ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.36 by root, Thu Nov 1 13:11:11 2007 UTC vs.
Revision 1.57 by root, Sun Nov 4 16:43:53 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33#endif 33#endif
34 34
35#include <math.h> 35#include <math.h>
36#include <stdlib.h> 36#include <stdlib.h>
42#include <stdio.h> 42#include <stdio.h>
43 43
44#include <assert.h> 44#include <assert.h>
45#include <errno.h> 45#include <errno.h>
46#include <sys/types.h> 46#include <sys/types.h>
47#ifndef WIN32
47#include <sys/wait.h> 48# include <sys/wait.h>
49#endif
48#include <sys/time.h> 50#include <sys/time.h>
49#include <time.h> 51#include <time.h>
50 52
53/**/
54
51#ifndef EV_USE_MONOTONIC 55#ifndef EV_USE_MONOTONIC
52# ifdef CLOCK_MONOTONIC
53# define EV_USE_MONOTONIC 1 56# define EV_USE_MONOTONIC 1
54# endif
55#endif 57#endif
56 58
57#ifndef EV_USE_SELECT 59#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 60# define EV_USE_SELECT 1
59#endif 61#endif
60 62
63#ifndef EV_USEV_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif
66
61#ifndef EV_USE_EPOLL 67#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 68# define EV_USE_EPOLL 0
63#endif 69#endif
64 70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
73#endif
74
75#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1
77#endif
78
79/**/
80
81#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0
84#endif
85
65#ifndef CLOCK_REALTIME 86#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME
66# define EV_USE_REALTIME 0 88# define EV_USE_REALTIME 0
67#endif 89#endif
68#ifndef EV_USE_REALTIME 90
69# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 91/**/
70#endif
71 92
72#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
73#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
74#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
75#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
76 97
77#include "ev.h" 98#include "ev.h"
99
100#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline
103#else
104# define expect(expr,value) (expr)
105# define inline static
106#endif
107
108#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1)
110
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI)
78 113
79typedef struct ev_watcher *W; 114typedef struct ev_watcher *W;
80typedef struct ev_watcher_list *WL; 115typedef struct ev_watcher_list *WL;
81typedef struct ev_watcher_time *WT; 116typedef struct ev_watcher_time *WT;
82 117
83static ev_tstamp now, diff; /* monotonic clock */ 118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
84ev_tstamp ev_now;
85int ev_method;
86
87static int have_monotonic; /* runtime */
88
89static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
90static void (*method_modify)(int fd, int oev, int nev);
91static void (*method_poll)(ev_tstamp timeout);
92 119
93/*****************************************************************************/ 120/*****************************************************************************/
94 121
95ev_tstamp 122typedef struct
123{
124 struct ev_watcher_list *head;
125 unsigned char events;
126 unsigned char reify;
127} ANFD;
128
129typedef struct
130{
131 W w;
132 int events;
133} ANPENDING;
134
135#if EV_MULTIPLICITY
136
137struct ev_loop
138{
139# define VAR(name,decl) decl;
140# include "ev_vars.h"
141};
142# undef VAR
143# include "ev_wrap.h"
144
145#else
146
147# define VAR(name,decl) static decl;
148# include "ev_vars.h"
149# undef VAR
150
151#endif
152
153/*****************************************************************************/
154
155inline ev_tstamp
96ev_time (void) 156ev_time (void)
97{ 157{
98#if EV_USE_REALTIME 158#if EV_USE_REALTIME
99 struct timespec ts; 159 struct timespec ts;
100 clock_gettime (CLOCK_REALTIME, &ts); 160 clock_gettime (CLOCK_REALTIME, &ts);
104 gettimeofday (&tv, 0); 164 gettimeofday (&tv, 0);
105 return tv.tv_sec + tv.tv_usec * 1e-6; 165 return tv.tv_sec + tv.tv_usec * 1e-6;
106#endif 166#endif
107} 167}
108 168
109static ev_tstamp 169inline ev_tstamp
110get_clock (void) 170get_clock (void)
111{ 171{
112#if EV_USE_MONOTONIC 172#if EV_USE_MONOTONIC
113 if (have_monotonic) 173 if (expect_true (have_monotonic))
114 { 174 {
115 struct timespec ts; 175 struct timespec ts;
116 clock_gettime (CLOCK_MONOTONIC, &ts); 176 clock_gettime (CLOCK_MONOTONIC, &ts);
117 return ts.tv_sec + ts.tv_nsec * 1e-9; 177 return ts.tv_sec + ts.tv_nsec * 1e-9;
118 } 178 }
119#endif 179#endif
120 180
121 return ev_time (); 181 return ev_time ();
122} 182}
123 183
184ev_tstamp
185ev_now (EV_P)
186{
187 return rt_now;
188}
189
124#define array_roundsize(base,n) ((n) | 4 & ~3) 190#define array_roundsize(base,n) ((n) | 4 & ~3)
125 191
126#define array_needsize(base,cur,cnt,init) \ 192#define array_needsize(base,cur,cnt,init) \
127 if ((cnt) > cur) \ 193 if (expect_false ((cnt) > cur)) \
128 { \ 194 { \
129 int newcnt = cur; \ 195 int newcnt = cur; \
130 do \ 196 do \
131 { \ 197 { \
132 newcnt = array_roundsize (base, newcnt << 1); \ 198 newcnt = array_roundsize (base, newcnt << 1); \
138 cur = newcnt; \ 204 cur = newcnt; \
139 } 205 }
140 206
141/*****************************************************************************/ 207/*****************************************************************************/
142 208
143typedef struct
144{
145 struct ev_io *head;
146 unsigned char events;
147 unsigned char reify;
148} ANFD;
149
150static ANFD *anfds;
151static int anfdmax;
152
153static void 209static void
154anfds_init (ANFD *base, int count) 210anfds_init (ANFD *base, int count)
155{ 211{
156 while (count--) 212 while (count--)
157 { 213 {
161 217
162 ++base; 218 ++base;
163 } 219 }
164} 220}
165 221
166typedef struct
167{
168 W w;
169 int events;
170} ANPENDING;
171
172static ANPENDING *pendings;
173static int pendingmax, pendingcnt;
174
175static void 222static void
176event (W w, int events) 223event (EV_P_ W w, int events)
177{ 224{
178 if (w->pending) 225 if (w->pending)
179 { 226 {
180 pendings [w->pending - 1].events |= events; 227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
181 return; 228 return;
182 } 229 }
183 230
184 w->pending = ++pendingcnt; 231 w->pending = ++pendingcnt [ABSPRI (w)];
185 array_needsize (pendings, pendingmax, pendingcnt, ); 232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
186 pendings [pendingcnt - 1].w = w; 233 pendings [ABSPRI (w)][w->pending - 1].w = w;
187 pendings [pendingcnt - 1].events = events; 234 pendings [ABSPRI (w)][w->pending - 1].events = events;
188} 235}
189 236
190static void 237static void
191queue_events (W *events, int eventcnt, int type) 238queue_events (EV_P_ W *events, int eventcnt, int type)
192{ 239{
193 int i; 240 int i;
194 241
195 for (i = 0; i < eventcnt; ++i) 242 for (i = 0; i < eventcnt; ++i)
196 event (events [i], type); 243 event (EV_A_ events [i], type);
197} 244}
198 245
199static void 246static void
200fd_event (int fd, int events) 247fd_event (EV_P_ int fd, int events)
201{ 248{
202 ANFD *anfd = anfds + fd; 249 ANFD *anfd = anfds + fd;
203 struct ev_io *w; 250 struct ev_io *w;
204 251
205 for (w = anfd->head; w; w = w->next) 252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
206 { 253 {
207 int ev = w->events & events; 254 int ev = w->events & events;
208 255
209 if (ev) 256 if (ev)
210 event ((W)w, ev); 257 event (EV_A_ (W)w, ev);
211 } 258 }
212} 259}
213 260
214/*****************************************************************************/ 261/*****************************************************************************/
215 262
216static int *fdchanges;
217static int fdchangemax, fdchangecnt;
218
219static void 263static void
220fd_reify (void) 264fd_reify (EV_P)
221{ 265{
222 int i; 266 int i;
223 267
224 for (i = 0; i < fdchangecnt; ++i) 268 for (i = 0; i < fdchangecnt; ++i)
225 { 269 {
227 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
228 struct ev_io *w; 272 struct ev_io *w;
229 273
230 int events = 0; 274 int events = 0;
231 275
232 for (w = anfd->head; w; w = w->next) 276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
233 events |= w->events; 277 events |= w->events;
234 278
235 anfd->reify = 0; 279 anfd->reify = 0;
236 280
237 if (anfd->events != events) 281 if (anfd->events != events)
238 { 282 {
239 method_modify (fd, anfd->events, events); 283 method_modify (EV_A_ fd, anfd->events, events);
240 anfd->events = events; 284 anfd->events = events;
241 } 285 }
242 } 286 }
243 287
244 fdchangecnt = 0; 288 fdchangecnt = 0;
245} 289}
246 290
247static void 291static void
248fd_change (int fd) 292fd_change (EV_P_ int fd)
249{ 293{
250 if (anfds [fd].reify || fdchangecnt < 0) 294 if (anfds [fd].reify || fdchangecnt < 0)
251 return; 295 return;
252 296
253 anfds [fd].reify = 1; 297 anfds [fd].reify = 1;
255 ++fdchangecnt; 299 ++fdchangecnt;
256 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 300 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
257 fdchanges [fdchangecnt - 1] = fd; 301 fdchanges [fdchangecnt - 1] = fd;
258} 302}
259 303
304static void
305fd_kill (EV_P_ int fd)
306{
307 struct ev_io *w;
308
309 while ((w = (struct ev_io *)anfds [fd].head))
310 {
311 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 }
314}
315
260/* called on EBADF to verify fds */ 316/* called on EBADF to verify fds */
261static void 317static void
262fd_recheck (void) 318fd_ebadf (EV_P)
263{ 319{
264 int fd; 320 int fd;
265 321
266 for (fd = 0; fd < anfdmax; ++fd) 322 for (fd = 0; fd < anfdmax; ++fd)
267 if (anfds [fd].events) 323 if (anfds [fd].events)
268 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
269 while (anfds [fd].head) 325 fd_kill (EV_A_ fd);
326}
327
328/* called on ENOMEM in select/poll to kill some fds and retry */
329static void
330fd_enomem (EV_P)
331{
332 int fd = anfdmax;
333
334 while (fd--)
335 if (anfds [fd].events)
270 { 336 {
271 ev_io_stop (anfds [fd].head); 337 close (fd);
272 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 338 fd_kill (EV_A_ fd);
339 return;
273 } 340 }
341}
342
343/* susually called after fork if method needs to re-arm all fds from scratch */
344static void
345fd_rearm_all (EV_P)
346{
347 int fd;
348
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events)
352 {
353 anfds [fd].events = 0;
354 fd_change (fd);
355 }
274} 356}
275 357
276/*****************************************************************************/ 358/*****************************************************************************/
277 359
278static struct ev_timer **timers;
279static int timermax, timercnt;
280
281static struct ev_periodic **periodics;
282static int periodicmax, periodiccnt;
283
284static void 360static void
285upheap (WT *timers, int k) 361upheap (WT *heap, int k)
286{ 362{
287 WT w = timers [k]; 363 WT w = heap [k];
288 364
289 while (k && timers [k >> 1]->at > w->at) 365 while (k && heap [k >> 1]->at > w->at)
290 { 366 {
291 timers [k] = timers [k >> 1]; 367 heap [k] = heap [k >> 1];
292 timers [k]->active = k + 1; 368 heap [k]->active = k + 1;
293 k >>= 1; 369 k >>= 1;
294 } 370 }
295 371
296 timers [k] = w; 372 heap [k] = w;
297 timers [k]->active = k + 1; 373 heap [k]->active = k + 1;
298 374
299} 375}
300 376
301static void 377static void
302downheap (WT *timers, int N, int k) 378downheap (WT *heap, int N, int k)
303{ 379{
304 WT w = timers [k]; 380 WT w = heap [k];
305 381
306 while (k < (N >> 1)) 382 while (k < (N >> 1))
307 { 383 {
308 int j = k << 1; 384 int j = k << 1;
309 385
310 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
311 ++j; 387 ++j;
312 388
313 if (w->at <= timers [j]->at) 389 if (w->at <= heap [j]->at)
314 break; 390 break;
315 391
316 timers [k] = timers [j]; 392 heap [k] = heap [j];
317 timers [k]->active = k + 1; 393 heap [k]->active = k + 1;
318 k = j; 394 k = j;
319 } 395 }
320 396
321 timers [k] = w; 397 heap [k] = w;
322 timers [k]->active = k + 1; 398 heap [k]->active = k + 1;
323} 399}
324 400
325/*****************************************************************************/ 401/*****************************************************************************/
326 402
327typedef struct 403typedef struct
328{ 404{
329 struct ev_signal *head; 405 struct ev_watcher_list *head;
330 sig_atomic_t volatile gotsig; 406 sig_atomic_t volatile gotsig;
331} ANSIG; 407} ANSIG;
332 408
333static ANSIG *signals; 409static ANSIG *signals;
334static int signalmax; 410static int signalmax;
335 411
336static int sigpipe [2]; 412static int sigpipe [2];
337static sig_atomic_t volatile gotsig; 413static sig_atomic_t volatile gotsig;
338static struct ev_io sigev;
339 414
340static void 415static void
341signals_init (ANSIG *base, int count) 416signals_init (ANSIG *base, int count)
342{ 417{
343 while (count--) 418 while (count--)
354{ 429{
355 signals [signum - 1].gotsig = 1; 430 signals [signum - 1].gotsig = 1;
356 431
357 if (!gotsig) 432 if (!gotsig)
358 { 433 {
434 int old_errno = errno;
359 gotsig = 1; 435 gotsig = 1;
360 write (sigpipe [1], &signum, 1); 436 write (sigpipe [1], &signum, 1);
437 errno = old_errno;
361 } 438 }
362} 439}
363 440
364static void 441static void
365sigcb (struct ev_io *iow, int revents) 442sigcb (EV_P_ struct ev_io *iow, int revents)
366{ 443{
367 struct ev_signal *w; 444 struct ev_watcher_list *w;
368 int sig; 445 int signum;
369 446
370 read (sigpipe [0], &revents, 1); 447 read (sigpipe [0], &revents, 1);
371 gotsig = 0; 448 gotsig = 0;
372 449
373 for (sig = signalmax; sig--; ) 450 for (signum = signalmax; signum--; )
374 if (signals [sig].gotsig) 451 if (signals [signum].gotsig)
375 { 452 {
376 signals [sig].gotsig = 0; 453 signals [signum].gotsig = 0;
377 454
378 for (w = signals [sig].head; w; w = w->next) 455 for (w = signals [signum].head; w; w = w->next)
379 event ((W)w, EV_SIGNAL); 456 event (EV_A_ (W)w, EV_SIGNAL);
380 } 457 }
381} 458}
382 459
383static void 460static void
384siginit (void) 461siginit (EV_P)
385{ 462{
463#ifndef WIN32
386 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 464 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
387 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 465 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
388 466
389 /* rather than sort out wether we really need nb, set it */ 467 /* rather than sort out wether we really need nb, set it */
390 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 468 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
391 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 469 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
470#endif
392 471
393 ev_io_set (&sigev, sigpipe [0], EV_READ); 472 ev_io_set (&sigev, sigpipe [0], EV_READ);
394 ev_io_start (&sigev); 473 ev_io_start (EV_A_ &sigev);
474 ev_unref (EV_A); /* child watcher should not keep loop alive */
395} 475}
396 476
397/*****************************************************************************/ 477/*****************************************************************************/
398 478
399static struct ev_idle **idles; 479#ifndef WIN32
400static int idlemax, idlecnt;
401
402static struct ev_prepare **prepares;
403static int preparemax, preparecnt;
404
405static struct ev_check **checks;
406static int checkmax, checkcnt;
407
408/*****************************************************************************/
409
410static struct ev_child *childs [PID_HASHSIZE];
411static struct ev_signal childev;
412 480
413#ifndef WCONTINUED 481#ifndef WCONTINUED
414# define WCONTINUED 0 482# define WCONTINUED 0
415#endif 483#endif
416 484
417static void 485static void
418childcb (struct ev_signal *sw, int revents) 486child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
419{ 487{
420 struct ev_child *w; 488 struct ev_child *w;
489
490 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491 if (w->pid == pid || !w->pid)
492 {
493 w->priority = sw->priority; /* need to do it *now* */
494 w->rpid = pid;
495 w->rstatus = status;
496 event (EV_A_ (W)w, EV_CHILD);
497 }
498}
499
500static void
501childcb (EV_P_ struct ev_signal *sw, int revents)
502{
421 int pid, status; 503 int pid, status;
422 504
423 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 505 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
424 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 506 {
425 if (w->pid == pid || w->pid == -1) 507 /* make sure we are called again until all childs have been reaped */
426 { 508 event (EV_A_ (W)sw, EV_SIGNAL);
427 w->status = status; 509
428 event ((W)w, EV_CHILD); 510 child_reap (EV_A_ sw, pid, pid, status);
429 } 511 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
512 }
430} 513}
514
515#endif
431 516
432/*****************************************************************************/ 517/*****************************************************************************/
433 518
519#if EV_USE_KQUEUE
520# include "ev_kqueue.c"
521#endif
434#if EV_USE_EPOLL 522#if EV_USE_EPOLL
435# include "ev_epoll.c" 523# include "ev_epoll.c"
436#endif 524#endif
525#if EV_USEV_POLL
526# include "ev_poll.c"
527#endif
437#if EV_USE_SELECT 528#if EV_USE_SELECT
438# include "ev_select.c" 529# include "ev_select.c"
439#endif 530#endif
440 531
441int 532int
448ev_version_minor (void) 539ev_version_minor (void)
449{ 540{
450 return EV_VERSION_MINOR; 541 return EV_VERSION_MINOR;
451} 542}
452 543
453int ev_init (int flags) 544/* return true if we are running with elevated privileges and should ignore env variables */
545static int
546enable_secure (void)
454{ 547{
548#ifdef WIN32
549 return 0;
550#else
551 return getuid () != geteuid ()
552 || getgid () != getegid ();
553#endif
554}
555
556int
557ev_method (EV_P)
558{
559 return method;
560}
561
562static void
563loop_init (EV_P_ int methods)
564{
455 if (!ev_method) 565 if (!method)
456 { 566 {
457#if EV_USE_MONOTONIC 567#if EV_USE_MONOTONIC
458 { 568 {
459 struct timespec ts; 569 struct timespec ts;
460 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 570 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
461 have_monotonic = 1; 571 have_monotonic = 1;
462 } 572 }
463#endif 573#endif
464 574
465 ev_now = ev_time (); 575 rt_now = ev_time ();
466 now = get_clock (); 576 mn_now = get_clock ();
577 now_floor = mn_now;
467 diff = ev_now - now; 578 rtmn_diff = rt_now - mn_now;
468 579
469 if (pipe (sigpipe)) 580 if (methods == EVMETHOD_AUTO)
470 return 0; 581 if (!enable_secure () && getenv ("LIBEV_METHODS"))
471 582 methods = atoi (getenv ("LIBEV_METHODS"));
583 else
472 ev_method = EVMETHOD_NONE; 584 methods = EVMETHOD_ANY;
585
586 method = 0;
587#if EV_USE_KQUEUE
588 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
589#endif
473#if EV_USE_EPOLL 590#if EV_USE_EPOLL
474 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 591 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
592#endif
593#if EV_USEV_POLL
594 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
475#endif 595#endif
476#if EV_USE_SELECT 596#if EV_USE_SELECT
477 if (ev_method == EVMETHOD_NONE) select_init (flags); 597 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
478#endif 598#endif
599 }
600}
479 601
602void
603loop_destroy (EV_P)
604{
605#if EV_USE_KQUEUE
606 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
607#endif
608#if EV_USE_EPOLL
609 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
610#endif
611#if EV_USEV_POLL
612 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
613#endif
614#if EV_USE_SELECT
615 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
616#endif
617
618 method = 0;
619 /*TODO*/
620}
621
622void
623loop_fork (EV_P)
624{
625 /*TODO*/
626#if EV_USE_EPOLL
627 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
628#endif
629#if EV_USE_KQUEUE
630 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
631#endif
632}
633
634#if EV_MULTIPLICITY
635struct ev_loop *
636ev_loop_new (int methods)
637{
638 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
639
640 loop_init (EV_A_ methods);
641
642 if (ev_methods (EV_A))
643 return loop;
644
645 return 0;
646}
647
648void
649ev_loop_destroy (EV_P)
650{
651 loop_destroy (EV_A);
652 free (loop);
653}
654
655void
656ev_loop_fork (EV_P)
657{
658 loop_fork (EV_A);
659}
660
661#endif
662
663#if EV_MULTIPLICITY
664struct ev_loop default_loop_struct;
665static struct ev_loop *default_loop;
666
667struct ev_loop *
668#else
669static int default_loop;
670
671int
672#endif
673ev_default_loop (int methods)
674{
675 if (sigpipe [0] == sigpipe [1])
676 if (pipe (sigpipe))
677 return 0;
678
679 if (!default_loop)
680 {
681#if EV_MULTIPLICITY
682 struct ev_loop *loop = default_loop = &default_loop_struct;
683#else
684 default_loop = 1;
685#endif
686
687 loop_init (EV_A_ methods);
688
480 if (ev_method) 689 if (ev_method (EV_A))
481 { 690 {
482 ev_watcher_init (&sigev, sigcb); 691 ev_watcher_init (&sigev, sigcb);
692 ev_set_priority (&sigev, EV_MAXPRI);
483 siginit (); 693 siginit (EV_A);
484 694
695#ifndef WIN32
485 ev_signal_init (&childev, childcb, SIGCHLD); 696 ev_signal_init (&childev, childcb, SIGCHLD);
697 ev_set_priority (&childev, EV_MAXPRI);
486 ev_signal_start (&childev); 698 ev_signal_start (EV_A_ &childev);
699 ev_unref (EV_A); /* child watcher should not keep loop alive */
700#endif
487 } 701 }
702 else
703 default_loop = 0;
488 } 704 }
489 705
490 return ev_method; 706 return default_loop;
491} 707}
492 708
493/*****************************************************************************/
494
495void 709void
496ev_fork_prepare (void) 710ev_default_destroy (void)
497{ 711{
498 /* nop */ 712#if EV_MULTIPLICITY
499} 713 struct ev_loop *loop = default_loop;
500
501void
502ev_fork_parent (void)
503{
504 /* nop */
505}
506
507void
508ev_fork_child (void)
509{
510#if EV_USE_EPOLL
511 if (ev_method == EVMETHOD_EPOLL)
512 epoll_postfork_child ();
513#endif 714#endif
514 715
716 ev_ref (EV_A); /* child watcher */
717 ev_signal_stop (EV_A_ &childev);
718
719 ev_ref (EV_A); /* signal watcher */
515 ev_io_stop (&sigev); 720 ev_io_stop (EV_A_ &sigev);
721
722 close (sigpipe [0]); sigpipe [0] = 0;
723 close (sigpipe [1]); sigpipe [1] = 0;
724
725 loop_destroy (EV_A);
726}
727
728void
729ev_default_fork (EV_P)
730{
731 loop_fork (EV_A);
732
733 ev_io_stop (EV_A_ &sigev);
516 close (sigpipe [0]); 734 close (sigpipe [0]);
517 close (sigpipe [1]); 735 close (sigpipe [1]);
518 pipe (sigpipe); 736 pipe (sigpipe);
737
738 ev_ref (EV_A); /* signal watcher */
519 siginit (); 739 siginit (EV_A);
520} 740}
521 741
522/*****************************************************************************/ 742/*****************************************************************************/
523 743
524static void 744static void
525call_pending (void) 745call_pending (EV_P)
526{ 746{
747 int pri;
748
749 for (pri = NUMPRI; pri--; )
527 while (pendingcnt) 750 while (pendingcnt [pri])
528 { 751 {
529 ANPENDING *p = pendings + --pendingcnt; 752 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
530 753
531 if (p->w) 754 if (p->w)
532 { 755 {
533 p->w->pending = 0; 756 p->w->pending = 0;
534 p->w->cb (p->w, p->events); 757 p->w->cb (EV_A_ p->w, p->events);
535 } 758 }
536 } 759 }
537} 760}
538 761
539static void 762static void
540timers_reify (void) 763timers_reify (EV_P)
541{ 764{
542 while (timercnt && timers [0]->at <= now) 765 while (timercnt && timers [0]->at <= mn_now)
543 { 766 {
544 struct ev_timer *w = timers [0]; 767 struct ev_timer *w = timers [0];
545 768
546 /* first reschedule or stop timer */ 769 /* first reschedule or stop timer */
547 if (w->repeat) 770 if (w->repeat)
548 { 771 {
549 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 772 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
550 w->at = now + w->repeat; 773 w->at = mn_now + w->repeat;
551 downheap ((WT *)timers, timercnt, 0); 774 downheap ((WT *)timers, timercnt, 0);
552 } 775 }
553 else 776 else
554 ev_timer_stop (w); /* nonrepeating: stop timer */ 777 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
555 778
556 event ((W)w, EV_TIMEOUT); 779 event (EV_A_ (W)w, EV_TIMEOUT);
557 } 780 }
558} 781}
559 782
560static void 783static void
561periodics_reify (void) 784periodics_reify (EV_P)
562{ 785{
563 while (periodiccnt && periodics [0]->at <= ev_now) 786 while (periodiccnt && periodics [0]->at <= rt_now)
564 { 787 {
565 struct ev_periodic *w = periodics [0]; 788 struct ev_periodic *w = periodics [0];
566 789
567 /* first reschedule or stop timer */ 790 /* first reschedule or stop timer */
568 if (w->interval) 791 if (w->interval)
569 { 792 {
570 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 793 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
571 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 794 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
572 downheap ((WT *)periodics, periodiccnt, 0); 795 downheap ((WT *)periodics, periodiccnt, 0);
573 } 796 }
574 else 797 else
575 ev_periodic_stop (w); /* nonrepeating: stop timer */ 798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
576 799
577 event ((W)w, EV_PERIODIC); 800 event (EV_A_ (W)w, EV_PERIODIC);
578 } 801 }
579} 802}
580 803
581static void 804static void
582periodics_reschedule (ev_tstamp diff) 805periodics_reschedule (EV_P)
583{ 806{
584 int i; 807 int i;
585 808
586 /* adjust periodics after time jump */ 809 /* adjust periodics after time jump */
587 for (i = 0; i < periodiccnt; ++i) 810 for (i = 0; i < periodiccnt; ++i)
588 { 811 {
589 struct ev_periodic *w = periodics [i]; 812 struct ev_periodic *w = periodics [i];
590 813
591 if (w->interval) 814 if (w->interval)
592 { 815 {
593 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 816 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
594 817
595 if (fabs (diff) >= 1e-4) 818 if (fabs (diff) >= 1e-4)
596 { 819 {
597 ev_periodic_stop (w); 820 ev_periodic_stop (EV_A_ w);
598 ev_periodic_start (w); 821 ev_periodic_start (EV_A_ w);
599 822
600 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 823 i = 0; /* restart loop, inefficient, but time jumps should be rare */
601 } 824 }
602 } 825 }
603 } 826 }
604} 827}
605 828
829inline int
830time_update_monotonic (EV_P)
831{
832 mn_now = get_clock ();
833
834 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
835 {
836 rt_now = rtmn_diff + mn_now;
837 return 0;
838 }
839 else
840 {
841 now_floor = mn_now;
842 rt_now = ev_time ();
843 return 1;
844 }
845}
846
606static void 847static void
607time_update (void) 848time_update (EV_P)
608{ 849{
609 int i; 850 int i;
610 851
611 ev_now = ev_time (); 852#if EV_USE_MONOTONIC
612
613 if (have_monotonic) 853 if (expect_true (have_monotonic))
614 { 854 {
615 ev_tstamp odiff = diff; 855 if (time_update_monotonic (EV_A))
616
617 for (i = 4; --i; ) /* loop a few times, before making important decisions */
618 { 856 {
619 now = get_clock (); 857 ev_tstamp odiff = rtmn_diff;
858
859 for (i = 4; --i; ) /* loop a few times, before making important decisions */
860 {
620 diff = ev_now - now; 861 rtmn_diff = rt_now - mn_now;
621 862
622 if (fabs (odiff - diff) < MIN_TIMEJUMP) 863 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
623 return; /* all is well */ 864 return; /* all is well */
624 865
625 ev_now = ev_time (); 866 rt_now = ev_time ();
867 mn_now = get_clock ();
868 now_floor = mn_now;
869 }
870
871 periodics_reschedule (EV_A);
872 /* no timer adjustment, as the monotonic clock doesn't jump */
873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
626 } 874 }
627
628 periodics_reschedule (diff - odiff);
629 /* no timer adjustment, as the monotonic clock doesn't jump */
630 } 875 }
631 else 876 else
877#endif
632 { 878 {
633 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 879 rt_now = ev_time ();
880
881 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
634 { 882 {
635 periodics_reschedule (ev_now - now); 883 periodics_reschedule (EV_A);
636 884
637 /* adjust timers. this is easy, as the offset is the same for all */ 885 /* adjust timers. this is easy, as the offset is the same for all */
638 for (i = 0; i < timercnt; ++i) 886 for (i = 0; i < timercnt; ++i)
639 timers [i]->at += diff; 887 timers [i]->at += rt_now - mn_now;
640 } 888 }
641 889
642 now = ev_now; 890 mn_now = rt_now;
643 } 891 }
644} 892}
645 893
646int ev_loop_done; 894void
895ev_ref (EV_P)
896{
897 ++activecnt;
898}
647 899
900void
901ev_unref (EV_P)
902{
903 --activecnt;
904}
905
906static int loop_done;
907
908void
648void ev_loop (int flags) 909ev_loop (EV_P_ int flags)
649{ 910{
650 double block; 911 double block;
651 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 912 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
652 913
653 do 914 do
654 { 915 {
655 /* queue check watchers (and execute them) */ 916 /* queue check watchers (and execute them) */
656 if (preparecnt) 917 if (expect_false (preparecnt))
657 { 918 {
658 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 919 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
659 call_pending (); 920 call_pending (EV_A);
660 } 921 }
661 922
662 /* update fd-related kernel structures */ 923 /* update fd-related kernel structures */
663 fd_reify (); 924 fd_reify (EV_A);
664 925
665 /* calculate blocking time */ 926 /* calculate blocking time */
666 927
667 /* we only need this for !monotonic clockor timers, but as we basically 928 /* we only need this for !monotonic clockor timers, but as we basically
668 always have timers, we just calculate it always */ 929 always have timers, we just calculate it always */
930#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic))
932 time_update_monotonic (EV_A);
933 else
934#endif
935 {
669 ev_now = ev_time (); 936 rt_now = ev_time ();
937 mn_now = rt_now;
938 }
670 939
671 if (flags & EVLOOP_NONBLOCK || idlecnt) 940 if (flags & EVLOOP_NONBLOCK || idlecnt)
672 block = 0.; 941 block = 0.;
673 else 942 else
674 { 943 {
675 block = MAX_BLOCKTIME; 944 block = MAX_BLOCKTIME;
676 945
677 if (timercnt) 946 if (timercnt)
678 { 947 {
679 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 948 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
680 if (block > to) block = to; 949 if (block > to) block = to;
681 } 950 }
682 951
683 if (periodiccnt) 952 if (periodiccnt)
684 { 953 {
685 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 954 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
686 if (block > to) block = to; 955 if (block > to) block = to;
687 } 956 }
688 957
689 if (block < 0.) block = 0.; 958 if (block < 0.) block = 0.;
690 } 959 }
691 960
692 method_poll (block); 961 method_poll (EV_A_ block);
693 962
694 /* update ev_now, do magic */ 963 /* update rt_now, do magic */
695 time_update (); 964 time_update (EV_A);
696 965
697 /* queue pending timers and reschedule them */ 966 /* queue pending timers and reschedule them */
698 timers_reify (); /* relative timers called last */ 967 timers_reify (EV_A); /* relative timers called last */
699 periodics_reify (); /* absolute timers called first */ 968 periodics_reify (EV_A); /* absolute timers called first */
700 969
701 /* queue idle watchers unless io or timers are pending */ 970 /* queue idle watchers unless io or timers are pending */
702 if (!pendingcnt) 971 if (!pendingcnt)
703 queue_events ((W *)idles, idlecnt, EV_IDLE); 972 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
704 973
705 /* queue check watchers, to be executed first */ 974 /* queue check watchers, to be executed first */
706 if (checkcnt) 975 if (checkcnt)
707 queue_events ((W *)checks, checkcnt, EV_CHECK); 976 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
708 977
709 call_pending (); 978 call_pending (EV_A);
710 } 979 }
711 while (!ev_loop_done); 980 while (activecnt && !loop_done);
712 981
713 if (ev_loop_done != 2) 982 if (loop_done != 2)
714 ev_loop_done = 0; 983 loop_done = 0;
984}
985
986void
987ev_unloop (EV_P_ int how)
988{
989 loop_done = how;
715} 990}
716 991
717/*****************************************************************************/ 992/*****************************************************************************/
718 993
719static void 994inline void
720wlist_add (WL *head, WL elem) 995wlist_add (WL *head, WL elem)
721{ 996{
722 elem->next = *head; 997 elem->next = *head;
723 *head = elem; 998 *head = elem;
724} 999}
725 1000
726static void 1001inline void
727wlist_del (WL *head, WL elem) 1002wlist_del (WL *head, WL elem)
728{ 1003{
729 while (*head) 1004 while (*head)
730 { 1005 {
731 if (*head == elem) 1006 if (*head == elem)
736 1011
737 head = &(*head)->next; 1012 head = &(*head)->next;
738 } 1013 }
739} 1014}
740 1015
741static void 1016inline void
742ev_clear_pending (W w) 1017ev_clear_pending (EV_P_ W w)
743{ 1018{
744 if (w->pending) 1019 if (w->pending)
745 { 1020 {
746 pendings [w->pending - 1].w = 0; 1021 pendings [ABSPRI (w)][w->pending - 1].w = 0;
747 w->pending = 0; 1022 w->pending = 0;
748 } 1023 }
749} 1024}
750 1025
751static void 1026inline void
752ev_start (W w, int active) 1027ev_start (EV_P_ W w, int active)
753{ 1028{
1029 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1030 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1031
754 w->active = active; 1032 w->active = active;
1033 ev_ref (EV_A);
755} 1034}
756 1035
757static void 1036inline void
758ev_stop (W w) 1037ev_stop (EV_P_ W w)
759{ 1038{
1039 ev_unref (EV_A);
760 w->active = 0; 1040 w->active = 0;
761} 1041}
762 1042
763/*****************************************************************************/ 1043/*****************************************************************************/
764 1044
765void 1045void
766ev_io_start (struct ev_io *w) 1046ev_io_start (EV_P_ struct ev_io *w)
767{ 1047{
1048 int fd = w->fd;
1049
768 if (ev_is_active (w)) 1050 if (ev_is_active (w))
769 return; 1051 return;
770 1052
771 int fd = w->fd;
772
773 assert (("ev_io_start called with negative fd", fd >= 0)); 1053 assert (("ev_io_start called with negative fd", fd >= 0));
774 1054
775 ev_start ((W)w, 1); 1055 ev_start (EV_A_ (W)w, 1);
776 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1056 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
777 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1057 wlist_add ((WL *)&anfds[fd].head, (WL)w);
778 1058
779 fd_change (fd); 1059 fd_change (EV_A_ fd);
780} 1060}
781 1061
782void 1062void
783ev_io_stop (struct ev_io *w) 1063ev_io_stop (EV_P_ struct ev_io *w)
784{ 1064{
785 ev_clear_pending ((W)w); 1065 ev_clear_pending (EV_A_ (W)w);
786 if (!ev_is_active (w)) 1066 if (!ev_is_active (w))
787 return; 1067 return;
788 1068
789 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1069 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
790 ev_stop ((W)w); 1070 ev_stop (EV_A_ (W)w);
791 1071
792 fd_change (w->fd); 1072 fd_change (EV_A_ w->fd);
793} 1073}
794 1074
795void 1075void
796ev_timer_start (struct ev_timer *w) 1076ev_timer_start (EV_P_ struct ev_timer *w)
797{ 1077{
798 if (ev_is_active (w)) 1078 if (ev_is_active (w))
799 return; 1079 return;
800 1080
801 w->at += now; 1081 w->at += mn_now;
802 1082
803 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1083 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
804 1084
805 ev_start ((W)w, ++timercnt); 1085 ev_start (EV_A_ (W)w, ++timercnt);
806 array_needsize (timers, timermax, timercnt, ); 1086 array_needsize (timers, timermax, timercnt, );
807 timers [timercnt - 1] = w; 1087 timers [timercnt - 1] = w;
808 upheap ((WT *)timers, timercnt - 1); 1088 upheap ((WT *)timers, timercnt - 1);
809} 1089}
810 1090
811void 1091void
812ev_timer_stop (struct ev_timer *w) 1092ev_timer_stop (EV_P_ struct ev_timer *w)
813{ 1093{
814 ev_clear_pending ((W)w); 1094 ev_clear_pending (EV_A_ (W)w);
815 if (!ev_is_active (w)) 1095 if (!ev_is_active (w))
816 return; 1096 return;
817 1097
818 if (w->active < timercnt--) 1098 if (w->active < timercnt--)
819 { 1099 {
821 downheap ((WT *)timers, timercnt, w->active - 1); 1101 downheap ((WT *)timers, timercnt, w->active - 1);
822 } 1102 }
823 1103
824 w->at = w->repeat; 1104 w->at = w->repeat;
825 1105
826 ev_stop ((W)w); 1106 ev_stop (EV_A_ (W)w);
827} 1107}
828 1108
829void 1109void
830ev_timer_again (struct ev_timer *w) 1110ev_timer_again (EV_P_ struct ev_timer *w)
831{ 1111{
832 if (ev_is_active (w)) 1112 if (ev_is_active (w))
833 { 1113 {
834 if (w->repeat) 1114 if (w->repeat)
835 { 1115 {
836 w->at = now + w->repeat; 1116 w->at = mn_now + w->repeat;
837 downheap ((WT *)timers, timercnt, w->active - 1); 1117 downheap ((WT *)timers, timercnt, w->active - 1);
838 } 1118 }
839 else 1119 else
840 ev_timer_stop (w); 1120 ev_timer_stop (EV_A_ w);
841 } 1121 }
842 else if (w->repeat) 1122 else if (w->repeat)
843 ev_timer_start (w); 1123 ev_timer_start (EV_A_ w);
844} 1124}
845 1125
846void 1126void
847ev_periodic_start (struct ev_periodic *w) 1127ev_periodic_start (EV_P_ struct ev_periodic *w)
848{ 1128{
849 if (ev_is_active (w)) 1129 if (ev_is_active (w))
850 return; 1130 return;
851 1131
852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1132 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
853 1133
854 /* this formula differs from the one in periodic_reify because we do not always round up */ 1134 /* this formula differs from the one in periodic_reify because we do not always round up */
855 if (w->interval) 1135 if (w->interval)
856 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1136 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
857 1137
858 ev_start ((W)w, ++periodiccnt); 1138 ev_start (EV_A_ (W)w, ++periodiccnt);
859 array_needsize (periodics, periodicmax, periodiccnt, ); 1139 array_needsize (periodics, periodicmax, periodiccnt, );
860 periodics [periodiccnt - 1] = w; 1140 periodics [periodiccnt - 1] = w;
861 upheap ((WT *)periodics, periodiccnt - 1); 1141 upheap ((WT *)periodics, periodiccnt - 1);
862} 1142}
863 1143
864void 1144void
865ev_periodic_stop (struct ev_periodic *w) 1145ev_periodic_stop (EV_P_ struct ev_periodic *w)
866{ 1146{
867 ev_clear_pending ((W)w); 1147 ev_clear_pending (EV_A_ (W)w);
868 if (!ev_is_active (w)) 1148 if (!ev_is_active (w))
869 return; 1149 return;
870 1150
871 if (w->active < periodiccnt--) 1151 if (w->active < periodiccnt--)
872 { 1152 {
873 periodics [w->active - 1] = periodics [periodiccnt]; 1153 periodics [w->active - 1] = periodics [periodiccnt];
874 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1154 downheap ((WT *)periodics, periodiccnt, w->active - 1);
875 } 1155 }
876 1156
877 ev_stop ((W)w); 1157 ev_stop (EV_A_ (W)w);
878} 1158}
879 1159
880void 1160void
881ev_signal_start (struct ev_signal *w) 1161ev_idle_start (EV_P_ struct ev_idle *w)
882{ 1162{
883 if (ev_is_active (w)) 1163 if (ev_is_active (w))
884 return; 1164 return;
885 1165
1166 ev_start (EV_A_ (W)w, ++idlecnt);
1167 array_needsize (idles, idlemax, idlecnt, );
1168 idles [idlecnt - 1] = w;
1169}
1170
1171void
1172ev_idle_stop (EV_P_ struct ev_idle *w)
1173{
1174 ev_clear_pending (EV_A_ (W)w);
1175 if (ev_is_active (w))
1176 return;
1177
1178 idles [w->active - 1] = idles [--idlecnt];
1179 ev_stop (EV_A_ (W)w);
1180}
1181
1182void
1183ev_prepare_start (EV_P_ struct ev_prepare *w)
1184{
1185 if (ev_is_active (w))
1186 return;
1187
1188 ev_start (EV_A_ (W)w, ++preparecnt);
1189 array_needsize (prepares, preparemax, preparecnt, );
1190 prepares [preparecnt - 1] = w;
1191}
1192
1193void
1194ev_prepare_stop (EV_P_ struct ev_prepare *w)
1195{
1196 ev_clear_pending (EV_A_ (W)w);
1197 if (ev_is_active (w))
1198 return;
1199
1200 prepares [w->active - 1] = prepares [--preparecnt];
1201 ev_stop (EV_A_ (W)w);
1202}
1203
1204void
1205ev_check_start (EV_P_ struct ev_check *w)
1206{
1207 if (ev_is_active (w))
1208 return;
1209
1210 ev_start (EV_A_ (W)w, ++checkcnt);
1211 array_needsize (checks, checkmax, checkcnt, );
1212 checks [checkcnt - 1] = w;
1213}
1214
1215void
1216ev_check_stop (EV_P_ struct ev_check *w)
1217{
1218 ev_clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w))
1220 return;
1221
1222 checks [w->active - 1] = checks [--checkcnt];
1223 ev_stop (EV_A_ (W)w);
1224}
1225
1226#ifndef SA_RESTART
1227# define SA_RESTART 0
1228#endif
1229
1230void
1231ev_signal_start (EV_P_ struct ev_signal *w)
1232{
1233#if EV_MULTIPLICITY
1234 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1235#endif
1236 if (ev_is_active (w))
1237 return;
1238
886 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1239 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
887 1240
888 ev_start ((W)w, 1); 1241 ev_start (EV_A_ (W)w, 1);
889 array_needsize (signals, signalmax, w->signum, signals_init); 1242 array_needsize (signals, signalmax, w->signum, signals_init);
890 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1243 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
891 1244
892 if (!w->next) 1245 if (!w->next)
893 { 1246 {
894 struct sigaction sa; 1247 struct sigaction sa;
895 sa.sa_handler = sighandler; 1248 sa.sa_handler = sighandler;
896 sigfillset (&sa.sa_mask); 1249 sigfillset (&sa.sa_mask);
897 sa.sa_flags = 0; 1250 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
898 sigaction (w->signum, &sa, 0); 1251 sigaction (w->signum, &sa, 0);
899 } 1252 }
900} 1253}
901 1254
902void 1255void
903ev_signal_stop (struct ev_signal *w) 1256ev_signal_stop (EV_P_ struct ev_signal *w)
904{ 1257{
905 ev_clear_pending ((W)w); 1258 ev_clear_pending (EV_A_ (W)w);
906 if (!ev_is_active (w)) 1259 if (!ev_is_active (w))
907 return; 1260 return;
908 1261
909 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1262 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
910 ev_stop ((W)w); 1263 ev_stop (EV_A_ (W)w);
911 1264
912 if (!signals [w->signum - 1].head) 1265 if (!signals [w->signum - 1].head)
913 signal (w->signum, SIG_DFL); 1266 signal (w->signum, SIG_DFL);
914} 1267}
915 1268
916void 1269void
917ev_idle_start (struct ev_idle *w) 1270ev_child_start (EV_P_ struct ev_child *w)
918{ 1271{
1272#if EV_MULTIPLICITY
1273 assert (("child watchers are only supported in the default loop", loop == default_loop));
1274#endif
919 if (ev_is_active (w)) 1275 if (ev_is_active (w))
920 return; 1276 return;
921 1277
922 ev_start ((W)w, ++idlecnt); 1278 ev_start (EV_A_ (W)w, 1);
923 array_needsize (idles, idlemax, idlecnt, ); 1279 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
924 idles [idlecnt - 1] = w;
925} 1280}
926 1281
927void 1282void
928ev_idle_stop (struct ev_idle *w) 1283ev_child_stop (EV_P_ struct ev_child *w)
929{ 1284{
930 ev_clear_pending ((W)w); 1285 ev_clear_pending (EV_A_ (W)w);
931 if (ev_is_active (w)) 1286 if (ev_is_active (w))
932 return; 1287 return;
933 1288
934 idles [w->active - 1] = idles [--idlecnt];
935 ev_stop ((W)w);
936}
937
938void
939ev_prepare_start (struct ev_prepare *w)
940{
941 if (ev_is_active (w))
942 return;
943
944 ev_start ((W)w, ++preparecnt);
945 array_needsize (prepares, preparemax, preparecnt, );
946 prepares [preparecnt - 1] = w;
947}
948
949void
950ev_prepare_stop (struct ev_prepare *w)
951{
952 ev_clear_pending ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 prepares [w->active - 1] = prepares [--preparecnt];
957 ev_stop ((W)w);
958}
959
960void
961ev_check_start (struct ev_check *w)
962{
963 if (ev_is_active (w))
964 return;
965
966 ev_start ((W)w, ++checkcnt);
967 array_needsize (checks, checkmax, checkcnt, );
968 checks [checkcnt - 1] = w;
969}
970
971void
972ev_check_stop (struct ev_check *w)
973{
974 ev_clear_pending ((W)w);
975 if (ev_is_active (w))
976 return;
977
978 checks [w->active - 1] = checks [--checkcnt];
979 ev_stop ((W)w);
980}
981
982void
983ev_child_start (struct ev_child *w)
984{
985 if (ev_is_active (w))
986 return;
987
988 ev_start ((W)w, 1);
989 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
990}
991
992void
993ev_child_stop (struct ev_child *w)
994{
995 ev_clear_pending ((W)w);
996 if (ev_is_active (w))
997 return;
998
999 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1289 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1000 ev_stop ((W)w); 1290 ev_stop (EV_A_ (W)w);
1001} 1291}
1002 1292
1003/*****************************************************************************/ 1293/*****************************************************************************/
1004 1294
1005struct ev_once 1295struct ev_once
1009 void (*cb)(int revents, void *arg); 1299 void (*cb)(int revents, void *arg);
1010 void *arg; 1300 void *arg;
1011}; 1301};
1012 1302
1013static void 1303static void
1014once_cb (struct ev_once *once, int revents) 1304once_cb (EV_P_ struct ev_once *once, int revents)
1015{ 1305{
1016 void (*cb)(int revents, void *arg) = once->cb; 1306 void (*cb)(int revents, void *arg) = once->cb;
1017 void *arg = once->arg; 1307 void *arg = once->arg;
1018 1308
1019 ev_io_stop (&once->io); 1309 ev_io_stop (EV_A_ &once->io);
1020 ev_timer_stop (&once->to); 1310 ev_timer_stop (EV_A_ &once->to);
1021 free (once); 1311 free (once);
1022 1312
1023 cb (revents, arg); 1313 cb (revents, arg);
1024} 1314}
1025 1315
1026static void 1316static void
1027once_cb_io (struct ev_io *w, int revents) 1317once_cb_io (EV_P_ struct ev_io *w, int revents)
1028{ 1318{
1029 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1319 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1030} 1320}
1031 1321
1032static void 1322static void
1033once_cb_to (struct ev_timer *w, int revents) 1323once_cb_to (EV_P_ struct ev_timer *w, int revents)
1034{ 1324{
1035 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1325 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1036} 1326}
1037 1327
1038void 1328void
1039ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1329ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1040{ 1330{
1041 struct ev_once *once = malloc (sizeof (struct ev_once)); 1331 struct ev_once *once = malloc (sizeof (struct ev_once));
1042 1332
1043 if (!once) 1333 if (!once)
1044 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1334 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1049 1339
1050 ev_watcher_init (&once->io, once_cb_io); 1340 ev_watcher_init (&once->io, once_cb_io);
1051 if (fd >= 0) 1341 if (fd >= 0)
1052 { 1342 {
1053 ev_io_set (&once->io, fd, events); 1343 ev_io_set (&once->io, fd, events);
1054 ev_io_start (&once->io); 1344 ev_io_start (EV_A_ &once->io);
1055 } 1345 }
1056 1346
1057 ev_watcher_init (&once->to, once_cb_to); 1347 ev_watcher_init (&once->to, once_cb_to);
1058 if (timeout >= 0.) 1348 if (timeout >= 0.)
1059 { 1349 {
1060 ev_timer_set (&once->to, timeout, 0.); 1350 ev_timer_set (&once->to, timeout, 0.);
1061 ev_timer_start (&once->to); 1351 ev_timer_start (EV_A_ &once->to);
1062 } 1352 }
1063 } 1353 }
1064} 1354}
1065 1355
1066/*****************************************************************************/
1067
1068#if 0
1069
1070struct ev_io wio;
1071
1072static void
1073sin_cb (struct ev_io *w, int revents)
1074{
1075 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1076}
1077
1078static void
1079ocb (struct ev_timer *w, int revents)
1080{
1081 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1082 ev_timer_stop (w);
1083 ev_timer_start (w);
1084}
1085
1086static void
1087scb (struct ev_signal *w, int revents)
1088{
1089 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1090 ev_io_stop (&wio);
1091 ev_io_start (&wio);
1092}
1093
1094static void
1095gcb (struct ev_signal *w, int revents)
1096{
1097 fprintf (stderr, "generic %x\n", revents);
1098
1099}
1100
1101int main (void)
1102{
1103 ev_init (0);
1104
1105 ev_io_init (&wio, sin_cb, 0, EV_READ);
1106 ev_io_start (&wio);
1107
1108 struct ev_timer t[10000];
1109
1110#if 0
1111 int i;
1112 for (i = 0; i < 10000; ++i)
1113 {
1114 struct ev_timer *w = t + i;
1115 ev_watcher_init (w, ocb, i);
1116 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1117 ev_timer_start (w);
1118 if (drand48 () < 0.5)
1119 ev_timer_stop (w);
1120 }
1121#endif
1122
1123 struct ev_timer t1;
1124 ev_timer_init (&t1, ocb, 5, 10);
1125 ev_timer_start (&t1);
1126
1127 struct ev_signal sig;
1128 ev_signal_init (&sig, scb, SIGQUIT);
1129 ev_signal_start (&sig);
1130
1131 struct ev_check cw;
1132 ev_check_init (&cw, gcb);
1133 ev_check_start (&cw);
1134
1135 struct ev_idle iw;
1136 ev_idle_init (&iw, gcb);
1137 ev_idle_start (&iw);
1138
1139 ev_loop (0);
1140
1141 return 0;
1142}
1143
1144#endif
1145
1146
1147
1148

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines