ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC vs.
Revision 1.360 by root, Sun Oct 24 18:12:41 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
130# endif 148# endif
131 149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
237# endif 314# endif
238#endif 315#endif
239 316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
240#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 337#endif
243 338
244#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
246#endif 355#endif
247 356
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
249 364
250#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
253#endif 368#endif
267# include <sys/select.h> 382# include <sys/select.h>
268# endif 383# endif
269#endif 384#endif
270 385
271#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
272# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
273#endif 394#endif
274 395
275#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 397# include <winsock.h>
277#endif 398#endif
278 399
279#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 402# include <stdint.h>
282# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
283extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
284# endif 405# endif
285int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 407# ifdef O_CLOEXEC
287} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
288# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
289#endif 436#endif
290 437
291/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
292 445
293/* 446/*
294 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
300 */ 453 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302 455
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
306 461
307#if __GNUC__ >= 4 462#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
310#else 465#else
317 472
318#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline 475#define inline_size static inline
321 476
322#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
323# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
324#else 487#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
330 490
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
333 493
334typedef ev_watcher *W; 494typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
337 497
338#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
340 500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
341#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 519#endif
346 520
347#ifdef _WIN32 521#ifdef _WIN32
348# include "ev_win32.c" 522# include "ev_win32.c"
349#endif 523#endif
350 524
351/*****************************************************************************/ 525/*****************************************************************************/
352 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
353static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
354 578
355void 579void
356ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
357{ 581{
358 syserr_cb = cb; 582 syserr_cb = cb;
359} 583}
360 584
361static void noinline 585static void noinline
362syserr (const char *msg) 586ev_syserr (const char *msg)
363{ 587{
364 if (!msg) 588 if (!msg)
365 msg = "(libev) system error"; 589 msg = "(libev) system error";
366 590
367 if (syserr_cb) 591 if (syserr_cb)
368 syserr_cb (msg); 592 syserr_cb (msg);
369 else 593 else
370 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
371 perror (msg); 603 perror (msg);
604#endif
372 abort (); 605 abort ();
373 } 606 }
374} 607}
375 608
376static void * 609static void *
377ev_realloc_emul (void *ptr, long size) 610ev_realloc_emul (void *ptr, long size)
378{ 611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
379 /* some systems, notably openbsd and darwin, fail to properly 615 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 616 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 617 * the single unix specification, so work around them here.
382 */ 618 */
383 619
384 if (size) 620 if (size)
385 return realloc (ptr, size); 621 return realloc (ptr, size);
386 622
387 free (ptr); 623 free (ptr);
388 return 0; 624 return 0;
625#endif
389} 626}
390 627
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
392 629
393void 630void
401{ 638{
402 ptr = alloc (ptr, size); 639 ptr = alloc (ptr, size);
403 640
404 if (!ptr && size) 641 if (!ptr && size)
405 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
407 abort (); 648 abort ();
408 } 649 }
409 650
410 return ptr; 651 return ptr;
411} 652}
413#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
415 656
416/*****************************************************************************/ 657/*****************************************************************************/
417 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
418typedef struct 663typedef struct
419{ 664{
420 WL head; 665 WL head;
421 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
423#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 674 SOCKET handle;
425#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
426} ANFD; 679} ANFD;
427 680
681/* stores the pending event set for a given watcher */
428typedef struct 682typedef struct
429{ 683{
430 W w; 684 W w;
431 int events; 685 int events; /* the pending event set for the given watcher */
432} ANPENDING; 686} ANPENDING;
433 687
434#if EV_USE_INOTIFY 688#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 689/* hash table entry per inotify-id */
436typedef struct 690typedef struct
439} ANFS; 693} ANFS;
440#endif 694#endif
441 695
442/* Heap Entry */ 696/* Heap Entry */
443#if EV_HEAP_CACHE_AT 697#if EV_HEAP_CACHE_AT
698 /* a heap element */
444 typedef struct { 699 typedef struct {
445 ev_tstamp at; 700 ev_tstamp at;
446 WT w; 701 WT w;
447 } ANHE; 702 } ANHE;
448 703
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 704 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 705 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 707#else
708 /* a heap element */
453 typedef WT ANHE; 709 typedef WT ANHE;
454 710
455 #define ANHE_w(he) (he) 711 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 712 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 713 #define ANHE_at_cache(he)
458#endif 714#endif
459 715
460#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
461 717
462 struct ev_loop 718 struct ev_loop
481 737
482 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
483 739
484#endif 740#endif
485 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
486/*****************************************************************************/ 754/*****************************************************************************/
487 755
756#ifndef EV_HAVE_EV_TIME
488ev_tstamp 757ev_tstamp
489ev_time (void) 758ev_time (void)
490{ 759{
491#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
492 struct timespec ts; 763 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 766 }
767#endif
768
496 struct timeval tv; 769 struct timeval tv;
497 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 772}
773#endif
501 774
502ev_tstamp inline_size 775inline_size ev_tstamp
503get_clock (void) 776get_clock (void)
504{ 777{
505#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
507 { 780 {
528 if (delay > 0.) 801 if (delay > 0.)
529 { 802 {
530#if EV_USE_NANOSLEEP 803#if EV_USE_NANOSLEEP
531 struct timespec ts; 804 struct timespec ts;
532 805
533 ts.tv_sec = (time_t)delay; 806 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 807 nanosleep (&ts, 0);
537#elif defined(_WIN32) 808#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3)); 809 Sleep ((unsigned long)(delay * 1e3));
539#else 810#else
540 struct timeval tv; 811 struct timeval tv;
541 812
542 tv.tv_sec = (time_t)delay; 813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 814 /* something not guaranteed by newer posix versions, but guaranteed */
544 815 /* by older ones */
816 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 817 select (0, 0, 0, 0, &tv);
546#endif 818#endif
547 } 819 }
548} 820}
549 821
550/*****************************************************************************/ 822/*****************************************************************************/
551 823
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 825
554int inline_size 826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
555array_nextsize (int elem, int cur, int cnt) 829array_nextsize (int elem, int cur, int cnt)
556{ 830{
557 int ncur = cur + 1; 831 int ncur = cur + 1;
558 832
559 do 833 do
576array_realloc (int elem, void *base, int *cur, int cnt) 850array_realloc (int elem, void *base, int *cur, int cnt)
577{ 851{
578 *cur = array_nextsize (elem, *cur, cnt); 852 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 853 return ev_realloc (base, elem * *cur);
580} 854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 858
582#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 860 if (expect_false ((cnt) > (cur))) \
584 { \ 861 { \
585 int ocur_ = (cur); \ 862 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 875 }
599#endif 876#endif
600 877
601#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 880
604/*****************************************************************************/ 881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
605 888
606void noinline 889void noinline
607ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
608{ 891{
609 W w_ = (W)w; 892 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 901 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 902 pendings [pri][w_->pending - 1].events = revents;
620 } 903 }
621} 904}
622 905
623void inline_speed 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 923{
626 int i; 924 int i;
627 925
628 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
630} 928}
631 929
632/*****************************************************************************/ 930/*****************************************************************************/
633 931
634void inline_size 932inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
649{ 934{
650 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
651 ev_io *w; 936 ev_io *w;
652 937
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 942 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
659 } 944 }
660} 945}
661 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
662void 958void
663ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 960{
665 if (fd >= 0 && fd < anfdmax) 961 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
667} 963}
668 964
669void inline_size 965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
670fd_reify (EV_P) 968fd_reify (EV_P)
671{ 969{
672 int i; 970 int i;
673 971
674 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
675 { 973 {
676 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
678 ev_io *w; 976 ev_io *w;
679 977
680 unsigned char events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
681 980
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 982
685#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
686 if (events) 984 if (o_reify & EV__IOFDSET)
687 { 985 {
688 unsigned long argp; 986 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
695 } 990 }
696#endif 991#endif
697 992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
698 { 994 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events; 995 anfd->events = 0;
704 996
705 if (o_events != events || o_reify & EV_IOFDSET) 997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 1006 }
709 1007
710 fdchangecnt = 0; 1008 fdchangecnt = 0;
711} 1009}
712 1010
713void inline_size 1011/* something about the given fd changed */
1012inline_size void
714fd_change (EV_P_ int fd, int flags) 1013fd_change (EV_P_ int fd, int flags)
715{ 1014{
716 unsigned char reify = anfds [fd].reify; 1015 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 1016 anfds [fd].reify |= flags;
718 1017
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
724 } 1023 }
725} 1024}
726 1025
727void inline_speed 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
728fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
729{ 1029{
730 ev_io *w; 1030 ev_io *w;
731 1031
732 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 1036 }
737} 1037}
738 1038
739int inline_size 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
740fd_valid (int fd) 1041fd_valid (int fd)
741{ 1042{
742#ifdef _WIN32 1043#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 1045#else
745 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
746#endif 1047#endif
747} 1048}
748 1049
752{ 1053{
753 int fd; 1054 int fd;
754 1055
755 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1057 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
759} 1060}
760 1061
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1063static void noinline
766 1067
767 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1069 if (anfds [fd].events)
769 { 1070 {
770 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
771 return; 1072 break;
772 } 1073 }
773} 1074}
774 1075
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1077static void noinline
780 1081
781 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1083 if (anfds [fd].events)
783 { 1084 {
784 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
1086 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1088 }
787} 1089}
788 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
789/*****************************************************************************/ 1105/*****************************************************************************/
790 1106
791/* 1107/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 1108 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 1110 * the branching factor of the d-tree.
795 */ 1111 */
796 1112
797/* 1113/*
803#if EV_USE_4HEAP 1119#if EV_USE_4HEAP
804 1120
805#define DHEAP 4 1121#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808 1124#define UPHEAP_DONE(p,k) ((p) == (k))
809/* towards the root */
810void inline_speed
811upheap (ANHE *heap, int k)
812{
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829}
830 1125
831/* away from the root */ 1126/* away from the root */
832void inline_speed 1127inline_speed void
833downheap (ANHE *heap, int N, int k) 1128downheap (ANHE *heap, int N, int k)
834{ 1129{
835 ANHE he = heap [k]; 1130 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0; 1131 ANHE *E = heap + N + HEAP0;
837 1132
838 for (;;) 1133 for (;;)
839 { 1134 {
840 ev_tstamp minat; 1135 ev_tstamp minat;
841 ANHE *minpos; 1136 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
843 1138
844 // find minimum child 1139 /* find minimum child */
845 if (expect_true (pos + DHEAP - 1 < E)) 1140 if (expect_true (pos + DHEAP - 1 < E))
846 { 1141 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 1165
871 heap [k] = he; 1166 heap [k] = he;
872 ev_active (ANHE_w (he)) = k; 1167 ev_active (ANHE_w (he)) = k;
873} 1168}
874 1169
875#else // 4HEAP 1170#else /* 4HEAP */
876 1171
877#define HEAP0 1 1172#define HEAP0 1
878#define HPARENT(k) ((k) >> 1) 1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
879 1175
880/* towards the root */ 1176/* away from the root */
881void inline_speed 1177inline_speed void
882upheap (ANHE *heap, int k) 1178downheap (ANHE *heap, int N, int k)
883{ 1179{
884 ANHE he = heap [k]; 1180 ANHE he = heap [k];
885 1181
886 for (;;) 1182 for (;;)
887 { 1183 {
888 int p = HPARENT (k); 1184 int c = k << 1;
889 1185
890 /* maybe we could use a dummy element at heap [0]? */ 1186 if (c >= N + HEAP0)
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break; 1187 break;
893 1188
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0; 1190 ? 1 : 0;
918 1191
919 if (ANHE_at (he) <= ANHE_at (heap [c])) 1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break; 1193 break;
921 1194
928 heap [k] = he; 1201 heap [k] = he;
929 ev_active (ANHE_w (he)) = k; 1202 ev_active (ANHE_w (he)) = k;
930} 1203}
931#endif 1204#endif
932 1205
933void inline_size 1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
934adjustheap (ANHE *heap, int N, int k) 1230adjustheap (ANHE *heap, int N, int k)
935{ 1231{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
937 upheap (heap, k); 1233 upheap (heap, k);
938 else 1234 else
939 downheap (heap, N, k); 1235 downheap (heap, N, k);
940} 1236}
941 1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
942/*****************************************************************************/ 1250/*****************************************************************************/
943 1251
1252/* associate signal watchers to a signal signal */
944typedef struct 1253typedef struct
945{ 1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
946 WL head; 1259 WL head;
947 EV_ATOMIC_T gotsig;
948} ANSIG; 1260} ANSIG;
949 1261
950static ANSIG *signals; 1262static ANSIG signals [EV_NSIG - 1];
951static int signalmax;
952
953static EV_ATOMIC_T gotsig;
954
955void inline_size
956signals_init (ANSIG *base, int count)
957{
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965}
966 1263
967/*****************************************************************************/ 1264/*****************************************************************************/
968 1265
969void inline_speed 1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
970fd_intern (int fd)
971{
972#ifdef _WIN32
973 int arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
975#else
976 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK);
978#endif
979}
980 1267
981static void noinline 1268static void noinline
982evpipe_init (EV_P) 1269evpipe_init (EV_P)
983{ 1270{
984 if (!ev_is_active (&pipeev)) 1271 if (!ev_is_active (&pipe_w))
985 { 1272 {
986#if EV_USE_EVENTFD 1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
987 if ((evfd = eventfd (0, 0)) >= 0) 1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
988 { 1279 {
989 evpipe [0] = -1; 1280 evpipe [0] = -1;
990 fd_intern (evfd); 1281 fd_intern (evfd); /* doing it twice doesn't hurt */
991 ev_io_set (&pipeev, evfd, EV_READ); 1282 ev_io_set (&pipe_w, evfd, EV_READ);
992 } 1283 }
993 else 1284 else
994#endif 1285# endif
995 { 1286 {
996 while (pipe (evpipe)) 1287 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe"); 1288 ev_syserr ("(libev) error creating signal/async pipe");
998 1289
999 fd_intern (evpipe [0]); 1290 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]); 1291 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ); 1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1002 } 1293 }
1003 1294
1004 ev_io_start (EV_A_ &pipeev); 1295 ev_io_start (EV_A_ &pipe_w);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 } 1297 }
1007} 1298}
1008 1299
1009void inline_size 1300inline_size void
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{ 1302{
1012 if (!*flag) 1303 if (!*flag)
1013 { 1304 {
1014 int old_errno = errno; /* save errno because write might clobber it */ 1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1015 1307
1016 *flag = 1; 1308 *flag = 1;
1017 1309
1018#if EV_USE_EVENTFD 1310#if EV_USE_EVENTFD
1019 if (evfd >= 0) 1311 if (evfd >= 0)
1021 uint64_t counter = 1; 1313 uint64_t counter = 1;
1022 write (evfd, &counter, sizeof (uint64_t)); 1314 write (evfd, &counter, sizeof (uint64_t));
1023 } 1315 }
1024 else 1316 else
1025#endif 1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1026 write (evpipe [1], &old_errno, 1); 1323 write (evpipe [1], &dummy, 1);
1027 1324
1028 errno = old_errno; 1325 errno = old_errno;
1029 } 1326 }
1030} 1327}
1031 1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
1032static void 1331static void
1033pipecb (EV_P_ ev_io *iow, int revents) 1332pipecb (EV_P_ ev_io *iow, int revents)
1034{ 1333{
1334 int i;
1335
1035#if EV_USE_EVENTFD 1336#if EV_USE_EVENTFD
1036 if (evfd >= 0) 1337 if (evfd >= 0)
1037 { 1338 {
1038 uint64_t counter; 1339 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t)); 1340 read (evfd, &counter, sizeof (uint64_t));
1040 } 1341 }
1041 else 1342 else
1042#endif 1343#endif
1043 { 1344 {
1044 char dummy; 1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1045 read (evpipe [0], &dummy, 1); 1347 read (evpipe [0], &dummy, 1);
1046 } 1348 }
1047 1349
1048 if (gotsig && ev_is_default_loop (EV_A)) 1350 if (sig_pending)
1049 { 1351 {
1050 int signum; 1352 sig_pending = 0;
1051 gotsig = 0;
1052 1353
1053 for (signum = signalmax; signum--; ) 1354 for (i = EV_NSIG - 1; i--; )
1054 if (signals [signum].gotsig) 1355 if (expect_false (signals [i].pending))
1055 ev_feed_signal_event (EV_A_ signum + 1); 1356 ev_feed_signal_event (EV_A_ i + 1);
1056 } 1357 }
1057 1358
1058#if EV_ASYNC_ENABLE 1359#if EV_ASYNC_ENABLE
1059 if (gotasync) 1360 if (async_pending)
1060 { 1361 {
1061 int i; 1362 async_pending = 0;
1062 gotasync = 0;
1063 1363
1064 for (i = asynccnt; i--; ) 1364 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent) 1365 if (asyncs [i]->sent)
1066 { 1366 {
1067 asyncs [i]->sent = 0; 1367 asyncs [i]->sent = 0;
1075 1375
1076static void 1376static void
1077ev_sighandler (int signum) 1377ev_sighandler (int signum)
1078{ 1378{
1079#if EV_MULTIPLICITY 1379#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct; 1380 EV_P = signals [signum - 1].loop;
1081#endif 1381#endif
1082 1382
1083#if _WIN32 1383#ifdef _WIN32
1084 signal (signum, ev_sighandler); 1384 signal (signum, ev_sighandler);
1085#endif 1385#endif
1086 1386
1087 signals [signum - 1].gotsig = 1; 1387 signals [signum - 1].pending = 1;
1088 evpipe_write (EV_A_ &gotsig); 1388 evpipe_write (EV_A_ &sig_pending);
1089} 1389}
1090 1390
1091void noinline 1391void noinline
1092ev_feed_signal_event (EV_P_ int signum) 1392ev_feed_signal_event (EV_P_ int signum)
1093{ 1393{
1094 WL w; 1394 WL w;
1095 1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1096#if EV_MULTIPLICITY 1401#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1402 /* it is permissible to try to feed a signal to the wrong loop */
1098#endif 1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1099 1404
1100 --signum; 1405 if (expect_false (signals [signum].loop != EV_A))
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return; 1406 return;
1407#endif
1104 1408
1105 signals [signum].gotsig = 0; 1409 signals [signum].pending = 0;
1106 1410
1107 for (w = signals [signum].head; w; w = w->next) 1411 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109} 1413}
1110 1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
1111/*****************************************************************************/ 1437/*****************************************************************************/
1112 1438
1439#if EV_CHILD_ENABLE
1113static WL childs [EV_PID_HASHSIZE]; 1440static WL childs [EV_PID_HASHSIZE];
1114
1115#ifndef _WIN32
1116 1441
1117static ev_signal childev; 1442static ev_signal childev;
1118 1443
1119#ifndef WIFCONTINUED 1444#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0 1445# define WIFCONTINUED(status) 0
1121#endif 1446#endif
1122 1447
1123void inline_speed 1448/* handle a single child status event */
1449inline_speed void
1124child_reap (EV_P_ int chain, int pid, int status) 1450child_reap (EV_P_ int chain, int pid, int status)
1125{ 1451{
1126 ev_child *w; 1452 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128 1454
1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1130 { 1456 {
1131 if ((w->pid == pid || !w->pid) 1457 if ((w->pid == pid || !w->pid)
1132 && (!traced || (w->flags & 1))) 1458 && (!traced || (w->flags & 1)))
1133 { 1459 {
1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1141 1467
1142#ifndef WCONTINUED 1468#ifndef WCONTINUED
1143# define WCONTINUED 0 1469# define WCONTINUED 0
1144#endif 1470#endif
1145 1471
1472/* called on sigchld etc., calls waitpid */
1146static void 1473static void
1147childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
1148{ 1475{
1149 int pid, status; 1476 int pid, status;
1150 1477
1158 /* make sure we are called again until all children have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1159 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1161 1488
1162 child_reap (EV_A_ pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1163 if (EV_PID_HASHSIZE > 1) 1490 if ((EV_PID_HASHSIZE) > 1)
1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1165} 1492}
1166 1493
1167#endif 1494#endif
1168 1495
1169/*****************************************************************************/ 1496/*****************************************************************************/
1170 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1171#if EV_USE_PORT 1501#if EV_USE_PORT
1172# include "ev_port.c" 1502# include "ev_port.c"
1173#endif 1503#endif
1174#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
1175# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
1231 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
1234#endif 1564#endif
1235#ifdef __APPLE__ 1565#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
1237 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1238#endif 1572#endif
1239 1573
1240 return flags; 1574 return flags;
1241} 1575}
1242 1576
1244ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
1245{ 1579{
1246 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1247 1581
1248 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1249 /* please fix it and tell me how to detect the fix */ 1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1250 flags &= ~EVBACKEND_EPOLL; 1584 flags &= ~EVBACKEND_EPOLL;
1251 1585
1252 return flags; 1586 return flags;
1253} 1587}
1254 1588
1255unsigned int 1589unsigned int
1256ev_backend (EV_P) 1590ev_backend (EV_P)
1257{ 1591{
1258 return backend; 1592 return backend;
1259} 1593}
1260 1594
1595#if EV_FEATURE_API
1261unsigned int 1596unsigned int
1262ev_loop_count (EV_P) 1597ev_iteration (EV_P)
1263{ 1598{
1264 return loop_count; 1599 return loop_count;
1265} 1600}
1266 1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1267void 1608void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{ 1610{
1270 io_blocktime = interval; 1611 io_blocktime = interval;
1271} 1612}
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{ 1616{
1276 timeout_blocktime = interval; 1617 timeout_blocktime = interval;
1277} 1618}
1278 1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1279static void noinline 1645static void noinline
1280loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
1281{ 1647{
1282 if (!backend) 1648 if (!backend)
1283 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
1284#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1285 { 1662 {
1286 struct timespec ts; 1663 struct timespec ts;
1664
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1; 1666 have_monotonic = 1;
1289 } 1667 }
1290#endif 1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1291 1680
1292 ev_rt_now = ev_time (); 1681 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1682 mn_now = get_clock ();
1294 now_floor = mn_now; 1683 now_floor = mn_now;
1295 rtmn_diff = ev_rt_now - mn_now; 1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1296 1688
1297 io_blocktime = 0.; 1689 io_blocktime = 0.;
1298 timeout_blocktime = 0.; 1690 timeout_blocktime = 0.;
1299 backend = 0; 1691 backend = 0;
1300 backend_fd = -1; 1692 backend_fd = -1;
1301 gotasync = 0; 1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1302#if EV_USE_INOTIFY 1697#if EV_USE_INOTIFY
1303 fs_fd = -2; 1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1304#endif 1699#endif
1305 1700#if EV_USE_SIGNALFD
1306 /* pid check not overridable via env */ 1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1307#ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK)
1309 curpid = getpid ();
1310#endif 1702#endif
1311
1312 if (!(flags & EVFLAG_NOENV)
1313 && !enable_secure ()
1314 && getenv ("LIBEV_FLAGS"))
1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1316 1703
1317 if (!(flags & 0x0000ffffU)) 1704 if (!(flags & 0x0000ffffU))
1318 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
1319 1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1320#if EV_USE_PORT 1710#if EV_USE_PORT
1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1322#endif 1712#endif
1323#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
1324 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1331#endif 1721#endif
1332#if EV_USE_SELECT 1722#if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1334#endif 1724#endif
1335 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1336 ev_init (&pipeev, pipecb); 1729 ev_init (&pipe_w, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1338 } 1732 }
1339} 1733}
1340 1734
1341static void noinline 1735/* free up a loop structure */
1736void
1342loop_destroy (EV_P) 1737ev_loop_destroy (EV_P)
1343{ 1738{
1344 int i; 1739 int i;
1345 1740
1741#if EV_CHILD_ENABLE
1742 if (ev_is_active (&childev))
1743 {
1744 ev_ref (EV_A); /* child watcher */
1745 ev_signal_stop (EV_A_ &childev);
1746 }
1747#endif
1748
1346 if (ev_is_active (&pipeev)) 1749 if (ev_is_active (&pipe_w))
1347 { 1750 {
1348 ev_ref (EV_A); /* signal watcher */ 1751 /*ev_ref (EV_A);*/
1349 ev_io_stop (EV_A_ &pipeev); 1752 /*ev_io_stop (EV_A_ &pipe_w);*/
1350 1753
1351#if EV_USE_EVENTFD 1754#if EV_USE_EVENTFD
1352 if (evfd >= 0) 1755 if (evfd >= 0)
1353 close (evfd); 1756 close (evfd);
1354#endif 1757#endif
1355 1758
1356 if (evpipe [0] >= 0) 1759 if (evpipe [0] >= 0)
1357 { 1760 {
1358 close (evpipe [0]); 1761 EV_WIN32_CLOSE_FD (evpipe [0]);
1359 close (evpipe [1]); 1762 EV_WIN32_CLOSE_FD (evpipe [1]);
1360 } 1763 }
1361 } 1764 }
1765
1766#if EV_USE_SIGNALFD
1767 if (ev_is_active (&sigfd_w))
1768 close (sigfd);
1769#endif
1362 1770
1363#if EV_USE_INOTIFY 1771#if EV_USE_INOTIFY
1364 if (fs_fd >= 0) 1772 if (fs_fd >= 0)
1365 close (fs_fd); 1773 close (fs_fd);
1366#endif 1774#endif
1367 1775
1368 if (backend_fd >= 0) 1776 if (backend_fd >= 0)
1369 close (backend_fd); 1777 close (backend_fd);
1370 1778
1779#if EV_USE_IOCP
1780 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1781#endif
1371#if EV_USE_PORT 1782#if EV_USE_PORT
1372 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1783 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1373#endif 1784#endif
1374#if EV_USE_KQUEUE 1785#if EV_USE_KQUEUE
1375 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1786 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1390#if EV_IDLE_ENABLE 1801#if EV_IDLE_ENABLE
1391 array_free (idle, [i]); 1802 array_free (idle, [i]);
1392#endif 1803#endif
1393 } 1804 }
1394 1805
1395 ev_free (anfds); anfdmax = 0; 1806 ev_free (anfds); anfds = 0; anfdmax = 0;
1396 1807
1397 /* have to use the microsoft-never-gets-it-right macro */ 1808 /* have to use the microsoft-never-gets-it-right macro */
1809 array_free (rfeed, EMPTY);
1398 array_free (fdchange, EMPTY); 1810 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY); 1811 array_free (timer, EMPTY);
1400#if EV_PERIODIC_ENABLE 1812#if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY); 1813 array_free (periodic, EMPTY);
1402#endif 1814#endif
1403#if EV_FORK_ENABLE 1815#if EV_FORK_ENABLE
1404 array_free (fork, EMPTY); 1816 array_free (fork, EMPTY);
1405#endif 1817#endif
1818#if EV_CLEANUP_ENABLE
1819 array_free (cleanup, EMPTY);
1820#endif
1406 array_free (prepare, EMPTY); 1821 array_free (prepare, EMPTY);
1407 array_free (check, EMPTY); 1822 array_free (check, EMPTY);
1408#if EV_ASYNC_ENABLE 1823#if EV_ASYNC_ENABLE
1409 array_free (async, EMPTY); 1824 array_free (async, EMPTY);
1410#endif 1825#endif
1411 1826
1412 backend = 0; 1827 backend = 0;
1828
1829#if EV_MULTIPLICITY
1830 if (ev_is_default_loop (EV_A))
1831#endif
1832 ev_default_loop_ptr = 0;
1833#if EV_MULTIPLICITY
1834 else
1835 ev_free (EV_A);
1836#endif
1413} 1837}
1414 1838
1415#if EV_USE_INOTIFY 1839#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P); 1840inline_size void infy_fork (EV_P);
1417#endif 1841#endif
1418 1842
1419void inline_size 1843inline_size void
1420loop_fork (EV_P) 1844loop_fork (EV_P)
1421{ 1845{
1422#if EV_USE_PORT 1846#if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1847 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424#endif 1848#endif
1430#endif 1854#endif
1431#if EV_USE_INOTIFY 1855#if EV_USE_INOTIFY
1432 infy_fork (EV_A); 1856 infy_fork (EV_A);
1433#endif 1857#endif
1434 1858
1435 if (ev_is_active (&pipeev)) 1859 if (ev_is_active (&pipe_w))
1436 { 1860 {
1437 /* this "locks" the handlers against writing to the pipe */ 1861 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */ 1862 /* while we modify the fd vars */
1439 gotsig = 1; 1863 sig_pending = 1;
1440#if EV_ASYNC_ENABLE 1864#if EV_ASYNC_ENABLE
1441 gotasync = 1; 1865 async_pending = 1;
1442#endif 1866#endif
1443 1867
1444 ev_ref (EV_A); 1868 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev); 1869 ev_io_stop (EV_A_ &pipe_w);
1446 1870
1447#if EV_USE_EVENTFD 1871#if EV_USE_EVENTFD
1448 if (evfd >= 0) 1872 if (evfd >= 0)
1449 close (evfd); 1873 close (evfd);
1450#endif 1874#endif
1451 1875
1452 if (evpipe [0] >= 0) 1876 if (evpipe [0] >= 0)
1453 { 1877 {
1454 close (evpipe [0]); 1878 EV_WIN32_CLOSE_FD (evpipe [0]);
1455 close (evpipe [1]); 1879 EV_WIN32_CLOSE_FD (evpipe [1]);
1456 } 1880 }
1457 1881
1882#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1458 evpipe_init (EV_A); 1883 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */ 1884 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ); 1885 pipecb (EV_A_ &pipe_w, EV_READ);
1886#endif
1461 } 1887 }
1462 1888
1463 postfork = 0; 1889 postfork = 0;
1464} 1890}
1891
1892#if EV_MULTIPLICITY
1893
1894struct ev_loop *
1895ev_loop_new (unsigned int flags)
1896{
1897 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1898
1899 memset (EV_A, 0, sizeof (struct ev_loop));
1900 loop_init (EV_A_ flags);
1901
1902 if (ev_backend (EV_A))
1903 return EV_A;
1904
1905 ev_free (EV_A);
1906 return 0;
1907}
1908
1909#endif /* multiplicity */
1910
1911#if EV_VERIFY
1912static void noinline
1913verify_watcher (EV_P_ W w)
1914{
1915 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1916
1917 if (w->pending)
1918 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1919}
1920
1921static void noinline
1922verify_heap (EV_P_ ANHE *heap, int N)
1923{
1924 int i;
1925
1926 for (i = HEAP0; i < N + HEAP0; ++i)
1927 {
1928 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1929 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1930 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1931
1932 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1933 }
1934}
1935
1936static void noinline
1937array_verify (EV_P_ W *ws, int cnt)
1938{
1939 while (cnt--)
1940 {
1941 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1942 verify_watcher (EV_A_ ws [cnt]);
1943 }
1944}
1945#endif
1946
1947#if EV_FEATURE_API
1948void
1949ev_verify (EV_P)
1950{
1951#if EV_VERIFY
1952 int i;
1953 WL w;
1954
1955 assert (activecnt >= -1);
1956
1957 assert (fdchangemax >= fdchangecnt);
1958 for (i = 0; i < fdchangecnt; ++i)
1959 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1960
1961 assert (anfdmax >= 0);
1962 for (i = 0; i < anfdmax; ++i)
1963 for (w = anfds [i].head; w; w = w->next)
1964 {
1965 verify_watcher (EV_A_ (W)w);
1966 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1967 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1968 }
1969
1970 assert (timermax >= timercnt);
1971 verify_heap (EV_A_ timers, timercnt);
1972
1973#if EV_PERIODIC_ENABLE
1974 assert (periodicmax >= periodiccnt);
1975 verify_heap (EV_A_ periodics, periodiccnt);
1976#endif
1977
1978 for (i = NUMPRI; i--; )
1979 {
1980 assert (pendingmax [i] >= pendingcnt [i]);
1981#if EV_IDLE_ENABLE
1982 assert (idleall >= 0);
1983 assert (idlemax [i] >= idlecnt [i]);
1984 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1985#endif
1986 }
1987
1988#if EV_FORK_ENABLE
1989 assert (forkmax >= forkcnt);
1990 array_verify (EV_A_ (W *)forks, forkcnt);
1991#endif
1992
1993#if EV_CLEANUP_ENABLE
1994 assert (cleanupmax >= cleanupcnt);
1995 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
1996#endif
1997
1998#if EV_ASYNC_ENABLE
1999 assert (asyncmax >= asynccnt);
2000 array_verify (EV_A_ (W *)asyncs, asynccnt);
2001#endif
2002
2003#if EV_PREPARE_ENABLE
2004 assert (preparemax >= preparecnt);
2005 array_verify (EV_A_ (W *)prepares, preparecnt);
2006#endif
2007
2008#if EV_CHECK_ENABLE
2009 assert (checkmax >= checkcnt);
2010 array_verify (EV_A_ (W *)checks, checkcnt);
2011#endif
2012
2013# if 0
2014#if EV_CHILD_ENABLE
2015 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2016 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2017#endif
2018# endif
2019#endif
2020}
2021#endif
1465 2022
1466#if EV_MULTIPLICITY 2023#if EV_MULTIPLICITY
1467struct ev_loop * 2024struct ev_loop *
1468ev_loop_new (unsigned int flags)
1469{
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471
1472 memset (loop, 0, sizeof (struct ev_loop));
1473
1474 loop_init (EV_A_ flags);
1475
1476 if (ev_backend (EV_A))
1477 return loop;
1478
1479 return 0;
1480}
1481
1482void
1483ev_loop_destroy (EV_P)
1484{
1485 loop_destroy (EV_A);
1486 ev_free (loop);
1487}
1488
1489void
1490ev_loop_fork (EV_P)
1491{
1492 postfork = 1; /* must be in line with ev_default_fork */
1493}
1494#endif
1495
1496#if EV_MULTIPLICITY
1497struct ev_loop *
1498ev_default_loop_init (unsigned int flags)
1499#else 2025#else
1500int 2026int
2027#endif
1501ev_default_loop (unsigned int flags) 2028ev_default_loop (unsigned int flags)
1502#endif
1503{ 2029{
1504 if (!ev_default_loop_ptr) 2030 if (!ev_default_loop_ptr)
1505 { 2031 {
1506#if EV_MULTIPLICITY 2032#if EV_MULTIPLICITY
1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2033 EV_P = ev_default_loop_ptr = &default_loop_struct;
1508#else 2034#else
1509 ev_default_loop_ptr = 1; 2035 ev_default_loop_ptr = 1;
1510#endif 2036#endif
1511 2037
1512 loop_init (EV_A_ flags); 2038 loop_init (EV_A_ flags);
1513 2039
1514 if (ev_backend (EV_A)) 2040 if (ev_backend (EV_A))
1515 { 2041 {
1516#ifndef _WIN32 2042#if EV_CHILD_ENABLE
1517 ev_signal_init (&childev, childcb, SIGCHLD); 2043 ev_signal_init (&childev, childcb, SIGCHLD);
1518 ev_set_priority (&childev, EV_MAXPRI); 2044 ev_set_priority (&childev, EV_MAXPRI);
1519 ev_signal_start (EV_A_ &childev); 2045 ev_signal_start (EV_A_ &childev);
1520 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2046 ev_unref (EV_A); /* child watcher should not keep loop alive */
1521#endif 2047#endif
1526 2052
1527 return ev_default_loop_ptr; 2053 return ev_default_loop_ptr;
1528} 2054}
1529 2055
1530void 2056void
1531ev_default_destroy (void) 2057ev_loop_fork (EV_P)
1532{ 2058{
1533#if EV_MULTIPLICITY
1534 struct ev_loop *loop = ev_default_loop_ptr;
1535#endif
1536
1537#ifndef _WIN32
1538 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev);
1540#endif
1541
1542 loop_destroy (EV_A);
1543}
1544
1545void
1546ev_default_fork (void)
1547{
1548#if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr;
1550#endif
1551
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */ 2059 postfork = 1; /* must be in line with ev_default_fork */
1554} 2060}
1555 2061
1556/*****************************************************************************/ 2062/*****************************************************************************/
1557 2063
1558void 2064void
1559ev_invoke (EV_P_ void *w, int revents) 2065ev_invoke (EV_P_ void *w, int revents)
1560{ 2066{
1561 EV_CB_INVOKE ((W)w, revents); 2067 EV_CB_INVOKE ((W)w, revents);
1562} 2068}
1563 2069
1564void inline_speed 2070unsigned int
1565call_pending (EV_P) 2071ev_pending_count (EV_P)
2072{
2073 int pri;
2074 unsigned int count = 0;
2075
2076 for (pri = NUMPRI; pri--; )
2077 count += pendingcnt [pri];
2078
2079 return count;
2080}
2081
2082void noinline
2083ev_invoke_pending (EV_P)
1566{ 2084{
1567 int pri; 2085 int pri;
1568 2086
1569 for (pri = NUMPRI; pri--; ) 2087 for (pri = NUMPRI; pri--; )
1570 while (pendingcnt [pri]) 2088 while (pendingcnt [pri])
1571 { 2089 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2090 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573 2091
1574 if (expect_true (p->w))
1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2092 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2093 /* ^ this is no longer true, as pending_w could be here */
1577 2094
1578 p->w->pending = 0; 2095 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events); 2096 EV_CB_INVOKE (p->w, p->events);
1580 } 2097 EV_FREQUENT_CHECK;
1581 } 2098 }
1582} 2099}
1583 2100
1584#if EV_IDLE_ENABLE 2101#if EV_IDLE_ENABLE
1585void inline_size 2102/* make idle watchers pending. this handles the "call-idle */
2103/* only when higher priorities are idle" logic */
2104inline_size void
1586idle_reify (EV_P) 2105idle_reify (EV_P)
1587{ 2106{
1588 if (expect_false (idleall)) 2107 if (expect_false (idleall))
1589 { 2108 {
1590 int pri; 2109 int pri;
1602 } 2121 }
1603 } 2122 }
1604} 2123}
1605#endif 2124#endif
1606 2125
1607void inline_size 2126/* make timers pending */
2127inline_size void
1608timers_reify (EV_P) 2128timers_reify (EV_P)
1609{ 2129{
2130 EV_FREQUENT_CHECK;
2131
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2132 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 { 2133 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2134 do
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 { 2135 {
2136 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2137
2138 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2139
2140 /* first reschedule or stop timer */
2141 if (w->repeat)
2142 {
1619 ev_at (w) += w->repeat; 2143 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now) 2144 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now; 2145 ev_at (w) = mn_now;
1622 2146
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2147 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624 2148
1625 ANHE_at_set (timers [HEAP0]); 2149 ANHE_at_cache (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0); 2150 downheap (timers, timercnt, HEAP0);
2151 }
2152 else
2153 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2154
2155 EV_FREQUENT_CHECK;
2156 feed_reverse (EV_A_ (W)w);
1627 } 2157 }
1628 else 2158 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630 2159
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2160 feed_reverse_done (EV_A_ EV_TIMER);
1632 } 2161 }
1633} 2162}
1634 2163
1635#if EV_PERIODIC_ENABLE 2164#if EV_PERIODIC_ENABLE
1636void inline_size 2165/* make periodics pending */
2166inline_size void
1637periodics_reify (EV_P) 2167periodics_reify (EV_P)
1638{ 2168{
2169 EV_FREQUENT_CHECK;
2170
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2171 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 { 2172 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2173 int feed_count = 0;
1642 2174
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2175 do
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 { 2176 {
2177 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2178
2179 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2180
2181 /* first reschedule or stop timer */
2182 if (w->reschedule_cb)
2183 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2184 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649 2185
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2186 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651 2187
1652 ANHE_at_set (periodics [HEAP0]); 2188 ANHE_at_cache (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0); 2189 downheap (periodics, periodiccnt, HEAP0);
2190 }
2191 else if (w->interval)
2192 {
2193 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2194 /* if next trigger time is not sufficiently in the future, put it there */
2195 /* this might happen because of floating point inexactness */
2196 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2197 {
2198 ev_at (w) += w->interval;
2199
2200 /* if interval is unreasonably low we might still have a time in the past */
2201 /* so correct this. this will make the periodic very inexact, but the user */
2202 /* has effectively asked to get triggered more often than possible */
2203 if (ev_at (w) < ev_rt_now)
2204 ev_at (w) = ev_rt_now;
2205 }
2206
2207 ANHE_at_cache (periodics [HEAP0]);
2208 downheap (periodics, periodiccnt, HEAP0);
2209 }
2210 else
2211 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2212
2213 EV_FREQUENT_CHECK;
2214 feed_reverse (EV_A_ (W)w);
1654 } 2215 }
1655 else if (w->interval) 2216 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663 2217
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2218 feed_reverse_done (EV_A_ EV_PERIODIC);
1678 } 2219 }
1679} 2220}
1680 2221
2222/* simply recalculate all periodics */
2223/* TODO: maybe ensure that at least one event happens when jumping forward? */
1681static void noinline 2224static void noinline
1682periodics_reschedule (EV_P) 2225periodics_reschedule (EV_P)
1683{ 2226{
1684 int i; 2227 int i;
1685 2228
1691 if (w->reschedule_cb) 2234 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2235 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 2236 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2237 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 2238
1696 ANHE_at_set (periodics [i]); 2239 ANHE_at_cache (periodics [i]);
1697 } 2240 }
1698 2241
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2242 reheap (periodics, periodiccnt);
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2243}
2244#endif
2245
2246/* adjust all timers by a given offset */
2247static void noinline
2248timers_reschedule (EV_P_ ev_tstamp adjust)
2249{
2250 int i;
2251
1701 for (i = 0; i < periodiccnt; ++i) 2252 for (i = 0; i < timercnt; ++i)
1702 upheap (periodics, i + HEAP0); 2253 {
2254 ANHE *he = timers + i + HEAP0;
2255 ANHE_w (*he)->at += adjust;
2256 ANHE_at_cache (*he);
2257 }
1703} 2258}
1704#endif
1705 2259
1706void inline_speed 2260/* fetch new monotonic and realtime times from the kernel */
2261/* also detect if there was a timejump, and act accordingly */
2262inline_speed void
1707time_update (EV_P_ ev_tstamp max_block) 2263time_update (EV_P_ ev_tstamp max_block)
1708{ 2264{
1709 int i;
1710
1711#if EV_USE_MONOTONIC 2265#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic)) 2266 if (expect_true (have_monotonic))
1713 { 2267 {
2268 int i;
1714 ev_tstamp odiff = rtmn_diff; 2269 ev_tstamp odiff = rtmn_diff;
1715 2270
1716 mn_now = get_clock (); 2271 mn_now = get_clock ();
1717 2272
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2273 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1744 ev_rt_now = ev_time (); 2299 ev_rt_now = ev_time ();
1745 mn_now = get_clock (); 2300 mn_now = get_clock ();
1746 now_floor = mn_now; 2301 now_floor = mn_now;
1747 } 2302 }
1748 2303
2304 /* no timer adjustment, as the monotonic clock doesn't jump */
2305 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1749# if EV_PERIODIC_ENABLE 2306# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2307 periodics_reschedule (EV_A);
1751# endif 2308# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 } 2309 }
1755 else 2310 else
1756#endif 2311#endif
1757 { 2312 {
1758 ev_rt_now = ev_time (); 2313 ev_rt_now = ev_time ();
1759 2314
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2315 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 { 2316 {
2317 /* adjust timers. this is easy, as the offset is the same for all of them */
2318 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1762#if EV_PERIODIC_ENABLE 2319#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A); 2320 periodics_reschedule (EV_A);
1764#endif 2321#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 } 2322 }
1773 2323
1774 mn_now = ev_rt_now; 2324 mn_now = ev_rt_now;
1775 } 2325 }
1776} 2326}
1777 2327
1778void 2328void
1779ev_ref (EV_P)
1780{
1781 ++activecnt;
1782}
1783
1784void
1785ev_unref (EV_P)
1786{
1787 --activecnt;
1788}
1789
1790static int loop_done;
1791
1792void
1793ev_loop (EV_P_ int flags) 2329ev_run (EV_P_ int flags)
1794{ 2330{
2331#if EV_FEATURE_API
2332 ++loop_depth;
2333#endif
2334
2335 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2336
1795 loop_done = EVUNLOOP_CANCEL; 2337 loop_done = EVBREAK_CANCEL;
1796 2338
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2339 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1798 2340
1799 do 2341 do
1800 { 2342 {
2343#if EV_VERIFY >= 2
2344 ev_verify (EV_A);
2345#endif
2346
1801#ifndef _WIN32 2347#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */ 2348 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid)) 2349 if (expect_false (getpid () != curpid))
1804 { 2350 {
1805 curpid = getpid (); 2351 curpid = getpid ();
1811 /* we might have forked, so queue fork handlers */ 2357 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork)) 2358 if (expect_false (postfork))
1813 if (forkcnt) 2359 if (forkcnt)
1814 { 2360 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2361 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A); 2362 EV_INVOKE_PENDING;
1817 } 2363 }
1818#endif 2364#endif
1819 2365
2366#if EV_PREPARE_ENABLE
1820 /* queue prepare watchers (and execute them) */ 2367 /* queue prepare watchers (and execute them) */
1821 if (expect_false (preparecnt)) 2368 if (expect_false (preparecnt))
1822 { 2369 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2370 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A); 2371 EV_INVOKE_PENDING;
1825 } 2372 }
2373#endif
1826 2374
1827 if (expect_false (!activecnt)) 2375 if (expect_false (loop_done))
1828 break; 2376 break;
1829 2377
1830 /* we might have forked, so reify kernel state if necessary */ 2378 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork)) 2379 if (expect_false (postfork))
1832 loop_fork (EV_A); 2380 loop_fork (EV_A);
1837 /* calculate blocking time */ 2385 /* calculate blocking time */
1838 { 2386 {
1839 ev_tstamp waittime = 0.; 2387 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.; 2388 ev_tstamp sleeptime = 0.;
1841 2389
2390 /* remember old timestamp for io_blocktime calculation */
2391 ev_tstamp prev_mn_now = mn_now;
2392
2393 /* update time to cancel out callback processing overhead */
2394 time_update (EV_A_ 1e100);
2395
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2396 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1843 { 2397 {
1844 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100);
1846
1847 waittime = MAX_BLOCKTIME; 2398 waittime = MAX_BLOCKTIME;
1848 2399
1849 if (timercnt) 2400 if (timercnt)
1850 { 2401 {
1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2402 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2409 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1859 if (waittime > to) waittime = to; 2410 if (waittime > to) waittime = to;
1860 } 2411 }
1861#endif 2412#endif
1862 2413
2414 /* don't let timeouts decrease the waittime below timeout_blocktime */
1863 if (expect_false (waittime < timeout_blocktime)) 2415 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime; 2416 waittime = timeout_blocktime;
1865 2417
1866 sleeptime = waittime - backend_fudge; 2418 /* extra check because io_blocktime is commonly 0 */
1867
1868 if (expect_true (sleeptime > io_blocktime)) 2419 if (expect_false (io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 { 2420 {
2421 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2422
2423 if (sleeptime > waittime - backend_fudge)
2424 sleeptime = waittime - backend_fudge;
2425
2426 if (expect_true (sleeptime > 0.))
2427 {
1873 ev_sleep (sleeptime); 2428 ev_sleep (sleeptime);
1874 waittime -= sleeptime; 2429 waittime -= sleeptime;
2430 }
1875 } 2431 }
1876 } 2432 }
1877 2433
2434#if EV_FEATURE_API
1878 ++loop_count; 2435 ++loop_count;
2436#endif
2437 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1879 backend_poll (EV_A_ waittime); 2438 backend_poll (EV_A_ waittime);
2439 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1880 2440
1881 /* update ev_rt_now, do magic */ 2441 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime); 2442 time_update (EV_A_ waittime + sleeptime);
1883 } 2443 }
1884 2444
1891#if EV_IDLE_ENABLE 2451#if EV_IDLE_ENABLE
1892 /* queue idle watchers unless other events are pending */ 2452 /* queue idle watchers unless other events are pending */
1893 idle_reify (EV_A); 2453 idle_reify (EV_A);
1894#endif 2454#endif
1895 2455
2456#if EV_CHECK_ENABLE
1896 /* queue check watchers, to be executed first */ 2457 /* queue check watchers, to be executed first */
1897 if (expect_false (checkcnt)) 2458 if (expect_false (checkcnt))
1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2459 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2460#endif
1899 2461
1900 call_pending (EV_A); 2462 EV_INVOKE_PENDING;
1901 } 2463 }
1902 while (expect_true ( 2464 while (expect_true (
1903 activecnt 2465 activecnt
1904 && !loop_done 2466 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2467 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1906 )); 2468 ));
1907 2469
1908 if (loop_done == EVUNLOOP_ONE) 2470 if (loop_done == EVBREAK_ONE)
1909 loop_done = EVUNLOOP_CANCEL; 2471 loop_done = EVBREAK_CANCEL;
1910}
1911 2472
2473#if EV_FEATURE_API
2474 --loop_depth;
2475#endif
2476}
2477
1912void 2478void
1913ev_unloop (EV_P_ int how) 2479ev_break (EV_P_ int how)
1914{ 2480{
1915 loop_done = how; 2481 loop_done = how;
1916} 2482}
1917 2483
2484void
2485ev_ref (EV_P)
2486{
2487 ++activecnt;
2488}
2489
2490void
2491ev_unref (EV_P)
2492{
2493 --activecnt;
2494}
2495
2496void
2497ev_now_update (EV_P)
2498{
2499 time_update (EV_A_ 1e100);
2500}
2501
2502void
2503ev_suspend (EV_P)
2504{
2505 ev_now_update (EV_A);
2506}
2507
2508void
2509ev_resume (EV_P)
2510{
2511 ev_tstamp mn_prev = mn_now;
2512
2513 ev_now_update (EV_A);
2514 timers_reschedule (EV_A_ mn_now - mn_prev);
2515#if EV_PERIODIC_ENABLE
2516 /* TODO: really do this? */
2517 periodics_reschedule (EV_A);
2518#endif
2519}
2520
1918/*****************************************************************************/ 2521/*****************************************************************************/
2522/* singly-linked list management, used when the expected list length is short */
1919 2523
1920void inline_size 2524inline_size void
1921wlist_add (WL *head, WL elem) 2525wlist_add (WL *head, WL elem)
1922{ 2526{
1923 elem->next = *head; 2527 elem->next = *head;
1924 *head = elem; 2528 *head = elem;
1925} 2529}
1926 2530
1927void inline_size 2531inline_size void
1928wlist_del (WL *head, WL elem) 2532wlist_del (WL *head, WL elem)
1929{ 2533{
1930 while (*head) 2534 while (*head)
1931 { 2535 {
1932 if (*head == elem) 2536 if (expect_true (*head == elem))
1933 { 2537 {
1934 *head = elem->next; 2538 *head = elem->next;
1935 return; 2539 break;
1936 } 2540 }
1937 2541
1938 head = &(*head)->next; 2542 head = &(*head)->next;
1939 } 2543 }
1940} 2544}
1941 2545
1942void inline_speed 2546/* internal, faster, version of ev_clear_pending */
2547inline_speed void
1943clear_pending (EV_P_ W w) 2548clear_pending (EV_P_ W w)
1944{ 2549{
1945 if (w->pending) 2550 if (w->pending)
1946 { 2551 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2552 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1948 w->pending = 0; 2553 w->pending = 0;
1949 } 2554 }
1950} 2555}
1951 2556
1952int 2557int
1956 int pending = w_->pending; 2561 int pending = w_->pending;
1957 2562
1958 if (expect_true (pending)) 2563 if (expect_true (pending))
1959 { 2564 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2565 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2566 p->w = (W)&pending_w;
1961 w_->pending = 0; 2567 w_->pending = 0;
1962 p->w = 0;
1963 return p->events; 2568 return p->events;
1964 } 2569 }
1965 else 2570 else
1966 return 0; 2571 return 0;
1967} 2572}
1968 2573
1969void inline_size 2574inline_size void
1970pri_adjust (EV_P_ W w) 2575pri_adjust (EV_P_ W w)
1971{ 2576{
1972 int pri = w->priority; 2577 int pri = ev_priority (w);
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2578 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2579 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri; 2580 ev_set_priority (w, pri);
1976} 2581}
1977 2582
1978void inline_speed 2583inline_speed void
1979ev_start (EV_P_ W w, int active) 2584ev_start (EV_P_ W w, int active)
1980{ 2585{
1981 pri_adjust (EV_A_ w); 2586 pri_adjust (EV_A_ w);
1982 w->active = active; 2587 w->active = active;
1983 ev_ref (EV_A); 2588 ev_ref (EV_A);
1984} 2589}
1985 2590
1986void inline_size 2591inline_size void
1987ev_stop (EV_P_ W w) 2592ev_stop (EV_P_ W w)
1988{ 2593{
1989 ev_unref (EV_A); 2594 ev_unref (EV_A);
1990 w->active = 0; 2595 w->active = 0;
1991} 2596}
1998 int fd = w->fd; 2603 int fd = w->fd;
1999 2604
2000 if (expect_false (ev_is_active (w))) 2605 if (expect_false (ev_is_active (w)))
2001 return; 2606 return;
2002 2607
2003 assert (("ev_io_start called with negative fd", fd >= 0)); 2608 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2609 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2610
2611 EV_FREQUENT_CHECK;
2004 2612
2005 ev_start (EV_A_ (W)w, 1); 2613 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2614 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2007 wlist_add (&anfds[fd].head, (WL)w); 2615 wlist_add (&anfds[fd].head, (WL)w);
2008 2616
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2617 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2010 w->events &= ~EV_IOFDSET; 2618 w->events &= ~EV__IOFDSET;
2619
2620 EV_FREQUENT_CHECK;
2011} 2621}
2012 2622
2013void noinline 2623void noinline
2014ev_io_stop (EV_P_ ev_io *w) 2624ev_io_stop (EV_P_ ev_io *w)
2015{ 2625{
2016 clear_pending (EV_A_ (W)w); 2626 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w))) 2627 if (expect_false (!ev_is_active (w)))
2018 return; 2628 return;
2019 2629
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2630 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2631
2632 EV_FREQUENT_CHECK;
2021 2633
2022 wlist_del (&anfds[w->fd].head, (WL)w); 2634 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w); 2635 ev_stop (EV_A_ (W)w);
2024 2636
2025 fd_change (EV_A_ w->fd, 1); 2637 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2638
2639 EV_FREQUENT_CHECK;
2026} 2640}
2027 2641
2028void noinline 2642void noinline
2029ev_timer_start (EV_P_ ev_timer *w) 2643ev_timer_start (EV_P_ ev_timer *w)
2030{ 2644{
2031 if (expect_false (ev_is_active (w))) 2645 if (expect_false (ev_is_active (w)))
2032 return; 2646 return;
2033 2647
2034 ev_at (w) += mn_now; 2648 ev_at (w) += mn_now;
2035 2649
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2650 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037 2651
2652 EV_FREQUENT_CHECK;
2653
2654 ++timercnt;
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2655 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2656 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w; 2657 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]); 2658 ANHE_at_cache (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w)); 2659 upheap (timers, ev_active (w));
2043 2660
2661 EV_FREQUENT_CHECK;
2662
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2663 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045} 2664}
2046 2665
2047void noinline 2666void noinline
2048ev_timer_stop (EV_P_ ev_timer *w) 2667ev_timer_stop (EV_P_ ev_timer *w)
2049{ 2668{
2050 clear_pending (EV_A_ (W)w); 2669 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 2670 if (expect_false (!ev_is_active (w)))
2052 return; 2671 return;
2053 2672
2673 EV_FREQUENT_CHECK;
2674
2054 { 2675 {
2055 int active = ev_active (w); 2676 int active = ev_active (w);
2056 2677
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2678 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058 2679
2680 --timercnt;
2681
2059 if (expect_true (active < timercnt + HEAP0 - 1)) 2682 if (expect_true (active < timercnt + HEAP0))
2060 { 2683 {
2061 timers [active] = timers [timercnt + HEAP0 - 1]; 2684 timers [active] = timers [timercnt + HEAP0];
2062 adjustheap (timers, timercnt, active); 2685 adjustheap (timers, timercnt, active);
2063 } 2686 }
2064
2065 --timercnt;
2066 } 2687 }
2067 2688
2068 ev_at (w) -= mn_now; 2689 ev_at (w) -= mn_now;
2069 2690
2070 ev_stop (EV_A_ (W)w); 2691 ev_stop (EV_A_ (W)w);
2692
2693 EV_FREQUENT_CHECK;
2071} 2694}
2072 2695
2073void noinline 2696void noinline
2074ev_timer_again (EV_P_ ev_timer *w) 2697ev_timer_again (EV_P_ ev_timer *w)
2075{ 2698{
2699 EV_FREQUENT_CHECK;
2700
2076 if (ev_is_active (w)) 2701 if (ev_is_active (w))
2077 { 2702 {
2078 if (w->repeat) 2703 if (w->repeat)
2079 { 2704 {
2080 ev_at (w) = mn_now + w->repeat; 2705 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]); 2706 ANHE_at_cache (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w)); 2707 adjustheap (timers, timercnt, ev_active (w));
2083 } 2708 }
2084 else 2709 else
2085 ev_timer_stop (EV_A_ w); 2710 ev_timer_stop (EV_A_ w);
2086 } 2711 }
2087 else if (w->repeat) 2712 else if (w->repeat)
2088 { 2713 {
2089 ev_at (w) = w->repeat; 2714 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w); 2715 ev_timer_start (EV_A_ w);
2091 } 2716 }
2717
2718 EV_FREQUENT_CHECK;
2719}
2720
2721ev_tstamp
2722ev_timer_remaining (EV_P_ ev_timer *w)
2723{
2724 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2092} 2725}
2093 2726
2094#if EV_PERIODIC_ENABLE 2727#if EV_PERIODIC_ENABLE
2095void noinline 2728void noinline
2096ev_periodic_start (EV_P_ ev_periodic *w) 2729ev_periodic_start (EV_P_ ev_periodic *w)
2100 2733
2101 if (w->reschedule_cb) 2734 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2735 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval) 2736 else if (w->interval)
2104 { 2737 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2738 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */ 2739 /* this formula differs from the one in periodic_reify because we do not always round up */
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2740 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 } 2741 }
2109 else 2742 else
2110 ev_at (w) = w->offset; 2743 ev_at (w) = w->offset;
2111 2744
2745 EV_FREQUENT_CHECK;
2746
2747 ++periodiccnt;
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2748 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2749 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2750 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]); 2751 ANHE_at_cache (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w)); 2752 upheap (periodics, ev_active (w));
2117 2753
2754 EV_FREQUENT_CHECK;
2755
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2756 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119} 2757}
2120 2758
2121void noinline 2759void noinline
2122ev_periodic_stop (EV_P_ ev_periodic *w) 2760ev_periodic_stop (EV_P_ ev_periodic *w)
2123{ 2761{
2124 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2126 return; 2764 return;
2127 2765
2766 EV_FREQUENT_CHECK;
2767
2128 { 2768 {
2129 int active = ev_active (w); 2769 int active = ev_active (w);
2130 2770
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2771 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132 2772
2773 --periodiccnt;
2774
2133 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2775 if (expect_true (active < periodiccnt + HEAP0))
2134 { 2776 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2777 periodics [active] = periodics [periodiccnt + HEAP0];
2136 adjustheap (periodics, periodiccnt, active); 2778 adjustheap (periodics, periodiccnt, active);
2137 } 2779 }
2138
2139 --periodiccnt;
2140 } 2780 }
2141 2781
2142 ev_stop (EV_A_ (W)w); 2782 ev_stop (EV_A_ (W)w);
2783
2784 EV_FREQUENT_CHECK;
2143} 2785}
2144 2786
2145void noinline 2787void noinline
2146ev_periodic_again (EV_P_ ev_periodic *w) 2788ev_periodic_again (EV_P_ ev_periodic *w)
2147{ 2789{
2153 2795
2154#ifndef SA_RESTART 2796#ifndef SA_RESTART
2155# define SA_RESTART 0 2797# define SA_RESTART 0
2156#endif 2798#endif
2157 2799
2800#if EV_SIGNAL_ENABLE
2801
2158void noinline 2802void noinline
2159ev_signal_start (EV_P_ ev_signal *w) 2803ev_signal_start (EV_P_ ev_signal *w)
2160{ 2804{
2161#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif
2164 if (expect_false (ev_is_active (w))) 2805 if (expect_false (ev_is_active (w)))
2165 return; 2806 return;
2166 2807
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2808 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2168 2809
2169 evpipe_init (EV_A); 2810#if EV_MULTIPLICITY
2811 assert (("libev: a signal must not be attached to two different loops",
2812 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2170 2813
2814 signals [w->signum - 1].loop = EV_A;
2815#endif
2816
2817 EV_FREQUENT_CHECK;
2818
2819#if EV_USE_SIGNALFD
2820 if (sigfd == -2)
2171 { 2821 {
2172#ifndef _WIN32 2822 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2173 sigset_t full, prev; 2823 if (sigfd < 0 && errno == EINVAL)
2174 sigfillset (&full); 2824 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177 2825
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2826 if (sigfd >= 0)
2827 {
2828 fd_intern (sigfd); /* doing it twice will not hurt */
2179 2829
2180#ifndef _WIN32 2830 sigemptyset (&sigfd_set);
2181 sigprocmask (SIG_SETMASK, &prev, 0); 2831
2182#endif 2832 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2833 ev_set_priority (&sigfd_w, EV_MAXPRI);
2834 ev_io_start (EV_A_ &sigfd_w);
2835 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2836 }
2183 } 2837 }
2838
2839 if (sigfd >= 0)
2840 {
2841 /* TODO: check .head */
2842 sigaddset (&sigfd_set, w->signum);
2843 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2844
2845 signalfd (sigfd, &sigfd_set, 0);
2846 }
2847#endif
2184 2848
2185 ev_start (EV_A_ (W)w, 1); 2849 ev_start (EV_A_ (W)w, 1);
2186 wlist_add (&signals [w->signum - 1].head, (WL)w); 2850 wlist_add (&signals [w->signum - 1].head, (WL)w);
2187 2851
2188 if (!((WL)w)->next) 2852 if (!((WL)w)->next)
2853# if EV_USE_SIGNALFD
2854 if (sigfd < 0) /*TODO*/
2855# endif
2189 { 2856 {
2190#if _WIN32 2857# ifdef _WIN32
2858 evpipe_init (EV_A);
2859
2191 signal (w->signum, ev_sighandler); 2860 signal (w->signum, ev_sighandler);
2192#else 2861# else
2193 struct sigaction sa; 2862 struct sigaction sa;
2863
2864 evpipe_init (EV_A);
2865
2194 sa.sa_handler = ev_sighandler; 2866 sa.sa_handler = ev_sighandler;
2195 sigfillset (&sa.sa_mask); 2867 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0); 2869 sigaction (w->signum, &sa, 0);
2870
2871 sigemptyset (&sa.sa_mask);
2872 sigaddset (&sa.sa_mask, w->signum);
2873 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2198#endif 2874#endif
2199 } 2875 }
2876
2877 EV_FREQUENT_CHECK;
2200} 2878}
2201 2879
2202void noinline 2880void noinline
2203ev_signal_stop (EV_P_ ev_signal *w) 2881ev_signal_stop (EV_P_ ev_signal *w)
2204{ 2882{
2205 clear_pending (EV_A_ (W)w); 2883 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2884 if (expect_false (!ev_is_active (w)))
2207 return; 2885 return;
2208 2886
2887 EV_FREQUENT_CHECK;
2888
2209 wlist_del (&signals [w->signum - 1].head, (WL)w); 2889 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w); 2890 ev_stop (EV_A_ (W)w);
2211 2891
2212 if (!signals [w->signum - 1].head) 2892 if (!signals [w->signum - 1].head)
2893 {
2894#if EV_MULTIPLICITY
2895 signals [w->signum - 1].loop = 0; /* unattach from signal */
2896#endif
2897#if EV_USE_SIGNALFD
2898 if (sigfd >= 0)
2899 {
2900 sigset_t ss;
2901
2902 sigemptyset (&ss);
2903 sigaddset (&ss, w->signum);
2904 sigdelset (&sigfd_set, w->signum);
2905
2906 signalfd (sigfd, &sigfd_set, 0);
2907 sigprocmask (SIG_UNBLOCK, &ss, 0);
2908 }
2909 else
2910#endif
2213 signal (w->signum, SIG_DFL); 2911 signal (w->signum, SIG_DFL);
2912 }
2913
2914 EV_FREQUENT_CHECK;
2214} 2915}
2916
2917#endif
2918
2919#if EV_CHILD_ENABLE
2215 2920
2216void 2921void
2217ev_child_start (EV_P_ ev_child *w) 2922ev_child_start (EV_P_ ev_child *w)
2218{ 2923{
2219#if EV_MULTIPLICITY 2924#if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2925 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221#endif 2926#endif
2222 if (expect_false (ev_is_active (w))) 2927 if (expect_false (ev_is_active (w)))
2223 return; 2928 return;
2224 2929
2930 EV_FREQUENT_CHECK;
2931
2225 ev_start (EV_A_ (W)w, 1); 2932 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2933 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2934
2935 EV_FREQUENT_CHECK;
2227} 2936}
2228 2937
2229void 2938void
2230ev_child_stop (EV_P_ ev_child *w) 2939ev_child_stop (EV_P_ ev_child *w)
2231{ 2940{
2232 clear_pending (EV_A_ (W)w); 2941 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w))) 2942 if (expect_false (!ev_is_active (w)))
2234 return; 2943 return;
2235 2944
2945 EV_FREQUENT_CHECK;
2946
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2947 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2238} 2951}
2952
2953#endif
2239 2954
2240#if EV_STAT_ENABLE 2955#if EV_STAT_ENABLE
2241 2956
2242# ifdef _WIN32 2957# ifdef _WIN32
2243# undef lstat 2958# undef lstat
2244# define lstat(a,b) _stati64 (a,b) 2959# define lstat(a,b) _stati64 (a,b)
2245# endif 2960# endif
2246 2961
2247#define DEF_STAT_INTERVAL 5.0074891 2962#define DEF_STAT_INTERVAL 5.0074891
2963#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2248#define MIN_STAT_INTERVAL 0.1074891 2964#define MIN_STAT_INTERVAL 0.1074891
2249 2965
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2966static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251 2967
2252#if EV_USE_INOTIFY 2968#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192 2969
2970/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2971# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2254 2972
2255static void noinline 2973static void noinline
2256infy_add (EV_P_ ev_stat *w) 2974infy_add (EV_P_ ev_stat *w)
2257{ 2975{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2976 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259 2977
2260 if (w->wd < 0) 2978 if (w->wd >= 0)
2979 {
2980 struct statfs sfs;
2981
2982 /* now local changes will be tracked by inotify, but remote changes won't */
2983 /* unless the filesystem is known to be local, we therefore still poll */
2984 /* also do poll on <2.6.25, but with normal frequency */
2985
2986 if (!fs_2625)
2987 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2988 else if (!statfs (w->path, &sfs)
2989 && (sfs.f_type == 0x1373 /* devfs */
2990 || sfs.f_type == 0xEF53 /* ext2/3 */
2991 || sfs.f_type == 0x3153464a /* jfs */
2992 || sfs.f_type == 0x52654973 /* reiser3 */
2993 || sfs.f_type == 0x01021994 /* tempfs */
2994 || sfs.f_type == 0x58465342 /* xfs */))
2995 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2996 else
2997 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2261 { 2998 }
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2999 else
3000 {
3001 /* can't use inotify, continue to stat */
3002 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2263 3003
2264 /* monitor some parent directory for speedup hints */ 3004 /* if path is not there, monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3005 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2266 /* but an efficiency issue only */ 3006 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 { 3008 {
2269 char path [4096]; 3009 char path [4096];
2270 strcpy (path, w->path); 3010 strcpy (path, w->path);
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3014 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3015 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276 3016
2277 char *pend = strrchr (path, '/'); 3017 char *pend = strrchr (path, '/');
2278 3018
2279 if (!pend) 3019 if (!pend || pend == path)
2280 break; /* whoops, no '/', complain to your admin */ 3020 break;
2281 3021
2282 *pend = 0; 3022 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask); 3023 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 } 3024 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3025 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 } 3026 }
2287 } 3027 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290 3028
2291 if (w->wd >= 0) 3029 if (w->wd >= 0)
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3030 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3031
3032 /* now re-arm timer, if required */
3033 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3034 ev_timer_again (EV_A_ &w->timer);
3035 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2293} 3036}
2294 3037
2295static void noinline 3038static void noinline
2296infy_del (EV_P_ ev_stat *w) 3039infy_del (EV_P_ ev_stat *w)
2297{ 3040{
2300 3043
2301 if (wd < 0) 3044 if (wd < 0)
2302 return; 3045 return;
2303 3046
2304 w->wd = -2; 3047 w->wd = -2;
2305 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3048 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2306 wlist_del (&fs_hash [slot].head, (WL)w); 3049 wlist_del (&fs_hash [slot].head, (WL)w);
2307 3050
2308 /* remove this watcher, if others are watching it, they will rearm */ 3051 /* remove this watcher, if others are watching it, they will rearm */
2309 inotify_rm_watch (fs_fd, wd); 3052 inotify_rm_watch (fs_fd, wd);
2310} 3053}
2311 3054
2312static void noinline 3055static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3056infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{ 3057{
2315 if (slot < 0) 3058 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */ 3059 /* overflow, need to check for all hash slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3060 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2318 infy_wd (EV_A_ slot, wd, ev); 3061 infy_wd (EV_A_ slot, wd, ev);
2319 else 3062 else
2320 { 3063 {
2321 WL w_; 3064 WL w_;
2322 3065
2323 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3066 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2324 { 3067 {
2325 ev_stat *w = (ev_stat *)w_; 3068 ev_stat *w = (ev_stat *)w_;
2326 w_ = w_->next; /* lets us remove this watcher and all before it */ 3069 w_ = w_->next; /* lets us remove this watcher and all before it */
2327 3070
2328 if (w->wd == wd || wd == -1) 3071 if (w->wd == wd || wd == -1)
2329 { 3072 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3073 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 { 3074 {
3075 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2332 w->wd = -1; 3076 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 3077 infy_add (EV_A_ w); /* re-add, no matter what */
2334 } 3078 }
2335 3079
2336 stat_timer_cb (EV_A_ &w->timer, 0); 3080 stat_timer_cb (EV_A_ &w->timer, 0);
2341 3085
2342static void 3086static void
2343infy_cb (EV_P_ ev_io *w, int revents) 3087infy_cb (EV_P_ ev_io *w, int revents)
2344{ 3088{
2345 char buf [EV_INOTIFY_BUFSIZE]; 3089 char buf [EV_INOTIFY_BUFSIZE];
2346 struct inotify_event *ev = (struct inotify_event *)buf;
2347 int ofs; 3090 int ofs;
2348 int len = read (fs_fd, buf, sizeof (buf)); 3091 int len = read (fs_fd, buf, sizeof (buf));
2349 3092
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3093 for (ofs = 0; ofs < len; )
3094 {
3095 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3096 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3097 ofs += sizeof (struct inotify_event) + ev->len;
3098 }
2352} 3099}
2353 3100
2354void inline_size 3101inline_size void
3102ev_check_2625 (EV_P)
3103{
3104 /* kernels < 2.6.25 are borked
3105 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3106 */
3107 if (ev_linux_version () < 0x020619)
3108 return;
3109
3110 fs_2625 = 1;
3111}
3112
3113inline_size int
3114infy_newfd (void)
3115{
3116#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3117 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3118 if (fd >= 0)
3119 return fd;
3120#endif
3121 return inotify_init ();
3122}
3123
3124inline_size void
2355infy_init (EV_P) 3125infy_init (EV_P)
2356{ 3126{
2357 if (fs_fd != -2) 3127 if (fs_fd != -2)
2358 return; 3128 return;
2359 3129
3130 fs_fd = -1;
3131
3132 ev_check_2625 (EV_A);
3133
2360 fs_fd = inotify_init (); 3134 fs_fd = infy_newfd ();
2361 3135
2362 if (fs_fd >= 0) 3136 if (fs_fd >= 0)
2363 { 3137 {
3138 fd_intern (fs_fd);
2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3139 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2365 ev_set_priority (&fs_w, EV_MAXPRI); 3140 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w); 3141 ev_io_start (EV_A_ &fs_w);
3142 ev_unref (EV_A);
2367 } 3143 }
2368} 3144}
2369 3145
2370void inline_size 3146inline_size void
2371infy_fork (EV_P) 3147infy_fork (EV_P)
2372{ 3148{
2373 int slot; 3149 int slot;
2374 3150
2375 if (fs_fd < 0) 3151 if (fs_fd < 0)
2376 return; 3152 return;
2377 3153
3154 ev_ref (EV_A);
3155 ev_io_stop (EV_A_ &fs_w);
2378 close (fs_fd); 3156 close (fs_fd);
2379 fs_fd = inotify_init (); 3157 fs_fd = infy_newfd ();
2380 3158
3159 if (fs_fd >= 0)
3160 {
3161 fd_intern (fs_fd);
3162 ev_io_set (&fs_w, fs_fd, EV_READ);
3163 ev_io_start (EV_A_ &fs_w);
3164 ev_unref (EV_A);
3165 }
3166
2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3167 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2382 { 3168 {
2383 WL w_ = fs_hash [slot].head; 3169 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0; 3170 fs_hash [slot].head = 0;
2385 3171
2386 while (w_) 3172 while (w_)
2391 w->wd = -1; 3177 w->wd = -1;
2392 3178
2393 if (fs_fd >= 0) 3179 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */ 3180 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else 3181 else
3182 {
3183 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3184 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2396 ev_timer_start (EV_A_ &w->timer); 3185 ev_timer_again (EV_A_ &w->timer);
3186 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3187 }
2397 } 3188 }
2398
2399 } 3189 }
2400} 3190}
2401 3191
3192#endif
3193
3194#ifdef _WIN32
3195# define EV_LSTAT(p,b) _stati64 (p, b)
3196#else
3197# define EV_LSTAT(p,b) lstat (p, b)
2402#endif 3198#endif
2403 3199
2404void 3200void
2405ev_stat_stat (EV_P_ ev_stat *w) 3201ev_stat_stat (EV_P_ ev_stat *w)
2406{ 3202{
2413static void noinline 3209static void noinline
2414stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3210stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2415{ 3211{
2416 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3212 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2417 3213
2418 /* we copy this here each the time so that */ 3214 ev_statdata prev = w->attr;
2419 /* prev has the old value when the callback gets invoked */
2420 w->prev = w->attr;
2421 ev_stat_stat (EV_A_ w); 3215 ev_stat_stat (EV_A_ w);
2422 3216
2423 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3217 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2424 if ( 3218 if (
2425 w->prev.st_dev != w->attr.st_dev 3219 prev.st_dev != w->attr.st_dev
2426 || w->prev.st_ino != w->attr.st_ino 3220 || prev.st_ino != w->attr.st_ino
2427 || w->prev.st_mode != w->attr.st_mode 3221 || prev.st_mode != w->attr.st_mode
2428 || w->prev.st_nlink != w->attr.st_nlink 3222 || prev.st_nlink != w->attr.st_nlink
2429 || w->prev.st_uid != w->attr.st_uid 3223 || prev.st_uid != w->attr.st_uid
2430 || w->prev.st_gid != w->attr.st_gid 3224 || prev.st_gid != w->attr.st_gid
2431 || w->prev.st_rdev != w->attr.st_rdev 3225 || prev.st_rdev != w->attr.st_rdev
2432 || w->prev.st_size != w->attr.st_size 3226 || prev.st_size != w->attr.st_size
2433 || w->prev.st_atime != w->attr.st_atime 3227 || prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime 3228 || prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime 3229 || prev.st_ctime != w->attr.st_ctime
2436 ) { 3230 ) {
3231 /* we only update w->prev on actual differences */
3232 /* in case we test more often than invoke the callback, */
3233 /* to ensure that prev is always different to attr */
3234 w->prev = prev;
3235
2437 #if EV_USE_INOTIFY 3236 #if EV_USE_INOTIFY
3237 if (fs_fd >= 0)
3238 {
2438 infy_del (EV_A_ w); 3239 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w); 3240 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */ 3241 ev_stat_stat (EV_A_ w); /* avoid race... */
3242 }
2441 #endif 3243 #endif
2442 3244
2443 ev_feed_event (EV_A_ w, EV_STAT); 3245 ev_feed_event (EV_A_ w, EV_STAT);
2444 } 3246 }
2445} 3247}
2448ev_stat_start (EV_P_ ev_stat *w) 3250ev_stat_start (EV_P_ ev_stat *w)
2449{ 3251{
2450 if (expect_false (ev_is_active (w))) 3252 if (expect_false (ev_is_active (w)))
2451 return; 3253 return;
2452 3254
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w); 3255 ev_stat_stat (EV_A_ w);
2458 3256
3257 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2459 if (w->interval < MIN_STAT_INTERVAL) 3258 w->interval = MIN_STAT_INTERVAL;
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461 3259
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3260 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2463 ev_set_priority (&w->timer, ev_priority (w)); 3261 ev_set_priority (&w->timer, ev_priority (w));
2464 3262
2465#if EV_USE_INOTIFY 3263#if EV_USE_INOTIFY
2466 infy_init (EV_A); 3264 infy_init (EV_A);
2467 3265
2468 if (fs_fd >= 0) 3266 if (fs_fd >= 0)
2469 infy_add (EV_A_ w); 3267 infy_add (EV_A_ w);
2470 else 3268 else
2471#endif 3269#endif
3270 {
2472 ev_timer_start (EV_A_ &w->timer); 3271 ev_timer_again (EV_A_ &w->timer);
3272 ev_unref (EV_A);
3273 }
2473 3274
2474 ev_start (EV_A_ (W)w, 1); 3275 ev_start (EV_A_ (W)w, 1);
3276
3277 EV_FREQUENT_CHECK;
2475} 3278}
2476 3279
2477void 3280void
2478ev_stat_stop (EV_P_ ev_stat *w) 3281ev_stat_stop (EV_P_ ev_stat *w)
2479{ 3282{
2480 clear_pending (EV_A_ (W)w); 3283 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 3284 if (expect_false (!ev_is_active (w)))
2482 return; 3285 return;
2483 3286
3287 EV_FREQUENT_CHECK;
3288
2484#if EV_USE_INOTIFY 3289#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w); 3290 infy_del (EV_A_ w);
2486#endif 3291#endif
3292
3293 if (ev_is_active (&w->timer))
3294 {
3295 ev_ref (EV_A);
2487 ev_timer_stop (EV_A_ &w->timer); 3296 ev_timer_stop (EV_A_ &w->timer);
3297 }
2488 3298
2489 ev_stop (EV_A_ (W)w); 3299 ev_stop (EV_A_ (W)w);
3300
3301 EV_FREQUENT_CHECK;
2490} 3302}
2491#endif 3303#endif
2492 3304
2493#if EV_IDLE_ENABLE 3305#if EV_IDLE_ENABLE
2494void 3306void
2496{ 3308{
2497 if (expect_false (ev_is_active (w))) 3309 if (expect_false (ev_is_active (w)))
2498 return; 3310 return;
2499 3311
2500 pri_adjust (EV_A_ (W)w); 3312 pri_adjust (EV_A_ (W)w);
3313
3314 EV_FREQUENT_CHECK;
2501 3315
2502 { 3316 {
2503 int active = ++idlecnt [ABSPRI (w)]; 3317 int active = ++idlecnt [ABSPRI (w)];
2504 3318
2505 ++idleall; 3319 ++idleall;
2506 ev_start (EV_A_ (W)w, active); 3320 ev_start (EV_A_ (W)w, active);
2507 3321
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3322 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w; 3323 idles [ABSPRI (w)][active - 1] = w;
2510 } 3324 }
3325
3326 EV_FREQUENT_CHECK;
2511} 3327}
2512 3328
2513void 3329void
2514ev_idle_stop (EV_P_ ev_idle *w) 3330ev_idle_stop (EV_P_ ev_idle *w)
2515{ 3331{
2516 clear_pending (EV_A_ (W)w); 3332 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w))) 3333 if (expect_false (!ev_is_active (w)))
2518 return; 3334 return;
2519 3335
3336 EV_FREQUENT_CHECK;
3337
2520 { 3338 {
2521 int active = ev_active (w); 3339 int active = ev_active (w);
2522 3340
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3342 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525 3343
2526 ev_stop (EV_A_ (W)w); 3344 ev_stop (EV_A_ (W)w);
2527 --idleall; 3345 --idleall;
2528 } 3346 }
2529}
2530#endif
2531 3347
3348 EV_FREQUENT_CHECK;
3349}
3350#endif
3351
3352#if EV_PREPARE_ENABLE
2532void 3353void
2533ev_prepare_start (EV_P_ ev_prepare *w) 3354ev_prepare_start (EV_P_ ev_prepare *w)
2534{ 3355{
2535 if (expect_false (ev_is_active (w))) 3356 if (expect_false (ev_is_active (w)))
2536 return; 3357 return;
3358
3359 EV_FREQUENT_CHECK;
2537 3360
2538 ev_start (EV_A_ (W)w, ++preparecnt); 3361 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3362 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w; 3363 prepares [preparecnt - 1] = w;
3364
3365 EV_FREQUENT_CHECK;
2541} 3366}
2542 3367
2543void 3368void
2544ev_prepare_stop (EV_P_ ev_prepare *w) 3369ev_prepare_stop (EV_P_ ev_prepare *w)
2545{ 3370{
2546 clear_pending (EV_A_ (W)w); 3371 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 3372 if (expect_false (!ev_is_active (w)))
2548 return; 3373 return;
2549 3374
3375 EV_FREQUENT_CHECK;
3376
2550 { 3377 {
2551 int active = ev_active (w); 3378 int active = ev_active (w);
2552 3379
2553 prepares [active - 1] = prepares [--preparecnt]; 3380 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active; 3381 ev_active (prepares [active - 1]) = active;
2555 } 3382 }
2556 3383
2557 ev_stop (EV_A_ (W)w); 3384 ev_stop (EV_A_ (W)w);
2558}
2559 3385
3386 EV_FREQUENT_CHECK;
3387}
3388#endif
3389
3390#if EV_CHECK_ENABLE
2560void 3391void
2561ev_check_start (EV_P_ ev_check *w) 3392ev_check_start (EV_P_ ev_check *w)
2562{ 3393{
2563 if (expect_false (ev_is_active (w))) 3394 if (expect_false (ev_is_active (w)))
2564 return; 3395 return;
3396
3397 EV_FREQUENT_CHECK;
2565 3398
2566 ev_start (EV_A_ (W)w, ++checkcnt); 3399 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3400 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w; 3401 checks [checkcnt - 1] = w;
3402
3403 EV_FREQUENT_CHECK;
2569} 3404}
2570 3405
2571void 3406void
2572ev_check_stop (EV_P_ ev_check *w) 3407ev_check_stop (EV_P_ ev_check *w)
2573{ 3408{
2574 clear_pending (EV_A_ (W)w); 3409 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w))) 3410 if (expect_false (!ev_is_active (w)))
2576 return; 3411 return;
2577 3412
3413 EV_FREQUENT_CHECK;
3414
2578 { 3415 {
2579 int active = ev_active (w); 3416 int active = ev_active (w);
2580 3417
2581 checks [active - 1] = checks [--checkcnt]; 3418 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active; 3419 ev_active (checks [active - 1]) = active;
2583 } 3420 }
2584 3421
2585 ev_stop (EV_A_ (W)w); 3422 ev_stop (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
2586} 3425}
3426#endif
2587 3427
2588#if EV_EMBED_ENABLE 3428#if EV_EMBED_ENABLE
2589void noinline 3429void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w) 3430ev_embed_sweep (EV_P_ ev_embed *w)
2591{ 3431{
2592 ev_loop (w->other, EVLOOP_NONBLOCK); 3432 ev_run (w->other, EVRUN_NOWAIT);
2593} 3433}
2594 3434
2595static void 3435static void
2596embed_io_cb (EV_P_ ev_io *io, int revents) 3436embed_io_cb (EV_P_ ev_io *io, int revents)
2597{ 3437{
2598 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2599 3439
2600 if (ev_cb (w)) 3440 if (ev_cb (w))
2601 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2602 else 3442 else
2603 ev_loop (w->other, EVLOOP_NONBLOCK); 3443 ev_run (w->other, EVRUN_NOWAIT);
2604} 3444}
2605 3445
2606static void 3446static void
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{ 3448{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610 3450
2611 { 3451 {
2612 struct ev_loop *loop = w->other; 3452 EV_P = w->other;
2613 3453
2614 while (fdchangecnt) 3454 while (fdchangecnt)
2615 { 3455 {
2616 fd_reify (EV_A); 3456 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3457 ev_run (EV_A_ EVRUN_NOWAIT);
2618 } 3458 }
2619 } 3459 }
3460}
3461
3462static void
3463embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3464{
3465 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3466
3467 ev_embed_stop (EV_A_ w);
3468
3469 {
3470 EV_P = w->other;
3471
3472 ev_loop_fork (EV_A);
3473 ev_run (EV_A_ EVRUN_NOWAIT);
3474 }
3475
3476 ev_embed_start (EV_A_ w);
2620} 3477}
2621 3478
2622#if 0 3479#if 0
2623static void 3480static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3481embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2632{ 3489{
2633 if (expect_false (ev_is_active (w))) 3490 if (expect_false (ev_is_active (w)))
2634 return; 3491 return;
2635 3492
2636 { 3493 {
2637 struct ev_loop *loop = w->other; 3494 EV_P = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3495 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3496 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 } 3497 }
3498
3499 EV_FREQUENT_CHECK;
2641 3500
2642 ev_set_priority (&w->io, ev_priority (w)); 3501 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io); 3502 ev_io_start (EV_A_ &w->io);
2644 3503
2645 ev_prepare_init (&w->prepare, embed_prepare_cb); 3504 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI); 3505 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare); 3506 ev_prepare_start (EV_A_ &w->prepare);
2648 3507
3508 ev_fork_init (&w->fork, embed_fork_cb);
3509 ev_fork_start (EV_A_ &w->fork);
3510
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3511 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650 3512
2651 ev_start (EV_A_ (W)w, 1); 3513 ev_start (EV_A_ (W)w, 1);
3514
3515 EV_FREQUENT_CHECK;
2652} 3516}
2653 3517
2654void 3518void
2655ev_embed_stop (EV_P_ ev_embed *w) 3519ev_embed_stop (EV_P_ ev_embed *w)
2656{ 3520{
2657 clear_pending (EV_A_ (W)w); 3521 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w))) 3522 if (expect_false (!ev_is_active (w)))
2659 return; 3523 return;
2660 3524
3525 EV_FREQUENT_CHECK;
3526
2661 ev_io_stop (EV_A_ &w->io); 3527 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare); 3528 ev_prepare_stop (EV_A_ &w->prepare);
3529 ev_fork_stop (EV_A_ &w->fork);
2663 3530
2664 ev_stop (EV_A_ (W)w); 3531 ev_stop (EV_A_ (W)w);
3532
3533 EV_FREQUENT_CHECK;
2665} 3534}
2666#endif 3535#endif
2667 3536
2668#if EV_FORK_ENABLE 3537#if EV_FORK_ENABLE
2669void 3538void
2670ev_fork_start (EV_P_ ev_fork *w) 3539ev_fork_start (EV_P_ ev_fork *w)
2671{ 3540{
2672 if (expect_false (ev_is_active (w))) 3541 if (expect_false (ev_is_active (w)))
2673 return; 3542 return;
3543
3544 EV_FREQUENT_CHECK;
2674 3545
2675 ev_start (EV_A_ (W)w, ++forkcnt); 3546 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3547 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w; 3548 forks [forkcnt - 1] = w;
3549
3550 EV_FREQUENT_CHECK;
2678} 3551}
2679 3552
2680void 3553void
2681ev_fork_stop (EV_P_ ev_fork *w) 3554ev_fork_stop (EV_P_ ev_fork *w)
2682{ 3555{
2683 clear_pending (EV_A_ (W)w); 3556 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 3557 if (expect_false (!ev_is_active (w)))
2685 return; 3558 return;
2686 3559
3560 EV_FREQUENT_CHECK;
3561
2687 { 3562 {
2688 int active = ev_active (w); 3563 int active = ev_active (w);
2689 3564
2690 forks [active - 1] = forks [--forkcnt]; 3565 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active; 3566 ev_active (forks [active - 1]) = active;
2692 } 3567 }
2693 3568
2694 ev_stop (EV_A_ (W)w); 3569 ev_stop (EV_A_ (W)w);
2695}
2696#endif
2697 3570
3571 EV_FREQUENT_CHECK;
3572}
3573#endif
3574
2698#if EV_ASYNC_ENABLE 3575#if EV_CLEANUP_ENABLE
2699void 3576void
2700ev_async_start (EV_P_ ev_async *w) 3577ev_cleanup_start (EV_P_ ev_cleanup *w)
2701{ 3578{
2702 if (expect_false (ev_is_active (w))) 3579 if (expect_false (ev_is_active (w)))
2703 return; 3580 return;
2704 3581
3582 EV_FREQUENT_CHECK;
3583
3584 ev_start (EV_A_ (W)w, ++cleanupcnt);
3585 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3586 cleanups [cleanupcnt - 1] = w;
3587
3588 EV_FREQUENT_CHECK;
3589}
3590
3591void
3592ev_cleanup_stop (EV_P_ ev_cleanup *w)
3593{
3594 clear_pending (EV_A_ (W)w);
3595 if (expect_false (!ev_is_active (w)))
3596 return;
3597
3598 EV_FREQUENT_CHECK;
3599
3600 {
3601 int active = ev_active (w);
3602
3603 cleanups [active - 1] = cleanups [--cleanupcnt];
3604 ev_active (cleanups [active - 1]) = active;
3605 }
3606
3607 ev_stop (EV_A_ (W)w);
3608
3609 EV_FREQUENT_CHECK;
3610}
3611#endif
3612
3613#if EV_ASYNC_ENABLE
3614void
3615ev_async_start (EV_P_ ev_async *w)
3616{
3617 if (expect_false (ev_is_active (w)))
3618 return;
3619
3620 w->sent = 0;
3621
2705 evpipe_init (EV_A); 3622 evpipe_init (EV_A);
3623
3624 EV_FREQUENT_CHECK;
2706 3625
2707 ev_start (EV_A_ (W)w, ++asynccnt); 3626 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3627 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w; 3628 asyncs [asynccnt - 1] = w;
3629
3630 EV_FREQUENT_CHECK;
2710} 3631}
2711 3632
2712void 3633void
2713ev_async_stop (EV_P_ ev_async *w) 3634ev_async_stop (EV_P_ ev_async *w)
2714{ 3635{
2715 clear_pending (EV_A_ (W)w); 3636 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w))) 3637 if (expect_false (!ev_is_active (w)))
2717 return; 3638 return;
2718 3639
3640 EV_FREQUENT_CHECK;
3641
2719 { 3642 {
2720 int active = ev_active (w); 3643 int active = ev_active (w);
2721 3644
2722 asyncs [active - 1] = asyncs [--asynccnt]; 3645 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active; 3646 ev_active (asyncs [active - 1]) = active;
2724 } 3647 }
2725 3648
2726 ev_stop (EV_A_ (W)w); 3649 ev_stop (EV_A_ (W)w);
3650
3651 EV_FREQUENT_CHECK;
2727} 3652}
2728 3653
2729void 3654void
2730ev_async_send (EV_P_ ev_async *w) 3655ev_async_send (EV_P_ ev_async *w)
2731{ 3656{
2732 w->sent = 1; 3657 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync); 3658 evpipe_write (EV_A_ &async_pending);
2734} 3659}
2735#endif 3660#endif
2736 3661
2737/*****************************************************************************/ 3662/*****************************************************************************/
2738 3663
2748once_cb (EV_P_ struct ev_once *once, int revents) 3673once_cb (EV_P_ struct ev_once *once, int revents)
2749{ 3674{
2750 void (*cb)(int revents, void *arg) = once->cb; 3675 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg; 3676 void *arg = once->arg;
2752 3677
2753 ev_io_stop (EV_A_ &once->io); 3678 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to); 3679 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once); 3680 ev_free (once);
2756 3681
2757 cb (revents, arg); 3682 cb (revents, arg);
2758} 3683}
2759 3684
2760static void 3685static void
2761once_cb_io (EV_P_ ev_io *w, int revents) 3686once_cb_io (EV_P_ ev_io *w, int revents)
2762{ 3687{
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3688 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3689
3690 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2764} 3691}
2765 3692
2766static void 3693static void
2767once_cb_to (EV_P_ ev_timer *w, int revents) 3694once_cb_to (EV_P_ ev_timer *w, int revents)
2768{ 3695{
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3696 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3697
3698 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2770} 3699}
2771 3700
2772void 3701void
2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3702ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2774{ 3703{
2775 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3704 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2776 3705
2777 if (expect_false (!once)) 3706 if (expect_false (!once))
2778 { 3707 {
2779 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3708 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2780 return; 3709 return;
2781 } 3710 }
2782 3711
2783 once->cb = cb; 3712 once->cb = cb;
2784 once->arg = arg; 3713 once->arg = arg;
2796 ev_timer_set (&once->to, timeout, 0.); 3725 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to); 3726 ev_timer_start (EV_A_ &once->to);
2798 } 3727 }
2799} 3728}
2800 3729
3730/*****************************************************************************/
3731
3732#if EV_WALK_ENABLE
3733void
3734ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3735{
3736 int i, j;
3737 ev_watcher_list *wl, *wn;
3738
3739 if (types & (EV_IO | EV_EMBED))
3740 for (i = 0; i < anfdmax; ++i)
3741 for (wl = anfds [i].head; wl; )
3742 {
3743 wn = wl->next;
3744
3745#if EV_EMBED_ENABLE
3746 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3747 {
3748 if (types & EV_EMBED)
3749 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3750 }
3751 else
3752#endif
3753#if EV_USE_INOTIFY
3754 if (ev_cb ((ev_io *)wl) == infy_cb)
3755 ;
3756 else
3757#endif
3758 if ((ev_io *)wl != &pipe_w)
3759 if (types & EV_IO)
3760 cb (EV_A_ EV_IO, wl);
3761
3762 wl = wn;
3763 }
3764
3765 if (types & (EV_TIMER | EV_STAT))
3766 for (i = timercnt + HEAP0; i-- > HEAP0; )
3767#if EV_STAT_ENABLE
3768 /*TODO: timer is not always active*/
3769 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3770 {
3771 if (types & EV_STAT)
3772 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3773 }
3774 else
3775#endif
3776 if (types & EV_TIMER)
3777 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3778
3779#if EV_PERIODIC_ENABLE
3780 if (types & EV_PERIODIC)
3781 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3782 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3783#endif
3784
3785#if EV_IDLE_ENABLE
3786 if (types & EV_IDLE)
3787 for (j = NUMPRI; i--; )
3788 for (i = idlecnt [j]; i--; )
3789 cb (EV_A_ EV_IDLE, idles [j][i]);
3790#endif
3791
3792#if EV_FORK_ENABLE
3793 if (types & EV_FORK)
3794 for (i = forkcnt; i--; )
3795 if (ev_cb (forks [i]) != embed_fork_cb)
3796 cb (EV_A_ EV_FORK, forks [i]);
3797#endif
3798
3799#if EV_ASYNC_ENABLE
3800 if (types & EV_ASYNC)
3801 for (i = asynccnt; i--; )
3802 cb (EV_A_ EV_ASYNC, asyncs [i]);
3803#endif
3804
3805#if EV_PREPARE_ENABLE
3806 if (types & EV_PREPARE)
3807 for (i = preparecnt; i--; )
3808# if EV_EMBED_ENABLE
3809 if (ev_cb (prepares [i]) != embed_prepare_cb)
3810# endif
3811 cb (EV_A_ EV_PREPARE, prepares [i]);
3812#endif
3813
3814#if EV_CHECK_ENABLE
3815 if (types & EV_CHECK)
3816 for (i = checkcnt; i--; )
3817 cb (EV_A_ EV_CHECK, checks [i]);
3818#endif
3819
3820#if EV_SIGNAL_ENABLE
3821 if (types & EV_SIGNAL)
3822 for (i = 0; i < EV_NSIG - 1; ++i)
3823 for (wl = signals [i].head; wl; )
3824 {
3825 wn = wl->next;
3826 cb (EV_A_ EV_SIGNAL, wl);
3827 wl = wn;
3828 }
3829#endif
3830
3831#if EV_CHILD_ENABLE
3832 if (types & EV_CHILD)
3833 for (i = (EV_PID_HASHSIZE); i--; )
3834 for (wl = childs [i]; wl; )
3835 {
3836 wn = wl->next;
3837 cb (EV_A_ EV_CHILD, wl);
3838 wl = wn;
3839 }
3840#endif
3841/* EV_STAT 0x00001000 /* stat data changed */
3842/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3843}
3844#endif
3845
2801#if EV_MULTIPLICITY 3846#if EV_MULTIPLICITY
2802 #include "ev_wrap.h" 3847 #include "ev_wrap.h"
2803#endif 3848#endif
2804 3849
2805#ifdef __cplusplus 3850EV_CPP(})
2806}
2807#endif
2808 3851

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines