ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.36 by root, Thu Nov 1 13:11:11 2007 UTC vs.
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
75/**/
76
51#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
52# ifdef CLOCK_MONOTONIC
53# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
54# endif
55#endif 79#endif
56 80
57#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
59#endif 83#endif
60 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
61#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
63#endif 91#endif
64 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
65#ifndef CLOCK_REALTIME 116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
66# define EV_USE_REALTIME 0 118# define EV_USE_REALTIME 0
67#endif 119#endif
68#ifndef EV_USE_REALTIME 120
69# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 121/**/
70#endif
71 122
72#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
73#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
74#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
75#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
76 127
77#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
78 143
79typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
80typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
81typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
82 147
83static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
84ev_tstamp ev_now;
85int ev_method;
86
87static int have_monotonic; /* runtime */
88
89static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
90static void (*method_modify)(int fd, int oev, int nev);
91static void (*method_poll)(ev_tstamp timeout);
92 149
93/*****************************************************************************/ 150/*****************************************************************************/
94 151
95ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
96ev_time (void) 186ev_time (void)
97{ 187{
98#if EV_USE_REALTIME 188#if EV_USE_REALTIME
99 struct timespec ts; 189 struct timespec ts;
100 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
104 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
105 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
106#endif 196#endif
107} 197}
108 198
109static ev_tstamp 199inline ev_tstamp
110get_clock (void) 200get_clock (void)
111{ 201{
112#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
113 if (have_monotonic) 203 if (expect_true (have_monotonic))
114 { 204 {
115 struct timespec ts; 205 struct timespec ts;
116 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
117 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
118 } 208 }
119#endif 209#endif
120 210
121 return ev_time (); 211 return ev_time ();
122} 212}
123 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
124#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
125 221
126#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
127 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
128 { \ 224 { \
129 int newcnt = cur; \ 225 int newcnt = cur; \
130 do \ 226 do \
131 { \ 227 { \
132 newcnt = array_roundsize (base, newcnt << 1); \ 228 newcnt = array_roundsize (base, newcnt << 1); \
138 cur = newcnt; \ 234 cur = newcnt; \
139 } 235 }
140 236
141/*****************************************************************************/ 237/*****************************************************************************/
142 238
143typedef struct
144{
145 struct ev_io *head;
146 unsigned char events;
147 unsigned char reify;
148} ANFD;
149
150static ANFD *anfds;
151static int anfdmax;
152
153static void 239static void
154anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
155{ 241{
156 while (count--) 242 while (count--)
157 { 243 {
161 247
162 ++base; 248 ++base;
163 } 249 }
164} 250}
165 251
166typedef struct
167{
168 W w;
169 int events;
170} ANPENDING;
171
172static ANPENDING *pendings;
173static int pendingmax, pendingcnt;
174
175static void 252static void
176event (W w, int events) 253event (EV_P_ W w, int events)
177{ 254{
178 if (w->pending) 255 if (w->pending)
179 { 256 {
180 pendings [w->pending - 1].events |= events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
181 return; 258 return;
182 } 259 }
183 260
184 w->pending = ++pendingcnt; 261 w->pending = ++pendingcnt [ABSPRI (w)];
185 array_needsize (pendings, pendingmax, pendingcnt, ); 262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
186 pendings [pendingcnt - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
187 pendings [pendingcnt - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
188} 265}
189 266
190static void 267static void
191queue_events (W *events, int eventcnt, int type) 268queue_events (EV_P_ W *events, int eventcnt, int type)
192{ 269{
193 int i; 270 int i;
194 271
195 for (i = 0; i < eventcnt; ++i) 272 for (i = 0; i < eventcnt; ++i)
196 event (events [i], type); 273 event (EV_A_ events [i], type);
197} 274}
198 275
199static void 276static void
200fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
201{ 278{
202 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
203 struct ev_io *w; 280 struct ev_io *w;
204 281
205 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
206 { 283 {
207 int ev = w->events & events; 284 int ev = w->events & events;
208 285
209 if (ev) 286 if (ev)
210 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
211 } 288 }
212} 289}
213 290
214/*****************************************************************************/ 291/*****************************************************************************/
215 292
216static int *fdchanges;
217static int fdchangemax, fdchangecnt;
218
219static void 293static void
220fd_reify (void) 294fd_reify (EV_P)
221{ 295{
222 int i; 296 int i;
223 297
224 for (i = 0; i < fdchangecnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
225 { 299 {
227 ANFD *anfd = anfds + fd; 301 ANFD *anfd = anfds + fd;
228 struct ev_io *w; 302 struct ev_io *w;
229 303
230 int events = 0; 304 int events = 0;
231 305
232 for (w = anfd->head; w; w = w->next) 306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
233 events |= w->events; 307 events |= w->events;
234 308
235 anfd->reify = 0; 309 anfd->reify = 0;
236 310
237 if (anfd->events != events)
238 {
239 method_modify (fd, anfd->events, events); 311 method_modify (EV_A_ fd, anfd->events, events);
240 anfd->events = events; 312 anfd->events = events;
241 }
242 } 313 }
243 314
244 fdchangecnt = 0; 315 fdchangecnt = 0;
245} 316}
246 317
247static void 318static void
248fd_change (int fd) 319fd_change (EV_P_ int fd)
249{ 320{
250 if (anfds [fd].reify || fdchangecnt < 0) 321 if (anfds [fd].reify || fdchangecnt < 0)
251 return; 322 return;
252 323
253 anfds [fd].reify = 1; 324 anfds [fd].reify = 1;
255 ++fdchangecnt; 326 ++fdchangecnt;
256 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 327 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
257 fdchanges [fdchangecnt - 1] = fd; 328 fdchanges [fdchangecnt - 1] = fd;
258} 329}
259 330
331static void
332fd_kill (EV_P_ int fd)
333{
334 struct ev_io *w;
335
336 while ((w = (struct ev_io *)anfds [fd].head))
337 {
338 ev_io_stop (EV_A_ w);
339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
340 }
341}
342
260/* called on EBADF to verify fds */ 343/* called on EBADF to verify fds */
261static void 344static void
262fd_recheck (void) 345fd_ebadf (EV_P)
263{ 346{
264 int fd; 347 int fd;
265 348
266 for (fd = 0; fd < anfdmax; ++fd) 349 for (fd = 0; fd < anfdmax; ++fd)
267 if (anfds [fd].events) 350 if (anfds [fd].events)
268 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
269 while (anfds [fd].head) 352 fd_kill (EV_A_ fd);
353}
354
355/* called on ENOMEM in select/poll to kill some fds and retry */
356static void
357fd_enomem (EV_P)
358{
359 int fd;
360
361 for (fd = anfdmax; fd--; )
362 if (anfds [fd].events)
270 { 363 {
271 ev_io_stop (anfds [fd].head); 364 close (fd);
272 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 365 fd_kill (EV_A_ fd);
366 return;
273 } 367 }
368}
369
370/* susually called after fork if method needs to re-arm all fds from scratch */
371static void
372fd_rearm_all (EV_P)
373{
374 int fd;
375
376 /* this should be highly optimised to not do anything but set a flag */
377 for (fd = 0; fd < anfdmax; ++fd)
378 if (anfds [fd].events)
379 {
380 anfds [fd].events = 0;
381 fd_change (EV_A_ fd);
382 }
274} 383}
275 384
276/*****************************************************************************/ 385/*****************************************************************************/
277 386
278static struct ev_timer **timers;
279static int timermax, timercnt;
280
281static struct ev_periodic **periodics;
282static int periodicmax, periodiccnt;
283
284static void 387static void
285upheap (WT *timers, int k) 388upheap (WT *heap, int k)
286{ 389{
287 WT w = timers [k]; 390 WT w = heap [k];
288 391
289 while (k && timers [k >> 1]->at > w->at) 392 while (k && heap [k >> 1]->at > w->at)
290 { 393 {
291 timers [k] = timers [k >> 1]; 394 heap [k] = heap [k >> 1];
292 timers [k]->active = k + 1; 395 ((W)heap [k])->active = k + 1;
293 k >>= 1; 396 k >>= 1;
294 } 397 }
295 398
296 timers [k] = w; 399 heap [k] = w;
297 timers [k]->active = k + 1; 400 ((W)heap [k])->active = k + 1;
298 401
299} 402}
300 403
301static void 404static void
302downheap (WT *timers, int N, int k) 405downheap (WT *heap, int N, int k)
303{ 406{
304 WT w = timers [k]; 407 WT w = heap [k];
305 408
306 while (k < (N >> 1)) 409 while (k < (N >> 1))
307 { 410 {
308 int j = k << 1; 411 int j = k << 1;
309 412
310 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 413 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
311 ++j; 414 ++j;
312 415
313 if (w->at <= timers [j]->at) 416 if (w->at <= heap [j]->at)
314 break; 417 break;
315 418
316 timers [k] = timers [j]; 419 heap [k] = heap [j];
317 timers [k]->active = k + 1; 420 ((W)heap [k])->active = k + 1;
318 k = j; 421 k = j;
319 } 422 }
320 423
321 timers [k] = w; 424 heap [k] = w;
322 timers [k]->active = k + 1; 425 ((W)heap [k])->active = k + 1;
323} 426}
324 427
325/*****************************************************************************/ 428/*****************************************************************************/
326 429
327typedef struct 430typedef struct
328{ 431{
329 struct ev_signal *head; 432 struct ev_watcher_list *head;
330 sig_atomic_t volatile gotsig; 433 sig_atomic_t volatile gotsig;
331} ANSIG; 434} ANSIG;
332 435
333static ANSIG *signals; 436static ANSIG *signals;
334static int signalmax; 437static int signalmax;
354{ 457{
355 signals [signum - 1].gotsig = 1; 458 signals [signum - 1].gotsig = 1;
356 459
357 if (!gotsig) 460 if (!gotsig)
358 { 461 {
462 int old_errno = errno;
359 gotsig = 1; 463 gotsig = 1;
360 write (sigpipe [1], &signum, 1); 464 write (sigpipe [1], &signum, 1);
465 errno = old_errno;
361 } 466 }
362} 467}
363 468
364static void 469static void
365sigcb (struct ev_io *iow, int revents) 470sigcb (EV_P_ struct ev_io *iow, int revents)
366{ 471{
367 struct ev_signal *w; 472 struct ev_watcher_list *w;
368 int sig; 473 int signum;
369 474
370 read (sigpipe [0], &revents, 1); 475 read (sigpipe [0], &revents, 1);
371 gotsig = 0; 476 gotsig = 0;
372 477
373 for (sig = signalmax; sig--; ) 478 for (signum = signalmax; signum--; )
374 if (signals [sig].gotsig) 479 if (signals [signum].gotsig)
375 { 480 {
376 signals [sig].gotsig = 0; 481 signals [signum].gotsig = 0;
377 482
378 for (w = signals [sig].head; w; w = w->next) 483 for (w = signals [signum].head; w; w = w->next)
379 event ((W)w, EV_SIGNAL); 484 event (EV_A_ (W)w, EV_SIGNAL);
380 } 485 }
381} 486}
382 487
383static void 488static void
384siginit (void) 489siginit (EV_P)
385{ 490{
491#ifndef WIN32
386 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
387 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
388 494
389 /* rather than sort out wether we really need nb, set it */ 495 /* rather than sort out wether we really need nb, set it */
390 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
391 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498#endif
392 499
393 ev_io_set (&sigev, sigpipe [0], EV_READ); 500 ev_io_set (&sigev, sigpipe [0], EV_READ);
394 ev_io_start (&sigev); 501 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */
395} 503}
396 504
397/*****************************************************************************/ 505/*****************************************************************************/
398 506
399static struct ev_idle **idles; 507#ifndef WIN32
400static int idlemax, idlecnt;
401
402static struct ev_prepare **prepares;
403static int preparemax, preparecnt;
404
405static struct ev_check **checks;
406static int checkmax, checkcnt;
407
408/*****************************************************************************/
409 508
410static struct ev_child *childs [PID_HASHSIZE]; 509static struct ev_child *childs [PID_HASHSIZE];
411static struct ev_signal childev; 510static struct ev_signal childev;
412 511
413#ifndef WCONTINUED 512#ifndef WCONTINUED
414# define WCONTINUED 0 513# define WCONTINUED 0
415#endif 514#endif
416 515
417static void 516static void
418childcb (struct ev_signal *sw, int revents) 517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
419{ 518{
420 struct ev_child *w; 519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents)
533{
421 int pid, status; 534 int pid, status;
422 535
423 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
424 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 537 {
425 if (w->pid == pid || w->pid == -1) 538 /* make sure we are called again until all childs have been reaped */
426 { 539 event (EV_A_ (W)sw, EV_SIGNAL);
427 w->status = status; 540
428 event ((W)w, EV_CHILD); 541 child_reap (EV_A_ sw, pid, pid, status);
429 } 542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
543 }
430} 544}
545
546#endif
431 547
432/*****************************************************************************/ 548/*****************************************************************************/
433 549
550#if EV_USE_KQUEUE
551# include "ev_kqueue.c"
552#endif
434#if EV_USE_EPOLL 553#if EV_USE_EPOLL
435# include "ev_epoll.c" 554# include "ev_epoll.c"
436#endif 555#endif
556#if EV_USE_POLL
557# include "ev_poll.c"
558#endif
437#if EV_USE_SELECT 559#if EV_USE_SELECT
438# include "ev_select.c" 560# include "ev_select.c"
439#endif 561#endif
440 562
441int 563int
448ev_version_minor (void) 570ev_version_minor (void)
449{ 571{
450 return EV_VERSION_MINOR; 572 return EV_VERSION_MINOR;
451} 573}
452 574
453int ev_init (int flags) 575/* return true if we are running with elevated privileges and should ignore env variables */
576static int
577enable_secure (void)
454{ 578{
579#ifdef WIN32
580 return 0;
581#else
582 return getuid () != geteuid ()
583 || getgid () != getegid ();
584#endif
585}
586
587int
588ev_method (EV_P)
589{
590 return method;
591}
592
593static void
594loop_init (EV_P_ int methods)
595{
455 if (!ev_method) 596 if (!method)
456 { 597 {
457#if EV_USE_MONOTONIC 598#if EV_USE_MONOTONIC
458 { 599 {
459 struct timespec ts; 600 struct timespec ts;
460 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 601 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
461 have_monotonic = 1; 602 have_monotonic = 1;
462 } 603 }
463#endif 604#endif
464 605
465 ev_now = ev_time (); 606 rt_now = ev_time ();
466 now = get_clock (); 607 mn_now = get_clock ();
608 now_floor = mn_now;
467 diff = ev_now - now; 609 rtmn_diff = rt_now - mn_now;
468 610
469 if (pipe (sigpipe)) 611 if (methods == EVMETHOD_AUTO)
470 return 0; 612 if (!enable_secure () && getenv ("LIBEV_METHODS"))
471 613 methods = atoi (getenv ("LIBEV_METHODS"));
614 else
472 ev_method = EVMETHOD_NONE; 615 methods = EVMETHOD_ANY;
616
617 method = 0;
618#if EV_USE_WIN32
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
620#endif
621#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
623#endif
473#if EV_USE_EPOLL 624#if EV_USE_EPOLL
474 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
626#endif
627#if EV_USE_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
475#endif 629#endif
476#if EV_USE_SELECT 630#if EV_USE_SELECT
477 if (ev_method == EVMETHOD_NONE) select_init (flags); 631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
478#endif 632#endif
633 }
634}
479 635
636void
637loop_destroy (EV_P)
638{
639#if EV_USE_WIN32
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
641#endif
642#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
644#endif
645#if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
647#endif
648#if EV_USE_POLL
649 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
650#endif
651#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
653#endif
654
655 method = 0;
656 /*TODO*/
657}
658
659void
660loop_fork (EV_P)
661{
662 /*TODO*/
663#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
665#endif
666#if EV_USE_KQUEUE
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
668#endif
669}
670
671#if EV_MULTIPLICITY
672struct ev_loop *
673ev_loop_new (int methods)
674{
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
676
677 loop_init (EV_A_ methods);
678
679 if (ev_method (EV_A))
680 return loop;
681
682 return 0;
683}
684
685void
686ev_loop_destroy (EV_P)
687{
688 loop_destroy (EV_A);
689 free (loop);
690}
691
692void
693ev_loop_fork (EV_P)
694{
695 loop_fork (EV_A);
696}
697
698#endif
699
700#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop *
705#else
706static int default_loop;
707
708int
709#endif
710ev_default_loop (int methods)
711{
712 if (sigpipe [0] == sigpipe [1])
713 if (pipe (sigpipe))
714 return 0;
715
716 if (!default_loop)
717 {
718#if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct;
720#else
721 default_loop = 1;
722#endif
723
724 loop_init (EV_A_ methods);
725
480 if (ev_method) 726 if (ev_method (EV_A))
481 { 727 {
482 ev_watcher_init (&sigev, sigcb); 728 ev_watcher_init (&sigev, sigcb);
729 ev_set_priority (&sigev, EV_MAXPRI);
483 siginit (); 730 siginit (EV_A);
484 731
732#ifndef WIN32
485 ev_signal_init (&childev, childcb, SIGCHLD); 733 ev_signal_init (&childev, childcb, SIGCHLD);
734 ev_set_priority (&childev, EV_MAXPRI);
486 ev_signal_start (&childev); 735 ev_signal_start (EV_A_ &childev);
736 ev_unref (EV_A); /* child watcher should not keep loop alive */
737#endif
487 } 738 }
739 else
740 default_loop = 0;
488 } 741 }
489 742
490 return ev_method; 743 return default_loop;
491} 744}
492 745
493/*****************************************************************************/
494
495void 746void
496ev_fork_prepare (void) 747ev_default_destroy (void)
497{ 748{
498 /* nop */ 749#if EV_MULTIPLICITY
499} 750 struct ev_loop *loop = default_loop;
500
501void
502ev_fork_parent (void)
503{
504 /* nop */
505}
506
507void
508ev_fork_child (void)
509{
510#if EV_USE_EPOLL
511 if (ev_method == EVMETHOD_EPOLL)
512 epoll_postfork_child ();
513#endif 751#endif
514 752
753 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev);
755
756 ev_ref (EV_A); /* signal watcher */
515 ev_io_stop (&sigev); 757 ev_io_stop (EV_A_ &sigev);
758
759 close (sigpipe [0]); sigpipe [0] = 0;
760 close (sigpipe [1]); sigpipe [1] = 0;
761
762 loop_destroy (EV_A);
763}
764
765void
766ev_default_fork (void)
767{
768#if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop;
770#endif
771
772 loop_fork (EV_A);
773
774 ev_io_stop (EV_A_ &sigev);
516 close (sigpipe [0]); 775 close (sigpipe [0]);
517 close (sigpipe [1]); 776 close (sigpipe [1]);
518 pipe (sigpipe); 777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
519 siginit (); 780 siginit (EV_A);
520} 781}
521 782
522/*****************************************************************************/ 783/*****************************************************************************/
523 784
524static void 785static void
525call_pending (void) 786call_pending (EV_P)
526{ 787{
788 int pri;
789
790 for (pri = NUMPRI; pri--; )
527 while (pendingcnt) 791 while (pendingcnt [pri])
528 { 792 {
529 ANPENDING *p = pendings + --pendingcnt; 793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
530 794
531 if (p->w) 795 if (p->w)
532 { 796 {
533 p->w->pending = 0; 797 p->w->pending = 0;
534 p->w->cb (p->w, p->events); 798
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
535 } 800 }
536 } 801 }
537} 802}
538 803
539static void 804static void
540timers_reify (void) 805timers_reify (EV_P)
541{ 806{
542 while (timercnt && timers [0]->at <= now) 807 while (timercnt && ((WT)timers [0])->at <= mn_now)
543 { 808 {
544 struct ev_timer *w = timers [0]; 809 struct ev_timer *w = timers [0];
810
811 assert (("inactive timer on timer heap detected", ev_is_active (w)));
545 812
546 /* first reschedule or stop timer */ 813 /* first reschedule or stop timer */
547 if (w->repeat) 814 if (w->repeat)
548 { 815 {
549 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
550 w->at = now + w->repeat; 817 ((WT)w)->at = mn_now + w->repeat;
551 downheap ((WT *)timers, timercnt, 0); 818 downheap ((WT *)timers, timercnt, 0);
552 } 819 }
553 else 820 else
554 ev_timer_stop (w); /* nonrepeating: stop timer */ 821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
555 822
556 event ((W)w, EV_TIMEOUT); 823 event (EV_A_ (W)w, EV_TIMEOUT);
557 } 824 }
558} 825}
559 826
560static void 827static void
561periodics_reify (void) 828periodics_reify (EV_P)
562{ 829{
563 while (periodiccnt && periodics [0]->at <= ev_now) 830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
564 { 831 {
565 struct ev_periodic *w = periodics [0]; 832 struct ev_periodic *w = periodics [0];
833
834 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
566 835
567 /* first reschedule or stop timer */ 836 /* first reschedule or stop timer */
568 if (w->interval) 837 if (w->interval)
569 { 838 {
570 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
571 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
572 downheap ((WT *)periodics, periodiccnt, 0); 841 downheap ((WT *)periodics, periodiccnt, 0);
573 } 842 }
574 else 843 else
575 ev_periodic_stop (w); /* nonrepeating: stop timer */ 844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
576 845
577 event ((W)w, EV_PERIODIC); 846 event (EV_A_ (W)w, EV_PERIODIC);
578 } 847 }
579} 848}
580 849
581static void 850static void
582periodics_reschedule (ev_tstamp diff) 851periodics_reschedule (EV_P)
583{ 852{
584 int i; 853 int i;
585 854
586 /* adjust periodics after time jump */ 855 /* adjust periodics after time jump */
587 for (i = 0; i < periodiccnt; ++i) 856 for (i = 0; i < periodiccnt; ++i)
588 { 857 {
589 struct ev_periodic *w = periodics [i]; 858 struct ev_periodic *w = periodics [i];
590 859
591 if (w->interval) 860 if (w->interval)
592 { 861 {
593 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
594 863
595 if (fabs (diff) >= 1e-4) 864 if (fabs (diff) >= 1e-4)
596 { 865 {
597 ev_periodic_stop (w); 866 ev_periodic_stop (EV_A_ w);
598 ev_periodic_start (w); 867 ev_periodic_start (EV_A_ w);
599 868
600 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
601 } 870 }
602 } 871 }
603 } 872 }
604} 873}
605 874
875inline int
876time_update_monotonic (EV_P)
877{
878 mn_now = get_clock ();
879
880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
881 {
882 rt_now = rtmn_diff + mn_now;
883 return 0;
884 }
885 else
886 {
887 now_floor = mn_now;
888 rt_now = ev_time ();
889 return 1;
890 }
891}
892
606static void 893static void
607time_update (void) 894time_update (EV_P)
608{ 895{
609 int i; 896 int i;
610 897
611 ev_now = ev_time (); 898#if EV_USE_MONOTONIC
612
613 if (have_monotonic) 899 if (expect_true (have_monotonic))
614 { 900 {
615 ev_tstamp odiff = diff; 901 if (time_update_monotonic (EV_A))
616
617 for (i = 4; --i; ) /* loop a few times, before making important decisions */
618 { 902 {
619 now = get_clock (); 903 ev_tstamp odiff = rtmn_diff;
904
905 for (i = 4; --i; ) /* loop a few times, before making important decisions */
906 {
620 diff = ev_now - now; 907 rtmn_diff = rt_now - mn_now;
621 908
622 if (fabs (odiff - diff) < MIN_TIMEJUMP) 909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
623 return; /* all is well */ 910 return; /* all is well */
624 911
625 ev_now = ev_time (); 912 rt_now = ev_time ();
913 mn_now = get_clock ();
914 now_floor = mn_now;
915 }
916
917 periodics_reschedule (EV_A);
918 /* no timer adjustment, as the monotonic clock doesn't jump */
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
626 } 920 }
627
628 periodics_reschedule (diff - odiff);
629 /* no timer adjustment, as the monotonic clock doesn't jump */
630 } 921 }
631 else 922 else
923#endif
632 { 924 {
633 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 925 rt_now = ev_time ();
926
927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
634 { 928 {
635 periodics_reschedule (ev_now - now); 929 periodics_reschedule (EV_A);
636 930
637 /* adjust timers. this is easy, as the offset is the same for all */ 931 /* adjust timers. this is easy, as the offset is the same for all */
638 for (i = 0; i < timercnt; ++i) 932 for (i = 0; i < timercnt; ++i)
639 timers [i]->at += diff; 933 ((WT)timers [i])->at += rt_now - mn_now;
640 } 934 }
641 935
642 now = ev_now; 936 mn_now = rt_now;
643 } 937 }
644} 938}
645 939
646int ev_loop_done; 940void
941ev_ref (EV_P)
942{
943 ++activecnt;
944}
647 945
946void
947ev_unref (EV_P)
948{
949 --activecnt;
950}
951
952static int loop_done;
953
954void
648void ev_loop (int flags) 955ev_loop (EV_P_ int flags)
649{ 956{
650 double block; 957 double block;
651 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
652 959
653 do 960 do
654 { 961 {
655 /* queue check watchers (and execute them) */ 962 /* queue check watchers (and execute them) */
656 if (preparecnt) 963 if (expect_false (preparecnt))
657 { 964 {
658 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
659 call_pending (); 966 call_pending (EV_A);
660 } 967 }
661 968
662 /* update fd-related kernel structures */ 969 /* update fd-related kernel structures */
663 fd_reify (); 970 fd_reify (EV_A);
664 971
665 /* calculate blocking time */ 972 /* calculate blocking time */
666 973
667 /* we only need this for !monotonic clockor timers, but as we basically 974 /* we only need this for !monotonic clockor timers, but as we basically
668 always have timers, we just calculate it always */ 975 always have timers, we just calculate it always */
976#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic))
978 time_update_monotonic (EV_A);
979 else
980#endif
981 {
669 ev_now = ev_time (); 982 rt_now = ev_time ();
983 mn_now = rt_now;
984 }
670 985
671 if (flags & EVLOOP_NONBLOCK || idlecnt) 986 if (flags & EVLOOP_NONBLOCK || idlecnt)
672 block = 0.; 987 block = 0.;
673 else 988 else
674 { 989 {
675 block = MAX_BLOCKTIME; 990 block = MAX_BLOCKTIME;
676 991
677 if (timercnt) 992 if (timercnt)
678 { 993 {
679 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
680 if (block > to) block = to; 995 if (block > to) block = to;
681 } 996 }
682 997
683 if (periodiccnt) 998 if (periodiccnt)
684 { 999 {
685 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
686 if (block > to) block = to; 1001 if (block > to) block = to;
687 } 1002 }
688 1003
689 if (block < 0.) block = 0.; 1004 if (block < 0.) block = 0.;
690 } 1005 }
691 1006
692 method_poll (block); 1007 method_poll (EV_A_ block);
693 1008
694 /* update ev_now, do magic */ 1009 /* update rt_now, do magic */
695 time_update (); 1010 time_update (EV_A);
696 1011
697 /* queue pending timers and reschedule them */ 1012 /* queue pending timers and reschedule them */
698 timers_reify (); /* relative timers called last */ 1013 timers_reify (EV_A); /* relative timers called last */
699 periodics_reify (); /* absolute timers called first */ 1014 periodics_reify (EV_A); /* absolute timers called first */
700 1015
701 /* queue idle watchers unless io or timers are pending */ 1016 /* queue idle watchers unless io or timers are pending */
702 if (!pendingcnt) 1017 if (!pendingcnt)
703 queue_events ((W *)idles, idlecnt, EV_IDLE); 1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
704 1019
705 /* queue check watchers, to be executed first */ 1020 /* queue check watchers, to be executed first */
706 if (checkcnt) 1021 if (checkcnt)
707 queue_events ((W *)checks, checkcnt, EV_CHECK); 1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
708 1023
709 call_pending (); 1024 call_pending (EV_A);
710 } 1025 }
711 while (!ev_loop_done); 1026 while (activecnt && !loop_done);
712 1027
713 if (ev_loop_done != 2) 1028 if (loop_done != 2)
714 ev_loop_done = 0; 1029 loop_done = 0;
1030}
1031
1032void
1033ev_unloop (EV_P_ int how)
1034{
1035 loop_done = how;
715} 1036}
716 1037
717/*****************************************************************************/ 1038/*****************************************************************************/
718 1039
719static void 1040inline void
720wlist_add (WL *head, WL elem) 1041wlist_add (WL *head, WL elem)
721{ 1042{
722 elem->next = *head; 1043 elem->next = *head;
723 *head = elem; 1044 *head = elem;
724} 1045}
725 1046
726static void 1047inline void
727wlist_del (WL *head, WL elem) 1048wlist_del (WL *head, WL elem)
728{ 1049{
729 while (*head) 1050 while (*head)
730 { 1051 {
731 if (*head == elem) 1052 if (*head == elem)
736 1057
737 head = &(*head)->next; 1058 head = &(*head)->next;
738 } 1059 }
739} 1060}
740 1061
741static void 1062inline void
742ev_clear_pending (W w) 1063ev_clear_pending (EV_P_ W w)
743{ 1064{
744 if (w->pending) 1065 if (w->pending)
745 { 1066 {
746 pendings [w->pending - 1].w = 0; 1067 pendings [ABSPRI (w)][w->pending - 1].w = 0;
747 w->pending = 0; 1068 w->pending = 0;
748 } 1069 }
749} 1070}
750 1071
751static void 1072inline void
752ev_start (W w, int active) 1073ev_start (EV_P_ W w, int active)
753{ 1074{
1075 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1076 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1077
754 w->active = active; 1078 w->active = active;
1079 ev_ref (EV_A);
755} 1080}
756 1081
757static void 1082inline void
758ev_stop (W w) 1083ev_stop (EV_P_ W w)
759{ 1084{
1085 ev_unref (EV_A);
760 w->active = 0; 1086 w->active = 0;
761} 1087}
762 1088
763/*****************************************************************************/ 1089/*****************************************************************************/
764 1090
765void 1091void
766ev_io_start (struct ev_io *w) 1092ev_io_start (EV_P_ struct ev_io *w)
767{ 1093{
1094 int fd = w->fd;
1095
768 if (ev_is_active (w)) 1096 if (ev_is_active (w))
769 return; 1097 return;
770 1098
771 int fd = w->fd;
772
773 assert (("ev_io_start called with negative fd", fd >= 0)); 1099 assert (("ev_io_start called with negative fd", fd >= 0));
774 1100
775 ev_start ((W)w, 1); 1101 ev_start (EV_A_ (W)w, 1);
776 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
777 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1103 wlist_add ((WL *)&anfds[fd].head, (WL)w);
778 1104
779 fd_change (fd); 1105 fd_change (EV_A_ fd);
780} 1106}
781 1107
782void 1108void
783ev_io_stop (struct ev_io *w) 1109ev_io_stop (EV_P_ struct ev_io *w)
784{ 1110{
785 ev_clear_pending ((W)w); 1111 ev_clear_pending (EV_A_ (W)w);
786 if (!ev_is_active (w)) 1112 if (!ev_is_active (w))
787 return; 1113 return;
788 1114
789 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
790 ev_stop ((W)w); 1116 ev_stop (EV_A_ (W)w);
791 1117
792 fd_change (w->fd); 1118 fd_change (EV_A_ w->fd);
793} 1119}
794 1120
795void 1121void
796ev_timer_start (struct ev_timer *w) 1122ev_timer_start (EV_P_ struct ev_timer *w)
797{ 1123{
798 if (ev_is_active (w)) 1124 if (ev_is_active (w))
799 return; 1125 return;
800 1126
801 w->at += now; 1127 ((WT)w)->at += mn_now;
802 1128
803 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
804 1130
805 ev_start ((W)w, ++timercnt); 1131 ev_start (EV_A_ (W)w, ++timercnt);
806 array_needsize (timers, timermax, timercnt, ); 1132 array_needsize (timers, timermax, timercnt, );
807 timers [timercnt - 1] = w; 1133 timers [timercnt - 1] = w;
808 upheap ((WT *)timers, timercnt - 1); 1134 upheap ((WT *)timers, timercnt - 1);
809}
810 1135
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1137}
1138
811void 1139void
812ev_timer_stop (struct ev_timer *w) 1140ev_timer_stop (EV_P_ struct ev_timer *w)
813{ 1141{
814 ev_clear_pending ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
815 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
816 return; 1144 return;
817 1145
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1147
818 if (w->active < timercnt--) 1148 if (((W)w)->active < timercnt--)
819 { 1149 {
820 timers [w->active - 1] = timers [timercnt]; 1150 timers [((W)w)->active - 1] = timers [timercnt];
821 downheap ((WT *)timers, timercnt, w->active - 1); 1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
822 } 1152 }
823 1153
824 w->at = w->repeat; 1154 ((WT)w)->at = w->repeat;
825 1155
826 ev_stop ((W)w); 1156 ev_stop (EV_A_ (W)w);
827} 1157}
828 1158
829void 1159void
830ev_timer_again (struct ev_timer *w) 1160ev_timer_again (EV_P_ struct ev_timer *w)
831{ 1161{
832 if (ev_is_active (w)) 1162 if (ev_is_active (w))
833 { 1163 {
834 if (w->repeat) 1164 if (w->repeat)
835 { 1165 {
836 w->at = now + w->repeat; 1166 ((WT)w)->at = mn_now + w->repeat;
837 downheap ((WT *)timers, timercnt, w->active - 1); 1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
838 } 1168 }
839 else 1169 else
840 ev_timer_stop (w); 1170 ev_timer_stop (EV_A_ w);
841 } 1171 }
842 else if (w->repeat) 1172 else if (w->repeat)
843 ev_timer_start (w); 1173 ev_timer_start (EV_A_ w);
844} 1174}
845 1175
846void 1176void
847ev_periodic_start (struct ev_periodic *w) 1177ev_periodic_start (EV_P_ struct ev_periodic *w)
848{ 1178{
849 if (ev_is_active (w)) 1179 if (ev_is_active (w))
850 return; 1180 return;
851 1181
852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
853 1183
854 /* this formula differs from the one in periodic_reify because we do not always round up */ 1184 /* this formula differs from the one in periodic_reify because we do not always round up */
855 if (w->interval) 1185 if (w->interval)
856 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
857 1187
858 ev_start ((W)w, ++periodiccnt); 1188 ev_start (EV_A_ (W)w, ++periodiccnt);
859 array_needsize (periodics, periodicmax, periodiccnt, ); 1189 array_needsize (periodics, periodicmax, periodiccnt, );
860 periodics [periodiccnt - 1] = w; 1190 periodics [periodiccnt - 1] = w;
861 upheap ((WT *)periodics, periodiccnt - 1); 1191 upheap ((WT *)periodics, periodiccnt - 1);
862}
863 1192
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1194}
1195
864void 1196void
865ev_periodic_stop (struct ev_periodic *w) 1197ev_periodic_stop (EV_P_ struct ev_periodic *w)
866{ 1198{
867 ev_clear_pending ((W)w); 1199 ev_clear_pending (EV_A_ (W)w);
868 if (!ev_is_active (w)) 1200 if (!ev_is_active (w))
869 return; 1201 return;
870 1202
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1204
871 if (w->active < periodiccnt--) 1205 if (((W)w)->active < periodiccnt--)
872 { 1206 {
873 periodics [w->active - 1] = periodics [periodiccnt]; 1207 periodics [((W)w)->active - 1] = periodics [periodiccnt];
874 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
875 } 1209 }
876 1210
877 ev_stop ((W)w); 1211 ev_stop (EV_A_ (W)w);
878} 1212}
879 1213
880void 1214void
881ev_signal_start (struct ev_signal *w) 1215ev_idle_start (EV_P_ struct ev_idle *w)
882{ 1216{
883 if (ev_is_active (w)) 1217 if (ev_is_active (w))
884 return; 1218 return;
885 1219
1220 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, );
1222 idles [idlecnt - 1] = w;
1223}
1224
1225void
1226ev_idle_stop (EV_P_ struct ev_idle *w)
1227{
1228 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w))
1230 return;
1231
1232 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w);
1234}
1235
1236void
1237ev_prepare_start (EV_P_ struct ev_prepare *w)
1238{
1239 if (ev_is_active (w))
1240 return;
1241
1242 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, );
1244 prepares [preparecnt - 1] = w;
1245}
1246
1247void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{
1250 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w))
1252 return;
1253
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w);
1256}
1257
1258void
1259ev_check_start (EV_P_ struct ev_check *w)
1260{
1261 if (ev_is_active (w))
1262 return;
1263
1264 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, );
1266 checks [checkcnt - 1] = w;
1267}
1268
1269void
1270ev_check_stop (EV_P_ struct ev_check *w)
1271{
1272 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w))
1274 return;
1275
1276 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w);
1278}
1279
1280#ifndef SA_RESTART
1281# define SA_RESTART 0
1282#endif
1283
1284void
1285ev_signal_start (EV_P_ struct ev_signal *w)
1286{
1287#if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1289#endif
1290 if (ev_is_active (w))
1291 return;
1292
886 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
887 1294
888 ev_start ((W)w, 1); 1295 ev_start (EV_A_ (W)w, 1);
889 array_needsize (signals, signalmax, w->signum, signals_init); 1296 array_needsize (signals, signalmax, w->signum, signals_init);
890 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
891 1298
892 if (!w->next) 1299 if (!((WL)w)->next)
893 { 1300 {
894 struct sigaction sa; 1301 struct sigaction sa;
895 sa.sa_handler = sighandler; 1302 sa.sa_handler = sighandler;
896 sigfillset (&sa.sa_mask); 1303 sigfillset (&sa.sa_mask);
897 sa.sa_flags = 0; 1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
898 sigaction (w->signum, &sa, 0); 1305 sigaction (w->signum, &sa, 0);
899 } 1306 }
900} 1307}
901 1308
902void 1309void
903ev_signal_stop (struct ev_signal *w) 1310ev_signal_stop (EV_P_ struct ev_signal *w)
904{ 1311{
905 ev_clear_pending ((W)w); 1312 ev_clear_pending (EV_A_ (W)w);
906 if (!ev_is_active (w)) 1313 if (!ev_is_active (w))
907 return; 1314 return;
908 1315
909 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
910 ev_stop ((W)w); 1317 ev_stop (EV_A_ (W)w);
911 1318
912 if (!signals [w->signum - 1].head) 1319 if (!signals [w->signum - 1].head)
913 signal (w->signum, SIG_DFL); 1320 signal (w->signum, SIG_DFL);
914} 1321}
915 1322
916void 1323void
917ev_idle_start (struct ev_idle *w) 1324ev_child_start (EV_P_ struct ev_child *w)
918{ 1325{
1326#if EV_MULTIPLICITY
1327 assert (("child watchers are only supported in the default loop", loop == default_loop));
1328#endif
919 if (ev_is_active (w)) 1329 if (ev_is_active (w))
920 return; 1330 return;
921 1331
922 ev_start ((W)w, ++idlecnt); 1332 ev_start (EV_A_ (W)w, 1);
923 array_needsize (idles, idlemax, idlecnt, ); 1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
924 idles [idlecnt - 1] = w;
925} 1334}
926 1335
927void 1336void
928ev_idle_stop (struct ev_idle *w) 1337ev_child_stop (EV_P_ struct ev_child *w)
929{ 1338{
930 ev_clear_pending ((W)w); 1339 ev_clear_pending (EV_A_ (W)w);
931 if (ev_is_active (w)) 1340 if (ev_is_active (w))
932 return; 1341 return;
933 1342
934 idles [w->active - 1] = idles [--idlecnt];
935 ev_stop ((W)w);
936}
937
938void
939ev_prepare_start (struct ev_prepare *w)
940{
941 if (ev_is_active (w))
942 return;
943
944 ev_start ((W)w, ++preparecnt);
945 array_needsize (prepares, preparemax, preparecnt, );
946 prepares [preparecnt - 1] = w;
947}
948
949void
950ev_prepare_stop (struct ev_prepare *w)
951{
952 ev_clear_pending ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 prepares [w->active - 1] = prepares [--preparecnt];
957 ev_stop ((W)w);
958}
959
960void
961ev_check_start (struct ev_check *w)
962{
963 if (ev_is_active (w))
964 return;
965
966 ev_start ((W)w, ++checkcnt);
967 array_needsize (checks, checkmax, checkcnt, );
968 checks [checkcnt - 1] = w;
969}
970
971void
972ev_check_stop (struct ev_check *w)
973{
974 ev_clear_pending ((W)w);
975 if (ev_is_active (w))
976 return;
977
978 checks [w->active - 1] = checks [--checkcnt];
979 ev_stop ((W)w);
980}
981
982void
983ev_child_start (struct ev_child *w)
984{
985 if (ev_is_active (w))
986 return;
987
988 ev_start ((W)w, 1);
989 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
990}
991
992void
993ev_child_stop (struct ev_child *w)
994{
995 ev_clear_pending ((W)w);
996 if (ev_is_active (w))
997 return;
998
999 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1000 ev_stop ((W)w); 1344 ev_stop (EV_A_ (W)w);
1001} 1345}
1002 1346
1003/*****************************************************************************/ 1347/*****************************************************************************/
1004 1348
1005struct ev_once 1349struct ev_once
1009 void (*cb)(int revents, void *arg); 1353 void (*cb)(int revents, void *arg);
1010 void *arg; 1354 void *arg;
1011}; 1355};
1012 1356
1013static void 1357static void
1014once_cb (struct ev_once *once, int revents) 1358once_cb (EV_P_ struct ev_once *once, int revents)
1015{ 1359{
1016 void (*cb)(int revents, void *arg) = once->cb; 1360 void (*cb)(int revents, void *arg) = once->cb;
1017 void *arg = once->arg; 1361 void *arg = once->arg;
1018 1362
1019 ev_io_stop (&once->io); 1363 ev_io_stop (EV_A_ &once->io);
1020 ev_timer_stop (&once->to); 1364 ev_timer_stop (EV_A_ &once->to);
1021 free (once); 1365 free (once);
1022 1366
1023 cb (revents, arg); 1367 cb (revents, arg);
1024} 1368}
1025 1369
1026static void 1370static void
1027once_cb_io (struct ev_io *w, int revents) 1371once_cb_io (EV_P_ struct ev_io *w, int revents)
1028{ 1372{
1029 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1030} 1374}
1031 1375
1032static void 1376static void
1033once_cb_to (struct ev_timer *w, int revents) 1377once_cb_to (EV_P_ struct ev_timer *w, int revents)
1034{ 1378{
1035 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1036} 1380}
1037 1381
1038void 1382void
1039ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1040{ 1384{
1041 struct ev_once *once = malloc (sizeof (struct ev_once)); 1385 struct ev_once *once = malloc (sizeof (struct ev_once));
1042 1386
1043 if (!once) 1387 if (!once)
1044 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1049 1393
1050 ev_watcher_init (&once->io, once_cb_io); 1394 ev_watcher_init (&once->io, once_cb_io);
1051 if (fd >= 0) 1395 if (fd >= 0)
1052 { 1396 {
1053 ev_io_set (&once->io, fd, events); 1397 ev_io_set (&once->io, fd, events);
1054 ev_io_start (&once->io); 1398 ev_io_start (EV_A_ &once->io);
1055 } 1399 }
1056 1400
1057 ev_watcher_init (&once->to, once_cb_to); 1401 ev_watcher_init (&once->to, once_cb_to);
1058 if (timeout >= 0.) 1402 if (timeout >= 0.)
1059 { 1403 {
1060 ev_timer_set (&once->to, timeout, 0.); 1404 ev_timer_set (&once->to, timeout, 0.);
1061 ev_timer_start (&once->to); 1405 ev_timer_start (EV_A_ &once->to);
1062 } 1406 }
1063 } 1407 }
1064} 1408}
1065 1409
1066/*****************************************************************************/
1067
1068#if 0
1069
1070struct ev_io wio;
1071
1072static void
1073sin_cb (struct ev_io *w, int revents)
1074{
1075 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1076}
1077
1078static void
1079ocb (struct ev_timer *w, int revents)
1080{
1081 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1082 ev_timer_stop (w);
1083 ev_timer_start (w);
1084}
1085
1086static void
1087scb (struct ev_signal *w, int revents)
1088{
1089 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1090 ev_io_stop (&wio);
1091 ev_io_start (&wio);
1092}
1093
1094static void
1095gcb (struct ev_signal *w, int revents)
1096{
1097 fprintf (stderr, "generic %x\n", revents);
1098
1099}
1100
1101int main (void)
1102{
1103 ev_init (0);
1104
1105 ev_io_init (&wio, sin_cb, 0, EV_READ);
1106 ev_io_start (&wio);
1107
1108 struct ev_timer t[10000];
1109
1110#if 0
1111 int i;
1112 for (i = 0; i < 10000; ++i)
1113 {
1114 struct ev_timer *w = t + i;
1115 ev_watcher_init (w, ocb, i);
1116 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1117 ev_timer_start (w);
1118 if (drand48 () < 0.5)
1119 ev_timer_stop (w);
1120 }
1121#endif
1122
1123 struct ev_timer t1;
1124 ev_timer_init (&t1, ocb, 5, 10);
1125 ev_timer_start (&t1);
1126
1127 struct ev_signal sig;
1128 ev_signal_init (&sig, scb, SIGQUIT);
1129 ev_signal_start (&sig);
1130
1131 struct ev_check cw;
1132 ev_check_init (&cw, gcb);
1133 ev_check_start (&cw);
1134
1135 struct ev_idle iw;
1136 ev_idle_init (&iw, gcb);
1137 ev_idle_start (&iw);
1138
1139 ev_loop (0);
1140
1141 return 0;
1142}
1143
1144#endif
1145
1146
1147
1148

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines