ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.244 by root, Tue May 20 23:49:41 2008 UTC vs.
Revision 1.360 by root, Sun Oct 24 18:12:41 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
130# endif 148# endif
131 149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
237# endif 314# endif
238#endif 315#endif
239 316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
240#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 337#endif
243 338
244#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
246#endif 355#endif
247 356
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
249 364
250#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
253#endif 368#endif
267# include <sys/select.h> 382# include <sys/select.h>
268# endif 383# endif
269#endif 384#endif
270 385
271#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
272# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
273#endif 394#endif
274 395
275#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 397# include <winsock.h>
277#endif 398#endif
278 399
279#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 402# include <stdint.h>
282# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
283extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
284# endif 405# endif
285int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 407# ifdef O_CLOEXEC
287} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
288# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
289#endif 436#endif
290 437
291/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
292 445
293/* 446/*
294 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
300 */ 453 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302 455
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
306 461
307#if __GNUC__ >= 4 462#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
310#else 465#else
317 472
318#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline 475#define inline_size static inline
321 476
322#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
323# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
324#else 487#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
330 490
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
333 493
334typedef ev_watcher *W; 494typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
337 497
338#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
340 500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
341#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 519#endif
346 520
347#ifdef _WIN32 521#ifdef _WIN32
348# include "ev_win32.c" 522# include "ev_win32.c"
349#endif 523#endif
350 524
351/*****************************************************************************/ 525/*****************************************************************************/
352 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
353static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
354 578
355void 579void
356ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
357{ 581{
358 syserr_cb = cb; 582 syserr_cb = cb;
359} 583}
360 584
361static void noinline 585static void noinline
362syserr (const char *msg) 586ev_syserr (const char *msg)
363{ 587{
364 if (!msg) 588 if (!msg)
365 msg = "(libev) system error"; 589 msg = "(libev) system error";
366 590
367 if (syserr_cb) 591 if (syserr_cb)
368 syserr_cb (msg); 592 syserr_cb (msg);
369 else 593 else
370 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
371 perror (msg); 603 perror (msg);
604#endif
372 abort (); 605 abort ();
373 } 606 }
374} 607}
375 608
376static void * 609static void *
377ev_realloc_emul (void *ptr, long size) 610ev_realloc_emul (void *ptr, long size)
378{ 611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
379 /* some systems, notably openbsd and darwin, fail to properly 615 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 616 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 617 * the single unix specification, so work around them here.
382 */ 618 */
383 619
384 if (size) 620 if (size)
385 return realloc (ptr, size); 621 return realloc (ptr, size);
386 622
387 free (ptr); 623 free (ptr);
388 return 0; 624 return 0;
625#endif
389} 626}
390 627
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
392 629
393void 630void
401{ 638{
402 ptr = alloc (ptr, size); 639 ptr = alloc (ptr, size);
403 640
404 if (!ptr && size) 641 if (!ptr && size)
405 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
407 abort (); 648 abort ();
408 } 649 }
409 650
410 return ptr; 651 return ptr;
411} 652}
413#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
415 656
416/*****************************************************************************/ 657/*****************************************************************************/
417 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
418typedef struct 663typedef struct
419{ 664{
420 WL head; 665 WL head;
421 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
423#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 674 SOCKET handle;
425#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
426} ANFD; 679} ANFD;
427 680
681/* stores the pending event set for a given watcher */
428typedef struct 682typedef struct
429{ 683{
430 W w; 684 W w;
431 int events; 685 int events; /* the pending event set for the given watcher */
432} ANPENDING; 686} ANPENDING;
433 687
434#if EV_USE_INOTIFY 688#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 689/* hash table entry per inotify-id */
436typedef struct 690typedef struct
439} ANFS; 693} ANFS;
440#endif 694#endif
441 695
442/* Heap Entry */ 696/* Heap Entry */
443#if EV_HEAP_CACHE_AT 697#if EV_HEAP_CACHE_AT
698 /* a heap element */
444 typedef struct { 699 typedef struct {
445 ev_tstamp at; 700 ev_tstamp at;
446 WT w; 701 WT w;
447 } ANHE; 702 } ANHE;
448 703
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 704 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 705 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 707#else
708 /* a heap element */
453 typedef WT ANHE; 709 typedef WT ANHE;
454 710
455 #define ANHE_w(he) (he) 711 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 712 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 713 #define ANHE_at_cache(he)
458#endif 714#endif
459 715
460#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
461 717
462 struct ev_loop 718 struct ev_loop
481 737
482 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
483 739
484#endif 740#endif
485 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
486/*****************************************************************************/ 754/*****************************************************************************/
487 755
756#ifndef EV_HAVE_EV_TIME
488ev_tstamp 757ev_tstamp
489ev_time (void) 758ev_time (void)
490{ 759{
491#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
492 struct timespec ts; 763 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 766 }
767#endif
768
496 struct timeval tv; 769 struct timeval tv;
497 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 772}
773#endif
501 774
502ev_tstamp inline_size 775inline_size ev_tstamp
503get_clock (void) 776get_clock (void)
504{ 777{
505#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
507 { 780 {
528 if (delay > 0.) 801 if (delay > 0.)
529 { 802 {
530#if EV_USE_NANOSLEEP 803#if EV_USE_NANOSLEEP
531 struct timespec ts; 804 struct timespec ts;
532 805
533 ts.tv_sec = (time_t)delay; 806 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 807 nanosleep (&ts, 0);
537#elif defined(_WIN32) 808#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3)); 809 Sleep ((unsigned long)(delay * 1e3));
539#else 810#else
540 struct timeval tv; 811 struct timeval tv;
541 812
542 tv.tv_sec = (time_t)delay; 813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 814 /* something not guaranteed by newer posix versions, but guaranteed */
544 815 /* by older ones */
816 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 817 select (0, 0, 0, 0, &tv);
546#endif 818#endif
547 } 819 }
548} 820}
549 821
550/*****************************************************************************/ 822/*****************************************************************************/
551 823
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 825
554int inline_size 826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
555array_nextsize (int elem, int cur, int cnt) 829array_nextsize (int elem, int cur, int cnt)
556{ 830{
557 int ncur = cur + 1; 831 int ncur = cur + 1;
558 832
559 do 833 do
576array_realloc (int elem, void *base, int *cur, int cnt) 850array_realloc (int elem, void *base, int *cur, int cnt)
577{ 851{
578 *cur = array_nextsize (elem, *cur, cnt); 852 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 853 return ev_realloc (base, elem * *cur);
580} 854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 858
582#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 860 if (expect_false ((cnt) > (cur))) \
584 { \ 861 { \
585 int ocur_ = (cur); \ 862 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 875 }
599#endif 876#endif
600 877
601#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 880
604/*****************************************************************************/ 881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
605 888
606void noinline 889void noinline
607ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
608{ 891{
609 W w_ = (W)w; 892 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 901 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 902 pendings [pri][w_->pending - 1].events = revents;
620 } 903 }
621} 904}
622 905
623void inline_speed 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 923{
626 int i; 924 int i;
627 925
628 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
630} 928}
631 929
632/*****************************************************************************/ 930/*****************************************************************************/
633 931
634void inline_size 932inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
649{ 934{
650 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
651 ev_io *w; 936 ev_io *w;
652 937
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 942 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
659 } 944 }
660} 945}
661 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
662void 958void
663ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 960{
665 if (fd >= 0 && fd < anfdmax) 961 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
667} 963}
668 964
669void inline_size 965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
670fd_reify (EV_P) 968fd_reify (EV_P)
671{ 969{
672 int i; 970 int i;
673 971
674 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
675 { 973 {
676 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
678 ev_io *w; 976 ev_io *w;
679 977
680 unsigned char events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
681 980
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 982
685#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
686 if (events) 984 if (o_reify & EV__IOFDSET)
687 { 985 {
688 unsigned long argp; 986 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
695 } 990 }
696#endif 991#endif
697 992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
698 { 994 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events; 995 anfd->events = 0;
704 996
705 if (o_events != events || o_reify & EV_IOFDSET) 997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 1006 }
709 1007
710 fdchangecnt = 0; 1008 fdchangecnt = 0;
711} 1009}
712 1010
713void inline_size 1011/* something about the given fd changed */
1012inline_size void
714fd_change (EV_P_ int fd, int flags) 1013fd_change (EV_P_ int fd, int flags)
715{ 1014{
716 unsigned char reify = anfds [fd].reify; 1015 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 1016 anfds [fd].reify |= flags;
718 1017
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
724 } 1023 }
725} 1024}
726 1025
727void inline_speed 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
728fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
729{ 1029{
730 ev_io *w; 1030 ev_io *w;
731 1031
732 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 1036 }
737} 1037}
738 1038
739int inline_size 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
740fd_valid (int fd) 1041fd_valid (int fd)
741{ 1042{
742#ifdef _WIN32 1043#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 1045#else
745 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
746#endif 1047#endif
747} 1048}
748 1049
752{ 1053{
753 int fd; 1054 int fd;
754 1055
755 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1057 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
759} 1060}
760 1061
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1063static void noinline
766 1067
767 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1069 if (anfds [fd].events)
769 { 1070 {
770 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
771 return; 1072 break;
772 } 1073 }
773} 1074}
774 1075
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1077static void noinline
780 1081
781 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1083 if (anfds [fd].events)
783 { 1084 {
784 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
1086 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1088 }
787} 1089}
788 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
789/*****************************************************************************/ 1105/*****************************************************************************/
790 1106
791/* 1107/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 1108 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 1110 * the branching factor of the d-tree.
795 */ 1111 */
796 1112
797/* 1113/*
802 */ 1118 */
803#if EV_USE_4HEAP 1119#if EV_USE_4HEAP
804 1120
805#define DHEAP 4 1121#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 1124#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 1125
830/* away from the root */ 1126/* away from the root */
831void inline_speed 1127inline_speed void
832downheap (ANHE *heap, int N, int k) 1128downheap (ANHE *heap, int N, int k)
833{ 1129{
834 ANHE he = heap [k]; 1130 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 1131 ANHE *E = heap + N + HEAP0;
836 1132
837 for (;;) 1133 for (;;)
838 { 1134 {
839 ev_tstamp minat; 1135 ev_tstamp minat;
840 ANHE *minpos; 1136 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 1138
843 // find minimum child 1139 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 1140 if (expect_true (pos + DHEAP - 1 < E))
845 { 1141 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 } 1146 }
851 else if (pos < E) 1147 else if (pos < E)
852 { 1148 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 break; 1155 break;
860 1156
861 if (ANHE_at (he) <= minat) 1157 if (ANHE_at (he) <= minat)
862 break; 1158 break;
863 1159
1160 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 1161 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 1162
867 k = minpos - heap; 1163 k = minpos - heap;
868 } 1164 }
869 1165
1166 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 1167 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 1168}
873 1169
874#else // 4HEAP 1170#else /* 4HEAP */
875 1171
876#define HEAP0 1 1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
877 1175
878/* towards the root */ 1176/* away from the root */
879void inline_speed 1177inline_speed void
880upheap (ANHE *heap, int k) 1178downheap (ANHE *heap, int N, int k)
881{ 1179{
882 ANHE he = heap [k]; 1180 ANHE he = heap [k];
883 1181
884 for (;;) 1182 for (;;)
885 { 1183 {
886 int p = k >> 1; 1184 int c = k << 1;
887 1185
888 /* maybe we could use a dummy element at heap [0]? */ 1186 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 1187 break;
891 1188
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 1190 ? 1 : 0;
916 1191
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 1193 break;
919 1194
926 heap [k] = he; 1201 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 1202 ev_active (ANHE_w (he)) = k;
928} 1203}
929#endif 1204#endif
930 1205
931void inline_size 1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
932adjustheap (ANHE *heap, int N, int k) 1230adjustheap (ANHE *heap, int N, int k)
933{ 1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 1233 upheap (heap, k);
1234 else
935 downheap (heap, N, k); 1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
936} 1248}
937 1249
938/*****************************************************************************/ 1250/*****************************************************************************/
939 1251
1252/* associate signal watchers to a signal signal */
940typedef struct 1253typedef struct
941{ 1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
942 WL head; 1259 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 1260} ANSIG;
945 1261
946static ANSIG *signals; 1262static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 1263
963/*****************************************************************************/ 1264/*****************************************************************************/
964 1265
965void inline_speed 1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
966fd_intern (int fd)
967{
968#ifdef _WIN32
969 int arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif
975}
976 1267
977static void noinline 1268static void noinline
978evpipe_init (EV_P) 1269evpipe_init (EV_P)
979{ 1270{
980 if (!ev_is_active (&pipeev)) 1271 if (!ev_is_active (&pipe_w))
981 { 1272 {
982#if EV_USE_EVENTFD 1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
983 if ((evfd = eventfd (0, 0)) >= 0) 1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
984 { 1279 {
985 evpipe [0] = -1; 1280 evpipe [0] = -1;
986 fd_intern (evfd); 1281 fd_intern (evfd); /* doing it twice doesn't hurt */
987 ev_io_set (&pipeev, evfd, EV_READ); 1282 ev_io_set (&pipe_w, evfd, EV_READ);
988 } 1283 }
989 else 1284 else
990#endif 1285# endif
991 { 1286 {
992 while (pipe (evpipe)) 1287 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe"); 1288 ev_syserr ("(libev) error creating signal/async pipe");
994 1289
995 fd_intern (evpipe [0]); 1290 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]); 1291 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
998 } 1293 }
999 1294
1000 ev_io_start (EV_A_ &pipeev); 1295 ev_io_start (EV_A_ &pipe_w);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 } 1297 }
1003} 1298}
1004 1299
1005void inline_size 1300inline_size void
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{ 1302{
1008 if (!*flag) 1303 if (!*flag)
1009 { 1304 {
1010 int old_errno = errno; /* save errno because write might clobber it */ 1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1011 1307
1012 *flag = 1; 1308 *flag = 1;
1013 1309
1014#if EV_USE_EVENTFD 1310#if EV_USE_EVENTFD
1015 if (evfd >= 0) 1311 if (evfd >= 0)
1017 uint64_t counter = 1; 1313 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t)); 1314 write (evfd, &counter, sizeof (uint64_t));
1019 } 1315 }
1020 else 1316 else
1021#endif 1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1022 write (evpipe [1], &old_errno, 1); 1323 write (evpipe [1], &dummy, 1);
1023 1324
1024 errno = old_errno; 1325 errno = old_errno;
1025 } 1326 }
1026} 1327}
1027 1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
1028static void 1331static void
1029pipecb (EV_P_ ev_io *iow, int revents) 1332pipecb (EV_P_ ev_io *iow, int revents)
1030{ 1333{
1334 int i;
1335
1031#if EV_USE_EVENTFD 1336#if EV_USE_EVENTFD
1032 if (evfd >= 0) 1337 if (evfd >= 0)
1033 { 1338 {
1034 uint64_t counter; 1339 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t)); 1340 read (evfd, &counter, sizeof (uint64_t));
1036 } 1341 }
1037 else 1342 else
1038#endif 1343#endif
1039 { 1344 {
1040 char dummy; 1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1041 read (evpipe [0], &dummy, 1); 1347 read (evpipe [0], &dummy, 1);
1042 } 1348 }
1043 1349
1044 if (gotsig && ev_is_default_loop (EV_A)) 1350 if (sig_pending)
1045 { 1351 {
1046 int signum; 1352 sig_pending = 0;
1047 gotsig = 0;
1048 1353
1049 for (signum = signalmax; signum--; ) 1354 for (i = EV_NSIG - 1; i--; )
1050 if (signals [signum].gotsig) 1355 if (expect_false (signals [i].pending))
1051 ev_feed_signal_event (EV_A_ signum + 1); 1356 ev_feed_signal_event (EV_A_ i + 1);
1052 } 1357 }
1053 1358
1054#if EV_ASYNC_ENABLE 1359#if EV_ASYNC_ENABLE
1055 if (gotasync) 1360 if (async_pending)
1056 { 1361 {
1057 int i; 1362 async_pending = 0;
1058 gotasync = 0;
1059 1363
1060 for (i = asynccnt; i--; ) 1364 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 1365 if (asyncs [i]->sent)
1062 { 1366 {
1063 asyncs [i]->sent = 0; 1367 asyncs [i]->sent = 0;
1071 1375
1072static void 1376static void
1073ev_sighandler (int signum) 1377ev_sighandler (int signum)
1074{ 1378{
1075#if EV_MULTIPLICITY 1379#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct; 1380 EV_P = signals [signum - 1].loop;
1077#endif 1381#endif
1078 1382
1079#if _WIN32 1383#ifdef _WIN32
1080 signal (signum, ev_sighandler); 1384 signal (signum, ev_sighandler);
1081#endif 1385#endif
1082 1386
1083 signals [signum - 1].gotsig = 1; 1387 signals [signum - 1].pending = 1;
1084 evpipe_write (EV_A_ &gotsig); 1388 evpipe_write (EV_A_ &sig_pending);
1085} 1389}
1086 1390
1087void noinline 1391void noinline
1088ev_feed_signal_event (EV_P_ int signum) 1392ev_feed_signal_event (EV_P_ int signum)
1089{ 1393{
1090 WL w; 1394 WL w;
1091 1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1092#if EV_MULTIPLICITY 1401#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1402 /* it is permissible to try to feed a signal to the wrong loop */
1094#endif 1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1095 1404
1096 --signum; 1405 if (expect_false (signals [signum].loop != EV_A))
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 1406 return;
1407#endif
1100 1408
1101 signals [signum].gotsig = 0; 1409 signals [signum].pending = 0;
1102 1410
1103 for (w = signals [signum].head; w; w = w->next) 1411 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 1413}
1106 1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
1107/*****************************************************************************/ 1437/*****************************************************************************/
1108 1438
1439#if EV_CHILD_ENABLE
1109static WL childs [EV_PID_HASHSIZE]; 1440static WL childs [EV_PID_HASHSIZE];
1110
1111#ifndef _WIN32
1112 1441
1113static ev_signal childev; 1442static ev_signal childev;
1114 1443
1115#ifndef WIFCONTINUED 1444#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 1445# define WIFCONTINUED(status) 0
1117#endif 1446#endif
1118 1447
1119void inline_speed 1448/* handle a single child status event */
1449inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 1450child_reap (EV_P_ int chain, int pid, int status)
1121{ 1451{
1122 ev_child *w; 1452 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 1454
1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 { 1456 {
1127 if ((w->pid == pid || !w->pid) 1457 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1))) 1458 && (!traced || (w->flags & 1)))
1129 { 1459 {
1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1137 1467
1138#ifndef WCONTINUED 1468#ifndef WCONTINUED
1139# define WCONTINUED 0 1469# define WCONTINUED 0
1140#endif 1470#endif
1141 1471
1472/* called on sigchld etc., calls waitpid */
1142static void 1473static void
1143childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
1144{ 1475{
1145 int pid, status; 1476 int pid, status;
1146 1477
1154 /* make sure we are called again until all children have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1155 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1157 1488
1158 child_reap (EV_A_ pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1159 if (EV_PID_HASHSIZE > 1) 1490 if ((EV_PID_HASHSIZE) > 1)
1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1161} 1492}
1162 1493
1163#endif 1494#endif
1164 1495
1165/*****************************************************************************/ 1496/*****************************************************************************/
1166 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1167#if EV_USE_PORT 1501#if EV_USE_PORT
1168# include "ev_port.c" 1502# include "ev_port.c"
1169#endif 1503#endif
1170#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
1171# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
1227 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
1230#endif 1564#endif
1231#ifdef __APPLE__ 1565#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1234#endif 1572#endif
1235 1573
1236 return flags; 1574 return flags;
1237} 1575}
1238 1576
1240ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
1241{ 1579{
1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1243 1581
1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */ 1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1246 flags &= ~EVBACKEND_EPOLL; 1584 flags &= ~EVBACKEND_EPOLL;
1247 1585
1248 return flags; 1586 return flags;
1249} 1587}
1250 1588
1251unsigned int 1589unsigned int
1252ev_backend (EV_P) 1590ev_backend (EV_P)
1253{ 1591{
1254 return backend; 1592 return backend;
1255} 1593}
1256 1594
1595#if EV_FEATURE_API
1257unsigned int 1596unsigned int
1258ev_loop_count (EV_P) 1597ev_iteration (EV_P)
1259{ 1598{
1260 return loop_count; 1599 return loop_count;
1261} 1600}
1262 1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1263void 1608void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1610{
1266 io_blocktime = interval; 1611 io_blocktime = interval;
1267} 1612}
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{ 1616{
1272 timeout_blocktime = interval; 1617 timeout_blocktime = interval;
1273} 1618}
1274 1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1275static void noinline 1645static void noinline
1276loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
1277{ 1647{
1278 if (!backend) 1648 if (!backend)
1279 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
1280#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1281 { 1662 {
1282 struct timespec ts; 1663 struct timespec ts;
1664
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 1666 have_monotonic = 1;
1285 } 1667 }
1286#endif 1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1287 1680
1288 ev_rt_now = ev_time (); 1681 ev_rt_now = ev_time ();
1289 mn_now = get_clock (); 1682 mn_now = get_clock ();
1290 now_floor = mn_now; 1683 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now; 1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1292 1688
1293 io_blocktime = 0.; 1689 io_blocktime = 0.;
1294 timeout_blocktime = 0.; 1690 timeout_blocktime = 0.;
1295 backend = 0; 1691 backend = 0;
1296 backend_fd = -1; 1692 backend_fd = -1;
1297 gotasync = 0; 1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1298#if EV_USE_INOTIFY 1697#if EV_USE_INOTIFY
1299 fs_fd = -2; 1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1300#endif 1699#endif
1301 1700#if EV_USE_SIGNALFD
1302 /* pid check not overridable via env */ 1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif 1702#endif
1307
1308 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS"));
1312 1703
1313 if (!(flags & 0x0000ffffU)) 1704 if (!(flags & 0x0000ffffU))
1314 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
1315 1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1316#if EV_USE_PORT 1710#if EV_USE_PORT
1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1318#endif 1712#endif
1319#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
1320 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1327#endif 1721#endif
1328#if EV_USE_SELECT 1722#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 1724#endif
1331 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1332 ev_init (&pipeev, pipecb); 1729 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1334 } 1732 }
1335} 1733}
1336 1734
1337static void noinline 1735/* free up a loop structure */
1736void
1338loop_destroy (EV_P) 1737ev_loop_destroy (EV_P)
1339{ 1738{
1340 int i; 1739 int i;
1341 1740
1741#if EV_CHILD_ENABLE
1742 if (ev_is_active (&childev))
1743 {
1744 ev_ref (EV_A); /* child watcher */
1745 ev_signal_stop (EV_A_ &childev);
1746 }
1747#endif
1748
1342 if (ev_is_active (&pipeev)) 1749 if (ev_is_active (&pipe_w))
1343 { 1750 {
1344 ev_ref (EV_A); /* signal watcher */ 1751 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 1752 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 1753
1347#if EV_USE_EVENTFD 1754#if EV_USE_EVENTFD
1348 if (evfd >= 0) 1755 if (evfd >= 0)
1349 close (evfd); 1756 close (evfd);
1350#endif 1757#endif
1351 1758
1352 if (evpipe [0] >= 0) 1759 if (evpipe [0] >= 0)
1353 { 1760 {
1354 close (evpipe [0]); 1761 EV_WIN32_CLOSE_FD (evpipe [0]);
1355 close (evpipe [1]); 1762 EV_WIN32_CLOSE_FD (evpipe [1]);
1356 } 1763 }
1357 } 1764 }
1765
1766#if EV_USE_SIGNALFD
1767 if (ev_is_active (&sigfd_w))
1768 close (sigfd);
1769#endif
1358 1770
1359#if EV_USE_INOTIFY 1771#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 1772 if (fs_fd >= 0)
1361 close (fs_fd); 1773 close (fs_fd);
1362#endif 1774#endif
1363 1775
1364 if (backend_fd >= 0) 1776 if (backend_fd >= 0)
1365 close (backend_fd); 1777 close (backend_fd);
1366 1778
1779#if EV_USE_IOCP
1780 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1781#endif
1367#if EV_USE_PORT 1782#if EV_USE_PORT
1368 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1783 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1369#endif 1784#endif
1370#if EV_USE_KQUEUE 1785#if EV_USE_KQUEUE
1371 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1786 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1386#if EV_IDLE_ENABLE 1801#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 1802 array_free (idle, [i]);
1388#endif 1803#endif
1389 } 1804 }
1390 1805
1391 ev_free (anfds); anfdmax = 0; 1806 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 1807
1393 /* have to use the microsoft-never-gets-it-right macro */ 1808 /* have to use the microsoft-never-gets-it-right macro */
1809 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 1810 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 1811 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 1812#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 1813 array_free (periodic, EMPTY);
1398#endif 1814#endif
1399#if EV_FORK_ENABLE 1815#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY); 1816 array_free (fork, EMPTY);
1401#endif 1817#endif
1818#if EV_CLEANUP_ENABLE
1819 array_free (cleanup, EMPTY);
1820#endif
1402 array_free (prepare, EMPTY); 1821 array_free (prepare, EMPTY);
1403 array_free (check, EMPTY); 1822 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE 1823#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY); 1824 array_free (async, EMPTY);
1406#endif 1825#endif
1407 1826
1408 backend = 0; 1827 backend = 0;
1828
1829#if EV_MULTIPLICITY
1830 if (ev_is_default_loop (EV_A))
1831#endif
1832 ev_default_loop_ptr = 0;
1833#if EV_MULTIPLICITY
1834 else
1835 ev_free (EV_A);
1836#endif
1409} 1837}
1410 1838
1411#if EV_USE_INOTIFY 1839#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 1840inline_size void infy_fork (EV_P);
1413#endif 1841#endif
1414 1842
1415void inline_size 1843inline_size void
1416loop_fork (EV_P) 1844loop_fork (EV_P)
1417{ 1845{
1418#if EV_USE_PORT 1846#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1847 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 1848#endif
1426#endif 1854#endif
1427#if EV_USE_INOTIFY 1855#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 1856 infy_fork (EV_A);
1429#endif 1857#endif
1430 1858
1431 if (ev_is_active (&pipeev)) 1859 if (ev_is_active (&pipe_w))
1432 { 1860 {
1433 /* this "locks" the handlers against writing to the pipe */ 1861 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */ 1862 /* while we modify the fd vars */
1435 gotsig = 1; 1863 sig_pending = 1;
1436#if EV_ASYNC_ENABLE 1864#if EV_ASYNC_ENABLE
1437 gotasync = 1; 1865 async_pending = 1;
1438#endif 1866#endif
1439 1867
1440 ev_ref (EV_A); 1868 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev); 1869 ev_io_stop (EV_A_ &pipe_w);
1442 1870
1443#if EV_USE_EVENTFD 1871#if EV_USE_EVENTFD
1444 if (evfd >= 0) 1872 if (evfd >= 0)
1445 close (evfd); 1873 close (evfd);
1446#endif 1874#endif
1447 1875
1448 if (evpipe [0] >= 0) 1876 if (evpipe [0] >= 0)
1449 { 1877 {
1450 close (evpipe [0]); 1878 EV_WIN32_CLOSE_FD (evpipe [0]);
1451 close (evpipe [1]); 1879 EV_WIN32_CLOSE_FD (evpipe [1]);
1452 } 1880 }
1453 1881
1882#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1454 evpipe_init (EV_A); 1883 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */ 1884 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ); 1885 pipecb (EV_A_ &pipe_w, EV_READ);
1886#endif
1457 } 1887 }
1458 1888
1459 postfork = 0; 1889 postfork = 0;
1460} 1890}
1891
1892#if EV_MULTIPLICITY
1893
1894struct ev_loop *
1895ev_loop_new (unsigned int flags)
1896{
1897 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1898
1899 memset (EV_A, 0, sizeof (struct ev_loop));
1900 loop_init (EV_A_ flags);
1901
1902 if (ev_backend (EV_A))
1903 return EV_A;
1904
1905 ev_free (EV_A);
1906 return 0;
1907}
1908
1909#endif /* multiplicity */
1910
1911#if EV_VERIFY
1912static void noinline
1913verify_watcher (EV_P_ W w)
1914{
1915 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1916
1917 if (w->pending)
1918 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1919}
1920
1921static void noinline
1922verify_heap (EV_P_ ANHE *heap, int N)
1923{
1924 int i;
1925
1926 for (i = HEAP0; i < N + HEAP0; ++i)
1927 {
1928 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1929 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1930 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1931
1932 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1933 }
1934}
1935
1936static void noinline
1937array_verify (EV_P_ W *ws, int cnt)
1938{
1939 while (cnt--)
1940 {
1941 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1942 verify_watcher (EV_A_ ws [cnt]);
1943 }
1944}
1945#endif
1946
1947#if EV_FEATURE_API
1948void
1949ev_verify (EV_P)
1950{
1951#if EV_VERIFY
1952 int i;
1953 WL w;
1954
1955 assert (activecnt >= -1);
1956
1957 assert (fdchangemax >= fdchangecnt);
1958 for (i = 0; i < fdchangecnt; ++i)
1959 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1960
1961 assert (anfdmax >= 0);
1962 for (i = 0; i < anfdmax; ++i)
1963 for (w = anfds [i].head; w; w = w->next)
1964 {
1965 verify_watcher (EV_A_ (W)w);
1966 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1967 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1968 }
1969
1970 assert (timermax >= timercnt);
1971 verify_heap (EV_A_ timers, timercnt);
1972
1973#if EV_PERIODIC_ENABLE
1974 assert (periodicmax >= periodiccnt);
1975 verify_heap (EV_A_ periodics, periodiccnt);
1976#endif
1977
1978 for (i = NUMPRI; i--; )
1979 {
1980 assert (pendingmax [i] >= pendingcnt [i]);
1981#if EV_IDLE_ENABLE
1982 assert (idleall >= 0);
1983 assert (idlemax [i] >= idlecnt [i]);
1984 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1985#endif
1986 }
1987
1988#if EV_FORK_ENABLE
1989 assert (forkmax >= forkcnt);
1990 array_verify (EV_A_ (W *)forks, forkcnt);
1991#endif
1992
1993#if EV_CLEANUP_ENABLE
1994 assert (cleanupmax >= cleanupcnt);
1995 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
1996#endif
1997
1998#if EV_ASYNC_ENABLE
1999 assert (asyncmax >= asynccnt);
2000 array_verify (EV_A_ (W *)asyncs, asynccnt);
2001#endif
2002
2003#if EV_PREPARE_ENABLE
2004 assert (preparemax >= preparecnt);
2005 array_verify (EV_A_ (W *)prepares, preparecnt);
2006#endif
2007
2008#if EV_CHECK_ENABLE
2009 assert (checkmax >= checkcnt);
2010 array_verify (EV_A_ (W *)checks, checkcnt);
2011#endif
2012
2013# if 0
2014#if EV_CHILD_ENABLE
2015 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2016 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2017#endif
2018# endif
2019#endif
2020}
2021#endif
1461 2022
1462#if EV_MULTIPLICITY 2023#if EV_MULTIPLICITY
1463struct ev_loop * 2024struct ev_loop *
1464ev_loop_new (unsigned int flags)
1465{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467
1468 memset (loop, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags);
1471
1472 if (ev_backend (EV_A))
1473 return loop;
1474
1475 return 0;
1476}
1477
1478void
1479ev_loop_destroy (EV_P)
1480{
1481 loop_destroy (EV_A);
1482 ev_free (loop);
1483}
1484
1485void
1486ev_loop_fork (EV_P)
1487{
1488 postfork = 1; /* must be in line with ev_default_fork */
1489}
1490#endif
1491
1492#if EV_MULTIPLICITY
1493struct ev_loop *
1494ev_default_loop_init (unsigned int flags)
1495#else 2025#else
1496int 2026int
2027#endif
1497ev_default_loop (unsigned int flags) 2028ev_default_loop (unsigned int flags)
1498#endif
1499{ 2029{
1500 if (!ev_default_loop_ptr) 2030 if (!ev_default_loop_ptr)
1501 { 2031 {
1502#if EV_MULTIPLICITY 2032#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2033 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 2034#else
1505 ev_default_loop_ptr = 1; 2035 ev_default_loop_ptr = 1;
1506#endif 2036#endif
1507 2037
1508 loop_init (EV_A_ flags); 2038 loop_init (EV_A_ flags);
1509 2039
1510 if (ev_backend (EV_A)) 2040 if (ev_backend (EV_A))
1511 { 2041 {
1512#ifndef _WIN32 2042#if EV_CHILD_ENABLE
1513 ev_signal_init (&childev, childcb, SIGCHLD); 2043 ev_signal_init (&childev, childcb, SIGCHLD);
1514 ev_set_priority (&childev, EV_MAXPRI); 2044 ev_set_priority (&childev, EV_MAXPRI);
1515 ev_signal_start (EV_A_ &childev); 2045 ev_signal_start (EV_A_ &childev);
1516 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2046 ev_unref (EV_A); /* child watcher should not keep loop alive */
1517#endif 2047#endif
1522 2052
1523 return ev_default_loop_ptr; 2053 return ev_default_loop_ptr;
1524} 2054}
1525 2055
1526void 2056void
1527ev_default_destroy (void) 2057ev_loop_fork (EV_P)
1528{ 2058{
1529#if EV_MULTIPLICITY
1530 struct ev_loop *loop = ev_default_loop_ptr;
1531#endif
1532
1533#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev);
1536#endif
1537
1538 loop_destroy (EV_A);
1539}
1540
1541void
1542ev_default_fork (void)
1543{
1544#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr;
1546#endif
1547
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */ 2059 postfork = 1; /* must be in line with ev_default_fork */
1550} 2060}
1551 2061
1552/*****************************************************************************/ 2062/*****************************************************************************/
1553 2063
1554void 2064void
1555ev_invoke (EV_P_ void *w, int revents) 2065ev_invoke (EV_P_ void *w, int revents)
1556{ 2066{
1557 EV_CB_INVOKE ((W)w, revents); 2067 EV_CB_INVOKE ((W)w, revents);
1558} 2068}
1559 2069
1560void inline_speed 2070unsigned int
1561call_pending (EV_P) 2071ev_pending_count (EV_P)
2072{
2073 int pri;
2074 unsigned int count = 0;
2075
2076 for (pri = NUMPRI; pri--; )
2077 count += pendingcnt [pri];
2078
2079 return count;
2080}
2081
2082void noinline
2083ev_invoke_pending (EV_P)
1562{ 2084{
1563 int pri; 2085 int pri;
1564 2086
1565 for (pri = NUMPRI; pri--; ) 2087 for (pri = NUMPRI; pri--; )
1566 while (pendingcnt [pri]) 2088 while (pendingcnt [pri])
1567 { 2089 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2090 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569 2091
1570 if (expect_true (p->w))
1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2092 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2093 /* ^ this is no longer true, as pending_w could be here */
1573 2094
1574 p->w->pending = 0; 2095 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 2096 EV_CB_INVOKE (p->w, p->events);
1576 } 2097 EV_FREQUENT_CHECK;
1577 } 2098 }
1578} 2099}
1579 2100
1580#if EV_IDLE_ENABLE 2101#if EV_IDLE_ENABLE
1581void inline_size 2102/* make idle watchers pending. this handles the "call-idle */
2103/* only when higher priorities are idle" logic */
2104inline_size void
1582idle_reify (EV_P) 2105idle_reify (EV_P)
1583{ 2106{
1584 if (expect_false (idleall)) 2107 if (expect_false (idleall))
1585 { 2108 {
1586 int pri; 2109 int pri;
1598 } 2121 }
1599 } 2122 }
1600} 2123}
1601#endif 2124#endif
1602 2125
1603void inline_size 2126/* make timers pending */
2127inline_size void
1604timers_reify (EV_P) 2128timers_reify (EV_P)
1605{ 2129{
2130 EV_FREQUENT_CHECK;
2131
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2132 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 2133 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2134 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 2135 {
2136 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2137
2138 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2139
2140 /* first reschedule or stop timer */
2141 if (w->repeat)
2142 {
1615 ev_at (w) += w->repeat; 2143 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 2144 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 2145 ev_at (w) = mn_now;
1618 2146
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2147 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 2148
1621 ANHE_at_set (timers [HEAP0]); 2149 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 2150 downheap (timers, timercnt, HEAP0);
2151 }
2152 else
2153 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2154
2155 EV_FREQUENT_CHECK;
2156 feed_reverse (EV_A_ (W)w);
1623 } 2157 }
1624 else 2158 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 2159
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2160 feed_reverse_done (EV_A_ EV_TIMER);
1628 } 2161 }
1629} 2162}
1630 2163
1631#if EV_PERIODIC_ENABLE 2164#if EV_PERIODIC_ENABLE
1632void inline_size 2165/* make periodics pending */
2166inline_size void
1633periodics_reify (EV_P) 2167periodics_reify (EV_P)
1634{ 2168{
2169 EV_FREQUENT_CHECK;
2170
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2171 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 2172 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2173 int feed_count = 0;
1638 2174
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2175 do
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 2176 {
2177 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2178
2179 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2180
2181 /* first reschedule or stop timer */
2182 if (w->reschedule_cb)
2183 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2184 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 2185
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2186 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 2187
1648 ANHE_at_set (periodics [HEAP0]); 2188 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 2189 downheap (periodics, periodiccnt, HEAP0);
2190 }
2191 else if (w->interval)
2192 {
2193 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2194 /* if next trigger time is not sufficiently in the future, put it there */
2195 /* this might happen because of floating point inexactness */
2196 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2197 {
2198 ev_at (w) += w->interval;
2199
2200 /* if interval is unreasonably low we might still have a time in the past */
2201 /* so correct this. this will make the periodic very inexact, but the user */
2202 /* has effectively asked to get triggered more often than possible */
2203 if (ev_at (w) < ev_rt_now)
2204 ev_at (w) = ev_rt_now;
2205 }
2206
2207 ANHE_at_cache (periodics [HEAP0]);
2208 downheap (periodics, periodiccnt, HEAP0);
2209 }
2210 else
2211 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2212
2213 EV_FREQUENT_CHECK;
2214 feed_reverse (EV_A_ (W)w);
1650 } 2215 }
1651 else if (w->interval) 2216 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655 2217
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2218 feed_reverse_done (EV_A_ EV_PERIODIC);
1665 } 2219 }
1666} 2220}
1667 2221
2222/* simply recalculate all periodics */
2223/* TODO: maybe ensure that at least one event happens when jumping forward? */
1668static void noinline 2224static void noinline
1669periodics_reschedule (EV_P) 2225periodics_reschedule (EV_P)
1670{ 2226{
1671 int i; 2227 int i;
1672 2228
1678 if (w->reschedule_cb) 2234 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2235 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval) 2236 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2237 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682 2238
1683 ANHE_at_set (periodics [i]); 2239 ANHE_at_cache (periodics [i]);
1684 } 2240 }
1685 2241
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2242 reheap (periodics, periodiccnt);
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2243}
2244#endif
2245
2246/* adjust all timers by a given offset */
2247static void noinline
2248timers_reschedule (EV_P_ ev_tstamp adjust)
2249{
2250 int i;
2251
1688 for (i = 0; i < periodiccnt; ++i) 2252 for (i = 0; i < timercnt; ++i)
1689 upheap (periodics, i + HEAP0); 2253 {
2254 ANHE *he = timers + i + HEAP0;
2255 ANHE_w (*he)->at += adjust;
2256 ANHE_at_cache (*he);
2257 }
1690} 2258}
1691#endif
1692 2259
1693void inline_speed 2260/* fetch new monotonic and realtime times from the kernel */
2261/* also detect if there was a timejump, and act accordingly */
2262inline_speed void
1694time_update (EV_P_ ev_tstamp max_block) 2263time_update (EV_P_ ev_tstamp max_block)
1695{ 2264{
1696 int i;
1697
1698#if EV_USE_MONOTONIC 2265#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic)) 2266 if (expect_true (have_monotonic))
1700 { 2267 {
2268 int i;
1701 ev_tstamp odiff = rtmn_diff; 2269 ev_tstamp odiff = rtmn_diff;
1702 2270
1703 mn_now = get_clock (); 2271 mn_now = get_clock ();
1704 2272
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2273 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1731 ev_rt_now = ev_time (); 2299 ev_rt_now = ev_time ();
1732 mn_now = get_clock (); 2300 mn_now = get_clock ();
1733 now_floor = mn_now; 2301 now_floor = mn_now;
1734 } 2302 }
1735 2303
2304 /* no timer adjustment, as the monotonic clock doesn't jump */
2305 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1736# if EV_PERIODIC_ENABLE 2306# if EV_PERIODIC_ENABLE
1737 periodics_reschedule (EV_A); 2307 periodics_reschedule (EV_A);
1738# endif 2308# endif
1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1741 } 2309 }
1742 else 2310 else
1743#endif 2311#endif
1744 { 2312 {
1745 ev_rt_now = ev_time (); 2313 ev_rt_now = ev_time ();
1746 2314
1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2315 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1748 { 2316 {
2317 /* adjust timers. this is easy, as the offset is the same for all of them */
2318 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1749#if EV_PERIODIC_ENABLE 2319#if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2320 periodics_reschedule (EV_A);
1751#endif 2321#endif
1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1759 } 2322 }
1760 2323
1761 mn_now = ev_rt_now; 2324 mn_now = ev_rt_now;
1762 } 2325 }
1763} 2326}
1764 2327
1765void 2328void
1766ev_ref (EV_P)
1767{
1768 ++activecnt;
1769}
1770
1771void
1772ev_unref (EV_P)
1773{
1774 --activecnt;
1775}
1776
1777static int loop_done;
1778
1779void
1780ev_loop (EV_P_ int flags) 2329ev_run (EV_P_ int flags)
1781{ 2330{
2331#if EV_FEATURE_API
2332 ++loop_depth;
2333#endif
2334
2335 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2336
1782 loop_done = EVUNLOOP_CANCEL; 2337 loop_done = EVBREAK_CANCEL;
1783 2338
1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2339 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1785 2340
1786 do 2341 do
1787 { 2342 {
2343#if EV_VERIFY >= 2
2344 ev_verify (EV_A);
2345#endif
2346
1788#ifndef _WIN32 2347#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */ 2348 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid)) 2349 if (expect_false (getpid () != curpid))
1791 { 2350 {
1792 curpid = getpid (); 2351 curpid = getpid ();
1798 /* we might have forked, so queue fork handlers */ 2357 /* we might have forked, so queue fork handlers */
1799 if (expect_false (postfork)) 2358 if (expect_false (postfork))
1800 if (forkcnt) 2359 if (forkcnt)
1801 { 2360 {
1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2361 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1803 call_pending (EV_A); 2362 EV_INVOKE_PENDING;
1804 } 2363 }
1805#endif 2364#endif
1806 2365
2366#if EV_PREPARE_ENABLE
1807 /* queue prepare watchers (and execute them) */ 2367 /* queue prepare watchers (and execute them) */
1808 if (expect_false (preparecnt)) 2368 if (expect_false (preparecnt))
1809 { 2369 {
1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2370 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1811 call_pending (EV_A); 2371 EV_INVOKE_PENDING;
1812 } 2372 }
2373#endif
1813 2374
1814 if (expect_false (!activecnt)) 2375 if (expect_false (loop_done))
1815 break; 2376 break;
1816 2377
1817 /* we might have forked, so reify kernel state if necessary */ 2378 /* we might have forked, so reify kernel state if necessary */
1818 if (expect_false (postfork)) 2379 if (expect_false (postfork))
1819 loop_fork (EV_A); 2380 loop_fork (EV_A);
1824 /* calculate blocking time */ 2385 /* calculate blocking time */
1825 { 2386 {
1826 ev_tstamp waittime = 0.; 2387 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.; 2388 ev_tstamp sleeptime = 0.;
1828 2389
2390 /* remember old timestamp for io_blocktime calculation */
2391 ev_tstamp prev_mn_now = mn_now;
2392
2393 /* update time to cancel out callback processing overhead */
2394 time_update (EV_A_ 1e100);
2395
1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2396 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1830 { 2397 {
1831 /* update time to cancel out callback processing overhead */
1832 time_update (EV_A_ 1e100);
1833
1834 waittime = MAX_BLOCKTIME; 2398 waittime = MAX_BLOCKTIME;
1835 2399
1836 if (timercnt) 2400 if (timercnt)
1837 { 2401 {
1838 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2402 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2409 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1846 if (waittime > to) waittime = to; 2410 if (waittime > to) waittime = to;
1847 } 2411 }
1848#endif 2412#endif
1849 2413
2414 /* don't let timeouts decrease the waittime below timeout_blocktime */
1850 if (expect_false (waittime < timeout_blocktime)) 2415 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime; 2416 waittime = timeout_blocktime;
1852 2417
1853 sleeptime = waittime - backend_fudge; 2418 /* extra check because io_blocktime is commonly 0 */
1854
1855 if (expect_true (sleeptime > io_blocktime)) 2419 if (expect_false (io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 { 2420 {
2421 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2422
2423 if (sleeptime > waittime - backend_fudge)
2424 sleeptime = waittime - backend_fudge;
2425
2426 if (expect_true (sleeptime > 0.))
2427 {
1860 ev_sleep (sleeptime); 2428 ev_sleep (sleeptime);
1861 waittime -= sleeptime; 2429 waittime -= sleeptime;
2430 }
1862 } 2431 }
1863 } 2432 }
1864 2433
2434#if EV_FEATURE_API
1865 ++loop_count; 2435 ++loop_count;
2436#endif
2437 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1866 backend_poll (EV_A_ waittime); 2438 backend_poll (EV_A_ waittime);
2439 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1867 2440
1868 /* update ev_rt_now, do magic */ 2441 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime); 2442 time_update (EV_A_ waittime + sleeptime);
1870 } 2443 }
1871 2444
1878#if EV_IDLE_ENABLE 2451#if EV_IDLE_ENABLE
1879 /* queue idle watchers unless other events are pending */ 2452 /* queue idle watchers unless other events are pending */
1880 idle_reify (EV_A); 2453 idle_reify (EV_A);
1881#endif 2454#endif
1882 2455
2456#if EV_CHECK_ENABLE
1883 /* queue check watchers, to be executed first */ 2457 /* queue check watchers, to be executed first */
1884 if (expect_false (checkcnt)) 2458 if (expect_false (checkcnt))
1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2459 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2460#endif
1886 2461
1887 call_pending (EV_A); 2462 EV_INVOKE_PENDING;
1888 } 2463 }
1889 while (expect_true ( 2464 while (expect_true (
1890 activecnt 2465 activecnt
1891 && !loop_done 2466 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2467 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1893 )); 2468 ));
1894 2469
1895 if (loop_done == EVUNLOOP_ONE) 2470 if (loop_done == EVBREAK_ONE)
1896 loop_done = EVUNLOOP_CANCEL; 2471 loop_done = EVBREAK_CANCEL;
1897}
1898 2472
2473#if EV_FEATURE_API
2474 --loop_depth;
2475#endif
2476}
2477
1899void 2478void
1900ev_unloop (EV_P_ int how) 2479ev_break (EV_P_ int how)
1901{ 2480{
1902 loop_done = how; 2481 loop_done = how;
1903} 2482}
1904 2483
2484void
2485ev_ref (EV_P)
2486{
2487 ++activecnt;
2488}
2489
2490void
2491ev_unref (EV_P)
2492{
2493 --activecnt;
2494}
2495
2496void
2497ev_now_update (EV_P)
2498{
2499 time_update (EV_A_ 1e100);
2500}
2501
2502void
2503ev_suspend (EV_P)
2504{
2505 ev_now_update (EV_A);
2506}
2507
2508void
2509ev_resume (EV_P)
2510{
2511 ev_tstamp mn_prev = mn_now;
2512
2513 ev_now_update (EV_A);
2514 timers_reschedule (EV_A_ mn_now - mn_prev);
2515#if EV_PERIODIC_ENABLE
2516 /* TODO: really do this? */
2517 periodics_reschedule (EV_A);
2518#endif
2519}
2520
1905/*****************************************************************************/ 2521/*****************************************************************************/
2522/* singly-linked list management, used when the expected list length is short */
1906 2523
1907void inline_size 2524inline_size void
1908wlist_add (WL *head, WL elem) 2525wlist_add (WL *head, WL elem)
1909{ 2526{
1910 elem->next = *head; 2527 elem->next = *head;
1911 *head = elem; 2528 *head = elem;
1912} 2529}
1913 2530
1914void inline_size 2531inline_size void
1915wlist_del (WL *head, WL elem) 2532wlist_del (WL *head, WL elem)
1916{ 2533{
1917 while (*head) 2534 while (*head)
1918 { 2535 {
1919 if (*head == elem) 2536 if (expect_true (*head == elem))
1920 { 2537 {
1921 *head = elem->next; 2538 *head = elem->next;
1922 return; 2539 break;
1923 } 2540 }
1924 2541
1925 head = &(*head)->next; 2542 head = &(*head)->next;
1926 } 2543 }
1927} 2544}
1928 2545
1929void inline_speed 2546/* internal, faster, version of ev_clear_pending */
2547inline_speed void
1930clear_pending (EV_P_ W w) 2548clear_pending (EV_P_ W w)
1931{ 2549{
1932 if (w->pending) 2550 if (w->pending)
1933 { 2551 {
1934 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2552 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1935 w->pending = 0; 2553 w->pending = 0;
1936 } 2554 }
1937} 2555}
1938 2556
1939int 2557int
1943 int pending = w_->pending; 2561 int pending = w_->pending;
1944 2562
1945 if (expect_true (pending)) 2563 if (expect_true (pending))
1946 { 2564 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2565 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2566 p->w = (W)&pending_w;
1948 w_->pending = 0; 2567 w_->pending = 0;
1949 p->w = 0;
1950 return p->events; 2568 return p->events;
1951 } 2569 }
1952 else 2570 else
1953 return 0; 2571 return 0;
1954} 2572}
1955 2573
1956void inline_size 2574inline_size void
1957pri_adjust (EV_P_ W w) 2575pri_adjust (EV_P_ W w)
1958{ 2576{
1959 int pri = w->priority; 2577 int pri = ev_priority (w);
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2578 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2579 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri; 2580 ev_set_priority (w, pri);
1963} 2581}
1964 2582
1965void inline_speed 2583inline_speed void
1966ev_start (EV_P_ W w, int active) 2584ev_start (EV_P_ W w, int active)
1967{ 2585{
1968 pri_adjust (EV_A_ w); 2586 pri_adjust (EV_A_ w);
1969 w->active = active; 2587 w->active = active;
1970 ev_ref (EV_A); 2588 ev_ref (EV_A);
1971} 2589}
1972 2590
1973void inline_size 2591inline_size void
1974ev_stop (EV_P_ W w) 2592ev_stop (EV_P_ W w)
1975{ 2593{
1976 ev_unref (EV_A); 2594 ev_unref (EV_A);
1977 w->active = 0; 2595 w->active = 0;
1978} 2596}
1985 int fd = w->fd; 2603 int fd = w->fd;
1986 2604
1987 if (expect_false (ev_is_active (w))) 2605 if (expect_false (ev_is_active (w)))
1988 return; 2606 return;
1989 2607
1990 assert (("ev_io_start called with negative fd", fd >= 0)); 2608 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2609 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2610
2611 EV_FREQUENT_CHECK;
1991 2612
1992 ev_start (EV_A_ (W)w, 1); 2613 ev_start (EV_A_ (W)w, 1);
1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2614 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1994 wlist_add (&anfds[fd].head, (WL)w); 2615 wlist_add (&anfds[fd].head, (WL)w);
1995 2616
1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2617 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1997 w->events &= ~EV_IOFDSET; 2618 w->events &= ~EV__IOFDSET;
2619
2620 EV_FREQUENT_CHECK;
1998} 2621}
1999 2622
2000void noinline 2623void noinline
2001ev_io_stop (EV_P_ ev_io *w) 2624ev_io_stop (EV_P_ ev_io *w)
2002{ 2625{
2003 clear_pending (EV_A_ (W)w); 2626 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2627 if (expect_false (!ev_is_active (w)))
2005 return; 2628 return;
2006 2629
2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2630 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2631
2632 EV_FREQUENT_CHECK;
2008 2633
2009 wlist_del (&anfds[w->fd].head, (WL)w); 2634 wlist_del (&anfds[w->fd].head, (WL)w);
2010 ev_stop (EV_A_ (W)w); 2635 ev_stop (EV_A_ (W)w);
2011 2636
2012 fd_change (EV_A_ w->fd, 1); 2637 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2638
2639 EV_FREQUENT_CHECK;
2013} 2640}
2014 2641
2015void noinline 2642void noinline
2016ev_timer_start (EV_P_ ev_timer *w) 2643ev_timer_start (EV_P_ ev_timer *w)
2017{ 2644{
2018 if (expect_false (ev_is_active (w))) 2645 if (expect_false (ev_is_active (w)))
2019 return; 2646 return;
2020 2647
2021 ev_at (w) += mn_now; 2648 ev_at (w) += mn_now;
2022 2649
2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2650 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2024 2651
2652 EV_FREQUENT_CHECK;
2653
2654 ++timercnt;
2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2655 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2656 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2027 ANHE_w (timers [ev_active (w)]) = (WT)w; 2657 ANHE_w (timers [ev_active (w)]) = (WT)w;
2028 ANHE_at_set (timers [ev_active (w)]); 2658 ANHE_at_cache (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w)); 2659 upheap (timers, ev_active (w));
2030 2660
2661 EV_FREQUENT_CHECK;
2662
2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2663 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2032} 2664}
2033 2665
2034void noinline 2666void noinline
2035ev_timer_stop (EV_P_ ev_timer *w) 2667ev_timer_stop (EV_P_ ev_timer *w)
2036{ 2668{
2037 clear_pending (EV_A_ (W)w); 2669 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 2670 if (expect_false (!ev_is_active (w)))
2039 return; 2671 return;
2040 2672
2673 EV_FREQUENT_CHECK;
2674
2041 { 2675 {
2042 int active = ev_active (w); 2676 int active = ev_active (w);
2043 2677
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2678 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045 2679
2680 --timercnt;
2681
2046 if (expect_true (active < timercnt + HEAP0 - 1)) 2682 if (expect_true (active < timercnt + HEAP0))
2047 { 2683 {
2048 timers [active] = timers [timercnt + HEAP0 - 1]; 2684 timers [active] = timers [timercnt + HEAP0];
2049 adjustheap (timers, timercnt, active); 2685 adjustheap (timers, timercnt, active);
2050 } 2686 }
2051
2052 --timercnt;
2053 } 2687 }
2054 2688
2055 ev_at (w) -= mn_now; 2689 ev_at (w) -= mn_now;
2056 2690
2057 ev_stop (EV_A_ (W)w); 2691 ev_stop (EV_A_ (W)w);
2692
2693 EV_FREQUENT_CHECK;
2058} 2694}
2059 2695
2060void noinline 2696void noinline
2061ev_timer_again (EV_P_ ev_timer *w) 2697ev_timer_again (EV_P_ ev_timer *w)
2062{ 2698{
2699 EV_FREQUENT_CHECK;
2700
2063 if (ev_is_active (w)) 2701 if (ev_is_active (w))
2064 { 2702 {
2065 if (w->repeat) 2703 if (w->repeat)
2066 { 2704 {
2067 ev_at (w) = mn_now + w->repeat; 2705 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]); 2706 ANHE_at_cache (timers [ev_active (w)]);
2069 adjustheap (timers, timercnt, ev_active (w)); 2707 adjustheap (timers, timercnt, ev_active (w));
2070 } 2708 }
2071 else 2709 else
2072 ev_timer_stop (EV_A_ w); 2710 ev_timer_stop (EV_A_ w);
2073 } 2711 }
2074 else if (w->repeat) 2712 else if (w->repeat)
2075 { 2713 {
2076 ev_at (w) = w->repeat; 2714 ev_at (w) = w->repeat;
2077 ev_timer_start (EV_A_ w); 2715 ev_timer_start (EV_A_ w);
2078 } 2716 }
2717
2718 EV_FREQUENT_CHECK;
2719}
2720
2721ev_tstamp
2722ev_timer_remaining (EV_P_ ev_timer *w)
2723{
2724 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2079} 2725}
2080 2726
2081#if EV_PERIODIC_ENABLE 2727#if EV_PERIODIC_ENABLE
2082void noinline 2728void noinline
2083ev_periodic_start (EV_P_ ev_periodic *w) 2729ev_periodic_start (EV_P_ ev_periodic *w)
2087 2733
2088 if (w->reschedule_cb) 2734 if (w->reschedule_cb)
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2735 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090 else if (w->interval) 2736 else if (w->interval)
2091 { 2737 {
2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2738 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2093 /* this formula differs from the one in periodic_reify because we do not always round up */ 2739 /* this formula differs from the one in periodic_reify because we do not always round up */
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2740 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 } 2741 }
2096 else 2742 else
2097 ev_at (w) = w->offset; 2743 ev_at (w) = w->offset;
2098 2744
2745 EV_FREQUENT_CHECK;
2746
2747 ++periodiccnt;
2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2748 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2749 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2101 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2750 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2102 ANHE_at_set (periodics [ev_active (w)]); 2751 ANHE_at_cache (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w)); 2752 upheap (periodics, ev_active (w));
2104 2753
2754 EV_FREQUENT_CHECK;
2755
2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2756 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2106} 2757}
2107 2758
2108void noinline 2759void noinline
2109ev_periodic_stop (EV_P_ ev_periodic *w) 2760ev_periodic_stop (EV_P_ ev_periodic *w)
2110{ 2761{
2111 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2113 return; 2764 return;
2114 2765
2766 EV_FREQUENT_CHECK;
2767
2115 { 2768 {
2116 int active = ev_active (w); 2769 int active = ev_active (w);
2117 2770
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2771 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119 2772
2773 --periodiccnt;
2774
2120 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2775 if (expect_true (active < periodiccnt + HEAP0))
2121 { 2776 {
2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2777 periodics [active] = periodics [periodiccnt + HEAP0];
2123 adjustheap (periodics, periodiccnt, active); 2778 adjustheap (periodics, periodiccnt, active);
2124 } 2779 }
2125
2126 --periodiccnt;
2127 } 2780 }
2128 2781
2129 ev_stop (EV_A_ (W)w); 2782 ev_stop (EV_A_ (W)w);
2783
2784 EV_FREQUENT_CHECK;
2130} 2785}
2131 2786
2132void noinline 2787void noinline
2133ev_periodic_again (EV_P_ ev_periodic *w) 2788ev_periodic_again (EV_P_ ev_periodic *w)
2134{ 2789{
2140 2795
2141#ifndef SA_RESTART 2796#ifndef SA_RESTART
2142# define SA_RESTART 0 2797# define SA_RESTART 0
2143#endif 2798#endif
2144 2799
2800#if EV_SIGNAL_ENABLE
2801
2145void noinline 2802void noinline
2146ev_signal_start (EV_P_ ev_signal *w) 2803ev_signal_start (EV_P_ ev_signal *w)
2147{ 2804{
2148#if EV_MULTIPLICITY
2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2150#endif
2151 if (expect_false (ev_is_active (w))) 2805 if (expect_false (ev_is_active (w)))
2152 return; 2806 return;
2153 2807
2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2808 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2155 2809
2156 evpipe_init (EV_A); 2810#if EV_MULTIPLICITY
2811 assert (("libev: a signal must not be attached to two different loops",
2812 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2157 2813
2814 signals [w->signum - 1].loop = EV_A;
2815#endif
2816
2817 EV_FREQUENT_CHECK;
2818
2819#if EV_USE_SIGNALFD
2820 if (sigfd == -2)
2158 { 2821 {
2159#ifndef _WIN32 2822 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2160 sigset_t full, prev; 2823 if (sigfd < 0 && errno == EINVAL)
2161 sigfillset (&full); 2824 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164 2825
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2826 if (sigfd >= 0)
2827 {
2828 fd_intern (sigfd); /* doing it twice will not hurt */
2166 2829
2167#ifndef _WIN32 2830 sigemptyset (&sigfd_set);
2168 sigprocmask (SIG_SETMASK, &prev, 0); 2831
2169#endif 2832 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2833 ev_set_priority (&sigfd_w, EV_MAXPRI);
2834 ev_io_start (EV_A_ &sigfd_w);
2835 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2836 }
2170 } 2837 }
2838
2839 if (sigfd >= 0)
2840 {
2841 /* TODO: check .head */
2842 sigaddset (&sigfd_set, w->signum);
2843 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2844
2845 signalfd (sigfd, &sigfd_set, 0);
2846 }
2847#endif
2171 2848
2172 ev_start (EV_A_ (W)w, 1); 2849 ev_start (EV_A_ (W)w, 1);
2173 wlist_add (&signals [w->signum - 1].head, (WL)w); 2850 wlist_add (&signals [w->signum - 1].head, (WL)w);
2174 2851
2175 if (!((WL)w)->next) 2852 if (!((WL)w)->next)
2853# if EV_USE_SIGNALFD
2854 if (sigfd < 0) /*TODO*/
2855# endif
2176 { 2856 {
2177#if _WIN32 2857# ifdef _WIN32
2858 evpipe_init (EV_A);
2859
2178 signal (w->signum, ev_sighandler); 2860 signal (w->signum, ev_sighandler);
2179#else 2861# else
2180 struct sigaction sa; 2862 struct sigaction sa;
2863
2864 evpipe_init (EV_A);
2865
2181 sa.sa_handler = ev_sighandler; 2866 sa.sa_handler = ev_sighandler;
2182 sigfillset (&sa.sa_mask); 2867 sigfillset (&sa.sa_mask);
2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2184 sigaction (w->signum, &sa, 0); 2869 sigaction (w->signum, &sa, 0);
2870
2871 sigemptyset (&sa.sa_mask);
2872 sigaddset (&sa.sa_mask, w->signum);
2873 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2185#endif 2874#endif
2186 } 2875 }
2876
2877 EV_FREQUENT_CHECK;
2187} 2878}
2188 2879
2189void noinline 2880void noinline
2190ev_signal_stop (EV_P_ ev_signal *w) 2881ev_signal_stop (EV_P_ ev_signal *w)
2191{ 2882{
2192 clear_pending (EV_A_ (W)w); 2883 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 2884 if (expect_false (!ev_is_active (w)))
2194 return; 2885 return;
2195 2886
2887 EV_FREQUENT_CHECK;
2888
2196 wlist_del (&signals [w->signum - 1].head, (WL)w); 2889 wlist_del (&signals [w->signum - 1].head, (WL)w);
2197 ev_stop (EV_A_ (W)w); 2890 ev_stop (EV_A_ (W)w);
2198 2891
2199 if (!signals [w->signum - 1].head) 2892 if (!signals [w->signum - 1].head)
2893 {
2894#if EV_MULTIPLICITY
2895 signals [w->signum - 1].loop = 0; /* unattach from signal */
2896#endif
2897#if EV_USE_SIGNALFD
2898 if (sigfd >= 0)
2899 {
2900 sigset_t ss;
2901
2902 sigemptyset (&ss);
2903 sigaddset (&ss, w->signum);
2904 sigdelset (&sigfd_set, w->signum);
2905
2906 signalfd (sigfd, &sigfd_set, 0);
2907 sigprocmask (SIG_UNBLOCK, &ss, 0);
2908 }
2909 else
2910#endif
2200 signal (w->signum, SIG_DFL); 2911 signal (w->signum, SIG_DFL);
2912 }
2913
2914 EV_FREQUENT_CHECK;
2201} 2915}
2916
2917#endif
2918
2919#if EV_CHILD_ENABLE
2202 2920
2203void 2921void
2204ev_child_start (EV_P_ ev_child *w) 2922ev_child_start (EV_P_ ev_child *w)
2205{ 2923{
2206#if EV_MULTIPLICITY 2924#if EV_MULTIPLICITY
2207 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2925 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2208#endif 2926#endif
2209 if (expect_false (ev_is_active (w))) 2927 if (expect_false (ev_is_active (w)))
2210 return; 2928 return;
2211 2929
2930 EV_FREQUENT_CHECK;
2931
2212 ev_start (EV_A_ (W)w, 1); 2932 ev_start (EV_A_ (W)w, 1);
2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2933 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2934
2935 EV_FREQUENT_CHECK;
2214} 2936}
2215 2937
2216void 2938void
2217ev_child_stop (EV_P_ ev_child *w) 2939ev_child_stop (EV_P_ ev_child *w)
2218{ 2940{
2219 clear_pending (EV_A_ (W)w); 2941 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 2942 if (expect_false (!ev_is_active (w)))
2221 return; 2943 return;
2222 2944
2945 EV_FREQUENT_CHECK;
2946
2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2947 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2224 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2225} 2951}
2952
2953#endif
2226 2954
2227#if EV_STAT_ENABLE 2955#if EV_STAT_ENABLE
2228 2956
2229# ifdef _WIN32 2957# ifdef _WIN32
2230# undef lstat 2958# undef lstat
2231# define lstat(a,b) _stati64 (a,b) 2959# define lstat(a,b) _stati64 (a,b)
2232# endif 2960# endif
2233 2961
2234#define DEF_STAT_INTERVAL 5.0074891 2962#define DEF_STAT_INTERVAL 5.0074891
2963#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2235#define MIN_STAT_INTERVAL 0.1074891 2964#define MIN_STAT_INTERVAL 0.1074891
2236 2965
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2966static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238 2967
2239#if EV_USE_INOTIFY 2968#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192 2969
2970/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2971# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2241 2972
2242static void noinline 2973static void noinline
2243infy_add (EV_P_ ev_stat *w) 2974infy_add (EV_P_ ev_stat *w)
2244{ 2975{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2976 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2246 2977
2247 if (w->wd < 0) 2978 if (w->wd >= 0)
2979 {
2980 struct statfs sfs;
2981
2982 /* now local changes will be tracked by inotify, but remote changes won't */
2983 /* unless the filesystem is known to be local, we therefore still poll */
2984 /* also do poll on <2.6.25, but with normal frequency */
2985
2986 if (!fs_2625)
2987 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2988 else if (!statfs (w->path, &sfs)
2989 && (sfs.f_type == 0x1373 /* devfs */
2990 || sfs.f_type == 0xEF53 /* ext2/3 */
2991 || sfs.f_type == 0x3153464a /* jfs */
2992 || sfs.f_type == 0x52654973 /* reiser3 */
2993 || sfs.f_type == 0x01021994 /* tempfs */
2994 || sfs.f_type == 0x58465342 /* xfs */))
2995 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2996 else
2997 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2248 { 2998 }
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2999 else
3000 {
3001 /* can't use inotify, continue to stat */
3002 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2250 3003
2251 /* monitor some parent directory for speedup hints */ 3004 /* if path is not there, monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3005 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2253 /* but an efficiency issue only */ 3006 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 { 3008 {
2256 char path [4096]; 3009 char path [4096];
2257 strcpy (path, w->path); 3010 strcpy (path, w->path);
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3014 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3015 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263 3016
2264 char *pend = strrchr (path, '/'); 3017 char *pend = strrchr (path, '/');
2265 3018
2266 if (!pend) 3019 if (!pend || pend == path)
2267 break; /* whoops, no '/', complain to your admin */ 3020 break;
2268 3021
2269 *pend = 0; 3022 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask); 3023 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 } 3024 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3025 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 } 3026 }
2274 } 3027 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277 3028
2278 if (w->wd >= 0) 3029 if (w->wd >= 0)
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3030 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3031
3032 /* now re-arm timer, if required */
3033 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3034 ev_timer_again (EV_A_ &w->timer);
3035 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2280} 3036}
2281 3037
2282static void noinline 3038static void noinline
2283infy_del (EV_P_ ev_stat *w) 3039infy_del (EV_P_ ev_stat *w)
2284{ 3040{
2287 3043
2288 if (wd < 0) 3044 if (wd < 0)
2289 return; 3045 return;
2290 3046
2291 w->wd = -2; 3047 w->wd = -2;
2292 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3048 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2293 wlist_del (&fs_hash [slot].head, (WL)w); 3049 wlist_del (&fs_hash [slot].head, (WL)w);
2294 3050
2295 /* remove this watcher, if others are watching it, they will rearm */ 3051 /* remove this watcher, if others are watching it, they will rearm */
2296 inotify_rm_watch (fs_fd, wd); 3052 inotify_rm_watch (fs_fd, wd);
2297} 3053}
2298 3054
2299static void noinline 3055static void noinline
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3056infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{ 3057{
2302 if (slot < 0) 3058 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */ 3059 /* overflow, need to check for all hash slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3060 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2305 infy_wd (EV_A_ slot, wd, ev); 3061 infy_wd (EV_A_ slot, wd, ev);
2306 else 3062 else
2307 { 3063 {
2308 WL w_; 3064 WL w_;
2309 3065
2310 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3066 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2311 { 3067 {
2312 ev_stat *w = (ev_stat *)w_; 3068 ev_stat *w = (ev_stat *)w_;
2313 w_ = w_->next; /* lets us remove this watcher and all before it */ 3069 w_ = w_->next; /* lets us remove this watcher and all before it */
2314 3070
2315 if (w->wd == wd || wd == -1) 3071 if (w->wd == wd || wd == -1)
2316 { 3072 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3073 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 { 3074 {
3075 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2319 w->wd = -1; 3076 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */ 3077 infy_add (EV_A_ w); /* re-add, no matter what */
2321 } 3078 }
2322 3079
2323 stat_timer_cb (EV_A_ &w->timer, 0); 3080 stat_timer_cb (EV_A_ &w->timer, 0);
2328 3085
2329static void 3086static void
2330infy_cb (EV_P_ ev_io *w, int revents) 3087infy_cb (EV_P_ ev_io *w, int revents)
2331{ 3088{
2332 char buf [EV_INOTIFY_BUFSIZE]; 3089 char buf [EV_INOTIFY_BUFSIZE];
2333 struct inotify_event *ev = (struct inotify_event *)buf;
2334 int ofs; 3090 int ofs;
2335 int len = read (fs_fd, buf, sizeof (buf)); 3091 int len = read (fs_fd, buf, sizeof (buf));
2336 3092
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3093 for (ofs = 0; ofs < len; )
3094 {
3095 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3096 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3097 ofs += sizeof (struct inotify_event) + ev->len;
3098 }
2339} 3099}
2340 3100
2341void inline_size 3101inline_size void
3102ev_check_2625 (EV_P)
3103{
3104 /* kernels < 2.6.25 are borked
3105 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3106 */
3107 if (ev_linux_version () < 0x020619)
3108 return;
3109
3110 fs_2625 = 1;
3111}
3112
3113inline_size int
3114infy_newfd (void)
3115{
3116#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3117 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3118 if (fd >= 0)
3119 return fd;
3120#endif
3121 return inotify_init ();
3122}
3123
3124inline_size void
2342infy_init (EV_P) 3125infy_init (EV_P)
2343{ 3126{
2344 if (fs_fd != -2) 3127 if (fs_fd != -2)
2345 return; 3128 return;
2346 3129
3130 fs_fd = -1;
3131
3132 ev_check_2625 (EV_A);
3133
2347 fs_fd = inotify_init (); 3134 fs_fd = infy_newfd ();
2348 3135
2349 if (fs_fd >= 0) 3136 if (fs_fd >= 0)
2350 { 3137 {
3138 fd_intern (fs_fd);
2351 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3139 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2352 ev_set_priority (&fs_w, EV_MAXPRI); 3140 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w); 3141 ev_io_start (EV_A_ &fs_w);
3142 ev_unref (EV_A);
2354 } 3143 }
2355} 3144}
2356 3145
2357void inline_size 3146inline_size void
2358infy_fork (EV_P) 3147infy_fork (EV_P)
2359{ 3148{
2360 int slot; 3149 int slot;
2361 3150
2362 if (fs_fd < 0) 3151 if (fs_fd < 0)
2363 return; 3152 return;
2364 3153
3154 ev_ref (EV_A);
3155 ev_io_stop (EV_A_ &fs_w);
2365 close (fs_fd); 3156 close (fs_fd);
2366 fs_fd = inotify_init (); 3157 fs_fd = infy_newfd ();
2367 3158
3159 if (fs_fd >= 0)
3160 {
3161 fd_intern (fs_fd);
3162 ev_io_set (&fs_w, fs_fd, EV_READ);
3163 ev_io_start (EV_A_ &fs_w);
3164 ev_unref (EV_A);
3165 }
3166
2368 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3167 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2369 { 3168 {
2370 WL w_ = fs_hash [slot].head; 3169 WL w_ = fs_hash [slot].head;
2371 fs_hash [slot].head = 0; 3170 fs_hash [slot].head = 0;
2372 3171
2373 while (w_) 3172 while (w_)
2378 w->wd = -1; 3177 w->wd = -1;
2379 3178
2380 if (fs_fd >= 0) 3179 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */ 3180 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else 3181 else
3182 {
3183 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3184 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2383 ev_timer_start (EV_A_ &w->timer); 3185 ev_timer_again (EV_A_ &w->timer);
3186 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3187 }
2384 } 3188 }
2385
2386 } 3189 }
2387} 3190}
2388 3191
3192#endif
3193
3194#ifdef _WIN32
3195# define EV_LSTAT(p,b) _stati64 (p, b)
3196#else
3197# define EV_LSTAT(p,b) lstat (p, b)
2389#endif 3198#endif
2390 3199
2391void 3200void
2392ev_stat_stat (EV_P_ ev_stat *w) 3201ev_stat_stat (EV_P_ ev_stat *w)
2393{ 3202{
2400static void noinline 3209static void noinline
2401stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3210stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2402{ 3211{
2403 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3212 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2404 3213
2405 /* we copy this here each the time so that */ 3214 ev_statdata prev = w->attr;
2406 /* prev has the old value when the callback gets invoked */
2407 w->prev = w->attr;
2408 ev_stat_stat (EV_A_ w); 3215 ev_stat_stat (EV_A_ w);
2409 3216
2410 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3217 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2411 if ( 3218 if (
2412 w->prev.st_dev != w->attr.st_dev 3219 prev.st_dev != w->attr.st_dev
2413 || w->prev.st_ino != w->attr.st_ino 3220 || prev.st_ino != w->attr.st_ino
2414 || w->prev.st_mode != w->attr.st_mode 3221 || prev.st_mode != w->attr.st_mode
2415 || w->prev.st_nlink != w->attr.st_nlink 3222 || prev.st_nlink != w->attr.st_nlink
2416 || w->prev.st_uid != w->attr.st_uid 3223 || prev.st_uid != w->attr.st_uid
2417 || w->prev.st_gid != w->attr.st_gid 3224 || prev.st_gid != w->attr.st_gid
2418 || w->prev.st_rdev != w->attr.st_rdev 3225 || prev.st_rdev != w->attr.st_rdev
2419 || w->prev.st_size != w->attr.st_size 3226 || prev.st_size != w->attr.st_size
2420 || w->prev.st_atime != w->attr.st_atime 3227 || prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime 3228 || prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime 3229 || prev.st_ctime != w->attr.st_ctime
2423 ) { 3230 ) {
3231 /* we only update w->prev on actual differences */
3232 /* in case we test more often than invoke the callback, */
3233 /* to ensure that prev is always different to attr */
3234 w->prev = prev;
3235
2424 #if EV_USE_INOTIFY 3236 #if EV_USE_INOTIFY
3237 if (fs_fd >= 0)
3238 {
2425 infy_del (EV_A_ w); 3239 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w); 3240 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */ 3241 ev_stat_stat (EV_A_ w); /* avoid race... */
3242 }
2428 #endif 3243 #endif
2429 3244
2430 ev_feed_event (EV_A_ w, EV_STAT); 3245 ev_feed_event (EV_A_ w, EV_STAT);
2431 } 3246 }
2432} 3247}
2435ev_stat_start (EV_P_ ev_stat *w) 3250ev_stat_start (EV_P_ ev_stat *w)
2436{ 3251{
2437 if (expect_false (ev_is_active (w))) 3252 if (expect_false (ev_is_active (w)))
2438 return; 3253 return;
2439 3254
2440 /* since we use memcmp, we need to clear any padding data etc. */
2441 memset (&w->prev, 0, sizeof (ev_statdata));
2442 memset (&w->attr, 0, sizeof (ev_statdata));
2443
2444 ev_stat_stat (EV_A_ w); 3255 ev_stat_stat (EV_A_ w);
2445 3256
3257 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2446 if (w->interval < MIN_STAT_INTERVAL) 3258 w->interval = MIN_STAT_INTERVAL;
2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2448 3259
2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3260 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2450 ev_set_priority (&w->timer, ev_priority (w)); 3261 ev_set_priority (&w->timer, ev_priority (w));
2451 3262
2452#if EV_USE_INOTIFY 3263#if EV_USE_INOTIFY
2453 infy_init (EV_A); 3264 infy_init (EV_A);
2454 3265
2455 if (fs_fd >= 0) 3266 if (fs_fd >= 0)
2456 infy_add (EV_A_ w); 3267 infy_add (EV_A_ w);
2457 else 3268 else
2458#endif 3269#endif
3270 {
2459 ev_timer_start (EV_A_ &w->timer); 3271 ev_timer_again (EV_A_ &w->timer);
3272 ev_unref (EV_A);
3273 }
2460 3274
2461 ev_start (EV_A_ (W)w, 1); 3275 ev_start (EV_A_ (W)w, 1);
3276
3277 EV_FREQUENT_CHECK;
2462} 3278}
2463 3279
2464void 3280void
2465ev_stat_stop (EV_P_ ev_stat *w) 3281ev_stat_stop (EV_P_ ev_stat *w)
2466{ 3282{
2467 clear_pending (EV_A_ (W)w); 3283 clear_pending (EV_A_ (W)w);
2468 if (expect_false (!ev_is_active (w))) 3284 if (expect_false (!ev_is_active (w)))
2469 return; 3285 return;
2470 3286
3287 EV_FREQUENT_CHECK;
3288
2471#if EV_USE_INOTIFY 3289#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w); 3290 infy_del (EV_A_ w);
2473#endif 3291#endif
3292
3293 if (ev_is_active (&w->timer))
3294 {
3295 ev_ref (EV_A);
2474 ev_timer_stop (EV_A_ &w->timer); 3296 ev_timer_stop (EV_A_ &w->timer);
3297 }
2475 3298
2476 ev_stop (EV_A_ (W)w); 3299 ev_stop (EV_A_ (W)w);
3300
3301 EV_FREQUENT_CHECK;
2477} 3302}
2478#endif 3303#endif
2479 3304
2480#if EV_IDLE_ENABLE 3305#if EV_IDLE_ENABLE
2481void 3306void
2483{ 3308{
2484 if (expect_false (ev_is_active (w))) 3309 if (expect_false (ev_is_active (w)))
2485 return; 3310 return;
2486 3311
2487 pri_adjust (EV_A_ (W)w); 3312 pri_adjust (EV_A_ (W)w);
3313
3314 EV_FREQUENT_CHECK;
2488 3315
2489 { 3316 {
2490 int active = ++idlecnt [ABSPRI (w)]; 3317 int active = ++idlecnt [ABSPRI (w)];
2491 3318
2492 ++idleall; 3319 ++idleall;
2493 ev_start (EV_A_ (W)w, active); 3320 ev_start (EV_A_ (W)w, active);
2494 3321
2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3322 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2496 idles [ABSPRI (w)][active - 1] = w; 3323 idles [ABSPRI (w)][active - 1] = w;
2497 } 3324 }
3325
3326 EV_FREQUENT_CHECK;
2498} 3327}
2499 3328
2500void 3329void
2501ev_idle_stop (EV_P_ ev_idle *w) 3330ev_idle_stop (EV_P_ ev_idle *w)
2502{ 3331{
2503 clear_pending (EV_A_ (W)w); 3332 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w))) 3333 if (expect_false (!ev_is_active (w)))
2505 return; 3334 return;
2506 3335
3336 EV_FREQUENT_CHECK;
3337
2507 { 3338 {
2508 int active = ev_active (w); 3339 int active = ev_active (w);
2509 3340
2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3342 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512 3343
2513 ev_stop (EV_A_ (W)w); 3344 ev_stop (EV_A_ (W)w);
2514 --idleall; 3345 --idleall;
2515 } 3346 }
2516}
2517#endif
2518 3347
3348 EV_FREQUENT_CHECK;
3349}
3350#endif
3351
3352#if EV_PREPARE_ENABLE
2519void 3353void
2520ev_prepare_start (EV_P_ ev_prepare *w) 3354ev_prepare_start (EV_P_ ev_prepare *w)
2521{ 3355{
2522 if (expect_false (ev_is_active (w))) 3356 if (expect_false (ev_is_active (w)))
2523 return; 3357 return;
3358
3359 EV_FREQUENT_CHECK;
2524 3360
2525 ev_start (EV_A_ (W)w, ++preparecnt); 3361 ev_start (EV_A_ (W)w, ++preparecnt);
2526 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3362 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2527 prepares [preparecnt - 1] = w; 3363 prepares [preparecnt - 1] = w;
3364
3365 EV_FREQUENT_CHECK;
2528} 3366}
2529 3367
2530void 3368void
2531ev_prepare_stop (EV_P_ ev_prepare *w) 3369ev_prepare_stop (EV_P_ ev_prepare *w)
2532{ 3370{
2533 clear_pending (EV_A_ (W)w); 3371 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 3372 if (expect_false (!ev_is_active (w)))
2535 return; 3373 return;
2536 3374
3375 EV_FREQUENT_CHECK;
3376
2537 { 3377 {
2538 int active = ev_active (w); 3378 int active = ev_active (w);
2539 3379
2540 prepares [active - 1] = prepares [--preparecnt]; 3380 prepares [active - 1] = prepares [--preparecnt];
2541 ev_active (prepares [active - 1]) = active; 3381 ev_active (prepares [active - 1]) = active;
2542 } 3382 }
2543 3383
2544 ev_stop (EV_A_ (W)w); 3384 ev_stop (EV_A_ (W)w);
2545}
2546 3385
3386 EV_FREQUENT_CHECK;
3387}
3388#endif
3389
3390#if EV_CHECK_ENABLE
2547void 3391void
2548ev_check_start (EV_P_ ev_check *w) 3392ev_check_start (EV_P_ ev_check *w)
2549{ 3393{
2550 if (expect_false (ev_is_active (w))) 3394 if (expect_false (ev_is_active (w)))
2551 return; 3395 return;
3396
3397 EV_FREQUENT_CHECK;
2552 3398
2553 ev_start (EV_A_ (W)w, ++checkcnt); 3399 ev_start (EV_A_ (W)w, ++checkcnt);
2554 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3400 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2555 checks [checkcnt - 1] = w; 3401 checks [checkcnt - 1] = w;
3402
3403 EV_FREQUENT_CHECK;
2556} 3404}
2557 3405
2558void 3406void
2559ev_check_stop (EV_P_ ev_check *w) 3407ev_check_stop (EV_P_ ev_check *w)
2560{ 3408{
2561 clear_pending (EV_A_ (W)w); 3409 clear_pending (EV_A_ (W)w);
2562 if (expect_false (!ev_is_active (w))) 3410 if (expect_false (!ev_is_active (w)))
2563 return; 3411 return;
2564 3412
3413 EV_FREQUENT_CHECK;
3414
2565 { 3415 {
2566 int active = ev_active (w); 3416 int active = ev_active (w);
2567 3417
2568 checks [active - 1] = checks [--checkcnt]; 3418 checks [active - 1] = checks [--checkcnt];
2569 ev_active (checks [active - 1]) = active; 3419 ev_active (checks [active - 1]) = active;
2570 } 3420 }
2571 3421
2572 ev_stop (EV_A_ (W)w); 3422 ev_stop (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
2573} 3425}
3426#endif
2574 3427
2575#if EV_EMBED_ENABLE 3428#if EV_EMBED_ENABLE
2576void noinline 3429void noinline
2577ev_embed_sweep (EV_P_ ev_embed *w) 3430ev_embed_sweep (EV_P_ ev_embed *w)
2578{ 3431{
2579 ev_loop (w->other, EVLOOP_NONBLOCK); 3432 ev_run (w->other, EVRUN_NOWAIT);
2580} 3433}
2581 3434
2582static void 3435static void
2583embed_io_cb (EV_P_ ev_io *io, int revents) 3436embed_io_cb (EV_P_ ev_io *io, int revents)
2584{ 3437{
2585 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2586 3439
2587 if (ev_cb (w)) 3440 if (ev_cb (w))
2588 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2589 else 3442 else
2590 ev_loop (w->other, EVLOOP_NONBLOCK); 3443 ev_run (w->other, EVRUN_NOWAIT);
2591} 3444}
2592 3445
2593static void 3446static void
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{ 3448{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597 3450
2598 { 3451 {
2599 struct ev_loop *loop = w->other; 3452 EV_P = w->other;
2600 3453
2601 while (fdchangecnt) 3454 while (fdchangecnt)
2602 { 3455 {
2603 fd_reify (EV_A); 3456 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3457 ev_run (EV_A_ EVRUN_NOWAIT);
2605 } 3458 }
2606 } 3459 }
3460}
3461
3462static void
3463embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3464{
3465 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3466
3467 ev_embed_stop (EV_A_ w);
3468
3469 {
3470 EV_P = w->other;
3471
3472 ev_loop_fork (EV_A);
3473 ev_run (EV_A_ EVRUN_NOWAIT);
3474 }
3475
3476 ev_embed_start (EV_A_ w);
2607} 3477}
2608 3478
2609#if 0 3479#if 0
2610static void 3480static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3481embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2619{ 3489{
2620 if (expect_false (ev_is_active (w))) 3490 if (expect_false (ev_is_active (w)))
2621 return; 3491 return;
2622 3492
2623 { 3493 {
2624 struct ev_loop *loop = w->other; 3494 EV_P = w->other;
2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3495 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3496 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2627 } 3497 }
3498
3499 EV_FREQUENT_CHECK;
2628 3500
2629 ev_set_priority (&w->io, ev_priority (w)); 3501 ev_set_priority (&w->io, ev_priority (w));
2630 ev_io_start (EV_A_ &w->io); 3502 ev_io_start (EV_A_ &w->io);
2631 3503
2632 ev_prepare_init (&w->prepare, embed_prepare_cb); 3504 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI); 3505 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare); 3506 ev_prepare_start (EV_A_ &w->prepare);
2635 3507
3508 ev_fork_init (&w->fork, embed_fork_cb);
3509 ev_fork_start (EV_A_ &w->fork);
3510
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3511 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637 3512
2638 ev_start (EV_A_ (W)w, 1); 3513 ev_start (EV_A_ (W)w, 1);
3514
3515 EV_FREQUENT_CHECK;
2639} 3516}
2640 3517
2641void 3518void
2642ev_embed_stop (EV_P_ ev_embed *w) 3519ev_embed_stop (EV_P_ ev_embed *w)
2643{ 3520{
2644 clear_pending (EV_A_ (W)w); 3521 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w))) 3522 if (expect_false (!ev_is_active (w)))
2646 return; 3523 return;
2647 3524
3525 EV_FREQUENT_CHECK;
3526
2648 ev_io_stop (EV_A_ &w->io); 3527 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare); 3528 ev_prepare_stop (EV_A_ &w->prepare);
3529 ev_fork_stop (EV_A_ &w->fork);
2650 3530
2651 ev_stop (EV_A_ (W)w); 3531 ev_stop (EV_A_ (W)w);
3532
3533 EV_FREQUENT_CHECK;
2652} 3534}
2653#endif 3535#endif
2654 3536
2655#if EV_FORK_ENABLE 3537#if EV_FORK_ENABLE
2656void 3538void
2657ev_fork_start (EV_P_ ev_fork *w) 3539ev_fork_start (EV_P_ ev_fork *w)
2658{ 3540{
2659 if (expect_false (ev_is_active (w))) 3541 if (expect_false (ev_is_active (w)))
2660 return; 3542 return;
3543
3544 EV_FREQUENT_CHECK;
2661 3545
2662 ev_start (EV_A_ (W)w, ++forkcnt); 3546 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3547 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2664 forks [forkcnt - 1] = w; 3548 forks [forkcnt - 1] = w;
3549
3550 EV_FREQUENT_CHECK;
2665} 3551}
2666 3552
2667void 3553void
2668ev_fork_stop (EV_P_ ev_fork *w) 3554ev_fork_stop (EV_P_ ev_fork *w)
2669{ 3555{
2670 clear_pending (EV_A_ (W)w); 3556 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w))) 3557 if (expect_false (!ev_is_active (w)))
2672 return; 3558 return;
2673 3559
3560 EV_FREQUENT_CHECK;
3561
2674 { 3562 {
2675 int active = ev_active (w); 3563 int active = ev_active (w);
2676 3564
2677 forks [active - 1] = forks [--forkcnt]; 3565 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active; 3566 ev_active (forks [active - 1]) = active;
2679 } 3567 }
2680 3568
2681 ev_stop (EV_A_ (W)w); 3569 ev_stop (EV_A_ (W)w);
2682}
2683#endif
2684 3570
3571 EV_FREQUENT_CHECK;
3572}
3573#endif
3574
2685#if EV_ASYNC_ENABLE 3575#if EV_CLEANUP_ENABLE
2686void 3576void
2687ev_async_start (EV_P_ ev_async *w) 3577ev_cleanup_start (EV_P_ ev_cleanup *w)
2688{ 3578{
2689 if (expect_false (ev_is_active (w))) 3579 if (expect_false (ev_is_active (w)))
2690 return; 3580 return;
2691 3581
3582 EV_FREQUENT_CHECK;
3583
3584 ev_start (EV_A_ (W)w, ++cleanupcnt);
3585 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3586 cleanups [cleanupcnt - 1] = w;
3587
3588 EV_FREQUENT_CHECK;
3589}
3590
3591void
3592ev_cleanup_stop (EV_P_ ev_cleanup *w)
3593{
3594 clear_pending (EV_A_ (W)w);
3595 if (expect_false (!ev_is_active (w)))
3596 return;
3597
3598 EV_FREQUENT_CHECK;
3599
3600 {
3601 int active = ev_active (w);
3602
3603 cleanups [active - 1] = cleanups [--cleanupcnt];
3604 ev_active (cleanups [active - 1]) = active;
3605 }
3606
3607 ev_stop (EV_A_ (W)w);
3608
3609 EV_FREQUENT_CHECK;
3610}
3611#endif
3612
3613#if EV_ASYNC_ENABLE
3614void
3615ev_async_start (EV_P_ ev_async *w)
3616{
3617 if (expect_false (ev_is_active (w)))
3618 return;
3619
3620 w->sent = 0;
3621
2692 evpipe_init (EV_A); 3622 evpipe_init (EV_A);
3623
3624 EV_FREQUENT_CHECK;
2693 3625
2694 ev_start (EV_A_ (W)w, ++asynccnt); 3626 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3627 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w; 3628 asyncs [asynccnt - 1] = w;
3629
3630 EV_FREQUENT_CHECK;
2697} 3631}
2698 3632
2699void 3633void
2700ev_async_stop (EV_P_ ev_async *w) 3634ev_async_stop (EV_P_ ev_async *w)
2701{ 3635{
2702 clear_pending (EV_A_ (W)w); 3636 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 3637 if (expect_false (!ev_is_active (w)))
2704 return; 3638 return;
2705 3639
3640 EV_FREQUENT_CHECK;
3641
2706 { 3642 {
2707 int active = ev_active (w); 3643 int active = ev_active (w);
2708 3644
2709 asyncs [active - 1] = asyncs [--asynccnt]; 3645 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active; 3646 ev_active (asyncs [active - 1]) = active;
2711 } 3647 }
2712 3648
2713 ev_stop (EV_A_ (W)w); 3649 ev_stop (EV_A_ (W)w);
3650
3651 EV_FREQUENT_CHECK;
2714} 3652}
2715 3653
2716void 3654void
2717ev_async_send (EV_P_ ev_async *w) 3655ev_async_send (EV_P_ ev_async *w)
2718{ 3656{
2719 w->sent = 1; 3657 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync); 3658 evpipe_write (EV_A_ &async_pending);
2721} 3659}
2722#endif 3660#endif
2723 3661
2724/*****************************************************************************/ 3662/*****************************************************************************/
2725 3663
2735once_cb (EV_P_ struct ev_once *once, int revents) 3673once_cb (EV_P_ struct ev_once *once, int revents)
2736{ 3674{
2737 void (*cb)(int revents, void *arg) = once->cb; 3675 void (*cb)(int revents, void *arg) = once->cb;
2738 void *arg = once->arg; 3676 void *arg = once->arg;
2739 3677
2740 ev_io_stop (EV_A_ &once->io); 3678 ev_io_stop (EV_A_ &once->io);
2741 ev_timer_stop (EV_A_ &once->to); 3679 ev_timer_stop (EV_A_ &once->to);
2742 ev_free (once); 3680 ev_free (once);
2743 3681
2744 cb (revents, arg); 3682 cb (revents, arg);
2745} 3683}
2746 3684
2747static void 3685static void
2748once_cb_io (EV_P_ ev_io *w, int revents) 3686once_cb_io (EV_P_ ev_io *w, int revents)
2749{ 3687{
2750 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3688 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3689
3690 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2751} 3691}
2752 3692
2753static void 3693static void
2754once_cb_to (EV_P_ ev_timer *w, int revents) 3694once_cb_to (EV_P_ ev_timer *w, int revents)
2755{ 3695{
2756 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3696 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3697
3698 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2757} 3699}
2758 3700
2759void 3701void
2760ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3702ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2761{ 3703{
2762 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3704 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2763 3705
2764 if (expect_false (!once)) 3706 if (expect_false (!once))
2765 { 3707 {
2766 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3708 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2767 return; 3709 return;
2768 } 3710 }
2769 3711
2770 once->cb = cb; 3712 once->cb = cb;
2771 once->arg = arg; 3713 once->arg = arg;
2783 ev_timer_set (&once->to, timeout, 0.); 3725 ev_timer_set (&once->to, timeout, 0.);
2784 ev_timer_start (EV_A_ &once->to); 3726 ev_timer_start (EV_A_ &once->to);
2785 } 3727 }
2786} 3728}
2787 3729
3730/*****************************************************************************/
3731
3732#if EV_WALK_ENABLE
3733void
3734ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3735{
3736 int i, j;
3737 ev_watcher_list *wl, *wn;
3738
3739 if (types & (EV_IO | EV_EMBED))
3740 for (i = 0; i < anfdmax; ++i)
3741 for (wl = anfds [i].head; wl; )
3742 {
3743 wn = wl->next;
3744
3745#if EV_EMBED_ENABLE
3746 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3747 {
3748 if (types & EV_EMBED)
3749 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3750 }
3751 else
3752#endif
3753#if EV_USE_INOTIFY
3754 if (ev_cb ((ev_io *)wl) == infy_cb)
3755 ;
3756 else
3757#endif
3758 if ((ev_io *)wl != &pipe_w)
3759 if (types & EV_IO)
3760 cb (EV_A_ EV_IO, wl);
3761
3762 wl = wn;
3763 }
3764
3765 if (types & (EV_TIMER | EV_STAT))
3766 for (i = timercnt + HEAP0; i-- > HEAP0; )
3767#if EV_STAT_ENABLE
3768 /*TODO: timer is not always active*/
3769 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3770 {
3771 if (types & EV_STAT)
3772 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3773 }
3774 else
3775#endif
3776 if (types & EV_TIMER)
3777 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3778
3779#if EV_PERIODIC_ENABLE
3780 if (types & EV_PERIODIC)
3781 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3782 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3783#endif
3784
3785#if EV_IDLE_ENABLE
3786 if (types & EV_IDLE)
3787 for (j = NUMPRI; i--; )
3788 for (i = idlecnt [j]; i--; )
3789 cb (EV_A_ EV_IDLE, idles [j][i]);
3790#endif
3791
3792#if EV_FORK_ENABLE
3793 if (types & EV_FORK)
3794 for (i = forkcnt; i--; )
3795 if (ev_cb (forks [i]) != embed_fork_cb)
3796 cb (EV_A_ EV_FORK, forks [i]);
3797#endif
3798
3799#if EV_ASYNC_ENABLE
3800 if (types & EV_ASYNC)
3801 for (i = asynccnt; i--; )
3802 cb (EV_A_ EV_ASYNC, asyncs [i]);
3803#endif
3804
3805#if EV_PREPARE_ENABLE
3806 if (types & EV_PREPARE)
3807 for (i = preparecnt; i--; )
3808# if EV_EMBED_ENABLE
3809 if (ev_cb (prepares [i]) != embed_prepare_cb)
3810# endif
3811 cb (EV_A_ EV_PREPARE, prepares [i]);
3812#endif
3813
3814#if EV_CHECK_ENABLE
3815 if (types & EV_CHECK)
3816 for (i = checkcnt; i--; )
3817 cb (EV_A_ EV_CHECK, checks [i]);
3818#endif
3819
3820#if EV_SIGNAL_ENABLE
3821 if (types & EV_SIGNAL)
3822 for (i = 0; i < EV_NSIG - 1; ++i)
3823 for (wl = signals [i].head; wl; )
3824 {
3825 wn = wl->next;
3826 cb (EV_A_ EV_SIGNAL, wl);
3827 wl = wn;
3828 }
3829#endif
3830
3831#if EV_CHILD_ENABLE
3832 if (types & EV_CHILD)
3833 for (i = (EV_PID_HASHSIZE); i--; )
3834 for (wl = childs [i]; wl; )
3835 {
3836 wn = wl->next;
3837 cb (EV_A_ EV_CHILD, wl);
3838 wl = wn;
3839 }
3840#endif
3841/* EV_STAT 0x00001000 /* stat data changed */
3842/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3843}
3844#endif
3845
2788#if EV_MULTIPLICITY 3846#if EV_MULTIPLICITY
2789 #include "ev_wrap.h" 3847 #include "ev_wrap.h"
2790#endif 3848#endif
2791 3849
2792#ifdef __cplusplus 3850EV_CPP(})
2793}
2794#endif
2795 3851

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines