ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.258 by root, Sun Sep 7 18:15:12 2008 UTC vs.
Revision 1.360 by root, Sun Oct 24 18:12:41 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
130# endif 157# endif
131 158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
160# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
161# include <windows.h> 192# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
164# endif 195# endif
196# undef EV_AVOID_STDIO
165#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
166 206
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
168 244
169#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 247# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 248# else
173# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
174# endif 250# endif
175#endif 251#endif
176 252
177#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 255#endif
180 256
181#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 258# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 259# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 260# else
185# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
186# endif 262# endif
187#endif 263#endif
188 264
189#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 267#endif
192 268
193#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
194# ifdef _WIN32 270# ifdef _WIN32
195# define EV_USE_POLL 0 271# define EV_USE_POLL 0
196# else 272# else
197# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 274# endif
199#endif 275#endif
200 276
201#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 280# else
205# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
206# endif 282# endif
207#endif 283#endif
208 284
214# define EV_USE_PORT 0 290# define EV_USE_PORT 0
215#endif 291#endif
216 292
217#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 296# else
221# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
222# endif 298# endif
223#endif 299#endif
224 300
225#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 303#endif
232 304
233#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 307#endif
240 308
241#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 312# else
245# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
246# endif 322# endif
247#endif 323#endif
248 324
249#if 0 /* debugging */ 325#if 0 /* debugging */
250# define EV_VERIFY 3 326# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 327# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 328# define EV_HEAP_CACHE_AT 1
253#endif 329#endif
254 330
255#ifndef EV_VERIFY 331#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 333#endif
258 334
259#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 337#endif
262 338
263#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
265#endif 355#endif
266 356
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
268 364
269#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
272#endif 368#endif
286# include <sys/select.h> 382# include <sys/select.h>
287# endif 383# endif
288#endif 384#endif
289 385
290#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
291# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
292#endif 394#endif
293 395
294#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
295# include <winsock.h> 397# include <winsock.h>
296#endif 398#endif
297 399
298#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h> 402# include <stdint.h>
301# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
302extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
303# endif 405# endif
304int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
305# ifdef __cplusplus 407# ifdef O_CLOEXEC
306} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
307# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
308#endif 436#endif
309 437
310/**/ 438/**/
311 439
312#if EV_VERIFY >= 3 440#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 441# define EV_FREQUENT_CHECK ev_verify (EV_A)
314#else 442#else
315# define EV_FREQUENT_CHECK do { } while (0) 443# define EV_FREQUENT_CHECK do { } while (0)
316#endif 444#endif
317 445
318/* 446/*
325 */ 453 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
327 455
328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
331 461
332#if __GNUC__ >= 4 462#if __GNUC__ >= 4
333# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
334# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
335#else 465#else
342 472
343#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
344#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
345#define inline_size static inline 475#define inline_size static inline
346 476
347#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
348# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
349#else 487#else
350# define inline_speed static inline
351#endif
352
353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
355 490
356#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
357#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
358 493
359typedef ev_watcher *W; 494typedef ev_watcher *W;
361typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
362 497
363#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
365 500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
366#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
370#endif 519#endif
371 520
372#ifdef _WIN32 521#ifdef _WIN32
373# include "ev_win32.c" 522# include "ev_win32.c"
374#endif 523#endif
375 524
376/*****************************************************************************/ 525/*****************************************************************************/
377 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
378static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
379 578
380void 579void
381ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
382{ 581{
383 syserr_cb = cb; 582 syserr_cb = cb;
384} 583}
385 584
386static void noinline 585static void noinline
387syserr (const char *msg) 586ev_syserr (const char *msg)
388{ 587{
389 if (!msg) 588 if (!msg)
390 msg = "(libev) system error"; 589 msg = "(libev) system error";
391 590
392 if (syserr_cb) 591 if (syserr_cb)
393 syserr_cb (msg); 592 syserr_cb (msg);
394 else 593 else
395 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
396 perror (msg); 603 perror (msg);
604#endif
397 abort (); 605 abort ();
398 } 606 }
399} 607}
400 608
401static void * 609static void *
402ev_realloc_emul (void *ptr, long size) 610ev_realloc_emul (void *ptr, long size)
403{ 611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
404 /* some systems, notably openbsd and darwin, fail to properly 615 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and 616 * implement realloc (x, 0) (as required by both ansi c-89 and
406 * the single unix specification, so work around them here. 617 * the single unix specification, so work around them here.
407 */ 618 */
408 619
409 if (size) 620 if (size)
410 return realloc (ptr, size); 621 return realloc (ptr, size);
411 622
412 free (ptr); 623 free (ptr);
413 return 0; 624 return 0;
625#endif
414} 626}
415 627
416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
417 629
418void 630void
426{ 638{
427 ptr = alloc (ptr, size); 639 ptr = alloc (ptr, size);
428 640
429 if (!ptr && size) 641 if (!ptr && size)
430 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
432 abort (); 648 abort ();
433 } 649 }
434 650
435 return ptr; 651 return ptr;
436} 652}
438#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
439#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
440 656
441/*****************************************************************************/ 657/*****************************************************************************/
442 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
443typedef struct 663typedef struct
444{ 664{
445 WL head; 665 WL head;
446 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
447 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
448#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
449 SOCKET handle; 674 SOCKET handle;
450#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
451} ANFD; 679} ANFD;
452 680
681/* stores the pending event set for a given watcher */
453typedef struct 682typedef struct
454{ 683{
455 W w; 684 W w;
456 int events; 685 int events; /* the pending event set for the given watcher */
457} ANPENDING; 686} ANPENDING;
458 687
459#if EV_USE_INOTIFY 688#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */ 689/* hash table entry per inotify-id */
461typedef struct 690typedef struct
464} ANFS; 693} ANFS;
465#endif 694#endif
466 695
467/* Heap Entry */ 696/* Heap Entry */
468#if EV_HEAP_CACHE_AT 697#if EV_HEAP_CACHE_AT
698 /* a heap element */
469 typedef struct { 699 typedef struct {
470 ev_tstamp at; 700 ev_tstamp at;
471 WT w; 701 WT w;
472 } ANHE; 702 } ANHE;
473 703
474 #define ANHE_w(he) (he).w /* access watcher, read-write */ 704 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */ 705 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else 707#else
708 /* a heap element */
478 typedef WT ANHE; 709 typedef WT ANHE;
479 710
480 #define ANHE_w(he) (he) 711 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at 712 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he) 713 #define ANHE_at_cache(he)
506 737
507 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
508 739
509#endif 740#endif
510 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
511/*****************************************************************************/ 754/*****************************************************************************/
512 755
756#ifndef EV_HAVE_EV_TIME
513ev_tstamp 757ev_tstamp
514ev_time (void) 758ev_time (void)
515{ 759{
516#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
517 struct timespec ts; 763 struct timespec ts;
518 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
519 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
520#else 766 }
767#endif
768
521 struct timeval tv; 769 struct timeval tv;
522 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
523 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
524#endif
525} 772}
773#endif
526 774
527ev_tstamp inline_size 775inline_size ev_tstamp
528get_clock (void) 776get_clock (void)
529{ 777{
530#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
531 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
532 { 780 {
553 if (delay > 0.) 801 if (delay > 0.)
554 { 802 {
555#if EV_USE_NANOSLEEP 803#if EV_USE_NANOSLEEP
556 struct timespec ts; 804 struct timespec ts;
557 805
558 ts.tv_sec = (time_t)delay; 806 EV_TS_SET (ts, delay);
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0); 807 nanosleep (&ts, 0);
562#elif defined(_WIN32) 808#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3)); 809 Sleep ((unsigned long)(delay * 1e3));
564#else 810#else
565 struct timeval tv; 811 struct timeval tv;
566 812
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 814 /* something not guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */ 815 /* by older ones */
816 EV_TV_SET (tv, delay);
573 select (0, 0, 0, 0, &tv); 817 select (0, 0, 0, 0, &tv);
574#endif 818#endif
575 } 819 }
576} 820}
577 821
578/*****************************************************************************/ 822/*****************************************************************************/
579 823
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581 825
582int inline_size 826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
583array_nextsize (int elem, int cur, int cnt) 829array_nextsize (int elem, int cur, int cnt)
584{ 830{
585 int ncur = cur + 1; 831 int ncur = cur + 1;
586 832
587 do 833 do
604array_realloc (int elem, void *base, int *cur, int cnt) 850array_realloc (int elem, void *base, int *cur, int cnt)
605{ 851{
606 *cur = array_nextsize (elem, *cur, cnt); 852 *cur = array_nextsize (elem, *cur, cnt);
607 return ev_realloc (base, elem * *cur); 853 return ev_realloc (base, elem * *cur);
608} 854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
609 858
610#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
611 if (expect_false ((cnt) > (cur))) \ 860 if (expect_false ((cnt) > (cur))) \
612 { \ 861 { \
613 int ocur_ = (cur); \ 862 int ocur_ = (cur); \
625 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
626 } 875 }
627#endif 876#endif
628 877
629#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
630 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
631 880
632/*****************************************************************************/ 881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
633 888
634void noinline 889void noinline
635ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
636{ 891{
637 W w_ = (W)w; 892 W w_ = (W)w;
646 pendings [pri][w_->pending - 1].w = w_; 901 pendings [pri][w_->pending - 1].w = w_;
647 pendings [pri][w_->pending - 1].events = revents; 902 pendings [pri][w_->pending - 1].events = revents;
648 } 903 }
649} 904}
650 905
651void inline_speed 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
652queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
653{ 923{
654 int i; 924 int i;
655 925
656 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
657 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
658} 928}
659 929
660/*****************************************************************************/ 930/*****************************************************************************/
661 931
662void inline_size 932inline_speed void
663anfds_init (ANFD *base, int count)
664{
665 while (count--)
666 {
667 base->head = 0;
668 base->events = EV_NONE;
669 base->reify = 0;
670
671 ++base;
672 }
673}
674
675void inline_speed
676fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
677{ 934{
678 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
679 ev_io *w; 936 ev_io *w;
680 937
681 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
685 if (ev) 942 if (ev)
686 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
687 } 944 }
688} 945}
689 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
690void 958void
691ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
692{ 960{
693 if (fd >= 0 && fd < anfdmax) 961 if (fd >= 0 && fd < anfdmax)
694 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
695} 963}
696 964
697void inline_size 965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
698fd_reify (EV_P) 968fd_reify (EV_P)
699{ 969{
700 int i; 970 int i;
701 971
702 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
703 { 973 {
704 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
705 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
706 ev_io *w; 976 ev_io *w;
707 977
708 unsigned char events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
709 980
710 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
711 events |= (unsigned char)w->events;
712 982
713#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
714 if (events) 984 if (o_reify & EV__IOFDSET)
715 { 985 {
716 unsigned long arg; 986 unsigned long arg;
717 #ifdef EV_FD_TO_WIN32_HANDLE
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
719 #else
720 anfd->handle = _get_osfhandle (fd);
721 #endif
722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
723 } 990 }
724#endif 991#endif
725 992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
726 { 994 {
727 unsigned char o_events = anfd->events;
728 unsigned char o_reify = anfd->reify;
729
730 anfd->reify = 0;
731 anfd->events = events; 995 anfd->events = 0;
732 996
733 if (o_events != events || o_reify & EV_IOFDSET) 997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
734 backend_modify (EV_A_ fd, o_events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
735 }
736 } 1006 }
737 1007
738 fdchangecnt = 0; 1008 fdchangecnt = 0;
739} 1009}
740 1010
741void inline_size 1011/* something about the given fd changed */
1012inline_size void
742fd_change (EV_P_ int fd, int flags) 1013fd_change (EV_P_ int fd, int flags)
743{ 1014{
744 unsigned char reify = anfds [fd].reify; 1015 unsigned char reify = anfds [fd].reify;
745 anfds [fd].reify |= flags; 1016 anfds [fd].reify |= flags;
746 1017
750 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
751 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
752 } 1023 }
753} 1024}
754 1025
755void inline_speed 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
756fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
757{ 1029{
758 ev_io *w; 1030 ev_io *w;
759 1031
760 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
762 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
763 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
764 } 1036 }
765} 1037}
766 1038
767int inline_size 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
768fd_valid (int fd) 1041fd_valid (int fd)
769{ 1042{
770#ifdef _WIN32 1043#ifdef _WIN32
771 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
772#else 1045#else
773 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
774#endif 1047#endif
775} 1048}
776 1049
794 1067
795 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
796 if (anfds [fd].events) 1069 if (anfds [fd].events)
797 { 1070 {
798 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
799 return; 1072 break;
800 } 1073 }
801} 1074}
802 1075
803/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
804static void noinline 1077static void noinline
808 1081
809 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
810 if (anfds [fd].events) 1083 if (anfds [fd].events)
811 { 1084 {
812 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
1086 anfds [fd].emask = 0;
813 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
814 } 1088 }
815} 1089}
816 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
817/*****************************************************************************/ 1105/*****************************************************************************/
818 1106
819/* 1107/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not 1108 * the heap functions want a real array index. array index 0 is guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree. 1110 * the branching factor of the d-tree.
823 */ 1111 */
824 1112
825/* 1113/*
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k)) 1124#define UPHEAP_DONE(p,k) ((p) == (k))
837 1125
838/* away from the root */ 1126/* away from the root */
839void inline_speed 1127inline_speed void
840downheap (ANHE *heap, int N, int k) 1128downheap (ANHE *heap, int N, int k)
841{ 1129{
842 ANHE he = heap [k]; 1130 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0; 1131 ANHE *E = heap + N + HEAP0;
844 1132
884#define HEAP0 1 1172#define HEAP0 1
885#define HPARENT(k) ((k) >> 1) 1173#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p)) 1174#define UPHEAP_DONE(p,k) (!(p))
887 1175
888/* away from the root */ 1176/* away from the root */
889void inline_speed 1177inline_speed void
890downheap (ANHE *heap, int N, int k) 1178downheap (ANHE *heap, int N, int k)
891{ 1179{
892 ANHE he = heap [k]; 1180 ANHE he = heap [k];
893 1181
894 for (;;) 1182 for (;;)
895 { 1183 {
896 int c = k << 1; 1184 int c = k << 1;
897 1185
898 if (c > N + HEAP0 - 1) 1186 if (c >= N + HEAP0)
899 break; 1187 break;
900 1188
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0; 1190 ? 1 : 0;
903 1191
914 ev_active (ANHE_w (he)) = k; 1202 ev_active (ANHE_w (he)) = k;
915} 1203}
916#endif 1204#endif
917 1205
918/* towards the root */ 1206/* towards the root */
919void inline_speed 1207inline_speed void
920upheap (ANHE *heap, int k) 1208upheap (ANHE *heap, int k)
921{ 1209{
922 ANHE he = heap [k]; 1210 ANHE he = heap [k];
923 1211
924 for (;;) 1212 for (;;)
935 1223
936 heap [k] = he; 1224 heap [k] = he;
937 ev_active (ANHE_w (he)) = k; 1225 ev_active (ANHE_w (he)) = k;
938} 1226}
939 1227
940void inline_size 1228/* move an element suitably so it is in a correct place */
1229inline_size void
941adjustheap (ANHE *heap, int N, int k) 1230adjustheap (ANHE *heap, int N, int k)
942{ 1231{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
944 upheap (heap, k); 1233 upheap (heap, k);
945 else 1234 else
946 downheap (heap, N, k); 1235 downheap (heap, N, k);
947} 1236}
948 1237
949/* rebuild the heap: this function is used only once and executed rarely */ 1238/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size 1239inline_size void
951reheap (ANHE *heap, int N) 1240reheap (ANHE *heap, int N)
952{ 1241{
953 int i; 1242 int i;
954 1243
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
958 upheap (heap, i + HEAP0); 1247 upheap (heap, i + HEAP0);
959} 1248}
960 1249
961/*****************************************************************************/ 1250/*****************************************************************************/
962 1251
1252/* associate signal watchers to a signal signal */
963typedef struct 1253typedef struct
964{ 1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
965 WL head; 1259 WL head;
966 EV_ATOMIC_T gotsig;
967} ANSIG; 1260} ANSIG;
968 1261
969static ANSIG *signals; 1262static ANSIG signals [EV_NSIG - 1];
970static int signalmax;
971
972static EV_ATOMIC_T gotsig;
973
974void inline_size
975signals_init (ANSIG *base, int count)
976{
977 while (count--)
978 {
979 base->head = 0;
980 base->gotsig = 0;
981
982 ++base;
983 }
984}
985 1263
986/*****************************************************************************/ 1264/*****************************************************************************/
987 1265
988void inline_speed 1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
989fd_intern (int fd)
990{
991#ifdef _WIN32
992 unsigned long arg = 1;
993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
994#else
995 fcntl (fd, F_SETFD, FD_CLOEXEC);
996 fcntl (fd, F_SETFL, O_NONBLOCK);
997#endif
998}
999 1267
1000static void noinline 1268static void noinline
1001evpipe_init (EV_P) 1269evpipe_init (EV_P)
1002{ 1270{
1003 if (!ev_is_active (&pipeev)) 1271 if (!ev_is_active (&pipe_w))
1004 { 1272 {
1005#if EV_USE_EVENTFD 1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1006 if ((evfd = eventfd (0, 0)) >= 0) 1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1007 { 1279 {
1008 evpipe [0] = -1; 1280 evpipe [0] = -1;
1009 fd_intern (evfd); 1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1010 ev_io_set (&pipeev, evfd, EV_READ); 1282 ev_io_set (&pipe_w, evfd, EV_READ);
1011 } 1283 }
1012 else 1284 else
1013#endif 1285# endif
1014 { 1286 {
1015 while (pipe (evpipe)) 1287 while (pipe (evpipe))
1016 syserr ("(libev) error creating signal/async pipe"); 1288 ev_syserr ("(libev) error creating signal/async pipe");
1017 1289
1018 fd_intern (evpipe [0]); 1290 fd_intern (evpipe [0]);
1019 fd_intern (evpipe [1]); 1291 fd_intern (evpipe [1]);
1020 ev_io_set (&pipeev, evpipe [0], EV_READ); 1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1021 } 1293 }
1022 1294
1023 ev_io_start (EV_A_ &pipeev); 1295 ev_io_start (EV_A_ &pipe_w);
1024 ev_unref (EV_A); /* watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 } 1297 }
1026} 1298}
1027 1299
1028void inline_size 1300inline_size void
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{ 1302{
1031 if (!*flag) 1303 if (!*flag)
1032 { 1304 {
1033 int old_errno = errno; /* save errno because write might clobber it */ 1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1034 1307
1035 *flag = 1; 1308 *flag = 1;
1036 1309
1037#if EV_USE_EVENTFD 1310#if EV_USE_EVENTFD
1038 if (evfd >= 0) 1311 if (evfd >= 0)
1040 uint64_t counter = 1; 1313 uint64_t counter = 1;
1041 write (evfd, &counter, sizeof (uint64_t)); 1314 write (evfd, &counter, sizeof (uint64_t));
1042 } 1315 }
1043 else 1316 else
1044#endif 1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1045 write (evpipe [1], &old_errno, 1); 1323 write (evpipe [1], &dummy, 1);
1046 1324
1047 errno = old_errno; 1325 errno = old_errno;
1048 } 1326 }
1049} 1327}
1050 1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
1051static void 1331static void
1052pipecb (EV_P_ ev_io *iow, int revents) 1332pipecb (EV_P_ ev_io *iow, int revents)
1053{ 1333{
1334 int i;
1335
1054#if EV_USE_EVENTFD 1336#if EV_USE_EVENTFD
1055 if (evfd >= 0) 1337 if (evfd >= 0)
1056 { 1338 {
1057 uint64_t counter; 1339 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t)); 1340 read (evfd, &counter, sizeof (uint64_t));
1059 } 1341 }
1060 else 1342 else
1061#endif 1343#endif
1062 { 1344 {
1063 char dummy; 1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1064 read (evpipe [0], &dummy, 1); 1347 read (evpipe [0], &dummy, 1);
1065 } 1348 }
1066 1349
1067 if (gotsig && ev_is_default_loop (EV_A)) 1350 if (sig_pending)
1068 { 1351 {
1069 int signum; 1352 sig_pending = 0;
1070 gotsig = 0;
1071 1353
1072 for (signum = signalmax; signum--; ) 1354 for (i = EV_NSIG - 1; i--; )
1073 if (signals [signum].gotsig) 1355 if (expect_false (signals [i].pending))
1074 ev_feed_signal_event (EV_A_ signum + 1); 1356 ev_feed_signal_event (EV_A_ i + 1);
1075 } 1357 }
1076 1358
1077#if EV_ASYNC_ENABLE 1359#if EV_ASYNC_ENABLE
1078 if (gotasync) 1360 if (async_pending)
1079 { 1361 {
1080 int i; 1362 async_pending = 0;
1081 gotasync = 0;
1082 1363
1083 for (i = asynccnt; i--; ) 1364 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent) 1365 if (asyncs [i]->sent)
1085 { 1366 {
1086 asyncs [i]->sent = 0; 1367 asyncs [i]->sent = 0;
1094 1375
1095static void 1376static void
1096ev_sighandler (int signum) 1377ev_sighandler (int signum)
1097{ 1378{
1098#if EV_MULTIPLICITY 1379#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct; 1380 EV_P = signals [signum - 1].loop;
1100#endif 1381#endif
1101 1382
1102#if _WIN32 1383#ifdef _WIN32
1103 signal (signum, ev_sighandler); 1384 signal (signum, ev_sighandler);
1104#endif 1385#endif
1105 1386
1106 signals [signum - 1].gotsig = 1; 1387 signals [signum - 1].pending = 1;
1107 evpipe_write (EV_A_ &gotsig); 1388 evpipe_write (EV_A_ &sig_pending);
1108} 1389}
1109 1390
1110void noinline 1391void noinline
1111ev_feed_signal_event (EV_P_ int signum) 1392ev_feed_signal_event (EV_P_ int signum)
1112{ 1393{
1113 WL w; 1394 WL w;
1114 1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1115#if EV_MULTIPLICITY 1401#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1402 /* it is permissible to try to feed a signal to the wrong loop */
1117#endif 1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1118 1404
1119 --signum; 1405 if (expect_false (signals [signum].loop != EV_A))
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return; 1406 return;
1407#endif
1123 1408
1124 signals [signum].gotsig = 0; 1409 signals [signum].pending = 0;
1125 1410
1126 for (w = signals [signum].head; w; w = w->next) 1411 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128} 1413}
1129 1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
1130/*****************************************************************************/ 1437/*****************************************************************************/
1131 1438
1439#if EV_CHILD_ENABLE
1132static WL childs [EV_PID_HASHSIZE]; 1440static WL childs [EV_PID_HASHSIZE];
1133
1134#ifndef _WIN32
1135 1441
1136static ev_signal childev; 1442static ev_signal childev;
1137 1443
1138#ifndef WIFCONTINUED 1444#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0 1445# define WIFCONTINUED(status) 0
1140#endif 1446#endif
1141 1447
1142void inline_speed 1448/* handle a single child status event */
1449inline_speed void
1143child_reap (EV_P_ int chain, int pid, int status) 1450child_reap (EV_P_ int chain, int pid, int status)
1144{ 1451{
1145 ev_child *w; 1452 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1147 1454
1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 { 1456 {
1150 if ((w->pid == pid || !w->pid) 1457 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1))) 1458 && (!traced || (w->flags & 1)))
1152 { 1459 {
1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1160 1467
1161#ifndef WCONTINUED 1468#ifndef WCONTINUED
1162# define WCONTINUED 0 1469# define WCONTINUED 0
1163#endif 1470#endif
1164 1471
1472/* called on sigchld etc., calls waitpid */
1165static void 1473static void
1166childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
1167{ 1475{
1168 int pid, status; 1476 int pid, status;
1169 1477
1177 /* make sure we are called again until all children have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1178 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1180 1488
1181 child_reap (EV_A_ pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1182 if (EV_PID_HASHSIZE > 1) 1490 if ((EV_PID_HASHSIZE) > 1)
1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1184} 1492}
1185 1493
1186#endif 1494#endif
1187 1495
1188/*****************************************************************************/ 1496/*****************************************************************************/
1189 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1190#if EV_USE_PORT 1501#if EV_USE_PORT
1191# include "ev_port.c" 1502# include "ev_port.c"
1192#endif 1503#endif
1193#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
1194# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
1250 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
1251 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1252 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
1253#endif 1564#endif
1254#ifdef __APPLE__ 1565#ifdef __APPLE__
1255 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
1256 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1257#endif 1572#endif
1258 1573
1259 return flags; 1574 return flags;
1260} 1575}
1261 1576
1263ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
1264{ 1579{
1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1266 1581
1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 /* please fix it and tell me how to detect the fix */ 1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1269 flags &= ~EVBACKEND_EPOLL; 1584 flags &= ~EVBACKEND_EPOLL;
1270 1585
1271 return flags; 1586 return flags;
1272} 1587}
1273 1588
1274unsigned int 1589unsigned int
1275ev_backend (EV_P) 1590ev_backend (EV_P)
1276{ 1591{
1277 return backend; 1592 return backend;
1278} 1593}
1279 1594
1595#if EV_FEATURE_API
1280unsigned int 1596unsigned int
1281ev_loop_count (EV_P) 1597ev_iteration (EV_P)
1282{ 1598{
1283 return loop_count; 1599 return loop_count;
1284} 1600}
1285 1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1286void 1608void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1288{ 1610{
1289 io_blocktime = interval; 1611 io_blocktime = interval;
1290} 1612}
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1294{ 1616{
1295 timeout_blocktime = interval; 1617 timeout_blocktime = interval;
1296} 1618}
1297 1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1298static void noinline 1645static void noinline
1299loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
1300{ 1647{
1301 if (!backend) 1648 if (!backend)
1302 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
1303#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1304 { 1662 {
1305 struct timespec ts; 1663 struct timespec ts;
1664
1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1307 have_monotonic = 1; 1666 have_monotonic = 1;
1308 } 1667 }
1309#endif 1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1310 1680
1311 ev_rt_now = ev_time (); 1681 ev_rt_now = ev_time ();
1312 mn_now = get_clock (); 1682 mn_now = get_clock ();
1313 now_floor = mn_now; 1683 now_floor = mn_now;
1314 rtmn_diff = ev_rt_now - mn_now; 1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1315 1688
1316 io_blocktime = 0.; 1689 io_blocktime = 0.;
1317 timeout_blocktime = 0.; 1690 timeout_blocktime = 0.;
1318 backend = 0; 1691 backend = 0;
1319 backend_fd = -1; 1692 backend_fd = -1;
1320 gotasync = 0; 1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1321#if EV_USE_INOTIFY 1697#if EV_USE_INOTIFY
1322 fs_fd = -2; 1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1323#endif 1699#endif
1324 1700#if EV_USE_SIGNALFD
1325 /* pid check not overridable via env */ 1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1326#ifndef _WIN32
1327 if (flags & EVFLAG_FORKCHECK)
1328 curpid = getpid ();
1329#endif 1702#endif
1330
1331 if (!(flags & EVFLAG_NOENV)
1332 && !enable_secure ()
1333 && getenv ("LIBEV_FLAGS"))
1334 flags = atoi (getenv ("LIBEV_FLAGS"));
1335 1703
1336 if (!(flags & 0x0000ffffU)) 1704 if (!(flags & 0x0000ffffU))
1337 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
1338 1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1339#if EV_USE_PORT 1710#if EV_USE_PORT
1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1341#endif 1712#endif
1342#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
1343 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1350#endif 1721#endif
1351#if EV_USE_SELECT 1722#if EV_USE_SELECT
1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1353#endif 1724#endif
1354 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1355 ev_init (&pipeev, pipecb); 1729 ev_init (&pipe_w, pipecb);
1356 ev_set_priority (&pipeev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1357 } 1732 }
1358} 1733}
1359 1734
1360static void noinline 1735/* free up a loop structure */
1736void
1361loop_destroy (EV_P) 1737ev_loop_destroy (EV_P)
1362{ 1738{
1363 int i; 1739 int i;
1364 1740
1741#if EV_CHILD_ENABLE
1742 if (ev_is_active (&childev))
1743 {
1744 ev_ref (EV_A); /* child watcher */
1745 ev_signal_stop (EV_A_ &childev);
1746 }
1747#endif
1748
1365 if (ev_is_active (&pipeev)) 1749 if (ev_is_active (&pipe_w))
1366 { 1750 {
1367 ev_ref (EV_A); /* signal watcher */ 1751 /*ev_ref (EV_A);*/
1368 ev_io_stop (EV_A_ &pipeev); 1752 /*ev_io_stop (EV_A_ &pipe_w);*/
1369 1753
1370#if EV_USE_EVENTFD 1754#if EV_USE_EVENTFD
1371 if (evfd >= 0) 1755 if (evfd >= 0)
1372 close (evfd); 1756 close (evfd);
1373#endif 1757#endif
1374 1758
1375 if (evpipe [0] >= 0) 1759 if (evpipe [0] >= 0)
1376 { 1760 {
1377 close (evpipe [0]); 1761 EV_WIN32_CLOSE_FD (evpipe [0]);
1378 close (evpipe [1]); 1762 EV_WIN32_CLOSE_FD (evpipe [1]);
1379 } 1763 }
1380 } 1764 }
1765
1766#if EV_USE_SIGNALFD
1767 if (ev_is_active (&sigfd_w))
1768 close (sigfd);
1769#endif
1381 1770
1382#if EV_USE_INOTIFY 1771#if EV_USE_INOTIFY
1383 if (fs_fd >= 0) 1772 if (fs_fd >= 0)
1384 close (fs_fd); 1773 close (fs_fd);
1385#endif 1774#endif
1386 1775
1387 if (backend_fd >= 0) 1776 if (backend_fd >= 0)
1388 close (backend_fd); 1777 close (backend_fd);
1389 1778
1779#if EV_USE_IOCP
1780 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1781#endif
1390#if EV_USE_PORT 1782#if EV_USE_PORT
1391 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1783 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1392#endif 1784#endif
1393#if EV_USE_KQUEUE 1785#if EV_USE_KQUEUE
1394 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1786 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1409#if EV_IDLE_ENABLE 1801#if EV_IDLE_ENABLE
1410 array_free (idle, [i]); 1802 array_free (idle, [i]);
1411#endif 1803#endif
1412 } 1804 }
1413 1805
1414 ev_free (anfds); anfdmax = 0; 1806 ev_free (anfds); anfds = 0; anfdmax = 0;
1415 1807
1416 /* have to use the microsoft-never-gets-it-right macro */ 1808 /* have to use the microsoft-never-gets-it-right macro */
1809 array_free (rfeed, EMPTY);
1417 array_free (fdchange, EMPTY); 1810 array_free (fdchange, EMPTY);
1418 array_free (timer, EMPTY); 1811 array_free (timer, EMPTY);
1419#if EV_PERIODIC_ENABLE 1812#if EV_PERIODIC_ENABLE
1420 array_free (periodic, EMPTY); 1813 array_free (periodic, EMPTY);
1421#endif 1814#endif
1422#if EV_FORK_ENABLE 1815#if EV_FORK_ENABLE
1423 array_free (fork, EMPTY); 1816 array_free (fork, EMPTY);
1424#endif 1817#endif
1818#if EV_CLEANUP_ENABLE
1819 array_free (cleanup, EMPTY);
1820#endif
1425 array_free (prepare, EMPTY); 1821 array_free (prepare, EMPTY);
1426 array_free (check, EMPTY); 1822 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE 1823#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY); 1824 array_free (async, EMPTY);
1429#endif 1825#endif
1430 1826
1431 backend = 0; 1827 backend = 0;
1828
1829#if EV_MULTIPLICITY
1830 if (ev_is_default_loop (EV_A))
1831#endif
1832 ev_default_loop_ptr = 0;
1833#if EV_MULTIPLICITY
1834 else
1835 ev_free (EV_A);
1836#endif
1432} 1837}
1433 1838
1434#if EV_USE_INOTIFY 1839#if EV_USE_INOTIFY
1435void inline_size infy_fork (EV_P); 1840inline_size void infy_fork (EV_P);
1436#endif 1841#endif
1437 1842
1438void inline_size 1843inline_size void
1439loop_fork (EV_P) 1844loop_fork (EV_P)
1440{ 1845{
1441#if EV_USE_PORT 1846#if EV_USE_PORT
1442 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1847 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1443#endif 1848#endif
1449#endif 1854#endif
1450#if EV_USE_INOTIFY 1855#if EV_USE_INOTIFY
1451 infy_fork (EV_A); 1856 infy_fork (EV_A);
1452#endif 1857#endif
1453 1858
1454 if (ev_is_active (&pipeev)) 1859 if (ev_is_active (&pipe_w))
1455 { 1860 {
1456 /* this "locks" the handlers against writing to the pipe */ 1861 /* this "locks" the handlers against writing to the pipe */
1457 /* while we modify the fd vars */ 1862 /* while we modify the fd vars */
1458 gotsig = 1; 1863 sig_pending = 1;
1459#if EV_ASYNC_ENABLE 1864#if EV_ASYNC_ENABLE
1460 gotasync = 1; 1865 async_pending = 1;
1461#endif 1866#endif
1462 1867
1463 ev_ref (EV_A); 1868 ev_ref (EV_A);
1464 ev_io_stop (EV_A_ &pipeev); 1869 ev_io_stop (EV_A_ &pipe_w);
1465 1870
1466#if EV_USE_EVENTFD 1871#if EV_USE_EVENTFD
1467 if (evfd >= 0) 1872 if (evfd >= 0)
1468 close (evfd); 1873 close (evfd);
1469#endif 1874#endif
1470 1875
1471 if (evpipe [0] >= 0) 1876 if (evpipe [0] >= 0)
1472 { 1877 {
1473 close (evpipe [0]); 1878 EV_WIN32_CLOSE_FD (evpipe [0]);
1474 close (evpipe [1]); 1879 EV_WIN32_CLOSE_FD (evpipe [1]);
1475 } 1880 }
1476 1881
1882#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1477 evpipe_init (EV_A); 1883 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */ 1884 /* now iterate over everything, in case we missed something */
1479 pipecb (EV_A_ &pipeev, EV_READ); 1885 pipecb (EV_A_ &pipe_w, EV_READ);
1886#endif
1480 } 1887 }
1481 1888
1482 postfork = 0; 1889 postfork = 0;
1483} 1890}
1484 1891
1485#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
1486 1893
1487struct ev_loop * 1894struct ev_loop *
1488ev_loop_new (unsigned int flags) 1895ev_loop_new (unsigned int flags)
1489{ 1896{
1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1897 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1491 1898
1492 memset (loop, 0, sizeof (struct ev_loop)); 1899 memset (EV_A, 0, sizeof (struct ev_loop));
1493
1494 loop_init (EV_A_ flags); 1900 loop_init (EV_A_ flags);
1495 1901
1496 if (ev_backend (EV_A)) 1902 if (ev_backend (EV_A))
1497 return loop; 1903 return EV_A;
1498 1904
1905 ev_free (EV_A);
1499 return 0; 1906 return 0;
1500} 1907}
1501 1908
1502void 1909#endif /* multiplicity */
1503ev_loop_destroy (EV_P)
1504{
1505 loop_destroy (EV_A);
1506 ev_free (loop);
1507}
1508
1509void
1510ev_loop_fork (EV_P)
1511{
1512 postfork = 1; /* must be in line with ev_default_fork */
1513}
1514 1910
1515#if EV_VERIFY 1911#if EV_VERIFY
1516static void noinline 1912static void noinline
1517verify_watcher (EV_P_ W w) 1913verify_watcher (EV_P_ W w)
1518{ 1914{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1915 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520 1916
1521 if (w->pending) 1917 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1918 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523} 1919}
1524 1920
1525static void noinline 1921static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N) 1922verify_heap (EV_P_ ANHE *heap, int N)
1527{ 1923{
1528 int i; 1924 int i;
1529 1925
1530 for (i = HEAP0; i < N + HEAP0; ++i) 1926 for (i = HEAP0; i < N + HEAP0; ++i)
1531 { 1927 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1928 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1929 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1930 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535 1931
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1932 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 } 1933 }
1538} 1934}
1539 1935
1540static void noinline 1936static void noinline
1541array_verify (EV_P_ W *ws, int cnt) 1937array_verify (EV_P_ W *ws, int cnt)
1542{ 1938{
1543 while (cnt--) 1939 while (cnt--)
1544 { 1940 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1941 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]); 1942 verify_watcher (EV_A_ ws [cnt]);
1547 } 1943 }
1548} 1944}
1549#endif 1945#endif
1550 1946
1947#if EV_FEATURE_API
1551void 1948void
1552ev_loop_verify (EV_P) 1949ev_verify (EV_P)
1553{ 1950{
1554#if EV_VERIFY 1951#if EV_VERIFY
1555 int i; 1952 int i;
1556 WL w; 1953 WL w;
1557 1954
1558 assert (activecnt >= -1); 1955 assert (activecnt >= -1);
1559 1956
1560 assert (fdchangemax >= fdchangecnt); 1957 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i) 1958 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1959 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1563 1960
1564 assert (anfdmax >= 0); 1961 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i) 1962 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next) 1963 for (w = anfds [i].head; w; w = w->next)
1567 { 1964 {
1568 verify_watcher (EV_A_ (W)w); 1965 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1966 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1967 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 } 1968 }
1572 1969
1573 assert (timermax >= timercnt); 1970 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt); 1971 verify_heap (EV_A_ timers, timercnt);
1575 1972
1591#if EV_FORK_ENABLE 1988#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt); 1989 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt); 1990 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif 1991#endif
1595 1992
1993#if EV_CLEANUP_ENABLE
1994 assert (cleanupmax >= cleanupcnt);
1995 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
1996#endif
1997
1596#if EV_ASYNC_ENABLE 1998#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt); 1999 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt); 2000 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif 2001#endif
1600 2002
2003#if EV_PREPARE_ENABLE
1601 assert (preparemax >= preparecnt); 2004 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt); 2005 array_verify (EV_A_ (W *)prepares, preparecnt);
2006#endif
1603 2007
2008#if EV_CHECK_ENABLE
1604 assert (checkmax >= checkcnt); 2009 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt); 2010 array_verify (EV_A_ (W *)checks, checkcnt);
2011#endif
1606 2012
1607# if 0 2013# if 0
2014#if EV_CHILD_ENABLE
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2015 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2016 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2017#endif
1610# endif 2018# endif
1611#endif 2019#endif
1612} 2020}
1613 2021#endif
1614#endif /* multiplicity */
1615 2022
1616#if EV_MULTIPLICITY 2023#if EV_MULTIPLICITY
1617struct ev_loop * 2024struct ev_loop *
1618ev_default_loop_init (unsigned int flags)
1619#else 2025#else
1620int 2026int
2027#endif
1621ev_default_loop (unsigned int flags) 2028ev_default_loop (unsigned int flags)
1622#endif
1623{ 2029{
1624 if (!ev_default_loop_ptr) 2030 if (!ev_default_loop_ptr)
1625 { 2031 {
1626#if EV_MULTIPLICITY 2032#if EV_MULTIPLICITY
1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2033 EV_P = ev_default_loop_ptr = &default_loop_struct;
1628#else 2034#else
1629 ev_default_loop_ptr = 1; 2035 ev_default_loop_ptr = 1;
1630#endif 2036#endif
1631 2037
1632 loop_init (EV_A_ flags); 2038 loop_init (EV_A_ flags);
1633 2039
1634 if (ev_backend (EV_A)) 2040 if (ev_backend (EV_A))
1635 { 2041 {
1636#ifndef _WIN32 2042#if EV_CHILD_ENABLE
1637 ev_signal_init (&childev, childcb, SIGCHLD); 2043 ev_signal_init (&childev, childcb, SIGCHLD);
1638 ev_set_priority (&childev, EV_MAXPRI); 2044 ev_set_priority (&childev, EV_MAXPRI);
1639 ev_signal_start (EV_A_ &childev); 2045 ev_signal_start (EV_A_ &childev);
1640 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2046 ev_unref (EV_A); /* child watcher should not keep loop alive */
1641#endif 2047#endif
1646 2052
1647 return ev_default_loop_ptr; 2053 return ev_default_loop_ptr;
1648} 2054}
1649 2055
1650void 2056void
1651ev_default_destroy (void) 2057ev_loop_fork (EV_P)
1652{ 2058{
1653#if EV_MULTIPLICITY
1654 struct ev_loop *loop = ev_default_loop_ptr;
1655#endif
1656
1657#ifndef _WIN32
1658 ev_ref (EV_A); /* child watcher */
1659 ev_signal_stop (EV_A_ &childev);
1660#endif
1661
1662 loop_destroy (EV_A);
1663}
1664
1665void
1666ev_default_fork (void)
1667{
1668#if EV_MULTIPLICITY
1669 struct ev_loop *loop = ev_default_loop_ptr;
1670#endif
1671
1672 if (backend)
1673 postfork = 1; /* must be in line with ev_loop_fork */ 2059 postfork = 1; /* must be in line with ev_default_fork */
1674} 2060}
1675 2061
1676/*****************************************************************************/ 2062/*****************************************************************************/
1677 2063
1678void 2064void
1679ev_invoke (EV_P_ void *w, int revents) 2065ev_invoke (EV_P_ void *w, int revents)
1680{ 2066{
1681 EV_CB_INVOKE ((W)w, revents); 2067 EV_CB_INVOKE ((W)w, revents);
1682} 2068}
1683 2069
1684void inline_speed 2070unsigned int
1685call_pending (EV_P) 2071ev_pending_count (EV_P)
2072{
2073 int pri;
2074 unsigned int count = 0;
2075
2076 for (pri = NUMPRI; pri--; )
2077 count += pendingcnt [pri];
2078
2079 return count;
2080}
2081
2082void noinline
2083ev_invoke_pending (EV_P)
1686{ 2084{
1687 int pri; 2085 int pri;
1688 2086
1689 for (pri = NUMPRI; pri--; ) 2087 for (pri = NUMPRI; pri--; )
1690 while (pendingcnt [pri]) 2088 while (pendingcnt [pri])
1691 { 2089 {
1692 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2090 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1693 2091
1694 if (expect_true (p->w))
1695 {
1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2092 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2093 /* ^ this is no longer true, as pending_w could be here */
1697 2094
1698 p->w->pending = 0; 2095 p->w->pending = 0;
1699 EV_CB_INVOKE (p->w, p->events); 2096 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK; 2097 EV_FREQUENT_CHECK;
1701 }
1702 } 2098 }
1703} 2099}
1704 2100
1705#if EV_IDLE_ENABLE 2101#if EV_IDLE_ENABLE
1706void inline_size 2102/* make idle watchers pending. this handles the "call-idle */
2103/* only when higher priorities are idle" logic */
2104inline_size void
1707idle_reify (EV_P) 2105idle_reify (EV_P)
1708{ 2106{
1709 if (expect_false (idleall)) 2107 if (expect_false (idleall))
1710 { 2108 {
1711 int pri; 2109 int pri;
1723 } 2121 }
1724 } 2122 }
1725} 2123}
1726#endif 2124#endif
1727 2125
1728void inline_size 2126/* make timers pending */
2127inline_size void
1729timers_reify (EV_P) 2128timers_reify (EV_P)
1730{ 2129{
1731 EV_FREQUENT_CHECK; 2130 EV_FREQUENT_CHECK;
1732 2131
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2132 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 { 2133 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2134 do
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 { 2135 {
2136 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2137
2138 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2139
2140 /* first reschedule or stop timer */
2141 if (w->repeat)
2142 {
1742 ev_at (w) += w->repeat; 2143 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now) 2144 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now; 2145 ev_at (w) = mn_now;
1745 2146
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2147 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747 2148
1748 ANHE_at_cache (timers [HEAP0]); 2149 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0); 2150 downheap (timers, timercnt, HEAP0);
2151 }
2152 else
2153 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2154
2155 EV_FREQUENT_CHECK;
2156 feed_reverse (EV_A_ (W)w);
1750 } 2157 }
1751 else 2158 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753 2159
1754 EV_FREQUENT_CHECK; 2160 feed_reverse_done (EV_A_ EV_TIMER);
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 } 2161 }
1757} 2162}
1758 2163
1759#if EV_PERIODIC_ENABLE 2164#if EV_PERIODIC_ENABLE
1760void inline_size 2165/* make periodics pending */
2166inline_size void
1761periodics_reify (EV_P) 2167periodics_reify (EV_P)
1762{ 2168{
1763 EV_FREQUENT_CHECK; 2169 EV_FREQUENT_CHECK;
1764 2170
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2171 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 { 2172 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2173 int feed_count = 0;
1768 2174
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2175 do
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 { 2176 {
2177 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2178
2179 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2180
2181 /* first reschedule or stop timer */
2182 if (w->reschedule_cb)
2183 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2184 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775 2185
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2186 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777 2187
1778 ANHE_at_cache (periodics [HEAP0]); 2188 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0); 2189 downheap (periodics, periodiccnt, HEAP0);
2190 }
2191 else if (w->interval)
2192 {
2193 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2194 /* if next trigger time is not sufficiently in the future, put it there */
2195 /* this might happen because of floating point inexactness */
2196 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2197 {
2198 ev_at (w) += w->interval;
2199
2200 /* if interval is unreasonably low we might still have a time in the past */
2201 /* so correct this. this will make the periodic very inexact, but the user */
2202 /* has effectively asked to get triggered more often than possible */
2203 if (ev_at (w) < ev_rt_now)
2204 ev_at (w) = ev_rt_now;
2205 }
2206
2207 ANHE_at_cache (periodics [HEAP0]);
2208 downheap (periodics, periodiccnt, HEAP0);
2209 }
2210 else
2211 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2212
2213 EV_FREQUENT_CHECK;
2214 feed_reverse (EV_A_ (W)w);
1780 } 2215 }
1781 else if (w->interval) 2216 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789 2217
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2218 feed_reverse_done (EV_A_ EV_PERIODIC);
1805 } 2219 }
1806} 2220}
1807 2221
2222/* simply recalculate all periodics */
2223/* TODO: maybe ensure that at least one event happens when jumping forward? */
1808static void noinline 2224static void noinline
1809periodics_reschedule (EV_P) 2225periodics_reschedule (EV_P)
1810{ 2226{
1811 int i; 2227 int i;
1812 2228
1825 2241
1826 reheap (periodics, periodiccnt); 2242 reheap (periodics, periodiccnt);
1827} 2243}
1828#endif 2244#endif
1829 2245
1830void inline_speed 2246/* adjust all timers by a given offset */
2247static void noinline
2248timers_reschedule (EV_P_ ev_tstamp adjust)
2249{
2250 int i;
2251
2252 for (i = 0; i < timercnt; ++i)
2253 {
2254 ANHE *he = timers + i + HEAP0;
2255 ANHE_w (*he)->at += adjust;
2256 ANHE_at_cache (*he);
2257 }
2258}
2259
2260/* fetch new monotonic and realtime times from the kernel */
2261/* also detect if there was a timejump, and act accordingly */
2262inline_speed void
1831time_update (EV_P_ ev_tstamp max_block) 2263time_update (EV_P_ ev_tstamp max_block)
1832{ 2264{
1833 int i;
1834
1835#if EV_USE_MONOTONIC 2265#if EV_USE_MONOTONIC
1836 if (expect_true (have_monotonic)) 2266 if (expect_true (have_monotonic))
1837 { 2267 {
2268 int i;
1838 ev_tstamp odiff = rtmn_diff; 2269 ev_tstamp odiff = rtmn_diff;
1839 2270
1840 mn_now = get_clock (); 2271 mn_now = get_clock ();
1841 2272
1842 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2273 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1868 ev_rt_now = ev_time (); 2299 ev_rt_now = ev_time ();
1869 mn_now = get_clock (); 2300 mn_now = get_clock ();
1870 now_floor = mn_now; 2301 now_floor = mn_now;
1871 } 2302 }
1872 2303
2304 /* no timer adjustment, as the monotonic clock doesn't jump */
2305 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1873# if EV_PERIODIC_ENABLE 2306# if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A); 2307 periodics_reschedule (EV_A);
1875# endif 2308# endif
1876 /* no timer adjustment, as the monotonic clock doesn't jump */
1877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1878 } 2309 }
1879 else 2310 else
1880#endif 2311#endif
1881 { 2312 {
1882 ev_rt_now = ev_time (); 2313 ev_rt_now = ev_time ();
1883 2314
1884 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2315 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1885 { 2316 {
2317 /* adjust timers. this is easy, as the offset is the same for all of them */
2318 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1886#if EV_PERIODIC_ENABLE 2319#if EV_PERIODIC_ENABLE
1887 periodics_reschedule (EV_A); 2320 periodics_reschedule (EV_A);
1888#endif 2321#endif
1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1896 } 2322 }
1897 2323
1898 mn_now = ev_rt_now; 2324 mn_now = ev_rt_now;
1899 } 2325 }
1900} 2326}
1901 2327
1902void 2328void
1903ev_ref (EV_P)
1904{
1905 ++activecnt;
1906}
1907
1908void
1909ev_unref (EV_P)
1910{
1911 --activecnt;
1912}
1913
1914static int loop_done;
1915
1916void
1917ev_loop (EV_P_ int flags) 2329ev_run (EV_P_ int flags)
1918{ 2330{
2331#if EV_FEATURE_API
2332 ++loop_depth;
2333#endif
2334
2335 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2336
1919 loop_done = EVUNLOOP_CANCEL; 2337 loop_done = EVBREAK_CANCEL;
1920 2338
1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2339 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1922 2340
1923 do 2341 do
1924 { 2342 {
1925#if EV_VERIFY >= 2 2343#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A); 2344 ev_verify (EV_A);
1927#endif 2345#endif
1928 2346
1929#ifndef _WIN32 2347#ifndef _WIN32
1930 if (expect_false (curpid)) /* penalise the forking check even more */ 2348 if (expect_false (curpid)) /* penalise the forking check even more */
1931 if (expect_false (getpid () != curpid)) 2349 if (expect_false (getpid () != curpid))
1939 /* we might have forked, so queue fork handlers */ 2357 /* we might have forked, so queue fork handlers */
1940 if (expect_false (postfork)) 2358 if (expect_false (postfork))
1941 if (forkcnt) 2359 if (forkcnt)
1942 { 2360 {
1943 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2361 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1944 call_pending (EV_A); 2362 EV_INVOKE_PENDING;
1945 } 2363 }
1946#endif 2364#endif
1947 2365
2366#if EV_PREPARE_ENABLE
1948 /* queue prepare watchers (and execute them) */ 2367 /* queue prepare watchers (and execute them) */
1949 if (expect_false (preparecnt)) 2368 if (expect_false (preparecnt))
1950 { 2369 {
1951 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2370 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1952 call_pending (EV_A); 2371 EV_INVOKE_PENDING;
1953 } 2372 }
2373#endif
1954 2374
1955 if (expect_false (!activecnt)) 2375 if (expect_false (loop_done))
1956 break; 2376 break;
1957 2377
1958 /* we might have forked, so reify kernel state if necessary */ 2378 /* we might have forked, so reify kernel state if necessary */
1959 if (expect_false (postfork)) 2379 if (expect_false (postfork))
1960 loop_fork (EV_A); 2380 loop_fork (EV_A);
1965 /* calculate blocking time */ 2385 /* calculate blocking time */
1966 { 2386 {
1967 ev_tstamp waittime = 0.; 2387 ev_tstamp waittime = 0.;
1968 ev_tstamp sleeptime = 0.; 2388 ev_tstamp sleeptime = 0.;
1969 2389
2390 /* remember old timestamp for io_blocktime calculation */
2391 ev_tstamp prev_mn_now = mn_now;
2392
2393 /* update time to cancel out callback processing overhead */
2394 time_update (EV_A_ 1e100);
2395
1970 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2396 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1971 { 2397 {
1972 /* update time to cancel out callback processing overhead */
1973 time_update (EV_A_ 1e100);
1974
1975 waittime = MAX_BLOCKTIME; 2398 waittime = MAX_BLOCKTIME;
1976 2399
1977 if (timercnt) 2400 if (timercnt)
1978 { 2401 {
1979 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2402 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1986 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2409 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1987 if (waittime > to) waittime = to; 2410 if (waittime > to) waittime = to;
1988 } 2411 }
1989#endif 2412#endif
1990 2413
2414 /* don't let timeouts decrease the waittime below timeout_blocktime */
1991 if (expect_false (waittime < timeout_blocktime)) 2415 if (expect_false (waittime < timeout_blocktime))
1992 waittime = timeout_blocktime; 2416 waittime = timeout_blocktime;
1993 2417
1994 sleeptime = waittime - backend_fudge; 2418 /* extra check because io_blocktime is commonly 0 */
1995
1996 if (expect_true (sleeptime > io_blocktime)) 2419 if (expect_false (io_blocktime))
1997 sleeptime = io_blocktime;
1998
1999 if (sleeptime)
2000 { 2420 {
2421 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2422
2423 if (sleeptime > waittime - backend_fudge)
2424 sleeptime = waittime - backend_fudge;
2425
2426 if (expect_true (sleeptime > 0.))
2427 {
2001 ev_sleep (sleeptime); 2428 ev_sleep (sleeptime);
2002 waittime -= sleeptime; 2429 waittime -= sleeptime;
2430 }
2003 } 2431 }
2004 } 2432 }
2005 2433
2434#if EV_FEATURE_API
2006 ++loop_count; 2435 ++loop_count;
2436#endif
2437 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2007 backend_poll (EV_A_ waittime); 2438 backend_poll (EV_A_ waittime);
2439 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2008 2440
2009 /* update ev_rt_now, do magic */ 2441 /* update ev_rt_now, do magic */
2010 time_update (EV_A_ waittime + sleeptime); 2442 time_update (EV_A_ waittime + sleeptime);
2011 } 2443 }
2012 2444
2019#if EV_IDLE_ENABLE 2451#if EV_IDLE_ENABLE
2020 /* queue idle watchers unless other events are pending */ 2452 /* queue idle watchers unless other events are pending */
2021 idle_reify (EV_A); 2453 idle_reify (EV_A);
2022#endif 2454#endif
2023 2455
2456#if EV_CHECK_ENABLE
2024 /* queue check watchers, to be executed first */ 2457 /* queue check watchers, to be executed first */
2025 if (expect_false (checkcnt)) 2458 if (expect_false (checkcnt))
2026 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2459 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2460#endif
2027 2461
2028 call_pending (EV_A); 2462 EV_INVOKE_PENDING;
2029 } 2463 }
2030 while (expect_true ( 2464 while (expect_true (
2031 activecnt 2465 activecnt
2032 && !loop_done 2466 && !loop_done
2033 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2467 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2034 )); 2468 ));
2035 2469
2036 if (loop_done == EVUNLOOP_ONE) 2470 if (loop_done == EVBREAK_ONE)
2037 loop_done = EVUNLOOP_CANCEL; 2471 loop_done = EVBREAK_CANCEL;
2038}
2039 2472
2473#if EV_FEATURE_API
2474 --loop_depth;
2475#endif
2476}
2477
2040void 2478void
2041ev_unloop (EV_P_ int how) 2479ev_break (EV_P_ int how)
2042{ 2480{
2043 loop_done = how; 2481 loop_done = how;
2044} 2482}
2045 2483
2484void
2485ev_ref (EV_P)
2486{
2487 ++activecnt;
2488}
2489
2490void
2491ev_unref (EV_P)
2492{
2493 --activecnt;
2494}
2495
2496void
2497ev_now_update (EV_P)
2498{
2499 time_update (EV_A_ 1e100);
2500}
2501
2502void
2503ev_suspend (EV_P)
2504{
2505 ev_now_update (EV_A);
2506}
2507
2508void
2509ev_resume (EV_P)
2510{
2511 ev_tstamp mn_prev = mn_now;
2512
2513 ev_now_update (EV_A);
2514 timers_reschedule (EV_A_ mn_now - mn_prev);
2515#if EV_PERIODIC_ENABLE
2516 /* TODO: really do this? */
2517 periodics_reschedule (EV_A);
2518#endif
2519}
2520
2046/*****************************************************************************/ 2521/*****************************************************************************/
2522/* singly-linked list management, used when the expected list length is short */
2047 2523
2048void inline_size 2524inline_size void
2049wlist_add (WL *head, WL elem) 2525wlist_add (WL *head, WL elem)
2050{ 2526{
2051 elem->next = *head; 2527 elem->next = *head;
2052 *head = elem; 2528 *head = elem;
2053} 2529}
2054 2530
2055void inline_size 2531inline_size void
2056wlist_del (WL *head, WL elem) 2532wlist_del (WL *head, WL elem)
2057{ 2533{
2058 while (*head) 2534 while (*head)
2059 { 2535 {
2060 if (*head == elem) 2536 if (expect_true (*head == elem))
2061 { 2537 {
2062 *head = elem->next; 2538 *head = elem->next;
2063 return; 2539 break;
2064 } 2540 }
2065 2541
2066 head = &(*head)->next; 2542 head = &(*head)->next;
2067 } 2543 }
2068} 2544}
2069 2545
2070void inline_speed 2546/* internal, faster, version of ev_clear_pending */
2547inline_speed void
2071clear_pending (EV_P_ W w) 2548clear_pending (EV_P_ W w)
2072{ 2549{
2073 if (w->pending) 2550 if (w->pending)
2074 { 2551 {
2075 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2552 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2076 w->pending = 0; 2553 w->pending = 0;
2077 } 2554 }
2078} 2555}
2079 2556
2080int 2557int
2084 int pending = w_->pending; 2561 int pending = w_->pending;
2085 2562
2086 if (expect_true (pending)) 2563 if (expect_true (pending))
2087 { 2564 {
2088 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2565 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2566 p->w = (W)&pending_w;
2089 w_->pending = 0; 2567 w_->pending = 0;
2090 p->w = 0;
2091 return p->events; 2568 return p->events;
2092 } 2569 }
2093 else 2570 else
2094 return 0; 2571 return 0;
2095} 2572}
2096 2573
2097void inline_size 2574inline_size void
2098pri_adjust (EV_P_ W w) 2575pri_adjust (EV_P_ W w)
2099{ 2576{
2100 int pri = w->priority; 2577 int pri = ev_priority (w);
2101 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2578 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2102 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2579 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2103 w->priority = pri; 2580 ev_set_priority (w, pri);
2104} 2581}
2105 2582
2106void inline_speed 2583inline_speed void
2107ev_start (EV_P_ W w, int active) 2584ev_start (EV_P_ W w, int active)
2108{ 2585{
2109 pri_adjust (EV_A_ w); 2586 pri_adjust (EV_A_ w);
2110 w->active = active; 2587 w->active = active;
2111 ev_ref (EV_A); 2588 ev_ref (EV_A);
2112} 2589}
2113 2590
2114void inline_size 2591inline_size void
2115ev_stop (EV_P_ W w) 2592ev_stop (EV_P_ W w)
2116{ 2593{
2117 ev_unref (EV_A); 2594 ev_unref (EV_A);
2118 w->active = 0; 2595 w->active = 0;
2119} 2596}
2126 int fd = w->fd; 2603 int fd = w->fd;
2127 2604
2128 if (expect_false (ev_is_active (w))) 2605 if (expect_false (ev_is_active (w)))
2129 return; 2606 return;
2130 2607
2131 assert (("ev_io_start called with negative fd", fd >= 0)); 2608 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2609 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2132 2610
2133 EV_FREQUENT_CHECK; 2611 EV_FREQUENT_CHECK;
2134 2612
2135 ev_start (EV_A_ (W)w, 1); 2613 ev_start (EV_A_ (W)w, 1);
2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2614 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2137 wlist_add (&anfds[fd].head, (WL)w); 2615 wlist_add (&anfds[fd].head, (WL)w);
2138 2616
2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2617 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2140 w->events &= ~EV_IOFDSET; 2618 w->events &= ~EV__IOFDSET;
2141 2619
2142 EV_FREQUENT_CHECK; 2620 EV_FREQUENT_CHECK;
2143} 2621}
2144 2622
2145void noinline 2623void noinline
2147{ 2625{
2148 clear_pending (EV_A_ (W)w); 2626 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 2627 if (expect_false (!ev_is_active (w)))
2150 return; 2628 return;
2151 2629
2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2630 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2153 2631
2154 EV_FREQUENT_CHECK; 2632 EV_FREQUENT_CHECK;
2155 2633
2156 wlist_del (&anfds[w->fd].head, (WL)w); 2634 wlist_del (&anfds[w->fd].head, (WL)w);
2157 ev_stop (EV_A_ (W)w); 2635 ev_stop (EV_A_ (W)w);
2158 2636
2159 fd_change (EV_A_ w->fd, 1); 2637 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2160 2638
2161 EV_FREQUENT_CHECK; 2639 EV_FREQUENT_CHECK;
2162} 2640}
2163 2641
2164void noinline 2642void noinline
2167 if (expect_false (ev_is_active (w))) 2645 if (expect_false (ev_is_active (w)))
2168 return; 2646 return;
2169 2647
2170 ev_at (w) += mn_now; 2648 ev_at (w) += mn_now;
2171 2649
2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2650 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2173 2651
2174 EV_FREQUENT_CHECK; 2652 EV_FREQUENT_CHECK;
2175 2653
2176 ++timercnt; 2654 ++timercnt;
2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2655 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2180 ANHE_at_cache (timers [ev_active (w)]); 2658 ANHE_at_cache (timers [ev_active (w)]);
2181 upheap (timers, ev_active (w)); 2659 upheap (timers, ev_active (w));
2182 2660
2183 EV_FREQUENT_CHECK; 2661 EV_FREQUENT_CHECK;
2184 2662
2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2663 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2186} 2664}
2187 2665
2188void noinline 2666void noinline
2189ev_timer_stop (EV_P_ ev_timer *w) 2667ev_timer_stop (EV_P_ ev_timer *w)
2190{ 2668{
2195 EV_FREQUENT_CHECK; 2673 EV_FREQUENT_CHECK;
2196 2674
2197 { 2675 {
2198 int active = ev_active (w); 2676 int active = ev_active (w);
2199 2677
2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2678 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2201 2679
2202 --timercnt; 2680 --timercnt;
2203 2681
2204 if (expect_true (active < timercnt + HEAP0)) 2682 if (expect_true (active < timercnt + HEAP0))
2205 { 2683 {
2206 timers [active] = timers [timercnt + HEAP0]; 2684 timers [active] = timers [timercnt + HEAP0];
2207 adjustheap (timers, timercnt, active); 2685 adjustheap (timers, timercnt, active);
2208 } 2686 }
2209 } 2687 }
2210 2688
2211 EV_FREQUENT_CHECK;
2212
2213 ev_at (w) -= mn_now; 2689 ev_at (w) -= mn_now;
2214 2690
2215 ev_stop (EV_A_ (W)w); 2691 ev_stop (EV_A_ (W)w);
2692
2693 EV_FREQUENT_CHECK;
2216} 2694}
2217 2695
2218void noinline 2696void noinline
2219ev_timer_again (EV_P_ ev_timer *w) 2697ev_timer_again (EV_P_ ev_timer *w)
2220{ 2698{
2238 } 2716 }
2239 2717
2240 EV_FREQUENT_CHECK; 2718 EV_FREQUENT_CHECK;
2241} 2719}
2242 2720
2721ev_tstamp
2722ev_timer_remaining (EV_P_ ev_timer *w)
2723{
2724 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2725}
2726
2243#if EV_PERIODIC_ENABLE 2727#if EV_PERIODIC_ENABLE
2244void noinline 2728void noinline
2245ev_periodic_start (EV_P_ ev_periodic *w) 2729ev_periodic_start (EV_P_ ev_periodic *w)
2246{ 2730{
2247 if (expect_false (ev_is_active (w))) 2731 if (expect_false (ev_is_active (w)))
2249 2733
2250 if (w->reschedule_cb) 2734 if (w->reschedule_cb)
2251 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2735 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2252 else if (w->interval) 2736 else if (w->interval)
2253 { 2737 {
2254 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2738 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2255 /* this formula differs from the one in periodic_reify because we do not always round up */ 2739 /* this formula differs from the one in periodic_reify because we do not always round up */
2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2740 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2257 } 2741 }
2258 else 2742 else
2259 ev_at (w) = w->offset; 2743 ev_at (w) = w->offset;
2267 ANHE_at_cache (periodics [ev_active (w)]); 2751 ANHE_at_cache (periodics [ev_active (w)]);
2268 upheap (periodics, ev_active (w)); 2752 upheap (periodics, ev_active (w));
2269 2753
2270 EV_FREQUENT_CHECK; 2754 EV_FREQUENT_CHECK;
2271 2755
2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2756 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2273} 2757}
2274 2758
2275void noinline 2759void noinline
2276ev_periodic_stop (EV_P_ ev_periodic *w) 2760ev_periodic_stop (EV_P_ ev_periodic *w)
2277{ 2761{
2282 EV_FREQUENT_CHECK; 2766 EV_FREQUENT_CHECK;
2283 2767
2284 { 2768 {
2285 int active = ev_active (w); 2769 int active = ev_active (w);
2286 2770
2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2771 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2288 2772
2289 --periodiccnt; 2773 --periodiccnt;
2290 2774
2291 if (expect_true (active < periodiccnt + HEAP0)) 2775 if (expect_true (active < periodiccnt + HEAP0))
2292 { 2776 {
2293 periodics [active] = periodics [periodiccnt + HEAP0]; 2777 periodics [active] = periodics [periodiccnt + HEAP0];
2294 adjustheap (periodics, periodiccnt, active); 2778 adjustheap (periodics, periodiccnt, active);
2295 } 2779 }
2296 } 2780 }
2297 2781
2298 EV_FREQUENT_CHECK;
2299
2300 ev_stop (EV_A_ (W)w); 2782 ev_stop (EV_A_ (W)w);
2783
2784 EV_FREQUENT_CHECK;
2301} 2785}
2302 2786
2303void noinline 2787void noinline
2304ev_periodic_again (EV_P_ ev_periodic *w) 2788ev_periodic_again (EV_P_ ev_periodic *w)
2305{ 2789{
2311 2795
2312#ifndef SA_RESTART 2796#ifndef SA_RESTART
2313# define SA_RESTART 0 2797# define SA_RESTART 0
2314#endif 2798#endif
2315 2799
2800#if EV_SIGNAL_ENABLE
2801
2316void noinline 2802void noinline
2317ev_signal_start (EV_P_ ev_signal *w) 2803ev_signal_start (EV_P_ ev_signal *w)
2318{ 2804{
2319#if EV_MULTIPLICITY
2320 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2321#endif
2322 if (expect_false (ev_is_active (w))) 2805 if (expect_false (ev_is_active (w)))
2323 return; 2806 return;
2324 2807
2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2808 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2326 2809
2327 evpipe_init (EV_A); 2810#if EV_MULTIPLICITY
2811 assert (("libev: a signal must not be attached to two different loops",
2812 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2328 2813
2329 EV_FREQUENT_CHECK; 2814 signals [w->signum - 1].loop = EV_A;
2815#endif
2330 2816
2817 EV_FREQUENT_CHECK;
2818
2819#if EV_USE_SIGNALFD
2820 if (sigfd == -2)
2331 { 2821 {
2332#ifndef _WIN32 2822 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2333 sigset_t full, prev; 2823 if (sigfd < 0 && errno == EINVAL)
2334 sigfillset (&full); 2824 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2335 sigprocmask (SIG_SETMASK, &full, &prev);
2336#endif
2337 2825
2338 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2826 if (sigfd >= 0)
2827 {
2828 fd_intern (sigfd); /* doing it twice will not hurt */
2339 2829
2340#ifndef _WIN32 2830 sigemptyset (&sigfd_set);
2341 sigprocmask (SIG_SETMASK, &prev, 0); 2831
2342#endif 2832 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2833 ev_set_priority (&sigfd_w, EV_MAXPRI);
2834 ev_io_start (EV_A_ &sigfd_w);
2835 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2836 }
2343 } 2837 }
2838
2839 if (sigfd >= 0)
2840 {
2841 /* TODO: check .head */
2842 sigaddset (&sigfd_set, w->signum);
2843 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2844
2845 signalfd (sigfd, &sigfd_set, 0);
2846 }
2847#endif
2344 2848
2345 ev_start (EV_A_ (W)w, 1); 2849 ev_start (EV_A_ (W)w, 1);
2346 wlist_add (&signals [w->signum - 1].head, (WL)w); 2850 wlist_add (&signals [w->signum - 1].head, (WL)w);
2347 2851
2348 if (!((WL)w)->next) 2852 if (!((WL)w)->next)
2853# if EV_USE_SIGNALFD
2854 if (sigfd < 0) /*TODO*/
2855# endif
2349 { 2856 {
2350#if _WIN32 2857# ifdef _WIN32
2858 evpipe_init (EV_A);
2859
2351 signal (w->signum, ev_sighandler); 2860 signal (w->signum, ev_sighandler);
2352#else 2861# else
2353 struct sigaction sa; 2862 struct sigaction sa;
2863
2864 evpipe_init (EV_A);
2865
2354 sa.sa_handler = ev_sighandler; 2866 sa.sa_handler = ev_sighandler;
2355 sigfillset (&sa.sa_mask); 2867 sigfillset (&sa.sa_mask);
2356 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2868 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2357 sigaction (w->signum, &sa, 0); 2869 sigaction (w->signum, &sa, 0);
2870
2871 sigemptyset (&sa.sa_mask);
2872 sigaddset (&sa.sa_mask, w->signum);
2873 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2358#endif 2874#endif
2359 } 2875 }
2360 2876
2361 EV_FREQUENT_CHECK; 2877 EV_FREQUENT_CHECK;
2362} 2878}
2363 2879
2364void noinline 2880void noinline
2372 2888
2373 wlist_del (&signals [w->signum - 1].head, (WL)w); 2889 wlist_del (&signals [w->signum - 1].head, (WL)w);
2374 ev_stop (EV_A_ (W)w); 2890 ev_stop (EV_A_ (W)w);
2375 2891
2376 if (!signals [w->signum - 1].head) 2892 if (!signals [w->signum - 1].head)
2893 {
2894#if EV_MULTIPLICITY
2895 signals [w->signum - 1].loop = 0; /* unattach from signal */
2896#endif
2897#if EV_USE_SIGNALFD
2898 if (sigfd >= 0)
2899 {
2900 sigset_t ss;
2901
2902 sigemptyset (&ss);
2903 sigaddset (&ss, w->signum);
2904 sigdelset (&sigfd_set, w->signum);
2905
2906 signalfd (sigfd, &sigfd_set, 0);
2907 sigprocmask (SIG_UNBLOCK, &ss, 0);
2908 }
2909 else
2910#endif
2377 signal (w->signum, SIG_DFL); 2911 signal (w->signum, SIG_DFL);
2912 }
2378 2913
2379 EV_FREQUENT_CHECK; 2914 EV_FREQUENT_CHECK;
2380} 2915}
2916
2917#endif
2918
2919#if EV_CHILD_ENABLE
2381 2920
2382void 2921void
2383ev_child_start (EV_P_ ev_child *w) 2922ev_child_start (EV_P_ ev_child *w)
2384{ 2923{
2385#if EV_MULTIPLICITY 2924#if EV_MULTIPLICITY
2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2925 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2387#endif 2926#endif
2388 if (expect_false (ev_is_active (w))) 2927 if (expect_false (ev_is_active (w)))
2389 return; 2928 return;
2390 2929
2391 EV_FREQUENT_CHECK; 2930 EV_FREQUENT_CHECK;
2392 2931
2393 ev_start (EV_A_ (W)w, 1); 2932 ev_start (EV_A_ (W)w, 1);
2394 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2933 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2395 2934
2396 EV_FREQUENT_CHECK; 2935 EV_FREQUENT_CHECK;
2397} 2936}
2398 2937
2399void 2938void
2403 if (expect_false (!ev_is_active (w))) 2942 if (expect_false (!ev_is_active (w)))
2404 return; 2943 return;
2405 2944
2406 EV_FREQUENT_CHECK; 2945 EV_FREQUENT_CHECK;
2407 2946
2408 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2947 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2409 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2410 2949
2411 EV_FREQUENT_CHECK; 2950 EV_FREQUENT_CHECK;
2412} 2951}
2952
2953#endif
2413 2954
2414#if EV_STAT_ENABLE 2955#if EV_STAT_ENABLE
2415 2956
2416# ifdef _WIN32 2957# ifdef _WIN32
2417# undef lstat 2958# undef lstat
2418# define lstat(a,b) _stati64 (a,b) 2959# define lstat(a,b) _stati64 (a,b)
2419# endif 2960# endif
2420 2961
2421#define DEF_STAT_INTERVAL 5.0074891 2962#define DEF_STAT_INTERVAL 5.0074891
2963#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2422#define MIN_STAT_INTERVAL 0.1074891 2964#define MIN_STAT_INTERVAL 0.1074891
2423 2965
2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2966static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2425 2967
2426#if EV_USE_INOTIFY 2968#if EV_USE_INOTIFY
2427# define EV_INOTIFY_BUFSIZE 8192 2969
2970/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2971# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2428 2972
2429static void noinline 2973static void noinline
2430infy_add (EV_P_ ev_stat *w) 2974infy_add (EV_P_ ev_stat *w)
2431{ 2975{
2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2976 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2433 2977
2434 if (w->wd < 0) 2978 if (w->wd >= 0)
2979 {
2980 struct statfs sfs;
2981
2982 /* now local changes will be tracked by inotify, but remote changes won't */
2983 /* unless the filesystem is known to be local, we therefore still poll */
2984 /* also do poll on <2.6.25, but with normal frequency */
2985
2986 if (!fs_2625)
2987 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2988 else if (!statfs (w->path, &sfs)
2989 && (sfs.f_type == 0x1373 /* devfs */
2990 || sfs.f_type == 0xEF53 /* ext2/3 */
2991 || sfs.f_type == 0x3153464a /* jfs */
2992 || sfs.f_type == 0x52654973 /* reiser3 */
2993 || sfs.f_type == 0x01021994 /* tempfs */
2994 || sfs.f_type == 0x58465342 /* xfs */))
2995 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2996 else
2997 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2435 { 2998 }
2436 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2999 else
3000 {
3001 /* can't use inotify, continue to stat */
3002 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2437 3003
2438 /* monitor some parent directory for speedup hints */ 3004 /* if path is not there, monitor some parent directory for speedup hints */
2439 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3005 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2440 /* but an efficiency issue only */ 3006 /* but an efficiency issue only */
2441 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2442 { 3008 {
2443 char path [4096]; 3009 char path [4096];
2444 strcpy (path, w->path); 3010 strcpy (path, w->path);
2448 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3014 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2449 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3015 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2450 3016
2451 char *pend = strrchr (path, '/'); 3017 char *pend = strrchr (path, '/');
2452 3018
2453 if (!pend) 3019 if (!pend || pend == path)
2454 break; /* whoops, no '/', complain to your admin */ 3020 break;
2455 3021
2456 *pend = 0; 3022 *pend = 0;
2457 w->wd = inotify_add_watch (fs_fd, path, mask); 3023 w->wd = inotify_add_watch (fs_fd, path, mask);
2458 } 3024 }
2459 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3025 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2460 } 3026 }
2461 } 3027 }
2462 else
2463 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2464 3028
2465 if (w->wd >= 0) 3029 if (w->wd >= 0)
2466 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3030 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3031
3032 /* now re-arm timer, if required */
3033 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3034 ev_timer_again (EV_A_ &w->timer);
3035 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2467} 3036}
2468 3037
2469static void noinline 3038static void noinline
2470infy_del (EV_P_ ev_stat *w) 3039infy_del (EV_P_ ev_stat *w)
2471{ 3040{
2474 3043
2475 if (wd < 0) 3044 if (wd < 0)
2476 return; 3045 return;
2477 3046
2478 w->wd = -2; 3047 w->wd = -2;
2479 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3048 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2480 wlist_del (&fs_hash [slot].head, (WL)w); 3049 wlist_del (&fs_hash [slot].head, (WL)w);
2481 3050
2482 /* remove this watcher, if others are watching it, they will rearm */ 3051 /* remove this watcher, if others are watching it, they will rearm */
2483 inotify_rm_watch (fs_fd, wd); 3052 inotify_rm_watch (fs_fd, wd);
2484} 3053}
2485 3054
2486static void noinline 3055static void noinline
2487infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3056infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2488{ 3057{
2489 if (slot < 0) 3058 if (slot < 0)
2490 /* overflow, need to check for all hahs slots */ 3059 /* overflow, need to check for all hash slots */
2491 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3060 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2492 infy_wd (EV_A_ slot, wd, ev); 3061 infy_wd (EV_A_ slot, wd, ev);
2493 else 3062 else
2494 { 3063 {
2495 WL w_; 3064 WL w_;
2496 3065
2497 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3066 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2498 { 3067 {
2499 ev_stat *w = (ev_stat *)w_; 3068 ev_stat *w = (ev_stat *)w_;
2500 w_ = w_->next; /* lets us remove this watcher and all before it */ 3069 w_ = w_->next; /* lets us remove this watcher and all before it */
2501 3070
2502 if (w->wd == wd || wd == -1) 3071 if (w->wd == wd || wd == -1)
2503 { 3072 {
2504 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3073 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2505 { 3074 {
3075 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2506 w->wd = -1; 3076 w->wd = -1;
2507 infy_add (EV_A_ w); /* re-add, no matter what */ 3077 infy_add (EV_A_ w); /* re-add, no matter what */
2508 } 3078 }
2509 3079
2510 stat_timer_cb (EV_A_ &w->timer, 0); 3080 stat_timer_cb (EV_A_ &w->timer, 0);
2515 3085
2516static void 3086static void
2517infy_cb (EV_P_ ev_io *w, int revents) 3087infy_cb (EV_P_ ev_io *w, int revents)
2518{ 3088{
2519 char buf [EV_INOTIFY_BUFSIZE]; 3089 char buf [EV_INOTIFY_BUFSIZE];
2520 struct inotify_event *ev = (struct inotify_event *)buf;
2521 int ofs; 3090 int ofs;
2522 int len = read (fs_fd, buf, sizeof (buf)); 3091 int len = read (fs_fd, buf, sizeof (buf));
2523 3092
2524 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3093 for (ofs = 0; ofs < len; )
3094 {
3095 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2525 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3096 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3097 ofs += sizeof (struct inotify_event) + ev->len;
3098 }
2526} 3099}
2527 3100
2528void inline_size 3101inline_size void
3102ev_check_2625 (EV_P)
3103{
3104 /* kernels < 2.6.25 are borked
3105 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3106 */
3107 if (ev_linux_version () < 0x020619)
3108 return;
3109
3110 fs_2625 = 1;
3111}
3112
3113inline_size int
3114infy_newfd (void)
3115{
3116#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3117 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3118 if (fd >= 0)
3119 return fd;
3120#endif
3121 return inotify_init ();
3122}
3123
3124inline_size void
2529infy_init (EV_P) 3125infy_init (EV_P)
2530{ 3126{
2531 if (fs_fd != -2) 3127 if (fs_fd != -2)
2532 return; 3128 return;
2533 3129
3130 fs_fd = -1;
3131
3132 ev_check_2625 (EV_A);
3133
2534 fs_fd = inotify_init (); 3134 fs_fd = infy_newfd ();
2535 3135
2536 if (fs_fd >= 0) 3136 if (fs_fd >= 0)
2537 { 3137 {
3138 fd_intern (fs_fd);
2538 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3139 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2539 ev_set_priority (&fs_w, EV_MAXPRI); 3140 ev_set_priority (&fs_w, EV_MAXPRI);
2540 ev_io_start (EV_A_ &fs_w); 3141 ev_io_start (EV_A_ &fs_w);
3142 ev_unref (EV_A);
2541 } 3143 }
2542} 3144}
2543 3145
2544void inline_size 3146inline_size void
2545infy_fork (EV_P) 3147infy_fork (EV_P)
2546{ 3148{
2547 int slot; 3149 int slot;
2548 3150
2549 if (fs_fd < 0) 3151 if (fs_fd < 0)
2550 return; 3152 return;
2551 3153
3154 ev_ref (EV_A);
3155 ev_io_stop (EV_A_ &fs_w);
2552 close (fs_fd); 3156 close (fs_fd);
2553 fs_fd = inotify_init (); 3157 fs_fd = infy_newfd ();
2554 3158
3159 if (fs_fd >= 0)
3160 {
3161 fd_intern (fs_fd);
3162 ev_io_set (&fs_w, fs_fd, EV_READ);
3163 ev_io_start (EV_A_ &fs_w);
3164 ev_unref (EV_A);
3165 }
3166
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3167 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2556 { 3168 {
2557 WL w_ = fs_hash [slot].head; 3169 WL w_ = fs_hash [slot].head;
2558 fs_hash [slot].head = 0; 3170 fs_hash [slot].head = 0;
2559 3171
2560 while (w_) 3172 while (w_)
2565 w->wd = -1; 3177 w->wd = -1;
2566 3178
2567 if (fs_fd >= 0) 3179 if (fs_fd >= 0)
2568 infy_add (EV_A_ w); /* re-add, no matter what */ 3180 infy_add (EV_A_ w); /* re-add, no matter what */
2569 else 3181 else
3182 {
3183 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3184 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2570 ev_timer_start (EV_A_ &w->timer); 3185 ev_timer_again (EV_A_ &w->timer);
3186 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3187 }
2571 } 3188 }
2572
2573 } 3189 }
2574} 3190}
2575 3191
2576#endif 3192#endif
2577 3193
2593static void noinline 3209static void noinline
2594stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3210stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2595{ 3211{
2596 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3212 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2597 3213
2598 /* we copy this here each the time so that */ 3214 ev_statdata prev = w->attr;
2599 /* prev has the old value when the callback gets invoked */
2600 w->prev = w->attr;
2601 ev_stat_stat (EV_A_ w); 3215 ev_stat_stat (EV_A_ w);
2602 3216
2603 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3217 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2604 if ( 3218 if (
2605 w->prev.st_dev != w->attr.st_dev 3219 prev.st_dev != w->attr.st_dev
2606 || w->prev.st_ino != w->attr.st_ino 3220 || prev.st_ino != w->attr.st_ino
2607 || w->prev.st_mode != w->attr.st_mode 3221 || prev.st_mode != w->attr.st_mode
2608 || w->prev.st_nlink != w->attr.st_nlink 3222 || prev.st_nlink != w->attr.st_nlink
2609 || w->prev.st_uid != w->attr.st_uid 3223 || prev.st_uid != w->attr.st_uid
2610 || w->prev.st_gid != w->attr.st_gid 3224 || prev.st_gid != w->attr.st_gid
2611 || w->prev.st_rdev != w->attr.st_rdev 3225 || prev.st_rdev != w->attr.st_rdev
2612 || w->prev.st_size != w->attr.st_size 3226 || prev.st_size != w->attr.st_size
2613 || w->prev.st_atime != w->attr.st_atime 3227 || prev.st_atime != w->attr.st_atime
2614 || w->prev.st_mtime != w->attr.st_mtime 3228 || prev.st_mtime != w->attr.st_mtime
2615 || w->prev.st_ctime != w->attr.st_ctime 3229 || prev.st_ctime != w->attr.st_ctime
2616 ) { 3230 ) {
3231 /* we only update w->prev on actual differences */
3232 /* in case we test more often than invoke the callback, */
3233 /* to ensure that prev is always different to attr */
3234 w->prev = prev;
3235
2617 #if EV_USE_INOTIFY 3236 #if EV_USE_INOTIFY
3237 if (fs_fd >= 0)
3238 {
2618 infy_del (EV_A_ w); 3239 infy_del (EV_A_ w);
2619 infy_add (EV_A_ w); 3240 infy_add (EV_A_ w);
2620 ev_stat_stat (EV_A_ w); /* avoid race... */ 3241 ev_stat_stat (EV_A_ w); /* avoid race... */
3242 }
2621 #endif 3243 #endif
2622 3244
2623 ev_feed_event (EV_A_ w, EV_STAT); 3245 ev_feed_event (EV_A_ w, EV_STAT);
2624 } 3246 }
2625} 3247}
2628ev_stat_start (EV_P_ ev_stat *w) 3250ev_stat_start (EV_P_ ev_stat *w)
2629{ 3251{
2630 if (expect_false (ev_is_active (w))) 3252 if (expect_false (ev_is_active (w)))
2631 return; 3253 return;
2632 3254
2633 /* since we use memcmp, we need to clear any padding data etc. */
2634 memset (&w->prev, 0, sizeof (ev_statdata));
2635 memset (&w->attr, 0, sizeof (ev_statdata));
2636
2637 ev_stat_stat (EV_A_ w); 3255 ev_stat_stat (EV_A_ w);
2638 3256
3257 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2639 if (w->interval < MIN_STAT_INTERVAL) 3258 w->interval = MIN_STAT_INTERVAL;
2640 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2641 3259
2642 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3260 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2643 ev_set_priority (&w->timer, ev_priority (w)); 3261 ev_set_priority (&w->timer, ev_priority (w));
2644 3262
2645#if EV_USE_INOTIFY 3263#if EV_USE_INOTIFY
2646 infy_init (EV_A); 3264 infy_init (EV_A);
2647 3265
2648 if (fs_fd >= 0) 3266 if (fs_fd >= 0)
2649 infy_add (EV_A_ w); 3267 infy_add (EV_A_ w);
2650 else 3268 else
2651#endif 3269#endif
3270 {
2652 ev_timer_start (EV_A_ &w->timer); 3271 ev_timer_again (EV_A_ &w->timer);
3272 ev_unref (EV_A);
3273 }
2653 3274
2654 ev_start (EV_A_ (W)w, 1); 3275 ev_start (EV_A_ (W)w, 1);
2655 3276
2656 EV_FREQUENT_CHECK; 3277 EV_FREQUENT_CHECK;
2657} 3278}
2666 EV_FREQUENT_CHECK; 3287 EV_FREQUENT_CHECK;
2667 3288
2668#if EV_USE_INOTIFY 3289#if EV_USE_INOTIFY
2669 infy_del (EV_A_ w); 3290 infy_del (EV_A_ w);
2670#endif 3291#endif
3292
3293 if (ev_is_active (&w->timer))
3294 {
3295 ev_ref (EV_A);
2671 ev_timer_stop (EV_A_ &w->timer); 3296 ev_timer_stop (EV_A_ &w->timer);
3297 }
2672 3298
2673 ev_stop (EV_A_ (W)w); 3299 ev_stop (EV_A_ (W)w);
2674 3300
2675 EV_FREQUENT_CHECK; 3301 EV_FREQUENT_CHECK;
2676} 3302}
2721 3347
2722 EV_FREQUENT_CHECK; 3348 EV_FREQUENT_CHECK;
2723} 3349}
2724#endif 3350#endif
2725 3351
3352#if EV_PREPARE_ENABLE
2726void 3353void
2727ev_prepare_start (EV_P_ ev_prepare *w) 3354ev_prepare_start (EV_P_ ev_prepare *w)
2728{ 3355{
2729 if (expect_false (ev_is_active (w))) 3356 if (expect_false (ev_is_active (w)))
2730 return; 3357 return;
2756 3383
2757 ev_stop (EV_A_ (W)w); 3384 ev_stop (EV_A_ (W)w);
2758 3385
2759 EV_FREQUENT_CHECK; 3386 EV_FREQUENT_CHECK;
2760} 3387}
3388#endif
2761 3389
3390#if EV_CHECK_ENABLE
2762void 3391void
2763ev_check_start (EV_P_ ev_check *w) 3392ev_check_start (EV_P_ ev_check *w)
2764{ 3393{
2765 if (expect_false (ev_is_active (w))) 3394 if (expect_false (ev_is_active (w)))
2766 return; 3395 return;
2792 3421
2793 ev_stop (EV_A_ (W)w); 3422 ev_stop (EV_A_ (W)w);
2794 3423
2795 EV_FREQUENT_CHECK; 3424 EV_FREQUENT_CHECK;
2796} 3425}
3426#endif
2797 3427
2798#if EV_EMBED_ENABLE 3428#if EV_EMBED_ENABLE
2799void noinline 3429void noinline
2800ev_embed_sweep (EV_P_ ev_embed *w) 3430ev_embed_sweep (EV_P_ ev_embed *w)
2801{ 3431{
2802 ev_loop (w->other, EVLOOP_NONBLOCK); 3432 ev_run (w->other, EVRUN_NOWAIT);
2803} 3433}
2804 3434
2805static void 3435static void
2806embed_io_cb (EV_P_ ev_io *io, int revents) 3436embed_io_cb (EV_P_ ev_io *io, int revents)
2807{ 3437{
2808 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2809 3439
2810 if (ev_cb (w)) 3440 if (ev_cb (w))
2811 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2812 else 3442 else
2813 ev_loop (w->other, EVLOOP_NONBLOCK); 3443 ev_run (w->other, EVRUN_NOWAIT);
2814} 3444}
2815 3445
2816static void 3446static void
2817embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2818{ 3448{
2819 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2820 3450
2821 { 3451 {
2822 struct ev_loop *loop = w->other; 3452 EV_P = w->other;
2823 3453
2824 while (fdchangecnt) 3454 while (fdchangecnt)
2825 { 3455 {
2826 fd_reify (EV_A); 3456 fd_reify (EV_A);
2827 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3457 ev_run (EV_A_ EVRUN_NOWAIT);
2828 } 3458 }
2829 } 3459 }
3460}
3461
3462static void
3463embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3464{
3465 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3466
3467 ev_embed_stop (EV_A_ w);
3468
3469 {
3470 EV_P = w->other;
3471
3472 ev_loop_fork (EV_A);
3473 ev_run (EV_A_ EVRUN_NOWAIT);
3474 }
3475
3476 ev_embed_start (EV_A_ w);
2830} 3477}
2831 3478
2832#if 0 3479#if 0
2833static void 3480static void
2834embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3481embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2842{ 3489{
2843 if (expect_false (ev_is_active (w))) 3490 if (expect_false (ev_is_active (w)))
2844 return; 3491 return;
2845 3492
2846 { 3493 {
2847 struct ev_loop *loop = w->other; 3494 EV_P = w->other;
2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3495 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3496 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2850 } 3497 }
2851 3498
2852 EV_FREQUENT_CHECK; 3499 EV_FREQUENT_CHECK;
2853 3500
2856 3503
2857 ev_prepare_init (&w->prepare, embed_prepare_cb); 3504 ev_prepare_init (&w->prepare, embed_prepare_cb);
2858 ev_set_priority (&w->prepare, EV_MINPRI); 3505 ev_set_priority (&w->prepare, EV_MINPRI);
2859 ev_prepare_start (EV_A_ &w->prepare); 3506 ev_prepare_start (EV_A_ &w->prepare);
2860 3507
3508 ev_fork_init (&w->fork, embed_fork_cb);
3509 ev_fork_start (EV_A_ &w->fork);
3510
2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3511 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2862 3512
2863 ev_start (EV_A_ (W)w, 1); 3513 ev_start (EV_A_ (W)w, 1);
2864 3514
2865 EV_FREQUENT_CHECK; 3515 EV_FREQUENT_CHECK;
2872 if (expect_false (!ev_is_active (w))) 3522 if (expect_false (!ev_is_active (w)))
2873 return; 3523 return;
2874 3524
2875 EV_FREQUENT_CHECK; 3525 EV_FREQUENT_CHECK;
2876 3526
2877 ev_io_stop (EV_A_ &w->io); 3527 ev_io_stop (EV_A_ &w->io);
2878 ev_prepare_stop (EV_A_ &w->prepare); 3528 ev_prepare_stop (EV_A_ &w->prepare);
3529 ev_fork_stop (EV_A_ &w->fork);
2879 3530
2880 ev_stop (EV_A_ (W)w); 3531 ev_stop (EV_A_ (W)w);
2881 3532
2882 EV_FREQUENT_CHECK; 3533 EV_FREQUENT_CHECK;
2883} 3534}
2919 3570
2920 EV_FREQUENT_CHECK; 3571 EV_FREQUENT_CHECK;
2921} 3572}
2922#endif 3573#endif
2923 3574
2924#if EV_ASYNC_ENABLE 3575#if EV_CLEANUP_ENABLE
2925void 3576void
2926ev_async_start (EV_P_ ev_async *w) 3577ev_cleanup_start (EV_P_ ev_cleanup *w)
2927{ 3578{
2928 if (expect_false (ev_is_active (w))) 3579 if (expect_false (ev_is_active (w)))
2929 return; 3580 return;
3581
3582 EV_FREQUENT_CHECK;
3583
3584 ev_start (EV_A_ (W)w, ++cleanupcnt);
3585 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3586 cleanups [cleanupcnt - 1] = w;
3587
3588 EV_FREQUENT_CHECK;
3589}
3590
3591void
3592ev_cleanup_stop (EV_P_ ev_cleanup *w)
3593{
3594 clear_pending (EV_A_ (W)w);
3595 if (expect_false (!ev_is_active (w)))
3596 return;
3597
3598 EV_FREQUENT_CHECK;
3599
3600 {
3601 int active = ev_active (w);
3602
3603 cleanups [active - 1] = cleanups [--cleanupcnt];
3604 ev_active (cleanups [active - 1]) = active;
3605 }
3606
3607 ev_stop (EV_A_ (W)w);
3608
3609 EV_FREQUENT_CHECK;
3610}
3611#endif
3612
3613#if EV_ASYNC_ENABLE
3614void
3615ev_async_start (EV_P_ ev_async *w)
3616{
3617 if (expect_false (ev_is_active (w)))
3618 return;
3619
3620 w->sent = 0;
2930 3621
2931 evpipe_init (EV_A); 3622 evpipe_init (EV_A);
2932 3623
2933 EV_FREQUENT_CHECK; 3624 EV_FREQUENT_CHECK;
2934 3625
2962 3653
2963void 3654void
2964ev_async_send (EV_P_ ev_async *w) 3655ev_async_send (EV_P_ ev_async *w)
2965{ 3656{
2966 w->sent = 1; 3657 w->sent = 1;
2967 evpipe_write (EV_A_ &gotasync); 3658 evpipe_write (EV_A_ &async_pending);
2968} 3659}
2969#endif 3660#endif
2970 3661
2971/*****************************************************************************/ 3662/*****************************************************************************/
2972 3663
2982once_cb (EV_P_ struct ev_once *once, int revents) 3673once_cb (EV_P_ struct ev_once *once, int revents)
2983{ 3674{
2984 void (*cb)(int revents, void *arg) = once->cb; 3675 void (*cb)(int revents, void *arg) = once->cb;
2985 void *arg = once->arg; 3676 void *arg = once->arg;
2986 3677
2987 ev_io_stop (EV_A_ &once->io); 3678 ev_io_stop (EV_A_ &once->io);
2988 ev_timer_stop (EV_A_ &once->to); 3679 ev_timer_stop (EV_A_ &once->to);
2989 ev_free (once); 3680 ev_free (once);
2990 3681
2991 cb (revents, arg); 3682 cb (revents, arg);
2992} 3683}
2993 3684
2994static void 3685static void
2995once_cb_io (EV_P_ ev_io *w, int revents) 3686once_cb_io (EV_P_ ev_io *w, int revents)
2996{ 3687{
2997 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3688 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3689
3690 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2998} 3691}
2999 3692
3000static void 3693static void
3001once_cb_to (EV_P_ ev_timer *w, int revents) 3694once_cb_to (EV_P_ ev_timer *w, int revents)
3002{ 3695{
3003 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3696 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3697
3698 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3004} 3699}
3005 3700
3006void 3701void
3007ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3702ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3008{ 3703{
3009 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3704 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3010 3705
3011 if (expect_false (!once)) 3706 if (expect_false (!once))
3012 { 3707 {
3013 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3708 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3014 return; 3709 return;
3015 } 3710 }
3016 3711
3017 once->cb = cb; 3712 once->cb = cb;
3018 once->arg = arg; 3713 once->arg = arg;
3030 ev_timer_set (&once->to, timeout, 0.); 3725 ev_timer_set (&once->to, timeout, 0.);
3031 ev_timer_start (EV_A_ &once->to); 3726 ev_timer_start (EV_A_ &once->to);
3032 } 3727 }
3033} 3728}
3034 3729
3730/*****************************************************************************/
3731
3732#if EV_WALK_ENABLE
3733void
3734ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3735{
3736 int i, j;
3737 ev_watcher_list *wl, *wn;
3738
3739 if (types & (EV_IO | EV_EMBED))
3740 for (i = 0; i < anfdmax; ++i)
3741 for (wl = anfds [i].head; wl; )
3742 {
3743 wn = wl->next;
3744
3745#if EV_EMBED_ENABLE
3746 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3747 {
3748 if (types & EV_EMBED)
3749 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3750 }
3751 else
3752#endif
3753#if EV_USE_INOTIFY
3754 if (ev_cb ((ev_io *)wl) == infy_cb)
3755 ;
3756 else
3757#endif
3758 if ((ev_io *)wl != &pipe_w)
3759 if (types & EV_IO)
3760 cb (EV_A_ EV_IO, wl);
3761
3762 wl = wn;
3763 }
3764
3765 if (types & (EV_TIMER | EV_STAT))
3766 for (i = timercnt + HEAP0; i-- > HEAP0; )
3767#if EV_STAT_ENABLE
3768 /*TODO: timer is not always active*/
3769 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3770 {
3771 if (types & EV_STAT)
3772 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3773 }
3774 else
3775#endif
3776 if (types & EV_TIMER)
3777 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3778
3779#if EV_PERIODIC_ENABLE
3780 if (types & EV_PERIODIC)
3781 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3782 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3783#endif
3784
3785#if EV_IDLE_ENABLE
3786 if (types & EV_IDLE)
3787 for (j = NUMPRI; i--; )
3788 for (i = idlecnt [j]; i--; )
3789 cb (EV_A_ EV_IDLE, idles [j][i]);
3790#endif
3791
3792#if EV_FORK_ENABLE
3793 if (types & EV_FORK)
3794 for (i = forkcnt; i--; )
3795 if (ev_cb (forks [i]) != embed_fork_cb)
3796 cb (EV_A_ EV_FORK, forks [i]);
3797#endif
3798
3799#if EV_ASYNC_ENABLE
3800 if (types & EV_ASYNC)
3801 for (i = asynccnt; i--; )
3802 cb (EV_A_ EV_ASYNC, asyncs [i]);
3803#endif
3804
3805#if EV_PREPARE_ENABLE
3806 if (types & EV_PREPARE)
3807 for (i = preparecnt; i--; )
3808# if EV_EMBED_ENABLE
3809 if (ev_cb (prepares [i]) != embed_prepare_cb)
3810# endif
3811 cb (EV_A_ EV_PREPARE, prepares [i]);
3812#endif
3813
3814#if EV_CHECK_ENABLE
3815 if (types & EV_CHECK)
3816 for (i = checkcnt; i--; )
3817 cb (EV_A_ EV_CHECK, checks [i]);
3818#endif
3819
3820#if EV_SIGNAL_ENABLE
3821 if (types & EV_SIGNAL)
3822 for (i = 0; i < EV_NSIG - 1; ++i)
3823 for (wl = signals [i].head; wl; )
3824 {
3825 wn = wl->next;
3826 cb (EV_A_ EV_SIGNAL, wl);
3827 wl = wn;
3828 }
3829#endif
3830
3831#if EV_CHILD_ENABLE
3832 if (types & EV_CHILD)
3833 for (i = (EV_PID_HASHSIZE); i--; )
3834 for (wl = childs [i]; wl; )
3835 {
3836 wn = wl->next;
3837 cb (EV_A_ EV_CHILD, wl);
3838 wl = wn;
3839 }
3840#endif
3841/* EV_STAT 0x00001000 /* stat data changed */
3842/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3843}
3844#endif
3845
3035#if EV_MULTIPLICITY 3846#if EV_MULTIPLICITY
3036 #include "ev_wrap.h" 3847 #include "ev_wrap.h"
3037#endif 3848#endif
3038 3849
3039#ifdef __cplusplus 3850EV_CPP(})
3040}
3041#endif
3042 3851

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines