ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.256 by root, Thu Jun 19 06:53:49 2008 UTC vs.
Revision 1.361 by root, Sun Oct 24 19:01:01 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
130# endif 157# endif
131 158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
160# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
161# include <windows.h> 192# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
164# endif 195# endif
196# undef EV_AVOID_STDIO
165#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
166 206
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
168 244
169#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 247# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 248# else
173# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
174# endif 250# endif
175#endif 251#endif
176 252
177#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 255#endif
180 256
181#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 258# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 259# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 260# else
185# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
186# endif 262# endif
187#endif 263#endif
188 264
189#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 267#endif
192 268
193#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
194# ifdef _WIN32 270# ifdef _WIN32
195# define EV_USE_POLL 0 271# define EV_USE_POLL 0
196# else 272# else
197# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 274# endif
199#endif 275#endif
200 276
201#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 280# else
205# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
206# endif 282# endif
207#endif 283#endif
208 284
214# define EV_USE_PORT 0 290# define EV_USE_PORT 0
215#endif 291#endif
216 292
217#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 296# else
221# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
222# endif 298# endif
223#endif 299#endif
224 300
225#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 303#endif
232 304
233#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 307#endif
240 308
241#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 312# else
245# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
246# endif 322# endif
247#endif 323#endif
248 324
249#if 0 /* debugging */ 325#if 0 /* debugging */
250# define EV_VERIFY 3 326# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 327# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 328# define EV_HEAP_CACHE_AT 1
253#endif 329#endif
254 330
255#ifndef EV_VERIFY 331#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 333#endif
258 334
259#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 337#endif
262 338
263#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
265#endif 355#endif
266 356
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
268 364
269#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
272#endif 368#endif
286# include <sys/select.h> 382# include <sys/select.h>
287# endif 383# endif
288#endif 384#endif
289 385
290#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
291# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
292#endif 394#endif
293 395
294#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
295# include <winsock.h> 397# include <winsock.h>
296#endif 398#endif
297 399
298#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h> 402# include <stdint.h>
301# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
302extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
303# endif 405# endif
304int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
305# ifdef __cplusplus 407# ifdef O_CLOEXEC
306} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
307# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
308#endif 436#endif
309 437
310/**/ 438/**/
311 439
312#if EV_VERIFY >= 3 440#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 441# define EV_FREQUENT_CHECK ev_verify (EV_A)
314#else 442#else
315# define EV_FREQUENT_CHECK do { } while (0) 443# define EV_FREQUENT_CHECK do { } while (0)
316#endif 444#endif
317 445
318/* 446/*
325 */ 453 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
327 455
328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
331 461
332#if __GNUC__ >= 4 462#if __GNUC__ >= 4
333# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
334# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
335#else 465#else
342 472
343#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
344#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
345#define inline_size static inline 475#define inline_size static inline
346 476
347#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
348# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
349#else 487#else
350# define inline_speed static inline
351#endif
352
353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
355 490
356#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
357#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
358 493
359typedef ev_watcher *W; 494typedef ev_watcher *W;
361typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
362 497
363#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
365 500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
366#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
370#endif 519#endif
371 520
372#ifdef _WIN32 521#ifdef _WIN32
373# include "ev_win32.c" 522# include "ev_win32.c"
374#endif 523#endif
375 524
376/*****************************************************************************/ 525/*****************************************************************************/
377 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
378static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
379 578
380void 579void
381ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
382{ 581{
383 syserr_cb = cb; 582 syserr_cb = cb;
384} 583}
385 584
386static void noinline 585static void noinline
387syserr (const char *msg) 586ev_syserr (const char *msg)
388{ 587{
389 if (!msg) 588 if (!msg)
390 msg = "(libev) system error"; 589 msg = "(libev) system error";
391 590
392 if (syserr_cb) 591 if (syserr_cb)
393 syserr_cb (msg); 592 syserr_cb (msg);
394 else 593 else
395 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
396 perror (msg); 603 perror (msg);
604#endif
397 abort (); 605 abort ();
398 } 606 }
399} 607}
400 608
401static void * 609static void *
402ev_realloc_emul (void *ptr, long size) 610ev_realloc_emul (void *ptr, long size)
403{ 611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
404 /* some systems, notably openbsd and darwin, fail to properly 615 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and 616 * implement realloc (x, 0) (as required by both ansi c-89 and
406 * the single unix specification, so work around them here. 617 * the single unix specification, so work around them here.
407 */ 618 */
408 619
409 if (size) 620 if (size)
410 return realloc (ptr, size); 621 return realloc (ptr, size);
411 622
412 free (ptr); 623 free (ptr);
413 return 0; 624 return 0;
625#endif
414} 626}
415 627
416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
417 629
418void 630void
426{ 638{
427 ptr = alloc (ptr, size); 639 ptr = alloc (ptr, size);
428 640
429 if (!ptr && size) 641 if (!ptr && size)
430 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
432 abort (); 648 abort ();
433 } 649 }
434 650
435 return ptr; 651 return ptr;
436} 652}
438#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
439#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
440 656
441/*****************************************************************************/ 657/*****************************************************************************/
442 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
443typedef struct 663typedef struct
444{ 664{
445 WL head; 665 WL head;
446 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
447 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
448#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
449 SOCKET handle; 674 SOCKET handle;
450#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
451} ANFD; 679} ANFD;
452 680
681/* stores the pending event set for a given watcher */
453typedef struct 682typedef struct
454{ 683{
455 W w; 684 W w;
456 int events; 685 int events; /* the pending event set for the given watcher */
457} ANPENDING; 686} ANPENDING;
458 687
459#if EV_USE_INOTIFY 688#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */ 689/* hash table entry per inotify-id */
461typedef struct 690typedef struct
464} ANFS; 693} ANFS;
465#endif 694#endif
466 695
467/* Heap Entry */ 696/* Heap Entry */
468#if EV_HEAP_CACHE_AT 697#if EV_HEAP_CACHE_AT
698 /* a heap element */
469 typedef struct { 699 typedef struct {
470 ev_tstamp at; 700 ev_tstamp at;
471 WT w; 701 WT w;
472 } ANHE; 702 } ANHE;
473 703
474 #define ANHE_w(he) (he).w /* access watcher, read-write */ 704 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */ 705 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else 707#else
708 /* a heap element */
478 typedef WT ANHE; 709 typedef WT ANHE;
479 710
480 #define ANHE_w(he) (he) 711 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at 712 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he) 713 #define ANHE_at_cache(he)
506 737
507 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
508 739
509#endif 740#endif
510 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
511/*****************************************************************************/ 754/*****************************************************************************/
512 755
756#ifndef EV_HAVE_EV_TIME
513ev_tstamp 757ev_tstamp
514ev_time (void) 758ev_time (void)
515{ 759{
516#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
517 struct timespec ts; 763 struct timespec ts;
518 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
519 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
520#else 766 }
767#endif
768
521 struct timeval tv; 769 struct timeval tv;
522 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
523 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
524#endif
525} 772}
773#endif
526 774
527ev_tstamp inline_size 775inline_size ev_tstamp
528get_clock (void) 776get_clock (void)
529{ 777{
530#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
531 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
532 { 780 {
553 if (delay > 0.) 801 if (delay > 0.)
554 { 802 {
555#if EV_USE_NANOSLEEP 803#if EV_USE_NANOSLEEP
556 struct timespec ts; 804 struct timespec ts;
557 805
558 ts.tv_sec = (time_t)delay; 806 EV_TS_SET (ts, delay);
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0); 807 nanosleep (&ts, 0);
562#elif defined(_WIN32) 808#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3)); 809 Sleep ((unsigned long)(delay * 1e3));
564#else 810#else
565 struct timeval tv; 811 struct timeval tv;
566 812
567 tv.tv_sec = (time_t)delay; 813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 814 /* something not guaranteed by newer posix versions, but guaranteed */
569 815 /* by older ones */
816 EV_TV_SET (tv, delay);
570 select (0, 0, 0, 0, &tv); 817 select (0, 0, 0, 0, &tv);
571#endif 818#endif
572 } 819 }
573} 820}
574 821
575/*****************************************************************************/ 822/*****************************************************************************/
576 823
577#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
578 825
579int inline_size 826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
580array_nextsize (int elem, int cur, int cnt) 829array_nextsize (int elem, int cur, int cnt)
581{ 830{
582 int ncur = cur + 1; 831 int ncur = cur + 1;
583 832
584 do 833 do
601array_realloc (int elem, void *base, int *cur, int cnt) 850array_realloc (int elem, void *base, int *cur, int cnt)
602{ 851{
603 *cur = array_nextsize (elem, *cur, cnt); 852 *cur = array_nextsize (elem, *cur, cnt);
604 return ev_realloc (base, elem * *cur); 853 return ev_realloc (base, elem * *cur);
605} 854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
606 858
607#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
608 if (expect_false ((cnt) > (cur))) \ 860 if (expect_false ((cnt) > (cur))) \
609 { \ 861 { \
610 int ocur_ = (cur); \ 862 int ocur_ = (cur); \
622 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
623 } 875 }
624#endif 876#endif
625 877
626#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
627 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
628 880
629/*****************************************************************************/ 881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
630 888
631void noinline 889void noinline
632ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
633{ 891{
634 W w_ = (W)w; 892 W w_ = (W)w;
643 pendings [pri][w_->pending - 1].w = w_; 901 pendings [pri][w_->pending - 1].w = w_;
644 pendings [pri][w_->pending - 1].events = revents; 902 pendings [pri][w_->pending - 1].events = revents;
645 } 903 }
646} 904}
647 905
648void inline_speed 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
649queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
650{ 923{
651 int i; 924 int i;
652 925
653 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
654 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
655} 928}
656 929
657/*****************************************************************************/ 930/*****************************************************************************/
658 931
659void inline_size 932inline_speed void
660anfds_init (ANFD *base, int count)
661{
662 while (count--)
663 {
664 base->head = 0;
665 base->events = EV_NONE;
666 base->reify = 0;
667
668 ++base;
669 }
670}
671
672void inline_speed
673fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
674{ 934{
675 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
676 ev_io *w; 936 ev_io *w;
677 937
678 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
682 if (ev) 942 if (ev)
683 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
684 } 944 }
685} 945}
686 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
687void 958void
688ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
689{ 960{
690 if (fd >= 0 && fd < anfdmax) 961 if (fd >= 0 && fd < anfdmax)
691 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
692} 963}
693 964
694void inline_size 965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
695fd_reify (EV_P) 968fd_reify (EV_P)
696{ 969{
697 int i; 970 int i;
698 971
699 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
700 { 973 {
701 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
702 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
703 ev_io *w; 976 ev_io *w;
704 977
705 unsigned char events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
706 980
707 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
708 events |= (unsigned char)w->events;
709 982
710#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
711 if (events) 984 if (o_reify & EV__IOFDSET)
712 { 985 {
713 unsigned long arg; 986 unsigned long arg;
714 #ifdef EV_FD_TO_WIN32_HANDLE
715 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
716 #else
717 anfd->handle = _get_osfhandle (fd);
718 #endif
719 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
720 } 990 }
721#endif 991#endif
722 992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
723 { 994 {
724 unsigned char o_events = anfd->events;
725 unsigned char o_reify = anfd->reify;
726
727 anfd->reify = 0;
728 anfd->events = events; 995 anfd->events = 0;
729 996
730 if (o_events != events || o_reify & EV_IOFDSET) 997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
731 backend_modify (EV_A_ fd, o_events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
732 }
733 } 1006 }
734 1007
735 fdchangecnt = 0; 1008 fdchangecnt = 0;
736} 1009}
737 1010
738void inline_size 1011/* something about the given fd changed */
1012inline_size void
739fd_change (EV_P_ int fd, int flags) 1013fd_change (EV_P_ int fd, int flags)
740{ 1014{
741 unsigned char reify = anfds [fd].reify; 1015 unsigned char reify = anfds [fd].reify;
742 anfds [fd].reify |= flags; 1016 anfds [fd].reify |= flags;
743 1017
747 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
748 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
749 } 1023 }
750} 1024}
751 1025
752void inline_speed 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
753fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
754{ 1029{
755 ev_io *w; 1030 ev_io *w;
756 1031
757 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
759 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
760 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
761 } 1036 }
762} 1037}
763 1038
764int inline_size 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
765fd_valid (int fd) 1041fd_valid (int fd)
766{ 1042{
767#ifdef _WIN32 1043#ifdef _WIN32
768 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
769#else 1045#else
770 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
771#endif 1047#endif
772} 1048}
773 1049
791 1067
792 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
793 if (anfds [fd].events) 1069 if (anfds [fd].events)
794 { 1070 {
795 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
796 return; 1072 break;
797 } 1073 }
798} 1074}
799 1075
800/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
801static void noinline 1077static void noinline
805 1081
806 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
807 if (anfds [fd].events) 1083 if (anfds [fd].events)
808 { 1084 {
809 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
1086 anfds [fd].emask = 0;
810 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
811 } 1088 }
812} 1089}
813 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
814/*****************************************************************************/ 1105/*****************************************************************************/
815 1106
816/* 1107/*
817 * the heap functions want a real array index. array index 0 uis guaranteed to not 1108 * the heap functions want a real array index. array index 0 is guaranteed to not
818 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
819 * the branching factor of the d-tree. 1110 * the branching factor of the d-tree.
820 */ 1111 */
821 1112
822/* 1113/*
831#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
832#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
833#define UPHEAP_DONE(p,k) ((p) == (k)) 1124#define UPHEAP_DONE(p,k) ((p) == (k))
834 1125
835/* away from the root */ 1126/* away from the root */
836void inline_speed 1127inline_speed void
837downheap (ANHE *heap, int N, int k) 1128downheap (ANHE *heap, int N, int k)
838{ 1129{
839 ANHE he = heap [k]; 1130 ANHE he = heap [k];
840 ANHE *E = heap + N + HEAP0; 1131 ANHE *E = heap + N + HEAP0;
841 1132
881#define HEAP0 1 1172#define HEAP0 1
882#define HPARENT(k) ((k) >> 1) 1173#define HPARENT(k) ((k) >> 1)
883#define UPHEAP_DONE(p,k) (!(p)) 1174#define UPHEAP_DONE(p,k) (!(p))
884 1175
885/* away from the root */ 1176/* away from the root */
886void inline_speed 1177inline_speed void
887downheap (ANHE *heap, int N, int k) 1178downheap (ANHE *heap, int N, int k)
888{ 1179{
889 ANHE he = heap [k]; 1180 ANHE he = heap [k];
890 1181
891 for (;;) 1182 for (;;)
892 { 1183 {
893 int c = k << 1; 1184 int c = k << 1;
894 1185
895 if (c > N + HEAP0 - 1) 1186 if (c >= N + HEAP0)
896 break; 1187 break;
897 1188
898 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
899 ? 1 : 0; 1190 ? 1 : 0;
900 1191
911 ev_active (ANHE_w (he)) = k; 1202 ev_active (ANHE_w (he)) = k;
912} 1203}
913#endif 1204#endif
914 1205
915/* towards the root */ 1206/* towards the root */
916void inline_speed 1207inline_speed void
917upheap (ANHE *heap, int k) 1208upheap (ANHE *heap, int k)
918{ 1209{
919 ANHE he = heap [k]; 1210 ANHE he = heap [k];
920 1211
921 for (;;) 1212 for (;;)
932 1223
933 heap [k] = he; 1224 heap [k] = he;
934 ev_active (ANHE_w (he)) = k; 1225 ev_active (ANHE_w (he)) = k;
935} 1226}
936 1227
937void inline_size 1228/* move an element suitably so it is in a correct place */
1229inline_size void
938adjustheap (ANHE *heap, int N, int k) 1230adjustheap (ANHE *heap, int N, int k)
939{ 1231{
940 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
941 upheap (heap, k); 1233 upheap (heap, k);
942 else 1234 else
943 downheap (heap, N, k); 1235 downheap (heap, N, k);
944} 1236}
945 1237
946/* rebuild the heap: this function is used only once and executed rarely */ 1238/* rebuild the heap: this function is used only once and executed rarely */
947void inline_size 1239inline_size void
948reheap (ANHE *heap, int N) 1240reheap (ANHE *heap, int N)
949{ 1241{
950 int i; 1242 int i;
951 1243
952 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
955 upheap (heap, i + HEAP0); 1247 upheap (heap, i + HEAP0);
956} 1248}
957 1249
958/*****************************************************************************/ 1250/*****************************************************************************/
959 1251
1252/* associate signal watchers to a signal signal */
960typedef struct 1253typedef struct
961{ 1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
962 WL head; 1259 WL head;
963 EV_ATOMIC_T gotsig;
964} ANSIG; 1260} ANSIG;
965 1261
966static ANSIG *signals; 1262static ANSIG signals [EV_NSIG - 1];
967static int signalmax;
968
969static EV_ATOMIC_T gotsig;
970
971void inline_size
972signals_init (ANSIG *base, int count)
973{
974 while (count--)
975 {
976 base->head = 0;
977 base->gotsig = 0;
978
979 ++base;
980 }
981}
982 1263
983/*****************************************************************************/ 1264/*****************************************************************************/
984 1265
985void inline_speed 1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
986fd_intern (int fd)
987{
988#ifdef _WIN32
989 unsigned long arg = 1;
990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
991#else
992 fcntl (fd, F_SETFD, FD_CLOEXEC);
993 fcntl (fd, F_SETFL, O_NONBLOCK);
994#endif
995}
996 1267
997static void noinline 1268static void noinline
998evpipe_init (EV_P) 1269evpipe_init (EV_P)
999{ 1270{
1000 if (!ev_is_active (&pipeev)) 1271 if (!ev_is_active (&pipe_w))
1001 { 1272 {
1002#if EV_USE_EVENTFD 1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1003 if ((evfd = eventfd (0, 0)) >= 0) 1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1004 { 1279 {
1005 evpipe [0] = -1; 1280 evpipe [0] = -1;
1006 fd_intern (evfd); 1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1007 ev_io_set (&pipeev, evfd, EV_READ); 1282 ev_io_set (&pipe_w, evfd, EV_READ);
1008 } 1283 }
1009 else 1284 else
1010#endif 1285# endif
1011 { 1286 {
1012 while (pipe (evpipe)) 1287 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe"); 1288 ev_syserr ("(libev) error creating signal/async pipe");
1014 1289
1015 fd_intern (evpipe [0]); 1290 fd_intern (evpipe [0]);
1016 fd_intern (evpipe [1]); 1291 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ); 1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1018 } 1293 }
1019 1294
1020 ev_io_start (EV_A_ &pipeev); 1295 ev_io_start (EV_A_ &pipe_w);
1021 ev_unref (EV_A); /* watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 } 1297 }
1023} 1298}
1024 1299
1025void inline_size 1300inline_size void
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{ 1302{
1028 if (!*flag) 1303 if (!*flag)
1029 { 1304 {
1030 int old_errno = errno; /* save errno because write might clobber it */ 1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1031 1307
1032 *flag = 1; 1308 *flag = 1;
1033 1309
1034#if EV_USE_EVENTFD 1310#if EV_USE_EVENTFD
1035 if (evfd >= 0) 1311 if (evfd >= 0)
1037 uint64_t counter = 1; 1313 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t)); 1314 write (evfd, &counter, sizeof (uint64_t));
1039 } 1315 }
1040 else 1316 else
1041#endif 1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1042 write (evpipe [1], &old_errno, 1); 1323 write (evpipe [1], &dummy, 1);
1043 1324
1044 errno = old_errno; 1325 errno = old_errno;
1045 } 1326 }
1046} 1327}
1047 1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
1048static void 1331static void
1049pipecb (EV_P_ ev_io *iow, int revents) 1332pipecb (EV_P_ ev_io *iow, int revents)
1050{ 1333{
1334 int i;
1335
1051#if EV_USE_EVENTFD 1336#if EV_USE_EVENTFD
1052 if (evfd >= 0) 1337 if (evfd >= 0)
1053 { 1338 {
1054 uint64_t counter; 1339 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t)); 1340 read (evfd, &counter, sizeof (uint64_t));
1056 } 1341 }
1057 else 1342 else
1058#endif 1343#endif
1059 { 1344 {
1060 char dummy; 1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1061 read (evpipe [0], &dummy, 1); 1347 read (evpipe [0], &dummy, 1);
1062 } 1348 }
1063 1349
1064 if (gotsig && ev_is_default_loop (EV_A)) 1350 if (sig_pending)
1065 { 1351 {
1066 int signum; 1352 sig_pending = 0;
1067 gotsig = 0;
1068 1353
1069 for (signum = signalmax; signum--; ) 1354 for (i = EV_NSIG - 1; i--; )
1070 if (signals [signum].gotsig) 1355 if (expect_false (signals [i].pending))
1071 ev_feed_signal_event (EV_A_ signum + 1); 1356 ev_feed_signal_event (EV_A_ i + 1);
1072 } 1357 }
1073 1358
1074#if EV_ASYNC_ENABLE 1359#if EV_ASYNC_ENABLE
1075 if (gotasync) 1360 if (async_pending)
1076 { 1361 {
1077 int i; 1362 async_pending = 0;
1078 gotasync = 0;
1079 1363
1080 for (i = asynccnt; i--; ) 1364 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent) 1365 if (asyncs [i]->sent)
1082 { 1366 {
1083 asyncs [i]->sent = 0; 1367 asyncs [i]->sent = 0;
1091 1375
1092static void 1376static void
1093ev_sighandler (int signum) 1377ev_sighandler (int signum)
1094{ 1378{
1095#if EV_MULTIPLICITY 1379#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct; 1380 EV_P = signals [signum - 1].loop;
1097#endif 1381#endif
1098 1382
1099#if _WIN32 1383#ifdef _WIN32
1100 signal (signum, ev_sighandler); 1384 signal (signum, ev_sighandler);
1101#endif 1385#endif
1102 1386
1103 signals [signum - 1].gotsig = 1; 1387 signals [signum - 1].pending = 1;
1104 evpipe_write (EV_A_ &gotsig); 1388 evpipe_write (EV_A_ &sig_pending);
1105} 1389}
1106 1390
1107void noinline 1391void noinline
1108ev_feed_signal_event (EV_P_ int signum) 1392ev_feed_signal_event (EV_P_ int signum)
1109{ 1393{
1110 WL w; 1394 WL w;
1111 1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1112#if EV_MULTIPLICITY 1401#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1402 /* it is permissible to try to feed a signal to the wrong loop */
1114#endif 1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1115 1404
1116 --signum; 1405 if (expect_false (signals [signum].loop != EV_A))
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return; 1406 return;
1407#endif
1120 1408
1121 signals [signum].gotsig = 0; 1409 signals [signum].pending = 0;
1122 1410
1123 for (w = signals [signum].head; w; w = w->next) 1411 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125} 1413}
1126 1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
1127/*****************************************************************************/ 1437/*****************************************************************************/
1128 1438
1439#if EV_CHILD_ENABLE
1129static WL childs [EV_PID_HASHSIZE]; 1440static WL childs [EV_PID_HASHSIZE];
1130
1131#ifndef _WIN32
1132 1441
1133static ev_signal childev; 1442static ev_signal childev;
1134 1443
1135#ifndef WIFCONTINUED 1444#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0 1445# define WIFCONTINUED(status) 0
1137#endif 1446#endif
1138 1447
1139void inline_speed 1448/* handle a single child status event */
1449inline_speed void
1140child_reap (EV_P_ int chain, int pid, int status) 1450child_reap (EV_P_ int chain, int pid, int status)
1141{ 1451{
1142 ev_child *w; 1452 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144 1454
1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 { 1456 {
1147 if ((w->pid == pid || !w->pid) 1457 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1))) 1458 && (!traced || (w->flags & 1)))
1149 { 1459 {
1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1157 1467
1158#ifndef WCONTINUED 1468#ifndef WCONTINUED
1159# define WCONTINUED 0 1469# define WCONTINUED 0
1160#endif 1470#endif
1161 1471
1472/* called on sigchld etc., calls waitpid */
1162static void 1473static void
1163childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
1164{ 1475{
1165 int pid, status; 1476 int pid, status;
1166 1477
1174 /* make sure we are called again until all children have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1175 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1177 1488
1178 child_reap (EV_A_ pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1) 1490 if ((EV_PID_HASHSIZE) > 1)
1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1181} 1492}
1182 1493
1183#endif 1494#endif
1184 1495
1185/*****************************************************************************/ 1496/*****************************************************************************/
1186 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1187#if EV_USE_PORT 1501#if EV_USE_PORT
1188# include "ev_port.c" 1502# include "ev_port.c"
1189#endif 1503#endif
1190#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
1191# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
1247 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
1248 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1249 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
1250#endif 1564#endif
1251#ifdef __APPLE__ 1565#ifdef __APPLE__
1252 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
1253 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1254#endif 1572#endif
1255 1573
1256 return flags; 1574 return flags;
1257} 1575}
1258 1576
1260ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
1261{ 1579{
1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1263 1581
1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */ 1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1266 flags &= ~EVBACKEND_EPOLL; 1584 flags &= ~EVBACKEND_EPOLL;
1267 1585
1268 return flags; 1586 return flags;
1269} 1587}
1270 1588
1271unsigned int 1589unsigned int
1272ev_backend (EV_P) 1590ev_backend (EV_P)
1273{ 1591{
1274 return backend; 1592 return backend;
1275} 1593}
1276 1594
1595#if EV_FEATURE_API
1277unsigned int 1596unsigned int
1278ev_loop_count (EV_P) 1597ev_iteration (EV_P)
1279{ 1598{
1280 return loop_count; 1599 return loop_count;
1281} 1600}
1282 1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1283void 1608void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{ 1610{
1286 io_blocktime = interval; 1611 io_blocktime = interval;
1287} 1612}
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{ 1616{
1292 timeout_blocktime = interval; 1617 timeout_blocktime = interval;
1293} 1618}
1294 1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1295static void noinline 1645static void noinline
1296loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
1297{ 1647{
1298 if (!backend) 1648 if (!backend)
1299 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
1300#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1301 { 1662 {
1302 struct timespec ts; 1663 struct timespec ts;
1664
1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1304 have_monotonic = 1; 1666 have_monotonic = 1;
1305 } 1667 }
1306#endif 1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1307 1680
1308 ev_rt_now = ev_time (); 1681 ev_rt_now = ev_time ();
1309 mn_now = get_clock (); 1682 mn_now = get_clock ();
1310 now_floor = mn_now; 1683 now_floor = mn_now;
1311 rtmn_diff = ev_rt_now - mn_now; 1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1312 1688
1313 io_blocktime = 0.; 1689 io_blocktime = 0.;
1314 timeout_blocktime = 0.; 1690 timeout_blocktime = 0.;
1315 backend = 0; 1691 backend = 0;
1316 backend_fd = -1; 1692 backend_fd = -1;
1317 gotasync = 0; 1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1318#if EV_USE_INOTIFY 1697#if EV_USE_INOTIFY
1319 fs_fd = -2; 1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1320#endif 1699#endif
1321 1700#if EV_USE_SIGNALFD
1322 /* pid check not overridable via env */ 1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1323#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK)
1325 curpid = getpid ();
1326#endif 1702#endif
1327
1328 if (!(flags & EVFLAG_NOENV)
1329 && !enable_secure ()
1330 && getenv ("LIBEV_FLAGS"))
1331 flags = atoi (getenv ("LIBEV_FLAGS"));
1332 1703
1333 if (!(flags & 0x0000ffffU)) 1704 if (!(flags & 0x0000ffffU))
1334 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
1335 1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1336#if EV_USE_PORT 1710#if EV_USE_PORT
1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1338#endif 1712#endif
1339#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1347#endif 1721#endif
1348#if EV_USE_SELECT 1722#if EV_USE_SELECT
1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1350#endif 1724#endif
1351 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1352 ev_init (&pipeev, pipecb); 1729 ev_init (&pipe_w, pipecb);
1353 ev_set_priority (&pipeev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1354 } 1732 }
1355} 1733}
1356 1734
1357static void noinline 1735/* free up a loop structure */
1736void
1358loop_destroy (EV_P) 1737ev_loop_destroy (EV_P)
1359{ 1738{
1360 int i; 1739 int i;
1361 1740
1741#if EV_CLEANUP_ENABLE
1742 /* queue cleanup watchers (and execute them) */
1743 if (expect_false (cleanupcnt))
1744 {
1745 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1746 EV_INVOKE_PENDING;
1747 }
1748#endif
1749
1750#if EV_CHILD_ENABLE
1751 if (ev_is_active (&childev))
1752 {
1753 ev_ref (EV_A); /* child watcher */
1754 ev_signal_stop (EV_A_ &childev);
1755 }
1756#endif
1757
1362 if (ev_is_active (&pipeev)) 1758 if (ev_is_active (&pipe_w))
1363 { 1759 {
1364 ev_ref (EV_A); /* signal watcher */ 1760 /*ev_ref (EV_A);*/
1365 ev_io_stop (EV_A_ &pipeev); 1761 /*ev_io_stop (EV_A_ &pipe_w);*/
1366 1762
1367#if EV_USE_EVENTFD 1763#if EV_USE_EVENTFD
1368 if (evfd >= 0) 1764 if (evfd >= 0)
1369 close (evfd); 1765 close (evfd);
1370#endif 1766#endif
1371 1767
1372 if (evpipe [0] >= 0) 1768 if (evpipe [0] >= 0)
1373 { 1769 {
1374 close (evpipe [0]); 1770 EV_WIN32_CLOSE_FD (evpipe [0]);
1375 close (evpipe [1]); 1771 EV_WIN32_CLOSE_FD (evpipe [1]);
1376 } 1772 }
1377 } 1773 }
1774
1775#if EV_USE_SIGNALFD
1776 if (ev_is_active (&sigfd_w))
1777 close (sigfd);
1778#endif
1378 1779
1379#if EV_USE_INOTIFY 1780#if EV_USE_INOTIFY
1380 if (fs_fd >= 0) 1781 if (fs_fd >= 0)
1381 close (fs_fd); 1782 close (fs_fd);
1382#endif 1783#endif
1383 1784
1384 if (backend_fd >= 0) 1785 if (backend_fd >= 0)
1385 close (backend_fd); 1786 close (backend_fd);
1386 1787
1788#if EV_USE_IOCP
1789 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1790#endif
1387#if EV_USE_PORT 1791#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1792 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1389#endif 1793#endif
1390#if EV_USE_KQUEUE 1794#if EV_USE_KQUEUE
1391 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1795 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1406#if EV_IDLE_ENABLE 1810#if EV_IDLE_ENABLE
1407 array_free (idle, [i]); 1811 array_free (idle, [i]);
1408#endif 1812#endif
1409 } 1813 }
1410 1814
1411 ev_free (anfds); anfdmax = 0; 1815 ev_free (anfds); anfds = 0; anfdmax = 0;
1412 1816
1413 /* have to use the microsoft-never-gets-it-right macro */ 1817 /* have to use the microsoft-never-gets-it-right macro */
1818 array_free (rfeed, EMPTY);
1414 array_free (fdchange, EMPTY); 1819 array_free (fdchange, EMPTY);
1415 array_free (timer, EMPTY); 1820 array_free (timer, EMPTY);
1416#if EV_PERIODIC_ENABLE 1821#if EV_PERIODIC_ENABLE
1417 array_free (periodic, EMPTY); 1822 array_free (periodic, EMPTY);
1418#endif 1823#endif
1419#if EV_FORK_ENABLE 1824#if EV_FORK_ENABLE
1420 array_free (fork, EMPTY); 1825 array_free (fork, EMPTY);
1421#endif 1826#endif
1827#if EV_CLEANUP_ENABLE
1828 array_free (cleanup, EMPTY);
1829#endif
1422 array_free (prepare, EMPTY); 1830 array_free (prepare, EMPTY);
1423 array_free (check, EMPTY); 1831 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE 1832#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY); 1833 array_free (async, EMPTY);
1426#endif 1834#endif
1427 1835
1428 backend = 0; 1836 backend = 0;
1837
1838#if EV_MULTIPLICITY
1839 if (ev_is_default_loop (EV_A))
1840#endif
1841 ev_default_loop_ptr = 0;
1842#if EV_MULTIPLICITY
1843 else
1844 ev_free (EV_A);
1845#endif
1429} 1846}
1430 1847
1431#if EV_USE_INOTIFY 1848#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P); 1849inline_size void infy_fork (EV_P);
1433#endif 1850#endif
1434 1851
1435void inline_size 1852inline_size void
1436loop_fork (EV_P) 1853loop_fork (EV_P)
1437{ 1854{
1438#if EV_USE_PORT 1855#if EV_USE_PORT
1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1856 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1440#endif 1857#endif
1446#endif 1863#endif
1447#if EV_USE_INOTIFY 1864#if EV_USE_INOTIFY
1448 infy_fork (EV_A); 1865 infy_fork (EV_A);
1449#endif 1866#endif
1450 1867
1451 if (ev_is_active (&pipeev)) 1868 if (ev_is_active (&pipe_w))
1452 { 1869 {
1453 /* this "locks" the handlers against writing to the pipe */ 1870 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */ 1871 /* while we modify the fd vars */
1455 gotsig = 1; 1872 sig_pending = 1;
1456#if EV_ASYNC_ENABLE 1873#if EV_ASYNC_ENABLE
1457 gotasync = 1; 1874 async_pending = 1;
1458#endif 1875#endif
1459 1876
1460 ev_ref (EV_A); 1877 ev_ref (EV_A);
1461 ev_io_stop (EV_A_ &pipeev); 1878 ev_io_stop (EV_A_ &pipe_w);
1462 1879
1463#if EV_USE_EVENTFD 1880#if EV_USE_EVENTFD
1464 if (evfd >= 0) 1881 if (evfd >= 0)
1465 close (evfd); 1882 close (evfd);
1466#endif 1883#endif
1467 1884
1468 if (evpipe [0] >= 0) 1885 if (evpipe [0] >= 0)
1469 { 1886 {
1470 close (evpipe [0]); 1887 EV_WIN32_CLOSE_FD (evpipe [0]);
1471 close (evpipe [1]); 1888 EV_WIN32_CLOSE_FD (evpipe [1]);
1472 } 1889 }
1473 1890
1891#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1474 evpipe_init (EV_A); 1892 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */ 1893 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ); 1894 pipecb (EV_A_ &pipe_w, EV_READ);
1895#endif
1477 } 1896 }
1478 1897
1479 postfork = 0; 1898 postfork = 0;
1480} 1899}
1481 1900
1482#if EV_MULTIPLICITY 1901#if EV_MULTIPLICITY
1483 1902
1484struct ev_loop * 1903struct ev_loop *
1485ev_loop_new (unsigned int flags) 1904ev_loop_new (unsigned int flags)
1486{ 1905{
1487 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1906 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1488 1907
1489 memset (loop, 0, sizeof (struct ev_loop)); 1908 memset (EV_A, 0, sizeof (struct ev_loop));
1490
1491 loop_init (EV_A_ flags); 1909 loop_init (EV_A_ flags);
1492 1910
1493 if (ev_backend (EV_A)) 1911 if (ev_backend (EV_A))
1494 return loop; 1912 return EV_A;
1495 1913
1914 ev_free (EV_A);
1496 return 0; 1915 return 0;
1497} 1916}
1498 1917
1499void 1918#endif /* multiplicity */
1500ev_loop_destroy (EV_P)
1501{
1502 loop_destroy (EV_A);
1503 ev_free (loop);
1504}
1505
1506void
1507ev_loop_fork (EV_P)
1508{
1509 postfork = 1; /* must be in line with ev_default_fork */
1510}
1511 1919
1512#if EV_VERIFY 1920#if EV_VERIFY
1513void noinline 1921static void noinline
1514verify_watcher (EV_P_ W w) 1922verify_watcher (EV_P_ W w)
1515{ 1923{
1516 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1924 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1517 1925
1518 if (w->pending) 1926 if (w->pending)
1519 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1927 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1520} 1928}
1521 1929
1522static void noinline 1930static void noinline
1523verify_heap (EV_P_ ANHE *heap, int N) 1931verify_heap (EV_P_ ANHE *heap, int N)
1524{ 1932{
1525 int i; 1933 int i;
1526 1934
1527 for (i = HEAP0; i < N + HEAP0; ++i) 1935 for (i = HEAP0; i < N + HEAP0; ++i)
1528 { 1936 {
1529 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1937 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1530 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1938 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1531 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1939 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1532 1940
1533 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1941 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1534 } 1942 }
1535} 1943}
1536 1944
1537static void noinline 1945static void noinline
1538array_verify (EV_P_ W *ws, int cnt) 1946array_verify (EV_P_ W *ws, int cnt)
1539{ 1947{
1540 while (cnt--) 1948 while (cnt--)
1541 { 1949 {
1542 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1950 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1543 verify_watcher (EV_A_ ws [cnt]); 1951 verify_watcher (EV_A_ ws [cnt]);
1544 } 1952 }
1545} 1953}
1546#endif 1954#endif
1547 1955
1956#if EV_FEATURE_API
1548void 1957void
1549ev_loop_verify (EV_P) 1958ev_verify (EV_P)
1550{ 1959{
1551#if EV_VERIFY 1960#if EV_VERIFY
1552 int i; 1961 int i;
1553 WL w; 1962 WL w;
1554 1963
1555 assert (activecnt >= -1); 1964 assert (activecnt >= -1);
1556 1965
1557 assert (fdchangemax >= fdchangecnt); 1966 assert (fdchangemax >= fdchangecnt);
1558 for (i = 0; i < fdchangecnt; ++i) 1967 for (i = 0; i < fdchangecnt; ++i)
1559 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1968 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1560 1969
1561 assert (anfdmax >= 0); 1970 assert (anfdmax >= 0);
1562 for (i = 0; i < anfdmax; ++i) 1971 for (i = 0; i < anfdmax; ++i)
1563 for (w = anfds [i].head; w; w = w->next) 1972 for (w = anfds [i].head; w; w = w->next)
1564 { 1973 {
1565 verify_watcher (EV_A_ (W)w); 1974 verify_watcher (EV_A_ (W)w);
1566 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1975 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1567 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1976 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1568 } 1977 }
1569 1978
1570 assert (timermax >= timercnt); 1979 assert (timermax >= timercnt);
1571 verify_heap (EV_A_ timers, timercnt); 1980 verify_heap (EV_A_ timers, timercnt);
1572 1981
1588#if EV_FORK_ENABLE 1997#if EV_FORK_ENABLE
1589 assert (forkmax >= forkcnt); 1998 assert (forkmax >= forkcnt);
1590 array_verify (EV_A_ (W *)forks, forkcnt); 1999 array_verify (EV_A_ (W *)forks, forkcnt);
1591#endif 2000#endif
1592 2001
2002#if EV_CLEANUP_ENABLE
2003 assert (cleanupmax >= cleanupcnt);
2004 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2005#endif
2006
1593#if EV_ASYNC_ENABLE 2007#if EV_ASYNC_ENABLE
1594 assert (asyncmax >= asynccnt); 2008 assert (asyncmax >= asynccnt);
1595 array_verify (EV_A_ (W *)asyncs, asynccnt); 2009 array_verify (EV_A_ (W *)asyncs, asynccnt);
1596#endif 2010#endif
1597 2011
2012#if EV_PREPARE_ENABLE
1598 assert (preparemax >= preparecnt); 2013 assert (preparemax >= preparecnt);
1599 array_verify (EV_A_ (W *)prepares, preparecnt); 2014 array_verify (EV_A_ (W *)prepares, preparecnt);
2015#endif
1600 2016
2017#if EV_CHECK_ENABLE
1601 assert (checkmax >= checkcnt); 2018 assert (checkmax >= checkcnt);
1602 array_verify (EV_A_ (W *)checks, checkcnt); 2019 array_verify (EV_A_ (W *)checks, checkcnt);
2020#endif
1603 2021
1604# if 0 2022# if 0
2023#if EV_CHILD_ENABLE
1605 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2024 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1606 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2025 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2026#endif
1607# endif 2027# endif
1608#endif 2028#endif
1609} 2029}
1610 2030#endif
1611#endif /* multiplicity */
1612 2031
1613#if EV_MULTIPLICITY 2032#if EV_MULTIPLICITY
1614struct ev_loop * 2033struct ev_loop *
1615ev_default_loop_init (unsigned int flags)
1616#else 2034#else
1617int 2035int
2036#endif
1618ev_default_loop (unsigned int flags) 2037ev_default_loop (unsigned int flags)
1619#endif
1620{ 2038{
1621 if (!ev_default_loop_ptr) 2039 if (!ev_default_loop_ptr)
1622 { 2040 {
1623#if EV_MULTIPLICITY 2041#if EV_MULTIPLICITY
1624 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2042 EV_P = ev_default_loop_ptr = &default_loop_struct;
1625#else 2043#else
1626 ev_default_loop_ptr = 1; 2044 ev_default_loop_ptr = 1;
1627#endif 2045#endif
1628 2046
1629 loop_init (EV_A_ flags); 2047 loop_init (EV_A_ flags);
1630 2048
1631 if (ev_backend (EV_A)) 2049 if (ev_backend (EV_A))
1632 { 2050 {
1633#ifndef _WIN32 2051#if EV_CHILD_ENABLE
1634 ev_signal_init (&childev, childcb, SIGCHLD); 2052 ev_signal_init (&childev, childcb, SIGCHLD);
1635 ev_set_priority (&childev, EV_MAXPRI); 2053 ev_set_priority (&childev, EV_MAXPRI);
1636 ev_signal_start (EV_A_ &childev); 2054 ev_signal_start (EV_A_ &childev);
1637 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2055 ev_unref (EV_A); /* child watcher should not keep loop alive */
1638#endif 2056#endif
1643 2061
1644 return ev_default_loop_ptr; 2062 return ev_default_loop_ptr;
1645} 2063}
1646 2064
1647void 2065void
1648ev_default_destroy (void) 2066ev_loop_fork (EV_P)
1649{ 2067{
1650#if EV_MULTIPLICITY
1651 struct ev_loop *loop = ev_default_loop_ptr;
1652#endif
1653
1654#ifndef _WIN32
1655 ev_ref (EV_A); /* child watcher */
1656 ev_signal_stop (EV_A_ &childev);
1657#endif
1658
1659 loop_destroy (EV_A);
1660}
1661
1662void
1663ev_default_fork (void)
1664{
1665#if EV_MULTIPLICITY
1666 struct ev_loop *loop = ev_default_loop_ptr;
1667#endif
1668
1669 if (backend)
1670 postfork = 1; /* must be in line with ev_loop_fork */ 2068 postfork = 1; /* must be in line with ev_default_fork */
1671} 2069}
1672 2070
1673/*****************************************************************************/ 2071/*****************************************************************************/
1674 2072
1675void 2073void
1676ev_invoke (EV_P_ void *w, int revents) 2074ev_invoke (EV_P_ void *w, int revents)
1677{ 2075{
1678 EV_CB_INVOKE ((W)w, revents); 2076 EV_CB_INVOKE ((W)w, revents);
1679} 2077}
1680 2078
1681void inline_speed 2079unsigned int
1682call_pending (EV_P) 2080ev_pending_count (EV_P)
2081{
2082 int pri;
2083 unsigned int count = 0;
2084
2085 for (pri = NUMPRI; pri--; )
2086 count += pendingcnt [pri];
2087
2088 return count;
2089}
2090
2091void noinline
2092ev_invoke_pending (EV_P)
1683{ 2093{
1684 int pri; 2094 int pri;
1685 2095
1686 for (pri = NUMPRI; pri--; ) 2096 for (pri = NUMPRI; pri--; )
1687 while (pendingcnt [pri]) 2097 while (pendingcnt [pri])
1688 { 2098 {
1689 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2099 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1690 2100
1691 if (expect_true (p->w))
1692 {
1693 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2101 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2102 /* ^ this is no longer true, as pending_w could be here */
1694 2103
1695 p->w->pending = 0; 2104 p->w->pending = 0;
1696 EV_CB_INVOKE (p->w, p->events); 2105 EV_CB_INVOKE (p->w, p->events);
1697 EV_FREQUENT_CHECK; 2106 EV_FREQUENT_CHECK;
1698 }
1699 } 2107 }
1700} 2108}
1701 2109
1702#if EV_IDLE_ENABLE 2110#if EV_IDLE_ENABLE
1703void inline_size 2111/* make idle watchers pending. this handles the "call-idle */
2112/* only when higher priorities are idle" logic */
2113inline_size void
1704idle_reify (EV_P) 2114idle_reify (EV_P)
1705{ 2115{
1706 if (expect_false (idleall)) 2116 if (expect_false (idleall))
1707 { 2117 {
1708 int pri; 2118 int pri;
1720 } 2130 }
1721 } 2131 }
1722} 2132}
1723#endif 2133#endif
1724 2134
1725void inline_size 2135/* make timers pending */
2136inline_size void
1726timers_reify (EV_P) 2137timers_reify (EV_P)
1727{ 2138{
1728 EV_FREQUENT_CHECK; 2139 EV_FREQUENT_CHECK;
1729 2140
1730 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2141 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1731 { 2142 {
1732 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2143 do
1733
1734 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1735
1736 /* first reschedule or stop timer */
1737 if (w->repeat)
1738 { 2144 {
2145 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2146
2147 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2148
2149 /* first reschedule or stop timer */
2150 if (w->repeat)
2151 {
1739 ev_at (w) += w->repeat; 2152 ev_at (w) += w->repeat;
1740 if (ev_at (w) < mn_now) 2153 if (ev_at (w) < mn_now)
1741 ev_at (w) = mn_now; 2154 ev_at (w) = mn_now;
1742 2155
1743 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2156 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1744 2157
1745 ANHE_at_cache (timers [HEAP0]); 2158 ANHE_at_cache (timers [HEAP0]);
1746 downheap (timers, timercnt, HEAP0); 2159 downheap (timers, timercnt, HEAP0);
2160 }
2161 else
2162 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2163
2164 EV_FREQUENT_CHECK;
2165 feed_reverse (EV_A_ (W)w);
1747 } 2166 }
1748 else 2167 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1749 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1750 2168
1751 EV_FREQUENT_CHECK; 2169 feed_reverse_done (EV_A_ EV_TIMER);
1752 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1753 } 2170 }
1754} 2171}
1755 2172
1756#if EV_PERIODIC_ENABLE 2173#if EV_PERIODIC_ENABLE
1757void inline_size 2174/* make periodics pending */
2175inline_size void
1758periodics_reify (EV_P) 2176periodics_reify (EV_P)
1759{ 2177{
1760 EV_FREQUENT_CHECK; 2178 EV_FREQUENT_CHECK;
1761 2179
1762 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2180 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1763 { 2181 {
1764 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2182 int feed_count = 0;
1765 2183
1766 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2184 do
1767
1768 /* first reschedule or stop timer */
1769 if (w->reschedule_cb)
1770 { 2185 {
2186 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2187
2188 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2189
2190 /* first reschedule or stop timer */
2191 if (w->reschedule_cb)
2192 {
1771 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2193 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1772 2194
1773 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2195 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1774 2196
1775 ANHE_at_cache (periodics [HEAP0]); 2197 ANHE_at_cache (periodics [HEAP0]);
1776 downheap (periodics, periodiccnt, HEAP0); 2198 downheap (periodics, periodiccnt, HEAP0);
2199 }
2200 else if (w->interval)
2201 {
2202 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2203 /* if next trigger time is not sufficiently in the future, put it there */
2204 /* this might happen because of floating point inexactness */
2205 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2206 {
2207 ev_at (w) += w->interval;
2208
2209 /* if interval is unreasonably low we might still have a time in the past */
2210 /* so correct this. this will make the periodic very inexact, but the user */
2211 /* has effectively asked to get triggered more often than possible */
2212 if (ev_at (w) < ev_rt_now)
2213 ev_at (w) = ev_rt_now;
2214 }
2215
2216 ANHE_at_cache (periodics [HEAP0]);
2217 downheap (periodics, periodiccnt, HEAP0);
2218 }
2219 else
2220 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2221
2222 EV_FREQUENT_CHECK;
2223 feed_reverse (EV_A_ (W)w);
1777 } 2224 }
1778 else if (w->interval) 2225 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1779 {
1780 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1781 /* if next trigger time is not sufficiently in the future, put it there */
1782 /* this might happen because of floating point inexactness */
1783 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1784 {
1785 ev_at (w) += w->interval;
1786 2226
1787 /* if interval is unreasonably low we might still have a time in the past */
1788 /* so correct this. this will make the periodic very inexact, but the user */
1789 /* has effectively asked to get triggered more often than possible */
1790 if (ev_at (w) < ev_rt_now)
1791 ev_at (w) = ev_rt_now;
1792 }
1793
1794 ANHE_at_cache (periodics [HEAP0]);
1795 downheap (periodics, periodiccnt, HEAP0);
1796 }
1797 else
1798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1799
1800 EV_FREQUENT_CHECK;
1801 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2227 feed_reverse_done (EV_A_ EV_PERIODIC);
1802 } 2228 }
1803} 2229}
1804 2230
2231/* simply recalculate all periodics */
2232/* TODO: maybe ensure that at least one event happens when jumping forward? */
1805static void noinline 2233static void noinline
1806periodics_reschedule (EV_P) 2234periodics_reschedule (EV_P)
1807{ 2235{
1808 int i; 2236 int i;
1809 2237
1822 2250
1823 reheap (periodics, periodiccnt); 2251 reheap (periodics, periodiccnt);
1824} 2252}
1825#endif 2253#endif
1826 2254
1827void inline_speed 2255/* adjust all timers by a given offset */
2256static void noinline
2257timers_reschedule (EV_P_ ev_tstamp adjust)
2258{
2259 int i;
2260
2261 for (i = 0; i < timercnt; ++i)
2262 {
2263 ANHE *he = timers + i + HEAP0;
2264 ANHE_w (*he)->at += adjust;
2265 ANHE_at_cache (*he);
2266 }
2267}
2268
2269/* fetch new monotonic and realtime times from the kernel */
2270/* also detect if there was a timejump, and act accordingly */
2271inline_speed void
1828time_update (EV_P_ ev_tstamp max_block) 2272time_update (EV_P_ ev_tstamp max_block)
1829{ 2273{
1830 int i;
1831
1832#if EV_USE_MONOTONIC 2274#if EV_USE_MONOTONIC
1833 if (expect_true (have_monotonic)) 2275 if (expect_true (have_monotonic))
1834 { 2276 {
2277 int i;
1835 ev_tstamp odiff = rtmn_diff; 2278 ev_tstamp odiff = rtmn_diff;
1836 2279
1837 mn_now = get_clock (); 2280 mn_now = get_clock ();
1838 2281
1839 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2282 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1865 ev_rt_now = ev_time (); 2308 ev_rt_now = ev_time ();
1866 mn_now = get_clock (); 2309 mn_now = get_clock ();
1867 now_floor = mn_now; 2310 now_floor = mn_now;
1868 } 2311 }
1869 2312
2313 /* no timer adjustment, as the monotonic clock doesn't jump */
2314 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1870# if EV_PERIODIC_ENABLE 2315# if EV_PERIODIC_ENABLE
1871 periodics_reschedule (EV_A); 2316 periodics_reschedule (EV_A);
1872# endif 2317# endif
1873 /* no timer adjustment, as the monotonic clock doesn't jump */
1874 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1875 } 2318 }
1876 else 2319 else
1877#endif 2320#endif
1878 { 2321 {
1879 ev_rt_now = ev_time (); 2322 ev_rt_now = ev_time ();
1880 2323
1881 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2324 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1882 { 2325 {
2326 /* adjust timers. this is easy, as the offset is the same for all of them */
2327 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1883#if EV_PERIODIC_ENABLE 2328#if EV_PERIODIC_ENABLE
1884 periodics_reschedule (EV_A); 2329 periodics_reschedule (EV_A);
1885#endif 2330#endif
1886 /* adjust timers. this is easy, as the offset is the same for all of them */
1887 for (i = 0; i < timercnt; ++i)
1888 {
1889 ANHE *he = timers + i + HEAP0;
1890 ANHE_w (*he)->at += ev_rt_now - mn_now;
1891 ANHE_at_cache (*he);
1892 }
1893 } 2331 }
1894 2332
1895 mn_now = ev_rt_now; 2333 mn_now = ev_rt_now;
1896 } 2334 }
1897} 2335}
1898 2336
1899void 2337void
1900ev_ref (EV_P)
1901{
1902 ++activecnt;
1903}
1904
1905void
1906ev_unref (EV_P)
1907{
1908 --activecnt;
1909}
1910
1911static int loop_done;
1912
1913void
1914ev_loop (EV_P_ int flags) 2338ev_run (EV_P_ int flags)
1915{ 2339{
2340#if EV_FEATURE_API
2341 ++loop_depth;
2342#endif
2343
2344 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2345
1916 loop_done = EVUNLOOP_CANCEL; 2346 loop_done = EVBREAK_CANCEL;
1917 2347
1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2348 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1919 2349
1920 do 2350 do
1921 { 2351 {
1922#if EV_VERIFY >= 2 2352#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A); 2353 ev_verify (EV_A);
1924#endif 2354#endif
1925 2355
1926#ifndef _WIN32 2356#ifndef _WIN32
1927 if (expect_false (curpid)) /* penalise the forking check even more */ 2357 if (expect_false (curpid)) /* penalise the forking check even more */
1928 if (expect_false (getpid () != curpid)) 2358 if (expect_false (getpid () != curpid))
1936 /* we might have forked, so queue fork handlers */ 2366 /* we might have forked, so queue fork handlers */
1937 if (expect_false (postfork)) 2367 if (expect_false (postfork))
1938 if (forkcnt) 2368 if (forkcnt)
1939 { 2369 {
1940 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2370 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1941 call_pending (EV_A); 2371 EV_INVOKE_PENDING;
1942 } 2372 }
1943#endif 2373#endif
1944 2374
2375#if EV_PREPARE_ENABLE
1945 /* queue prepare watchers (and execute them) */ 2376 /* queue prepare watchers (and execute them) */
1946 if (expect_false (preparecnt)) 2377 if (expect_false (preparecnt))
1947 { 2378 {
1948 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2379 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1949 call_pending (EV_A); 2380 EV_INVOKE_PENDING;
1950 } 2381 }
2382#endif
1951 2383
1952 if (expect_false (!activecnt)) 2384 if (expect_false (loop_done))
1953 break; 2385 break;
1954 2386
1955 /* we might have forked, so reify kernel state if necessary */ 2387 /* we might have forked, so reify kernel state if necessary */
1956 if (expect_false (postfork)) 2388 if (expect_false (postfork))
1957 loop_fork (EV_A); 2389 loop_fork (EV_A);
1962 /* calculate blocking time */ 2394 /* calculate blocking time */
1963 { 2395 {
1964 ev_tstamp waittime = 0.; 2396 ev_tstamp waittime = 0.;
1965 ev_tstamp sleeptime = 0.; 2397 ev_tstamp sleeptime = 0.;
1966 2398
2399 /* remember old timestamp for io_blocktime calculation */
2400 ev_tstamp prev_mn_now = mn_now;
2401
2402 /* update time to cancel out callback processing overhead */
2403 time_update (EV_A_ 1e100);
2404
1967 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2405 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1968 { 2406 {
1969 /* update time to cancel out callback processing overhead */
1970 time_update (EV_A_ 1e100);
1971
1972 waittime = MAX_BLOCKTIME; 2407 waittime = MAX_BLOCKTIME;
1973 2408
1974 if (timercnt) 2409 if (timercnt)
1975 { 2410 {
1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2411 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2418 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1984 if (waittime > to) waittime = to; 2419 if (waittime > to) waittime = to;
1985 } 2420 }
1986#endif 2421#endif
1987 2422
2423 /* don't let timeouts decrease the waittime below timeout_blocktime */
1988 if (expect_false (waittime < timeout_blocktime)) 2424 if (expect_false (waittime < timeout_blocktime))
1989 waittime = timeout_blocktime; 2425 waittime = timeout_blocktime;
1990 2426
1991 sleeptime = waittime - backend_fudge; 2427 /* extra check because io_blocktime is commonly 0 */
1992
1993 if (expect_true (sleeptime > io_blocktime)) 2428 if (expect_false (io_blocktime))
1994 sleeptime = io_blocktime;
1995
1996 if (sleeptime)
1997 { 2429 {
2430 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2431
2432 if (sleeptime > waittime - backend_fudge)
2433 sleeptime = waittime - backend_fudge;
2434
2435 if (expect_true (sleeptime > 0.))
2436 {
1998 ev_sleep (sleeptime); 2437 ev_sleep (sleeptime);
1999 waittime -= sleeptime; 2438 waittime -= sleeptime;
2439 }
2000 } 2440 }
2001 } 2441 }
2002 2442
2443#if EV_FEATURE_API
2003 ++loop_count; 2444 ++loop_count;
2445#endif
2446 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2004 backend_poll (EV_A_ waittime); 2447 backend_poll (EV_A_ waittime);
2448 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2005 2449
2006 /* update ev_rt_now, do magic */ 2450 /* update ev_rt_now, do magic */
2007 time_update (EV_A_ waittime + sleeptime); 2451 time_update (EV_A_ waittime + sleeptime);
2008 } 2452 }
2009 2453
2016#if EV_IDLE_ENABLE 2460#if EV_IDLE_ENABLE
2017 /* queue idle watchers unless other events are pending */ 2461 /* queue idle watchers unless other events are pending */
2018 idle_reify (EV_A); 2462 idle_reify (EV_A);
2019#endif 2463#endif
2020 2464
2465#if EV_CHECK_ENABLE
2021 /* queue check watchers, to be executed first */ 2466 /* queue check watchers, to be executed first */
2022 if (expect_false (checkcnt)) 2467 if (expect_false (checkcnt))
2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2468 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2469#endif
2024 2470
2025 call_pending (EV_A); 2471 EV_INVOKE_PENDING;
2026 } 2472 }
2027 while (expect_true ( 2473 while (expect_true (
2028 activecnt 2474 activecnt
2029 && !loop_done 2475 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2476 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2031 )); 2477 ));
2032 2478
2033 if (loop_done == EVUNLOOP_ONE) 2479 if (loop_done == EVBREAK_ONE)
2034 loop_done = EVUNLOOP_CANCEL; 2480 loop_done = EVBREAK_CANCEL;
2035}
2036 2481
2482#if EV_FEATURE_API
2483 --loop_depth;
2484#endif
2485}
2486
2037void 2487void
2038ev_unloop (EV_P_ int how) 2488ev_break (EV_P_ int how)
2039{ 2489{
2040 loop_done = how; 2490 loop_done = how;
2041} 2491}
2042 2492
2493void
2494ev_ref (EV_P)
2495{
2496 ++activecnt;
2497}
2498
2499void
2500ev_unref (EV_P)
2501{
2502 --activecnt;
2503}
2504
2505void
2506ev_now_update (EV_P)
2507{
2508 time_update (EV_A_ 1e100);
2509}
2510
2511void
2512ev_suspend (EV_P)
2513{
2514 ev_now_update (EV_A);
2515}
2516
2517void
2518ev_resume (EV_P)
2519{
2520 ev_tstamp mn_prev = mn_now;
2521
2522 ev_now_update (EV_A);
2523 timers_reschedule (EV_A_ mn_now - mn_prev);
2524#if EV_PERIODIC_ENABLE
2525 /* TODO: really do this? */
2526 periodics_reschedule (EV_A);
2527#endif
2528}
2529
2043/*****************************************************************************/ 2530/*****************************************************************************/
2531/* singly-linked list management, used when the expected list length is short */
2044 2532
2045void inline_size 2533inline_size void
2046wlist_add (WL *head, WL elem) 2534wlist_add (WL *head, WL elem)
2047{ 2535{
2048 elem->next = *head; 2536 elem->next = *head;
2049 *head = elem; 2537 *head = elem;
2050} 2538}
2051 2539
2052void inline_size 2540inline_size void
2053wlist_del (WL *head, WL elem) 2541wlist_del (WL *head, WL elem)
2054{ 2542{
2055 while (*head) 2543 while (*head)
2056 { 2544 {
2057 if (*head == elem) 2545 if (expect_true (*head == elem))
2058 { 2546 {
2059 *head = elem->next; 2547 *head = elem->next;
2060 return; 2548 break;
2061 } 2549 }
2062 2550
2063 head = &(*head)->next; 2551 head = &(*head)->next;
2064 } 2552 }
2065} 2553}
2066 2554
2067void inline_speed 2555/* internal, faster, version of ev_clear_pending */
2556inline_speed void
2068clear_pending (EV_P_ W w) 2557clear_pending (EV_P_ W w)
2069{ 2558{
2070 if (w->pending) 2559 if (w->pending)
2071 { 2560 {
2072 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2561 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2073 w->pending = 0; 2562 w->pending = 0;
2074 } 2563 }
2075} 2564}
2076 2565
2077int 2566int
2081 int pending = w_->pending; 2570 int pending = w_->pending;
2082 2571
2083 if (expect_true (pending)) 2572 if (expect_true (pending))
2084 { 2573 {
2085 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2574 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2575 p->w = (W)&pending_w;
2086 w_->pending = 0; 2576 w_->pending = 0;
2087 p->w = 0;
2088 return p->events; 2577 return p->events;
2089 } 2578 }
2090 else 2579 else
2091 return 0; 2580 return 0;
2092} 2581}
2093 2582
2094void inline_size 2583inline_size void
2095pri_adjust (EV_P_ W w) 2584pri_adjust (EV_P_ W w)
2096{ 2585{
2097 int pri = w->priority; 2586 int pri = ev_priority (w);
2098 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2587 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2099 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2588 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2100 w->priority = pri; 2589 ev_set_priority (w, pri);
2101} 2590}
2102 2591
2103void inline_speed 2592inline_speed void
2104ev_start (EV_P_ W w, int active) 2593ev_start (EV_P_ W w, int active)
2105{ 2594{
2106 pri_adjust (EV_A_ w); 2595 pri_adjust (EV_A_ w);
2107 w->active = active; 2596 w->active = active;
2108 ev_ref (EV_A); 2597 ev_ref (EV_A);
2109} 2598}
2110 2599
2111void inline_size 2600inline_size void
2112ev_stop (EV_P_ W w) 2601ev_stop (EV_P_ W w)
2113{ 2602{
2114 ev_unref (EV_A); 2603 ev_unref (EV_A);
2115 w->active = 0; 2604 w->active = 0;
2116} 2605}
2123 int fd = w->fd; 2612 int fd = w->fd;
2124 2613
2125 if (expect_false (ev_is_active (w))) 2614 if (expect_false (ev_is_active (w)))
2126 return; 2615 return;
2127 2616
2128 assert (("ev_io_start called with negative fd", fd >= 0)); 2617 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2618 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2129 2619
2130 EV_FREQUENT_CHECK; 2620 EV_FREQUENT_CHECK;
2131 2621
2132 ev_start (EV_A_ (W)w, 1); 2622 ev_start (EV_A_ (W)w, 1);
2133 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2623 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2134 wlist_add (&anfds[fd].head, (WL)w); 2624 wlist_add (&anfds[fd].head, (WL)w);
2135 2625
2136 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2626 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2137 w->events &= ~EV_IOFDSET; 2627 w->events &= ~EV__IOFDSET;
2138 2628
2139 EV_FREQUENT_CHECK; 2629 EV_FREQUENT_CHECK;
2140} 2630}
2141 2631
2142void noinline 2632void noinline
2144{ 2634{
2145 clear_pending (EV_A_ (W)w); 2635 clear_pending (EV_A_ (W)w);
2146 if (expect_false (!ev_is_active (w))) 2636 if (expect_false (!ev_is_active (w)))
2147 return; 2637 return;
2148 2638
2149 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2639 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2150 2640
2151 EV_FREQUENT_CHECK; 2641 EV_FREQUENT_CHECK;
2152 2642
2153 wlist_del (&anfds[w->fd].head, (WL)w); 2643 wlist_del (&anfds[w->fd].head, (WL)w);
2154 ev_stop (EV_A_ (W)w); 2644 ev_stop (EV_A_ (W)w);
2155 2645
2156 fd_change (EV_A_ w->fd, 1); 2646 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2157 2647
2158 EV_FREQUENT_CHECK; 2648 EV_FREQUENT_CHECK;
2159} 2649}
2160 2650
2161void noinline 2651void noinline
2164 if (expect_false (ev_is_active (w))) 2654 if (expect_false (ev_is_active (w)))
2165 return; 2655 return;
2166 2656
2167 ev_at (w) += mn_now; 2657 ev_at (w) += mn_now;
2168 2658
2169 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2659 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2170 2660
2171 EV_FREQUENT_CHECK; 2661 EV_FREQUENT_CHECK;
2172 2662
2173 ++timercnt; 2663 ++timercnt;
2174 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2664 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2177 ANHE_at_cache (timers [ev_active (w)]); 2667 ANHE_at_cache (timers [ev_active (w)]);
2178 upheap (timers, ev_active (w)); 2668 upheap (timers, ev_active (w));
2179 2669
2180 EV_FREQUENT_CHECK; 2670 EV_FREQUENT_CHECK;
2181 2671
2182 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2672 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2183} 2673}
2184 2674
2185void noinline 2675void noinline
2186ev_timer_stop (EV_P_ ev_timer *w) 2676ev_timer_stop (EV_P_ ev_timer *w)
2187{ 2677{
2192 EV_FREQUENT_CHECK; 2682 EV_FREQUENT_CHECK;
2193 2683
2194 { 2684 {
2195 int active = ev_active (w); 2685 int active = ev_active (w);
2196 2686
2197 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2687 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2198 2688
2199 --timercnt; 2689 --timercnt;
2200 2690
2201 if (expect_true (active < timercnt + HEAP0)) 2691 if (expect_true (active < timercnt + HEAP0))
2202 { 2692 {
2203 timers [active] = timers [timercnt + HEAP0]; 2693 timers [active] = timers [timercnt + HEAP0];
2204 adjustheap (timers, timercnt, active); 2694 adjustheap (timers, timercnt, active);
2205 } 2695 }
2206 } 2696 }
2207 2697
2208 EV_FREQUENT_CHECK;
2209
2210 ev_at (w) -= mn_now; 2698 ev_at (w) -= mn_now;
2211 2699
2212 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
2701
2702 EV_FREQUENT_CHECK;
2213} 2703}
2214 2704
2215void noinline 2705void noinline
2216ev_timer_again (EV_P_ ev_timer *w) 2706ev_timer_again (EV_P_ ev_timer *w)
2217{ 2707{
2235 } 2725 }
2236 2726
2237 EV_FREQUENT_CHECK; 2727 EV_FREQUENT_CHECK;
2238} 2728}
2239 2729
2730ev_tstamp
2731ev_timer_remaining (EV_P_ ev_timer *w)
2732{
2733 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2734}
2735
2240#if EV_PERIODIC_ENABLE 2736#if EV_PERIODIC_ENABLE
2241void noinline 2737void noinline
2242ev_periodic_start (EV_P_ ev_periodic *w) 2738ev_periodic_start (EV_P_ ev_periodic *w)
2243{ 2739{
2244 if (expect_false (ev_is_active (w))) 2740 if (expect_false (ev_is_active (w)))
2246 2742
2247 if (w->reschedule_cb) 2743 if (w->reschedule_cb)
2248 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2744 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2249 else if (w->interval) 2745 else if (w->interval)
2250 { 2746 {
2251 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2747 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2252 /* this formula differs from the one in periodic_reify because we do not always round up */ 2748 /* this formula differs from the one in periodic_reify because we do not always round up */
2253 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2749 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2254 } 2750 }
2255 else 2751 else
2256 ev_at (w) = w->offset; 2752 ev_at (w) = w->offset;
2264 ANHE_at_cache (periodics [ev_active (w)]); 2760 ANHE_at_cache (periodics [ev_active (w)]);
2265 upheap (periodics, ev_active (w)); 2761 upheap (periodics, ev_active (w));
2266 2762
2267 EV_FREQUENT_CHECK; 2763 EV_FREQUENT_CHECK;
2268 2764
2269 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2765 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2270} 2766}
2271 2767
2272void noinline 2768void noinline
2273ev_periodic_stop (EV_P_ ev_periodic *w) 2769ev_periodic_stop (EV_P_ ev_periodic *w)
2274{ 2770{
2279 EV_FREQUENT_CHECK; 2775 EV_FREQUENT_CHECK;
2280 2776
2281 { 2777 {
2282 int active = ev_active (w); 2778 int active = ev_active (w);
2283 2779
2284 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2780 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2285 2781
2286 --periodiccnt; 2782 --periodiccnt;
2287 2783
2288 if (expect_true (active < periodiccnt + HEAP0)) 2784 if (expect_true (active < periodiccnt + HEAP0))
2289 { 2785 {
2290 periodics [active] = periodics [periodiccnt + HEAP0]; 2786 periodics [active] = periodics [periodiccnt + HEAP0];
2291 adjustheap (periodics, periodiccnt, active); 2787 adjustheap (periodics, periodiccnt, active);
2292 } 2788 }
2293 } 2789 }
2294 2790
2295 EV_FREQUENT_CHECK;
2296
2297 ev_stop (EV_A_ (W)w); 2791 ev_stop (EV_A_ (W)w);
2792
2793 EV_FREQUENT_CHECK;
2298} 2794}
2299 2795
2300void noinline 2796void noinline
2301ev_periodic_again (EV_P_ ev_periodic *w) 2797ev_periodic_again (EV_P_ ev_periodic *w)
2302{ 2798{
2308 2804
2309#ifndef SA_RESTART 2805#ifndef SA_RESTART
2310# define SA_RESTART 0 2806# define SA_RESTART 0
2311#endif 2807#endif
2312 2808
2809#if EV_SIGNAL_ENABLE
2810
2313void noinline 2811void noinline
2314ev_signal_start (EV_P_ ev_signal *w) 2812ev_signal_start (EV_P_ ev_signal *w)
2315{ 2813{
2316#if EV_MULTIPLICITY
2317 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2318#endif
2319 if (expect_false (ev_is_active (w))) 2814 if (expect_false (ev_is_active (w)))
2320 return; 2815 return;
2321 2816
2322 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2817 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2323 2818
2324 evpipe_init (EV_A); 2819#if EV_MULTIPLICITY
2820 assert (("libev: a signal must not be attached to two different loops",
2821 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2325 2822
2326 EV_FREQUENT_CHECK; 2823 signals [w->signum - 1].loop = EV_A;
2824#endif
2327 2825
2826 EV_FREQUENT_CHECK;
2827
2828#if EV_USE_SIGNALFD
2829 if (sigfd == -2)
2328 { 2830 {
2329#ifndef _WIN32 2831 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2330 sigset_t full, prev; 2832 if (sigfd < 0 && errno == EINVAL)
2331 sigfillset (&full); 2833 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2332 sigprocmask (SIG_SETMASK, &full, &prev);
2333#endif
2334 2834
2335 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2835 if (sigfd >= 0)
2836 {
2837 fd_intern (sigfd); /* doing it twice will not hurt */
2336 2838
2337#ifndef _WIN32 2839 sigemptyset (&sigfd_set);
2338 sigprocmask (SIG_SETMASK, &prev, 0); 2840
2339#endif 2841 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2842 ev_set_priority (&sigfd_w, EV_MAXPRI);
2843 ev_io_start (EV_A_ &sigfd_w);
2844 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2845 }
2340 } 2846 }
2847
2848 if (sigfd >= 0)
2849 {
2850 /* TODO: check .head */
2851 sigaddset (&sigfd_set, w->signum);
2852 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2853
2854 signalfd (sigfd, &sigfd_set, 0);
2855 }
2856#endif
2341 2857
2342 ev_start (EV_A_ (W)w, 1); 2858 ev_start (EV_A_ (W)w, 1);
2343 wlist_add (&signals [w->signum - 1].head, (WL)w); 2859 wlist_add (&signals [w->signum - 1].head, (WL)w);
2344 2860
2345 if (!((WL)w)->next) 2861 if (!((WL)w)->next)
2862# if EV_USE_SIGNALFD
2863 if (sigfd < 0) /*TODO*/
2864# endif
2346 { 2865 {
2347#if _WIN32 2866# ifdef _WIN32
2867 evpipe_init (EV_A);
2868
2348 signal (w->signum, ev_sighandler); 2869 signal (w->signum, ev_sighandler);
2349#else 2870# else
2350 struct sigaction sa; 2871 struct sigaction sa;
2872
2873 evpipe_init (EV_A);
2874
2351 sa.sa_handler = ev_sighandler; 2875 sa.sa_handler = ev_sighandler;
2352 sigfillset (&sa.sa_mask); 2876 sigfillset (&sa.sa_mask);
2353 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2877 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2354 sigaction (w->signum, &sa, 0); 2878 sigaction (w->signum, &sa, 0);
2879
2880 sigemptyset (&sa.sa_mask);
2881 sigaddset (&sa.sa_mask, w->signum);
2882 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2355#endif 2883#endif
2356 } 2884 }
2357 2885
2358 EV_FREQUENT_CHECK; 2886 EV_FREQUENT_CHECK;
2359} 2887}
2360 2888
2361void noinline 2889void noinline
2369 2897
2370 wlist_del (&signals [w->signum - 1].head, (WL)w); 2898 wlist_del (&signals [w->signum - 1].head, (WL)w);
2371 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
2372 2900
2373 if (!signals [w->signum - 1].head) 2901 if (!signals [w->signum - 1].head)
2902 {
2903#if EV_MULTIPLICITY
2904 signals [w->signum - 1].loop = 0; /* unattach from signal */
2905#endif
2906#if EV_USE_SIGNALFD
2907 if (sigfd >= 0)
2908 {
2909 sigset_t ss;
2910
2911 sigemptyset (&ss);
2912 sigaddset (&ss, w->signum);
2913 sigdelset (&sigfd_set, w->signum);
2914
2915 signalfd (sigfd, &sigfd_set, 0);
2916 sigprocmask (SIG_UNBLOCK, &ss, 0);
2917 }
2918 else
2919#endif
2374 signal (w->signum, SIG_DFL); 2920 signal (w->signum, SIG_DFL);
2921 }
2375 2922
2376 EV_FREQUENT_CHECK; 2923 EV_FREQUENT_CHECK;
2377} 2924}
2925
2926#endif
2927
2928#if EV_CHILD_ENABLE
2378 2929
2379void 2930void
2380ev_child_start (EV_P_ ev_child *w) 2931ev_child_start (EV_P_ ev_child *w)
2381{ 2932{
2382#if EV_MULTIPLICITY 2933#if EV_MULTIPLICITY
2383 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2934 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2384#endif 2935#endif
2385 if (expect_false (ev_is_active (w))) 2936 if (expect_false (ev_is_active (w)))
2386 return; 2937 return;
2387 2938
2388 EV_FREQUENT_CHECK; 2939 EV_FREQUENT_CHECK;
2389 2940
2390 ev_start (EV_A_ (W)w, 1); 2941 ev_start (EV_A_ (W)w, 1);
2391 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2942 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2392 2943
2393 EV_FREQUENT_CHECK; 2944 EV_FREQUENT_CHECK;
2394} 2945}
2395 2946
2396void 2947void
2400 if (expect_false (!ev_is_active (w))) 2951 if (expect_false (!ev_is_active (w)))
2401 return; 2952 return;
2402 2953
2403 EV_FREQUENT_CHECK; 2954 EV_FREQUENT_CHECK;
2404 2955
2405 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2956 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2406 ev_stop (EV_A_ (W)w); 2957 ev_stop (EV_A_ (W)w);
2407 2958
2408 EV_FREQUENT_CHECK; 2959 EV_FREQUENT_CHECK;
2409} 2960}
2961
2962#endif
2410 2963
2411#if EV_STAT_ENABLE 2964#if EV_STAT_ENABLE
2412 2965
2413# ifdef _WIN32 2966# ifdef _WIN32
2414# undef lstat 2967# undef lstat
2415# define lstat(a,b) _stati64 (a,b) 2968# define lstat(a,b) _stati64 (a,b)
2416# endif 2969# endif
2417 2970
2418#define DEF_STAT_INTERVAL 5.0074891 2971#define DEF_STAT_INTERVAL 5.0074891
2972#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2419#define MIN_STAT_INTERVAL 0.1074891 2973#define MIN_STAT_INTERVAL 0.1074891
2420 2974
2421static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2975static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2422 2976
2423#if EV_USE_INOTIFY 2977#if EV_USE_INOTIFY
2424# define EV_INOTIFY_BUFSIZE 8192 2978
2979/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2980# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2425 2981
2426static void noinline 2982static void noinline
2427infy_add (EV_P_ ev_stat *w) 2983infy_add (EV_P_ ev_stat *w)
2428{ 2984{
2429 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2985 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2430 2986
2431 if (w->wd < 0) 2987 if (w->wd >= 0)
2988 {
2989 struct statfs sfs;
2990
2991 /* now local changes will be tracked by inotify, but remote changes won't */
2992 /* unless the filesystem is known to be local, we therefore still poll */
2993 /* also do poll on <2.6.25, but with normal frequency */
2994
2995 if (!fs_2625)
2996 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2997 else if (!statfs (w->path, &sfs)
2998 && (sfs.f_type == 0x1373 /* devfs */
2999 || sfs.f_type == 0xEF53 /* ext2/3 */
3000 || sfs.f_type == 0x3153464a /* jfs */
3001 || sfs.f_type == 0x52654973 /* reiser3 */
3002 || sfs.f_type == 0x01021994 /* tempfs */
3003 || sfs.f_type == 0x58465342 /* xfs */))
3004 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3005 else
3006 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2432 { 3007 }
2433 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3008 else
3009 {
3010 /* can't use inotify, continue to stat */
3011 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2434 3012
2435 /* monitor some parent directory for speedup hints */ 3013 /* if path is not there, monitor some parent directory for speedup hints */
2436 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3014 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2437 /* but an efficiency issue only */ 3015 /* but an efficiency issue only */
2438 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3016 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2439 { 3017 {
2440 char path [4096]; 3018 char path [4096];
2441 strcpy (path, w->path); 3019 strcpy (path, w->path);
2445 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3023 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2446 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3024 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2447 3025
2448 char *pend = strrchr (path, '/'); 3026 char *pend = strrchr (path, '/');
2449 3027
2450 if (!pend) 3028 if (!pend || pend == path)
2451 break; /* whoops, no '/', complain to your admin */ 3029 break;
2452 3030
2453 *pend = 0; 3031 *pend = 0;
2454 w->wd = inotify_add_watch (fs_fd, path, mask); 3032 w->wd = inotify_add_watch (fs_fd, path, mask);
2455 } 3033 }
2456 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3034 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2457 } 3035 }
2458 } 3036 }
2459 else
2460 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2461 3037
2462 if (w->wd >= 0) 3038 if (w->wd >= 0)
2463 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3039 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3040
3041 /* now re-arm timer, if required */
3042 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3043 ev_timer_again (EV_A_ &w->timer);
3044 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2464} 3045}
2465 3046
2466static void noinline 3047static void noinline
2467infy_del (EV_P_ ev_stat *w) 3048infy_del (EV_P_ ev_stat *w)
2468{ 3049{
2471 3052
2472 if (wd < 0) 3053 if (wd < 0)
2473 return; 3054 return;
2474 3055
2475 w->wd = -2; 3056 w->wd = -2;
2476 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3057 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2477 wlist_del (&fs_hash [slot].head, (WL)w); 3058 wlist_del (&fs_hash [slot].head, (WL)w);
2478 3059
2479 /* remove this watcher, if others are watching it, they will rearm */ 3060 /* remove this watcher, if others are watching it, they will rearm */
2480 inotify_rm_watch (fs_fd, wd); 3061 inotify_rm_watch (fs_fd, wd);
2481} 3062}
2482 3063
2483static void noinline 3064static void noinline
2484infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3065infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2485{ 3066{
2486 if (slot < 0) 3067 if (slot < 0)
2487 /* overflow, need to check for all hahs slots */ 3068 /* overflow, need to check for all hash slots */
2488 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3069 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2489 infy_wd (EV_A_ slot, wd, ev); 3070 infy_wd (EV_A_ slot, wd, ev);
2490 else 3071 else
2491 { 3072 {
2492 WL w_; 3073 WL w_;
2493 3074
2494 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3075 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2495 { 3076 {
2496 ev_stat *w = (ev_stat *)w_; 3077 ev_stat *w = (ev_stat *)w_;
2497 w_ = w_->next; /* lets us remove this watcher and all before it */ 3078 w_ = w_->next; /* lets us remove this watcher and all before it */
2498 3079
2499 if (w->wd == wd || wd == -1) 3080 if (w->wd == wd || wd == -1)
2500 { 3081 {
2501 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3082 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2502 { 3083 {
3084 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2503 w->wd = -1; 3085 w->wd = -1;
2504 infy_add (EV_A_ w); /* re-add, no matter what */ 3086 infy_add (EV_A_ w); /* re-add, no matter what */
2505 } 3087 }
2506 3088
2507 stat_timer_cb (EV_A_ &w->timer, 0); 3089 stat_timer_cb (EV_A_ &w->timer, 0);
2512 3094
2513static void 3095static void
2514infy_cb (EV_P_ ev_io *w, int revents) 3096infy_cb (EV_P_ ev_io *w, int revents)
2515{ 3097{
2516 char buf [EV_INOTIFY_BUFSIZE]; 3098 char buf [EV_INOTIFY_BUFSIZE];
2517 struct inotify_event *ev = (struct inotify_event *)buf;
2518 int ofs; 3099 int ofs;
2519 int len = read (fs_fd, buf, sizeof (buf)); 3100 int len = read (fs_fd, buf, sizeof (buf));
2520 3101
2521 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3102 for (ofs = 0; ofs < len; )
3103 {
3104 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2522 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3105 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3106 ofs += sizeof (struct inotify_event) + ev->len;
3107 }
2523} 3108}
2524 3109
2525void inline_size 3110inline_size void
3111ev_check_2625 (EV_P)
3112{
3113 /* kernels < 2.6.25 are borked
3114 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3115 */
3116 if (ev_linux_version () < 0x020619)
3117 return;
3118
3119 fs_2625 = 1;
3120}
3121
3122inline_size int
3123infy_newfd (void)
3124{
3125#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3126 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3127 if (fd >= 0)
3128 return fd;
3129#endif
3130 return inotify_init ();
3131}
3132
3133inline_size void
2526infy_init (EV_P) 3134infy_init (EV_P)
2527{ 3135{
2528 if (fs_fd != -2) 3136 if (fs_fd != -2)
2529 return; 3137 return;
2530 3138
3139 fs_fd = -1;
3140
3141 ev_check_2625 (EV_A);
3142
2531 fs_fd = inotify_init (); 3143 fs_fd = infy_newfd ();
2532 3144
2533 if (fs_fd >= 0) 3145 if (fs_fd >= 0)
2534 { 3146 {
3147 fd_intern (fs_fd);
2535 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3148 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2536 ev_set_priority (&fs_w, EV_MAXPRI); 3149 ev_set_priority (&fs_w, EV_MAXPRI);
2537 ev_io_start (EV_A_ &fs_w); 3150 ev_io_start (EV_A_ &fs_w);
3151 ev_unref (EV_A);
2538 } 3152 }
2539} 3153}
2540 3154
2541void inline_size 3155inline_size void
2542infy_fork (EV_P) 3156infy_fork (EV_P)
2543{ 3157{
2544 int slot; 3158 int slot;
2545 3159
2546 if (fs_fd < 0) 3160 if (fs_fd < 0)
2547 return; 3161 return;
2548 3162
3163 ev_ref (EV_A);
3164 ev_io_stop (EV_A_ &fs_w);
2549 close (fs_fd); 3165 close (fs_fd);
2550 fs_fd = inotify_init (); 3166 fs_fd = infy_newfd ();
2551 3167
3168 if (fs_fd >= 0)
3169 {
3170 fd_intern (fs_fd);
3171 ev_io_set (&fs_w, fs_fd, EV_READ);
3172 ev_io_start (EV_A_ &fs_w);
3173 ev_unref (EV_A);
3174 }
3175
2552 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3176 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2553 { 3177 {
2554 WL w_ = fs_hash [slot].head; 3178 WL w_ = fs_hash [slot].head;
2555 fs_hash [slot].head = 0; 3179 fs_hash [slot].head = 0;
2556 3180
2557 while (w_) 3181 while (w_)
2562 w->wd = -1; 3186 w->wd = -1;
2563 3187
2564 if (fs_fd >= 0) 3188 if (fs_fd >= 0)
2565 infy_add (EV_A_ w); /* re-add, no matter what */ 3189 infy_add (EV_A_ w); /* re-add, no matter what */
2566 else 3190 else
3191 {
3192 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3193 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2567 ev_timer_start (EV_A_ &w->timer); 3194 ev_timer_again (EV_A_ &w->timer);
3195 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3196 }
2568 } 3197 }
2569
2570 } 3198 }
2571} 3199}
2572 3200
2573#endif 3201#endif
2574 3202
2590static void noinline 3218static void noinline
2591stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3219stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2592{ 3220{
2593 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3221 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2594 3222
2595 /* we copy this here each the time so that */ 3223 ev_statdata prev = w->attr;
2596 /* prev has the old value when the callback gets invoked */
2597 w->prev = w->attr;
2598 ev_stat_stat (EV_A_ w); 3224 ev_stat_stat (EV_A_ w);
2599 3225
2600 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3226 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2601 if ( 3227 if (
2602 w->prev.st_dev != w->attr.st_dev 3228 prev.st_dev != w->attr.st_dev
2603 || w->prev.st_ino != w->attr.st_ino 3229 || prev.st_ino != w->attr.st_ino
2604 || w->prev.st_mode != w->attr.st_mode 3230 || prev.st_mode != w->attr.st_mode
2605 || w->prev.st_nlink != w->attr.st_nlink 3231 || prev.st_nlink != w->attr.st_nlink
2606 || w->prev.st_uid != w->attr.st_uid 3232 || prev.st_uid != w->attr.st_uid
2607 || w->prev.st_gid != w->attr.st_gid 3233 || prev.st_gid != w->attr.st_gid
2608 || w->prev.st_rdev != w->attr.st_rdev 3234 || prev.st_rdev != w->attr.st_rdev
2609 || w->prev.st_size != w->attr.st_size 3235 || prev.st_size != w->attr.st_size
2610 || w->prev.st_atime != w->attr.st_atime 3236 || prev.st_atime != w->attr.st_atime
2611 || w->prev.st_mtime != w->attr.st_mtime 3237 || prev.st_mtime != w->attr.st_mtime
2612 || w->prev.st_ctime != w->attr.st_ctime 3238 || prev.st_ctime != w->attr.st_ctime
2613 ) { 3239 ) {
3240 /* we only update w->prev on actual differences */
3241 /* in case we test more often than invoke the callback, */
3242 /* to ensure that prev is always different to attr */
3243 w->prev = prev;
3244
2614 #if EV_USE_INOTIFY 3245 #if EV_USE_INOTIFY
3246 if (fs_fd >= 0)
3247 {
2615 infy_del (EV_A_ w); 3248 infy_del (EV_A_ w);
2616 infy_add (EV_A_ w); 3249 infy_add (EV_A_ w);
2617 ev_stat_stat (EV_A_ w); /* avoid race... */ 3250 ev_stat_stat (EV_A_ w); /* avoid race... */
3251 }
2618 #endif 3252 #endif
2619 3253
2620 ev_feed_event (EV_A_ w, EV_STAT); 3254 ev_feed_event (EV_A_ w, EV_STAT);
2621 } 3255 }
2622} 3256}
2625ev_stat_start (EV_P_ ev_stat *w) 3259ev_stat_start (EV_P_ ev_stat *w)
2626{ 3260{
2627 if (expect_false (ev_is_active (w))) 3261 if (expect_false (ev_is_active (w)))
2628 return; 3262 return;
2629 3263
2630 /* since we use memcmp, we need to clear any padding data etc. */
2631 memset (&w->prev, 0, sizeof (ev_statdata));
2632 memset (&w->attr, 0, sizeof (ev_statdata));
2633
2634 ev_stat_stat (EV_A_ w); 3264 ev_stat_stat (EV_A_ w);
2635 3265
3266 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2636 if (w->interval < MIN_STAT_INTERVAL) 3267 w->interval = MIN_STAT_INTERVAL;
2637 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2638 3268
2639 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3269 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2640 ev_set_priority (&w->timer, ev_priority (w)); 3270 ev_set_priority (&w->timer, ev_priority (w));
2641 3271
2642#if EV_USE_INOTIFY 3272#if EV_USE_INOTIFY
2643 infy_init (EV_A); 3273 infy_init (EV_A);
2644 3274
2645 if (fs_fd >= 0) 3275 if (fs_fd >= 0)
2646 infy_add (EV_A_ w); 3276 infy_add (EV_A_ w);
2647 else 3277 else
2648#endif 3278#endif
3279 {
2649 ev_timer_start (EV_A_ &w->timer); 3280 ev_timer_again (EV_A_ &w->timer);
3281 ev_unref (EV_A);
3282 }
2650 3283
2651 ev_start (EV_A_ (W)w, 1); 3284 ev_start (EV_A_ (W)w, 1);
2652 3285
2653 EV_FREQUENT_CHECK; 3286 EV_FREQUENT_CHECK;
2654} 3287}
2663 EV_FREQUENT_CHECK; 3296 EV_FREQUENT_CHECK;
2664 3297
2665#if EV_USE_INOTIFY 3298#if EV_USE_INOTIFY
2666 infy_del (EV_A_ w); 3299 infy_del (EV_A_ w);
2667#endif 3300#endif
3301
3302 if (ev_is_active (&w->timer))
3303 {
3304 ev_ref (EV_A);
2668 ev_timer_stop (EV_A_ &w->timer); 3305 ev_timer_stop (EV_A_ &w->timer);
3306 }
2669 3307
2670 ev_stop (EV_A_ (W)w); 3308 ev_stop (EV_A_ (W)w);
2671 3309
2672 EV_FREQUENT_CHECK; 3310 EV_FREQUENT_CHECK;
2673} 3311}
2718 3356
2719 EV_FREQUENT_CHECK; 3357 EV_FREQUENT_CHECK;
2720} 3358}
2721#endif 3359#endif
2722 3360
3361#if EV_PREPARE_ENABLE
2723void 3362void
2724ev_prepare_start (EV_P_ ev_prepare *w) 3363ev_prepare_start (EV_P_ ev_prepare *w)
2725{ 3364{
2726 if (expect_false (ev_is_active (w))) 3365 if (expect_false (ev_is_active (w)))
2727 return; 3366 return;
2753 3392
2754 ev_stop (EV_A_ (W)w); 3393 ev_stop (EV_A_ (W)w);
2755 3394
2756 EV_FREQUENT_CHECK; 3395 EV_FREQUENT_CHECK;
2757} 3396}
3397#endif
2758 3398
3399#if EV_CHECK_ENABLE
2759void 3400void
2760ev_check_start (EV_P_ ev_check *w) 3401ev_check_start (EV_P_ ev_check *w)
2761{ 3402{
2762 if (expect_false (ev_is_active (w))) 3403 if (expect_false (ev_is_active (w)))
2763 return; 3404 return;
2789 3430
2790 ev_stop (EV_A_ (W)w); 3431 ev_stop (EV_A_ (W)w);
2791 3432
2792 EV_FREQUENT_CHECK; 3433 EV_FREQUENT_CHECK;
2793} 3434}
3435#endif
2794 3436
2795#if EV_EMBED_ENABLE 3437#if EV_EMBED_ENABLE
2796void noinline 3438void noinline
2797ev_embed_sweep (EV_P_ ev_embed *w) 3439ev_embed_sweep (EV_P_ ev_embed *w)
2798{ 3440{
2799 ev_loop (w->other, EVLOOP_NONBLOCK); 3441 ev_run (w->other, EVRUN_NOWAIT);
2800} 3442}
2801 3443
2802static void 3444static void
2803embed_io_cb (EV_P_ ev_io *io, int revents) 3445embed_io_cb (EV_P_ ev_io *io, int revents)
2804{ 3446{
2805 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2806 3448
2807 if (ev_cb (w)) 3449 if (ev_cb (w))
2808 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3450 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2809 else 3451 else
2810 ev_loop (w->other, EVLOOP_NONBLOCK); 3452 ev_run (w->other, EVRUN_NOWAIT);
2811} 3453}
2812 3454
2813static void 3455static void
2814embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2815{ 3457{
2816 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2817 3459
2818 { 3460 {
2819 struct ev_loop *loop = w->other; 3461 EV_P = w->other;
2820 3462
2821 while (fdchangecnt) 3463 while (fdchangecnt)
2822 { 3464 {
2823 fd_reify (EV_A); 3465 fd_reify (EV_A);
2824 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3466 ev_run (EV_A_ EVRUN_NOWAIT);
2825 } 3467 }
2826 } 3468 }
3469}
3470
3471static void
3472embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3473{
3474 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3475
3476 ev_embed_stop (EV_A_ w);
3477
3478 {
3479 EV_P = w->other;
3480
3481 ev_loop_fork (EV_A);
3482 ev_run (EV_A_ EVRUN_NOWAIT);
3483 }
3484
3485 ev_embed_start (EV_A_ w);
2827} 3486}
2828 3487
2829#if 0 3488#if 0
2830static void 3489static void
2831embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3490embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2839{ 3498{
2840 if (expect_false (ev_is_active (w))) 3499 if (expect_false (ev_is_active (w)))
2841 return; 3500 return;
2842 3501
2843 { 3502 {
2844 struct ev_loop *loop = w->other; 3503 EV_P = w->other;
2845 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3504 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3505 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2847 } 3506 }
2848 3507
2849 EV_FREQUENT_CHECK; 3508 EV_FREQUENT_CHECK;
2850 3509
2853 3512
2854 ev_prepare_init (&w->prepare, embed_prepare_cb); 3513 ev_prepare_init (&w->prepare, embed_prepare_cb);
2855 ev_set_priority (&w->prepare, EV_MINPRI); 3514 ev_set_priority (&w->prepare, EV_MINPRI);
2856 ev_prepare_start (EV_A_ &w->prepare); 3515 ev_prepare_start (EV_A_ &w->prepare);
2857 3516
3517 ev_fork_init (&w->fork, embed_fork_cb);
3518 ev_fork_start (EV_A_ &w->fork);
3519
2858 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3520 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2859 3521
2860 ev_start (EV_A_ (W)w, 1); 3522 ev_start (EV_A_ (W)w, 1);
2861 3523
2862 EV_FREQUENT_CHECK; 3524 EV_FREQUENT_CHECK;
2869 if (expect_false (!ev_is_active (w))) 3531 if (expect_false (!ev_is_active (w)))
2870 return; 3532 return;
2871 3533
2872 EV_FREQUENT_CHECK; 3534 EV_FREQUENT_CHECK;
2873 3535
2874 ev_io_stop (EV_A_ &w->io); 3536 ev_io_stop (EV_A_ &w->io);
2875 ev_prepare_stop (EV_A_ &w->prepare); 3537 ev_prepare_stop (EV_A_ &w->prepare);
3538 ev_fork_stop (EV_A_ &w->fork);
2876 3539
2877 ev_stop (EV_A_ (W)w); 3540 ev_stop (EV_A_ (W)w);
2878 3541
2879 EV_FREQUENT_CHECK; 3542 EV_FREQUENT_CHECK;
2880} 3543}
2916 3579
2917 EV_FREQUENT_CHECK; 3580 EV_FREQUENT_CHECK;
2918} 3581}
2919#endif 3582#endif
2920 3583
2921#if EV_ASYNC_ENABLE 3584#if EV_CLEANUP_ENABLE
2922void 3585void
2923ev_async_start (EV_P_ ev_async *w) 3586ev_cleanup_start (EV_P_ ev_cleanup *w)
2924{ 3587{
2925 if (expect_false (ev_is_active (w))) 3588 if (expect_false (ev_is_active (w)))
2926 return; 3589 return;
3590
3591 EV_FREQUENT_CHECK;
3592
3593 ev_start (EV_A_ (W)w, ++cleanupcnt);
3594 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3595 cleanups [cleanupcnt - 1] = w;
3596
3597 EV_FREQUENT_CHECK;
3598}
3599
3600void
3601ev_cleanup_stop (EV_P_ ev_cleanup *w)
3602{
3603 clear_pending (EV_A_ (W)w);
3604 if (expect_false (!ev_is_active (w)))
3605 return;
3606
3607 EV_FREQUENT_CHECK;
3608
3609 {
3610 int active = ev_active (w);
3611
3612 cleanups [active - 1] = cleanups [--cleanupcnt];
3613 ev_active (cleanups [active - 1]) = active;
3614 }
3615
3616 ev_stop (EV_A_ (W)w);
3617
3618 EV_FREQUENT_CHECK;
3619}
3620#endif
3621
3622#if EV_ASYNC_ENABLE
3623void
3624ev_async_start (EV_P_ ev_async *w)
3625{
3626 if (expect_false (ev_is_active (w)))
3627 return;
3628
3629 w->sent = 0;
2927 3630
2928 evpipe_init (EV_A); 3631 evpipe_init (EV_A);
2929 3632
2930 EV_FREQUENT_CHECK; 3633 EV_FREQUENT_CHECK;
2931 3634
2959 3662
2960void 3663void
2961ev_async_send (EV_P_ ev_async *w) 3664ev_async_send (EV_P_ ev_async *w)
2962{ 3665{
2963 w->sent = 1; 3666 w->sent = 1;
2964 evpipe_write (EV_A_ &gotasync); 3667 evpipe_write (EV_A_ &async_pending);
2965} 3668}
2966#endif 3669#endif
2967 3670
2968/*****************************************************************************/ 3671/*****************************************************************************/
2969 3672
2979once_cb (EV_P_ struct ev_once *once, int revents) 3682once_cb (EV_P_ struct ev_once *once, int revents)
2980{ 3683{
2981 void (*cb)(int revents, void *arg) = once->cb; 3684 void (*cb)(int revents, void *arg) = once->cb;
2982 void *arg = once->arg; 3685 void *arg = once->arg;
2983 3686
2984 ev_io_stop (EV_A_ &once->io); 3687 ev_io_stop (EV_A_ &once->io);
2985 ev_timer_stop (EV_A_ &once->to); 3688 ev_timer_stop (EV_A_ &once->to);
2986 ev_free (once); 3689 ev_free (once);
2987 3690
2988 cb (revents, arg); 3691 cb (revents, arg);
2989} 3692}
2990 3693
2991static void 3694static void
2992once_cb_io (EV_P_ ev_io *w, int revents) 3695once_cb_io (EV_P_ ev_io *w, int revents)
2993{ 3696{
2994 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3697 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3698
3699 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2995} 3700}
2996 3701
2997static void 3702static void
2998once_cb_to (EV_P_ ev_timer *w, int revents) 3703once_cb_to (EV_P_ ev_timer *w, int revents)
2999{ 3704{
3000 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3705 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3706
3707 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3001} 3708}
3002 3709
3003void 3710void
3004ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3005{ 3712{
3006 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3713 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3007 3714
3008 if (expect_false (!once)) 3715 if (expect_false (!once))
3009 { 3716 {
3010 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3717 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3011 return; 3718 return;
3012 } 3719 }
3013 3720
3014 once->cb = cb; 3721 once->cb = cb;
3015 once->arg = arg; 3722 once->arg = arg;
3027 ev_timer_set (&once->to, timeout, 0.); 3734 ev_timer_set (&once->to, timeout, 0.);
3028 ev_timer_start (EV_A_ &once->to); 3735 ev_timer_start (EV_A_ &once->to);
3029 } 3736 }
3030} 3737}
3031 3738
3739/*****************************************************************************/
3740
3741#if EV_WALK_ENABLE
3742void
3743ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3744{
3745 int i, j;
3746 ev_watcher_list *wl, *wn;
3747
3748 if (types & (EV_IO | EV_EMBED))
3749 for (i = 0; i < anfdmax; ++i)
3750 for (wl = anfds [i].head; wl; )
3751 {
3752 wn = wl->next;
3753
3754#if EV_EMBED_ENABLE
3755 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3756 {
3757 if (types & EV_EMBED)
3758 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3759 }
3760 else
3761#endif
3762#if EV_USE_INOTIFY
3763 if (ev_cb ((ev_io *)wl) == infy_cb)
3764 ;
3765 else
3766#endif
3767 if ((ev_io *)wl != &pipe_w)
3768 if (types & EV_IO)
3769 cb (EV_A_ EV_IO, wl);
3770
3771 wl = wn;
3772 }
3773
3774 if (types & (EV_TIMER | EV_STAT))
3775 for (i = timercnt + HEAP0; i-- > HEAP0; )
3776#if EV_STAT_ENABLE
3777 /*TODO: timer is not always active*/
3778 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3779 {
3780 if (types & EV_STAT)
3781 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3782 }
3783 else
3784#endif
3785 if (types & EV_TIMER)
3786 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3787
3788#if EV_PERIODIC_ENABLE
3789 if (types & EV_PERIODIC)
3790 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3791 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3792#endif
3793
3794#if EV_IDLE_ENABLE
3795 if (types & EV_IDLE)
3796 for (j = NUMPRI; i--; )
3797 for (i = idlecnt [j]; i--; )
3798 cb (EV_A_ EV_IDLE, idles [j][i]);
3799#endif
3800
3801#if EV_FORK_ENABLE
3802 if (types & EV_FORK)
3803 for (i = forkcnt; i--; )
3804 if (ev_cb (forks [i]) != embed_fork_cb)
3805 cb (EV_A_ EV_FORK, forks [i]);
3806#endif
3807
3808#if EV_ASYNC_ENABLE
3809 if (types & EV_ASYNC)
3810 for (i = asynccnt; i--; )
3811 cb (EV_A_ EV_ASYNC, asyncs [i]);
3812#endif
3813
3814#if EV_PREPARE_ENABLE
3815 if (types & EV_PREPARE)
3816 for (i = preparecnt; i--; )
3817# if EV_EMBED_ENABLE
3818 if (ev_cb (prepares [i]) != embed_prepare_cb)
3819# endif
3820 cb (EV_A_ EV_PREPARE, prepares [i]);
3821#endif
3822
3823#if EV_CHECK_ENABLE
3824 if (types & EV_CHECK)
3825 for (i = checkcnt; i--; )
3826 cb (EV_A_ EV_CHECK, checks [i]);
3827#endif
3828
3829#if EV_SIGNAL_ENABLE
3830 if (types & EV_SIGNAL)
3831 for (i = 0; i < EV_NSIG - 1; ++i)
3832 for (wl = signals [i].head; wl; )
3833 {
3834 wn = wl->next;
3835 cb (EV_A_ EV_SIGNAL, wl);
3836 wl = wn;
3837 }
3838#endif
3839
3840#if EV_CHILD_ENABLE
3841 if (types & EV_CHILD)
3842 for (i = (EV_PID_HASHSIZE); i--; )
3843 for (wl = childs [i]; wl; )
3844 {
3845 wn = wl->next;
3846 cb (EV_A_ EV_CHILD, wl);
3847 wl = wn;
3848 }
3849#endif
3850/* EV_STAT 0x00001000 /* stat data changed */
3851/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3852}
3853#endif
3854
3032#if EV_MULTIPLICITY 3855#if EV_MULTIPLICITY
3033 #include "ev_wrap.h" 3856 #include "ev_wrap.h"
3034#endif 3857#endif
3035 3858
3036#ifdef __cplusplus 3859EV_CPP(})
3037}
3038#endif
3039 3860

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines