ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.36 by root, Thu Nov 1 13:11:11 2007 UTC vs.
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
75/**/
76
51#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
52# ifdef CLOCK_MONOTONIC
53# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
54# endif
55#endif 79#endif
56 80
57#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
59#endif 83#endif
60 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
61#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
62# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
63#endif 91#endif
64 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
65#ifndef CLOCK_REALTIME 116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
66# define EV_USE_REALTIME 0 118# define EV_USE_REALTIME 0
67#endif 119#endif
68#ifndef EV_USE_REALTIME 120
69# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 121/**/
70#endif
71 122
72#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
73#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
74#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
75#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
76 127
77#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
78 143
79typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
80typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
81typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
82 147
83static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
84ev_tstamp ev_now;
85int ev_method;
86
87static int have_monotonic; /* runtime */
88
89static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
90static void (*method_modify)(int fd, int oev, int nev);
91static void (*method_poll)(ev_tstamp timeout);
92 149
93/*****************************************************************************/ 150/*****************************************************************************/
94 151
95ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
96ev_time (void) 186ev_time (void)
97{ 187{
98#if EV_USE_REALTIME 188#if EV_USE_REALTIME
99 struct timespec ts; 189 struct timespec ts;
100 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
104 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
105 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
106#endif 196#endif
107} 197}
108 198
109static ev_tstamp 199inline ev_tstamp
110get_clock (void) 200get_clock (void)
111{ 201{
112#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
113 if (have_monotonic) 203 if (expect_true (have_monotonic))
114 { 204 {
115 struct timespec ts; 205 struct timespec ts;
116 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
117 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
118 } 208 }
119#endif 209#endif
120 210
121 return ev_time (); 211 return ev_time ();
122} 212}
123 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
124#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
125 221
126#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
127 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
128 { \ 224 { \
129 int newcnt = cur; \ 225 int newcnt = cur; \
130 do \ 226 do \
131 { \ 227 { \
132 newcnt = array_roundsize (base, newcnt << 1); \ 228 newcnt = array_roundsize (base, newcnt << 1); \
136 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
137 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
138 cur = newcnt; \ 234 cur = newcnt; \
139 } 235 }
140 236
237#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239
141/*****************************************************************************/ 240/*****************************************************************************/
142
143typedef struct
144{
145 struct ev_io *head;
146 unsigned char events;
147 unsigned char reify;
148} ANFD;
149
150static ANFD *anfds;
151static int anfdmax;
152 241
153static void 242static void
154anfds_init (ANFD *base, int count) 243anfds_init (ANFD *base, int count)
155{ 244{
156 while (count--) 245 while (count--)
161 250
162 ++base; 251 ++base;
163 } 252 }
164} 253}
165 254
166typedef struct
167{
168 W w;
169 int events;
170} ANPENDING;
171
172static ANPENDING *pendings;
173static int pendingmax, pendingcnt;
174
175static void 255static void
176event (W w, int events) 256event (EV_P_ W w, int events)
177{ 257{
178 if (w->pending) 258 if (w->pending)
179 { 259 {
180 pendings [w->pending - 1].events |= events; 260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
181 return; 261 return;
182 } 262 }
183 263
184 w->pending = ++pendingcnt; 264 w->pending = ++pendingcnt [ABSPRI (w)];
185 array_needsize (pendings, pendingmax, pendingcnt, ); 265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
186 pendings [pendingcnt - 1].w = w; 266 pendings [ABSPRI (w)][w->pending - 1].w = w;
187 pendings [pendingcnt - 1].events = events; 267 pendings [ABSPRI (w)][w->pending - 1].events = events;
188} 268}
189 269
190static void 270static void
191queue_events (W *events, int eventcnt, int type) 271queue_events (EV_P_ W *events, int eventcnt, int type)
192{ 272{
193 int i; 273 int i;
194 274
195 for (i = 0; i < eventcnt; ++i) 275 for (i = 0; i < eventcnt; ++i)
196 event (events [i], type); 276 event (EV_A_ events [i], type);
197} 277}
198 278
199static void 279static void
200fd_event (int fd, int events) 280fd_event (EV_P_ int fd, int events)
201{ 281{
202 ANFD *anfd = anfds + fd; 282 ANFD *anfd = anfds + fd;
203 struct ev_io *w; 283 struct ev_io *w;
204 284
205 for (w = anfd->head; w; w = w->next) 285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
206 { 286 {
207 int ev = w->events & events; 287 int ev = w->events & events;
208 288
209 if (ev) 289 if (ev)
210 event ((W)w, ev); 290 event (EV_A_ (W)w, ev);
211 } 291 }
212} 292}
213 293
214/*****************************************************************************/ 294/*****************************************************************************/
215 295
216static int *fdchanges;
217static int fdchangemax, fdchangecnt;
218
219static void 296static void
220fd_reify (void) 297fd_reify (EV_P)
221{ 298{
222 int i; 299 int i;
223 300
224 for (i = 0; i < fdchangecnt; ++i) 301 for (i = 0; i < fdchangecnt; ++i)
225 { 302 {
227 ANFD *anfd = anfds + fd; 304 ANFD *anfd = anfds + fd;
228 struct ev_io *w; 305 struct ev_io *w;
229 306
230 int events = 0; 307 int events = 0;
231 308
232 for (w = anfd->head; w; w = w->next) 309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
233 events |= w->events; 310 events |= w->events;
234 311
235 anfd->reify = 0; 312 anfd->reify = 0;
236 313
237 if (anfd->events != events)
238 {
239 method_modify (fd, anfd->events, events); 314 method_modify (EV_A_ fd, anfd->events, events);
240 anfd->events = events; 315 anfd->events = events;
241 }
242 } 316 }
243 317
244 fdchangecnt = 0; 318 fdchangecnt = 0;
245} 319}
246 320
247static void 321static void
248fd_change (int fd) 322fd_change (EV_P_ int fd)
249{ 323{
250 if (anfds [fd].reify || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
251 return; 325 return;
252 326
253 anfds [fd].reify = 1; 327 anfds [fd].reify = 1;
255 ++fdchangecnt; 329 ++fdchangecnt;
256 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
257 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
258} 332}
259 333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344}
345
260/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
261static void 347static void
262fd_recheck (void) 348fd_ebadf (EV_P)
263{ 349{
264 int fd; 350 int fd;
265 351
266 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
267 if (anfds [fd].events) 353 if (anfds [fd].events)
268 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
269 while (anfds [fd].head) 355 fd_kill (EV_A_ fd);
356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
270 { 366 {
271 ev_io_stop (anfds [fd].head); 367 close (fd);
272 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 368 fd_kill (EV_A_ fd);
369 return;
273 } 370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
274} 386}
275 387
276/*****************************************************************************/ 388/*****************************************************************************/
277 389
278static struct ev_timer **timers;
279static int timermax, timercnt;
280
281static struct ev_periodic **periodics;
282static int periodicmax, periodiccnt;
283
284static void 390static void
285upheap (WT *timers, int k) 391upheap (WT *heap, int k)
286{ 392{
287 WT w = timers [k]; 393 WT w = heap [k];
288 394
289 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
290 { 396 {
291 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
292 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
293 k >>= 1; 399 k >>= 1;
294 } 400 }
295 401
296 timers [k] = w; 402 heap [k] = w;
297 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
298 404
299} 405}
300 406
301static void 407static void
302downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
303{ 409{
304 WT w = timers [k]; 410 WT w = heap [k];
305 411
306 while (k < (N >> 1)) 412 while (k < (N >> 1))
307 { 413 {
308 int j = k << 1; 414 int j = k << 1;
309 415
310 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
311 ++j; 417 ++j;
312 418
313 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
314 break; 420 break;
315 421
316 timers [k] = timers [j]; 422 heap [k] = heap [j];
317 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
318 k = j; 424 k = j;
319 } 425 }
320 426
321 timers [k] = w; 427 heap [k] = w;
322 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
323} 429}
324 430
325/*****************************************************************************/ 431/*****************************************************************************/
326 432
327typedef struct 433typedef struct
328{ 434{
329 struct ev_signal *head; 435 struct ev_watcher_list *head;
330 sig_atomic_t volatile gotsig; 436 sig_atomic_t volatile gotsig;
331} ANSIG; 437} ANSIG;
332 438
333static ANSIG *signals; 439static ANSIG *signals;
334static int signalmax; 440static int signalmax;
354{ 460{
355 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
356 462
357 if (!gotsig) 463 if (!gotsig)
358 { 464 {
465 int old_errno = errno;
359 gotsig = 1; 466 gotsig = 1;
360 write (sigpipe [1], &signum, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
361 } 469 }
362} 470}
363 471
364static void 472static void
365sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
366{ 474{
367 struct ev_signal *w; 475 struct ev_watcher_list *w;
368 int sig; 476 int signum;
369 477
370 read (sigpipe [0], &revents, 1); 478 read (sigpipe [0], &revents, 1);
371 gotsig = 0; 479 gotsig = 0;
372 480
373 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
374 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
375 { 483 {
376 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
377 485
378 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
379 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
380 } 488 }
381} 489}
382 490
383static void 491static void
384siginit (void) 492siginit (EV_P)
385{ 493{
494#ifndef WIN32
386 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
387 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
388 497
389 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
390 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
391 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
392 502
393 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
394 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
395} 506}
396 507
397/*****************************************************************************/ 508/*****************************************************************************/
398 509
399static struct ev_idle **idles; 510#ifndef WIN32
400static int idlemax, idlecnt;
401
402static struct ev_prepare **prepares;
403static int preparemax, preparecnt;
404
405static struct ev_check **checks;
406static int checkmax, checkcnt;
407
408/*****************************************************************************/
409 511
410static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
411static struct ev_signal childev; 513static struct ev_signal childev;
412 514
413#ifndef WCONTINUED 515#ifndef WCONTINUED
414# define WCONTINUED 0 516# define WCONTINUED 0
415#endif 517#endif
416 518
417static void 519static void
418childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
419{ 521{
420 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
421 int pid, status; 537 int pid, status;
422 538
423 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
424 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
425 if (w->pid == pid || w->pid == -1) 541 /* make sure we are called again until all childs have been reaped */
426 { 542 event (EV_A_ (W)sw, EV_SIGNAL);
427 w->status = status; 543
428 event ((W)w, EV_CHILD); 544 child_reap (EV_A_ sw, pid, pid, status);
429 } 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
430} 547}
548
549#endif
431 550
432/*****************************************************************************/ 551/*****************************************************************************/
433 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
434#if EV_USE_EPOLL 556#if EV_USE_EPOLL
435# include "ev_epoll.c" 557# include "ev_epoll.c"
436#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
437#if EV_USE_SELECT 562#if EV_USE_SELECT
438# include "ev_select.c" 563# include "ev_select.c"
439#endif 564#endif
440 565
441int 566int
448ev_version_minor (void) 573ev_version_minor (void)
449{ 574{
450 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
451} 576}
452 577
453int ev_init (int flags) 578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
454{ 581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
455 if (!ev_method) 599 if (!method)
456 { 600 {
457#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
458 { 602 {
459 struct timespec ts; 603 struct timespec ts;
460 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
461 have_monotonic = 1; 605 have_monotonic = 1;
462 } 606 }
463#endif 607#endif
464 608
465 ev_now = ev_time (); 609 rt_now = ev_time ();
466 now = get_clock (); 610 mn_now = get_clock ();
611 now_floor = mn_now;
467 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
468 613
469 if (pipe (sigpipe)) 614 if (methods == EVMETHOD_AUTO)
470 return 0; 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
471 616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
472 ev_method = EVMETHOD_NONE; 618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
473#if EV_USE_EPOLL 627#if EV_USE_EPOLL
474 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
475#endif 632#endif
476#if EV_USE_SELECT 633#if EV_USE_SELECT
477 if (ev_method == EVMETHOD_NONE) select_init (flags); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
478#endif 635#endif
636 }
637}
479 638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY
687struct ev_loop *
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe))
729 return 0;
730
731 if (!default_loop)
732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1;
737#endif
738
739 loop_init (EV_A_ methods);
740
480 if (ev_method) 741 if (ev_method (EV_A))
481 { 742 {
482 ev_watcher_init (&sigev, sigcb); 743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
483 siginit (); 745 siginit (EV_A);
484 746
747#ifndef WIN32
485 ev_signal_init (&childev, childcb, SIGCHLD); 748 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI);
486 ev_signal_start (&childev); 750 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif
487 } 753 }
754 else
755 default_loop = 0;
488 } 756 }
489 757
490 return ev_method; 758 return default_loop;
491} 759}
492 760
493/*****************************************************************************/
494
495void 761void
496ev_fork_prepare (void) 762ev_default_destroy (void)
497{ 763{
498 /* nop */ 764#if EV_MULTIPLICITY
499} 765 struct ev_loop *loop = default_loop;
500
501void
502ev_fork_parent (void)
503{
504 /* nop */
505}
506
507void
508ev_fork_child (void)
509{
510#if EV_USE_EPOLL
511 if (ev_method == EVMETHOD_EPOLL)
512 epoll_postfork_child ();
513#endif 766#endif
514 767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
515 ev_io_stop (&sigev); 772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
516 close (sigpipe [0]); 790 close (sigpipe [0]);
517 close (sigpipe [1]); 791 close (sigpipe [1]);
518 pipe (sigpipe); 792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
519 siginit (); 795 siginit (EV_A);
520} 796}
521 797
522/*****************************************************************************/ 798/*****************************************************************************/
523 799
524static void 800static void
525call_pending (void) 801call_pending (EV_P)
526{ 802{
803 int pri;
804
805 for (pri = NUMPRI; pri--; )
527 while (pendingcnt) 806 while (pendingcnt [pri])
528 { 807 {
529 ANPENDING *p = pendings + --pendingcnt; 808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
530 809
531 if (p->w) 810 if (p->w)
532 { 811 {
533 p->w->pending = 0; 812 p->w->pending = 0;
534 p->w->cb (p->w, p->events); 813
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events);
535 } 815 }
536 } 816 }
537} 817}
538 818
539static void 819static void
540timers_reify (void) 820timers_reify (EV_P)
541{ 821{
542 while (timercnt && timers [0]->at <= now) 822 while (timercnt && ((WT)timers [0])->at <= mn_now)
543 { 823 {
544 struct ev_timer *w = timers [0]; 824 struct ev_timer *w = timers [0];
825
826 assert (("inactive timer on timer heap detected", ev_is_active (w)));
545 827
546 /* first reschedule or stop timer */ 828 /* first reschedule or stop timer */
547 if (w->repeat) 829 if (w->repeat)
548 { 830 {
549 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
550 w->at = now + w->repeat; 832 ((WT)w)->at = mn_now + w->repeat;
551 downheap ((WT *)timers, timercnt, 0); 833 downheap ((WT *)timers, timercnt, 0);
552 } 834 }
553 else 835 else
554 ev_timer_stop (w); /* nonrepeating: stop timer */ 836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
555 837
556 event ((W)w, EV_TIMEOUT); 838 event (EV_A_ (W)w, EV_TIMEOUT);
557 } 839 }
558} 840}
559 841
560static void 842static void
561periodics_reify (void) 843periodics_reify (EV_P)
562{ 844{
563 while (periodiccnt && periodics [0]->at <= ev_now) 845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
564 { 846 {
565 struct ev_periodic *w = periodics [0]; 847 struct ev_periodic *w = periodics [0];
848
849 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
566 850
567 /* first reschedule or stop timer */ 851 /* first reschedule or stop timer */
568 if (w->interval) 852 if (w->interval)
569 { 853 {
570 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
571 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
572 downheap ((WT *)periodics, periodiccnt, 0); 856 downheap ((WT *)periodics, periodiccnt, 0);
573 } 857 }
574 else 858 else
575 ev_periodic_stop (w); /* nonrepeating: stop timer */ 859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
576 860
577 event ((W)w, EV_PERIODIC); 861 event (EV_A_ (W)w, EV_PERIODIC);
578 } 862 }
579} 863}
580 864
581static void 865static void
582periodics_reschedule (ev_tstamp diff) 866periodics_reschedule (EV_P)
583{ 867{
584 int i; 868 int i;
585 869
586 /* adjust periodics after time jump */ 870 /* adjust periodics after time jump */
587 for (i = 0; i < periodiccnt; ++i) 871 for (i = 0; i < periodiccnt; ++i)
588 { 872 {
589 struct ev_periodic *w = periodics [i]; 873 struct ev_periodic *w = periodics [i];
590 874
591 if (w->interval) 875 if (w->interval)
592 { 876 {
593 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
594 878
595 if (fabs (diff) >= 1e-4) 879 if (fabs (diff) >= 1e-4)
596 { 880 {
597 ev_periodic_stop (w); 881 ev_periodic_stop (EV_A_ w);
598 ev_periodic_start (w); 882 ev_periodic_start (EV_A_ w);
599 883
600 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
601 } 885 }
602 } 886 }
603 } 887 }
604} 888}
605 889
890inline int
891time_update_monotonic (EV_P)
892{
893 mn_now = get_clock ();
894
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
896 {
897 rt_now = rtmn_diff + mn_now;
898 return 0;
899 }
900 else
901 {
902 now_floor = mn_now;
903 rt_now = ev_time ();
904 return 1;
905 }
906}
907
606static void 908static void
607time_update (void) 909time_update (EV_P)
608{ 910{
609 int i; 911 int i;
610 912
611 ev_now = ev_time (); 913#if EV_USE_MONOTONIC
612
613 if (have_monotonic) 914 if (expect_true (have_monotonic))
614 { 915 {
615 ev_tstamp odiff = diff; 916 if (time_update_monotonic (EV_A))
616
617 for (i = 4; --i; ) /* loop a few times, before making important decisions */
618 { 917 {
619 now = get_clock (); 918 ev_tstamp odiff = rtmn_diff;
919
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */
921 {
620 diff = ev_now - now; 922 rtmn_diff = rt_now - mn_now;
621 923
622 if (fabs (odiff - diff) < MIN_TIMEJUMP) 924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
623 return; /* all is well */ 925 return; /* all is well */
624 926
625 ev_now = ev_time (); 927 rt_now = ev_time ();
928 mn_now = get_clock ();
929 now_floor = mn_now;
930 }
931
932 periodics_reschedule (EV_A);
933 /* no timer adjustment, as the monotonic clock doesn't jump */
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
626 } 935 }
627
628 periodics_reschedule (diff - odiff);
629 /* no timer adjustment, as the monotonic clock doesn't jump */
630 } 936 }
631 else 937 else
938#endif
632 { 939 {
633 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 940 rt_now = ev_time ();
941
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
634 { 943 {
635 periodics_reschedule (ev_now - now); 944 periodics_reschedule (EV_A);
636 945
637 /* adjust timers. this is easy, as the offset is the same for all */ 946 /* adjust timers. this is easy, as the offset is the same for all */
638 for (i = 0; i < timercnt; ++i) 947 for (i = 0; i < timercnt; ++i)
639 timers [i]->at += diff; 948 ((WT)timers [i])->at += rt_now - mn_now;
640 } 949 }
641 950
642 now = ev_now; 951 mn_now = rt_now;
643 } 952 }
644} 953}
645 954
646int ev_loop_done; 955void
956ev_ref (EV_P)
957{
958 ++activecnt;
959}
647 960
961void
962ev_unref (EV_P)
963{
964 --activecnt;
965}
966
967static int loop_done;
968
969void
648void ev_loop (int flags) 970ev_loop (EV_P_ int flags)
649{ 971{
650 double block; 972 double block;
651 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
652 974
653 do 975 do
654 { 976 {
655 /* queue check watchers (and execute them) */ 977 /* queue check watchers (and execute them) */
656 if (preparecnt) 978 if (expect_false (preparecnt))
657 { 979 {
658 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
659 call_pending (); 981 call_pending (EV_A);
660 } 982 }
661 983
662 /* update fd-related kernel structures */ 984 /* update fd-related kernel structures */
663 fd_reify (); 985 fd_reify (EV_A);
664 986
665 /* calculate blocking time */ 987 /* calculate blocking time */
666 988
667 /* we only need this for !monotonic clockor timers, but as we basically 989 /* we only need this for !monotonic clockor timers, but as we basically
668 always have timers, we just calculate it always */ 990 always have timers, we just calculate it always */
991#if EV_USE_MONOTONIC
992 if (expect_true (have_monotonic))
993 time_update_monotonic (EV_A);
994 else
995#endif
996 {
669 ev_now = ev_time (); 997 rt_now = ev_time ();
998 mn_now = rt_now;
999 }
670 1000
671 if (flags & EVLOOP_NONBLOCK || idlecnt) 1001 if (flags & EVLOOP_NONBLOCK || idlecnt)
672 block = 0.; 1002 block = 0.;
673 else 1003 else
674 { 1004 {
675 block = MAX_BLOCKTIME; 1005 block = MAX_BLOCKTIME;
676 1006
677 if (timercnt) 1007 if (timercnt)
678 { 1008 {
679 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
680 if (block > to) block = to; 1010 if (block > to) block = to;
681 } 1011 }
682 1012
683 if (periodiccnt) 1013 if (periodiccnt)
684 { 1014 {
685 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
686 if (block > to) block = to; 1016 if (block > to) block = to;
687 } 1017 }
688 1018
689 if (block < 0.) block = 0.; 1019 if (block < 0.) block = 0.;
690 } 1020 }
691 1021
692 method_poll (block); 1022 method_poll (EV_A_ block);
693 1023
694 /* update ev_now, do magic */ 1024 /* update rt_now, do magic */
695 time_update (); 1025 time_update (EV_A);
696 1026
697 /* queue pending timers and reschedule them */ 1027 /* queue pending timers and reschedule them */
698 timers_reify (); /* relative timers called last */ 1028 timers_reify (EV_A); /* relative timers called last */
699 periodics_reify (); /* absolute timers called first */ 1029 periodics_reify (EV_A); /* absolute timers called first */
700 1030
701 /* queue idle watchers unless io or timers are pending */ 1031 /* queue idle watchers unless io or timers are pending */
702 if (!pendingcnt) 1032 if (!pendingcnt)
703 queue_events ((W *)idles, idlecnt, EV_IDLE); 1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
704 1034
705 /* queue check watchers, to be executed first */ 1035 /* queue check watchers, to be executed first */
706 if (checkcnt) 1036 if (checkcnt)
707 queue_events ((W *)checks, checkcnt, EV_CHECK); 1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
708 1038
709 call_pending (); 1039 call_pending (EV_A);
710 } 1040 }
711 while (!ev_loop_done); 1041 while (activecnt && !loop_done);
712 1042
713 if (ev_loop_done != 2) 1043 if (loop_done != 2)
714 ev_loop_done = 0; 1044 loop_done = 0;
1045}
1046
1047void
1048ev_unloop (EV_P_ int how)
1049{
1050 loop_done = how;
715} 1051}
716 1052
717/*****************************************************************************/ 1053/*****************************************************************************/
718 1054
719static void 1055inline void
720wlist_add (WL *head, WL elem) 1056wlist_add (WL *head, WL elem)
721{ 1057{
722 elem->next = *head; 1058 elem->next = *head;
723 *head = elem; 1059 *head = elem;
724} 1060}
725 1061
726static void 1062inline void
727wlist_del (WL *head, WL elem) 1063wlist_del (WL *head, WL elem)
728{ 1064{
729 while (*head) 1065 while (*head)
730 { 1066 {
731 if (*head == elem) 1067 if (*head == elem)
736 1072
737 head = &(*head)->next; 1073 head = &(*head)->next;
738 } 1074 }
739} 1075}
740 1076
741static void 1077inline void
742ev_clear_pending (W w) 1078ev_clear_pending (EV_P_ W w)
743{ 1079{
744 if (w->pending) 1080 if (w->pending)
745 { 1081 {
746 pendings [w->pending - 1].w = 0; 1082 pendings [ABSPRI (w)][w->pending - 1].w = 0;
747 w->pending = 0; 1083 w->pending = 0;
748 } 1084 }
749} 1085}
750 1086
751static void 1087inline void
752ev_start (W w, int active) 1088ev_start (EV_P_ W w, int active)
753{ 1089{
1090 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1091 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1092
754 w->active = active; 1093 w->active = active;
1094 ev_ref (EV_A);
755} 1095}
756 1096
757static void 1097inline void
758ev_stop (W w) 1098ev_stop (EV_P_ W w)
759{ 1099{
1100 ev_unref (EV_A);
760 w->active = 0; 1101 w->active = 0;
761} 1102}
762 1103
763/*****************************************************************************/ 1104/*****************************************************************************/
764 1105
765void 1106void
766ev_io_start (struct ev_io *w) 1107ev_io_start (EV_P_ struct ev_io *w)
767{ 1108{
1109 int fd = w->fd;
1110
768 if (ev_is_active (w)) 1111 if (ev_is_active (w))
769 return; 1112 return;
770 1113
771 int fd = w->fd;
772
773 assert (("ev_io_start called with negative fd", fd >= 0)); 1114 assert (("ev_io_start called with negative fd", fd >= 0));
774 1115
775 ev_start ((W)w, 1); 1116 ev_start (EV_A_ (W)w, 1);
776 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
777 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1118 wlist_add ((WL *)&anfds[fd].head, (WL)w);
778 1119
779 fd_change (fd); 1120 fd_change (EV_A_ fd);
780} 1121}
781 1122
782void 1123void
783ev_io_stop (struct ev_io *w) 1124ev_io_stop (EV_P_ struct ev_io *w)
784{ 1125{
785 ev_clear_pending ((W)w); 1126 ev_clear_pending (EV_A_ (W)w);
786 if (!ev_is_active (w)) 1127 if (!ev_is_active (w))
787 return; 1128 return;
788 1129
789 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
790 ev_stop ((W)w); 1131 ev_stop (EV_A_ (W)w);
791 1132
792 fd_change (w->fd); 1133 fd_change (EV_A_ w->fd);
793} 1134}
794 1135
795void 1136void
796ev_timer_start (struct ev_timer *w) 1137ev_timer_start (EV_P_ struct ev_timer *w)
797{ 1138{
798 if (ev_is_active (w)) 1139 if (ev_is_active (w))
799 return; 1140 return;
800 1141
801 w->at += now; 1142 ((WT)w)->at += mn_now;
802 1143
803 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
804 1145
805 ev_start ((W)w, ++timercnt); 1146 ev_start (EV_A_ (W)w, ++timercnt);
806 array_needsize (timers, timermax, timercnt, ); 1147 array_needsize (timers, timermax, timercnt, );
807 timers [timercnt - 1] = w; 1148 timers [timercnt - 1] = w;
808 upheap ((WT *)timers, timercnt - 1); 1149 upheap ((WT *)timers, timercnt - 1);
809}
810 1150
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1152}
1153
811void 1154void
812ev_timer_stop (struct ev_timer *w) 1155ev_timer_stop (EV_P_ struct ev_timer *w)
813{ 1156{
814 ev_clear_pending ((W)w); 1157 ev_clear_pending (EV_A_ (W)w);
815 if (!ev_is_active (w)) 1158 if (!ev_is_active (w))
816 return; 1159 return;
817 1160
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1162
818 if (w->active < timercnt--) 1163 if (((W)w)->active < timercnt--)
819 { 1164 {
820 timers [w->active - 1] = timers [timercnt]; 1165 timers [((W)w)->active - 1] = timers [timercnt];
821 downheap ((WT *)timers, timercnt, w->active - 1); 1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
822 } 1167 }
823 1168
824 w->at = w->repeat; 1169 ((WT)w)->at = w->repeat;
825 1170
826 ev_stop ((W)w); 1171 ev_stop (EV_A_ (W)w);
827} 1172}
828 1173
829void 1174void
830ev_timer_again (struct ev_timer *w) 1175ev_timer_again (EV_P_ struct ev_timer *w)
831{ 1176{
832 if (ev_is_active (w)) 1177 if (ev_is_active (w))
833 { 1178 {
834 if (w->repeat) 1179 if (w->repeat)
835 { 1180 {
836 w->at = now + w->repeat; 1181 ((WT)w)->at = mn_now + w->repeat;
837 downheap ((WT *)timers, timercnt, w->active - 1); 1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
838 } 1183 }
839 else 1184 else
840 ev_timer_stop (w); 1185 ev_timer_stop (EV_A_ w);
841 } 1186 }
842 else if (w->repeat) 1187 else if (w->repeat)
843 ev_timer_start (w); 1188 ev_timer_start (EV_A_ w);
844} 1189}
845 1190
846void 1191void
847ev_periodic_start (struct ev_periodic *w) 1192ev_periodic_start (EV_P_ struct ev_periodic *w)
848{ 1193{
849 if (ev_is_active (w)) 1194 if (ev_is_active (w))
850 return; 1195 return;
851 1196
852 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
853 1198
854 /* this formula differs from the one in periodic_reify because we do not always round up */ 1199 /* this formula differs from the one in periodic_reify because we do not always round up */
855 if (w->interval) 1200 if (w->interval)
856 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
857 1202
858 ev_start ((W)w, ++periodiccnt); 1203 ev_start (EV_A_ (W)w, ++periodiccnt);
859 array_needsize (periodics, periodicmax, periodiccnt, ); 1204 array_needsize (periodics, periodicmax, periodiccnt, );
860 periodics [periodiccnt - 1] = w; 1205 periodics [periodiccnt - 1] = w;
861 upheap ((WT *)periodics, periodiccnt - 1); 1206 upheap ((WT *)periodics, periodiccnt - 1);
862}
863 1207
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1209}
1210
864void 1211void
865ev_periodic_stop (struct ev_periodic *w) 1212ev_periodic_stop (EV_P_ struct ev_periodic *w)
866{ 1213{
867 ev_clear_pending ((W)w); 1214 ev_clear_pending (EV_A_ (W)w);
868 if (!ev_is_active (w)) 1215 if (!ev_is_active (w))
869 return; 1216 return;
870 1217
1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1219
871 if (w->active < periodiccnt--) 1220 if (((W)w)->active < periodiccnt--)
872 { 1221 {
873 periodics [w->active - 1] = periodics [periodiccnt]; 1222 periodics [((W)w)->active - 1] = periodics [periodiccnt];
874 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
875 } 1224 }
876 1225
877 ev_stop ((W)w); 1226 ev_stop (EV_A_ (W)w);
878} 1227}
879 1228
880void 1229void
881ev_signal_start (struct ev_signal *w) 1230ev_idle_start (EV_P_ struct ev_idle *w)
882{ 1231{
883 if (ev_is_active (w)) 1232 if (ev_is_active (w))
884 return; 1233 return;
885 1234
1235 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, );
1237 idles [idlecnt - 1] = w;
1238}
1239
1240void
1241ev_idle_stop (EV_P_ struct ev_idle *w)
1242{
1243 ev_clear_pending (EV_A_ (W)w);
1244 if (ev_is_active (w))
1245 return;
1246
1247 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 ev_stop (EV_A_ (W)w);
1249}
1250
1251void
1252ev_prepare_start (EV_P_ struct ev_prepare *w)
1253{
1254 if (ev_is_active (w))
1255 return;
1256
1257 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, );
1259 prepares [preparecnt - 1] = w;
1260}
1261
1262void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264{
1265 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w))
1267 return;
1268
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 ev_stop (EV_A_ (W)w);
1271}
1272
1273void
1274ev_check_start (EV_P_ struct ev_check *w)
1275{
1276 if (ev_is_active (w))
1277 return;
1278
1279 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, );
1281 checks [checkcnt - 1] = w;
1282}
1283
1284void
1285ev_check_stop (EV_P_ struct ev_check *w)
1286{
1287 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w))
1289 return;
1290
1291 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 ev_stop (EV_A_ (W)w);
1293}
1294
1295#ifndef SA_RESTART
1296# define SA_RESTART 0
1297#endif
1298
1299void
1300ev_signal_start (EV_P_ struct ev_signal *w)
1301{
1302#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1304#endif
1305 if (ev_is_active (w))
1306 return;
1307
886 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
887 1309
888 ev_start ((W)w, 1); 1310 ev_start (EV_A_ (W)w, 1);
889 array_needsize (signals, signalmax, w->signum, signals_init); 1311 array_needsize (signals, signalmax, w->signum, signals_init);
890 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
891 1313
892 if (!w->next) 1314 if (!((WL)w)->next)
893 { 1315 {
894 struct sigaction sa; 1316 struct sigaction sa;
895 sa.sa_handler = sighandler; 1317 sa.sa_handler = sighandler;
896 sigfillset (&sa.sa_mask); 1318 sigfillset (&sa.sa_mask);
897 sa.sa_flags = 0; 1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
898 sigaction (w->signum, &sa, 0); 1320 sigaction (w->signum, &sa, 0);
899 } 1321 }
900} 1322}
901 1323
902void 1324void
903ev_signal_stop (struct ev_signal *w) 1325ev_signal_stop (EV_P_ struct ev_signal *w)
904{ 1326{
905 ev_clear_pending ((W)w); 1327 ev_clear_pending (EV_A_ (W)w);
906 if (!ev_is_active (w)) 1328 if (!ev_is_active (w))
907 return; 1329 return;
908 1330
909 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1331 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
910 ev_stop ((W)w); 1332 ev_stop (EV_A_ (W)w);
911 1333
912 if (!signals [w->signum - 1].head) 1334 if (!signals [w->signum - 1].head)
913 signal (w->signum, SIG_DFL); 1335 signal (w->signum, SIG_DFL);
914} 1336}
915 1337
916void 1338void
917ev_idle_start (struct ev_idle *w) 1339ev_child_start (EV_P_ struct ev_child *w)
918{ 1340{
1341#if EV_MULTIPLICITY
1342 assert (("child watchers are only supported in the default loop", loop == default_loop));
1343#endif
919 if (ev_is_active (w)) 1344 if (ev_is_active (w))
920 return; 1345 return;
921 1346
922 ev_start ((W)w, ++idlecnt); 1347 ev_start (EV_A_ (W)w, 1);
923 array_needsize (idles, idlemax, idlecnt, ); 1348 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
924 idles [idlecnt - 1] = w;
925} 1349}
926 1350
927void 1351void
928ev_idle_stop (struct ev_idle *w) 1352ev_child_stop (EV_P_ struct ev_child *w)
929{ 1353{
930 ev_clear_pending ((W)w); 1354 ev_clear_pending (EV_A_ (W)w);
931 if (ev_is_active (w)) 1355 if (ev_is_active (w))
932 return; 1356 return;
933 1357
934 idles [w->active - 1] = idles [--idlecnt];
935 ev_stop ((W)w);
936}
937
938void
939ev_prepare_start (struct ev_prepare *w)
940{
941 if (ev_is_active (w))
942 return;
943
944 ev_start ((W)w, ++preparecnt);
945 array_needsize (prepares, preparemax, preparecnt, );
946 prepares [preparecnt - 1] = w;
947}
948
949void
950ev_prepare_stop (struct ev_prepare *w)
951{
952 ev_clear_pending ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 prepares [w->active - 1] = prepares [--preparecnt];
957 ev_stop ((W)w);
958}
959
960void
961ev_check_start (struct ev_check *w)
962{
963 if (ev_is_active (w))
964 return;
965
966 ev_start ((W)w, ++checkcnt);
967 array_needsize (checks, checkmax, checkcnt, );
968 checks [checkcnt - 1] = w;
969}
970
971void
972ev_check_stop (struct ev_check *w)
973{
974 ev_clear_pending ((W)w);
975 if (ev_is_active (w))
976 return;
977
978 checks [w->active - 1] = checks [--checkcnt];
979 ev_stop ((W)w);
980}
981
982void
983ev_child_start (struct ev_child *w)
984{
985 if (ev_is_active (w))
986 return;
987
988 ev_start ((W)w, 1);
989 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
990}
991
992void
993ev_child_stop (struct ev_child *w)
994{
995 ev_clear_pending ((W)w);
996 if (ev_is_active (w))
997 return;
998
999 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1000 ev_stop ((W)w); 1359 ev_stop (EV_A_ (W)w);
1001} 1360}
1002 1361
1003/*****************************************************************************/ 1362/*****************************************************************************/
1004 1363
1005struct ev_once 1364struct ev_once
1009 void (*cb)(int revents, void *arg); 1368 void (*cb)(int revents, void *arg);
1010 void *arg; 1369 void *arg;
1011}; 1370};
1012 1371
1013static void 1372static void
1014once_cb (struct ev_once *once, int revents) 1373once_cb (EV_P_ struct ev_once *once, int revents)
1015{ 1374{
1016 void (*cb)(int revents, void *arg) = once->cb; 1375 void (*cb)(int revents, void *arg) = once->cb;
1017 void *arg = once->arg; 1376 void *arg = once->arg;
1018 1377
1019 ev_io_stop (&once->io); 1378 ev_io_stop (EV_A_ &once->io);
1020 ev_timer_stop (&once->to); 1379 ev_timer_stop (EV_A_ &once->to);
1021 free (once); 1380 free (once);
1022 1381
1023 cb (revents, arg); 1382 cb (revents, arg);
1024} 1383}
1025 1384
1026static void 1385static void
1027once_cb_io (struct ev_io *w, int revents) 1386once_cb_io (EV_P_ struct ev_io *w, int revents)
1028{ 1387{
1029 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1388 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1030} 1389}
1031 1390
1032static void 1391static void
1033once_cb_to (struct ev_timer *w, int revents) 1392once_cb_to (EV_P_ struct ev_timer *w, int revents)
1034{ 1393{
1035 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1394 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1036} 1395}
1037 1396
1038void 1397void
1039ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1040{ 1399{
1041 struct ev_once *once = malloc (sizeof (struct ev_once)); 1400 struct ev_once *once = malloc (sizeof (struct ev_once));
1042 1401
1043 if (!once) 1402 if (!once)
1044 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1049 1408
1050 ev_watcher_init (&once->io, once_cb_io); 1409 ev_watcher_init (&once->io, once_cb_io);
1051 if (fd >= 0) 1410 if (fd >= 0)
1052 { 1411 {
1053 ev_io_set (&once->io, fd, events); 1412 ev_io_set (&once->io, fd, events);
1054 ev_io_start (&once->io); 1413 ev_io_start (EV_A_ &once->io);
1055 } 1414 }
1056 1415
1057 ev_watcher_init (&once->to, once_cb_to); 1416 ev_watcher_init (&once->to, once_cb_to);
1058 if (timeout >= 0.) 1417 if (timeout >= 0.)
1059 { 1418 {
1060 ev_timer_set (&once->to, timeout, 0.); 1419 ev_timer_set (&once->to, timeout, 0.);
1061 ev_timer_start (&once->to); 1420 ev_timer_start (EV_A_ &once->to);
1062 } 1421 }
1063 } 1422 }
1064} 1423}
1065 1424
1066/*****************************************************************************/
1067
1068#if 0
1069
1070struct ev_io wio;
1071
1072static void
1073sin_cb (struct ev_io *w, int revents)
1074{
1075 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1076}
1077
1078static void
1079ocb (struct ev_timer *w, int revents)
1080{
1081 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1082 ev_timer_stop (w);
1083 ev_timer_start (w);
1084}
1085
1086static void
1087scb (struct ev_signal *w, int revents)
1088{
1089 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1090 ev_io_stop (&wio);
1091 ev_io_start (&wio);
1092}
1093
1094static void
1095gcb (struct ev_signal *w, int revents)
1096{
1097 fprintf (stderr, "generic %x\n", revents);
1098
1099}
1100
1101int main (void)
1102{
1103 ev_init (0);
1104
1105 ev_io_init (&wio, sin_cb, 0, EV_READ);
1106 ev_io_start (&wio);
1107
1108 struct ev_timer t[10000];
1109
1110#if 0
1111 int i;
1112 for (i = 0; i < 10000; ++i)
1113 {
1114 struct ev_timer *w = t + i;
1115 ev_watcher_init (w, ocb, i);
1116 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1117 ev_timer_start (w);
1118 if (drand48 () < 0.5)
1119 ev_timer_stop (w);
1120 }
1121#endif
1122
1123 struct ev_timer t1;
1124 ev_timer_init (&t1, ocb, 5, 10);
1125 ev_timer_start (&t1);
1126
1127 struct ev_signal sig;
1128 ev_signal_init (&sig, scb, SIGQUIT);
1129 ev_signal_start (&sig);
1130
1131 struct ev_check cw;
1132 ev_check_init (&cw, gcb);
1133 ev_check_start (&cw);
1134
1135 struct ev_idle iw;
1136 ev_idle_init (&iw, gcb);
1137 ev_idle_start (&iw);
1138
1139 ev_loop (0);
1140
1141 return 0;
1142}
1143
1144#endif
1145
1146
1147
1148

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines