ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.36 by root, Thu Nov 1 13:11:11 2007 UTC vs.
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_EMBED
32# include "config.h" 32# include "config.h"
33#endif 33#endif
34 34
35#include <math.h> 35#include <math.h>
36#include <stdlib.h> 36#include <stdlib.h>
42#include <stdio.h> 42#include <stdio.h>
43 43
44#include <assert.h> 44#include <assert.h>
45#include <errno.h> 45#include <errno.h>
46#include <sys/types.h> 46#include <sys/types.h>
47#ifndef WIN32
47#include <sys/wait.h> 48# include <sys/wait.h>
49#endif
48#include <sys/time.h> 50#include <sys/time.h>
49#include <time.h> 51#include <time.h>
50 52
53/**/
54
51#ifndef EV_USE_MONOTONIC 55#ifndef EV_USE_MONOTONIC
52# ifdef CLOCK_MONOTONIC
53# define EV_USE_MONOTONIC 1 56# define EV_USE_MONOTONIC 1
54# endif
55#endif 57#endif
56 58
57#ifndef EV_USE_SELECT 59#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 60# define EV_USE_SELECT 1
59#endif 61#endif
60 62
63#ifndef EV_USEV_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif
66
61#ifndef EV_USE_EPOLL 67#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 68# define EV_USE_EPOLL 0
63#endif 69#endif
64 70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
73#endif
74
75#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1
77#endif
78
79/**/
80
81#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0
84#endif
85
65#ifndef CLOCK_REALTIME 86#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME
66# define EV_USE_REALTIME 0 88# define EV_USE_REALTIME 0
67#endif 89#endif
68#ifndef EV_USE_REALTIME 90
69# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 91/**/
70#endif
71 92
72#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
73#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
74#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
75#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
76 97
98#ifndef EV_EMBED
77#include "ev.h" 99# include "ev.h"
100#endif
101
102#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value))
104# define inline inline
105#else
106# define expect(expr,value) (expr)
107# define inline static
108#endif
109
110#define expect_false(expr) expect ((expr) != 0, 0)
111#define expect_true(expr) expect ((expr) != 0, 1)
112
113#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
114#define ABSPRI(w) ((w)->priority - EV_MINPRI)
78 115
79typedef struct ev_watcher *W; 116typedef struct ev_watcher *W;
80typedef struct ev_watcher_list *WL; 117typedef struct ev_watcher_list *WL;
81typedef struct ev_watcher_time *WT; 118typedef struct ev_watcher_time *WT;
82 119
83static ev_tstamp now, diff; /* monotonic clock */ 120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
84ev_tstamp ev_now;
85int ev_method;
86
87static int have_monotonic; /* runtime */
88
89static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
90static void (*method_modify)(int fd, int oev, int nev);
91static void (*method_poll)(ev_tstamp timeout);
92 121
93/*****************************************************************************/ 122/*****************************************************************************/
94 123
95ev_tstamp 124typedef struct
125{
126 struct ev_watcher_list *head;
127 unsigned char events;
128 unsigned char reify;
129} ANFD;
130
131typedef struct
132{
133 W w;
134 int events;
135} ANPENDING;
136
137#if EV_MULTIPLICITY
138
139struct ev_loop
140{
141# define VAR(name,decl) decl;
142# include "ev_vars.h"
143};
144# undef VAR
145# include "ev_wrap.h"
146
147#else
148
149# define VAR(name,decl) static decl;
150# include "ev_vars.h"
151# undef VAR
152
153#endif
154
155/*****************************************************************************/
156
157inline ev_tstamp
96ev_time (void) 158ev_time (void)
97{ 159{
98#if EV_USE_REALTIME 160#if EV_USE_REALTIME
99 struct timespec ts; 161 struct timespec ts;
100 clock_gettime (CLOCK_REALTIME, &ts); 162 clock_gettime (CLOCK_REALTIME, &ts);
104 gettimeofday (&tv, 0); 166 gettimeofday (&tv, 0);
105 return tv.tv_sec + tv.tv_usec * 1e-6; 167 return tv.tv_sec + tv.tv_usec * 1e-6;
106#endif 168#endif
107} 169}
108 170
109static ev_tstamp 171inline ev_tstamp
110get_clock (void) 172get_clock (void)
111{ 173{
112#if EV_USE_MONOTONIC 174#if EV_USE_MONOTONIC
113 if (have_monotonic) 175 if (expect_true (have_monotonic))
114 { 176 {
115 struct timespec ts; 177 struct timespec ts;
116 clock_gettime (CLOCK_MONOTONIC, &ts); 178 clock_gettime (CLOCK_MONOTONIC, &ts);
117 return ts.tv_sec + ts.tv_nsec * 1e-9; 179 return ts.tv_sec + ts.tv_nsec * 1e-9;
118 } 180 }
119#endif 181#endif
120 182
121 return ev_time (); 183 return ev_time ();
122} 184}
123 185
186ev_tstamp
187ev_now (EV_P)
188{
189 return rt_now;
190}
191
124#define array_roundsize(base,n) ((n) | 4 & ~3) 192#define array_roundsize(base,n) ((n) | 4 & ~3)
125 193
126#define array_needsize(base,cur,cnt,init) \ 194#define array_needsize(base,cur,cnt,init) \
127 if ((cnt) > cur) \ 195 if (expect_false ((cnt) > cur)) \
128 { \ 196 { \
129 int newcnt = cur; \ 197 int newcnt = cur; \
130 do \ 198 do \
131 { \ 199 { \
132 newcnt = array_roundsize (base, newcnt << 1); \ 200 newcnt = array_roundsize (base, newcnt << 1); \
138 cur = newcnt; \ 206 cur = newcnt; \
139 } 207 }
140 208
141/*****************************************************************************/ 209/*****************************************************************************/
142 210
143typedef struct
144{
145 struct ev_io *head;
146 unsigned char events;
147 unsigned char reify;
148} ANFD;
149
150static ANFD *anfds;
151static int anfdmax;
152
153static void 211static void
154anfds_init (ANFD *base, int count) 212anfds_init (ANFD *base, int count)
155{ 213{
156 while (count--) 214 while (count--)
157 { 215 {
161 219
162 ++base; 220 ++base;
163 } 221 }
164} 222}
165 223
166typedef struct
167{
168 W w;
169 int events;
170} ANPENDING;
171
172static ANPENDING *pendings;
173static int pendingmax, pendingcnt;
174
175static void 224static void
176event (W w, int events) 225event (EV_P_ W w, int events)
177{ 226{
178 if (w->pending) 227 if (w->pending)
179 { 228 {
180 pendings [w->pending - 1].events |= events; 229 pendings [ABSPRI (w)][w->pending - 1].events |= events;
181 return; 230 return;
182 } 231 }
183 232
184 w->pending = ++pendingcnt; 233 w->pending = ++pendingcnt [ABSPRI (w)];
185 array_needsize (pendings, pendingmax, pendingcnt, ); 234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
186 pendings [pendingcnt - 1].w = w; 235 pendings [ABSPRI (w)][w->pending - 1].w = w;
187 pendings [pendingcnt - 1].events = events; 236 pendings [ABSPRI (w)][w->pending - 1].events = events;
188} 237}
189 238
190static void 239static void
191queue_events (W *events, int eventcnt, int type) 240queue_events (EV_P_ W *events, int eventcnt, int type)
192{ 241{
193 int i; 242 int i;
194 243
195 for (i = 0; i < eventcnt; ++i) 244 for (i = 0; i < eventcnt; ++i)
196 event (events [i], type); 245 event (EV_A_ events [i], type);
197} 246}
198 247
199static void 248static void
200fd_event (int fd, int events) 249fd_event (EV_P_ int fd, int events)
201{ 250{
202 ANFD *anfd = anfds + fd; 251 ANFD *anfd = anfds + fd;
203 struct ev_io *w; 252 struct ev_io *w;
204 253
205 for (w = anfd->head; w; w = w->next) 254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
206 { 255 {
207 int ev = w->events & events; 256 int ev = w->events & events;
208 257
209 if (ev) 258 if (ev)
210 event ((W)w, ev); 259 event (EV_A_ (W)w, ev);
211 } 260 }
212} 261}
213 262
214/*****************************************************************************/ 263/*****************************************************************************/
215 264
216static int *fdchanges;
217static int fdchangemax, fdchangecnt;
218
219static void 265static void
220fd_reify (void) 266fd_reify (EV_P)
221{ 267{
222 int i; 268 int i;
223 269
224 for (i = 0; i < fdchangecnt; ++i) 270 for (i = 0; i < fdchangecnt; ++i)
225 { 271 {
227 ANFD *anfd = anfds + fd; 273 ANFD *anfd = anfds + fd;
228 struct ev_io *w; 274 struct ev_io *w;
229 275
230 int events = 0; 276 int events = 0;
231 277
232 for (w = anfd->head; w; w = w->next) 278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
233 events |= w->events; 279 events |= w->events;
234 280
235 anfd->reify = 0; 281 anfd->reify = 0;
236 282
237 if (anfd->events != events) 283 if (anfd->events != events)
238 { 284 {
239 method_modify (fd, anfd->events, events); 285 method_modify (EV_A_ fd, anfd->events, events);
240 anfd->events = events; 286 anfd->events = events;
241 } 287 }
242 } 288 }
243 289
244 fdchangecnt = 0; 290 fdchangecnt = 0;
245} 291}
246 292
247static void 293static void
248fd_change (int fd) 294fd_change (EV_P_ int fd)
249{ 295{
250 if (anfds [fd].reify || fdchangecnt < 0) 296 if (anfds [fd].reify || fdchangecnt < 0)
251 return; 297 return;
252 298
253 anfds [fd].reify = 1; 299 anfds [fd].reify = 1;
255 ++fdchangecnt; 301 ++fdchangecnt;
256 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 302 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
257 fdchanges [fdchangecnt - 1] = fd; 303 fdchanges [fdchangecnt - 1] = fd;
258} 304}
259 305
306static void
307fd_kill (EV_P_ int fd)
308{
309 struct ev_io *w;
310
311 while ((w = (struct ev_io *)anfds [fd].head))
312 {
313 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 }
316}
317
260/* called on EBADF to verify fds */ 318/* called on EBADF to verify fds */
261static void 319static void
262fd_recheck (void) 320fd_ebadf (EV_P)
263{ 321{
264 int fd; 322 int fd;
265 323
266 for (fd = 0; fd < anfdmax; ++fd) 324 for (fd = 0; fd < anfdmax; ++fd)
267 if (anfds [fd].events) 325 if (anfds [fd].events)
268 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
269 while (anfds [fd].head) 327 fd_kill (EV_A_ fd);
328}
329
330/* called on ENOMEM in select/poll to kill some fds and retry */
331static void
332fd_enomem (EV_P)
333{
334 int fd = anfdmax;
335
336 while (fd--)
337 if (anfds [fd].events)
270 { 338 {
271 ev_io_stop (anfds [fd].head); 339 close (fd);
272 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 340 fd_kill (EV_A_ fd);
341 return;
273 } 342 }
343}
344
345/* susually called after fork if method needs to re-arm all fds from scratch */
346static void
347fd_rearm_all (EV_P)
348{
349 int fd;
350
351 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 {
355 anfds [fd].events = 0;
356 fd_change (fd);
357 }
274} 358}
275 359
276/*****************************************************************************/ 360/*****************************************************************************/
277 361
278static struct ev_timer **timers;
279static int timermax, timercnt;
280
281static struct ev_periodic **periodics;
282static int periodicmax, periodiccnt;
283
284static void 362static void
285upheap (WT *timers, int k) 363upheap (WT *heap, int k)
286{ 364{
287 WT w = timers [k]; 365 WT w = heap [k];
288 366
289 while (k && timers [k >> 1]->at > w->at) 367 while (k && heap [k >> 1]->at > w->at)
290 { 368 {
291 timers [k] = timers [k >> 1]; 369 heap [k] = heap [k >> 1];
292 timers [k]->active = k + 1; 370 heap [k]->active = k + 1;
293 k >>= 1; 371 k >>= 1;
294 } 372 }
295 373
296 timers [k] = w; 374 heap [k] = w;
297 timers [k]->active = k + 1; 375 heap [k]->active = k + 1;
298 376
299} 377}
300 378
301static void 379static void
302downheap (WT *timers, int N, int k) 380downheap (WT *heap, int N, int k)
303{ 381{
304 WT w = timers [k]; 382 WT w = heap [k];
305 383
306 while (k < (N >> 1)) 384 while (k < (N >> 1))
307 { 385 {
308 int j = k << 1; 386 int j = k << 1;
309 387
310 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 388 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
311 ++j; 389 ++j;
312 390
313 if (w->at <= timers [j]->at) 391 if (w->at <= heap [j]->at)
314 break; 392 break;
315 393
316 timers [k] = timers [j]; 394 heap [k] = heap [j];
317 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
318 k = j; 396 k = j;
319 } 397 }
320 398
321 timers [k] = w; 399 heap [k] = w;
322 timers [k]->active = k + 1; 400 heap [k]->active = k + 1;
323} 401}
324 402
325/*****************************************************************************/ 403/*****************************************************************************/
326 404
327typedef struct 405typedef struct
328{ 406{
329 struct ev_signal *head; 407 struct ev_watcher_list *head;
330 sig_atomic_t volatile gotsig; 408 sig_atomic_t volatile gotsig;
331} ANSIG; 409} ANSIG;
332 410
333static ANSIG *signals; 411static ANSIG *signals;
334static int signalmax; 412static int signalmax;
335 413
336static int sigpipe [2]; 414static int sigpipe [2];
337static sig_atomic_t volatile gotsig; 415static sig_atomic_t volatile gotsig;
338static struct ev_io sigev;
339 416
340static void 417static void
341signals_init (ANSIG *base, int count) 418signals_init (ANSIG *base, int count)
342{ 419{
343 while (count--) 420 while (count--)
354{ 431{
355 signals [signum - 1].gotsig = 1; 432 signals [signum - 1].gotsig = 1;
356 433
357 if (!gotsig) 434 if (!gotsig)
358 { 435 {
436 int old_errno = errno;
359 gotsig = 1; 437 gotsig = 1;
360 write (sigpipe [1], &signum, 1); 438 write (sigpipe [1], &signum, 1);
439 errno = old_errno;
361 } 440 }
362} 441}
363 442
364static void 443static void
365sigcb (struct ev_io *iow, int revents) 444sigcb (EV_P_ struct ev_io *iow, int revents)
366{ 445{
367 struct ev_signal *w; 446 struct ev_watcher_list *w;
368 int sig; 447 int signum;
369 448
370 read (sigpipe [0], &revents, 1); 449 read (sigpipe [0], &revents, 1);
371 gotsig = 0; 450 gotsig = 0;
372 451
373 for (sig = signalmax; sig--; ) 452 for (signum = signalmax; signum--; )
374 if (signals [sig].gotsig) 453 if (signals [signum].gotsig)
375 { 454 {
376 signals [sig].gotsig = 0; 455 signals [signum].gotsig = 0;
377 456
378 for (w = signals [sig].head; w; w = w->next) 457 for (w = signals [signum].head; w; w = w->next)
379 event ((W)w, EV_SIGNAL); 458 event (EV_A_ (W)w, EV_SIGNAL);
380 } 459 }
381} 460}
382 461
383static void 462static void
384siginit (void) 463siginit (EV_P)
385{ 464{
465#ifndef WIN32
386 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 466 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
387 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 467 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
388 468
389 /* rather than sort out wether we really need nb, set it */ 469 /* rather than sort out wether we really need nb, set it */
390 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 470 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
391 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 471 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
472#endif
392 473
393 ev_io_set (&sigev, sigpipe [0], EV_READ); 474 ev_io_set (&sigev, sigpipe [0], EV_READ);
394 ev_io_start (&sigev); 475 ev_io_start (EV_A_ &sigev);
476 ev_unref (EV_A); /* child watcher should not keep loop alive */
395} 477}
396 478
397/*****************************************************************************/ 479/*****************************************************************************/
398 480
399static struct ev_idle **idles; 481#ifndef WIN32
400static int idlemax, idlecnt;
401
402static struct ev_prepare **prepares;
403static int preparemax, preparecnt;
404
405static struct ev_check **checks;
406static int checkmax, checkcnt;
407
408/*****************************************************************************/
409
410static struct ev_child *childs [PID_HASHSIZE];
411static struct ev_signal childev;
412 482
413#ifndef WCONTINUED 483#ifndef WCONTINUED
414# define WCONTINUED 0 484# define WCONTINUED 0
415#endif 485#endif
416 486
417static void 487static void
418childcb (struct ev_signal *sw, int revents) 488child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
419{ 489{
420 struct ev_child *w; 490 struct ev_child *w;
491
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid)
494 {
495 w->priority = sw->priority; /* need to do it *now* */
496 w->rpid = pid;
497 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD);
499 }
500}
501
502static void
503childcb (EV_P_ struct ev_signal *sw, int revents)
504{
421 int pid, status; 505 int pid, status;
422 506
423 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
424 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 508 {
425 if (w->pid == pid || w->pid == -1) 509 /* make sure we are called again until all childs have been reaped */
426 { 510 event (EV_A_ (W)sw, EV_SIGNAL);
427 w->status = status; 511
428 event ((W)w, EV_CHILD); 512 child_reap (EV_A_ sw, pid, pid, status);
429 } 513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 }
430} 515}
516
517#endif
431 518
432/*****************************************************************************/ 519/*****************************************************************************/
433 520
521#if EV_USE_KQUEUE
522# include "ev_kqueue.c"
523#endif
434#if EV_USE_EPOLL 524#if EV_USE_EPOLL
435# include "ev_epoll.c" 525# include "ev_epoll.c"
436#endif 526#endif
527#if EV_USEV_POLL
528# include "ev_poll.c"
529#endif
437#if EV_USE_SELECT 530#if EV_USE_SELECT
438# include "ev_select.c" 531# include "ev_select.c"
439#endif 532#endif
440 533
441int 534int
448ev_version_minor (void) 541ev_version_minor (void)
449{ 542{
450 return EV_VERSION_MINOR; 543 return EV_VERSION_MINOR;
451} 544}
452 545
453int ev_init (int flags) 546/* return true if we are running with elevated privileges and should ignore env variables */
547static int
548enable_secure (void)
454{ 549{
550#ifdef WIN32
551 return 0;
552#else
553 return getuid () != geteuid ()
554 || getgid () != getegid ();
555#endif
556}
557
558int
559ev_method (EV_P)
560{
561 return method;
562}
563
564static void
565loop_init (EV_P_ int methods)
566{
455 if (!ev_method) 567 if (!method)
456 { 568 {
457#if EV_USE_MONOTONIC 569#if EV_USE_MONOTONIC
458 { 570 {
459 struct timespec ts; 571 struct timespec ts;
460 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 572 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
461 have_monotonic = 1; 573 have_monotonic = 1;
462 } 574 }
463#endif 575#endif
464 576
465 ev_now = ev_time (); 577 rt_now = ev_time ();
466 now = get_clock (); 578 mn_now = get_clock ();
579 now_floor = mn_now;
467 diff = ev_now - now; 580 rtmn_diff = rt_now - mn_now;
468 581
469 if (pipe (sigpipe)) 582 if (methods == EVMETHOD_AUTO)
470 return 0; 583 if (!enable_secure () && getenv ("LIBEV_METHODS"))
471 584 methods = atoi (getenv ("LIBEV_METHODS"));
585 else
472 ev_method = EVMETHOD_NONE; 586 methods = EVMETHOD_ANY;
587
588 method = 0;
589#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif
473#if EV_USE_EPOLL 592#if EV_USE_EPOLL
474 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif
595#if EV_USEV_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
475#endif 597#endif
476#if EV_USE_SELECT 598#if EV_USE_SELECT
477 if (ev_method == EVMETHOD_NONE) select_init (flags); 599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
478#endif 600#endif
601 }
602}
479 603
604void
605loop_destroy (EV_P)
606{
607#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif
610#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif
613#if EV_USEV_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif
616#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif
619
620 method = 0;
621 /*TODO*/
622}
623
624void
625loop_fork (EV_P)
626{
627 /*TODO*/
628#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif
634}
635
636#if EV_MULTIPLICITY
637struct ev_loop *
638ev_loop_new (int methods)
639{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
641
642 loop_init (EV_A_ methods);
643
644 if (ev_methods (EV_A))
645 return loop;
646
647 return 0;
648}
649
650void
651ev_loop_destroy (EV_P)
652{
653 loop_destroy (EV_A);
654 free (loop);
655}
656
657void
658ev_loop_fork (EV_P)
659{
660 loop_fork (EV_A);
661}
662
663#endif
664
665#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop *
670#else
671static int default_loop;
672
673int
674#endif
675ev_default_loop (int methods)
676{
677 if (sigpipe [0] == sigpipe [1])
678 if (pipe (sigpipe))
679 return 0;
680
681 if (!default_loop)
682 {
683#if EV_MULTIPLICITY
684 struct ev_loop *loop = default_loop = &default_loop_struct;
685#else
686 default_loop = 1;
687#endif
688
689 loop_init (EV_A_ methods);
690
480 if (ev_method) 691 if (ev_method (EV_A))
481 { 692 {
482 ev_watcher_init (&sigev, sigcb); 693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
483 siginit (); 695 siginit (EV_A);
484 696
697#ifndef WIN32
485 ev_signal_init (&childev, childcb, SIGCHLD); 698 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI);
486 ev_signal_start (&childev); 700 ev_signal_start (EV_A_ &childev);
701 ev_unref (EV_A); /* child watcher should not keep loop alive */
702#endif
487 } 703 }
704 else
705 default_loop = 0;
488 } 706 }
489 707
490 return ev_method; 708 return default_loop;
491} 709}
492 710
493/*****************************************************************************/
494
495void 711void
496ev_fork_prepare (void) 712ev_default_destroy (void)
497{ 713{
498 /* nop */ 714#if EV_MULTIPLICITY
499} 715 struct ev_loop *loop = default_loop;
500
501void
502ev_fork_parent (void)
503{
504 /* nop */
505}
506
507void
508ev_fork_child (void)
509{
510#if EV_USE_EPOLL
511 if (ev_method == EVMETHOD_EPOLL)
512 epoll_postfork_child ();
513#endif 716#endif
514 717
718 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev);
720
721 ev_ref (EV_A); /* signal watcher */
515 ev_io_stop (&sigev); 722 ev_io_stop (EV_A_ &sigev);
723
724 close (sigpipe [0]); sigpipe [0] = 0;
725 close (sigpipe [1]); sigpipe [1] = 0;
726
727 loop_destroy (EV_A);
728}
729
730void
731ev_default_fork (EV_P)
732{
733 loop_fork (EV_A);
734
735 ev_io_stop (EV_A_ &sigev);
516 close (sigpipe [0]); 736 close (sigpipe [0]);
517 close (sigpipe [1]); 737 close (sigpipe [1]);
518 pipe (sigpipe); 738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
519 siginit (); 741 siginit (EV_A);
520} 742}
521 743
522/*****************************************************************************/ 744/*****************************************************************************/
523 745
524static void 746static void
525call_pending (void) 747call_pending (EV_P)
526{ 748{
749 int pri;
750
751 for (pri = NUMPRI; pri--; )
527 while (pendingcnt) 752 while (pendingcnt [pri])
528 { 753 {
529 ANPENDING *p = pendings + --pendingcnt; 754 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
530 755
531 if (p->w) 756 if (p->w)
532 { 757 {
533 p->w->pending = 0; 758 p->w->pending = 0;
534 p->w->cb (p->w, p->events); 759 p->w->cb (EV_A_ p->w, p->events);
535 } 760 }
536 } 761 }
537} 762}
538 763
539static void 764static void
540timers_reify (void) 765timers_reify (EV_P)
541{ 766{
542 while (timercnt && timers [0]->at <= now) 767 while (timercnt && timers [0]->at <= mn_now)
543 { 768 {
544 struct ev_timer *w = timers [0]; 769 struct ev_timer *w = timers [0];
545 770
546 /* first reschedule or stop timer */ 771 /* first reschedule or stop timer */
547 if (w->repeat) 772 if (w->repeat)
548 { 773 {
549 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
550 w->at = now + w->repeat; 775 w->at = mn_now + w->repeat;
551 downheap ((WT *)timers, timercnt, 0); 776 downheap ((WT *)timers, timercnt, 0);
552 } 777 }
553 else 778 else
554 ev_timer_stop (w); /* nonrepeating: stop timer */ 779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
555 780
556 event ((W)w, EV_TIMEOUT); 781 event (EV_A_ (W)w, EV_TIMEOUT);
557 } 782 }
558} 783}
559 784
560static void 785static void
561periodics_reify (void) 786periodics_reify (EV_P)
562{ 787{
563 while (periodiccnt && periodics [0]->at <= ev_now) 788 while (periodiccnt && periodics [0]->at <= rt_now)
564 { 789 {
565 struct ev_periodic *w = periodics [0]; 790 struct ev_periodic *w = periodics [0];
566 791
567 /* first reschedule or stop timer */ 792 /* first reschedule or stop timer */
568 if (w->interval) 793 if (w->interval)
569 { 794 {
570 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
571 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
572 downheap ((WT *)periodics, periodiccnt, 0); 797 downheap ((WT *)periodics, periodiccnt, 0);
573 } 798 }
574 else 799 else
575 ev_periodic_stop (w); /* nonrepeating: stop timer */ 800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
576 801
577 event ((W)w, EV_PERIODIC); 802 event (EV_A_ (W)w, EV_PERIODIC);
578 } 803 }
579} 804}
580 805
581static void 806static void
582periodics_reschedule (ev_tstamp diff) 807periodics_reschedule (EV_P)
583{ 808{
584 int i; 809 int i;
585 810
586 /* adjust periodics after time jump */ 811 /* adjust periodics after time jump */
587 for (i = 0; i < periodiccnt; ++i) 812 for (i = 0; i < periodiccnt; ++i)
588 { 813 {
589 struct ev_periodic *w = periodics [i]; 814 struct ev_periodic *w = periodics [i];
590 815
591 if (w->interval) 816 if (w->interval)
592 { 817 {
593 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
594 819
595 if (fabs (diff) >= 1e-4) 820 if (fabs (diff) >= 1e-4)
596 { 821 {
597 ev_periodic_stop (w); 822 ev_periodic_stop (EV_A_ w);
598 ev_periodic_start (w); 823 ev_periodic_start (EV_A_ w);
599 824
600 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
601 } 826 }
602 } 827 }
603 } 828 }
604} 829}
605 830
831inline int
832time_update_monotonic (EV_P)
833{
834 mn_now = get_clock ();
835
836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
837 {
838 rt_now = rtmn_diff + mn_now;
839 return 0;
840 }
841 else
842 {
843 now_floor = mn_now;
844 rt_now = ev_time ();
845 return 1;
846 }
847}
848
606static void 849static void
607time_update (void) 850time_update (EV_P)
608{ 851{
609 int i; 852 int i;
610 853
611 ev_now = ev_time (); 854#if EV_USE_MONOTONIC
612
613 if (have_monotonic) 855 if (expect_true (have_monotonic))
614 { 856 {
615 ev_tstamp odiff = diff; 857 if (time_update_monotonic (EV_A))
616
617 for (i = 4; --i; ) /* loop a few times, before making important decisions */
618 { 858 {
619 now = get_clock (); 859 ev_tstamp odiff = rtmn_diff;
860
861 for (i = 4; --i; ) /* loop a few times, before making important decisions */
862 {
620 diff = ev_now - now; 863 rtmn_diff = rt_now - mn_now;
621 864
622 if (fabs (odiff - diff) < MIN_TIMEJUMP) 865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
623 return; /* all is well */ 866 return; /* all is well */
624 867
625 ev_now = ev_time (); 868 rt_now = ev_time ();
869 mn_now = get_clock ();
870 now_floor = mn_now;
871 }
872
873 periodics_reschedule (EV_A);
874 /* no timer adjustment, as the monotonic clock doesn't jump */
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
626 } 876 }
627
628 periodics_reschedule (diff - odiff);
629 /* no timer adjustment, as the monotonic clock doesn't jump */
630 } 877 }
631 else 878 else
879#endif
632 { 880 {
633 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 881 rt_now = ev_time ();
882
883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
634 { 884 {
635 periodics_reschedule (ev_now - now); 885 periodics_reschedule (EV_A);
636 886
637 /* adjust timers. this is easy, as the offset is the same for all */ 887 /* adjust timers. this is easy, as the offset is the same for all */
638 for (i = 0; i < timercnt; ++i) 888 for (i = 0; i < timercnt; ++i)
639 timers [i]->at += diff; 889 timers [i]->at += rt_now - mn_now;
640 } 890 }
641 891
642 now = ev_now; 892 mn_now = rt_now;
643 } 893 }
644} 894}
645 895
646int ev_loop_done; 896void
897ev_ref (EV_P)
898{
899 ++activecnt;
900}
647 901
902void
903ev_unref (EV_P)
904{
905 --activecnt;
906}
907
908static int loop_done;
909
910void
648void ev_loop (int flags) 911ev_loop (EV_P_ int flags)
649{ 912{
650 double block; 913 double block;
651 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 914 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
652 915
653 do 916 do
654 { 917 {
655 /* queue check watchers (and execute them) */ 918 /* queue check watchers (and execute them) */
656 if (preparecnt) 919 if (expect_false (preparecnt))
657 { 920 {
658 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
659 call_pending (); 922 call_pending (EV_A);
660 } 923 }
661 924
662 /* update fd-related kernel structures */ 925 /* update fd-related kernel structures */
663 fd_reify (); 926 fd_reify (EV_A);
664 927
665 /* calculate blocking time */ 928 /* calculate blocking time */
666 929
667 /* we only need this for !monotonic clockor timers, but as we basically 930 /* we only need this for !monotonic clockor timers, but as we basically
668 always have timers, we just calculate it always */ 931 always have timers, we just calculate it always */
932#if EV_USE_MONOTONIC
933 if (expect_true (have_monotonic))
934 time_update_monotonic (EV_A);
935 else
936#endif
937 {
669 ev_now = ev_time (); 938 rt_now = ev_time ();
939 mn_now = rt_now;
940 }
670 941
671 if (flags & EVLOOP_NONBLOCK || idlecnt) 942 if (flags & EVLOOP_NONBLOCK || idlecnt)
672 block = 0.; 943 block = 0.;
673 else 944 else
674 { 945 {
675 block = MAX_BLOCKTIME; 946 block = MAX_BLOCKTIME;
676 947
677 if (timercnt) 948 if (timercnt)
678 { 949 {
679 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 950 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
680 if (block > to) block = to; 951 if (block > to) block = to;
681 } 952 }
682 953
683 if (periodiccnt) 954 if (periodiccnt)
684 { 955 {
685 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
686 if (block > to) block = to; 957 if (block > to) block = to;
687 } 958 }
688 959
689 if (block < 0.) block = 0.; 960 if (block < 0.) block = 0.;
690 } 961 }
691 962
692 method_poll (block); 963 method_poll (EV_A_ block);
693 964
694 /* update ev_now, do magic */ 965 /* update rt_now, do magic */
695 time_update (); 966 time_update (EV_A);
696 967
697 /* queue pending timers and reschedule them */ 968 /* queue pending timers and reschedule them */
698 timers_reify (); /* relative timers called last */ 969 timers_reify (EV_A); /* relative timers called last */
699 periodics_reify (); /* absolute timers called first */ 970 periodics_reify (EV_A); /* absolute timers called first */
700 971
701 /* queue idle watchers unless io or timers are pending */ 972 /* queue idle watchers unless io or timers are pending */
702 if (!pendingcnt) 973 if (!pendingcnt)
703 queue_events ((W *)idles, idlecnt, EV_IDLE); 974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
704 975
705 /* queue check watchers, to be executed first */ 976 /* queue check watchers, to be executed first */
706 if (checkcnt) 977 if (checkcnt)
707 queue_events ((W *)checks, checkcnt, EV_CHECK); 978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
708 979
709 call_pending (); 980 call_pending (EV_A);
710 } 981 }
711 while (!ev_loop_done); 982 while (activecnt && !loop_done);
712 983
713 if (ev_loop_done != 2) 984 if (loop_done != 2)
714 ev_loop_done = 0; 985 loop_done = 0;
986}
987
988void
989ev_unloop (EV_P_ int how)
990{
991 loop_done = how;
715} 992}
716 993
717/*****************************************************************************/ 994/*****************************************************************************/
718 995
719static void 996inline void
720wlist_add (WL *head, WL elem) 997wlist_add (WL *head, WL elem)
721{ 998{
722 elem->next = *head; 999 elem->next = *head;
723 *head = elem; 1000 *head = elem;
724} 1001}
725 1002
726static void 1003inline void
727wlist_del (WL *head, WL elem) 1004wlist_del (WL *head, WL elem)
728{ 1005{
729 while (*head) 1006 while (*head)
730 { 1007 {
731 if (*head == elem) 1008 if (*head == elem)
736 1013
737 head = &(*head)->next; 1014 head = &(*head)->next;
738 } 1015 }
739} 1016}
740 1017
741static void 1018inline void
742ev_clear_pending (W w) 1019ev_clear_pending (EV_P_ W w)
743{ 1020{
744 if (w->pending) 1021 if (w->pending)
745 { 1022 {
746 pendings [w->pending - 1].w = 0; 1023 pendings [ABSPRI (w)][w->pending - 1].w = 0;
747 w->pending = 0; 1024 w->pending = 0;
748 } 1025 }
749} 1026}
750 1027
751static void 1028inline void
752ev_start (W w, int active) 1029ev_start (EV_P_ W w, int active)
753{ 1030{
1031 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1032 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1033
754 w->active = active; 1034 w->active = active;
1035 ev_ref (EV_A);
755} 1036}
756 1037
757static void 1038inline void
758ev_stop (W w) 1039ev_stop (EV_P_ W w)
759{ 1040{
1041 ev_unref (EV_A);
760 w->active = 0; 1042 w->active = 0;
761} 1043}
762 1044
763/*****************************************************************************/ 1045/*****************************************************************************/
764 1046
765void 1047void
766ev_io_start (struct ev_io *w) 1048ev_io_start (EV_P_ struct ev_io *w)
767{ 1049{
1050 int fd = w->fd;
1051
768 if (ev_is_active (w)) 1052 if (ev_is_active (w))
769 return; 1053 return;
770 1054
771 int fd = w->fd;
772
773 assert (("ev_io_start called with negative fd", fd >= 0)); 1055 assert (("ev_io_start called with negative fd", fd >= 0));
774 1056
775 ev_start ((W)w, 1); 1057 ev_start (EV_A_ (W)w, 1);
776 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
777 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1059 wlist_add ((WL *)&anfds[fd].head, (WL)w);
778 1060
779 fd_change (fd); 1061 fd_change (EV_A_ fd);
780} 1062}
781 1063
782void 1064void
783ev_io_stop (struct ev_io *w) 1065ev_io_stop (EV_P_ struct ev_io *w)
784{ 1066{
785 ev_clear_pending ((W)w); 1067 ev_clear_pending (EV_A_ (W)w);
786 if (!ev_is_active (w)) 1068 if (!ev_is_active (w))
787 return; 1069 return;
788 1070
789 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
790 ev_stop ((W)w); 1072 ev_stop (EV_A_ (W)w);
791 1073
792 fd_change (w->fd); 1074 fd_change (EV_A_ w->fd);
793} 1075}
794 1076
795void 1077void
796ev_timer_start (struct ev_timer *w) 1078ev_timer_start (EV_P_ struct ev_timer *w)
797{ 1079{
798 if (ev_is_active (w)) 1080 if (ev_is_active (w))
799 return; 1081 return;
800 1082
801 w->at += now; 1083 w->at += mn_now;
802 1084
803 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
804 1086
805 ev_start ((W)w, ++timercnt); 1087 ev_start (EV_A_ (W)w, ++timercnt);
806 array_needsize (timers, timermax, timercnt, ); 1088 array_needsize (timers, timermax, timercnt, );
807 timers [timercnt - 1] = w; 1089 timers [timercnt - 1] = w;
808 upheap ((WT *)timers, timercnt - 1); 1090 upheap ((WT *)timers, timercnt - 1);
809} 1091}
810 1092
811void 1093void
812ev_timer_stop (struct ev_timer *w) 1094ev_timer_stop (EV_P_ struct ev_timer *w)
813{ 1095{
814 ev_clear_pending ((W)w); 1096 ev_clear_pending (EV_A_ (W)w);
815 if (!ev_is_active (w)) 1097 if (!ev_is_active (w))
816 return; 1098 return;
817 1099
818 if (w->active < timercnt--) 1100 if (w->active < timercnt--)
819 { 1101 {
821 downheap ((WT *)timers, timercnt, w->active - 1); 1103 downheap ((WT *)timers, timercnt, w->active - 1);
822 } 1104 }
823 1105
824 w->at = w->repeat; 1106 w->at = w->repeat;
825 1107
826 ev_stop ((W)w); 1108 ev_stop (EV_A_ (W)w);
827} 1109}
828 1110
829void 1111void
830ev_timer_again (struct ev_timer *w) 1112ev_timer_again (EV_P_ struct ev_timer *w)
831{ 1113{
832 if (ev_is_active (w)) 1114 if (ev_is_active (w))
833 { 1115 {
834 if (w->repeat) 1116 if (w->repeat)
835 { 1117 {
836 w->at = now + w->repeat; 1118 w->at = mn_now + w->repeat;
837 downheap ((WT *)timers, timercnt, w->active - 1); 1119 downheap ((WT *)timers, timercnt, w->active - 1);
838 } 1120 }
839 else 1121 else
840 ev_timer_stop (w); 1122 ev_timer_stop (EV_A_ w);
841 } 1123 }
842 else if (w->repeat) 1124 else if (w->repeat)
843 ev_timer_start (w); 1125 ev_timer_start (EV_A_ w);
844} 1126}
845 1127
846void 1128void
847ev_periodic_start (struct ev_periodic *w) 1129ev_periodic_start (EV_P_ struct ev_periodic *w)
848{ 1130{
849 if (ev_is_active (w)) 1131 if (ev_is_active (w))
850 return; 1132 return;
851 1133
852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
853 1135
854 /* this formula differs from the one in periodic_reify because we do not always round up */ 1136 /* this formula differs from the one in periodic_reify because we do not always round up */
855 if (w->interval) 1137 if (w->interval)
856 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
857 1139
858 ev_start ((W)w, ++periodiccnt); 1140 ev_start (EV_A_ (W)w, ++periodiccnt);
859 array_needsize (periodics, periodicmax, periodiccnt, ); 1141 array_needsize (periodics, periodicmax, periodiccnt, );
860 periodics [periodiccnt - 1] = w; 1142 periodics [periodiccnt - 1] = w;
861 upheap ((WT *)periodics, periodiccnt - 1); 1143 upheap ((WT *)periodics, periodiccnt - 1);
862} 1144}
863 1145
864void 1146void
865ev_periodic_stop (struct ev_periodic *w) 1147ev_periodic_stop (EV_P_ struct ev_periodic *w)
866{ 1148{
867 ev_clear_pending ((W)w); 1149 ev_clear_pending (EV_A_ (W)w);
868 if (!ev_is_active (w)) 1150 if (!ev_is_active (w))
869 return; 1151 return;
870 1152
871 if (w->active < periodiccnt--) 1153 if (w->active < periodiccnt--)
872 { 1154 {
873 periodics [w->active - 1] = periodics [periodiccnt]; 1155 periodics [w->active - 1] = periodics [periodiccnt];
874 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1156 downheap ((WT *)periodics, periodiccnt, w->active - 1);
875 } 1157 }
876 1158
877 ev_stop ((W)w); 1159 ev_stop (EV_A_ (W)w);
878} 1160}
879 1161
880void 1162void
881ev_signal_start (struct ev_signal *w) 1163ev_idle_start (EV_P_ struct ev_idle *w)
882{ 1164{
883 if (ev_is_active (w)) 1165 if (ev_is_active (w))
884 return; 1166 return;
885 1167
1168 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, );
1170 idles [idlecnt - 1] = w;
1171}
1172
1173void
1174ev_idle_stop (EV_P_ struct ev_idle *w)
1175{
1176 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w))
1178 return;
1179
1180 idles [w->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w);
1182}
1183
1184void
1185ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{
1187 if (ev_is_active (w))
1188 return;
1189
1190 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, );
1192 prepares [preparecnt - 1] = w;
1193}
1194
1195void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{
1198 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w))
1200 return;
1201
1202 prepares [w->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w);
1204}
1205
1206void
1207ev_check_start (EV_P_ struct ev_check *w)
1208{
1209 if (ev_is_active (w))
1210 return;
1211
1212 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, );
1214 checks [checkcnt - 1] = w;
1215}
1216
1217void
1218ev_check_stop (EV_P_ struct ev_check *w)
1219{
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w))
1222 return;
1223
1224 checks [w->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w);
1226}
1227
1228#ifndef SA_RESTART
1229# define SA_RESTART 0
1230#endif
1231
1232void
1233ev_signal_start (EV_P_ struct ev_signal *w)
1234{
1235#if EV_MULTIPLICITY
1236 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1237#endif
1238 if (ev_is_active (w))
1239 return;
1240
886 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
887 1242
888 ev_start ((W)w, 1); 1243 ev_start (EV_A_ (W)w, 1);
889 array_needsize (signals, signalmax, w->signum, signals_init); 1244 array_needsize (signals, signalmax, w->signum, signals_init);
890 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
891 1246
892 if (!w->next) 1247 if (!w->next)
893 { 1248 {
894 struct sigaction sa; 1249 struct sigaction sa;
895 sa.sa_handler = sighandler; 1250 sa.sa_handler = sighandler;
896 sigfillset (&sa.sa_mask); 1251 sigfillset (&sa.sa_mask);
897 sa.sa_flags = 0; 1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
898 sigaction (w->signum, &sa, 0); 1253 sigaction (w->signum, &sa, 0);
899 } 1254 }
900} 1255}
901 1256
902void 1257void
903ev_signal_stop (struct ev_signal *w) 1258ev_signal_stop (EV_P_ struct ev_signal *w)
904{ 1259{
905 ev_clear_pending ((W)w); 1260 ev_clear_pending (EV_A_ (W)w);
906 if (!ev_is_active (w)) 1261 if (!ev_is_active (w))
907 return; 1262 return;
908 1263
909 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1264 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
910 ev_stop ((W)w); 1265 ev_stop (EV_A_ (W)w);
911 1266
912 if (!signals [w->signum - 1].head) 1267 if (!signals [w->signum - 1].head)
913 signal (w->signum, SIG_DFL); 1268 signal (w->signum, SIG_DFL);
914} 1269}
915 1270
916void 1271void
917ev_idle_start (struct ev_idle *w) 1272ev_child_start (EV_P_ struct ev_child *w)
918{ 1273{
1274#if EV_MULTIPLICITY
1275 assert (("child watchers are only supported in the default loop", loop == default_loop));
1276#endif
919 if (ev_is_active (w)) 1277 if (ev_is_active (w))
920 return; 1278 return;
921 1279
922 ev_start ((W)w, ++idlecnt); 1280 ev_start (EV_A_ (W)w, 1);
923 array_needsize (idles, idlemax, idlecnt, ); 1281 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
924 idles [idlecnt - 1] = w;
925} 1282}
926 1283
927void 1284void
928ev_idle_stop (struct ev_idle *w) 1285ev_child_stop (EV_P_ struct ev_child *w)
929{ 1286{
930 ev_clear_pending ((W)w); 1287 ev_clear_pending (EV_A_ (W)w);
931 if (ev_is_active (w)) 1288 if (ev_is_active (w))
932 return; 1289 return;
933 1290
934 idles [w->active - 1] = idles [--idlecnt];
935 ev_stop ((W)w);
936}
937
938void
939ev_prepare_start (struct ev_prepare *w)
940{
941 if (ev_is_active (w))
942 return;
943
944 ev_start ((W)w, ++preparecnt);
945 array_needsize (prepares, preparemax, preparecnt, );
946 prepares [preparecnt - 1] = w;
947}
948
949void
950ev_prepare_stop (struct ev_prepare *w)
951{
952 ev_clear_pending ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 prepares [w->active - 1] = prepares [--preparecnt];
957 ev_stop ((W)w);
958}
959
960void
961ev_check_start (struct ev_check *w)
962{
963 if (ev_is_active (w))
964 return;
965
966 ev_start ((W)w, ++checkcnt);
967 array_needsize (checks, checkmax, checkcnt, );
968 checks [checkcnt - 1] = w;
969}
970
971void
972ev_check_stop (struct ev_check *w)
973{
974 ev_clear_pending ((W)w);
975 if (ev_is_active (w))
976 return;
977
978 checks [w->active - 1] = checks [--checkcnt];
979 ev_stop ((W)w);
980}
981
982void
983ev_child_start (struct ev_child *w)
984{
985 if (ev_is_active (w))
986 return;
987
988 ev_start ((W)w, 1);
989 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
990}
991
992void
993ev_child_stop (struct ev_child *w)
994{
995 ev_clear_pending ((W)w);
996 if (ev_is_active (w))
997 return;
998
999 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1291 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1000 ev_stop ((W)w); 1292 ev_stop (EV_A_ (W)w);
1001} 1293}
1002 1294
1003/*****************************************************************************/ 1295/*****************************************************************************/
1004 1296
1005struct ev_once 1297struct ev_once
1009 void (*cb)(int revents, void *arg); 1301 void (*cb)(int revents, void *arg);
1010 void *arg; 1302 void *arg;
1011}; 1303};
1012 1304
1013static void 1305static void
1014once_cb (struct ev_once *once, int revents) 1306once_cb (EV_P_ struct ev_once *once, int revents)
1015{ 1307{
1016 void (*cb)(int revents, void *arg) = once->cb; 1308 void (*cb)(int revents, void *arg) = once->cb;
1017 void *arg = once->arg; 1309 void *arg = once->arg;
1018 1310
1019 ev_io_stop (&once->io); 1311 ev_io_stop (EV_A_ &once->io);
1020 ev_timer_stop (&once->to); 1312 ev_timer_stop (EV_A_ &once->to);
1021 free (once); 1313 free (once);
1022 1314
1023 cb (revents, arg); 1315 cb (revents, arg);
1024} 1316}
1025 1317
1026static void 1318static void
1027once_cb_io (struct ev_io *w, int revents) 1319once_cb_io (EV_P_ struct ev_io *w, int revents)
1028{ 1320{
1029 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1321 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1030} 1322}
1031 1323
1032static void 1324static void
1033once_cb_to (struct ev_timer *w, int revents) 1325once_cb_to (EV_P_ struct ev_timer *w, int revents)
1034{ 1326{
1035 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1327 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1036} 1328}
1037 1329
1038void 1330void
1039ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1040{ 1332{
1041 struct ev_once *once = malloc (sizeof (struct ev_once)); 1333 struct ev_once *once = malloc (sizeof (struct ev_once));
1042 1334
1043 if (!once) 1335 if (!once)
1044 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1049 1341
1050 ev_watcher_init (&once->io, once_cb_io); 1342 ev_watcher_init (&once->io, once_cb_io);
1051 if (fd >= 0) 1343 if (fd >= 0)
1052 { 1344 {
1053 ev_io_set (&once->io, fd, events); 1345 ev_io_set (&once->io, fd, events);
1054 ev_io_start (&once->io); 1346 ev_io_start (EV_A_ &once->io);
1055 } 1347 }
1056 1348
1057 ev_watcher_init (&once->to, once_cb_to); 1349 ev_watcher_init (&once->to, once_cb_to);
1058 if (timeout >= 0.) 1350 if (timeout >= 0.)
1059 { 1351 {
1060 ev_timer_set (&once->to, timeout, 0.); 1352 ev_timer_set (&once->to, timeout, 0.);
1061 ev_timer_start (&once->to); 1353 ev_timer_start (EV_A_ &once->to);
1062 } 1354 }
1063 } 1355 }
1064} 1356}
1065 1357
1066/*****************************************************************************/
1067
1068#if 0
1069
1070struct ev_io wio;
1071
1072static void
1073sin_cb (struct ev_io *w, int revents)
1074{
1075 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1076}
1077
1078static void
1079ocb (struct ev_timer *w, int revents)
1080{
1081 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1082 ev_timer_stop (w);
1083 ev_timer_start (w);
1084}
1085
1086static void
1087scb (struct ev_signal *w, int revents)
1088{
1089 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1090 ev_io_stop (&wio);
1091 ev_io_start (&wio);
1092}
1093
1094static void
1095gcb (struct ev_signal *w, int revents)
1096{
1097 fprintf (stderr, "generic %x\n", revents);
1098
1099}
1100
1101int main (void)
1102{
1103 ev_init (0);
1104
1105 ev_io_init (&wio, sin_cb, 0, EV_READ);
1106 ev_io_start (&wio);
1107
1108 struct ev_timer t[10000];
1109
1110#if 0
1111 int i;
1112 for (i = 0; i < 10000; ++i)
1113 {
1114 struct ev_timer *w = t + i;
1115 ev_watcher_init (w, ocb, i);
1116 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1117 ev_timer_start (w);
1118 if (drand48 () < 0.5)
1119 ev_timer_stop (w);
1120 }
1121#endif
1122
1123 struct ev_timer t1;
1124 ev_timer_init (&t1, ocb, 5, 10);
1125 ev_timer_start (&t1);
1126
1127 struct ev_signal sig;
1128 ev_signal_init (&sig, scb, SIGQUIT);
1129 ev_signal_start (&sig);
1130
1131 struct ev_check cw;
1132 ev_check_init (&cw, gcb);
1133 ev_check_start (&cw);
1134
1135 struct ev_idle iw;
1136 ev_idle_init (&iw, gcb);
1137 ev_idle_start (&iw);
1138
1139 ev_loop (0);
1140
1141 return 0;
1142}
1143
1144#endif
1145
1146
1147
1148

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines