ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.36 by root, Thu Nov 1 13:11:11 2007 UTC vs.
Revision 1.60 by root, Sun Nov 4 18:29:44 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
75/**/
76
51#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
52# ifdef CLOCK_MONOTONIC
53# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
54# endif
55#endif 79#endif
56 80
57#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
59#endif 83#endif
60 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
61#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
63#endif 91#endif
64 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1
99#endif
100
101/**/
102
103#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC
105# define EV_USE_MONOTONIC 0
106#endif
107
65#ifndef CLOCK_REALTIME 108#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME
66# define EV_USE_REALTIME 0 110# define EV_USE_REALTIME 0
67#endif 111#endif
68#ifndef EV_USE_REALTIME 112
69# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 113/**/
70#endif
71 114
72#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
73#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
74#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
75#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
76 119
77#include "ev.h" 120#include "ev.h"
121
122#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline
125#else
126# define expect(expr,value) (expr)
127# define inline static
128#endif
129
130#define expect_false(expr) expect ((expr) != 0, 0)
131#define expect_true(expr) expect ((expr) != 0, 1)
132
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI)
78 135
79typedef struct ev_watcher *W; 136typedef struct ev_watcher *W;
80typedef struct ev_watcher_list *WL; 137typedef struct ev_watcher_list *WL;
81typedef struct ev_watcher_time *WT; 138typedef struct ev_watcher_time *WT;
82 139
83static ev_tstamp now, diff; /* monotonic clock */ 140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
84ev_tstamp ev_now;
85int ev_method;
86
87static int have_monotonic; /* runtime */
88
89static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
90static void (*method_modify)(int fd, int oev, int nev);
91static void (*method_poll)(ev_tstamp timeout);
92 141
93/*****************************************************************************/ 142/*****************************************************************************/
94 143
95ev_tstamp 144typedef struct
145{
146 struct ev_watcher_list *head;
147 unsigned char events;
148 unsigned char reify;
149} ANFD;
150
151typedef struct
152{
153 W w;
154 int events;
155} ANPENDING;
156
157#if EV_MULTIPLICITY
158
159struct ev_loop
160{
161# define VAR(name,decl) decl;
162# include "ev_vars.h"
163};
164# undef VAR
165# include "ev_wrap.h"
166
167#else
168
169# define VAR(name,decl) static decl;
170# include "ev_vars.h"
171# undef VAR
172
173#endif
174
175/*****************************************************************************/
176
177inline ev_tstamp
96ev_time (void) 178ev_time (void)
97{ 179{
98#if EV_USE_REALTIME 180#if EV_USE_REALTIME
99 struct timespec ts; 181 struct timespec ts;
100 clock_gettime (CLOCK_REALTIME, &ts); 182 clock_gettime (CLOCK_REALTIME, &ts);
104 gettimeofday (&tv, 0); 186 gettimeofday (&tv, 0);
105 return tv.tv_sec + tv.tv_usec * 1e-6; 187 return tv.tv_sec + tv.tv_usec * 1e-6;
106#endif 188#endif
107} 189}
108 190
109static ev_tstamp 191inline ev_tstamp
110get_clock (void) 192get_clock (void)
111{ 193{
112#if EV_USE_MONOTONIC 194#if EV_USE_MONOTONIC
113 if (have_monotonic) 195 if (expect_true (have_monotonic))
114 { 196 {
115 struct timespec ts; 197 struct timespec ts;
116 clock_gettime (CLOCK_MONOTONIC, &ts); 198 clock_gettime (CLOCK_MONOTONIC, &ts);
117 return ts.tv_sec + ts.tv_nsec * 1e-9; 199 return ts.tv_sec + ts.tv_nsec * 1e-9;
118 } 200 }
119#endif 201#endif
120 202
121 return ev_time (); 203 return ev_time ();
122} 204}
123 205
206ev_tstamp
207ev_now (EV_P)
208{
209 return rt_now;
210}
211
124#define array_roundsize(base,n) ((n) | 4 & ~3) 212#define array_roundsize(base,n) ((n) | 4 & ~3)
125 213
126#define array_needsize(base,cur,cnt,init) \ 214#define array_needsize(base,cur,cnt,init) \
127 if ((cnt) > cur) \ 215 if (expect_false ((cnt) > cur)) \
128 { \ 216 { \
129 int newcnt = cur; \ 217 int newcnt = cur; \
130 do \ 218 do \
131 { \ 219 { \
132 newcnt = array_roundsize (base, newcnt << 1); \ 220 newcnt = array_roundsize (base, newcnt << 1); \
138 cur = newcnt; \ 226 cur = newcnt; \
139 } 227 }
140 228
141/*****************************************************************************/ 229/*****************************************************************************/
142 230
143typedef struct
144{
145 struct ev_io *head;
146 unsigned char events;
147 unsigned char reify;
148} ANFD;
149
150static ANFD *anfds;
151static int anfdmax;
152
153static void 231static void
154anfds_init (ANFD *base, int count) 232anfds_init (ANFD *base, int count)
155{ 233{
156 while (count--) 234 while (count--)
157 { 235 {
161 239
162 ++base; 240 ++base;
163 } 241 }
164} 242}
165 243
166typedef struct
167{
168 W w;
169 int events;
170} ANPENDING;
171
172static ANPENDING *pendings;
173static int pendingmax, pendingcnt;
174
175static void 244static void
176event (W w, int events) 245event (EV_P_ W w, int events)
177{ 246{
178 if (w->pending) 247 if (w->pending)
179 { 248 {
180 pendings [w->pending - 1].events |= events; 249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
181 return; 250 return;
182 } 251 }
183 252
184 w->pending = ++pendingcnt; 253 w->pending = ++pendingcnt [ABSPRI (w)];
185 array_needsize (pendings, pendingmax, pendingcnt, ); 254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
186 pendings [pendingcnt - 1].w = w; 255 pendings [ABSPRI (w)][w->pending - 1].w = w;
187 pendings [pendingcnt - 1].events = events; 256 pendings [ABSPRI (w)][w->pending - 1].events = events;
188} 257}
189 258
190static void 259static void
191queue_events (W *events, int eventcnt, int type) 260queue_events (EV_P_ W *events, int eventcnt, int type)
192{ 261{
193 int i; 262 int i;
194 263
195 for (i = 0; i < eventcnt; ++i) 264 for (i = 0; i < eventcnt; ++i)
196 event (events [i], type); 265 event (EV_A_ events [i], type);
197} 266}
198 267
199static void 268static void
200fd_event (int fd, int events) 269fd_event (EV_P_ int fd, int events)
201{ 270{
202 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
203 struct ev_io *w; 272 struct ev_io *w;
204 273
205 for (w = anfd->head; w; w = w->next) 274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
206 { 275 {
207 int ev = w->events & events; 276 int ev = w->events & events;
208 277
209 if (ev) 278 if (ev)
210 event ((W)w, ev); 279 event (EV_A_ (W)w, ev);
211 } 280 }
212} 281}
213 282
214/*****************************************************************************/ 283/*****************************************************************************/
215 284
216static int *fdchanges;
217static int fdchangemax, fdchangecnt;
218
219static void 285static void
220fd_reify (void) 286fd_reify (EV_P)
221{ 287{
222 int i; 288 int i;
223 289
224 for (i = 0; i < fdchangecnt; ++i) 290 for (i = 0; i < fdchangecnt; ++i)
225 { 291 {
227 ANFD *anfd = anfds + fd; 293 ANFD *anfd = anfds + fd;
228 struct ev_io *w; 294 struct ev_io *w;
229 295
230 int events = 0; 296 int events = 0;
231 297
232 for (w = anfd->head; w; w = w->next) 298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
233 events |= w->events; 299 events |= w->events;
234 300
235 anfd->reify = 0; 301 anfd->reify = 0;
236 302
237 if (anfd->events != events) 303 if (anfd->events != events)
238 { 304 {
239 method_modify (fd, anfd->events, events); 305 method_modify (EV_A_ fd, anfd->events, events);
240 anfd->events = events; 306 anfd->events = events;
241 } 307 }
242 } 308 }
243 309
244 fdchangecnt = 0; 310 fdchangecnt = 0;
245} 311}
246 312
247static void 313static void
248fd_change (int fd) 314fd_change (EV_P_ int fd)
249{ 315{
250 if (anfds [fd].reify || fdchangecnt < 0) 316 if (anfds [fd].reify || fdchangecnt < 0)
251 return; 317 return;
252 318
253 anfds [fd].reify = 1; 319 anfds [fd].reify = 1;
255 ++fdchangecnt; 321 ++fdchangecnt;
256 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 322 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
257 fdchanges [fdchangecnt - 1] = fd; 323 fdchanges [fdchangecnt - 1] = fd;
258} 324}
259 325
326static void
327fd_kill (EV_P_ int fd)
328{
329 struct ev_io *w;
330
331 while ((w = (struct ev_io *)anfds [fd].head))
332 {
333 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 }
336}
337
260/* called on EBADF to verify fds */ 338/* called on EBADF to verify fds */
261static void 339static void
262fd_recheck (void) 340fd_ebadf (EV_P)
263{ 341{
264 int fd; 342 int fd;
265 343
266 for (fd = 0; fd < anfdmax; ++fd) 344 for (fd = 0; fd < anfdmax; ++fd)
267 if (anfds [fd].events) 345 if (anfds [fd].events)
268 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
269 while (anfds [fd].head) 347 fd_kill (EV_A_ fd);
348}
349
350/* called on ENOMEM in select/poll to kill some fds and retry */
351static void
352fd_enomem (EV_P)
353{
354 int fd = anfdmax;
355
356 while (fd--)
357 if (anfds [fd].events)
270 { 358 {
271 ev_io_stop (anfds [fd].head); 359 close (fd);
272 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 360 fd_kill (EV_A_ fd);
361 return;
273 } 362 }
363}
364
365/* susually called after fork if method needs to re-arm all fds from scratch */
366static void
367fd_rearm_all (EV_P)
368{
369 int fd;
370
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events)
374 {
375 anfds [fd].events = 0;
376 fd_change (EV_A_ fd);
377 }
274} 378}
275 379
276/*****************************************************************************/ 380/*****************************************************************************/
277 381
278static struct ev_timer **timers;
279static int timermax, timercnt;
280
281static struct ev_periodic **periodics;
282static int periodicmax, periodiccnt;
283
284static void 382static void
285upheap (WT *timers, int k) 383upheap (WT *heap, int k)
286{ 384{
287 WT w = timers [k]; 385 WT w = heap [k];
288 386
289 while (k && timers [k >> 1]->at > w->at) 387 while (k && heap [k >> 1]->at > w->at)
290 { 388 {
291 timers [k] = timers [k >> 1]; 389 heap [k] = heap [k >> 1];
292 timers [k]->active = k + 1; 390 heap [k]->active = k + 1;
293 k >>= 1; 391 k >>= 1;
294 } 392 }
295 393
296 timers [k] = w; 394 heap [k] = w;
297 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
298 396
299} 397}
300 398
301static void 399static void
302downheap (WT *timers, int N, int k) 400downheap (WT *heap, int N, int k)
303{ 401{
304 WT w = timers [k]; 402 WT w = heap [k];
305 403
306 while (k < (N >> 1)) 404 while (k < (N >> 1))
307 { 405 {
308 int j = k << 1; 406 int j = k << 1;
309 407
310 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
311 ++j; 409 ++j;
312 410
313 if (w->at <= timers [j]->at) 411 if (w->at <= heap [j]->at)
314 break; 412 break;
315 413
316 timers [k] = timers [j]; 414 heap [k] = heap [j];
317 timers [k]->active = k + 1; 415 heap [k]->active = k + 1;
318 k = j; 416 k = j;
319 } 417 }
320 418
321 timers [k] = w; 419 heap [k] = w;
322 timers [k]->active = k + 1; 420 heap [k]->active = k + 1;
323} 421}
324 422
325/*****************************************************************************/ 423/*****************************************************************************/
326 424
327typedef struct 425typedef struct
328{ 426{
329 struct ev_signal *head; 427 struct ev_watcher_list *head;
330 sig_atomic_t volatile gotsig; 428 sig_atomic_t volatile gotsig;
331} ANSIG; 429} ANSIG;
332 430
333static ANSIG *signals; 431static ANSIG *signals;
334static int signalmax; 432static int signalmax;
354{ 452{
355 signals [signum - 1].gotsig = 1; 453 signals [signum - 1].gotsig = 1;
356 454
357 if (!gotsig) 455 if (!gotsig)
358 { 456 {
457 int old_errno = errno;
359 gotsig = 1; 458 gotsig = 1;
360 write (sigpipe [1], &signum, 1); 459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
361 } 461 }
362} 462}
363 463
364static void 464static void
365sigcb (struct ev_io *iow, int revents) 465sigcb (EV_P_ struct ev_io *iow, int revents)
366{ 466{
367 struct ev_signal *w; 467 struct ev_watcher_list *w;
368 int sig; 468 int signum;
369 469
370 read (sigpipe [0], &revents, 1); 470 read (sigpipe [0], &revents, 1);
371 gotsig = 0; 471 gotsig = 0;
372 472
373 for (sig = signalmax; sig--; ) 473 for (signum = signalmax; signum--; )
374 if (signals [sig].gotsig) 474 if (signals [signum].gotsig)
375 { 475 {
376 signals [sig].gotsig = 0; 476 signals [signum].gotsig = 0;
377 477
378 for (w = signals [sig].head; w; w = w->next) 478 for (w = signals [signum].head; w; w = w->next)
379 event ((W)w, EV_SIGNAL); 479 event (EV_A_ (W)w, EV_SIGNAL);
380 } 480 }
381} 481}
382 482
383static void 483static void
384siginit (void) 484siginit (EV_P)
385{ 485{
486#ifndef WIN32
386 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
387 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
388 489
389 /* rather than sort out wether we really need nb, set it */ 490 /* rather than sort out wether we really need nb, set it */
390 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
391 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
392 494
393 ev_io_set (&sigev, sigpipe [0], EV_READ); 495 ev_io_set (&sigev, sigpipe [0], EV_READ);
394 ev_io_start (&sigev); 496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
395} 498}
396 499
397/*****************************************************************************/ 500/*****************************************************************************/
398 501
399static struct ev_idle **idles; 502#ifndef WIN32
400static int idlemax, idlecnt;
401
402static struct ev_prepare **prepares;
403static int preparemax, preparecnt;
404
405static struct ev_check **checks;
406static int checkmax, checkcnt;
407
408/*****************************************************************************/
409 503
410static struct ev_child *childs [PID_HASHSIZE]; 504static struct ev_child *childs [PID_HASHSIZE];
411static struct ev_signal childev; 505static struct ev_signal childev;
412 506
413#ifndef WCONTINUED 507#ifndef WCONTINUED
414# define WCONTINUED 0 508# define WCONTINUED 0
415#endif 509#endif
416 510
417static void 511static void
418childcb (struct ev_signal *sw, int revents) 512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
419{ 513{
420 struct ev_child *w; 514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents)
528{
421 int pid, status; 529 int pid, status;
422 530
423 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
424 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 532 {
425 if (w->pid == pid || w->pid == -1) 533 /* make sure we are called again until all childs have been reaped */
426 { 534 event (EV_A_ (W)sw, EV_SIGNAL);
427 w->status = status; 535
428 event ((W)w, EV_CHILD); 536 child_reap (EV_A_ sw, pid, pid, status);
429 } 537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 }
430} 539}
540
541#endif
431 542
432/*****************************************************************************/ 543/*****************************************************************************/
433 544
545#if EV_USE_KQUEUE
546# include "ev_kqueue.c"
547#endif
434#if EV_USE_EPOLL 548#if EV_USE_EPOLL
435# include "ev_epoll.c" 549# include "ev_epoll.c"
436#endif 550#endif
551#if EV_USE_POLL
552# include "ev_poll.c"
553#endif
437#if EV_USE_SELECT 554#if EV_USE_SELECT
438# include "ev_select.c" 555# include "ev_select.c"
439#endif 556#endif
440 557
441int 558int
448ev_version_minor (void) 565ev_version_minor (void)
449{ 566{
450 return EV_VERSION_MINOR; 567 return EV_VERSION_MINOR;
451} 568}
452 569
453int ev_init (int flags) 570/* return true if we are running with elevated privileges and should ignore env variables */
571static int
572enable_secure (void)
454{ 573{
574#ifdef WIN32
575 return 0;
576#else
577 return getuid () != geteuid ()
578 || getgid () != getegid ();
579#endif
580}
581
582int
583ev_method (EV_P)
584{
585 return method;
586}
587
588static void
589loop_init (EV_P_ int methods)
590{
455 if (!ev_method) 591 if (!method)
456 { 592 {
457#if EV_USE_MONOTONIC 593#if EV_USE_MONOTONIC
458 { 594 {
459 struct timespec ts; 595 struct timespec ts;
460 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 596 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
461 have_monotonic = 1; 597 have_monotonic = 1;
462 } 598 }
463#endif 599#endif
464 600
465 ev_now = ev_time (); 601 rt_now = ev_time ();
466 now = get_clock (); 602 mn_now = get_clock ();
603 now_floor = mn_now;
467 diff = ev_now - now; 604 rtmn_diff = rt_now - mn_now;
468 605
469 if (pipe (sigpipe)) 606 if (methods == EVMETHOD_AUTO)
470 return 0; 607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
471 608 methods = atoi (getenv ("LIBEV_METHODS"));
609 else
472 ev_method = EVMETHOD_NONE; 610 methods = EVMETHOD_ANY;
611
612 method = 0;
613#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif
473#if EV_USE_EPOLL 616#if EV_USE_EPOLL
474 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
618#endif
619#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
475#endif 621#endif
476#if EV_USE_SELECT 622#if EV_USE_SELECT
477 if (ev_method == EVMETHOD_NONE) select_init (flags); 623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
478#endif 624#endif
625 }
626}
479 627
628void
629loop_destroy (EV_P)
630{
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif
634#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636#endif
637#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639#endif
640#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif
643
644 method = 0;
645 /*TODO*/
646}
647
648void
649loop_fork (EV_P)
650{
651 /*TODO*/
652#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif
655#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif
658}
659
660#if EV_MULTIPLICITY
661struct ev_loop *
662ev_loop_new (int methods)
663{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672}
673
674void
675ev_loop_destroy (EV_P)
676{
677 loop_destroy (EV_A);
678 free (loop);
679}
680
681void
682ev_loop_fork (EV_P)
683{
684 loop_fork (EV_A);
685}
686
687#endif
688
689#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop *
694#else
695static int default_loop;
696
697int
698#endif
699ev_default_loop (int methods)
700{
701 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe))
703 return 0;
704
705 if (!default_loop)
706 {
707#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct;
709#else
710 default_loop = 1;
711#endif
712
713 loop_init (EV_A_ methods);
714
480 if (ev_method) 715 if (ev_method (EV_A))
481 { 716 {
482 ev_watcher_init (&sigev, sigcb); 717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
483 siginit (); 719 siginit (EV_A);
484 720
721#ifndef WIN32
485 ev_signal_init (&childev, childcb, SIGCHLD); 722 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI);
486 ev_signal_start (&childev); 724 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif
487 } 727 }
728 else
729 default_loop = 0;
488 } 730 }
489 731
490 return ev_method; 732 return default_loop;
491} 733}
492 734
493/*****************************************************************************/
494
495void 735void
496ev_fork_prepare (void) 736ev_default_destroy (void)
497{ 737{
498 /* nop */ 738#if EV_MULTIPLICITY
499} 739 struct ev_loop *loop = default_loop;
500
501void
502ev_fork_parent (void)
503{
504 /* nop */
505}
506
507void
508ev_fork_child (void)
509{
510#if EV_USE_EPOLL
511 if (ev_method == EVMETHOD_EPOLL)
512 epoll_postfork_child ();
513#endif 740#endif
514 741
742 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev);
744
745 ev_ref (EV_A); /* signal watcher */
515 ev_io_stop (&sigev); 746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750
751 loop_destroy (EV_A);
752}
753
754void
755ev_default_fork (void)
756{
757#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop;
759#endif
760
761 loop_fork (EV_A);
762
763 ev_io_stop (EV_A_ &sigev);
516 close (sigpipe [0]); 764 close (sigpipe [0]);
517 close (sigpipe [1]); 765 close (sigpipe [1]);
518 pipe (sigpipe); 766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
519 siginit (); 769 siginit (EV_A);
520} 770}
521 771
522/*****************************************************************************/ 772/*****************************************************************************/
523 773
524static void 774static void
525call_pending (void) 775call_pending (EV_P)
526{ 776{
777 int pri;
778
779 for (pri = NUMPRI; pri--; )
527 while (pendingcnt) 780 while (pendingcnt [pri])
528 { 781 {
529 ANPENDING *p = pendings + --pendingcnt; 782 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
530 783
531 if (p->w) 784 if (p->w)
532 { 785 {
533 p->w->pending = 0; 786 p->w->pending = 0;
534 p->w->cb (p->w, p->events); 787 p->w->cb (EV_A_ p->w, p->events);
535 } 788 }
536 } 789 }
537} 790}
538 791
539static void 792static void
540timers_reify (void) 793timers_reify (EV_P)
541{ 794{
542 while (timercnt && timers [0]->at <= now) 795 while (timercnt && timers [0]->at <= mn_now)
543 { 796 {
544 struct ev_timer *w = timers [0]; 797 struct ev_timer *w = timers [0];
545 798
546 /* first reschedule or stop timer */ 799 /* first reschedule or stop timer */
547 if (w->repeat) 800 if (w->repeat)
548 { 801 {
549 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
550 w->at = now + w->repeat; 803 w->at = mn_now + w->repeat;
551 downheap ((WT *)timers, timercnt, 0); 804 downheap ((WT *)timers, timercnt, 0);
552 } 805 }
553 else 806 else
554 ev_timer_stop (w); /* nonrepeating: stop timer */ 807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
555 808
556 event ((W)w, EV_TIMEOUT); 809 event (EV_A_ (W)w, EV_TIMEOUT);
557 } 810 }
558} 811}
559 812
560static void 813static void
561periodics_reify (void) 814periodics_reify (EV_P)
562{ 815{
563 while (periodiccnt && periodics [0]->at <= ev_now) 816 while (periodiccnt && periodics [0]->at <= rt_now)
564 { 817 {
565 struct ev_periodic *w = periodics [0]; 818 struct ev_periodic *w = periodics [0];
566 819
567 /* first reschedule or stop timer */ 820 /* first reschedule or stop timer */
568 if (w->interval) 821 if (w->interval)
569 { 822 {
570 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
571 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
572 downheap ((WT *)periodics, periodiccnt, 0); 825 downheap ((WT *)periodics, periodiccnt, 0);
573 } 826 }
574 else 827 else
575 ev_periodic_stop (w); /* nonrepeating: stop timer */ 828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
576 829
577 event ((W)w, EV_PERIODIC); 830 event (EV_A_ (W)w, EV_PERIODIC);
578 } 831 }
579} 832}
580 833
581static void 834static void
582periodics_reschedule (ev_tstamp diff) 835periodics_reschedule (EV_P)
583{ 836{
584 int i; 837 int i;
585 838
586 /* adjust periodics after time jump */ 839 /* adjust periodics after time jump */
587 for (i = 0; i < periodiccnt; ++i) 840 for (i = 0; i < periodiccnt; ++i)
588 { 841 {
589 struct ev_periodic *w = periodics [i]; 842 struct ev_periodic *w = periodics [i];
590 843
591 if (w->interval) 844 if (w->interval)
592 { 845 {
593 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
594 847
595 if (fabs (diff) >= 1e-4) 848 if (fabs (diff) >= 1e-4)
596 { 849 {
597 ev_periodic_stop (w); 850 ev_periodic_stop (EV_A_ w);
598 ev_periodic_start (w); 851 ev_periodic_start (EV_A_ w);
599 852
600 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 853 i = 0; /* restart loop, inefficient, but time jumps should be rare */
601 } 854 }
602 } 855 }
603 } 856 }
604} 857}
605 858
859inline int
860time_update_monotonic (EV_P)
861{
862 mn_now = get_clock ();
863
864 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
865 {
866 rt_now = rtmn_diff + mn_now;
867 return 0;
868 }
869 else
870 {
871 now_floor = mn_now;
872 rt_now = ev_time ();
873 return 1;
874 }
875}
876
606static void 877static void
607time_update (void) 878time_update (EV_P)
608{ 879{
609 int i; 880 int i;
610 881
611 ev_now = ev_time (); 882#if EV_USE_MONOTONIC
612
613 if (have_monotonic) 883 if (expect_true (have_monotonic))
614 { 884 {
615 ev_tstamp odiff = diff; 885 if (time_update_monotonic (EV_A))
616
617 for (i = 4; --i; ) /* loop a few times, before making important decisions */
618 { 886 {
619 now = get_clock (); 887 ev_tstamp odiff = rtmn_diff;
888
889 for (i = 4; --i; ) /* loop a few times, before making important decisions */
890 {
620 diff = ev_now - now; 891 rtmn_diff = rt_now - mn_now;
621 892
622 if (fabs (odiff - diff) < MIN_TIMEJUMP) 893 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
623 return; /* all is well */ 894 return; /* all is well */
624 895
625 ev_now = ev_time (); 896 rt_now = ev_time ();
897 mn_now = get_clock ();
898 now_floor = mn_now;
899 }
900
901 periodics_reschedule (EV_A);
902 /* no timer adjustment, as the monotonic clock doesn't jump */
903 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
626 } 904 }
627
628 periodics_reschedule (diff - odiff);
629 /* no timer adjustment, as the monotonic clock doesn't jump */
630 } 905 }
631 else 906 else
907#endif
632 { 908 {
633 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 909 rt_now = ev_time ();
910
911 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
634 { 912 {
635 periodics_reschedule (ev_now - now); 913 periodics_reschedule (EV_A);
636 914
637 /* adjust timers. this is easy, as the offset is the same for all */ 915 /* adjust timers. this is easy, as the offset is the same for all */
638 for (i = 0; i < timercnt; ++i) 916 for (i = 0; i < timercnt; ++i)
639 timers [i]->at += diff; 917 timers [i]->at += rt_now - mn_now;
640 } 918 }
641 919
642 now = ev_now; 920 mn_now = rt_now;
643 } 921 }
644} 922}
645 923
646int ev_loop_done; 924void
925ev_ref (EV_P)
926{
927 ++activecnt;
928}
647 929
930void
931ev_unref (EV_P)
932{
933 --activecnt;
934}
935
936static int loop_done;
937
938void
648void ev_loop (int flags) 939ev_loop (EV_P_ int flags)
649{ 940{
650 double block; 941 double block;
651 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 942 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
652 943
653 do 944 do
654 { 945 {
655 /* queue check watchers (and execute them) */ 946 /* queue check watchers (and execute them) */
656 if (preparecnt) 947 if (expect_false (preparecnt))
657 { 948 {
658 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
659 call_pending (); 950 call_pending (EV_A);
660 } 951 }
661 952
662 /* update fd-related kernel structures */ 953 /* update fd-related kernel structures */
663 fd_reify (); 954 fd_reify (EV_A);
664 955
665 /* calculate blocking time */ 956 /* calculate blocking time */
666 957
667 /* we only need this for !monotonic clockor timers, but as we basically 958 /* we only need this for !monotonic clockor timers, but as we basically
668 always have timers, we just calculate it always */ 959 always have timers, we just calculate it always */
960#if EV_USE_MONOTONIC
961 if (expect_true (have_monotonic))
962 time_update_monotonic (EV_A);
963 else
964#endif
965 {
669 ev_now = ev_time (); 966 rt_now = ev_time ();
967 mn_now = rt_now;
968 }
670 969
671 if (flags & EVLOOP_NONBLOCK || idlecnt) 970 if (flags & EVLOOP_NONBLOCK || idlecnt)
672 block = 0.; 971 block = 0.;
673 else 972 else
674 { 973 {
675 block = MAX_BLOCKTIME; 974 block = MAX_BLOCKTIME;
676 975
677 if (timercnt) 976 if (timercnt)
678 { 977 {
679 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 978 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
680 if (block > to) block = to; 979 if (block > to) block = to;
681 } 980 }
682 981
683 if (periodiccnt) 982 if (periodiccnt)
684 { 983 {
685 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
686 if (block > to) block = to; 985 if (block > to) block = to;
687 } 986 }
688 987
689 if (block < 0.) block = 0.; 988 if (block < 0.) block = 0.;
690 } 989 }
691 990
692 method_poll (block); 991 method_poll (EV_A_ block);
693 992
694 /* update ev_now, do magic */ 993 /* update rt_now, do magic */
695 time_update (); 994 time_update (EV_A);
696 995
697 /* queue pending timers and reschedule them */ 996 /* queue pending timers and reschedule them */
698 timers_reify (); /* relative timers called last */ 997 timers_reify (EV_A); /* relative timers called last */
699 periodics_reify (); /* absolute timers called first */ 998 periodics_reify (EV_A); /* absolute timers called first */
700 999
701 /* queue idle watchers unless io or timers are pending */ 1000 /* queue idle watchers unless io or timers are pending */
702 if (!pendingcnt) 1001 if (!pendingcnt)
703 queue_events ((W *)idles, idlecnt, EV_IDLE); 1002 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
704 1003
705 /* queue check watchers, to be executed first */ 1004 /* queue check watchers, to be executed first */
706 if (checkcnt) 1005 if (checkcnt)
707 queue_events ((W *)checks, checkcnt, EV_CHECK); 1006 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
708 1007
709 call_pending (); 1008 call_pending (EV_A);
710 } 1009 }
711 while (!ev_loop_done); 1010 while (activecnt && !loop_done);
712 1011
713 if (ev_loop_done != 2) 1012 if (loop_done != 2)
714 ev_loop_done = 0; 1013 loop_done = 0;
1014}
1015
1016void
1017ev_unloop (EV_P_ int how)
1018{
1019 loop_done = how;
715} 1020}
716 1021
717/*****************************************************************************/ 1022/*****************************************************************************/
718 1023
719static void 1024inline void
720wlist_add (WL *head, WL elem) 1025wlist_add (WL *head, WL elem)
721{ 1026{
722 elem->next = *head; 1027 elem->next = *head;
723 *head = elem; 1028 *head = elem;
724} 1029}
725 1030
726static void 1031inline void
727wlist_del (WL *head, WL elem) 1032wlist_del (WL *head, WL elem)
728{ 1033{
729 while (*head) 1034 while (*head)
730 { 1035 {
731 if (*head == elem) 1036 if (*head == elem)
736 1041
737 head = &(*head)->next; 1042 head = &(*head)->next;
738 } 1043 }
739} 1044}
740 1045
741static void 1046inline void
742ev_clear_pending (W w) 1047ev_clear_pending (EV_P_ W w)
743{ 1048{
744 if (w->pending) 1049 if (w->pending)
745 { 1050 {
746 pendings [w->pending - 1].w = 0; 1051 pendings [ABSPRI (w)][w->pending - 1].w = 0;
747 w->pending = 0; 1052 w->pending = 0;
748 } 1053 }
749} 1054}
750 1055
751static void 1056inline void
752ev_start (W w, int active) 1057ev_start (EV_P_ W w, int active)
753{ 1058{
1059 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1060 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1061
754 w->active = active; 1062 w->active = active;
1063 ev_ref (EV_A);
755} 1064}
756 1065
757static void 1066inline void
758ev_stop (W w) 1067ev_stop (EV_P_ W w)
759{ 1068{
1069 ev_unref (EV_A);
760 w->active = 0; 1070 w->active = 0;
761} 1071}
762 1072
763/*****************************************************************************/ 1073/*****************************************************************************/
764 1074
765void 1075void
766ev_io_start (struct ev_io *w) 1076ev_io_start (EV_P_ struct ev_io *w)
767{ 1077{
1078 int fd = w->fd;
1079
768 if (ev_is_active (w)) 1080 if (ev_is_active (w))
769 return; 1081 return;
770 1082
771 int fd = w->fd;
772
773 assert (("ev_io_start called with negative fd", fd >= 0)); 1083 assert (("ev_io_start called with negative fd", fd >= 0));
774 1084
775 ev_start ((W)w, 1); 1085 ev_start (EV_A_ (W)w, 1);
776 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1086 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
777 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1087 wlist_add ((WL *)&anfds[fd].head, (WL)w);
778 1088
779 fd_change (fd); 1089 fd_change (EV_A_ fd);
780} 1090}
781 1091
782void 1092void
783ev_io_stop (struct ev_io *w) 1093ev_io_stop (EV_P_ struct ev_io *w)
784{ 1094{
785 ev_clear_pending ((W)w); 1095 ev_clear_pending (EV_A_ (W)w);
786 if (!ev_is_active (w)) 1096 if (!ev_is_active (w))
787 return; 1097 return;
788 1098
789 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1099 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
790 ev_stop ((W)w); 1100 ev_stop (EV_A_ (W)w);
791 1101
792 fd_change (w->fd); 1102 fd_change (EV_A_ w->fd);
793} 1103}
794 1104
795void 1105void
796ev_timer_start (struct ev_timer *w) 1106ev_timer_start (EV_P_ struct ev_timer *w)
797{ 1107{
798 if (ev_is_active (w)) 1108 if (ev_is_active (w))
799 return; 1109 return;
800 1110
801 w->at += now; 1111 w->at += mn_now;
802 1112
803 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
804 1114
805 ev_start ((W)w, ++timercnt); 1115 ev_start (EV_A_ (W)w, ++timercnt);
806 array_needsize (timers, timermax, timercnt, ); 1116 array_needsize (timers, timermax, timercnt, );
807 timers [timercnt - 1] = w; 1117 timers [timercnt - 1] = w;
808 upheap ((WT *)timers, timercnt - 1); 1118 upheap ((WT *)timers, timercnt - 1);
809} 1119}
810 1120
811void 1121void
812ev_timer_stop (struct ev_timer *w) 1122ev_timer_stop (EV_P_ struct ev_timer *w)
813{ 1123{
814 ev_clear_pending ((W)w); 1124 ev_clear_pending (EV_A_ (W)w);
815 if (!ev_is_active (w)) 1125 if (!ev_is_active (w))
816 return; 1126 return;
817 1127
818 if (w->active < timercnt--) 1128 if (w->active < timercnt--)
819 { 1129 {
821 downheap ((WT *)timers, timercnt, w->active - 1); 1131 downheap ((WT *)timers, timercnt, w->active - 1);
822 } 1132 }
823 1133
824 w->at = w->repeat; 1134 w->at = w->repeat;
825 1135
826 ev_stop ((W)w); 1136 ev_stop (EV_A_ (W)w);
827} 1137}
828 1138
829void 1139void
830ev_timer_again (struct ev_timer *w) 1140ev_timer_again (EV_P_ struct ev_timer *w)
831{ 1141{
832 if (ev_is_active (w)) 1142 if (ev_is_active (w))
833 { 1143 {
834 if (w->repeat) 1144 if (w->repeat)
835 { 1145 {
836 w->at = now + w->repeat; 1146 w->at = mn_now + w->repeat;
837 downheap ((WT *)timers, timercnt, w->active - 1); 1147 downheap ((WT *)timers, timercnt, w->active - 1);
838 } 1148 }
839 else 1149 else
840 ev_timer_stop (w); 1150 ev_timer_stop (EV_A_ w);
841 } 1151 }
842 else if (w->repeat) 1152 else if (w->repeat)
843 ev_timer_start (w); 1153 ev_timer_start (EV_A_ w);
844} 1154}
845 1155
846void 1156void
847ev_periodic_start (struct ev_periodic *w) 1157ev_periodic_start (EV_P_ struct ev_periodic *w)
848{ 1158{
849 if (ev_is_active (w)) 1159 if (ev_is_active (w))
850 return; 1160 return;
851 1161
852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
853 1163
854 /* this formula differs from the one in periodic_reify because we do not always round up */ 1164 /* this formula differs from the one in periodic_reify because we do not always round up */
855 if (w->interval) 1165 if (w->interval)
856 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
857 1167
858 ev_start ((W)w, ++periodiccnt); 1168 ev_start (EV_A_ (W)w, ++periodiccnt);
859 array_needsize (periodics, periodicmax, periodiccnt, ); 1169 array_needsize (periodics, periodicmax, periodiccnt, );
860 periodics [periodiccnt - 1] = w; 1170 periodics [periodiccnt - 1] = w;
861 upheap ((WT *)periodics, periodiccnt - 1); 1171 upheap ((WT *)periodics, periodiccnt - 1);
862} 1172}
863 1173
864void 1174void
865ev_periodic_stop (struct ev_periodic *w) 1175ev_periodic_stop (EV_P_ struct ev_periodic *w)
866{ 1176{
867 ev_clear_pending ((W)w); 1177 ev_clear_pending (EV_A_ (W)w);
868 if (!ev_is_active (w)) 1178 if (!ev_is_active (w))
869 return; 1179 return;
870 1180
871 if (w->active < periodiccnt--) 1181 if (w->active < periodiccnt--)
872 { 1182 {
873 periodics [w->active - 1] = periodics [periodiccnt]; 1183 periodics [w->active - 1] = periodics [periodiccnt];
874 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1184 downheap ((WT *)periodics, periodiccnt, w->active - 1);
875 } 1185 }
876 1186
877 ev_stop ((W)w); 1187 ev_stop (EV_A_ (W)w);
878} 1188}
879 1189
880void 1190void
881ev_signal_start (struct ev_signal *w) 1191ev_idle_start (EV_P_ struct ev_idle *w)
882{ 1192{
883 if (ev_is_active (w)) 1193 if (ev_is_active (w))
884 return; 1194 return;
885 1195
1196 ev_start (EV_A_ (W)w, ++idlecnt);
1197 array_needsize (idles, idlemax, idlecnt, );
1198 idles [idlecnt - 1] = w;
1199}
1200
1201void
1202ev_idle_stop (EV_P_ struct ev_idle *w)
1203{
1204 ev_clear_pending (EV_A_ (W)w);
1205 if (ev_is_active (w))
1206 return;
1207
1208 idles [w->active - 1] = idles [--idlecnt];
1209 ev_stop (EV_A_ (W)w);
1210}
1211
1212void
1213ev_prepare_start (EV_P_ struct ev_prepare *w)
1214{
1215 if (ev_is_active (w))
1216 return;
1217
1218 ev_start (EV_A_ (W)w, ++preparecnt);
1219 array_needsize (prepares, preparemax, preparecnt, );
1220 prepares [preparecnt - 1] = w;
1221}
1222
1223void
1224ev_prepare_stop (EV_P_ struct ev_prepare *w)
1225{
1226 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w))
1228 return;
1229
1230 prepares [w->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w);
1232}
1233
1234void
1235ev_check_start (EV_P_ struct ev_check *w)
1236{
1237 if (ev_is_active (w))
1238 return;
1239
1240 ev_start (EV_A_ (W)w, ++checkcnt);
1241 array_needsize (checks, checkmax, checkcnt, );
1242 checks [checkcnt - 1] = w;
1243}
1244
1245void
1246ev_check_stop (EV_P_ struct ev_check *w)
1247{
1248 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w))
1250 return;
1251
1252 checks [w->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w);
1254}
1255
1256#ifndef SA_RESTART
1257# define SA_RESTART 0
1258#endif
1259
1260void
1261ev_signal_start (EV_P_ struct ev_signal *w)
1262{
1263#if EV_MULTIPLICITY
1264 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1265#endif
1266 if (ev_is_active (w))
1267 return;
1268
886 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1269 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
887 1270
888 ev_start ((W)w, 1); 1271 ev_start (EV_A_ (W)w, 1);
889 array_needsize (signals, signalmax, w->signum, signals_init); 1272 array_needsize (signals, signalmax, w->signum, signals_init);
890 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
891 1274
892 if (!w->next) 1275 if (!w->next)
893 { 1276 {
894 struct sigaction sa; 1277 struct sigaction sa;
895 sa.sa_handler = sighandler; 1278 sa.sa_handler = sighandler;
896 sigfillset (&sa.sa_mask); 1279 sigfillset (&sa.sa_mask);
897 sa.sa_flags = 0; 1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
898 sigaction (w->signum, &sa, 0); 1281 sigaction (w->signum, &sa, 0);
899 } 1282 }
900} 1283}
901 1284
902void 1285void
903ev_signal_stop (struct ev_signal *w) 1286ev_signal_stop (EV_P_ struct ev_signal *w)
904{ 1287{
905 ev_clear_pending ((W)w); 1288 ev_clear_pending (EV_A_ (W)w);
906 if (!ev_is_active (w)) 1289 if (!ev_is_active (w))
907 return; 1290 return;
908 1291
909 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1292 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
910 ev_stop ((W)w); 1293 ev_stop (EV_A_ (W)w);
911 1294
912 if (!signals [w->signum - 1].head) 1295 if (!signals [w->signum - 1].head)
913 signal (w->signum, SIG_DFL); 1296 signal (w->signum, SIG_DFL);
914} 1297}
915 1298
916void 1299void
917ev_idle_start (struct ev_idle *w) 1300ev_child_start (EV_P_ struct ev_child *w)
918{ 1301{
1302#if EV_MULTIPLICITY
1303 assert (("child watchers are only supported in the default loop", loop == default_loop));
1304#endif
919 if (ev_is_active (w)) 1305 if (ev_is_active (w))
920 return; 1306 return;
921 1307
922 ev_start ((W)w, ++idlecnt); 1308 ev_start (EV_A_ (W)w, 1);
923 array_needsize (idles, idlemax, idlecnt, ); 1309 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
924 idles [idlecnt - 1] = w;
925} 1310}
926 1311
927void 1312void
928ev_idle_stop (struct ev_idle *w) 1313ev_child_stop (EV_P_ struct ev_child *w)
929{ 1314{
930 ev_clear_pending ((W)w); 1315 ev_clear_pending (EV_A_ (W)w);
931 if (ev_is_active (w)) 1316 if (ev_is_active (w))
932 return; 1317 return;
933 1318
934 idles [w->active - 1] = idles [--idlecnt];
935 ev_stop ((W)w);
936}
937
938void
939ev_prepare_start (struct ev_prepare *w)
940{
941 if (ev_is_active (w))
942 return;
943
944 ev_start ((W)w, ++preparecnt);
945 array_needsize (prepares, preparemax, preparecnt, );
946 prepares [preparecnt - 1] = w;
947}
948
949void
950ev_prepare_stop (struct ev_prepare *w)
951{
952 ev_clear_pending ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 prepares [w->active - 1] = prepares [--preparecnt];
957 ev_stop ((W)w);
958}
959
960void
961ev_check_start (struct ev_check *w)
962{
963 if (ev_is_active (w))
964 return;
965
966 ev_start ((W)w, ++checkcnt);
967 array_needsize (checks, checkmax, checkcnt, );
968 checks [checkcnt - 1] = w;
969}
970
971void
972ev_check_stop (struct ev_check *w)
973{
974 ev_clear_pending ((W)w);
975 if (ev_is_active (w))
976 return;
977
978 checks [w->active - 1] = checks [--checkcnt];
979 ev_stop ((W)w);
980}
981
982void
983ev_child_start (struct ev_child *w)
984{
985 if (ev_is_active (w))
986 return;
987
988 ev_start ((W)w, 1);
989 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
990}
991
992void
993ev_child_stop (struct ev_child *w)
994{
995 ev_clear_pending ((W)w);
996 if (ev_is_active (w))
997 return;
998
999 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1319 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1000 ev_stop ((W)w); 1320 ev_stop (EV_A_ (W)w);
1001} 1321}
1002 1322
1003/*****************************************************************************/ 1323/*****************************************************************************/
1004 1324
1005struct ev_once 1325struct ev_once
1009 void (*cb)(int revents, void *arg); 1329 void (*cb)(int revents, void *arg);
1010 void *arg; 1330 void *arg;
1011}; 1331};
1012 1332
1013static void 1333static void
1014once_cb (struct ev_once *once, int revents) 1334once_cb (EV_P_ struct ev_once *once, int revents)
1015{ 1335{
1016 void (*cb)(int revents, void *arg) = once->cb; 1336 void (*cb)(int revents, void *arg) = once->cb;
1017 void *arg = once->arg; 1337 void *arg = once->arg;
1018 1338
1019 ev_io_stop (&once->io); 1339 ev_io_stop (EV_A_ &once->io);
1020 ev_timer_stop (&once->to); 1340 ev_timer_stop (EV_A_ &once->to);
1021 free (once); 1341 free (once);
1022 1342
1023 cb (revents, arg); 1343 cb (revents, arg);
1024} 1344}
1025 1345
1026static void 1346static void
1027once_cb_io (struct ev_io *w, int revents) 1347once_cb_io (EV_P_ struct ev_io *w, int revents)
1028{ 1348{
1029 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1349 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1030} 1350}
1031 1351
1032static void 1352static void
1033once_cb_to (struct ev_timer *w, int revents) 1353once_cb_to (EV_P_ struct ev_timer *w, int revents)
1034{ 1354{
1035 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1355 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1036} 1356}
1037 1357
1038void 1358void
1039ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1359ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1040{ 1360{
1041 struct ev_once *once = malloc (sizeof (struct ev_once)); 1361 struct ev_once *once = malloc (sizeof (struct ev_once));
1042 1362
1043 if (!once) 1363 if (!once)
1044 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1049 1369
1050 ev_watcher_init (&once->io, once_cb_io); 1370 ev_watcher_init (&once->io, once_cb_io);
1051 if (fd >= 0) 1371 if (fd >= 0)
1052 { 1372 {
1053 ev_io_set (&once->io, fd, events); 1373 ev_io_set (&once->io, fd, events);
1054 ev_io_start (&once->io); 1374 ev_io_start (EV_A_ &once->io);
1055 } 1375 }
1056 1376
1057 ev_watcher_init (&once->to, once_cb_to); 1377 ev_watcher_init (&once->to, once_cb_to);
1058 if (timeout >= 0.) 1378 if (timeout >= 0.)
1059 { 1379 {
1060 ev_timer_set (&once->to, timeout, 0.); 1380 ev_timer_set (&once->to, timeout, 0.);
1061 ev_timer_start (&once->to); 1381 ev_timer_start (EV_A_ &once->to);
1062 } 1382 }
1063 } 1383 }
1064} 1384}
1065 1385
1066/*****************************************************************************/
1067
1068#if 0
1069
1070struct ev_io wio;
1071
1072static void
1073sin_cb (struct ev_io *w, int revents)
1074{
1075 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1076}
1077
1078static void
1079ocb (struct ev_timer *w, int revents)
1080{
1081 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1082 ev_timer_stop (w);
1083 ev_timer_start (w);
1084}
1085
1086static void
1087scb (struct ev_signal *w, int revents)
1088{
1089 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1090 ev_io_stop (&wio);
1091 ev_io_start (&wio);
1092}
1093
1094static void
1095gcb (struct ev_signal *w, int revents)
1096{
1097 fprintf (stderr, "generic %x\n", revents);
1098
1099}
1100
1101int main (void)
1102{
1103 ev_init (0);
1104
1105 ev_io_init (&wio, sin_cb, 0, EV_READ);
1106 ev_io_start (&wio);
1107
1108 struct ev_timer t[10000];
1109
1110#if 0
1111 int i;
1112 for (i = 0; i < 10000; ++i)
1113 {
1114 struct ev_timer *w = t + i;
1115 ev_watcher_init (w, ocb, i);
1116 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1117 ev_timer_start (w);
1118 if (drand48 () < 0.5)
1119 ev_timer_stop (w);
1120 }
1121#endif
1122
1123 struct ev_timer t1;
1124 ev_timer_init (&t1, ocb, 5, 10);
1125 ev_timer_start (&t1);
1126
1127 struct ev_signal sig;
1128 ev_signal_init (&sig, scb, SIGQUIT);
1129 ev_signal_start (&sig);
1130
1131 struct ev_check cw;
1132 ev_check_init (&cw, gcb);
1133 ev_check_start (&cw);
1134
1135 struct ev_idle iw;
1136 ev_idle_init (&iw, gcb);
1137 ev_idle_start (&iw);
1138
1139 ev_loop (0);
1140
1141 return 0;
1142}
1143
1144#endif
1145
1146
1147
1148

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines