ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.51 by root, Sat Nov 3 21:58:51 2007 UTC vs.
Revision 1.361 by root, Sun Oct 24 19:01:01 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
62# if HAVE_CLOCK_GETTIME
63# ifndef EV_USE_MONOTONIC
64# define EV_USE_MONOTONIC 1
65# endif
66# ifndef EV_USE_REALTIME
67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
75# endif
76# endif
77
78# if HAVE_NANOSLEEP
79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
103# endif
104
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
112# endif
113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
33#endif 159#endif
34 160
35#include <math.h> 161#include <math.h>
36#include <stdlib.h> 162#include <stdlib.h>
37#include <unistd.h> 163#include <string.h>
38#include <fcntl.h> 164#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 165#include <stddef.h>
41 166
42#include <stdio.h> 167#include <stdio.h>
43 168
44#include <assert.h> 169#include <assert.h>
45#include <errno.h> 170#include <errno.h>
46#include <sys/types.h> 171#include <sys/types.h>
172#include <time.h>
173#include <limits.h>
174
175#include <signal.h>
176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
47#ifndef WIN32 185#ifndef _WIN32
186# include <sys/time.h>
48# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
189#else
190# include <io.h>
191# define WIN32_LEAN_AND_MEAN
192# include <windows.h>
193# ifndef EV_SELECT_IS_WINSOCKET
194# define EV_SELECT_IS_WINSOCKET 1
49#endif 195# endif
50#include <sys/time.h> 196# undef EV_AVOID_STDIO
51#include <time.h> 197#endif
52 198
53/**/ 199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
54 244
55#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
56# define EV_USE_MONOTONIC 1 249# define EV_USE_MONOTONIC 0
250# endif
251#endif
252
253#ifndef EV_USE_REALTIME
254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
57#endif 263#endif
58 264
59#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
61#endif 267#endif
62 268
63#ifndef EV_USEV_POLL 269#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 270# ifdef _WIN32
271# define EV_USE_POLL 0
272# else
273# define EV_USE_POLL EV_FEATURE_BACKENDS
274# endif
65#endif 275#endif
66 276
67#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
68# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
69#endif 283#endif
70 284
71#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
73#endif 287#endif
74 288
75#ifndef EV_USE_REALTIME 289#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 290# define EV_USE_PORT 0
291#endif
292
293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
77#endif 298# endif
299#endif
78 300
79/**/ 301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
80 364
81#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
84#endif 368#endif
86#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
89#endif 373#endif
90 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
396#if EV_SELECT_IS_WINSOCKET
397# include <winsock.h>
398#endif
399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
91/**/ 438/**/
92 439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 458
98#include "ev.h" 459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
99 461
100#if __GNUC__ >= 3 462#if __GNUC__ >= 4
101# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 464# define noinline __attribute__ ((noinline))
103#else 465#else
104# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
105# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
106#endif 471#endif
107 472
108#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
110 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
113 490
491#define EMPTY /* required for microsofts broken pseudo-c compiler */
492#define EMPTY2(a,b) /* used to suppress some warnings */
493
114typedef struct ev_watcher *W; 494typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
117 497
118static ev_tstamp now_floor, mn_now, diff; /* monotonic clock */ 498#define ev_active(w) ((W)(w))->active
119static ev_tstamp rt_now; 499#define ev_at(w) ((WT)(w))->at
120static int method;
121 500
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(EV_P_ int fd, int oev, int nev);
126static void (*method_poll)(EV_P_ ev_tstamp timeout);
127
128static int activecnt; /* number of active events */
129
130#if EV_USE_SELECT 501#if EV_USE_REALTIME
131static unsigned char *vec_ri, *vec_ro, *vec_wi, *vec_wo; 502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
132static int vec_max; 503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
133#endif 505#endif
134 506
135#if EV_USEV_POLL 507#if EV_USE_MONOTONIC
136static struct pollfd *polls; 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
137static int pollmax, pollcnt;
138static int *pollidxs; /* maps fds into structure indices */
139static int pollidxmax;
140#endif 509#endif
141 510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
520
521#ifdef _WIN32
522# include "ev_win32.c"
523#endif
524
525/*****************************************************************************/
526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
577static void (*syserr_cb)(const char *msg);
578
579void
580ev_set_syserr_cb (void (*cb)(const char *msg))
581{
582 syserr_cb = cb;
583}
584
585static void noinline
586ev_syserr (const char *msg)
587{
588 if (!msg)
589 msg = "(libev) system error";
590
591 if (syserr_cb)
592 syserr_cb (msg);
593 else
594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
603 perror (msg);
604#endif
605 abort ();
606 }
607}
608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
629
630void
631ev_set_allocator (void *(*cb)(void *ptr, long size))
632{
633 alloc = cb;
634}
635
636inline_speed void *
637ev_realloc (void *ptr, long size)
638{
639 ptr = alloc (ptr, size);
640
641 if (!ptr && size)
642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
648 abort ();
649 }
650
651 return ptr;
652}
653
654#define ev_malloc(size) ev_realloc (0, (size))
655#define ev_free(ptr) ev_realloc ((ptr), 0)
656
657/*****************************************************************************/
658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
663typedef struct
664{
665 WL head;
666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
669 unsigned char unused;
142#if EV_USE_EPOLL 670#if EV_USE_EPOLL
143static int epoll_fd = -1; 671 unsigned int egen; /* generation counter to counter epoll bugs */
144
145static struct epoll_event *events;
146static int eventmax;
147#endif 672#endif
148 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
149#if EV_USE_KQUEUE 674 SOCKET handle;
150static int kqueue_fd;
151static struct kevent *kqueue_changes;
152static int kqueue_changemax, kqueue_changecnt;
153static struct kevent *kqueue_events;
154static int kqueue_eventmax;
155#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
679} ANFD;
680
681/* stores the pending event set for a given watcher */
682typedef struct
683{
684 W w;
685 int events; /* the pending event set for the given watcher */
686} ANPENDING;
687
688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
690typedef struct
691{
692 WL head;
693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
714#endif
715
716#if EV_MULTIPLICITY
717
718 struct ev_loop
719 {
720 ev_tstamp ev_rt_now;
721 #define ev_rt_now ((loop)->ev_rt_now)
722 #define VAR(name,decl) decl;
723 #include "ev_vars.h"
724 #undef VAR
725 };
726 #include "ev_wrap.h"
727
728 static struct ev_loop default_loop_struct;
729 struct ev_loop *ev_default_loop_ptr;
730
731#else
732
733 ev_tstamp ev_rt_now;
734 #define VAR(name,decl) static decl;
735 #include "ev_vars.h"
736 #undef VAR
737
738 static int ev_default_loop_ptr;
739
740#endif
741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
156 753
157/*****************************************************************************/ 754/*****************************************************************************/
158 755
159inline ev_tstamp 756#ifndef EV_HAVE_EV_TIME
757ev_tstamp
160ev_time (void) 758ev_time (void)
161{ 759{
162#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
163 struct timespec ts; 763 struct timespec ts;
164 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
165 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
166#else 766 }
767#endif
768
167 struct timeval tv; 769 struct timeval tv;
168 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
169 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
170#endif
171} 772}
773#endif
172 774
173inline ev_tstamp 775inline_size ev_tstamp
174get_clock (void) 776get_clock (void)
175{ 777{
176#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
177 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
178 { 780 {
183#endif 785#endif
184 786
185 return ev_time (); 787 return ev_time ();
186} 788}
187 789
790#if EV_MULTIPLICITY
188ev_tstamp 791ev_tstamp
189ev_now (EV_P) 792ev_now (EV_P)
190{ 793{
191 return rt_now; 794 return ev_rt_now;
192} 795}
796#endif
193 797
194#define array_roundsize(base,n) ((n) | 4 & ~3) 798void
195 799ev_sleep (ev_tstamp delay)
196#define array_needsize(base,cur,cnt,init) \ 800{
197 if (expect_false ((cnt) > cur)) \ 801 if (delay > 0.)
198 { \
199 int newcnt = cur; \
200 do \
201 { \
202 newcnt = array_roundsize (base, newcnt << 1); \
203 } \
204 while ((cnt) > newcnt); \
205 \
206 base = realloc (base, sizeof (*base) * (newcnt)); \
207 init (base + cur, newcnt - cur); \
208 cur = newcnt; \
209 } 802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
210 821
211/*****************************************************************************/ 822/*****************************************************************************/
212 823
213typedef struct 824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
214{
215 struct ev_watcher_list *head;
216 unsigned char events;
217 unsigned char reify;
218} ANFD;
219 825
220static ANFD *anfds; 826/* find a suitable new size for the given array, */
221static int anfdmax; 827/* hopefully by rounding to a nice-to-malloc size */
222 828inline_size int
223static void 829array_nextsize (int elem, int cur, int cnt)
224anfds_init (ANFD *base, int count)
225{ 830{
226 while (count--) 831 int ncur = cur + 1;
227 {
228 base->head = 0;
229 base->events = EV_NONE;
230 base->reify = 0;
231 832
232 ++base; 833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
233 } 839 {
234} 840 ncur *= elem;
235 841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
236typedef struct 842 ncur = ncur - sizeof (void *) * 4;
237{ 843 ncur /= elem;
238 W w;
239 int events;
240} ANPENDING;
241
242static ANPENDING *pendings [NUMPRI];
243static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
244
245static void
246event (EV_P_ W w, int events)
247{
248 if (w->pending)
249 { 844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
858
859#define array_needsize(type,base,cur,cnt,init) \
860 if (expect_false ((cnt) > (cur))) \
861 { \
862 int ocur_ = (cur); \
863 (base) = (type *)array_realloc \
864 (sizeof (type), (base), &(cur), (cnt)); \
865 init ((base) + (ocur_), (cur) - ocur_); \
866 }
867
868#if 0
869#define array_slim(type,stem) \
870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
871 { \
872 stem ## max = array_roundsize (stem ## cnt >> 1); \
873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
875 }
876#endif
877
878#define array_free(stem, idx) \
879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
880
881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
888
889void noinline
890ev_feed_event (EV_P_ void *w, int revents)
891{
892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
894
895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
898 {
899 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_;
250 pendings [ABSPRI (w)][w->pending - 1].events |= events; 902 pendings [pri][w_->pending - 1].events = revents;
251 return;
252 } 903 }
253
254 w->pending = ++pendingcnt [ABSPRI (w)];
255 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
256 pendings [ABSPRI (w)][w->pending - 1].w = w;
257 pendings [ABSPRI (w)][w->pending - 1].events = events;
258} 904}
259 905
260static void 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
261queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
262{ 923{
263 int i; 924 int i;
264 925
265 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
266 event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
267} 928}
268 929
269static void 930/*****************************************************************************/
931
932inline_speed void
270fd_event (EV_P_ int fd, int events) 933fd_event_nocheck (EV_P_ int fd, int revents)
271{ 934{
272 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
273 struct ev_io *w; 936 ev_io *w;
274 937
275 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
276 { 939 {
277 int ev = w->events & events; 940 int ev = w->events & revents;
278 941
279 if (ev) 942 if (ev)
280 event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
281 } 944 }
282} 945}
283 946
284/*****************************************************************************/ 947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
285 953
286static int *fdchanges; 954 if (expect_true (!anfd->reify))
287static int fdchangemax, fdchangecnt; 955 fd_event_nocheck (EV_A_ fd, revents);
956}
288 957
289static void 958void
959ev_feed_fd_event (EV_P_ int fd, int revents)
960{
961 if (fd >= 0 && fd < anfdmax)
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
290fd_reify (EV_P) 968fd_reify (EV_P)
291{ 969{
292 int i; 970 int i;
293 971
294 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
295 { 973 {
296 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
297 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
298 struct ev_io *w; 976 ev_io *w;
299 977
300 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
301 980
302 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
303 events |= w->events;
304
305 anfd->reify = 0; 981 anfd->reify = 0;
306 982
307 if (anfd->events != events) 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
984 if (o_reify & EV__IOFDSET)
308 { 985 {
309 method_modify (EV_A_ fd, anfd->events, events); 986 unsigned long arg;
310 anfd->events = events; 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
311 } 990 }
991#endif
992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
995 anfd->events = 0;
996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
1005 backend_modify (EV_A_ fd, o_events, anfd->events);
312 } 1006 }
313 1007
314 fdchangecnt = 0; 1008 fdchangecnt = 0;
315} 1009}
316 1010
317static void 1011/* something about the given fd changed */
1012inline_size void
318fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
319{ 1014{
320 if (anfds [fd].reify || fdchangecnt < 0) 1015 unsigned char reify = anfds [fd].reify;
321 return;
322
323 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
324 1017
1018 if (expect_true (!reify))
1019 {
325 ++fdchangecnt; 1020 ++fdchangecnt;
326 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
327 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
328} 1024}
329 1025
330static void 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
331fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
332{ 1029{
333 struct ev_io *w; 1030 ev_io *w;
334 1031
335 while ((w = (struct ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
336 { 1033 {
337 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
338 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
339 } 1036 }
1037}
1038
1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
1041fd_valid (int fd)
1042{
1043#ifdef _WIN32
1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1045#else
1046 return fcntl (fd, F_GETFD) != -1;
1047#endif
340} 1048}
341 1049
342/* called on EBADF to verify fds */ 1050/* called on EBADF to verify fds */
343static void 1051static void noinline
344fd_ebadf (EV_P) 1052fd_ebadf (EV_P)
345{ 1053{
346 int fd; 1054 int fd;
347 1055
348 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
349 if (anfds [fd].events) 1057 if (anfds [fd].events)
350 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
351 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
352} 1060}
353 1061
354/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
355static void 1063static void noinline
356fd_enomem (EV_P) 1064fd_enomem (EV_P)
357{ 1065{
358 int fd = anfdmax; 1066 int fd;
359 1067
360 while (fd--) 1068 for (fd = anfdmax; fd--; )
361 if (anfds [fd].events) 1069 if (anfds [fd].events)
362 { 1070 {
363 close (fd);
364 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
365 return; 1072 break;
366 } 1073 }
367} 1074}
368 1075
1076/* usually called after fork if backend needs to re-arm all fds from scratch */
1077static void noinline
1078fd_rearm_all (EV_P)
1079{
1080 int fd;
1081
1082 for (fd = 0; fd < anfdmax; ++fd)
1083 if (anfds [fd].events)
1084 {
1085 anfds [fd].events = 0;
1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1088 }
1089}
1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
369/*****************************************************************************/ 1105/*****************************************************************************/
370 1106
371static struct ev_timer **timers; 1107/*
372static int timermax, timercnt; 1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
373 1112
374static struct ev_periodic **periodics; 1113/*
375static int periodicmax, periodiccnt; 1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
376 1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
1268static void noinline
1269evpipe_init (EV_P)
1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
1290 fd_intern (evpipe [0]);
1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
1294
1295 ev_io_start (EV_A_ &pipe_w);
1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
377static void 1331static void
378upheap (WT *timers, int k) 1332pipecb (EV_P_ ev_io *iow, int revents)
379{ 1333{
380 WT w = timers [k]; 1334 int i;
381 1335
382 while (k && timers [k >> 1]->at > w->at) 1336#if EV_USE_EVENTFD
383 { 1337 if (evfd >= 0)
384 timers [k] = timers [k >> 1];
385 timers [k]->active = k + 1;
386 k >>= 1;
387 } 1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
388 1349
389 timers [k] = w; 1350 if (sig_pending)
390 timers [k]->active = k + 1; 1351 {
1352 sig_pending = 0;
391 1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
392} 1372}
1373
1374/*****************************************************************************/
393 1375
394static void 1376static void
395downheap (WT *timers, int N, int k) 1377ev_sighandler (int signum)
396{ 1378{
397 WT w = timers [k]; 1379#if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381#endif
398 1382
399 while (k < (N >> 1)) 1383#ifdef _WIN32
400 { 1384 signal (signum, ev_sighandler);
401 int j = k << 1; 1385#endif
402 1386
403 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 1387 signals [signum - 1].pending = 1;
404 ++j; 1388 evpipe_write (EV_A_ &sig_pending);
1389}
405 1390
406 if (w->at <= timers [j]->at) 1391void noinline
1392ev_feed_signal_event (EV_P_ int signum)
1393{
1394 WL w;
1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1401#if EV_MULTIPLICITY
1402 /* it is permissible to try to feed a signal to the wrong loop */
1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1404
1405 if (expect_false (signals [signum].loop != EV_A))
1406 return;
1407#endif
1408
1409 signals [signum].pending = 0;
1410
1411 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413}
1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
407 break; 1430 break;
408
409 timers [k] = timers [j];
410 timers [k]->active = k + 1;
411 k = j;
412 } 1431 }
413
414 timers [k] = w;
415 timers [k]->active = k + 1;
416} 1432}
1433#endif
1434
1435#endif
417 1436
418/*****************************************************************************/ 1437/*****************************************************************************/
419 1438
420typedef struct 1439#if EV_CHILD_ENABLE
421{ 1440static WL childs [EV_PID_HASHSIZE];
422 struct ev_watcher_list *head;
423 sig_atomic_t volatile gotsig;
424} ANSIG;
425 1441
426static ANSIG *signals;
427static int signalmax;
428
429static int sigpipe [2];
430static sig_atomic_t volatile gotsig;
431static struct ev_io sigev;
432
433static void
434signals_init (ANSIG *base, int count)
435{
436 while (count--)
437 {
438 base->head = 0;
439 base->gotsig = 0;
440
441 ++base;
442 }
443}
444
445static void
446sighandler (int signum)
447{
448 signals [signum - 1].gotsig = 1;
449
450 if (!gotsig)
451 {
452 int old_errno = errno;
453 gotsig = 1;
454 write (sigpipe [1], &signum, 1);
455 errno = old_errno;
456 }
457}
458
459static void
460sigcb (EV_P_ struct ev_io *iow, int revents)
461{
462 struct ev_watcher_list *w;
463 int signum;
464
465 read (sigpipe [0], &revents, 1);
466 gotsig = 0;
467
468 for (signum = signalmax; signum--; )
469 if (signals [signum].gotsig)
470 {
471 signals [signum].gotsig = 0;
472
473 for (w = signals [signum].head; w; w = w->next)
474 event (EV_A_ (W)w, EV_SIGNAL);
475 }
476}
477
478static void
479siginit (EV_P)
480{
481#ifndef WIN32
482 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
483 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
484
485 /* rather than sort out wether we really need nb, set it */
486 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
487 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
488#endif
489
490 ev_io_set (&sigev, sigpipe [0], EV_READ);
491 ev_io_start (&sigev);
492}
493
494/*****************************************************************************/
495
496static struct ev_idle **idles;
497static int idlemax, idlecnt;
498
499static struct ev_prepare **prepares;
500static int preparemax, preparecnt;
501
502static struct ev_check **checks;
503static int checkmax, checkcnt;
504
505/*****************************************************************************/
506
507static struct ev_child *childs [PID_HASHSIZE];
508static struct ev_signal childev; 1442static ev_signal childev;
509 1443
510#ifndef WIN32 1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
1450child_reap (EV_P_ int chain, int pid, int status)
1451{
1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1454
1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
1459 {
1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1461 w->rpid = pid;
1462 w->rstatus = status;
1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1464 }
1465 }
1466}
511 1467
512#ifndef WCONTINUED 1468#ifndef WCONTINUED
513# define WCONTINUED 0 1469# define WCONTINUED 0
514#endif 1470#endif
515 1471
1472/* called on sigchld etc., calls waitpid */
516static void 1473static void
517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
518{
519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 w->priority = sw->priority; /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
533{ 1475{
534 int pid, status; 1476 int pid, status;
535 1477
1478 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1479 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
537 { 1480 if (!WCONTINUED
1481 || errno != EINVAL
1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1483 return;
1484
538 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1486 /* we need to do it this way so that the callback gets called before we continue */
539 event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
540 1488
541 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1490 if ((EV_PID_HASHSIZE) > 1)
542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
543 }
544} 1492}
545 1493
546#endif 1494#endif
547 1495
548/*****************************************************************************/ 1496/*****************************************************************************/
549 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1501#if EV_USE_PORT
1502# include "ev_port.c"
1503#endif
550#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
551# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
552#endif 1506#endif
553#if EV_USE_EPOLL 1507#if EV_USE_EPOLL
554# include "ev_epoll.c" 1508# include "ev_epoll.c"
555#endif 1509#endif
556#if EV_USEV_POLL 1510#if EV_USE_POLL
557# include "ev_poll.c" 1511# include "ev_poll.c"
558#endif 1512#endif
559#if EV_USE_SELECT 1513#if EV_USE_SELECT
560# include "ev_select.c" 1514# include "ev_select.c"
561#endif 1515#endif
571{ 1525{
572 return EV_VERSION_MINOR; 1526 return EV_VERSION_MINOR;
573} 1527}
574 1528
575/* return true if we are running with elevated privileges and should ignore env variables */ 1529/* return true if we are running with elevated privileges and should ignore env variables */
576static int 1530int inline_size
577enable_secure (void) 1531enable_secure (void)
578{ 1532{
579#ifdef WIN32 1533#ifdef _WIN32
580 return 0; 1534 return 0;
581#else 1535#else
582 return getuid () != geteuid () 1536 return getuid () != geteuid ()
583 || getgid () != getegid (); 1537 || getgid () != getegid ();
584#endif 1538#endif
585} 1539}
586 1540
1541unsigned int
1542ev_supported_backends (void)
1543{
1544 unsigned int flags = 0;
1545
1546 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1547 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1548 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1549 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1550 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1551
1552 return flags;
1553}
1554
1555unsigned int
1556ev_recommended_backends (void)
1557{
1558 unsigned int flags = ev_supported_backends ();
1559
1560#ifndef __NetBSD__
1561 /* kqueue is borked on everything but netbsd apparently */
1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1563 flags &= ~EVBACKEND_KQUEUE;
1564#endif
1565#ifdef __APPLE__
1566 /* only select works correctly on that "unix-certified" platform */
1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1572#endif
1573
1574 return flags;
1575}
1576
1577unsigned int
1578ev_embeddable_backends (void)
1579{
1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1581
1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
1587}
1588
1589unsigned int
1590ev_backend (EV_P)
1591{
1592 return backend;
1593}
1594
1595#if EV_FEATURE_API
1596unsigned int
1597ev_iteration (EV_P)
1598{
1599 return loop_count;
1600}
1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1608void
1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1610{
1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1645static void noinline
1646loop_init (EV_P_ unsigned int flags)
1647{
1648 if (!backend)
1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1662 {
1663 struct timespec ts;
1664
1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1666 have_monotonic = 1;
1667 }
1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
1704 if (!(flags & 0x0000ffffU))
1705 flags |= ev_recommended_backends ();
1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1710#if EV_USE_PORT
1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1712#endif
1713#if EV_USE_KQUEUE
1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1715#endif
1716#if EV_USE_EPOLL
1717 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1718#endif
1719#if EV_USE_POLL
1720 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1721#endif
1722#if EV_USE_SELECT
1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1724#endif
1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1729 ev_init (&pipe_w, pipecb);
1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1732 }
1733}
1734
1735/* free up a loop structure */
1736void
1737ev_loop_destroy (EV_P)
1738{
1739 int i;
1740
1741#if EV_CLEANUP_ENABLE
1742 /* queue cleanup watchers (and execute them) */
1743 if (expect_false (cleanupcnt))
1744 {
1745 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1746 EV_INVOKE_PENDING;
1747 }
1748#endif
1749
1750#if EV_CHILD_ENABLE
1751 if (ev_is_active (&childev))
1752 {
1753 ev_ref (EV_A); /* child watcher */
1754 ev_signal_stop (EV_A_ &childev);
1755 }
1756#endif
1757
1758 if (ev_is_active (&pipe_w))
1759 {
1760 /*ev_ref (EV_A);*/
1761 /*ev_io_stop (EV_A_ &pipe_w);*/
1762
1763#if EV_USE_EVENTFD
1764 if (evfd >= 0)
1765 close (evfd);
1766#endif
1767
1768 if (evpipe [0] >= 0)
1769 {
1770 EV_WIN32_CLOSE_FD (evpipe [0]);
1771 EV_WIN32_CLOSE_FD (evpipe [1]);
1772 }
1773 }
1774
1775#if EV_USE_SIGNALFD
1776 if (ev_is_active (&sigfd_w))
1777 close (sigfd);
1778#endif
1779
1780#if EV_USE_INOTIFY
1781 if (fs_fd >= 0)
1782 close (fs_fd);
1783#endif
1784
1785 if (backend_fd >= 0)
1786 close (backend_fd);
1787
1788#if EV_USE_IOCP
1789 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1790#endif
1791#if EV_USE_PORT
1792 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1793#endif
1794#if EV_USE_KQUEUE
1795 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1796#endif
1797#if EV_USE_EPOLL
1798 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1799#endif
1800#if EV_USE_POLL
1801 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1802#endif
1803#if EV_USE_SELECT
1804 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1805#endif
1806
1807 for (i = NUMPRI; i--; )
1808 {
1809 array_free (pending, [i]);
1810#if EV_IDLE_ENABLE
1811 array_free (idle, [i]);
1812#endif
1813 }
1814
1815 ev_free (anfds); anfds = 0; anfdmax = 0;
1816
1817 /* have to use the microsoft-never-gets-it-right macro */
1818 array_free (rfeed, EMPTY);
1819 array_free (fdchange, EMPTY);
1820 array_free (timer, EMPTY);
1821#if EV_PERIODIC_ENABLE
1822 array_free (periodic, EMPTY);
1823#endif
1824#if EV_FORK_ENABLE
1825 array_free (fork, EMPTY);
1826#endif
1827#if EV_CLEANUP_ENABLE
1828 array_free (cleanup, EMPTY);
1829#endif
1830 array_free (prepare, EMPTY);
1831 array_free (check, EMPTY);
1832#if EV_ASYNC_ENABLE
1833 array_free (async, EMPTY);
1834#endif
1835
1836 backend = 0;
1837
1838#if EV_MULTIPLICITY
1839 if (ev_is_default_loop (EV_A))
1840#endif
1841 ev_default_loop_ptr = 0;
1842#if EV_MULTIPLICITY
1843 else
1844 ev_free (EV_A);
1845#endif
1846}
1847
1848#if EV_USE_INOTIFY
1849inline_size void infy_fork (EV_P);
1850#endif
1851
1852inline_size void
1853loop_fork (EV_P)
1854{
1855#if EV_USE_PORT
1856 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1857#endif
1858#if EV_USE_KQUEUE
1859 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1860#endif
1861#if EV_USE_EPOLL
1862 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1863#endif
1864#if EV_USE_INOTIFY
1865 infy_fork (EV_A);
1866#endif
1867
1868 if (ev_is_active (&pipe_w))
1869 {
1870 /* this "locks" the handlers against writing to the pipe */
1871 /* while we modify the fd vars */
1872 sig_pending = 1;
1873#if EV_ASYNC_ENABLE
1874 async_pending = 1;
1875#endif
1876
1877 ev_ref (EV_A);
1878 ev_io_stop (EV_A_ &pipe_w);
1879
1880#if EV_USE_EVENTFD
1881 if (evfd >= 0)
1882 close (evfd);
1883#endif
1884
1885 if (evpipe [0] >= 0)
1886 {
1887 EV_WIN32_CLOSE_FD (evpipe [0]);
1888 EV_WIN32_CLOSE_FD (evpipe [1]);
1889 }
1890
1891#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1892 evpipe_init (EV_A);
1893 /* now iterate over everything, in case we missed something */
1894 pipecb (EV_A_ &pipe_w, EV_READ);
1895#endif
1896 }
1897
1898 postfork = 0;
1899}
1900
1901#if EV_MULTIPLICITY
1902
1903struct ev_loop *
1904ev_loop_new (unsigned int flags)
1905{
1906 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1907
1908 memset (EV_A, 0, sizeof (struct ev_loop));
1909 loop_init (EV_A_ flags);
1910
1911 if (ev_backend (EV_A))
1912 return EV_A;
1913
1914 ev_free (EV_A);
1915 return 0;
1916}
1917
1918#endif /* multiplicity */
1919
1920#if EV_VERIFY
1921static void noinline
1922verify_watcher (EV_P_ W w)
1923{
1924 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1925
1926 if (w->pending)
1927 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1928}
1929
1930static void noinline
1931verify_heap (EV_P_ ANHE *heap, int N)
1932{
1933 int i;
1934
1935 for (i = HEAP0; i < N + HEAP0; ++i)
1936 {
1937 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1938 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1939 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1940
1941 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1942 }
1943}
1944
1945static void noinline
1946array_verify (EV_P_ W *ws, int cnt)
1947{
1948 while (cnt--)
1949 {
1950 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1951 verify_watcher (EV_A_ ws [cnt]);
1952 }
1953}
1954#endif
1955
1956#if EV_FEATURE_API
1957void
1958ev_verify (EV_P)
1959{
1960#if EV_VERIFY
1961 int i;
1962 WL w;
1963
1964 assert (activecnt >= -1);
1965
1966 assert (fdchangemax >= fdchangecnt);
1967 for (i = 0; i < fdchangecnt; ++i)
1968 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1969
1970 assert (anfdmax >= 0);
1971 for (i = 0; i < anfdmax; ++i)
1972 for (w = anfds [i].head; w; w = w->next)
1973 {
1974 verify_watcher (EV_A_ (W)w);
1975 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1976 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1977 }
1978
1979 assert (timermax >= timercnt);
1980 verify_heap (EV_A_ timers, timercnt);
1981
1982#if EV_PERIODIC_ENABLE
1983 assert (periodicmax >= periodiccnt);
1984 verify_heap (EV_A_ periodics, periodiccnt);
1985#endif
1986
1987 for (i = NUMPRI; i--; )
1988 {
1989 assert (pendingmax [i] >= pendingcnt [i]);
1990#if EV_IDLE_ENABLE
1991 assert (idleall >= 0);
1992 assert (idlemax [i] >= idlecnt [i]);
1993 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1994#endif
1995 }
1996
1997#if EV_FORK_ENABLE
1998 assert (forkmax >= forkcnt);
1999 array_verify (EV_A_ (W *)forks, forkcnt);
2000#endif
2001
2002#if EV_CLEANUP_ENABLE
2003 assert (cleanupmax >= cleanupcnt);
2004 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2005#endif
2006
2007#if EV_ASYNC_ENABLE
2008 assert (asyncmax >= asynccnt);
2009 array_verify (EV_A_ (W *)asyncs, asynccnt);
2010#endif
2011
2012#if EV_PREPARE_ENABLE
2013 assert (preparemax >= preparecnt);
2014 array_verify (EV_A_ (W *)prepares, preparecnt);
2015#endif
2016
2017#if EV_CHECK_ENABLE
2018 assert (checkmax >= checkcnt);
2019 array_verify (EV_A_ (W *)checks, checkcnt);
2020#endif
2021
2022# if 0
2023#if EV_CHILD_ENABLE
2024 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2025 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2026#endif
2027# endif
2028#endif
2029}
2030#endif
2031
2032#if EV_MULTIPLICITY
2033struct ev_loop *
2034#else
587int 2035int
588ev_method (EV_P) 2036#endif
2037ev_default_loop (unsigned int flags)
589{ 2038{
590 return method; 2039 if (!ev_default_loop_ptr)
591}
592
593int
594ev_init (EV_P_ int methods)
595{
596 if (!method)
597 {
598#if EV_USE_MONOTONIC
599 { 2040 {
600 struct timespec ts; 2041#if EV_MULTIPLICITY
601 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2042 EV_P = ev_default_loop_ptr = &default_loop_struct;
602 have_monotonic = 1; 2043#else
603 } 2044 ev_default_loop_ptr = 1;
604#endif 2045#endif
605 2046
606 rt_now = ev_time (); 2047 loop_init (EV_A_ flags);
607 mn_now = get_clock ();
608 now_floor = mn_now;
609 diff = rt_now - mn_now;
610 2048
611 if (pipe (sigpipe)) 2049 if (ev_backend (EV_A))
612 return 0;
613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBmethodS"))
616 methods = atoi (getenv ("LIBmethodS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
623#endif
624#if EV_USE_EPOLL
625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
626#endif
627#if EV_USEV_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
629#endif
630#if EV_USE_SELECT
631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
632#endif
633
634 if (method)
635 { 2050 {
636 ev_watcher_init (&sigev, sigcb); 2051#if EV_CHILD_ENABLE
637 ev_set_priority (&sigev, EV_MAXPRI);
638 siginit (EV_A);
639
640#ifndef WIN32
641 ev_signal_init (&childev, childcb, SIGCHLD); 2052 ev_signal_init (&childev, childcb, SIGCHLD);
642 ev_set_priority (&childev, EV_MAXPRI); 2053 ev_set_priority (&childev, EV_MAXPRI);
643 ev_signal_start (EV_A_ &childev); 2054 ev_signal_start (EV_A_ &childev);
2055 ev_unref (EV_A); /* child watcher should not keep loop alive */
644#endif 2056#endif
645 } 2057 }
2058 else
2059 ev_default_loop_ptr = 0;
646 } 2060 }
647 2061
648 return method; 2062 return ev_default_loop_ptr;
2063}
2064
2065void
2066ev_loop_fork (EV_P)
2067{
2068 postfork = 1; /* must be in line with ev_default_fork */
649} 2069}
650 2070
651/*****************************************************************************/ 2071/*****************************************************************************/
652 2072
653void 2073void
654ev_fork_prepare (void) 2074ev_invoke (EV_P_ void *w, int revents)
655{ 2075{
656 /* nop */ 2076 EV_CB_INVOKE ((W)w, revents);
657} 2077}
658 2078
659void 2079unsigned int
660ev_fork_parent (void) 2080ev_pending_count (EV_P)
661{ 2081{
662 /* nop */ 2082 int pri;
663} 2083 unsigned int count = 0;
664 2084
665void 2085 for (pri = NUMPRI; pri--; )
666ev_fork_child (void) 2086 count += pendingcnt [pri];
667{
668#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL)
670 epoll_postfork_child ();
671#endif
672 2087
673 ev_io_stop (&sigev); 2088 return count;
674 close (sigpipe [0]);
675 close (sigpipe [1]);
676 pipe (sigpipe);
677 siginit ();
678} 2089}
679 2090
680/*****************************************************************************/ 2091void noinline
681 2092ev_invoke_pending (EV_P)
682static void
683call_pending (EV_P)
684{ 2093{
685 int pri; 2094 int pri;
686 2095
687 for (pri = NUMPRI; pri--; ) 2096 for (pri = NUMPRI; pri--; )
688 while (pendingcnt [pri]) 2097 while (pendingcnt [pri])
689 { 2098 {
690 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2099 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
691 2100
692 if (p->w) 2101 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
693 { 2102 /* ^ this is no longer true, as pending_w could be here */
2103
694 p->w->pending = 0; 2104 p->w->pending = 0;
695 p->w->cb (EV_A_ p->w, p->events); 2105 EV_CB_INVOKE (p->w, p->events);
696 } 2106 EV_FREQUENT_CHECK;
697 } 2107 }
698} 2108}
699 2109
700static void 2110#if EV_IDLE_ENABLE
2111/* make idle watchers pending. this handles the "call-idle */
2112/* only when higher priorities are idle" logic */
2113inline_size void
701timers_reify (EV_P) 2114idle_reify (EV_P)
702{ 2115{
703 while (timercnt && timers [0]->at <= mn_now) 2116 if (expect_false (idleall))
704 { 2117 {
705 struct ev_timer *w = timers [0]; 2118 int pri;
706 2119
707 /* first reschedule or stop timer */ 2120 for (pri = NUMPRI; pri--; )
708 if (w->repeat)
709 { 2121 {
710 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2122 if (pendingcnt [pri])
711 w->at = mn_now + w->repeat; 2123 break;
712 downheap ((WT *)timers, timercnt, 0);
713 }
714 else
715 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
716 2124
717 event ((W)w, EV_TIMEOUT); 2125 if (idlecnt [pri])
718 }
719}
720
721static void
722periodics_reify (EV_P)
723{
724 while (periodiccnt && periodics [0]->at <= rt_now)
725 {
726 struct ev_periodic *w = periodics [0];
727
728 /* first reschedule or stop timer */
729 if (w->interval)
730 {
731 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
732 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
733 downheap ((WT *)periodics, periodiccnt, 0);
734 }
735 else
736 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
737
738 event (EV_A_ (W)w, EV_PERIODIC);
739 }
740}
741
742static void
743periodics_reschedule (EV_P_ ev_tstamp diff)
744{
745 int i;
746
747 /* adjust periodics after time jump */
748 for (i = 0; i < periodiccnt; ++i)
749 {
750 struct ev_periodic *w = periodics [i];
751
752 if (w->interval)
753 {
754 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
755
756 if (fabs (diff) >= 1e-4)
757 { 2126 {
758 ev_periodic_stop (EV_A_ w); 2127 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
759 ev_periodic_start (EV_A_ w); 2128 break;
760
761 i = 0; /* restart loop, inefficient, but time jumps should be rare */
762 } 2129 }
763 } 2130 }
764 } 2131 }
765} 2132}
2133#endif
766 2134
767inline int 2135/* make timers pending */
768time_update_monotonic (EV_P) 2136inline_size void
2137timers_reify (EV_P)
769{ 2138{
770 mn_now = get_clock (); 2139 EV_FREQUENT_CHECK;
771 2140
772 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2141 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
773 {
774 rt_now = mn_now + diff;
775 return 0;
776 } 2142 {
777 else 2143 do
2144 {
2145 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2146
2147 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2148
2149 /* first reschedule or stop timer */
2150 if (w->repeat)
2151 {
2152 ev_at (w) += w->repeat;
2153 if (ev_at (w) < mn_now)
2154 ev_at (w) = mn_now;
2155
2156 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2157
2158 ANHE_at_cache (timers [HEAP0]);
2159 downheap (timers, timercnt, HEAP0);
2160 }
2161 else
2162 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2163
2164 EV_FREQUENT_CHECK;
2165 feed_reverse (EV_A_ (W)w);
2166 }
2167 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2168
2169 feed_reverse_done (EV_A_ EV_TIMER);
778 { 2170 }
779 now_floor = mn_now; 2171}
780 rt_now = ev_time (); 2172
781 return 1; 2173#if EV_PERIODIC_ENABLE
2174/* make periodics pending */
2175inline_size void
2176periodics_reify (EV_P)
2177{
2178 EV_FREQUENT_CHECK;
2179
2180 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
782 } 2181 {
783} 2182 int feed_count = 0;
784 2183
785static void 2184 do
786time_update (EV_P) 2185 {
2186 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2187
2188 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2189
2190 /* first reschedule or stop timer */
2191 if (w->reschedule_cb)
2192 {
2193 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2194
2195 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2196
2197 ANHE_at_cache (periodics [HEAP0]);
2198 downheap (periodics, periodiccnt, HEAP0);
2199 }
2200 else if (w->interval)
2201 {
2202 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2203 /* if next trigger time is not sufficiently in the future, put it there */
2204 /* this might happen because of floating point inexactness */
2205 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2206 {
2207 ev_at (w) += w->interval;
2208
2209 /* if interval is unreasonably low we might still have a time in the past */
2210 /* so correct this. this will make the periodic very inexact, but the user */
2211 /* has effectively asked to get triggered more often than possible */
2212 if (ev_at (w) < ev_rt_now)
2213 ev_at (w) = ev_rt_now;
2214 }
2215
2216 ANHE_at_cache (periodics [HEAP0]);
2217 downheap (periodics, periodiccnt, HEAP0);
2218 }
2219 else
2220 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2221
2222 EV_FREQUENT_CHECK;
2223 feed_reverse (EV_A_ (W)w);
2224 }
2225 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2226
2227 feed_reverse_done (EV_A_ EV_PERIODIC);
2228 }
2229}
2230
2231/* simply recalculate all periodics */
2232/* TODO: maybe ensure that at least one event happens when jumping forward? */
2233static void noinline
2234periodics_reschedule (EV_P)
787{ 2235{
788 int i; 2236 int i;
789 2237
2238 /* adjust periodics after time jump */
2239 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2240 {
2241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2242
2243 if (w->reschedule_cb)
2244 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2245 else if (w->interval)
2246 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2247
2248 ANHE_at_cache (periodics [i]);
2249 }
2250
2251 reheap (periodics, periodiccnt);
2252}
2253#endif
2254
2255/* adjust all timers by a given offset */
2256static void noinline
2257timers_reschedule (EV_P_ ev_tstamp adjust)
2258{
2259 int i;
2260
2261 for (i = 0; i < timercnt; ++i)
2262 {
2263 ANHE *he = timers + i + HEAP0;
2264 ANHE_w (*he)->at += adjust;
2265 ANHE_at_cache (*he);
2266 }
2267}
2268
2269/* fetch new monotonic and realtime times from the kernel */
2270/* also detect if there was a timejump, and act accordingly */
2271inline_speed void
2272time_update (EV_P_ ev_tstamp max_block)
2273{
790#if EV_USE_MONOTONIC 2274#if EV_USE_MONOTONIC
791 if (expect_true (have_monotonic)) 2275 if (expect_true (have_monotonic))
792 { 2276 {
793 if (time_update_monotonic (EV_A)) 2277 int i;
2278 ev_tstamp odiff = rtmn_diff;
2279
2280 mn_now = get_clock ();
2281
2282 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2283 /* interpolate in the meantime */
2284 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
794 { 2285 {
795 ev_tstamp odiff = diff; 2286 ev_rt_now = rtmn_diff + mn_now;
796 2287 return;
797 for (i = 4; --i; ) /* loop a few times, before making important decisions */
798 {
799 diff = rt_now - mn_now;
800
801 if (fabs (odiff - diff) < MIN_TIMEJUMP)
802 return; /* all is well */
803
804 rt_now = ev_time ();
805 mn_now = get_clock ();
806 now_floor = mn_now;
807 }
808
809 periodics_reschedule (EV_A_ diff - odiff);
810 /* no timer adjustment, as the monotonic clock doesn't jump */
811 } 2288 }
2289
2290 now_floor = mn_now;
2291 ev_rt_now = ev_time ();
2292
2293 /* loop a few times, before making important decisions.
2294 * on the choice of "4": one iteration isn't enough,
2295 * in case we get preempted during the calls to
2296 * ev_time and get_clock. a second call is almost guaranteed
2297 * to succeed in that case, though. and looping a few more times
2298 * doesn't hurt either as we only do this on time-jumps or
2299 * in the unlikely event of having been preempted here.
2300 */
2301 for (i = 4; --i; )
2302 {
2303 rtmn_diff = ev_rt_now - mn_now;
2304
2305 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2306 return; /* all is well */
2307
2308 ev_rt_now = ev_time ();
2309 mn_now = get_clock ();
2310 now_floor = mn_now;
2311 }
2312
2313 /* no timer adjustment, as the monotonic clock doesn't jump */
2314 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2315# if EV_PERIODIC_ENABLE
2316 periodics_reschedule (EV_A);
2317# endif
812 } 2318 }
813 else 2319 else
814#endif 2320#endif
815 { 2321 {
816 rt_now = ev_time (); 2322 ev_rt_now = ev_time ();
817 2323
818 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2324 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
819 { 2325 {
820 periodics_reschedule (EV_A_ rt_now - mn_now);
821
822 /* adjust timers. this is easy, as the offset is the same for all */ 2326 /* adjust timers. this is easy, as the offset is the same for all of them */
823 for (i = 0; i < timercnt; ++i) 2327 timers_reschedule (EV_A_ ev_rt_now - mn_now);
824 timers [i]->at += diff; 2328#if EV_PERIODIC_ENABLE
2329 periodics_reschedule (EV_A);
2330#endif
825 } 2331 }
826 2332
827 mn_now = rt_now; 2333 mn_now = ev_rt_now;
828 } 2334 }
829} 2335}
830 2336
831void 2337void
832ev_ref (EV_P)
833{
834 ++activecnt;
835}
836
837void
838ev_unref (EV_P)
839{
840 --activecnt;
841}
842
843static int loop_done;
844
845void
846ev_loop (EV_P_ int flags) 2338ev_run (EV_P_ int flags)
847{ 2339{
848 double block; 2340#if EV_FEATURE_API
849 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2341 ++loop_depth;
2342#endif
2343
2344 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2345
2346 loop_done = EVBREAK_CANCEL;
2347
2348 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
850 2349
851 do 2350 do
852 { 2351 {
2352#if EV_VERIFY >= 2
2353 ev_verify (EV_A);
2354#endif
2355
2356#ifndef _WIN32
2357 if (expect_false (curpid)) /* penalise the forking check even more */
2358 if (expect_false (getpid () != curpid))
2359 {
2360 curpid = getpid ();
2361 postfork = 1;
2362 }
2363#endif
2364
2365#if EV_FORK_ENABLE
2366 /* we might have forked, so queue fork handlers */
2367 if (expect_false (postfork))
2368 if (forkcnt)
2369 {
2370 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2371 EV_INVOKE_PENDING;
2372 }
2373#endif
2374
2375#if EV_PREPARE_ENABLE
853 /* queue check watchers (and execute them) */ 2376 /* queue prepare watchers (and execute them) */
854 if (expect_false (preparecnt)) 2377 if (expect_false (preparecnt))
855 { 2378 {
856 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2379 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
857 call_pending (EV_A); 2380 EV_INVOKE_PENDING;
858 } 2381 }
2382#endif
2383
2384 if (expect_false (loop_done))
2385 break;
2386
2387 /* we might have forked, so reify kernel state if necessary */
2388 if (expect_false (postfork))
2389 loop_fork (EV_A);
859 2390
860 /* update fd-related kernel structures */ 2391 /* update fd-related kernel structures */
861 fd_reify (EV_A); 2392 fd_reify (EV_A);
862 2393
863 /* calculate blocking time */ 2394 /* calculate blocking time */
2395 {
2396 ev_tstamp waittime = 0.;
2397 ev_tstamp sleeptime = 0.;
864 2398
865 /* we only need this for !monotonic clockor timers, but as we basically 2399 /* remember old timestamp for io_blocktime calculation */
866 always have timers, we just calculate it always */ 2400 ev_tstamp prev_mn_now = mn_now;
867#if EV_USE_MONOTONIC 2401
868 if (expect_true (have_monotonic)) 2402 /* update time to cancel out callback processing overhead */
869 time_update_monotonic (EV_A); 2403 time_update (EV_A_ 1e100);
870 else 2404
871#endif 2405 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
872 { 2406 {
873 rt_now = ev_time ();
874 mn_now = rt_now;
875 }
876
877 if (flags & EVLOOP_NONBLOCK || idlecnt)
878 block = 0.;
879 else
880 {
881 block = MAX_BLOCKTIME; 2407 waittime = MAX_BLOCKTIME;
882 2408
883 if (timercnt) 2409 if (timercnt)
884 { 2410 {
885 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 2411 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
886 if (block > to) block = to; 2412 if (waittime > to) waittime = to;
887 } 2413 }
888 2414
2415#if EV_PERIODIC_ENABLE
889 if (periodiccnt) 2416 if (periodiccnt)
890 { 2417 {
891 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 2418 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
892 if (block > to) block = to; 2419 if (waittime > to) waittime = to;
893 } 2420 }
2421#endif
894 2422
895 if (block < 0.) block = 0.; 2423 /* don't let timeouts decrease the waittime below timeout_blocktime */
2424 if (expect_false (waittime < timeout_blocktime))
2425 waittime = timeout_blocktime;
2426
2427 /* extra check because io_blocktime is commonly 0 */
2428 if (expect_false (io_blocktime))
2429 {
2430 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2431
2432 if (sleeptime > waittime - backend_fudge)
2433 sleeptime = waittime - backend_fudge;
2434
2435 if (expect_true (sleeptime > 0.))
2436 {
2437 ev_sleep (sleeptime);
2438 waittime -= sleeptime;
2439 }
2440 }
896 } 2441 }
897 2442
898 method_poll (EV_A_ block); 2443#if EV_FEATURE_API
2444 ++loop_count;
2445#endif
2446 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2447 backend_poll (EV_A_ waittime);
2448 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
899 2449
900 /* update rt_now, do magic */ 2450 /* update ev_rt_now, do magic */
901 time_update (EV_A); 2451 time_update (EV_A_ waittime + sleeptime);
2452 }
902 2453
903 /* queue pending timers and reschedule them */ 2454 /* queue pending timers and reschedule them */
904 timers_reify (EV_A); /* relative timers called last */ 2455 timers_reify (EV_A); /* relative timers called last */
2456#if EV_PERIODIC_ENABLE
905 periodics_reify (EV_A); /* absolute timers called first */ 2457 periodics_reify (EV_A); /* absolute timers called first */
2458#endif
906 2459
2460#if EV_IDLE_ENABLE
907 /* queue idle watchers unless io or timers are pending */ 2461 /* queue idle watchers unless other events are pending */
908 if (!pendingcnt) 2462 idle_reify (EV_A);
909 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2463#endif
910 2464
2465#if EV_CHECK_ENABLE
911 /* queue check watchers, to be executed first */ 2466 /* queue check watchers, to be executed first */
912 if (checkcnt) 2467 if (expect_false (checkcnt))
913 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2468 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2469#endif
914 2470
915 call_pending (EV_A); 2471 EV_INVOKE_PENDING;
916 printf ("activecnt %d\n", activecnt);//D
917 } 2472 }
918 while (activecnt && !loop_done); 2473 while (expect_true (
2474 activecnt
2475 && !loop_done
2476 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2477 ));
919 2478
920 if (loop_done != 2) 2479 if (loop_done == EVBREAK_ONE)
921 loop_done = 0; 2480 loop_done = EVBREAK_CANCEL;
922}
923 2481
2482#if EV_FEATURE_API
2483 --loop_depth;
2484#endif
2485}
2486
924void 2487void
925ev_unloop (EV_P_ int how) 2488ev_break (EV_P_ int how)
926{ 2489{
927 loop_done = how; 2490 loop_done = how;
928} 2491}
929 2492
2493void
2494ev_ref (EV_P)
2495{
2496 ++activecnt;
2497}
2498
2499void
2500ev_unref (EV_P)
2501{
2502 --activecnt;
2503}
2504
2505void
2506ev_now_update (EV_P)
2507{
2508 time_update (EV_A_ 1e100);
2509}
2510
2511void
2512ev_suspend (EV_P)
2513{
2514 ev_now_update (EV_A);
2515}
2516
2517void
2518ev_resume (EV_P)
2519{
2520 ev_tstamp mn_prev = mn_now;
2521
2522 ev_now_update (EV_A);
2523 timers_reschedule (EV_A_ mn_now - mn_prev);
2524#if EV_PERIODIC_ENABLE
2525 /* TODO: really do this? */
2526 periodics_reschedule (EV_A);
2527#endif
2528}
2529
930/*****************************************************************************/ 2530/*****************************************************************************/
2531/* singly-linked list management, used when the expected list length is short */
931 2532
932inline void 2533inline_size void
933wlist_add (WL *head, WL elem) 2534wlist_add (WL *head, WL elem)
934{ 2535{
935 elem->next = *head; 2536 elem->next = *head;
936 *head = elem; 2537 *head = elem;
937} 2538}
938 2539
939inline void 2540inline_size void
940wlist_del (WL *head, WL elem) 2541wlist_del (WL *head, WL elem)
941{ 2542{
942 while (*head) 2543 while (*head)
943 { 2544 {
944 if (*head == elem) 2545 if (expect_true (*head == elem))
945 { 2546 {
946 *head = elem->next; 2547 *head = elem->next;
947 return; 2548 break;
948 } 2549 }
949 2550
950 head = &(*head)->next; 2551 head = &(*head)->next;
951 } 2552 }
952} 2553}
953 2554
2555/* internal, faster, version of ev_clear_pending */
954inline void 2556inline_speed void
955ev_clear_pending (EV_P_ W w) 2557clear_pending (EV_P_ W w)
956{ 2558{
957 if (w->pending) 2559 if (w->pending)
958 { 2560 {
959 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2561 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
960 w->pending = 0; 2562 w->pending = 0;
961 } 2563 }
962} 2564}
963 2565
2566int
2567ev_clear_pending (EV_P_ void *w)
2568{
2569 W w_ = (W)w;
2570 int pending = w_->pending;
2571
2572 if (expect_true (pending))
2573 {
2574 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2575 p->w = (W)&pending_w;
2576 w_->pending = 0;
2577 return p->events;
2578 }
2579 else
2580 return 0;
2581}
2582
964inline void 2583inline_size void
2584pri_adjust (EV_P_ W w)
2585{
2586 int pri = ev_priority (w);
2587 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2588 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2589 ev_set_priority (w, pri);
2590}
2591
2592inline_speed void
965ev_start (EV_P_ W w, int active) 2593ev_start (EV_P_ W w, int active)
966{ 2594{
967 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2595 pri_adjust (EV_A_ w);
968 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
969
970 w->active = active; 2596 w->active = active;
971 ev_ref (EV_A); 2597 ev_ref (EV_A);
972} 2598}
973 2599
974inline void 2600inline_size void
975ev_stop (EV_P_ W w) 2601ev_stop (EV_P_ W w)
976{ 2602{
977 ev_unref (EV_A); 2603 ev_unref (EV_A);
978 w->active = 0; 2604 w->active = 0;
979} 2605}
980 2606
981/*****************************************************************************/ 2607/*****************************************************************************/
982 2608
983void 2609void noinline
984ev_io_start (EV_P_ struct ev_io *w) 2610ev_io_start (EV_P_ ev_io *w)
985{ 2611{
986 int fd = w->fd; 2612 int fd = w->fd;
987 2613
988 if (ev_is_active (w)) 2614 if (expect_false (ev_is_active (w)))
989 return; 2615 return;
990 2616
991 assert (("ev_io_start called with negative fd", fd >= 0)); 2617 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2618 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2619
2620 EV_FREQUENT_CHECK;
992 2621
993 ev_start (EV_A_ (W)w, 1); 2622 ev_start (EV_A_ (W)w, 1);
994 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2623 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
995 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2624 wlist_add (&anfds[fd].head, (WL)w);
996 2625
997 fd_change (EV_A_ fd); 2626 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
998} 2627 w->events &= ~EV__IOFDSET;
999 2628
1000void 2629 EV_FREQUENT_CHECK;
2630}
2631
2632void noinline
1001ev_io_stop (EV_P_ struct ev_io *w) 2633ev_io_stop (EV_P_ ev_io *w)
1002{ 2634{
1003 ev_clear_pending (EV_A_ (W)w); 2635 clear_pending (EV_A_ (W)w);
1004 if (!ev_is_active (w)) 2636 if (expect_false (!ev_is_active (w)))
1005 return; 2637 return;
1006 2638
2639 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2640
2641 EV_FREQUENT_CHECK;
2642
1007 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2643 wlist_del (&anfds[w->fd].head, (WL)w);
1008 ev_stop (EV_A_ (W)w); 2644 ev_stop (EV_A_ (W)w);
1009 2645
1010 fd_change (EV_A_ w->fd); 2646 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1011}
1012 2647
1013void 2648 EV_FREQUENT_CHECK;
2649}
2650
2651void noinline
1014ev_timer_start (EV_P_ struct ev_timer *w) 2652ev_timer_start (EV_P_ ev_timer *w)
1015{ 2653{
1016 if (ev_is_active (w)) 2654 if (expect_false (ev_is_active (w)))
1017 return; 2655 return;
1018 2656
1019 w->at += mn_now; 2657 ev_at (w) += mn_now;
1020 2658
1021 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2659 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1022 2660
2661 EV_FREQUENT_CHECK;
2662
2663 ++timercnt;
1023 ev_start (EV_A_ (W)w, ++timercnt); 2664 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1024 array_needsize (timers, timermax, timercnt, ); 2665 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1025 timers [timercnt - 1] = w; 2666 ANHE_w (timers [ev_active (w)]) = (WT)w;
1026 upheap ((WT *)timers, timercnt - 1); 2667 ANHE_at_cache (timers [ev_active (w)]);
1027} 2668 upheap (timers, ev_active (w));
1028 2669
1029void 2670 EV_FREQUENT_CHECK;
2671
2672 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2673}
2674
2675void noinline
1030ev_timer_stop (EV_P_ struct ev_timer *w) 2676ev_timer_stop (EV_P_ ev_timer *w)
1031{ 2677{
1032 ev_clear_pending (EV_A_ (W)w); 2678 clear_pending (EV_A_ (W)w);
1033 if (!ev_is_active (w)) 2679 if (expect_false (!ev_is_active (w)))
1034 return; 2680 return;
1035 2681
1036 if (w->active < timercnt--) 2682 EV_FREQUENT_CHECK;
2683
2684 {
2685 int active = ev_active (w);
2686
2687 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2688
2689 --timercnt;
2690
2691 if (expect_true (active < timercnt + HEAP0))
1037 { 2692 {
1038 timers [w->active - 1] = timers [timercnt]; 2693 timers [active] = timers [timercnt + HEAP0];
1039 downheap ((WT *)timers, timercnt, w->active - 1); 2694 adjustheap (timers, timercnt, active);
1040 } 2695 }
2696 }
1041 2697
1042 w->at = w->repeat; 2698 ev_at (w) -= mn_now;
1043 2699
1044 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
1045}
1046 2701
1047void 2702 EV_FREQUENT_CHECK;
2703}
2704
2705void noinline
1048ev_timer_again (EV_P_ struct ev_timer *w) 2706ev_timer_again (EV_P_ ev_timer *w)
1049{ 2707{
2708 EV_FREQUENT_CHECK;
2709
1050 if (ev_is_active (w)) 2710 if (ev_is_active (w))
1051 { 2711 {
1052 if (w->repeat) 2712 if (w->repeat)
1053 { 2713 {
1054 w->at = mn_now + w->repeat; 2714 ev_at (w) = mn_now + w->repeat;
2715 ANHE_at_cache (timers [ev_active (w)]);
1055 downheap ((WT *)timers, timercnt, w->active - 1); 2716 adjustheap (timers, timercnt, ev_active (w));
1056 } 2717 }
1057 else 2718 else
1058 ev_timer_stop (EV_A_ w); 2719 ev_timer_stop (EV_A_ w);
1059 } 2720 }
1060 else if (w->repeat) 2721 else if (w->repeat)
2722 {
2723 ev_at (w) = w->repeat;
1061 ev_timer_start (EV_A_ w); 2724 ev_timer_start (EV_A_ w);
1062} 2725 }
1063 2726
1064void 2727 EV_FREQUENT_CHECK;
2728}
2729
2730ev_tstamp
2731ev_timer_remaining (EV_P_ ev_timer *w)
2732{
2733 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2734}
2735
2736#if EV_PERIODIC_ENABLE
2737void noinline
1065ev_periodic_start (EV_P_ struct ev_periodic *w) 2738ev_periodic_start (EV_P_ ev_periodic *w)
1066{ 2739{
1067 if (ev_is_active (w)) 2740 if (expect_false (ev_is_active (w)))
1068 return; 2741 return;
1069 2742
2743 if (w->reschedule_cb)
2744 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2745 else if (w->interval)
2746 {
1070 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2747 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1071
1072 /* this formula differs from the one in periodic_reify because we do not always round up */ 2748 /* this formula differs from the one in periodic_reify because we do not always round up */
1073 if (w->interval)
1074 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2749 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2750 }
2751 else
2752 ev_at (w) = w->offset;
1075 2753
2754 EV_FREQUENT_CHECK;
2755
2756 ++periodiccnt;
1076 ev_start (EV_A_ (W)w, ++periodiccnt); 2757 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1077 array_needsize (periodics, periodicmax, periodiccnt, ); 2758 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1078 periodics [periodiccnt - 1] = w; 2759 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1079 upheap ((WT *)periodics, periodiccnt - 1); 2760 ANHE_at_cache (periodics [ev_active (w)]);
1080} 2761 upheap (periodics, ev_active (w));
1081 2762
1082void 2763 EV_FREQUENT_CHECK;
2764
2765 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2766}
2767
2768void noinline
1083ev_periodic_stop (EV_P_ struct ev_periodic *w) 2769ev_periodic_stop (EV_P_ ev_periodic *w)
1084{ 2770{
1085 ev_clear_pending (EV_A_ (W)w); 2771 clear_pending (EV_A_ (W)w);
1086 if (!ev_is_active (w)) 2772 if (expect_false (!ev_is_active (w)))
1087 return; 2773 return;
1088 2774
1089 if (w->active < periodiccnt--) 2775 EV_FREQUENT_CHECK;
2776
2777 {
2778 int active = ev_active (w);
2779
2780 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2781
2782 --periodiccnt;
2783
2784 if (expect_true (active < periodiccnt + HEAP0))
1090 { 2785 {
1091 periodics [w->active - 1] = periodics [periodiccnt]; 2786 periodics [active] = periodics [periodiccnt + HEAP0];
1092 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2787 adjustheap (periodics, periodiccnt, active);
1093 } 2788 }
2789 }
1094 2790
1095 ev_stop (EV_A_ (W)w); 2791 ev_stop (EV_A_ (W)w);
2792
2793 EV_FREQUENT_CHECK;
1096} 2794}
2795
2796void noinline
2797ev_periodic_again (EV_P_ ev_periodic *w)
2798{
2799 /* TODO: use adjustheap and recalculation */
2800 ev_periodic_stop (EV_A_ w);
2801 ev_periodic_start (EV_A_ w);
2802}
2803#endif
1097 2804
1098#ifndef SA_RESTART 2805#ifndef SA_RESTART
1099# define SA_RESTART 0 2806# define SA_RESTART 0
1100#endif 2807#endif
1101 2808
1102void 2809#if EV_SIGNAL_ENABLE
2810
2811void noinline
1103ev_signal_start (EV_P_ struct ev_signal *w) 2812ev_signal_start (EV_P_ ev_signal *w)
1104{ 2813{
1105 if (ev_is_active (w)) 2814 if (expect_false (ev_is_active (w)))
1106 return; 2815 return;
1107 2816
1108 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2817 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2818
2819#if EV_MULTIPLICITY
2820 assert (("libev: a signal must not be attached to two different loops",
2821 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2822
2823 signals [w->signum - 1].loop = EV_A;
2824#endif
2825
2826 EV_FREQUENT_CHECK;
2827
2828#if EV_USE_SIGNALFD
2829 if (sigfd == -2)
2830 {
2831 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2832 if (sigfd < 0 && errno == EINVAL)
2833 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2834
2835 if (sigfd >= 0)
2836 {
2837 fd_intern (sigfd); /* doing it twice will not hurt */
2838
2839 sigemptyset (&sigfd_set);
2840
2841 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2842 ev_set_priority (&sigfd_w, EV_MAXPRI);
2843 ev_io_start (EV_A_ &sigfd_w);
2844 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2845 }
2846 }
2847
2848 if (sigfd >= 0)
2849 {
2850 /* TODO: check .head */
2851 sigaddset (&sigfd_set, w->signum);
2852 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2853
2854 signalfd (sigfd, &sigfd_set, 0);
2855 }
2856#endif
1109 2857
1110 ev_start (EV_A_ (W)w, 1); 2858 ev_start (EV_A_ (W)w, 1);
1111 array_needsize (signals, signalmax, w->signum, signals_init);
1112 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2859 wlist_add (&signals [w->signum - 1].head, (WL)w);
1113 2860
1114 if (!w->next) 2861 if (!((WL)w)->next)
2862# if EV_USE_SIGNALFD
2863 if (sigfd < 0) /*TODO*/
2864# endif
1115 { 2865 {
2866# ifdef _WIN32
2867 evpipe_init (EV_A);
2868
2869 signal (w->signum, ev_sighandler);
2870# else
1116 struct sigaction sa; 2871 struct sigaction sa;
2872
2873 evpipe_init (EV_A);
2874
1117 sa.sa_handler = sighandler; 2875 sa.sa_handler = ev_sighandler;
1118 sigfillset (&sa.sa_mask); 2876 sigfillset (&sa.sa_mask);
1119 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2877 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1120 sigaction (w->signum, &sa, 0); 2878 sigaction (w->signum, &sa, 0);
2879
2880 sigemptyset (&sa.sa_mask);
2881 sigaddset (&sa.sa_mask, w->signum);
2882 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2883#endif
1121 } 2884 }
1122}
1123 2885
1124void 2886 EV_FREQUENT_CHECK;
2887}
2888
2889void noinline
1125ev_signal_stop (EV_P_ struct ev_signal *w) 2890ev_signal_stop (EV_P_ ev_signal *w)
1126{ 2891{
1127 ev_clear_pending (EV_A_ (W)w); 2892 clear_pending (EV_A_ (W)w);
1128 if (!ev_is_active (w)) 2893 if (expect_false (!ev_is_active (w)))
1129 return; 2894 return;
1130 2895
2896 EV_FREQUENT_CHECK;
2897
1131 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2898 wlist_del (&signals [w->signum - 1].head, (WL)w);
1132 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
1133 2900
1134 if (!signals [w->signum - 1].head) 2901 if (!signals [w->signum - 1].head)
2902 {
2903#if EV_MULTIPLICITY
2904 signals [w->signum - 1].loop = 0; /* unattach from signal */
2905#endif
2906#if EV_USE_SIGNALFD
2907 if (sigfd >= 0)
2908 {
2909 sigset_t ss;
2910
2911 sigemptyset (&ss);
2912 sigaddset (&ss, w->signum);
2913 sigdelset (&sigfd_set, w->signum);
2914
2915 signalfd (sigfd, &sigfd_set, 0);
2916 sigprocmask (SIG_UNBLOCK, &ss, 0);
2917 }
2918 else
2919#endif
1135 signal (w->signum, SIG_DFL); 2920 signal (w->signum, SIG_DFL);
1136} 2921 }
1137 2922
2923 EV_FREQUENT_CHECK;
2924}
2925
2926#endif
2927
2928#if EV_CHILD_ENABLE
2929
1138void 2930void
1139ev_idle_start (EV_P_ struct ev_idle *w) 2931ev_child_start (EV_P_ ev_child *w)
1140{ 2932{
2933#if EV_MULTIPLICITY
2934 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2935#endif
1141 if (ev_is_active (w)) 2936 if (expect_false (ev_is_active (w)))
1142 return; 2937 return;
1143 2938
2939 EV_FREQUENT_CHECK;
2940
1144 ev_start (EV_A_ (W)w, ++idlecnt); 2941 ev_start (EV_A_ (W)w, 1);
1145 array_needsize (idles, idlemax, idlecnt, ); 2942 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1146 idles [idlecnt - 1] = w;
1147}
1148 2943
2944 EV_FREQUENT_CHECK;
2945}
2946
1149void 2947void
1150ev_idle_stop (EV_P_ struct ev_idle *w) 2948ev_child_stop (EV_P_ ev_child *w)
1151{ 2949{
1152 ev_clear_pending (EV_A_ (W)w); 2950 clear_pending (EV_A_ (W)w);
1153 if (ev_is_active (w)) 2951 if (expect_false (!ev_is_active (w)))
1154 return; 2952 return;
1155 2953
1156 idles [w->active - 1] = idles [--idlecnt]; 2954 EV_FREQUENT_CHECK;
2955
2956 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1157 ev_stop (EV_A_ (W)w); 2957 ev_stop (EV_A_ (W)w);
1158}
1159 2958
1160void 2959 EV_FREQUENT_CHECK;
1161ev_prepare_start (EV_P_ struct ev_prepare *w) 2960}
2961
2962#endif
2963
2964#if EV_STAT_ENABLE
2965
2966# ifdef _WIN32
2967# undef lstat
2968# define lstat(a,b) _stati64 (a,b)
2969# endif
2970
2971#define DEF_STAT_INTERVAL 5.0074891
2972#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2973#define MIN_STAT_INTERVAL 0.1074891
2974
2975static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2976
2977#if EV_USE_INOTIFY
2978
2979/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2980# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2981
2982static void noinline
2983infy_add (EV_P_ ev_stat *w)
1162{ 2984{
1163 if (ev_is_active (w)) 2985 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2986
2987 if (w->wd >= 0)
2988 {
2989 struct statfs sfs;
2990
2991 /* now local changes will be tracked by inotify, but remote changes won't */
2992 /* unless the filesystem is known to be local, we therefore still poll */
2993 /* also do poll on <2.6.25, but with normal frequency */
2994
2995 if (!fs_2625)
2996 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2997 else if (!statfs (w->path, &sfs)
2998 && (sfs.f_type == 0x1373 /* devfs */
2999 || sfs.f_type == 0xEF53 /* ext2/3 */
3000 || sfs.f_type == 0x3153464a /* jfs */
3001 || sfs.f_type == 0x52654973 /* reiser3 */
3002 || sfs.f_type == 0x01021994 /* tempfs */
3003 || sfs.f_type == 0x58465342 /* xfs */))
3004 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3005 else
3006 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3007 }
3008 else
3009 {
3010 /* can't use inotify, continue to stat */
3011 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3012
3013 /* if path is not there, monitor some parent directory for speedup hints */
3014 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3015 /* but an efficiency issue only */
3016 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3017 {
3018 char path [4096];
3019 strcpy (path, w->path);
3020
3021 do
3022 {
3023 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3024 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3025
3026 char *pend = strrchr (path, '/');
3027
3028 if (!pend || pend == path)
3029 break;
3030
3031 *pend = 0;
3032 w->wd = inotify_add_watch (fs_fd, path, mask);
3033 }
3034 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3035 }
3036 }
3037
3038 if (w->wd >= 0)
3039 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3040
3041 /* now re-arm timer, if required */
3042 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3043 ev_timer_again (EV_A_ &w->timer);
3044 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3045}
3046
3047static void noinline
3048infy_del (EV_P_ ev_stat *w)
3049{
3050 int slot;
3051 int wd = w->wd;
3052
3053 if (wd < 0)
1164 return; 3054 return;
1165 3055
3056 w->wd = -2;
3057 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3058 wlist_del (&fs_hash [slot].head, (WL)w);
3059
3060 /* remove this watcher, if others are watching it, they will rearm */
3061 inotify_rm_watch (fs_fd, wd);
3062}
3063
3064static void noinline
3065infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3066{
3067 if (slot < 0)
3068 /* overflow, need to check for all hash slots */
3069 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3070 infy_wd (EV_A_ slot, wd, ev);
3071 else
3072 {
3073 WL w_;
3074
3075 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3076 {
3077 ev_stat *w = (ev_stat *)w_;
3078 w_ = w_->next; /* lets us remove this watcher and all before it */
3079
3080 if (w->wd == wd || wd == -1)
3081 {
3082 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3083 {
3084 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3085 w->wd = -1;
3086 infy_add (EV_A_ w); /* re-add, no matter what */
3087 }
3088
3089 stat_timer_cb (EV_A_ &w->timer, 0);
3090 }
3091 }
3092 }
3093}
3094
3095static void
3096infy_cb (EV_P_ ev_io *w, int revents)
3097{
3098 char buf [EV_INOTIFY_BUFSIZE];
3099 int ofs;
3100 int len = read (fs_fd, buf, sizeof (buf));
3101
3102 for (ofs = 0; ofs < len; )
3103 {
3104 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3105 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3106 ofs += sizeof (struct inotify_event) + ev->len;
3107 }
3108}
3109
3110inline_size void
3111ev_check_2625 (EV_P)
3112{
3113 /* kernels < 2.6.25 are borked
3114 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3115 */
3116 if (ev_linux_version () < 0x020619)
3117 return;
3118
3119 fs_2625 = 1;
3120}
3121
3122inline_size int
3123infy_newfd (void)
3124{
3125#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3126 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3127 if (fd >= 0)
3128 return fd;
3129#endif
3130 return inotify_init ();
3131}
3132
3133inline_size void
3134infy_init (EV_P)
3135{
3136 if (fs_fd != -2)
3137 return;
3138
3139 fs_fd = -1;
3140
3141 ev_check_2625 (EV_A);
3142
3143 fs_fd = infy_newfd ();
3144
3145 if (fs_fd >= 0)
3146 {
3147 fd_intern (fs_fd);
3148 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3149 ev_set_priority (&fs_w, EV_MAXPRI);
3150 ev_io_start (EV_A_ &fs_w);
3151 ev_unref (EV_A);
3152 }
3153}
3154
3155inline_size void
3156infy_fork (EV_P)
3157{
3158 int slot;
3159
3160 if (fs_fd < 0)
3161 return;
3162
3163 ev_ref (EV_A);
3164 ev_io_stop (EV_A_ &fs_w);
3165 close (fs_fd);
3166 fs_fd = infy_newfd ();
3167
3168 if (fs_fd >= 0)
3169 {
3170 fd_intern (fs_fd);
3171 ev_io_set (&fs_w, fs_fd, EV_READ);
3172 ev_io_start (EV_A_ &fs_w);
3173 ev_unref (EV_A);
3174 }
3175
3176 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3177 {
3178 WL w_ = fs_hash [slot].head;
3179 fs_hash [slot].head = 0;
3180
3181 while (w_)
3182 {
3183 ev_stat *w = (ev_stat *)w_;
3184 w_ = w_->next; /* lets us add this watcher */
3185
3186 w->wd = -1;
3187
3188 if (fs_fd >= 0)
3189 infy_add (EV_A_ w); /* re-add, no matter what */
3190 else
3191 {
3192 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3193 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3194 ev_timer_again (EV_A_ &w->timer);
3195 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3196 }
3197 }
3198 }
3199}
3200
3201#endif
3202
3203#ifdef _WIN32
3204# define EV_LSTAT(p,b) _stati64 (p, b)
3205#else
3206# define EV_LSTAT(p,b) lstat (p, b)
3207#endif
3208
3209void
3210ev_stat_stat (EV_P_ ev_stat *w)
3211{
3212 if (lstat (w->path, &w->attr) < 0)
3213 w->attr.st_nlink = 0;
3214 else if (!w->attr.st_nlink)
3215 w->attr.st_nlink = 1;
3216}
3217
3218static void noinline
3219stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3220{
3221 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3222
3223 ev_statdata prev = w->attr;
3224 ev_stat_stat (EV_A_ w);
3225
3226 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3227 if (
3228 prev.st_dev != w->attr.st_dev
3229 || prev.st_ino != w->attr.st_ino
3230 || prev.st_mode != w->attr.st_mode
3231 || prev.st_nlink != w->attr.st_nlink
3232 || prev.st_uid != w->attr.st_uid
3233 || prev.st_gid != w->attr.st_gid
3234 || prev.st_rdev != w->attr.st_rdev
3235 || prev.st_size != w->attr.st_size
3236 || prev.st_atime != w->attr.st_atime
3237 || prev.st_mtime != w->attr.st_mtime
3238 || prev.st_ctime != w->attr.st_ctime
3239 ) {
3240 /* we only update w->prev on actual differences */
3241 /* in case we test more often than invoke the callback, */
3242 /* to ensure that prev is always different to attr */
3243 w->prev = prev;
3244
3245 #if EV_USE_INOTIFY
3246 if (fs_fd >= 0)
3247 {
3248 infy_del (EV_A_ w);
3249 infy_add (EV_A_ w);
3250 ev_stat_stat (EV_A_ w); /* avoid race... */
3251 }
3252 #endif
3253
3254 ev_feed_event (EV_A_ w, EV_STAT);
3255 }
3256}
3257
3258void
3259ev_stat_start (EV_P_ ev_stat *w)
3260{
3261 if (expect_false (ev_is_active (w)))
3262 return;
3263
3264 ev_stat_stat (EV_A_ w);
3265
3266 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3267 w->interval = MIN_STAT_INTERVAL;
3268
3269 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3270 ev_set_priority (&w->timer, ev_priority (w));
3271
3272#if EV_USE_INOTIFY
3273 infy_init (EV_A);
3274
3275 if (fs_fd >= 0)
3276 infy_add (EV_A_ w);
3277 else
3278#endif
3279 {
3280 ev_timer_again (EV_A_ &w->timer);
3281 ev_unref (EV_A);
3282 }
3283
3284 ev_start (EV_A_ (W)w, 1);
3285
3286 EV_FREQUENT_CHECK;
3287}
3288
3289void
3290ev_stat_stop (EV_P_ ev_stat *w)
3291{
3292 clear_pending (EV_A_ (W)w);
3293 if (expect_false (!ev_is_active (w)))
3294 return;
3295
3296 EV_FREQUENT_CHECK;
3297
3298#if EV_USE_INOTIFY
3299 infy_del (EV_A_ w);
3300#endif
3301
3302 if (ev_is_active (&w->timer))
3303 {
3304 ev_ref (EV_A);
3305 ev_timer_stop (EV_A_ &w->timer);
3306 }
3307
3308 ev_stop (EV_A_ (W)w);
3309
3310 EV_FREQUENT_CHECK;
3311}
3312#endif
3313
3314#if EV_IDLE_ENABLE
3315void
3316ev_idle_start (EV_P_ ev_idle *w)
3317{
3318 if (expect_false (ev_is_active (w)))
3319 return;
3320
3321 pri_adjust (EV_A_ (W)w);
3322
3323 EV_FREQUENT_CHECK;
3324
3325 {
3326 int active = ++idlecnt [ABSPRI (w)];
3327
3328 ++idleall;
3329 ev_start (EV_A_ (W)w, active);
3330
3331 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3332 idles [ABSPRI (w)][active - 1] = w;
3333 }
3334
3335 EV_FREQUENT_CHECK;
3336}
3337
3338void
3339ev_idle_stop (EV_P_ ev_idle *w)
3340{
3341 clear_pending (EV_A_ (W)w);
3342 if (expect_false (!ev_is_active (w)))
3343 return;
3344
3345 EV_FREQUENT_CHECK;
3346
3347 {
3348 int active = ev_active (w);
3349
3350 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3351 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3352
3353 ev_stop (EV_A_ (W)w);
3354 --idleall;
3355 }
3356
3357 EV_FREQUENT_CHECK;
3358}
3359#endif
3360
3361#if EV_PREPARE_ENABLE
3362void
3363ev_prepare_start (EV_P_ ev_prepare *w)
3364{
3365 if (expect_false (ev_is_active (w)))
3366 return;
3367
3368 EV_FREQUENT_CHECK;
3369
1166 ev_start (EV_A_ (W)w, ++preparecnt); 3370 ev_start (EV_A_ (W)w, ++preparecnt);
1167 array_needsize (prepares, preparemax, preparecnt, ); 3371 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1168 prepares [preparecnt - 1] = w; 3372 prepares [preparecnt - 1] = w;
1169}
1170 3373
3374 EV_FREQUENT_CHECK;
3375}
3376
1171void 3377void
1172ev_prepare_stop (EV_P_ struct ev_prepare *w) 3378ev_prepare_stop (EV_P_ ev_prepare *w)
1173{ 3379{
1174 ev_clear_pending (EV_A_ (W)w); 3380 clear_pending (EV_A_ (W)w);
1175 if (ev_is_active (w)) 3381 if (expect_false (!ev_is_active (w)))
1176 return; 3382 return;
1177 3383
3384 EV_FREQUENT_CHECK;
3385
3386 {
3387 int active = ev_active (w);
3388
1178 prepares [w->active - 1] = prepares [--preparecnt]; 3389 prepares [active - 1] = prepares [--preparecnt];
3390 ev_active (prepares [active - 1]) = active;
3391 }
3392
1179 ev_stop (EV_A_ (W)w); 3393 ev_stop (EV_A_ (W)w);
1180}
1181 3394
3395 EV_FREQUENT_CHECK;
3396}
3397#endif
3398
3399#if EV_CHECK_ENABLE
1182void 3400void
1183ev_check_start (EV_P_ struct ev_check *w) 3401ev_check_start (EV_P_ ev_check *w)
1184{ 3402{
1185 if (ev_is_active (w)) 3403 if (expect_false (ev_is_active (w)))
1186 return; 3404 return;
1187 3405
3406 EV_FREQUENT_CHECK;
3407
1188 ev_start (EV_A_ (W)w, ++checkcnt); 3408 ev_start (EV_A_ (W)w, ++checkcnt);
1189 array_needsize (checks, checkmax, checkcnt, ); 3409 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1190 checks [checkcnt - 1] = w; 3410 checks [checkcnt - 1] = w;
1191}
1192 3411
3412 EV_FREQUENT_CHECK;
3413}
3414
1193void 3415void
1194ev_check_stop (EV_P_ struct ev_check *w) 3416ev_check_stop (EV_P_ ev_check *w)
1195{ 3417{
1196 ev_clear_pending (EV_A_ (W)w); 3418 clear_pending (EV_A_ (W)w);
1197 if (ev_is_active (w)) 3419 if (expect_false (!ev_is_active (w)))
1198 return; 3420 return;
1199 3421
3422 EV_FREQUENT_CHECK;
3423
3424 {
3425 int active = ev_active (w);
3426
1200 checks [w->active - 1] = checks [--checkcnt]; 3427 checks [active - 1] = checks [--checkcnt];
3428 ev_active (checks [active - 1]) = active;
3429 }
3430
1201 ev_stop (EV_A_ (W)w); 3431 ev_stop (EV_A_ (W)w);
1202}
1203 3432
1204void 3433 EV_FREQUENT_CHECK;
1205ev_child_start (EV_P_ struct ev_child *w) 3434}
3435#endif
3436
3437#if EV_EMBED_ENABLE
3438void noinline
3439ev_embed_sweep (EV_P_ ev_embed *w)
1206{ 3440{
3441 ev_run (w->other, EVRUN_NOWAIT);
3442}
3443
3444static void
3445embed_io_cb (EV_P_ ev_io *io, int revents)
3446{
3447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3448
1207 if (ev_is_active (w)) 3449 if (ev_cb (w))
3450 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3451 else
3452 ev_run (w->other, EVRUN_NOWAIT);
3453}
3454
3455static void
3456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3457{
3458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3459
3460 {
3461 EV_P = w->other;
3462
3463 while (fdchangecnt)
3464 {
3465 fd_reify (EV_A);
3466 ev_run (EV_A_ EVRUN_NOWAIT);
3467 }
3468 }
3469}
3470
3471static void
3472embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3473{
3474 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3475
3476 ev_embed_stop (EV_A_ w);
3477
3478 {
3479 EV_P = w->other;
3480
3481 ev_loop_fork (EV_A);
3482 ev_run (EV_A_ EVRUN_NOWAIT);
3483 }
3484
3485 ev_embed_start (EV_A_ w);
3486}
3487
3488#if 0
3489static void
3490embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3491{
3492 ev_idle_stop (EV_A_ idle);
3493}
3494#endif
3495
3496void
3497ev_embed_start (EV_P_ ev_embed *w)
3498{
3499 if (expect_false (ev_is_active (w)))
1208 return; 3500 return;
1209 3501
3502 {
3503 EV_P = w->other;
3504 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3505 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3506 }
3507
3508 EV_FREQUENT_CHECK;
3509
3510 ev_set_priority (&w->io, ev_priority (w));
3511 ev_io_start (EV_A_ &w->io);
3512
3513 ev_prepare_init (&w->prepare, embed_prepare_cb);
3514 ev_set_priority (&w->prepare, EV_MINPRI);
3515 ev_prepare_start (EV_A_ &w->prepare);
3516
3517 ev_fork_init (&w->fork, embed_fork_cb);
3518 ev_fork_start (EV_A_ &w->fork);
3519
3520 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3521
1210 ev_start (EV_A_ (W)w, 1); 3522 ev_start (EV_A_ (W)w, 1);
1211 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1212}
1213 3523
3524 EV_FREQUENT_CHECK;
3525}
3526
1214void 3527void
1215ev_child_stop (EV_P_ struct ev_child *w) 3528ev_embed_stop (EV_P_ ev_embed *w)
1216{ 3529{
1217 ev_clear_pending (EV_A_ (W)w); 3530 clear_pending (EV_A_ (W)w);
1218 if (ev_is_active (w)) 3531 if (expect_false (!ev_is_active (w)))
1219 return; 3532 return;
1220 3533
1221 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3534 EV_FREQUENT_CHECK;
3535
3536 ev_io_stop (EV_A_ &w->io);
3537 ev_prepare_stop (EV_A_ &w->prepare);
3538 ev_fork_stop (EV_A_ &w->fork);
3539
1222 ev_stop (EV_A_ (W)w); 3540 ev_stop (EV_A_ (W)w);
3541
3542 EV_FREQUENT_CHECK;
1223} 3543}
3544#endif
3545
3546#if EV_FORK_ENABLE
3547void
3548ev_fork_start (EV_P_ ev_fork *w)
3549{
3550 if (expect_false (ev_is_active (w)))
3551 return;
3552
3553 EV_FREQUENT_CHECK;
3554
3555 ev_start (EV_A_ (W)w, ++forkcnt);
3556 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3557 forks [forkcnt - 1] = w;
3558
3559 EV_FREQUENT_CHECK;
3560}
3561
3562void
3563ev_fork_stop (EV_P_ ev_fork *w)
3564{
3565 clear_pending (EV_A_ (W)w);
3566 if (expect_false (!ev_is_active (w)))
3567 return;
3568
3569 EV_FREQUENT_CHECK;
3570
3571 {
3572 int active = ev_active (w);
3573
3574 forks [active - 1] = forks [--forkcnt];
3575 ev_active (forks [active - 1]) = active;
3576 }
3577
3578 ev_stop (EV_A_ (W)w);
3579
3580 EV_FREQUENT_CHECK;
3581}
3582#endif
3583
3584#if EV_CLEANUP_ENABLE
3585void
3586ev_cleanup_start (EV_P_ ev_cleanup *w)
3587{
3588 if (expect_false (ev_is_active (w)))
3589 return;
3590
3591 EV_FREQUENT_CHECK;
3592
3593 ev_start (EV_A_ (W)w, ++cleanupcnt);
3594 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3595 cleanups [cleanupcnt - 1] = w;
3596
3597 EV_FREQUENT_CHECK;
3598}
3599
3600void
3601ev_cleanup_stop (EV_P_ ev_cleanup *w)
3602{
3603 clear_pending (EV_A_ (W)w);
3604 if (expect_false (!ev_is_active (w)))
3605 return;
3606
3607 EV_FREQUENT_CHECK;
3608
3609 {
3610 int active = ev_active (w);
3611
3612 cleanups [active - 1] = cleanups [--cleanupcnt];
3613 ev_active (cleanups [active - 1]) = active;
3614 }
3615
3616 ev_stop (EV_A_ (W)w);
3617
3618 EV_FREQUENT_CHECK;
3619}
3620#endif
3621
3622#if EV_ASYNC_ENABLE
3623void
3624ev_async_start (EV_P_ ev_async *w)
3625{
3626 if (expect_false (ev_is_active (w)))
3627 return;
3628
3629 w->sent = 0;
3630
3631 evpipe_init (EV_A);
3632
3633 EV_FREQUENT_CHECK;
3634
3635 ev_start (EV_A_ (W)w, ++asynccnt);
3636 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3637 asyncs [asynccnt - 1] = w;
3638
3639 EV_FREQUENT_CHECK;
3640}
3641
3642void
3643ev_async_stop (EV_P_ ev_async *w)
3644{
3645 clear_pending (EV_A_ (W)w);
3646 if (expect_false (!ev_is_active (w)))
3647 return;
3648
3649 EV_FREQUENT_CHECK;
3650
3651 {
3652 int active = ev_active (w);
3653
3654 asyncs [active - 1] = asyncs [--asynccnt];
3655 ev_active (asyncs [active - 1]) = active;
3656 }
3657
3658 ev_stop (EV_A_ (W)w);
3659
3660 EV_FREQUENT_CHECK;
3661}
3662
3663void
3664ev_async_send (EV_P_ ev_async *w)
3665{
3666 w->sent = 1;
3667 evpipe_write (EV_A_ &async_pending);
3668}
3669#endif
1224 3670
1225/*****************************************************************************/ 3671/*****************************************************************************/
1226 3672
1227struct ev_once 3673struct ev_once
1228{ 3674{
1229 struct ev_io io; 3675 ev_io io;
1230 struct ev_timer to; 3676 ev_timer to;
1231 void (*cb)(int revents, void *arg); 3677 void (*cb)(int revents, void *arg);
1232 void *arg; 3678 void *arg;
1233}; 3679};
1234 3680
1235static void 3681static void
1236once_cb (EV_P_ struct ev_once *once, int revents) 3682once_cb (EV_P_ struct ev_once *once, int revents)
1237{ 3683{
1238 void (*cb)(int revents, void *arg) = once->cb; 3684 void (*cb)(int revents, void *arg) = once->cb;
1239 void *arg = once->arg; 3685 void *arg = once->arg;
1240 3686
1241 ev_io_stop (EV_A_ &once->io); 3687 ev_io_stop (EV_A_ &once->io);
1242 ev_timer_stop (EV_A_ &once->to); 3688 ev_timer_stop (EV_A_ &once->to);
1243 free (once); 3689 ev_free (once);
1244 3690
1245 cb (revents, arg); 3691 cb (revents, arg);
1246} 3692}
1247 3693
1248static void 3694static void
1249once_cb_io (EV_P_ struct ev_io *w, int revents) 3695once_cb_io (EV_P_ ev_io *w, int revents)
1250{ 3696{
1251 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3697 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3698
3699 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1252} 3700}
1253 3701
1254static void 3702static void
1255once_cb_to (EV_P_ struct ev_timer *w, int revents) 3703once_cb_to (EV_P_ ev_timer *w, int revents)
1256{ 3704{
1257 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3705 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3706
3707 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1258} 3708}
1259 3709
1260void 3710void
1261ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1262{ 3712{
1263 struct ev_once *once = malloc (sizeof (struct ev_once)); 3713 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1264 3714
1265 if (!once) 3715 if (expect_false (!once))
3716 {
1266 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3717 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1267 else 3718 return;
1268 { 3719 }
3720
1269 once->cb = cb; 3721 once->cb = cb;
1270 once->arg = arg; 3722 once->arg = arg;
1271 3723
1272 ev_watcher_init (&once->io, once_cb_io); 3724 ev_init (&once->io, once_cb_io);
1273 if (fd >= 0) 3725 if (fd >= 0)
3726 {
3727 ev_io_set (&once->io, fd, events);
3728 ev_io_start (EV_A_ &once->io);
3729 }
3730
3731 ev_init (&once->to, once_cb_to);
3732 if (timeout >= 0.)
3733 {
3734 ev_timer_set (&once->to, timeout, 0.);
3735 ev_timer_start (EV_A_ &once->to);
3736 }
3737}
3738
3739/*****************************************************************************/
3740
3741#if EV_WALK_ENABLE
3742void
3743ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3744{
3745 int i, j;
3746 ev_watcher_list *wl, *wn;
3747
3748 if (types & (EV_IO | EV_EMBED))
3749 for (i = 0; i < anfdmax; ++i)
3750 for (wl = anfds [i].head; wl; )
1274 { 3751 {
1275 ev_io_set (&once->io, fd, events); 3752 wn = wl->next;
1276 ev_io_start (EV_A_ &once->io); 3753
3754#if EV_EMBED_ENABLE
3755 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3756 {
3757 if (types & EV_EMBED)
3758 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3759 }
3760 else
3761#endif
3762#if EV_USE_INOTIFY
3763 if (ev_cb ((ev_io *)wl) == infy_cb)
3764 ;
3765 else
3766#endif
3767 if ((ev_io *)wl != &pipe_w)
3768 if (types & EV_IO)
3769 cb (EV_A_ EV_IO, wl);
3770
3771 wl = wn;
1277 } 3772 }
1278 3773
1279 ev_watcher_init (&once->to, once_cb_to); 3774 if (types & (EV_TIMER | EV_STAT))
1280 if (timeout >= 0.) 3775 for (i = timercnt + HEAP0; i-- > HEAP0; )
3776#if EV_STAT_ENABLE
3777 /*TODO: timer is not always active*/
3778 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1281 { 3779 {
1282 ev_timer_set (&once->to, timeout, 0.); 3780 if (types & EV_STAT)
1283 ev_timer_start (EV_A_ &once->to); 3781 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1284 } 3782 }
1285 } 3783 else
1286} 3784#endif
3785 if (types & EV_TIMER)
3786 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1287 3787
1288/*****************************************************************************/ 3788#if EV_PERIODIC_ENABLE
3789 if (types & EV_PERIODIC)
3790 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3791 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3792#endif
1289 3793
1290#if 0 3794#if EV_IDLE_ENABLE
3795 if (types & EV_IDLE)
3796 for (j = NUMPRI; i--; )
3797 for (i = idlecnt [j]; i--; )
3798 cb (EV_A_ EV_IDLE, idles [j][i]);
3799#endif
1291 3800
1292struct ev_io wio; 3801#if EV_FORK_ENABLE
3802 if (types & EV_FORK)
3803 for (i = forkcnt; i--; )
3804 if (ev_cb (forks [i]) != embed_fork_cb)
3805 cb (EV_A_ EV_FORK, forks [i]);
3806#endif
1293 3807
1294static void 3808#if EV_ASYNC_ENABLE
1295sin_cb (struct ev_io *w, int revents) 3809 if (types & EV_ASYNC)
1296{ 3810 for (i = asynccnt; i--; )
1297 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3811 cb (EV_A_ EV_ASYNC, asyncs [i]);
1298} 3812#endif
1299 3813
1300static void 3814#if EV_PREPARE_ENABLE
1301ocb (struct ev_timer *w, int revents) 3815 if (types & EV_PREPARE)
1302{ 3816 for (i = preparecnt; i--; )
1303 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3817# if EV_EMBED_ENABLE
1304 ev_timer_stop (w); 3818 if (ev_cb (prepares [i]) != embed_prepare_cb)
1305 ev_timer_start (w);
1306}
1307
1308static void
1309scb (struct ev_signal *w, int revents)
1310{
1311 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1312 ev_io_stop (&wio);
1313 ev_io_start (&wio);
1314}
1315
1316static void
1317gcb (struct ev_signal *w, int revents)
1318{
1319 fprintf (stderr, "generic %x\n", revents);
1320
1321}
1322
1323int main (void)
1324{
1325 ev_init (0);
1326
1327 ev_io_init (&wio, sin_cb, 0, EV_READ);
1328 ev_io_start (&wio);
1329
1330 struct ev_timer t[10000];
1331
1332#if 0
1333 int i;
1334 for (i = 0; i < 10000; ++i)
1335 {
1336 struct ev_timer *w = t + i;
1337 ev_watcher_init (w, ocb, i);
1338 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1339 ev_timer_start (w);
1340 if (drand48 () < 0.5)
1341 ev_timer_stop (w);
1342 }
1343#endif 3819# endif
1344 3820 cb (EV_A_ EV_PREPARE, prepares [i]);
1345 struct ev_timer t1;
1346 ev_timer_init (&t1, ocb, 5, 10);
1347 ev_timer_start (&t1);
1348
1349 struct ev_signal sig;
1350 ev_signal_init (&sig, scb, SIGQUIT);
1351 ev_signal_start (&sig);
1352
1353 struct ev_check cw;
1354 ev_check_init (&cw, gcb);
1355 ev_check_start (&cw);
1356
1357 struct ev_idle iw;
1358 ev_idle_init (&iw, gcb);
1359 ev_idle_start (&iw);
1360
1361 ev_loop (0);
1362
1363 return 0;
1364}
1365
1366#endif 3821#endif
1367 3822
3823#if EV_CHECK_ENABLE
3824 if (types & EV_CHECK)
3825 for (i = checkcnt; i--; )
3826 cb (EV_A_ EV_CHECK, checks [i]);
3827#endif
1368 3828
3829#if EV_SIGNAL_ENABLE
3830 if (types & EV_SIGNAL)
3831 for (i = 0; i < EV_NSIG - 1; ++i)
3832 for (wl = signals [i].head; wl; )
3833 {
3834 wn = wl->next;
3835 cb (EV_A_ EV_SIGNAL, wl);
3836 wl = wn;
3837 }
3838#endif
1369 3839
3840#if EV_CHILD_ENABLE
3841 if (types & EV_CHILD)
3842 for (i = (EV_PID_HASHSIZE); i--; )
3843 for (wl = childs [i]; wl; )
3844 {
3845 wn = wl->next;
3846 cb (EV_A_ EV_CHILD, wl);
3847 wl = wn;
3848 }
3849#endif
3850/* EV_STAT 0x00001000 /* stat data changed */
3851/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3852}
3853#endif
1370 3854
3855#if EV_MULTIPLICITY
3856 #include "ev_wrap.h"
3857#endif
3858
3859EV_CPP(})
3860

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines