_init (EV_A);
3206
3207 if (fs_fd >= 0)
3208 infy_add (EV_A_ w);
631 else 3209 else
3210#endif
3211 {
3212 ev_timer_again (EV_A_ &w->timer);
3213 ev_unref (EV_A);
632 { 3214 }
633 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 3215
3216 ev_start (EV_A_ (W)w, 1);
3217
3218 EV_FREQUENT_CHECK;
3219}
3220
3221void
3222ev_stat_stop (EV_P_ ev_stat *w)
3223{
3224 clear_pending (EV_A_ (W)w);
3225 if (expect_false (!ev_is_active (w)))
3226 return;
3227
3228 EV_FREQUENT_CHECK;
3229
3230#if EV_USE_INOTIFY
3231 infy_del (EV_A_ w);
3232#endif
3233
3234 if (ev_is_active (&w->timer))
3235 {
3236 ev_ref (EV_A);
3237 ev_timer_stop (EV_A_ &w->timer);
3238 }
3239
3240 ev_stop (EV_A_ (W)w);
3241
3242 EV_FREQUENT_CHECK;
3243}
3244#endif
3245
3246#if EV_IDLE_ENABLE
3247void
3248ev_idle_start (EV_P_ ev_idle *w)
3249{
3250 if (expect_false (ev_is_active (w)))
3251 return;
3252
3253 pri_adjust (EV_A_ (W)w);
3254
3255 EV_FREQUENT_CHECK;
3256
3257 {
3258 int active = ++idlecnt [ABSPRI (w)];
3259
3260 ++idleall;
3261 ev_start (EV_A_ (W)w, active);
3262
3263 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3264 idles [ABSPRI (w)][active - 1] = w;
3265 }
3266
3267 EV_FREQUENT_CHECK;
3268}
3269
3270void
3271ev_idle_stop (EV_P_ ev_idle *w)
3272{
3273 clear_pending (EV_A_ (W)w);
3274 if (expect_false (!ev_is_active (w)))
3275 return;
3276
3277 EV_FREQUENT_CHECK;
3278
3279 {
3280 int active = ev_active (w);
3281
3282 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3283 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3284
3285 ev_stop (EV_A_ (W)w);
3286 --idleall;
3287 }
3288
3289 EV_FREQUENT_CHECK;
3290}
3291#endif
3292
3293void
3294ev_prepare_start (EV_P_ ev_prepare *w)
3295{
3296 if (expect_false (ev_is_active (w)))
3297 return;
3298
3299 EV_FREQUENT_CHECK;
3300
3301 ev_start (EV_A_ (W)w, ++preparecnt);
3302 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3303 prepares [preparecnt - 1] = w;
3304
3305 EV_FREQUENT_CHECK;
3306}
3307
3308void
3309ev_prepare_stop (EV_P_ ev_prepare *w)
3310{
3311 clear_pending (EV_A_ (W)w);
3312 if (expect_false (!ev_is_active (w)))
3313 return;
3314
3315 EV_FREQUENT_CHECK;
3316
3317 {
3318 int active = ev_active (w);
3319
3320 prepares [active - 1] = prepares [--preparecnt];
3321 ev_active (prepares [active - 1]) = active;
3322 }
3323
3324 ev_stop (EV_A_ (W)w);
3325
3326 EV_FREQUENT_CHECK;
3327}
3328
3329void
3330ev_check_start (EV_P_ ev_check *w)
3331{
3332 if (expect_false (ev_is_active (w)))
3333 return;
3334
3335 EV_FREQUENT_CHECK;
3336
3337 ev_start (EV_A_ (W)w, ++checkcnt);
3338 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3339 checks [checkcnt - 1] = w;
3340
3341 EV_FREQUENT_CHECK;
3342}
3343
3344void
3345ev_check_stop (EV_P_ ev_check *w)
3346{
3347 clear_pending (EV_A_ (W)w);
3348 if (expect_false (!ev_is_active (w)))
3349 return;
3350
3351 EV_FREQUENT_CHECK;
3352
3353 {
3354 int active = ev_active (w);
3355
3356 checks [active - 1] = checks [--checkcnt];
3357 ev_active (checks [active - 1]) = active;
3358 }
3359
3360 ev_stop (EV_A_ (W)w);
3361
3362 EV_FREQUENT_CHECK;
3363}
3364
3365#if EV_EMBED_ENABLE
3366void noinline
3367ev_embed_sweep (EV_P_ ev_embed *w)
3368{
3369 ev_loop (w->other, EVLOOP_NONBLOCK);
3370}
3371
3372static void
3373embed_io_cb (EV_P_ ev_io *io, int revents)
3374{
3375 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3376
3377 if (ev_cb (w))
3378 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3379 else
3380 ev_loop (w->other, EVLOOP_NONBLOCK);
3381}
3382
3383static void
3384embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3385{
3386 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3387
3388 {
3389 EV_P = w->other;
3390
3391 while (fdchangecnt)
634 { 3392 {
635 periodics_reschedule (ev_now - now); 3393 fd_reify (EV_A);
636 3394 ev_loop (EV_A_ EVLOOP_NONBLOCK);
637 /* adjust timers. this is easy, as the offset is the same for all */
638 for (i = 0; i < timercnt; ++i)
639 timers [i]->at += diff;
640 } 3395 }
641
642 now = ev_now;
643 } 3396 }
644} 3397}
645 3398
646int ev_loop_done; 3399static void
647 3400embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
648void ev_loop (int flags)
649{ 3401{
650 double block; 3402 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
651 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
652 3403
653 do 3404 ev_embed_stop (EV_A_ w);
3405
654 { 3406 {
655 /* queue check watchers (and execute them) */ 3407 EV_P = w->other;
656 if (preparecnt)
657 {
658 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
659 call_pending ();
660 }
661 3408
662 /* update fd-related kernel structures */ 3409 ev_loop_fork (EV_A);
663 fd_reify (); 3410 ev_loop (EV_A_ EVLOOP_NONBLOCK);
664
665 /* calculate blocking time */
666
667 /* we only need this for !monotonic clockor timers, but as we basically
668 always have timers, we just calculate it always */
669 ev_now = ev_time ();
670
671 if (flags & EVLOOP_NONBLOCK || idlecnt)
672 block = 0.;
673 else
674 {
675 block = MAX_BLOCKTIME;
676
677 if (timercnt)
678 {
679 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge;
680 if (block > to) block = to;
681 }
682
683 if (periodiccnt)
684 {
685 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
686 if (block > to) block = to;
687 }
688
689 if (block < 0.) block = 0.;
690 }
691
692 method_poll (block);
693
694 /* update ev_now, do magic */
695 time_update ();
696
697 /* queue pending timers and reschedule them */
698 timers_reify (); /* relative timers called last */
699 periodics_reify (); /* absolute timers called first */
700
701 /* queue idle watchers unless io or timers are pending */
702 if (!pendingcnt)
703 queue_events ((W *)idles, idlecnt, EV_IDLE);
704
705 /* queue check watchers, to be executed first */
706 if (checkcnt)
707 queue_events ((W *)checks, checkcnt, EV_CHECK);
708
709 call_pending ();
710 } 3411 }
711 while (!ev_loop_done);
712 3412
713 if (ev_loop_done != 2) 3413 ev_embed_start (EV_A_ w);
714 ev_loop_done = 0;
715} 3414}
3415
3416#if 0
3417static void
3418embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3419{
3420 ev_idle_stop (EV_A_ idle);
3421}
3422#endif
3423
3424void
3425ev_embed_start (EV_P_ ev_embed *w)
3426{
3427 if (expect_false (ev_is_active (w)))
3428 return;
3429
3430 {
3431 EV_P = w->other;
3432 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3433 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3434 }
3435
3436 EV_FREQUENT_CHECK;
3437
3438 ev_set_priority (&w->io, ev_priority (w));
3439 ev_io_start (EV_A_ &w->io);
3440
3441 ev_prepare_init (&w->prepare, embed_prepare_cb);
3442 ev_set_priority (&w->prepare, EV_MINPRI);
3443 ev_prepare_start (EV_A_ &w->prepare);
3444
3445 ev_fork_init (&w->fork, embed_fork_cb);
3446 ev_fork_start (EV_A_ &w->fork);
3447
3448 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3449
3450 ev_start (EV_A_ (W)w, 1);
3451
3452 EV_FREQUENT_CHECK;
3453}
3454
3455void
3456ev_embed_stop (EV_P_ ev_embed *w)
3457{
3458 clear_pending (EV_A_ (W)w);
3459 if (expect_false (!ev_is_active (w)))
3460 return;
3461
3462 EV_FREQUENT_CHECK;
3463
3464 ev_io_stop (EV_A_ &w->io);
3465 ev_prepare_stop (EV_A_ &w->prepare);
3466 ev_fork_stop (EV_A_ &w->fork);
3467
3468 ev_stop (EV_A_ (W)w);
3469
3470 EV_FREQUENT_CHECK;
3471}
3472#endif
3473
3474#if EV_FORK_ENABLE
3475void
3476ev_fork_start (EV_P_ ev_fork *w)
3477{
3478 if (expect_false (ev_is_active (w)))
3479 return;
3480
3481 EV_FREQUENT_CHECK;
3482
3483 ev_start (EV_A_ (W)w, ++forkcnt);
3484 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3485 forks [forkcnt - 1] = w;
3486
3487 EV_FREQUENT_CHECK;
3488}
3489
3490void
3491ev_fork_stop (EV_P_ ev_fork *w)
3492{
3493 clear_pending (EV_A_ (W)w);
3494 if (expect_false (!ev_is_active (w)))
3495 return;
3496
3497 EV_FREQUENT_CHECK;
3498
3499 {
3500 int active = ev_active (w);
3501
3502 forks [active - 1] = forks [--forkcnt];
3503 ev_active (forks [active - 1]) = active;
3504 }
3505
3506 ev_stop (EV_A_ (W)w);
3507
3508 EV_FREQUENT_CHECK;
3509}
3510#endif
3511
3512#if EV_ASYNC_ENABLE
3513void
3514ev_async_start (EV_P_ ev_async *w)
3515{
3516 if (expect_false (ev_is_active (w)))
3517 return;
3518
3519 evpipe_init (EV_A);
3520
3521 EV_FREQUENT_CHECK;
3522
3523 ev_start (EV_A_ (W)w, ++asynccnt);
3524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3525 asyncs [asynccnt - 1] = w;
3526
3527 EV_FREQUENT_CHECK;
3528}
3529
3530void
3531ev_async_stop (EV_P_ ev_async *w)
3532{
3533 clear_pending (EV_A_ (W)w);
3534 if (expect_false (!ev_is_active (w)))
3535 return;
3536
3537 EV_FREQUENT_CHECK;
3538
3539 {
3540 int active = ev_active (w);
3541
3542 asyncs [active - 1] = asyncs [--asynccnt];
3543 ev_active (asyncs [active - 1]) = active;
3544 }
3545
3546 ev_stop (EV_A_ (W)w);
3547
3548 EV_FREQUENT_CHECK;
3549}
3550
3551void
3552ev_async_send (EV_P_ ev_async *w)
3553{
3554 w->sent = 1;
3555 evpipe_write (EV_A_ &async_pending);
3556}
3557#endif
716 3558
717/*****************************************************************************/ 3559/*****************************************************************************/
718 3560
719static void
720wlist_add (WL *head, WL elem)
721{
722 elem->next = *head;
723 *head = elem;
724}
725
726static void
727wlist_del (WL *head, WL elem)
728{
729 while (*head)
730 {
731 if (*head == elem)
732 {
733 *head = elem->next;
734 return;
735 }
736
737 head = &(*head)->next;
738 }
739}
740
741static void
742ev_clear_pending (W w)
743{
744 if (w->pending)
745 {
746 pendings [w->pending - 1].w = 0;
747 w->pending = 0;
748 }
749}
750
751static void
752ev_start (W w, int active)
753{
754 w->active = active;
755}
756
757static void
758ev_stop (W w)
759{
760 w->active = 0;
761}
762
763/*****************************************************************************/
764
765void
766ev_io_start (struct ev_io *w)
767{
768 if (ev_is_active (w))
769 return;
770
771 int fd = w->fd;
772
773 assert (("ev_io_start called with negative fd", fd >= 0));
774
775 ev_start ((W)w, 1);
776 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
777 wlist_add ((WL *)&anfds[fd].head, (WL)w);
778
779 fd_change (fd);
780}
781
782void
783ev_io_stop (struct ev_io *w)
784{
785 ev_clear_pending ((W)w);
786 if (!ev_is_active (w))
787 return;
788
789 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
790 ev_stop ((W)w);
791
792 fd_change (w->fd);
793}
794
795void
796ev_timer_start (struct ev_timer *w)
797{
798 if (ev_is_active (w))
799 return;
800
801 w->at += now;
802
803 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
804
805 ev_start ((W)w, ++timercnt);
806 array_needsize (timers, timermax, timercnt, );
807 timers [timercnt - 1] = w;
808 upheap ((WT *)timers, timercnt - 1);
809}
810
811void
812ev_timer_stop (struct ev_timer *w)
813{
814 ev_clear_pending ((W)w);
815 if (!ev_is_active (w))
816 return;
817
818 if (w->active < timercnt--)
819 {
820 timers [w->active - 1] = timers [timercnt];
821 downheap ((WT *)timers, timercnt, w->active - 1);
822 }
823
824 w->at = w->repeat;
825
826 ev_stop ((W)w);
827}
828
829void
830ev_timer_again (struct ev_timer *w)
831{
832 if (ev_is_active (w))
833 {
834 if (w->repeat)
835 {
836 w->at = now + w->repeat;
837 downheap ((WT *)timers, timercnt, w->active - 1);
838 }
839 else
840 ev_timer_stop (w);
841 }
842 else if (w->repeat)
843 ev_timer_start (w);
844}
845
846void
847ev_periodic_start (struct ev_periodic *w)
848{
849 if (ev_is_active (w))
850 return;
851
852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
853
854 /* this formula differs from the one in periodic_reify because we do not always round up */
855 if (w->interval)
856 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
857
858 ev_start ((W)w, ++periodiccnt);
859 array_needsize (periodics, periodicmax, periodiccnt, );
860 periodics [periodiccnt - 1] = w;
861 upheap ((WT *)periodics, periodiccnt - 1);
862}
863
864void
865ev_periodic_stop (struct ev_periodic *w)
866{
867 ev_clear_pending ((W)w);
868 if (!ev_is_active (w))
869 return;
870
871 if (w->active < periodiccnt--)
872 {
873 periodics [w->active - 1] = periodics [periodiccnt];
874 downheap ((WT *)periodics, periodiccnt, w->active - 1);
875 }
876
877 ev_stop ((W)w);
878}
879
880void
881ev_signal_start (struct ev_signal *w)
882{
883 if (ev_is_active (w))
884 return;
885
886 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
887
888 ev_start ((W)w, 1);
889 array_needsize (signals, signalmax, w->signum, signals_init);
890 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
891
892 if (!w->next)
893 {
894 struct sigaction sa;
895 sa.sa_handler = sighandler;
896 sigfillset (&sa.sa_mask);
897 sa.sa_flags = 0;
898 sigaction (w->signum, &sa, 0);
899 }
900}
901
902void
903ev_signal_stop (struct ev_signal *w)
904{
905 ev_clear_pending ((W)w);
906 if (!ev_is_active (w))
907 return;
908
909 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
910 ev_stop ((W)w);
911
912 if (!signals [w->signum - 1].head)
913 signal (w->signum, SIG_DFL);
914}
915
916void
917ev_idle_start (struct ev_idle *w)
918{
919 if (ev_is_active (w))
920 return;
921
922 ev_start ((W)w, ++idlecnt);
923 array_needsize (idles, idlemax, idlecnt, );
924 idles [idlecnt - 1] = w;
925}
926
927void
928ev_idle_stop (struct ev_idle *w)
929{
930 ev_clear_pending ((W)w);
931 if (ev_is_active (w))
932 return;
933
934 idles [w->active - 1] = idles [--idlecnt];
935 ev_stop ((W)w);
936}
937
938void
939ev_prepare_start (struct ev_prepare *w)
940{
941 if (ev_is_active (w))
942 return;
943
944 ev_start ((W)w, ++preparecnt);
945 array_needsize (prepares, preparemax, preparecnt, );
946 prepares [preparecnt - 1] = w;
947}
948
949void
950ev_prepare_stop (struct ev_prepare *w)
951{
952 ev_clear_pending ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 prepares [w->active - 1] = prepares [--preparecnt];
957 ev_stop ((W)w);
958}
959
960void
961ev_check_start (struct ev_check *w)
962{
963 if (ev_is_active (w))
964 return;
965
966 ev_start ((W)w, ++checkcnt);
967 array_needsize (checks, checkmax, checkcnt, );
968 checks [checkcnt - 1] = w;
969}
970
971void
972ev_check_stop (struct ev_check *w)
973{
974 ev_clear_pending ((W)w);
975 if (ev_is_active (w))
976 return;
977
978 checks [w->active - 1] = checks [--checkcnt];
979 ev_stop ((W)w);
980}
981
982void
983ev_child_start (struct ev_child *w)
984{
985 if (ev_is_active (w))
986 return;
987
988 ev_start ((W)w, 1);
989 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
990}
991
992void
993ev_child_stop (struct ev_child *w)
994{
995 ev_clear_pending ((W)w);
996 if (ev_is_active (w))
997 return;
998
999 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1000 ev_stop ((W)w);
1001}
1002
1003/*****************************************************************************/
1004
1005struct ev_once 3561struct ev_once
1006{ 3562{
1007 struct ev_io io; 3563 ev_io io;
1008 struct ev_timer to; 3564 ev_timer to;
1009 void (*cb)(int revents, void *arg); 3565 void (*cb)(int revents, void *arg);
1010 void *arg; 3566 void *arg;
1011}; 3567};
1012 3568
1013static void 3569static void
1014once_cb (struct ev_once *once, int revents) 3570once_cb (EV_P_ struct ev_once *once, int revents)
1015{ 3571{
1016 void (*cb)(int revents, void *arg) = once->cb; 3572 void (*cb)(int revents, void *arg) = once->cb;
1017 void *arg = once->arg; 3573 void *arg = once->arg;
1018 3574
1019 ev_io_stop (&once->io); 3575 ev_io_stop (EV_A_ &once->io);
1020 ev_timer_stop (&once->to); 3576 ev_timer_stop (EV_A_ &once->to);
1021 free (once); 3577 ev_free (once);
1022 3578
1023 cb (revents, arg); 3579 cb (revents, arg);
1024} 3580}
1025 3581
1026static void 3582static void
1027once_cb_io (struct ev_io *w, int revents) 3583once_cb_io (EV_P_ ev_io *w, int revents)
1028{ 3584{
1029 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3585 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3586
3587 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1030} 3588}
1031 3589
1032static void 3590static void
1033once_cb_to (struct ev_timer *w, int revents) 3591once_cb_to (EV_P_ ev_timer *w, int revents)
1034{ 3592{
1035 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3593 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1036}
1037 3594
3595 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3596}
3597
1038void 3598void
1039ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3599ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1040{ 3600{
1041 struct ev_once *once = malloc (sizeof (struct ev_once)); 3601 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1042 3602
1043 if (!once) 3603 if (expect_false (!once))
3604 {
1044 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3605 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1045 else 3606 return;
1046 { 3607 }
3608
1047 once->cb = cb; 3609 once->cb = cb;
1048 once->arg = arg; 3610 once->arg = arg;
1049 3611
1050 ev_watcher_init (&once->io, once_cb_io); 3612 ev_init (&once->io, once_cb_io);
1051 if (fd >= 0) 3613 if (fd >= 0)
3614 {
3615 ev_io_set (&once->io, fd, events);
3616 ev_io_start (EV_A_ &once->io);
3617 }
3618
3619 ev_init (&once->to, once_cb_to);
3620 if (timeout >= 0.)
3621 {
3622 ev_timer_set (&once->to, timeout, 0.);
3623 ev_timer_start (EV_A_ &once->to);
3624 }
3625}
3626
3627/*****************************************************************************/
3628
3629#if EV_WALK_ENABLE
3630void
3631ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3632{
3633 int i, j;
3634 ev_watcher_list *wl, *wn;
3635
3636 if (types & (EV_IO | EV_EMBED))
3637 for (i = 0; i < anfdmax; ++i)
3638 for (wl = anfds [i].head; wl; )
1052 { 3639 {
1053 ev_io_set (&once->io, fd, events); 3640 wn = wl->next;
1054 ev_io_start (&once->io); 3641
3642#if EV_EMBED_ENABLE
3643 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3644 {
3645 if (types & EV_EMBED)
3646 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3647 }
3648 else
3649#endif
3650#if EV_USE_INOTIFY
3651 if (ev_cb ((ev_io *)wl) == infy_cb)
3652 ;
3653 else
3654#endif
3655 if ((ev_io *)wl != &pipe_w)
3656 if (types & EV_IO)
3657 cb (EV_A_ EV_IO, wl);
3658
3659 wl = wn;
1055 } 3660 }
1056 3661
1057 ev_watcher_init (&once->to, once_cb_to); 3662 if (types & (EV_TIMER | EV_STAT))
1058 if (timeout >= 0.) 3663 for (i = timercnt + HEAP0; i-- > HEAP0; )
3664#if EV_STAT_ENABLE
3665 /*TODO: timer is not always active*/
3666 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1059 { 3667 {
1060 ev_timer_set (&once->to, timeout, 0.); 3668 if (types & EV_STAT)
1061 ev_timer_start (&once->to); 3669 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1062 } 3670 }
1063 } 3671 else
1064} 3672#endif
3673 if (types & EV_TIMER)
3674 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1065 3675
1066/*****************************************************************************/ 3676#if EV_PERIODIC_ENABLE
3677 if (types & EV_PERIODIC)
3678 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3679 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3680#endif
1067 3681
1068#if 0 3682#if EV_IDLE_ENABLE
3683 if (types & EV_IDLE)
3684 for (j = NUMPRI; i--; )
3685 for (i = idlecnt [j]; i--; )
3686 cb (EV_A_ EV_IDLE, idles [j][i]);
3687#endif
1069 3688
1070struct ev_io wio; 3689#if EV_FORK_ENABLE
3690 if (types & EV_FORK)
3691 for (i = forkcnt; i--; )
3692 if (ev_cb (forks [i]) != embed_fork_cb)
3693 cb (EV_A_ EV_FORK, forks [i]);
3694#endif
1071 3695
1072static void 3696#if EV_ASYNC_ENABLE
1073sin_cb (struct ev_io *w, int revents) 3697 if (types & EV_ASYNC)
1074{ 3698 for (i = asynccnt; i--; )
1075 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3699 cb (EV_A_ EV_ASYNC, asyncs [i]);
1076} 3700#endif
1077 3701
1078static void 3702 if (types & EV_PREPARE)
1079ocb (struct ev_timer *w, int revents) 3703 for (i = preparecnt; i--; )
1080{ 3704#if EV_EMBED_ENABLE
1081 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3705 if (ev_cb (prepares [i]) != embed_prepare_cb)
1082 ev_timer_stop (w); 3706#endif
1083 ev_timer_start (w); 3707 cb (EV_A_ EV_PREPARE, prepares [i]);
1084}
1085 3708
1086static void 3709 if (types & EV_CHECK)
1087scb (struct ev_signal *w, int revents) 3710 for (i = checkcnt; i--; )
1088{ 3711 cb (EV_A_ EV_CHECK, checks [i]);
1089 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1090 ev_io_stop (&wio);
1091 ev_io_start (&wio);
1092}
1093 3712
1094static void 3713 if (types & EV_SIGNAL)
1095gcb (struct ev_signal *w, int revents)
1096{
1097 fprintf (stderr, "generic %x\n", revents);
1098
1099}
1100
1101int main (void)
1102{
1103 ev_init (0);
1104
1105 ev_io_init (&wio, sin_cb, 0, EV_READ);
1106 ev_io_start (&wio);
1107
1108 struct ev_timer t[10000];
1109
1110#if 0
1111 int i;
1112 for (i = 0; i < 10000; ++i) 3714 for (i = 0; i < EV_NSIG - 1; ++i)
1113 { 3715 for (wl = signals [i].head; wl; )
1114 struct ev_timer *w = t + i; 3716 {
1115 ev_watcher_init (w, ocb, i); 3717 wn = wl->next;
1116 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533); 3718 cb (EV_A_ EV_SIGNAL, wl);
1117 ev_timer_start (w); 3719 wl = wn;
1118 if (drand48 () < 0.5) 3720 }
1119 ev_timer_stop (w);
1120 }
1121#endif
1122 3721
1123 struct ev_timer t1; 3722 if (types & EV_CHILD)
1124 ev_timer_init (&t1, ocb, 5, 10); 3723 for (i = EV_PID_HASHSIZE; i--; )
1125 ev_timer_start (&t1); 3724 for (wl = childs [i]; wl; )
1126 3725 {
1127 struct ev_signal sig; 3726 wn = wl->next;
1128 ev_signal_init (&sig, scb, SIGQUIT); 3727 cb (EV_A_ EV_CHILD, wl);
1129 ev_signal_start (&sig); 3728 wl = wn;
1130 3729 }
1131 struct ev_check cw; 3730/* EV_STAT 0x00001000 /* stat data changed */
1132 ev_check_init (&cw, gcb); 3731/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1133 ev_check_start (&cw);
1134
1135 struct ev_idle iw;
1136 ev_idle_init (&iw, gcb);
1137 ev_idle_start (&iw);
1138
1139 ev_loop (0);
1140
1141 return 0;
1142} 3732}
1143
1144#endif 3733#endif
1145 3734
3735#if EV_MULTIPLICITY
3736 #include "ev_wrap.h"
3737#endif
1146 3738
3739#ifdef __cplusplus
3740}
3741#endif
1147 3742
1148

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines