ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.139 by root, Sun Nov 25 09:24:37 2007 UTC vs.
Revision 1.360 by root, Sun Oct 24 18:12:41 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
99#endif 159#endif
100 160
101#include <math.h> 161#include <math.h>
102#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
103#include <fcntl.h> 164#include <fcntl.h>
104#include <stddef.h> 165#include <stddef.h>
105 166
106#include <stdio.h> 167#include <stdio.h>
107 168
108#include <assert.h> 169#include <assert.h>
109#include <errno.h> 170#include <errno.h>
110#include <sys/types.h> 171#include <sys/types.h>
111#include <time.h> 172#include <time.h>
173#include <limits.h>
112 174
113#include <signal.h> 175#include <signal.h>
114 176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
115#ifndef _WIN32 185#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 186# include <sys/time.h>
118# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
119#else 189#else
190# include <io.h>
120# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 192# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
124# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
125#endif 242# endif
126 243#endif
127/**/
128 244
129#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
130# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
131#endif 251#endif
132 252
133#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
135#endif 263#endif
136 264
137#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
139#endif 267#endif
140 268
141#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
142# ifdef _WIN32 270# ifdef _WIN32
143# define EV_USE_POLL 0 271# define EV_USE_POLL 0
144# else 272# else
145# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
146# endif 274# endif
147#endif 275#endif
148 276
149#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
150# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
151#endif 283#endif
152 284
153#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
155#endif 287#endif
156 288
157#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 290# define EV_USE_PORT 0
159#endif 291#endif
160 292
161/**/ 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
162 364
163#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
166#endif 368#endif
168#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
171#endif 373#endif
172 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
173#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 397# include <winsock.h>
175#endif 398#endif
176 399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
177/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 455
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 458
184#ifdef EV_H 459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
185# include EV_H 460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
186#else
187# include "ev.h"
188#endif
189 461
190#if __GNUC__ >= 3 462#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 464# define noinline __attribute__ ((noinline))
193#else 465#else
194# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
195# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
196#endif 471#endif
197 472
198#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
200 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
203 490
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
206 493
207typedef ev_watcher *W; 494typedef ev_watcher *W;
208typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
209typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
210 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
212 520
213#ifdef _WIN32 521#ifdef _WIN32
214# include "ev_win32.c" 522# include "ev_win32.c"
215#endif 523#endif
216 524
217/*****************************************************************************/ 525/*****************************************************************************/
218 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
219static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
220 578
579void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 581{
223 syserr_cb = cb; 582 syserr_cb = cb;
224} 583}
225 584
226static void 585static void noinline
227syserr (const char *msg) 586ev_syserr (const char *msg)
228{ 587{
229 if (!msg) 588 if (!msg)
230 msg = "(libev) system error"; 589 msg = "(libev) system error";
231 590
232 if (syserr_cb) 591 if (syserr_cb)
233 syserr_cb (msg); 592 syserr_cb (msg);
234 else 593 else
235 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
236 perror (msg); 603 perror (msg);
604#endif
237 abort (); 605 abort ();
238 } 606 }
239} 607}
240 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
241static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 629
630void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 632{
245 alloc = cb; 633 alloc = cb;
246} 634}
247 635
248static void * 636inline_speed void *
249ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
250{ 638{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
252 640
253 if (!ptr && size) 641 if (!ptr && size)
254 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
256 abort (); 648 abort ();
257 } 649 }
258 650
259 return ptr; 651 return ptr;
260} 652}
262#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
264 656
265/*****************************************************************************/ 657/*****************************************************************************/
266 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
267typedef struct 663typedef struct
268{ 664{
269 WL head; 665 WL head;
270 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
271 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
272#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
273 SOCKET handle; 674 SOCKET handle;
274#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
275} ANFD; 679} ANFD;
276 680
681/* stores the pending event set for a given watcher */
277typedef struct 682typedef struct
278{ 683{
279 W w; 684 W w;
280 int events; 685 int events; /* the pending event set for the given watcher */
281} ANPENDING; 686} ANPENDING;
687
688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
690typedef struct
691{
692 WL head;
693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
714#endif
282 715
283#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
284 717
285 struct ev_loop 718 struct ev_loop
286 { 719 {
304 737
305 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
306 739
307#endif 740#endif
308 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
309/*****************************************************************************/ 754/*****************************************************************************/
310 755
756#ifndef EV_HAVE_EV_TIME
311ev_tstamp 757ev_tstamp
312ev_time (void) 758ev_time (void)
313{ 759{
314#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
315 struct timespec ts; 763 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 766 }
767#endif
768
319 struct timeval tv; 769 struct timeval tv;
320 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 772}
773#endif
324 774
325inline ev_tstamp 775inline_size ev_tstamp
326get_clock (void) 776get_clock (void)
327{ 777{
328#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
330 { 780 {
343{ 793{
344 return ev_rt_now; 794 return ev_rt_now;
345} 795}
346#endif 796#endif
347 797
348#define array_roundsize(type,n) (((n) | 4) & ~3) 798void
799ev_sleep (ev_tstamp delay)
800{
801 if (delay > 0.)
802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
821
822/*****************************************************************************/
823
824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
829array_nextsize (int elem, int cur, int cnt)
830{
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 {
840 ncur *= elem;
841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 ncur = ncur - sizeof (void *) * 4;
843 ncur /= elem;
844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 858
350#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 860 if (expect_false ((cnt) > (cur))) \
352 { \ 861 { \
353 int newcnt = cur; \ 862 int ocur_ = (cur); \
354 do \ 863 (base) = (type *)array_realloc \
355 { \ 864 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 865 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 866 }
364 867
868#if 0
365#define array_slim(type,stem) \ 869#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 871 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 872 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 875 }
876#endif
372 877
373#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 880
376/*****************************************************************************/ 881/*****************************************************************************/
377 882
378static void 883/* dummy callback for pending events */
379anfds_init (ANFD *base, int count) 884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 886{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 887}
390 888
391void 889void noinline
392ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
393{ 891{
394 W w_ = (W)w; 892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
395 894
396 if (expect_false (w_->pending)) 895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
397 { 898 {
899 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 902 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 903 }
401
402 w_->pending = ++pendingcnt [ABSPRI (w_)];
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406} 904}
407 905
408static void 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
409queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
410{ 923{
411 int i; 924 int i;
412 925
413 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
415} 928}
416 929
930/*****************************************************************************/
931
417inline void 932inline_speed void
418fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
419{ 934{
420 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
421 ev_io *w; 936 ev_io *w;
422 937
423 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 if (ev) 942 if (ev)
428 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
429 } 944 }
430} 945}
431 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
432void 958void
433ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
434{ 960{
961 if (fd >= 0 && fd < anfdmax)
435 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
436} 963}
437 964
438/*****************************************************************************/ 965/* make sure the external fd watch events are in-sync */
439 966/* with the kernel/libev internal state */
440inline void 967inline_size void
441fd_reify (EV_P) 968fd_reify (EV_P)
442{ 969{
443 int i; 970 int i;
444 971
445 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
446 { 973 {
447 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
449 ev_io *w; 976 ev_io *w;
450 977
451 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
452 980
453 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
454 events |= w->events;
455 982
456#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
457 if (events) 984 if (o_reify & EV__IOFDSET)
458 { 985 {
459 unsigned long argp; 986 unsigned long arg;
460 anfd->handle = _get_osfhandle (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
462 } 990 }
463#endif 991#endif
464 992
465 anfd->reify = 0; 993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
995 anfd->events = 0;
466 996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
467 backend_modify (EV_A_ fd, anfd->events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
468 anfd->events = events;
469 } 1006 }
470 1007
471 fdchangecnt = 0; 1008 fdchangecnt = 0;
472} 1009}
473 1010
474static void 1011/* something about the given fd changed */
1012inline_size void
475fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
476{ 1014{
477 if (expect_false (anfds [fd].reify)) 1015 unsigned char reify = anfds [fd].reify;
478 return;
479
480 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
481 1017
1018 if (expect_true (!reify))
1019 {
482 ++fdchangecnt; 1020 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
484 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
485} 1024}
486 1025
487static void 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
488fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
489{ 1029{
490 ev_io *w; 1030 ev_io *w;
491 1031
492 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
494 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 1036 }
497} 1037}
498 1038
1039/* check whether the given fd is actually valid, for error recovery */
499inline int 1040inline_size int
500fd_valid (int fd) 1041fd_valid (int fd)
501{ 1042{
502#ifdef _WIN32 1043#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
504#else 1045#else
505 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
506#endif 1047#endif
507} 1048}
508 1049
509/* called on EBADF to verify fds */ 1050/* called on EBADF to verify fds */
510static void 1051static void noinline
511fd_ebadf (EV_P) 1052fd_ebadf (EV_P)
512{ 1053{
513 int fd; 1054 int fd;
514 1055
515 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
516 if (anfds [fd].events) 1057 if (anfds [fd].events)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
518 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
519} 1060}
520 1061
521/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
522static void 1063static void noinline
523fd_enomem (EV_P) 1064fd_enomem (EV_P)
524{ 1065{
525 int fd; 1066 int fd;
526 1067
527 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
528 if (anfds [fd].events) 1069 if (anfds [fd].events)
529 { 1070 {
530 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
531 return; 1072 break;
532 } 1073 }
533} 1074}
534 1075
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
536static void 1077static void noinline
537fd_rearm_all (EV_P) 1078fd_rearm_all (EV_P)
538{ 1079{
539 int fd; 1080 int fd;
540 1081
541 /* this should be highly optimised to not do anything but set a flag */
542 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
543 if (anfds [fd].events) 1083 if (anfds [fd].events)
544 { 1084 {
545 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
546 fd_change (EV_A_ fd); 1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
547 } 1088 }
548} 1089}
549 1090
550/*****************************************************************************/ 1091/* used to prepare libev internal fd's */
551 1092/* this is not fork-safe */
552static void
553upheap (WT *heap, int k)
554{
555 WT w = heap [k];
556
557 while (k && heap [k >> 1]->at > w->at)
558 {
559 heap [k] = heap [k >> 1];
560 ((W)heap [k])->active = k + 1;
561 k >>= 1;
562 }
563
564 heap [k] = w;
565 ((W)heap [k])->active = k + 1;
566
567}
568
569static void
570downheap (WT *heap, int N, int k)
571{
572 WT w = heap [k];
573
574 while (k < (N >> 1))
575 {
576 int j = k << 1;
577
578 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
579 ++j;
580
581 if (w->at <= heap [j]->at)
582 break;
583
584 heap [k] = heap [j];
585 ((W)heap [k])->active = k + 1;
586 k = j;
587 }
588
589 heap [k] = w;
590 ((W)heap [k])->active = k + 1;
591}
592
593inline void 1093inline_speed void
594adjustheap (WT *heap, int N, int k)
595{
596 upheap (heap, k);
597 downheap (heap, N, k);
598}
599
600/*****************************************************************************/
601
602typedef struct
603{
604 WL head;
605 sig_atomic_t volatile gotsig;
606} ANSIG;
607
608static ANSIG *signals;
609static int signalmax;
610
611static int sigpipe [2];
612static sig_atomic_t volatile gotsig;
613static ev_io sigev;
614
615static void
616signals_init (ANSIG *base, int count)
617{
618 while (count--)
619 {
620 base->head = 0;
621 base->gotsig = 0;
622
623 ++base;
624 }
625}
626
627static void
628sighandler (int signum)
629{
630#if _WIN32
631 signal (signum, sighandler);
632#endif
633
634 signals [signum - 1].gotsig = 1;
635
636 if (!gotsig)
637 {
638 int old_errno = errno;
639 gotsig = 1;
640 write (sigpipe [1], &signum, 1);
641 errno = old_errno;
642 }
643}
644
645void
646ev_feed_signal_event (EV_P_ int signum)
647{
648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
665static void
666sigcb (EV_P_ ev_io *iow, int revents)
667{
668 int signum;
669
670 read (sigpipe [0], &revents, 1);
671 gotsig = 0;
672
673 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1);
676}
677
678static void
679fd_intern (int fd) 1094fd_intern (int fd)
680{ 1095{
681#ifdef _WIN32 1096#ifdef _WIN32
682 int arg = 1; 1097 unsigned long arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
684#else 1099#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 1101 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 1102#endif
688} 1103}
689 1104
1105/*****************************************************************************/
1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
1268static void noinline
1269evpipe_init (EV_P)
1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
1290 fd_intern (evpipe [0]);
1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
1294
1295 ev_io_start (EV_A_ &pipe_w);
1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
690static void 1331static void
691siginit (EV_P) 1332pipecb (EV_P_ ev_io *iow, int revents)
692{ 1333{
693 fd_intern (sigpipe [0]); 1334 int i;
694 fd_intern (sigpipe [1]);
695 1335
696 ev_io_set (&sigev, sigpipe [0], EV_READ); 1336#if EV_USE_EVENTFD
697 ev_io_start (EV_A_ &sigev); 1337 if (evfd >= 0)
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
1349
1350 if (sig_pending)
1351 {
1352 sig_pending = 0;
1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
699} 1372}
700 1373
701/*****************************************************************************/ 1374/*****************************************************************************/
702 1375
703static ev_child *childs [PID_HASHSIZE]; 1376static void
1377ev_sighandler (int signum)
1378{
1379#if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381#endif
704 1382
705#ifndef _WIN32 1383#ifdef _WIN32
1384 signal (signum, ev_sighandler);
1385#endif
1386
1387 signals [signum - 1].pending = 1;
1388 evpipe_write (EV_A_ &sig_pending);
1389}
1390
1391void noinline
1392ev_feed_signal_event (EV_P_ int signum)
1393{
1394 WL w;
1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1401#if EV_MULTIPLICITY
1402 /* it is permissible to try to feed a signal to the wrong loop */
1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1404
1405 if (expect_false (signals [signum].loop != EV_A))
1406 return;
1407#endif
1408
1409 signals [signum].pending = 0;
1410
1411 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413}
1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
1437/*****************************************************************************/
1438
1439#if EV_CHILD_ENABLE
1440static WL childs [EV_PID_HASHSIZE];
706 1441
707static ev_signal childev; 1442static ev_signal childev;
1443
1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
1450child_reap (EV_P_ int chain, int pid, int status)
1451{
1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1454
1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
1459 {
1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1461 w->rpid = pid;
1462 w->rstatus = status;
1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1464 }
1465 }
1466}
708 1467
709#ifndef WCONTINUED 1468#ifndef WCONTINUED
710# define WCONTINUED 0 1469# define WCONTINUED 0
711#endif 1470#endif
712 1471
713static void 1472/* called on sigchld etc., calls waitpid */
714child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
715{
716 ev_child *w;
717
718 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid)
720 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid;
723 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 }
726}
727
728static void 1473static void
729childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
730{ 1475{
731 int pid, status; 1476 int pid, status;
732 1477
1478 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1479 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 1480 if (!WCONTINUED
1481 || errno != EINVAL
1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1483 return;
1484
735 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
738 1488
739 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1490 if ((EV_PID_HASHSIZE) > 1)
740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
741 }
742} 1492}
743 1493
744#endif 1494#endif
745 1495
746/*****************************************************************************/ 1496/*****************************************************************************/
747 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
748#if EV_USE_PORT 1501#if EV_USE_PORT
749# include "ev_port.c" 1502# include "ev_port.c"
750#endif 1503#endif
751#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
752# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
772{ 1525{
773 return EV_VERSION_MINOR; 1526 return EV_VERSION_MINOR;
774} 1527}
775 1528
776/* return true if we are running with elevated privileges and should ignore env variables */ 1529/* return true if we are running with elevated privileges and should ignore env variables */
777static int 1530int inline_size
778enable_secure (void) 1531enable_secure (void)
779{ 1532{
780#ifdef _WIN32 1533#ifdef _WIN32
781 return 0; 1534 return 0;
782#else 1535#else
808 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
811#endif 1564#endif
812#ifdef __APPLE__ 1565#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
814 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
815#endif 1572#endif
816 1573
817 return flags; 1574 return flags;
818} 1575}
819 1576
820unsigned int 1577unsigned int
821ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
822{ 1579{
823 return EVBACKEND_EPOLL 1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
824 | EVBACKEND_KQUEUE 1581
825 | EVBACKEND_PORT; 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
826} 1587}
827 1588
828unsigned int 1589unsigned int
829ev_backend (EV_P) 1590ev_backend (EV_P)
830{ 1591{
831 return backend; 1592 return backend;
832} 1593}
833 1594
834static void 1595#if EV_FEATURE_API
1596unsigned int
1597ev_iteration (EV_P)
1598{
1599 return loop_count;
1600}
1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1608void
1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1610{
1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1645static void noinline
835loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
836{ 1647{
837 if (!backend) 1648 if (!backend)
838 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
839#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
840 { 1662 {
841 struct timespec ts; 1663 struct timespec ts;
1664
842 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
843 have_monotonic = 1; 1666 have_monotonic = 1;
844 } 1667 }
845#endif 1668#endif
846 1669
847 ev_rt_now = ev_time (); 1670 /* pid check not overridable via env */
848 mn_now = get_clock (); 1671#ifndef _WIN32
849 now_floor = mn_now; 1672 if (flags & EVFLAG_FORKCHECK)
850 rtmn_diff = ev_rt_now - mn_now; 1673 curpid = getpid ();
1674#endif
851 1675
852 if (!(flags & EVFLAG_NOENV) 1676 if (!(flags & EVFLAG_NOENV)
853 && !enable_secure () 1677 && !enable_secure ()
854 && getenv ("LIBEV_FLAGS")) 1678 && getenv ("LIBEV_FLAGS"))
855 flags = atoi (getenv ("LIBEV_FLAGS")); 1679 flags = atoi (getenv ("LIBEV_FLAGS"));
856 1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
857 if (!(flags & 0x0000ffffUL)) 1704 if (!(flags & 0x0000ffffU))
858 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
859 1706
860 backend = 0; 1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
861#if EV_USE_PORT 1710#if EV_USE_PORT
862 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
863#endif 1712#endif
864#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
865 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
872#endif 1721#endif
873#if EV_USE_SELECT 1722#if EV_USE_SELECT
874 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
875#endif 1724#endif
876 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
877 ev_init (&sigev, sigcb); 1729 ev_init (&pipe_w, pipecb);
878 ev_set_priority (&sigev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
879 } 1732 }
880} 1733}
881 1734
882static void 1735/* free up a loop structure */
1736void
883loop_destroy (EV_P) 1737ev_loop_destroy (EV_P)
884{ 1738{
885 int i; 1739 int i;
886 1740
1741#if EV_CHILD_ENABLE
1742 if (ev_is_active (&childev))
1743 {
1744 ev_ref (EV_A); /* child watcher */
1745 ev_signal_stop (EV_A_ &childev);
1746 }
1747#endif
1748
1749 if (ev_is_active (&pipe_w))
1750 {
1751 /*ev_ref (EV_A);*/
1752 /*ev_io_stop (EV_A_ &pipe_w);*/
1753
1754#if EV_USE_EVENTFD
1755 if (evfd >= 0)
1756 close (evfd);
1757#endif
1758
1759 if (evpipe [0] >= 0)
1760 {
1761 EV_WIN32_CLOSE_FD (evpipe [0]);
1762 EV_WIN32_CLOSE_FD (evpipe [1]);
1763 }
1764 }
1765
1766#if EV_USE_SIGNALFD
1767 if (ev_is_active (&sigfd_w))
1768 close (sigfd);
1769#endif
1770
1771#if EV_USE_INOTIFY
1772 if (fs_fd >= 0)
1773 close (fs_fd);
1774#endif
1775
1776 if (backend_fd >= 0)
1777 close (backend_fd);
1778
1779#if EV_USE_IOCP
1780 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1781#endif
887#if EV_USE_PORT 1782#if EV_USE_PORT
888 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1783 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
889#endif 1784#endif
890#if EV_USE_KQUEUE 1785#if EV_USE_KQUEUE
891 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1786 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
899#if EV_USE_SELECT 1794#if EV_USE_SELECT
900 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1795 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
901#endif 1796#endif
902 1797
903 for (i = NUMPRI; i--; ) 1798 for (i = NUMPRI; i--; )
1799 {
904 array_free (pending, [i]); 1800 array_free (pending, [i]);
1801#if EV_IDLE_ENABLE
1802 array_free (idle, [i]);
1803#endif
1804 }
1805
1806 ev_free (anfds); anfds = 0; anfdmax = 0;
905 1807
906 /* have to use the microsoft-never-gets-it-right macro */ 1808 /* have to use the microsoft-never-gets-it-right macro */
1809 array_free (rfeed, EMPTY);
907 array_free (fdchange, EMPTY0); 1810 array_free (fdchange, EMPTY);
908 array_free (timer, EMPTY0); 1811 array_free (timer, EMPTY);
909#if EV_PERIODICS 1812#if EV_PERIODIC_ENABLE
910 array_free (periodic, EMPTY0); 1813 array_free (periodic, EMPTY);
911#endif 1814#endif
1815#if EV_FORK_ENABLE
1816 array_free (fork, EMPTY);
1817#endif
1818#if EV_CLEANUP_ENABLE
912 array_free (idle, EMPTY0); 1819 array_free (cleanup, EMPTY);
1820#endif
913 array_free (prepare, EMPTY0); 1821 array_free (prepare, EMPTY);
914 array_free (check, EMPTY0); 1822 array_free (check, EMPTY);
1823#if EV_ASYNC_ENABLE
1824 array_free (async, EMPTY);
1825#endif
915 1826
916 backend = 0; 1827 backend = 0;
917}
918 1828
919static void 1829#if EV_MULTIPLICITY
1830 if (ev_is_default_loop (EV_A))
1831#endif
1832 ev_default_loop_ptr = 0;
1833#if EV_MULTIPLICITY
1834 else
1835 ev_free (EV_A);
1836#endif
1837}
1838
1839#if EV_USE_INOTIFY
1840inline_size void infy_fork (EV_P);
1841#endif
1842
1843inline_size void
920loop_fork (EV_P) 1844loop_fork (EV_P)
921{ 1845{
922#if EV_USE_PORT 1846#if EV_USE_PORT
923 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1847 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
924#endif 1848#endif
926 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1850 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
927#endif 1851#endif
928#if EV_USE_EPOLL 1852#if EV_USE_EPOLL
929 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1853 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
930#endif 1854#endif
1855#if EV_USE_INOTIFY
1856 infy_fork (EV_A);
1857#endif
931 1858
932 if (ev_is_active (&sigev)) 1859 if (ev_is_active (&pipe_w))
933 { 1860 {
934 /* default loop */ 1861 /* this "locks" the handlers against writing to the pipe */
1862 /* while we modify the fd vars */
1863 sig_pending = 1;
1864#if EV_ASYNC_ENABLE
1865 async_pending = 1;
1866#endif
935 1867
936 ev_ref (EV_A); 1868 ev_ref (EV_A);
937 ev_io_stop (EV_A_ &sigev); 1869 ev_io_stop (EV_A_ &pipe_w);
938 close (sigpipe [0]);
939 close (sigpipe [1]);
940 1870
941 while (pipe (sigpipe)) 1871#if EV_USE_EVENTFD
942 syserr ("(libev) error creating pipe"); 1872 if (evfd >= 0)
1873 close (evfd);
1874#endif
943 1875
1876 if (evpipe [0] >= 0)
1877 {
1878 EV_WIN32_CLOSE_FD (evpipe [0]);
1879 EV_WIN32_CLOSE_FD (evpipe [1]);
1880 }
1881
1882#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
944 siginit (EV_A); 1883 evpipe_init (EV_A);
1884 /* now iterate over everything, in case we missed something */
1885 pipecb (EV_A_ &pipe_w, EV_READ);
1886#endif
945 } 1887 }
946 1888
947 postfork = 0; 1889 postfork = 0;
948} 1890}
1891
1892#if EV_MULTIPLICITY
1893
1894struct ev_loop *
1895ev_loop_new (unsigned int flags)
1896{
1897 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1898
1899 memset (EV_A, 0, sizeof (struct ev_loop));
1900 loop_init (EV_A_ flags);
1901
1902 if (ev_backend (EV_A))
1903 return EV_A;
1904
1905 ev_free (EV_A);
1906 return 0;
1907}
1908
1909#endif /* multiplicity */
1910
1911#if EV_VERIFY
1912static void noinline
1913verify_watcher (EV_P_ W w)
1914{
1915 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1916
1917 if (w->pending)
1918 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1919}
1920
1921static void noinline
1922verify_heap (EV_P_ ANHE *heap, int N)
1923{
1924 int i;
1925
1926 for (i = HEAP0; i < N + HEAP0; ++i)
1927 {
1928 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1929 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1930 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1931
1932 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1933 }
1934}
1935
1936static void noinline
1937array_verify (EV_P_ W *ws, int cnt)
1938{
1939 while (cnt--)
1940 {
1941 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1942 verify_watcher (EV_A_ ws [cnt]);
1943 }
1944}
1945#endif
1946
1947#if EV_FEATURE_API
1948void
1949ev_verify (EV_P)
1950{
1951#if EV_VERIFY
1952 int i;
1953 WL w;
1954
1955 assert (activecnt >= -1);
1956
1957 assert (fdchangemax >= fdchangecnt);
1958 for (i = 0; i < fdchangecnt; ++i)
1959 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1960
1961 assert (anfdmax >= 0);
1962 for (i = 0; i < anfdmax; ++i)
1963 for (w = anfds [i].head; w; w = w->next)
1964 {
1965 verify_watcher (EV_A_ (W)w);
1966 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1967 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1968 }
1969
1970 assert (timermax >= timercnt);
1971 verify_heap (EV_A_ timers, timercnt);
1972
1973#if EV_PERIODIC_ENABLE
1974 assert (periodicmax >= periodiccnt);
1975 verify_heap (EV_A_ periodics, periodiccnt);
1976#endif
1977
1978 for (i = NUMPRI; i--; )
1979 {
1980 assert (pendingmax [i] >= pendingcnt [i]);
1981#if EV_IDLE_ENABLE
1982 assert (idleall >= 0);
1983 assert (idlemax [i] >= idlecnt [i]);
1984 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1985#endif
1986 }
1987
1988#if EV_FORK_ENABLE
1989 assert (forkmax >= forkcnt);
1990 array_verify (EV_A_ (W *)forks, forkcnt);
1991#endif
1992
1993#if EV_CLEANUP_ENABLE
1994 assert (cleanupmax >= cleanupcnt);
1995 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
1996#endif
1997
1998#if EV_ASYNC_ENABLE
1999 assert (asyncmax >= asynccnt);
2000 array_verify (EV_A_ (W *)asyncs, asynccnt);
2001#endif
2002
2003#if EV_PREPARE_ENABLE
2004 assert (preparemax >= preparecnt);
2005 array_verify (EV_A_ (W *)prepares, preparecnt);
2006#endif
2007
2008#if EV_CHECK_ENABLE
2009 assert (checkmax >= checkcnt);
2010 array_verify (EV_A_ (W *)checks, checkcnt);
2011#endif
2012
2013# if 0
2014#if EV_CHILD_ENABLE
2015 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2016 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2017#endif
2018# endif
2019#endif
2020}
2021#endif
949 2022
950#if EV_MULTIPLICITY 2023#if EV_MULTIPLICITY
951struct ev_loop * 2024struct ev_loop *
952ev_loop_new (unsigned int flags)
953{
954 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
955
956 memset (loop, 0, sizeof (struct ev_loop));
957
958 loop_init (EV_A_ flags);
959
960 if (ev_backend (EV_A))
961 return loop;
962
963 return 0;
964}
965
966void
967ev_loop_destroy (EV_P)
968{
969 loop_destroy (EV_A);
970 ev_free (loop);
971}
972
973void
974ev_loop_fork (EV_P)
975{
976 postfork = 1;
977}
978
979#endif
980
981#if EV_MULTIPLICITY
982struct ev_loop *
983ev_default_loop_init (unsigned int flags)
984#else 2025#else
985int 2026int
2027#endif
986ev_default_loop (unsigned int flags) 2028ev_default_loop (unsigned int flags)
987#endif
988{ 2029{
989 if (sigpipe [0] == sigpipe [1])
990 if (pipe (sigpipe))
991 return 0;
992
993 if (!ev_default_loop_ptr) 2030 if (!ev_default_loop_ptr)
994 { 2031 {
995#if EV_MULTIPLICITY 2032#if EV_MULTIPLICITY
996 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2033 EV_P = ev_default_loop_ptr = &default_loop_struct;
997#else 2034#else
998 ev_default_loop_ptr = 1; 2035 ev_default_loop_ptr = 1;
999#endif 2036#endif
1000 2037
1001 loop_init (EV_A_ flags); 2038 loop_init (EV_A_ flags);
1002 2039
1003 if (ev_backend (EV_A)) 2040 if (ev_backend (EV_A))
1004 { 2041 {
1005 siginit (EV_A); 2042#if EV_CHILD_ENABLE
1006
1007#ifndef _WIN32
1008 ev_signal_init (&childev, childcb, SIGCHLD); 2043 ev_signal_init (&childev, childcb, SIGCHLD);
1009 ev_set_priority (&childev, EV_MAXPRI); 2044 ev_set_priority (&childev, EV_MAXPRI);
1010 ev_signal_start (EV_A_ &childev); 2045 ev_signal_start (EV_A_ &childev);
1011 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2046 ev_unref (EV_A); /* child watcher should not keep loop alive */
1012#endif 2047#endif
1017 2052
1018 return ev_default_loop_ptr; 2053 return ev_default_loop_ptr;
1019} 2054}
1020 2055
1021void 2056void
1022ev_default_destroy (void) 2057ev_loop_fork (EV_P)
1023{ 2058{
1024#if EV_MULTIPLICITY 2059 postfork = 1; /* must be in line with ev_default_fork */
1025 struct ev_loop *loop = ev_default_loop_ptr;
1026#endif
1027
1028#ifndef _WIN32
1029 ev_ref (EV_A); /* child watcher */
1030 ev_signal_stop (EV_A_ &childev);
1031#endif
1032
1033 ev_ref (EV_A); /* signal watcher */
1034 ev_io_stop (EV_A_ &sigev);
1035
1036 close (sigpipe [0]); sigpipe [0] = 0;
1037 close (sigpipe [1]); sigpipe [1] = 0;
1038
1039 loop_destroy (EV_A);
1040}
1041
1042void
1043ev_default_fork (void)
1044{
1045#if EV_MULTIPLICITY
1046 struct ev_loop *loop = ev_default_loop_ptr;
1047#endif
1048
1049 if (backend)
1050 postfork = 1;
1051} 2060}
1052 2061
1053/*****************************************************************************/ 2062/*****************************************************************************/
1054 2063
1055static int 2064void
1056any_pending (EV_P) 2065ev_invoke (EV_P_ void *w, int revents)
2066{
2067 EV_CB_INVOKE ((W)w, revents);
2068}
2069
2070unsigned int
2071ev_pending_count (EV_P)
1057{ 2072{
1058 int pri; 2073 int pri;
2074 unsigned int count = 0;
1059 2075
1060 for (pri = NUMPRI; pri--; ) 2076 for (pri = NUMPRI; pri--; )
1061 if (pendingcnt [pri]) 2077 count += pendingcnt [pri];
1062 return 1;
1063 2078
1064 return 0; 2079 return count;
1065} 2080}
1066 2081
1067inline void 2082void noinline
1068call_pending (EV_P) 2083ev_invoke_pending (EV_P)
1069{ 2084{
1070 int pri; 2085 int pri;
1071 2086
1072 for (pri = NUMPRI; pri--; ) 2087 for (pri = NUMPRI; pri--; )
1073 while (pendingcnt [pri]) 2088 while (pendingcnt [pri])
1074 { 2089 {
1075 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2090 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1076 2091
1077 if (expect_true (p->w))
1078 {
1079 assert (("non-pending watcher on pending list", p->w->pending)); 2092 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2093 /* ^ this is no longer true, as pending_w could be here */
1080 2094
1081 p->w->pending = 0; 2095 p->w->pending = 0;
1082 EV_CB_INVOKE (p->w, p->events); 2096 EV_CB_INVOKE (p->w, p->events);
1083 } 2097 EV_FREQUENT_CHECK;
1084 } 2098 }
1085} 2099}
1086 2100
2101#if EV_IDLE_ENABLE
2102/* make idle watchers pending. this handles the "call-idle */
2103/* only when higher priorities are idle" logic */
1087inline void 2104inline_size void
2105idle_reify (EV_P)
2106{
2107 if (expect_false (idleall))
2108 {
2109 int pri;
2110
2111 for (pri = NUMPRI; pri--; )
2112 {
2113 if (pendingcnt [pri])
2114 break;
2115
2116 if (idlecnt [pri])
2117 {
2118 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2119 break;
2120 }
2121 }
2122 }
2123}
2124#endif
2125
2126/* make timers pending */
2127inline_size void
1088timers_reify (EV_P) 2128timers_reify (EV_P)
1089{ 2129{
2130 EV_FREQUENT_CHECK;
2131
1090 while (timercnt && ((WT)timers [0])->at <= mn_now) 2132 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1091 { 2133 {
1092 ev_timer *w = timers [0]; 2134 do
1093
1094 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1095
1096 /* first reschedule or stop timer */
1097 if (w->repeat)
1098 { 2135 {
2136 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2137
2138 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2139
2140 /* first reschedule or stop timer */
2141 if (w->repeat)
2142 {
2143 ev_at (w) += w->repeat;
2144 if (ev_at (w) < mn_now)
2145 ev_at (w) = mn_now;
2146
1099 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2147 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1100 2148
1101 ((WT)w)->at += w->repeat; 2149 ANHE_at_cache (timers [HEAP0]);
1102 if (((WT)w)->at < mn_now)
1103 ((WT)w)->at = mn_now;
1104
1105 downheap ((WT *)timers, timercnt, 0); 2150 downheap (timers, timercnt, HEAP0);
2151 }
2152 else
2153 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2154
2155 EV_FREQUENT_CHECK;
2156 feed_reverse (EV_A_ (W)w);
1106 } 2157 }
1107 else 2158 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1108 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1109 2159
1110 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2160 feed_reverse_done (EV_A_ EV_TIMER);
1111 } 2161 }
1112} 2162}
1113 2163
1114#if EV_PERIODICS 2164#if EV_PERIODIC_ENABLE
2165/* make periodics pending */
1115inline void 2166inline_size void
1116periodics_reify (EV_P) 2167periodics_reify (EV_P)
1117{ 2168{
2169 EV_FREQUENT_CHECK;
2170
1118 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2171 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1119 { 2172 {
1120 ev_periodic *w = periodics [0]; 2173 int feed_count = 0;
1121 2174
2175 do
2176 {
2177 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2178
1122 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2179 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1123 2180
1124 /* first reschedule or stop timer */ 2181 /* first reschedule or stop timer */
2182 if (w->reschedule_cb)
2183 {
2184 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2185
2186 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2187
2188 ANHE_at_cache (periodics [HEAP0]);
2189 downheap (periodics, periodiccnt, HEAP0);
2190 }
2191 else if (w->interval)
2192 {
2193 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2194 /* if next trigger time is not sufficiently in the future, put it there */
2195 /* this might happen because of floating point inexactness */
2196 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2197 {
2198 ev_at (w) += w->interval;
2199
2200 /* if interval is unreasonably low we might still have a time in the past */
2201 /* so correct this. this will make the periodic very inexact, but the user */
2202 /* has effectively asked to get triggered more often than possible */
2203 if (ev_at (w) < ev_rt_now)
2204 ev_at (w) = ev_rt_now;
2205 }
2206
2207 ANHE_at_cache (periodics [HEAP0]);
2208 downheap (periodics, periodiccnt, HEAP0);
2209 }
2210 else
2211 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2212
2213 EV_FREQUENT_CHECK;
2214 feed_reverse (EV_A_ (W)w);
2215 }
2216 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2217
2218 feed_reverse_done (EV_A_ EV_PERIODIC);
2219 }
2220}
2221
2222/* simply recalculate all periodics */
2223/* TODO: maybe ensure that at least one event happens when jumping forward? */
2224static void noinline
2225periodics_reschedule (EV_P)
2226{
2227 int i;
2228
2229 /* adjust periodics after time jump */
2230 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2231 {
2232 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2233
1125 if (w->reschedule_cb) 2234 if (w->reschedule_cb)
2235 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2236 else if (w->interval)
2237 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2238
2239 ANHE_at_cache (periodics [i]);
2240 }
2241
2242 reheap (periodics, periodiccnt);
2243}
2244#endif
2245
2246/* adjust all timers by a given offset */
2247static void noinline
2248timers_reschedule (EV_P_ ev_tstamp adjust)
2249{
2250 int i;
2251
2252 for (i = 0; i < timercnt; ++i)
2253 {
2254 ANHE *he = timers + i + HEAP0;
2255 ANHE_w (*he)->at += adjust;
2256 ANHE_at_cache (*he);
2257 }
2258}
2259
2260/* fetch new monotonic and realtime times from the kernel */
2261/* also detect if there was a timejump, and act accordingly */
2262inline_speed void
2263time_update (EV_P_ ev_tstamp max_block)
2264{
2265#if EV_USE_MONOTONIC
2266 if (expect_true (have_monotonic))
2267 {
2268 int i;
2269 ev_tstamp odiff = rtmn_diff;
2270
2271 mn_now = get_clock ();
2272
2273 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2274 /* interpolate in the meantime */
2275 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1126 { 2276 {
1127 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2277 ev_rt_now = rtmn_diff + mn_now;
1128 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2278 return;
1129 downheap ((WT *)periodics, periodiccnt, 0);
1130 } 2279 }
1131 else if (w->interval)
1132 {
1133 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1134 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1135 downheap ((WT *)periodics, periodiccnt, 0);
1136 }
1137 else
1138 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1139 2280
1140 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1141 }
1142}
1143
1144static void
1145periodics_reschedule (EV_P)
1146{
1147 int i;
1148
1149 /* adjust periodics after time jump */
1150 for (i = 0; i < periodiccnt; ++i)
1151 {
1152 ev_periodic *w = periodics [i];
1153
1154 if (w->reschedule_cb)
1155 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1156 else if (w->interval)
1157 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1158 }
1159
1160 /* now rebuild the heap */
1161 for (i = periodiccnt >> 1; i--; )
1162 downheap ((WT *)periodics, periodiccnt, i);
1163}
1164#endif
1165
1166inline int
1167time_update_monotonic (EV_P)
1168{
1169 mn_now = get_clock ();
1170
1171 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1172 {
1173 ev_rt_now = rtmn_diff + mn_now;
1174 return 0;
1175 }
1176 else
1177 {
1178 now_floor = mn_now; 2281 now_floor = mn_now;
1179 ev_rt_now = ev_time (); 2282 ev_rt_now = ev_time ();
1180 return 1;
1181 }
1182}
1183 2283
1184inline void 2284 /* loop a few times, before making important decisions.
1185time_update (EV_P) 2285 * on the choice of "4": one iteration isn't enough,
1186{ 2286 * in case we get preempted during the calls to
1187 int i; 2287 * ev_time and get_clock. a second call is almost guaranteed
1188 2288 * to succeed in that case, though. and looping a few more times
1189#if EV_USE_MONOTONIC 2289 * doesn't hurt either as we only do this on time-jumps or
1190 if (expect_true (have_monotonic)) 2290 * in the unlikely event of having been preempted here.
1191 { 2291 */
1192 if (time_update_monotonic (EV_A)) 2292 for (i = 4; --i; )
1193 { 2293 {
1194 ev_tstamp odiff = rtmn_diff;
1195
1196 /* loop a few times, before making important decisions.
1197 * on the choice of "4": one iteration isn't enough,
1198 * in case we get preempted during the calls to
1199 * ev_time and get_clock. a second call is almost guarenteed
1200 * to succeed in that case, though. and looping a few more times
1201 * doesn't hurt either as we only do this on time-jumps or
1202 * in the unlikely event of getting preempted here.
1203 */
1204 for (i = 4; --i; )
1205 {
1206 rtmn_diff = ev_rt_now - mn_now; 2294 rtmn_diff = ev_rt_now - mn_now;
1207 2295
1208 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2296 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1209 return; /* all is well */ 2297 return; /* all is well */
1210 2298
1211 ev_rt_now = ev_time (); 2299 ev_rt_now = ev_time ();
1212 mn_now = get_clock (); 2300 mn_now = get_clock ();
1213 now_floor = mn_now; 2301 now_floor = mn_now;
1214 } 2302 }
1215 2303
2304 /* no timer adjustment, as the monotonic clock doesn't jump */
2305 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1216# if EV_PERIODICS 2306# if EV_PERIODIC_ENABLE
2307 periodics_reschedule (EV_A);
2308# endif
2309 }
2310 else
2311#endif
2312 {
2313 ev_rt_now = ev_time ();
2314
2315 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2316 {
2317 /* adjust timers. this is easy, as the offset is the same for all of them */
2318 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2319#if EV_PERIODIC_ENABLE
1217 periodics_reschedule (EV_A); 2320 periodics_reschedule (EV_A);
1218# endif 2321#endif
1219 /* no timer adjustment, as the monotonic clock doesn't jump */
1220 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1221 } 2322 }
1222 }
1223 else
1224#endif
1225 {
1226 ev_rt_now = ev_time ();
1227
1228 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1229 {
1230#if EV_PERIODICS
1231 periodics_reschedule (EV_A);
1232#endif
1233
1234 /* adjust timers. this is easy, as the offset is the same for all */
1235 for (i = 0; i < timercnt; ++i)
1236 ((WT)timers [i])->at += ev_rt_now - mn_now;
1237 }
1238 2323
1239 mn_now = ev_rt_now; 2324 mn_now = ev_rt_now;
1240 } 2325 }
1241} 2326}
1242 2327
1243void 2328void
1244ev_ref (EV_P)
1245{
1246 ++activecnt;
1247}
1248
1249void
1250ev_unref (EV_P)
1251{
1252 --activecnt;
1253}
1254
1255static int loop_done;
1256
1257void
1258ev_loop (EV_P_ int flags) 2329ev_run (EV_P_ int flags)
1259{ 2330{
1260 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2331#if EV_FEATURE_API
1261 ? EVUNLOOP_ONE 2332 ++loop_depth;
1262 : EVUNLOOP_CANCEL; 2333#endif
1263 2334
1264 while (activecnt) 2335 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2336
2337 loop_done = EVBREAK_CANCEL;
2338
2339 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2340
2341 do
1265 { 2342 {
2343#if EV_VERIFY >= 2
2344 ev_verify (EV_A);
2345#endif
2346
2347#ifndef _WIN32
2348 if (expect_false (curpid)) /* penalise the forking check even more */
2349 if (expect_false (getpid () != curpid))
2350 {
2351 curpid = getpid ();
2352 postfork = 1;
2353 }
2354#endif
2355
2356#if EV_FORK_ENABLE
2357 /* we might have forked, so queue fork handlers */
2358 if (expect_false (postfork))
2359 if (forkcnt)
2360 {
2361 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2362 EV_INVOKE_PENDING;
2363 }
2364#endif
2365
2366#if EV_PREPARE_ENABLE
1266 /* queue check watchers (and execute them) */ 2367 /* queue prepare watchers (and execute them) */
1267 if (expect_false (preparecnt)) 2368 if (expect_false (preparecnt))
1268 { 2369 {
1269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2370 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1270 call_pending (EV_A); 2371 EV_INVOKE_PENDING;
1271 } 2372 }
2373#endif
2374
2375 if (expect_false (loop_done))
2376 break;
1272 2377
1273 /* we might have forked, so reify kernel state if necessary */ 2378 /* we might have forked, so reify kernel state if necessary */
1274 if (expect_false (postfork)) 2379 if (expect_false (postfork))
1275 loop_fork (EV_A); 2380 loop_fork (EV_A);
1276 2381
1277 /* update fd-related kernel structures */ 2382 /* update fd-related kernel structures */
1278 fd_reify (EV_A); 2383 fd_reify (EV_A);
1279 2384
1280 /* calculate blocking time */ 2385 /* calculate blocking time */
1281 { 2386 {
1282 double block; 2387 ev_tstamp waittime = 0.;
2388 ev_tstamp sleeptime = 0.;
1283 2389
1284 if (flags & EVLOOP_NONBLOCK || idlecnt) 2390 /* remember old timestamp for io_blocktime calculation */
1285 block = 0.; /* do not block at all */ 2391 ev_tstamp prev_mn_now = mn_now;
1286 else 2392
2393 /* update time to cancel out callback processing overhead */
2394 time_update (EV_A_ 1e100);
2395
2396 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1287 { 2397 {
1288 /* update time to cancel out callback processing overhead */
1289#if EV_USE_MONOTONIC
1290 if (expect_true (have_monotonic))
1291 time_update_monotonic (EV_A);
1292 else
1293#endif
1294 {
1295 ev_rt_now = ev_time ();
1296 mn_now = ev_rt_now;
1297 }
1298
1299 block = MAX_BLOCKTIME; 2398 waittime = MAX_BLOCKTIME;
1300 2399
1301 if (timercnt) 2400 if (timercnt)
1302 { 2401 {
1303 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2402 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1304 if (block > to) block = to; 2403 if (waittime > to) waittime = to;
1305 } 2404 }
1306 2405
1307#if EV_PERIODICS 2406#if EV_PERIODIC_ENABLE
1308 if (periodiccnt) 2407 if (periodiccnt)
1309 { 2408 {
1310 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2409 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1311 if (block > to) block = to; 2410 if (waittime > to) waittime = to;
1312 } 2411 }
1313#endif 2412#endif
1314 2413
2414 /* don't let timeouts decrease the waittime below timeout_blocktime */
2415 if (expect_false (waittime < timeout_blocktime))
2416 waittime = timeout_blocktime;
2417
2418 /* extra check because io_blocktime is commonly 0 */
1315 if (expect_false (block < 0.)) block = 0.; 2419 if (expect_false (io_blocktime))
2420 {
2421 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2422
2423 if (sleeptime > waittime - backend_fudge)
2424 sleeptime = waittime - backend_fudge;
2425
2426 if (expect_true (sleeptime > 0.))
2427 {
2428 ev_sleep (sleeptime);
2429 waittime -= sleeptime;
2430 }
2431 }
1316 } 2432 }
1317 2433
2434#if EV_FEATURE_API
2435 ++loop_count;
2436#endif
2437 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1318 backend_poll (EV_A_ block); 2438 backend_poll (EV_A_ waittime);
2439 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2440
2441 /* update ev_rt_now, do magic */
2442 time_update (EV_A_ waittime + sleeptime);
1319 } 2443 }
1320
1321 /* update ev_rt_now, do magic */
1322 time_update (EV_A);
1323 2444
1324 /* queue pending timers and reschedule them */ 2445 /* queue pending timers and reschedule them */
1325 timers_reify (EV_A); /* relative timers called last */ 2446 timers_reify (EV_A); /* relative timers called last */
1326#if EV_PERIODICS 2447#if EV_PERIODIC_ENABLE
1327 periodics_reify (EV_A); /* absolute timers called first */ 2448 periodics_reify (EV_A); /* absolute timers called first */
1328#endif 2449#endif
1329 2450
2451#if EV_IDLE_ENABLE
1330 /* queue idle watchers unless other events are pending */ 2452 /* queue idle watchers unless other events are pending */
1331 if (idlecnt && !any_pending (EV_A)) 2453 idle_reify (EV_A);
1332 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2454#endif
1333 2455
2456#if EV_CHECK_ENABLE
1334 /* queue check watchers, to be executed first */ 2457 /* queue check watchers, to be executed first */
1335 if (expect_false (checkcnt)) 2458 if (expect_false (checkcnt))
1336 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2459 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2460#endif
1337 2461
1338 call_pending (EV_A); 2462 EV_INVOKE_PENDING;
1339
1340 if (expect_false (loop_done))
1341 break;
1342 } 2463 }
2464 while (expect_true (
2465 activecnt
2466 && !loop_done
2467 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2468 ));
1343 2469
1344 if (loop_done == EVUNLOOP_ONE) 2470 if (loop_done == EVBREAK_ONE)
1345 loop_done = EVUNLOOP_CANCEL; 2471 loop_done = EVBREAK_CANCEL;
1346}
1347 2472
2473#if EV_FEATURE_API
2474 --loop_depth;
2475#endif
2476}
2477
1348void 2478void
1349ev_unloop (EV_P_ int how) 2479ev_break (EV_P_ int how)
1350{ 2480{
1351 loop_done = how; 2481 loop_done = how;
1352} 2482}
1353 2483
2484void
2485ev_ref (EV_P)
2486{
2487 ++activecnt;
2488}
2489
2490void
2491ev_unref (EV_P)
2492{
2493 --activecnt;
2494}
2495
2496void
2497ev_now_update (EV_P)
2498{
2499 time_update (EV_A_ 1e100);
2500}
2501
2502void
2503ev_suspend (EV_P)
2504{
2505 ev_now_update (EV_A);
2506}
2507
2508void
2509ev_resume (EV_P)
2510{
2511 ev_tstamp mn_prev = mn_now;
2512
2513 ev_now_update (EV_A);
2514 timers_reschedule (EV_A_ mn_now - mn_prev);
2515#if EV_PERIODIC_ENABLE
2516 /* TODO: really do this? */
2517 periodics_reschedule (EV_A);
2518#endif
2519}
2520
1354/*****************************************************************************/ 2521/*****************************************************************************/
2522/* singly-linked list management, used when the expected list length is short */
1355 2523
1356inline void 2524inline_size void
1357wlist_add (WL *head, WL elem) 2525wlist_add (WL *head, WL elem)
1358{ 2526{
1359 elem->next = *head; 2527 elem->next = *head;
1360 *head = elem; 2528 *head = elem;
1361} 2529}
1362 2530
1363inline void 2531inline_size void
1364wlist_del (WL *head, WL elem) 2532wlist_del (WL *head, WL elem)
1365{ 2533{
1366 while (*head) 2534 while (*head)
1367 { 2535 {
1368 if (*head == elem) 2536 if (expect_true (*head == elem))
1369 { 2537 {
1370 *head = elem->next; 2538 *head = elem->next;
1371 return; 2539 break;
1372 } 2540 }
1373 2541
1374 head = &(*head)->next; 2542 head = &(*head)->next;
1375 } 2543 }
1376} 2544}
1377 2545
2546/* internal, faster, version of ev_clear_pending */
1378inline void 2547inline_speed void
1379ev_clear_pending (EV_P_ W w) 2548clear_pending (EV_P_ W w)
1380{ 2549{
1381 if (w->pending) 2550 if (w->pending)
1382 { 2551 {
1383 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2552 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1384 w->pending = 0; 2553 w->pending = 0;
1385 } 2554 }
1386} 2555}
1387 2556
2557int
2558ev_clear_pending (EV_P_ void *w)
2559{
2560 W w_ = (W)w;
2561 int pending = w_->pending;
2562
2563 if (expect_true (pending))
2564 {
2565 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2566 p->w = (W)&pending_w;
2567 w_->pending = 0;
2568 return p->events;
2569 }
2570 else
2571 return 0;
2572}
2573
1388inline void 2574inline_size void
2575pri_adjust (EV_P_ W w)
2576{
2577 int pri = ev_priority (w);
2578 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2579 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2580 ev_set_priority (w, pri);
2581}
2582
2583inline_speed void
1389ev_start (EV_P_ W w, int active) 2584ev_start (EV_P_ W w, int active)
1390{ 2585{
1391 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2586 pri_adjust (EV_A_ w);
1392 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1393
1394 w->active = active; 2587 w->active = active;
1395 ev_ref (EV_A); 2588 ev_ref (EV_A);
1396} 2589}
1397 2590
1398inline void 2591inline_size void
1399ev_stop (EV_P_ W w) 2592ev_stop (EV_P_ W w)
1400{ 2593{
1401 ev_unref (EV_A); 2594 ev_unref (EV_A);
1402 w->active = 0; 2595 w->active = 0;
1403} 2596}
1404 2597
1405/*****************************************************************************/ 2598/*****************************************************************************/
1406 2599
1407void 2600void noinline
1408ev_io_start (EV_P_ ev_io *w) 2601ev_io_start (EV_P_ ev_io *w)
1409{ 2602{
1410 int fd = w->fd; 2603 int fd = w->fd;
1411 2604
1412 if (expect_false (ev_is_active (w))) 2605 if (expect_false (ev_is_active (w)))
1413 return; 2606 return;
1414 2607
1415 assert (("ev_io_start called with negative fd", fd >= 0)); 2608 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2609 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2610
2611 EV_FREQUENT_CHECK;
1416 2612
1417 ev_start (EV_A_ (W)w, 1); 2613 ev_start (EV_A_ (W)w, 1);
1418 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2614 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1419 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2615 wlist_add (&anfds[fd].head, (WL)w);
1420 2616
1421 fd_change (EV_A_ fd); 2617 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1422} 2618 w->events &= ~EV__IOFDSET;
1423 2619
1424void 2620 EV_FREQUENT_CHECK;
2621}
2622
2623void noinline
1425ev_io_stop (EV_P_ ev_io *w) 2624ev_io_stop (EV_P_ ev_io *w)
1426{ 2625{
1427 ev_clear_pending (EV_A_ (W)w); 2626 clear_pending (EV_A_ (W)w);
1428 if (expect_false (!ev_is_active (w))) 2627 if (expect_false (!ev_is_active (w)))
1429 return; 2628 return;
1430 2629
1431 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2630 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1432 2631
2632 EV_FREQUENT_CHECK;
2633
1433 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2634 wlist_del (&anfds[w->fd].head, (WL)w);
1434 ev_stop (EV_A_ (W)w); 2635 ev_stop (EV_A_ (W)w);
1435 2636
1436 fd_change (EV_A_ w->fd); 2637 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1437}
1438 2638
1439void 2639 EV_FREQUENT_CHECK;
2640}
2641
2642void noinline
1440ev_timer_start (EV_P_ ev_timer *w) 2643ev_timer_start (EV_P_ ev_timer *w)
1441{ 2644{
1442 if (expect_false (ev_is_active (w))) 2645 if (expect_false (ev_is_active (w)))
1443 return; 2646 return;
1444 2647
1445 ((WT)w)->at += mn_now; 2648 ev_at (w) += mn_now;
1446 2649
1447 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2650 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1448 2651
2652 EV_FREQUENT_CHECK;
2653
2654 ++timercnt;
1449 ev_start (EV_A_ (W)w, ++timercnt); 2655 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1450 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2656 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1451 timers [timercnt - 1] = w; 2657 ANHE_w (timers [ev_active (w)]) = (WT)w;
1452 upheap ((WT *)timers, timercnt - 1); 2658 ANHE_at_cache (timers [ev_active (w)]);
2659 upheap (timers, ev_active (w));
1453 2660
2661 EV_FREQUENT_CHECK;
2662
1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2663 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1455} 2664}
1456 2665
1457void 2666void noinline
1458ev_timer_stop (EV_P_ ev_timer *w) 2667ev_timer_stop (EV_P_ ev_timer *w)
1459{ 2668{
1460 ev_clear_pending (EV_A_ (W)w); 2669 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2670 if (expect_false (!ev_is_active (w)))
1462 return; 2671 return;
1463 2672
2673 EV_FREQUENT_CHECK;
2674
2675 {
2676 int active = ev_active (w);
2677
1464 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2678 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1465 2679
2680 --timercnt;
2681
1466 if (expect_true (((W)w)->active < timercnt--)) 2682 if (expect_true (active < timercnt + HEAP0))
1467 { 2683 {
1468 timers [((W)w)->active - 1] = timers [timercnt]; 2684 timers [active] = timers [timercnt + HEAP0];
1469 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2685 adjustheap (timers, timercnt, active);
1470 } 2686 }
2687 }
1471 2688
1472 ((WT)w)->at -= mn_now; 2689 ev_at (w) -= mn_now;
1473 2690
1474 ev_stop (EV_A_ (W)w); 2691 ev_stop (EV_A_ (W)w);
1475}
1476 2692
1477void 2693 EV_FREQUENT_CHECK;
2694}
2695
2696void noinline
1478ev_timer_again (EV_P_ ev_timer *w) 2697ev_timer_again (EV_P_ ev_timer *w)
1479{ 2698{
2699 EV_FREQUENT_CHECK;
2700
1480 if (ev_is_active (w)) 2701 if (ev_is_active (w))
1481 { 2702 {
1482 if (w->repeat) 2703 if (w->repeat)
1483 { 2704 {
1484 ((WT)w)->at = mn_now + w->repeat; 2705 ev_at (w) = mn_now + w->repeat;
2706 ANHE_at_cache (timers [ev_active (w)]);
1485 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2707 adjustheap (timers, timercnt, ev_active (w));
1486 } 2708 }
1487 else 2709 else
1488 ev_timer_stop (EV_A_ w); 2710 ev_timer_stop (EV_A_ w);
1489 } 2711 }
1490 else if (w->repeat) 2712 else if (w->repeat)
1491 { 2713 {
1492 w->at = w->repeat; 2714 ev_at (w) = w->repeat;
1493 ev_timer_start (EV_A_ w); 2715 ev_timer_start (EV_A_ w);
1494 } 2716 }
1495}
1496 2717
2718 EV_FREQUENT_CHECK;
2719}
2720
2721ev_tstamp
2722ev_timer_remaining (EV_P_ ev_timer *w)
2723{
2724 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2725}
2726
1497#if EV_PERIODICS 2727#if EV_PERIODIC_ENABLE
1498void 2728void noinline
1499ev_periodic_start (EV_P_ ev_periodic *w) 2729ev_periodic_start (EV_P_ ev_periodic *w)
1500{ 2730{
1501 if (expect_false (ev_is_active (w))) 2731 if (expect_false (ev_is_active (w)))
1502 return; 2732 return;
1503 2733
1504 if (w->reschedule_cb) 2734 if (w->reschedule_cb)
1505 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2735 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1506 else if (w->interval) 2736 else if (w->interval)
1507 { 2737 {
1508 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2738 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1509 /* this formula differs from the one in periodic_reify because we do not always round up */ 2739 /* this formula differs from the one in periodic_reify because we do not always round up */
1510 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2740 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 } 2741 }
2742 else
2743 ev_at (w) = w->offset;
1512 2744
2745 EV_FREQUENT_CHECK;
2746
2747 ++periodiccnt;
1513 ev_start (EV_A_ (W)w, ++periodiccnt); 2748 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1514 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2749 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1515 periodics [periodiccnt - 1] = w; 2750 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1516 upheap ((WT *)periodics, periodiccnt - 1); 2751 ANHE_at_cache (periodics [ev_active (w)]);
2752 upheap (periodics, ev_active (w));
1517 2753
2754 EV_FREQUENT_CHECK;
2755
1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2756 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1519} 2757}
1520 2758
1521void 2759void noinline
1522ev_periodic_stop (EV_P_ ev_periodic *w) 2760ev_periodic_stop (EV_P_ ev_periodic *w)
1523{ 2761{
1524 ev_clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
1525 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
1526 return; 2764 return;
1527 2765
2766 EV_FREQUENT_CHECK;
2767
2768 {
2769 int active = ev_active (w);
2770
1528 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2771 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1529 2772
2773 --periodiccnt;
2774
1530 if (expect_true (((W)w)->active < periodiccnt--)) 2775 if (expect_true (active < periodiccnt + HEAP0))
1531 { 2776 {
1532 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2777 periodics [active] = periodics [periodiccnt + HEAP0];
1533 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2778 adjustheap (periodics, periodiccnt, active);
1534 } 2779 }
2780 }
1535 2781
1536 ev_stop (EV_A_ (W)w); 2782 ev_stop (EV_A_ (W)w);
1537}
1538 2783
1539void 2784 EV_FREQUENT_CHECK;
2785}
2786
2787void noinline
1540ev_periodic_again (EV_P_ ev_periodic *w) 2788ev_periodic_again (EV_P_ ev_periodic *w)
1541{ 2789{
1542 /* TODO: use adjustheap and recalculation */ 2790 /* TODO: use adjustheap and recalculation */
1543 ev_periodic_stop (EV_A_ w); 2791 ev_periodic_stop (EV_A_ w);
1544 ev_periodic_start (EV_A_ w); 2792 ev_periodic_start (EV_A_ w);
1545} 2793}
1546#endif 2794#endif
1547 2795
1548void 2796#ifndef SA_RESTART
2797# define SA_RESTART 0
2798#endif
2799
2800#if EV_SIGNAL_ENABLE
2801
2802void noinline
1549ev_idle_start (EV_P_ ev_idle *w) 2803ev_signal_start (EV_P_ ev_signal *w)
1550{ 2804{
1551 if (expect_false (ev_is_active (w))) 2805 if (expect_false (ev_is_active (w)))
1552 return; 2806 return;
1553 2807
2808 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2809
2810#if EV_MULTIPLICITY
2811 assert (("libev: a signal must not be attached to two different loops",
2812 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2813
2814 signals [w->signum - 1].loop = EV_A;
2815#endif
2816
2817 EV_FREQUENT_CHECK;
2818
2819#if EV_USE_SIGNALFD
2820 if (sigfd == -2)
2821 {
2822 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2823 if (sigfd < 0 && errno == EINVAL)
2824 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2825
2826 if (sigfd >= 0)
2827 {
2828 fd_intern (sigfd); /* doing it twice will not hurt */
2829
2830 sigemptyset (&sigfd_set);
2831
2832 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2833 ev_set_priority (&sigfd_w, EV_MAXPRI);
2834 ev_io_start (EV_A_ &sigfd_w);
2835 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2836 }
2837 }
2838
2839 if (sigfd >= 0)
2840 {
2841 /* TODO: check .head */
2842 sigaddset (&sigfd_set, w->signum);
2843 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2844
2845 signalfd (sigfd, &sigfd_set, 0);
2846 }
2847#endif
2848
1554 ev_start (EV_A_ (W)w, ++idlecnt); 2849 ev_start (EV_A_ (W)w, 1);
1555 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2850 wlist_add (&signals [w->signum - 1].head, (WL)w);
1556 idles [idlecnt - 1] = w;
1557}
1558 2851
1559void 2852 if (!((WL)w)->next)
2853# if EV_USE_SIGNALFD
2854 if (sigfd < 0) /*TODO*/
2855# endif
2856 {
2857# ifdef _WIN32
2858 evpipe_init (EV_A);
2859
2860 signal (w->signum, ev_sighandler);
2861# else
2862 struct sigaction sa;
2863
2864 evpipe_init (EV_A);
2865
2866 sa.sa_handler = ev_sighandler;
2867 sigfillset (&sa.sa_mask);
2868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2869 sigaction (w->signum, &sa, 0);
2870
2871 sigemptyset (&sa.sa_mask);
2872 sigaddset (&sa.sa_mask, w->signum);
2873 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2874#endif
2875 }
2876
2877 EV_FREQUENT_CHECK;
2878}
2879
2880void noinline
1560ev_idle_stop (EV_P_ ev_idle *w) 2881ev_signal_stop (EV_P_ ev_signal *w)
1561{ 2882{
1562 ev_clear_pending (EV_A_ (W)w); 2883 clear_pending (EV_A_ (W)w);
1563 if (expect_false (!ev_is_active (w))) 2884 if (expect_false (!ev_is_active (w)))
1564 return; 2885 return;
1565 2886
1566 { 2887 EV_FREQUENT_CHECK;
1567 int active = ((W)w)->active;
1568 idles [active - 1] = idles [--idlecnt];
1569 ((W)idles [active - 1])->active = active;
1570 }
1571 2888
2889 wlist_del (&signals [w->signum - 1].head, (WL)w);
1572 ev_stop (EV_A_ (W)w); 2890 ev_stop (EV_A_ (W)w);
1573}
1574 2891
2892 if (!signals [w->signum - 1].head)
2893 {
2894#if EV_MULTIPLICITY
2895 signals [w->signum - 1].loop = 0; /* unattach from signal */
2896#endif
2897#if EV_USE_SIGNALFD
2898 if (sigfd >= 0)
2899 {
2900 sigset_t ss;
2901
2902 sigemptyset (&ss);
2903 sigaddset (&ss, w->signum);
2904 sigdelset (&sigfd_set, w->signum);
2905
2906 signalfd (sigfd, &sigfd_set, 0);
2907 sigprocmask (SIG_UNBLOCK, &ss, 0);
2908 }
2909 else
2910#endif
2911 signal (w->signum, SIG_DFL);
2912 }
2913
2914 EV_FREQUENT_CHECK;
2915}
2916
2917#endif
2918
2919#if EV_CHILD_ENABLE
2920
1575void 2921void
1576ev_prepare_start (EV_P_ ev_prepare *w) 2922ev_child_start (EV_P_ ev_child *w)
1577{ 2923{
2924#if EV_MULTIPLICITY
2925 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2926#endif
1578 if (expect_false (ev_is_active (w))) 2927 if (expect_false (ev_is_active (w)))
1579 return; 2928 return;
2929
2930 EV_FREQUENT_CHECK;
2931
2932 ev_start (EV_A_ (W)w, 1);
2933 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2934
2935 EV_FREQUENT_CHECK;
2936}
2937
2938void
2939ev_child_stop (EV_P_ ev_child *w)
2940{
2941 clear_pending (EV_A_ (W)w);
2942 if (expect_false (!ev_is_active (w)))
2943 return;
2944
2945 EV_FREQUENT_CHECK;
2946
2947 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2951}
2952
2953#endif
2954
2955#if EV_STAT_ENABLE
2956
2957# ifdef _WIN32
2958# undef lstat
2959# define lstat(a,b) _stati64 (a,b)
2960# endif
2961
2962#define DEF_STAT_INTERVAL 5.0074891
2963#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2964#define MIN_STAT_INTERVAL 0.1074891
2965
2966static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2967
2968#if EV_USE_INOTIFY
2969
2970/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2971# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2972
2973static void noinline
2974infy_add (EV_P_ ev_stat *w)
2975{
2976 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2977
2978 if (w->wd >= 0)
2979 {
2980 struct statfs sfs;
2981
2982 /* now local changes will be tracked by inotify, but remote changes won't */
2983 /* unless the filesystem is known to be local, we therefore still poll */
2984 /* also do poll on <2.6.25, but with normal frequency */
2985
2986 if (!fs_2625)
2987 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2988 else if (!statfs (w->path, &sfs)
2989 && (sfs.f_type == 0x1373 /* devfs */
2990 || sfs.f_type == 0xEF53 /* ext2/3 */
2991 || sfs.f_type == 0x3153464a /* jfs */
2992 || sfs.f_type == 0x52654973 /* reiser3 */
2993 || sfs.f_type == 0x01021994 /* tempfs */
2994 || sfs.f_type == 0x58465342 /* xfs */))
2995 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2996 else
2997 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2998 }
2999 else
3000 {
3001 /* can't use inotify, continue to stat */
3002 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3003
3004 /* if path is not there, monitor some parent directory for speedup hints */
3005 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3006 /* but an efficiency issue only */
3007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3008 {
3009 char path [4096];
3010 strcpy (path, w->path);
3011
3012 do
3013 {
3014 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3015 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3016
3017 char *pend = strrchr (path, '/');
3018
3019 if (!pend || pend == path)
3020 break;
3021
3022 *pend = 0;
3023 w->wd = inotify_add_watch (fs_fd, path, mask);
3024 }
3025 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3026 }
3027 }
3028
3029 if (w->wd >= 0)
3030 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3031
3032 /* now re-arm timer, if required */
3033 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3034 ev_timer_again (EV_A_ &w->timer);
3035 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3036}
3037
3038static void noinline
3039infy_del (EV_P_ ev_stat *w)
3040{
3041 int slot;
3042 int wd = w->wd;
3043
3044 if (wd < 0)
3045 return;
3046
3047 w->wd = -2;
3048 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3049 wlist_del (&fs_hash [slot].head, (WL)w);
3050
3051 /* remove this watcher, if others are watching it, they will rearm */
3052 inotify_rm_watch (fs_fd, wd);
3053}
3054
3055static void noinline
3056infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3057{
3058 if (slot < 0)
3059 /* overflow, need to check for all hash slots */
3060 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3061 infy_wd (EV_A_ slot, wd, ev);
3062 else
3063 {
3064 WL w_;
3065
3066 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3067 {
3068 ev_stat *w = (ev_stat *)w_;
3069 w_ = w_->next; /* lets us remove this watcher and all before it */
3070
3071 if (w->wd == wd || wd == -1)
3072 {
3073 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3074 {
3075 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3076 w->wd = -1;
3077 infy_add (EV_A_ w); /* re-add, no matter what */
3078 }
3079
3080 stat_timer_cb (EV_A_ &w->timer, 0);
3081 }
3082 }
3083 }
3084}
3085
3086static void
3087infy_cb (EV_P_ ev_io *w, int revents)
3088{
3089 char buf [EV_INOTIFY_BUFSIZE];
3090 int ofs;
3091 int len = read (fs_fd, buf, sizeof (buf));
3092
3093 for (ofs = 0; ofs < len; )
3094 {
3095 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3096 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3097 ofs += sizeof (struct inotify_event) + ev->len;
3098 }
3099}
3100
3101inline_size void
3102ev_check_2625 (EV_P)
3103{
3104 /* kernels < 2.6.25 are borked
3105 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3106 */
3107 if (ev_linux_version () < 0x020619)
3108 return;
3109
3110 fs_2625 = 1;
3111}
3112
3113inline_size int
3114infy_newfd (void)
3115{
3116#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3117 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3118 if (fd >= 0)
3119 return fd;
3120#endif
3121 return inotify_init ();
3122}
3123
3124inline_size void
3125infy_init (EV_P)
3126{
3127 if (fs_fd != -2)
3128 return;
3129
3130 fs_fd = -1;
3131
3132 ev_check_2625 (EV_A);
3133
3134 fs_fd = infy_newfd ();
3135
3136 if (fs_fd >= 0)
3137 {
3138 fd_intern (fs_fd);
3139 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3140 ev_set_priority (&fs_w, EV_MAXPRI);
3141 ev_io_start (EV_A_ &fs_w);
3142 ev_unref (EV_A);
3143 }
3144}
3145
3146inline_size void
3147infy_fork (EV_P)
3148{
3149 int slot;
3150
3151 if (fs_fd < 0)
3152 return;
3153
3154 ev_ref (EV_A);
3155 ev_io_stop (EV_A_ &fs_w);
3156 close (fs_fd);
3157 fs_fd = infy_newfd ();
3158
3159 if (fs_fd >= 0)
3160 {
3161 fd_intern (fs_fd);
3162 ev_io_set (&fs_w, fs_fd, EV_READ);
3163 ev_io_start (EV_A_ &fs_w);
3164 ev_unref (EV_A);
3165 }
3166
3167 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3168 {
3169 WL w_ = fs_hash [slot].head;
3170 fs_hash [slot].head = 0;
3171
3172 while (w_)
3173 {
3174 ev_stat *w = (ev_stat *)w_;
3175 w_ = w_->next; /* lets us add this watcher */
3176
3177 w->wd = -1;
3178
3179 if (fs_fd >= 0)
3180 infy_add (EV_A_ w); /* re-add, no matter what */
3181 else
3182 {
3183 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3184 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3185 ev_timer_again (EV_A_ &w->timer);
3186 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3187 }
3188 }
3189 }
3190}
3191
3192#endif
3193
3194#ifdef _WIN32
3195# define EV_LSTAT(p,b) _stati64 (p, b)
3196#else
3197# define EV_LSTAT(p,b) lstat (p, b)
3198#endif
3199
3200void
3201ev_stat_stat (EV_P_ ev_stat *w)
3202{
3203 if (lstat (w->path, &w->attr) < 0)
3204 w->attr.st_nlink = 0;
3205 else if (!w->attr.st_nlink)
3206 w->attr.st_nlink = 1;
3207}
3208
3209static void noinline
3210stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3211{
3212 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3213
3214 ev_statdata prev = w->attr;
3215 ev_stat_stat (EV_A_ w);
3216
3217 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3218 if (
3219 prev.st_dev != w->attr.st_dev
3220 || prev.st_ino != w->attr.st_ino
3221 || prev.st_mode != w->attr.st_mode
3222 || prev.st_nlink != w->attr.st_nlink
3223 || prev.st_uid != w->attr.st_uid
3224 || prev.st_gid != w->attr.st_gid
3225 || prev.st_rdev != w->attr.st_rdev
3226 || prev.st_size != w->attr.st_size
3227 || prev.st_atime != w->attr.st_atime
3228 || prev.st_mtime != w->attr.st_mtime
3229 || prev.st_ctime != w->attr.st_ctime
3230 ) {
3231 /* we only update w->prev on actual differences */
3232 /* in case we test more often than invoke the callback, */
3233 /* to ensure that prev is always different to attr */
3234 w->prev = prev;
3235
3236 #if EV_USE_INOTIFY
3237 if (fs_fd >= 0)
3238 {
3239 infy_del (EV_A_ w);
3240 infy_add (EV_A_ w);
3241 ev_stat_stat (EV_A_ w); /* avoid race... */
3242 }
3243 #endif
3244
3245 ev_feed_event (EV_A_ w, EV_STAT);
3246 }
3247}
3248
3249void
3250ev_stat_start (EV_P_ ev_stat *w)
3251{
3252 if (expect_false (ev_is_active (w)))
3253 return;
3254
3255 ev_stat_stat (EV_A_ w);
3256
3257 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3258 w->interval = MIN_STAT_INTERVAL;
3259
3260 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3261 ev_set_priority (&w->timer, ev_priority (w));
3262
3263#if EV_USE_INOTIFY
3264 infy_init (EV_A);
3265
3266 if (fs_fd >= 0)
3267 infy_add (EV_A_ w);
3268 else
3269#endif
3270 {
3271 ev_timer_again (EV_A_ &w->timer);
3272 ev_unref (EV_A);
3273 }
3274
3275 ev_start (EV_A_ (W)w, 1);
3276
3277 EV_FREQUENT_CHECK;
3278}
3279
3280void
3281ev_stat_stop (EV_P_ ev_stat *w)
3282{
3283 clear_pending (EV_A_ (W)w);
3284 if (expect_false (!ev_is_active (w)))
3285 return;
3286
3287 EV_FREQUENT_CHECK;
3288
3289#if EV_USE_INOTIFY
3290 infy_del (EV_A_ w);
3291#endif
3292
3293 if (ev_is_active (&w->timer))
3294 {
3295 ev_ref (EV_A);
3296 ev_timer_stop (EV_A_ &w->timer);
3297 }
3298
3299 ev_stop (EV_A_ (W)w);
3300
3301 EV_FREQUENT_CHECK;
3302}
3303#endif
3304
3305#if EV_IDLE_ENABLE
3306void
3307ev_idle_start (EV_P_ ev_idle *w)
3308{
3309 if (expect_false (ev_is_active (w)))
3310 return;
3311
3312 pri_adjust (EV_A_ (W)w);
3313
3314 EV_FREQUENT_CHECK;
3315
3316 {
3317 int active = ++idlecnt [ABSPRI (w)];
3318
3319 ++idleall;
3320 ev_start (EV_A_ (W)w, active);
3321
3322 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3323 idles [ABSPRI (w)][active - 1] = w;
3324 }
3325
3326 EV_FREQUENT_CHECK;
3327}
3328
3329void
3330ev_idle_stop (EV_P_ ev_idle *w)
3331{
3332 clear_pending (EV_A_ (W)w);
3333 if (expect_false (!ev_is_active (w)))
3334 return;
3335
3336 EV_FREQUENT_CHECK;
3337
3338 {
3339 int active = ev_active (w);
3340
3341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3342 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3343
3344 ev_stop (EV_A_ (W)w);
3345 --idleall;
3346 }
3347
3348 EV_FREQUENT_CHECK;
3349}
3350#endif
3351
3352#if EV_PREPARE_ENABLE
3353void
3354ev_prepare_start (EV_P_ ev_prepare *w)
3355{
3356 if (expect_false (ev_is_active (w)))
3357 return;
3358
3359 EV_FREQUENT_CHECK;
1580 3360
1581 ev_start (EV_A_ (W)w, ++preparecnt); 3361 ev_start (EV_A_ (W)w, ++preparecnt);
1582 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3362 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1583 prepares [preparecnt - 1] = w; 3363 prepares [preparecnt - 1] = w;
3364
3365 EV_FREQUENT_CHECK;
1584} 3366}
1585 3367
1586void 3368void
1587ev_prepare_stop (EV_P_ ev_prepare *w) 3369ev_prepare_stop (EV_P_ ev_prepare *w)
1588{ 3370{
1589 ev_clear_pending (EV_A_ (W)w); 3371 clear_pending (EV_A_ (W)w);
1590 if (expect_false (!ev_is_active (w))) 3372 if (expect_false (!ev_is_active (w)))
1591 return; 3373 return;
1592 3374
3375 EV_FREQUENT_CHECK;
3376
1593 { 3377 {
1594 int active = ((W)w)->active; 3378 int active = ev_active (w);
3379
1595 prepares [active - 1] = prepares [--preparecnt]; 3380 prepares [active - 1] = prepares [--preparecnt];
1596 ((W)prepares [active - 1])->active = active; 3381 ev_active (prepares [active - 1]) = active;
1597 } 3382 }
1598 3383
1599 ev_stop (EV_A_ (W)w); 3384 ev_stop (EV_A_ (W)w);
1600}
1601 3385
3386 EV_FREQUENT_CHECK;
3387}
3388#endif
3389
3390#if EV_CHECK_ENABLE
1602void 3391void
1603ev_check_start (EV_P_ ev_check *w) 3392ev_check_start (EV_P_ ev_check *w)
1604{ 3393{
1605 if (expect_false (ev_is_active (w))) 3394 if (expect_false (ev_is_active (w)))
1606 return; 3395 return;
3396
3397 EV_FREQUENT_CHECK;
1607 3398
1608 ev_start (EV_A_ (W)w, ++checkcnt); 3399 ev_start (EV_A_ (W)w, ++checkcnt);
1609 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3400 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1610 checks [checkcnt - 1] = w; 3401 checks [checkcnt - 1] = w;
3402
3403 EV_FREQUENT_CHECK;
1611} 3404}
1612 3405
1613void 3406void
1614ev_check_stop (EV_P_ ev_check *w) 3407ev_check_stop (EV_P_ ev_check *w)
1615{ 3408{
1616 ev_clear_pending (EV_A_ (W)w); 3409 clear_pending (EV_A_ (W)w);
1617 if (expect_false (!ev_is_active (w))) 3410 if (expect_false (!ev_is_active (w)))
1618 return; 3411 return;
1619 3412
3413 EV_FREQUENT_CHECK;
3414
1620 { 3415 {
1621 int active = ((W)w)->active; 3416 int active = ev_active (w);
3417
1622 checks [active - 1] = checks [--checkcnt]; 3418 checks [active - 1] = checks [--checkcnt];
1623 ((W)checks [active - 1])->active = active; 3419 ev_active (checks [active - 1]) = active;
1624 } 3420 }
1625 3421
1626 ev_stop (EV_A_ (W)w); 3422 ev_stop (EV_A_ (W)w);
1627}
1628 3423
1629#ifndef SA_RESTART 3424 EV_FREQUENT_CHECK;
1630# define SA_RESTART 0
1631#endif
1632
1633void
1634ev_signal_start (EV_P_ ev_signal *w)
1635{
1636#if EV_MULTIPLICITY
1637 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1638#endif
1639 if (expect_false (ev_is_active (w)))
1640 return;
1641
1642 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1643
1644 ev_start (EV_A_ (W)w, 1);
1645 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1646 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1647
1648 if (!((WL)w)->next)
1649 {
1650#if _WIN32
1651 signal (w->signum, sighandler);
1652#else
1653 struct sigaction sa;
1654 sa.sa_handler = sighandler;
1655 sigfillset (&sa.sa_mask);
1656 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1657 sigaction (w->signum, &sa, 0);
1658#endif
1659 }
1660} 3425}
1661
1662void
1663ev_signal_stop (EV_P_ ev_signal *w)
1664{
1665 ev_clear_pending (EV_A_ (W)w);
1666 if (expect_false (!ev_is_active (w)))
1667 return;
1668
1669 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1670 ev_stop (EV_A_ (W)w);
1671
1672 if (!signals [w->signum - 1].head)
1673 signal (w->signum, SIG_DFL);
1674}
1675
1676void
1677ev_child_start (EV_P_ ev_child *w)
1678{
1679#if EV_MULTIPLICITY
1680 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1681#endif 3426#endif
1682 if (expect_false (ev_is_active (w)))
1683 return;
1684 3427
1685 ev_start (EV_A_ (W)w, 1); 3428#if EV_EMBED_ENABLE
1686 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3429void noinline
1687}
1688
1689void
1690ev_child_stop (EV_P_ ev_child *w)
1691{
1692 ev_clear_pending (EV_A_ (W)w);
1693 if (expect_false (!ev_is_active (w)))
1694 return;
1695
1696 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1697 ev_stop (EV_A_ (W)w);
1698}
1699
1700#if EV_MULTIPLICITY
1701void
1702ev_embed_sweep (EV_P_ ev_embed *w) 3430ev_embed_sweep (EV_P_ ev_embed *w)
1703{ 3431{
1704 ev_loop (w->loop, EVLOOP_NONBLOCK); 3432 ev_run (w->other, EVRUN_NOWAIT);
1705} 3433}
1706 3434
1707static void 3435static void
1708embed_cb (EV_P_ ev_io *io, int revents) 3436embed_io_cb (EV_P_ ev_io *io, int revents)
1709{ 3437{
1710 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1711 3439
1712 if (ev_cb (w)) 3440 if (ev_cb (w))
1713 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1714 else 3442 else
1715 ev_embed_sweep (loop, w); 3443 ev_run (w->other, EVRUN_NOWAIT);
1716} 3444}
3445
3446static void
3447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3448{
3449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3450
3451 {
3452 EV_P = w->other;
3453
3454 while (fdchangecnt)
3455 {
3456 fd_reify (EV_A);
3457 ev_run (EV_A_ EVRUN_NOWAIT);
3458 }
3459 }
3460}
3461
3462static void
3463embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3464{
3465 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3466
3467 ev_embed_stop (EV_A_ w);
3468
3469 {
3470 EV_P = w->other;
3471
3472 ev_loop_fork (EV_A);
3473 ev_run (EV_A_ EVRUN_NOWAIT);
3474 }
3475
3476 ev_embed_start (EV_A_ w);
3477}
3478
3479#if 0
3480static void
3481embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3482{
3483 ev_idle_stop (EV_A_ idle);
3484}
3485#endif
1717 3486
1718void 3487void
1719ev_embed_start (EV_P_ ev_embed *w) 3488ev_embed_start (EV_P_ ev_embed *w)
1720{ 3489{
1721 if (expect_false (ev_is_active (w))) 3490 if (expect_false (ev_is_active (w)))
1722 return; 3491 return;
1723 3492
1724 { 3493 {
1725 struct ev_loop *loop = w->loop; 3494 EV_P = w->other;
1726 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3495 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1727 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3496 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1728 } 3497 }
3498
3499 EV_FREQUENT_CHECK;
1729 3500
1730 ev_set_priority (&w->io, ev_priority (w)); 3501 ev_set_priority (&w->io, ev_priority (w));
1731 ev_io_start (EV_A_ &w->io); 3502 ev_io_start (EV_A_ &w->io);
3503
3504 ev_prepare_init (&w->prepare, embed_prepare_cb);
3505 ev_set_priority (&w->prepare, EV_MINPRI);
3506 ev_prepare_start (EV_A_ &w->prepare);
3507
3508 ev_fork_init (&w->fork, embed_fork_cb);
3509 ev_fork_start (EV_A_ &w->fork);
3510
3511 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3512
1732 ev_start (EV_A_ (W)w, 1); 3513 ev_start (EV_A_ (W)w, 1);
3514
3515 EV_FREQUENT_CHECK;
1733} 3516}
1734 3517
1735void 3518void
1736ev_embed_stop (EV_P_ ev_embed *w) 3519ev_embed_stop (EV_P_ ev_embed *w)
1737{ 3520{
1738 ev_clear_pending (EV_A_ (W)w); 3521 clear_pending (EV_A_ (W)w);
1739 if (expect_false (!ev_is_active (w))) 3522 if (expect_false (!ev_is_active (w)))
1740 return; 3523 return;
1741 3524
3525 EV_FREQUENT_CHECK;
3526
1742 ev_io_stop (EV_A_ &w->io); 3527 ev_io_stop (EV_A_ &w->io);
3528 ev_prepare_stop (EV_A_ &w->prepare);
3529 ev_fork_stop (EV_A_ &w->fork);
3530
1743 ev_stop (EV_A_ (W)w); 3531 ev_stop (EV_A_ (W)w);
3532
3533 EV_FREQUENT_CHECK;
3534}
3535#endif
3536
3537#if EV_FORK_ENABLE
3538void
3539ev_fork_start (EV_P_ ev_fork *w)
3540{
3541 if (expect_false (ev_is_active (w)))
3542 return;
3543
3544 EV_FREQUENT_CHECK;
3545
3546 ev_start (EV_A_ (W)w, ++forkcnt);
3547 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3548 forks [forkcnt - 1] = w;
3549
3550 EV_FREQUENT_CHECK;
3551}
3552
3553void
3554ev_fork_stop (EV_P_ ev_fork *w)
3555{
3556 clear_pending (EV_A_ (W)w);
3557 if (expect_false (!ev_is_active (w)))
3558 return;
3559
3560 EV_FREQUENT_CHECK;
3561
3562 {
3563 int active = ev_active (w);
3564
3565 forks [active - 1] = forks [--forkcnt];
3566 ev_active (forks [active - 1]) = active;
3567 }
3568
3569 ev_stop (EV_A_ (W)w);
3570
3571 EV_FREQUENT_CHECK;
3572}
3573#endif
3574
3575#if EV_CLEANUP_ENABLE
3576void
3577ev_cleanup_start (EV_P_ ev_cleanup *w)
3578{
3579 if (expect_false (ev_is_active (w)))
3580 return;
3581
3582 EV_FREQUENT_CHECK;
3583
3584 ev_start (EV_A_ (W)w, ++cleanupcnt);
3585 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3586 cleanups [cleanupcnt - 1] = w;
3587
3588 EV_FREQUENT_CHECK;
3589}
3590
3591void
3592ev_cleanup_stop (EV_P_ ev_cleanup *w)
3593{
3594 clear_pending (EV_A_ (W)w);
3595 if (expect_false (!ev_is_active (w)))
3596 return;
3597
3598 EV_FREQUENT_CHECK;
3599
3600 {
3601 int active = ev_active (w);
3602
3603 cleanups [active - 1] = cleanups [--cleanupcnt];
3604 ev_active (cleanups [active - 1]) = active;
3605 }
3606
3607 ev_stop (EV_A_ (W)w);
3608
3609 EV_FREQUENT_CHECK;
3610}
3611#endif
3612
3613#if EV_ASYNC_ENABLE
3614void
3615ev_async_start (EV_P_ ev_async *w)
3616{
3617 if (expect_false (ev_is_active (w)))
3618 return;
3619
3620 w->sent = 0;
3621
3622 evpipe_init (EV_A);
3623
3624 EV_FREQUENT_CHECK;
3625
3626 ev_start (EV_A_ (W)w, ++asynccnt);
3627 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3628 asyncs [asynccnt - 1] = w;
3629
3630 EV_FREQUENT_CHECK;
3631}
3632
3633void
3634ev_async_stop (EV_P_ ev_async *w)
3635{
3636 clear_pending (EV_A_ (W)w);
3637 if (expect_false (!ev_is_active (w)))
3638 return;
3639
3640 EV_FREQUENT_CHECK;
3641
3642 {
3643 int active = ev_active (w);
3644
3645 asyncs [active - 1] = asyncs [--asynccnt];
3646 ev_active (asyncs [active - 1]) = active;
3647 }
3648
3649 ev_stop (EV_A_ (W)w);
3650
3651 EV_FREQUENT_CHECK;
3652}
3653
3654void
3655ev_async_send (EV_P_ ev_async *w)
3656{
3657 w->sent = 1;
3658 evpipe_write (EV_A_ &async_pending);
1744} 3659}
1745#endif 3660#endif
1746 3661
1747/*****************************************************************************/ 3662/*****************************************************************************/
1748 3663
1758once_cb (EV_P_ struct ev_once *once, int revents) 3673once_cb (EV_P_ struct ev_once *once, int revents)
1759{ 3674{
1760 void (*cb)(int revents, void *arg) = once->cb; 3675 void (*cb)(int revents, void *arg) = once->cb;
1761 void *arg = once->arg; 3676 void *arg = once->arg;
1762 3677
1763 ev_io_stop (EV_A_ &once->io); 3678 ev_io_stop (EV_A_ &once->io);
1764 ev_timer_stop (EV_A_ &once->to); 3679 ev_timer_stop (EV_A_ &once->to);
1765 ev_free (once); 3680 ev_free (once);
1766 3681
1767 cb (revents, arg); 3682 cb (revents, arg);
1768} 3683}
1769 3684
1770static void 3685static void
1771once_cb_io (EV_P_ ev_io *w, int revents) 3686once_cb_io (EV_P_ ev_io *w, int revents)
1772{ 3687{
1773 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3688 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3689
3690 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1774} 3691}
1775 3692
1776static void 3693static void
1777once_cb_to (EV_P_ ev_timer *w, int revents) 3694once_cb_to (EV_P_ ev_timer *w, int revents)
1778{ 3695{
1779 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3696 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3697
3698 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1780} 3699}
1781 3700
1782void 3701void
1783ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3702ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1784{ 3703{
1785 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3704 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1786 3705
1787 if (expect_false (!once)) 3706 if (expect_false (!once))
1788 { 3707 {
1789 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3708 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1790 return; 3709 return;
1791 } 3710 }
1792 3711
1793 once->cb = cb; 3712 once->cb = cb;
1794 once->arg = arg; 3713 once->arg = arg;
1806 ev_timer_set (&once->to, timeout, 0.); 3725 ev_timer_set (&once->to, timeout, 0.);
1807 ev_timer_start (EV_A_ &once->to); 3726 ev_timer_start (EV_A_ &once->to);
1808 } 3727 }
1809} 3728}
1810 3729
1811#ifdef __cplusplus 3730/*****************************************************************************/
1812} 3731
3732#if EV_WALK_ENABLE
3733void
3734ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3735{
3736 int i, j;
3737 ev_watcher_list *wl, *wn;
3738
3739 if (types & (EV_IO | EV_EMBED))
3740 for (i = 0; i < anfdmax; ++i)
3741 for (wl = anfds [i].head; wl; )
3742 {
3743 wn = wl->next;
3744
3745#if EV_EMBED_ENABLE
3746 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3747 {
3748 if (types & EV_EMBED)
3749 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3750 }
3751 else
3752#endif
3753#if EV_USE_INOTIFY
3754 if (ev_cb ((ev_io *)wl) == infy_cb)
3755 ;
3756 else
3757#endif
3758 if ((ev_io *)wl != &pipe_w)
3759 if (types & EV_IO)
3760 cb (EV_A_ EV_IO, wl);
3761
3762 wl = wn;
3763 }
3764
3765 if (types & (EV_TIMER | EV_STAT))
3766 for (i = timercnt + HEAP0; i-- > HEAP0; )
3767#if EV_STAT_ENABLE
3768 /*TODO: timer is not always active*/
3769 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3770 {
3771 if (types & EV_STAT)
3772 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3773 }
3774 else
3775#endif
3776 if (types & EV_TIMER)
3777 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3778
3779#if EV_PERIODIC_ENABLE
3780 if (types & EV_PERIODIC)
3781 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3782 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3783#endif
3784
3785#if EV_IDLE_ENABLE
3786 if (types & EV_IDLE)
3787 for (j = NUMPRI; i--; )
3788 for (i = idlecnt [j]; i--; )
3789 cb (EV_A_ EV_IDLE, idles [j][i]);
3790#endif
3791
3792#if EV_FORK_ENABLE
3793 if (types & EV_FORK)
3794 for (i = forkcnt; i--; )
3795 if (ev_cb (forks [i]) != embed_fork_cb)
3796 cb (EV_A_ EV_FORK, forks [i]);
3797#endif
3798
3799#if EV_ASYNC_ENABLE
3800 if (types & EV_ASYNC)
3801 for (i = asynccnt; i--; )
3802 cb (EV_A_ EV_ASYNC, asyncs [i]);
3803#endif
3804
3805#if EV_PREPARE_ENABLE
3806 if (types & EV_PREPARE)
3807 for (i = preparecnt; i--; )
3808# if EV_EMBED_ENABLE
3809 if (ev_cb (prepares [i]) != embed_prepare_cb)
1813#endif 3810# endif
3811 cb (EV_A_ EV_PREPARE, prepares [i]);
3812#endif
1814 3813
3814#if EV_CHECK_ENABLE
3815 if (types & EV_CHECK)
3816 for (i = checkcnt; i--; )
3817 cb (EV_A_ EV_CHECK, checks [i]);
3818#endif
3819
3820#if EV_SIGNAL_ENABLE
3821 if (types & EV_SIGNAL)
3822 for (i = 0; i < EV_NSIG - 1; ++i)
3823 for (wl = signals [i].head; wl; )
3824 {
3825 wn = wl->next;
3826 cb (EV_A_ EV_SIGNAL, wl);
3827 wl = wn;
3828 }
3829#endif
3830
3831#if EV_CHILD_ENABLE
3832 if (types & EV_CHILD)
3833 for (i = (EV_PID_HASHSIZE); i--; )
3834 for (wl = childs [i]; wl; )
3835 {
3836 wn = wl->next;
3837 cb (EV_A_ EV_CHILD, wl);
3838 wl = wn;
3839 }
3840#endif
3841/* EV_STAT 0x00001000 /* stat data changed */
3842/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3843}
3844#endif
3845
3846#if EV_MULTIPLICITY
3847 #include "ev_wrap.h"
3848#endif
3849
3850EV_CPP(})
3851

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines