ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.165 by root, Fri Dec 7 18:09:38 2007 UTC vs.
Revision 1.362 by root, Sun Oct 24 19:15:52 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
202#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
205#endif 373#endif
206 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
207#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 397# include <winsock.h>
209#endif 398#endif
210 399
211#if !EV_STAT_ENABLE 400#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
213#endif 405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
214 415
215#if EV_USE_INOTIFY 416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
217#endif 436#endif
218 437
219/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 455
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
225#if __GNUC__ >= 3 462#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 465#else
236# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
240#endif 471#endif
241 472
242#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
244 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
247 490
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
250 493
251typedef ev_watcher *W; 494typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
254 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
256 520
257#ifdef _WIN32 521#ifdef _WIN32
258# include "ev_win32.c" 522# include "ev_win32.c"
259#endif 523#endif
260 524
261/*****************************************************************************/ 525/*****************************************************************************/
262 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
263static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
264 578
265void 579void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 581{
268 syserr_cb = cb; 582 syserr_cb = cb;
269} 583}
270 584
271static void noinline 585static void noinline
272syserr (const char *msg) 586ev_syserr (const char *msg)
273{ 587{
274 if (!msg) 588 if (!msg)
275 msg = "(libev) system error"; 589 msg = "(libev) system error";
276 590
277 if (syserr_cb) 591 if (syserr_cb)
278 syserr_cb (msg); 592 syserr_cb (msg);
279 else 593 else
280 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
281 perror (msg); 603 perror (msg);
604#endif
282 abort (); 605 abort ();
283 } 606 }
284} 607}
285 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
286static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 629
288void 630void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 632{
291 alloc = cb; 633 alloc = cb;
292} 634}
293 635
294inline_speed void * 636inline_speed void *
295ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
296{ 638{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
298 640
299 if (!ptr && size) 641 if (!ptr && size)
300 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
302 abort (); 648 abort ();
303 } 649 }
304 650
305 return ptr; 651 return ptr;
306} 652}
308#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
310 656
311/*****************************************************************************/ 657/*****************************************************************************/
312 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
313typedef struct 663typedef struct
314{ 664{
315 WL head; 665 WL head;
316 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
318#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 674 SOCKET handle;
320#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
321} ANFD; 679} ANFD;
322 680
681/* stores the pending event set for a given watcher */
323typedef struct 682typedef struct
324{ 683{
325 W w; 684 W w;
326 int events; 685 int events; /* the pending event set for the given watcher */
327} ANPENDING; 686} ANPENDING;
328 687
329#if EV_USE_INOTIFY 688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
330typedef struct 690typedef struct
331{ 691{
332 WL head; 692 WL head;
333} ANFS; 693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
334#endif 714#endif
335 715
336#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
337 717
338 struct ev_loop 718 struct ev_loop
357 737
358 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
359 739
360#endif 740#endif
361 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
362/*****************************************************************************/ 754/*****************************************************************************/
363 755
756#ifndef EV_HAVE_EV_TIME
364ev_tstamp 757ev_tstamp
365ev_time (void) 758ev_time (void)
366{ 759{
367#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
368 struct timespec ts; 763 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 766 }
767#endif
768
372 struct timeval tv; 769 struct timeval tv;
373 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 772}
773#endif
377 774
378ev_tstamp inline_size 775inline_size ev_tstamp
379get_clock (void) 776get_clock (void)
380{ 777{
381#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
383 { 780 {
396{ 793{
397 return ev_rt_now; 794 return ev_rt_now;
398} 795}
399#endif 796#endif
400 797
401int inline_size 798void
799ev_sleep (ev_tstamp delay)
800{
801 if (delay > 0.)
802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
821
822/*****************************************************************************/
823
824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
402array_nextsize (int elem, int cur, int cnt) 829array_nextsize (int elem, int cur, int cnt)
403{ 830{
404 int ncur = cur + 1; 831 int ncur = cur + 1;
405 832
406 do 833 do
407 ncur <<= 1; 834 ncur <<= 1;
408 while (cnt > ncur); 835 while (cnt > ncur);
409 836
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 839 {
413 ncur *= elem; 840 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 842 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 843 ncur /= elem;
417 } 844 }
418 845
419 return ncur; 846 return ncur;
420} 847}
421 848
422inline_speed void * 849static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 850array_realloc (int elem, void *base, int *cur, int cnt)
424{ 851{
425 *cur = array_nextsize (elem, *cur, cnt); 852 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 853 return ev_realloc (base, elem * *cur);
427} 854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 858
429#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 860 if (expect_false ((cnt) > (cur))) \
431 { \ 861 { \
432 int ocur_ = (cur); \ 862 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 875 }
446#endif 876#endif
447 877
448#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 880
451/*****************************************************************************/ 881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
452 888
453void noinline 889void noinline
454ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
455{ 891{
456 W w_ = (W)w; 892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
457 894
458 if (expect_false (w_->pending)) 895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
459 { 898 {
899 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 902 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 903 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 904}
469 905
470void inline_size 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 923{
473 int i; 924 int i;
474 925
475 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
477} 928}
478 929
479/*****************************************************************************/ 930/*****************************************************************************/
480 931
481void inline_size 932inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
496{ 934{
497 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
498 ev_io *w; 936 ev_io *w;
499 937
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 942 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
506 } 944 }
507} 945}
508 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
509void 958void
510ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 960{
961 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
513} 963}
514 964
515void inline_size 965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
516fd_reify (EV_P) 968fd_reify (EV_P)
517{ 969{
518 int i; 970 int i;
519 971
520 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
521 { 973 {
522 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
524 ev_io *w; 976 ev_io *w;
525 977
526 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
527 980
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
529 events |= w->events;
530 982
531#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
532 if (events) 984 if (o_reify & EV__IOFDSET)
533 { 985 {
534 unsigned long argp; 986 unsigned long arg;
535 anfd->handle = _get_osfhandle (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
537 } 990 }
538#endif 991#endif
539 992
540 anfd->reify = 0; 993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
995 anfd->events = 0;
541 996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
542 backend_modify (EV_A_ fd, anfd->events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
543 anfd->events = events;
544 } 1006 }
545 1007
546 fdchangecnt = 0; 1008 fdchangecnt = 0;
547} 1009}
548 1010
549void inline_size 1011/* something about the given fd changed */
1012inline_size void
550fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
551{ 1014{
552 if (expect_false (anfds [fd].reify)) 1015 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
556 1017
1018 if (expect_true (!reify))
1019 {
557 ++fdchangecnt; 1020 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
560} 1024}
561 1025
562void inline_speed 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
563fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
564{ 1029{
565 ev_io *w; 1030 ev_io *w;
566 1031
567 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 1036 }
572} 1037}
573 1038
574int inline_size 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
575fd_valid (int fd) 1041fd_valid (int fd)
576{ 1042{
577#ifdef _WIN32 1043#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
579#else 1045#else
580 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
581#endif 1047#endif
582} 1048}
583 1049
587{ 1053{
588 int fd; 1054 int fd;
589 1055
590 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 1057 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
594} 1060}
595 1061
596/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 1063static void noinline
601 1067
602 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
603 if (anfds [fd].events) 1069 if (anfds [fd].events)
604 { 1070 {
605 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
606 return; 1072 break;
607 } 1073 }
608} 1074}
609 1075
610/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
611static void noinline 1077static void noinline
615 1081
616 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 1083 if (anfds [fd].events)
618 { 1084 {
619 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
621 } 1088 }
622} 1089}
623 1090
624/*****************************************************************************/ 1091/* used to prepare libev internal fd's */
625 1092/* this is not fork-safe */
626void inline_speed 1093inline_speed void
627upheap (WT *heap, int k)
628{
629 WT w = heap [k];
630
631 while (k && heap [k >> 1]->at > w->at)
632 {
633 heap [k] = heap [k >> 1];
634 ((W)heap [k])->active = k + 1;
635 k >>= 1;
636 }
637
638 heap [k] = w;
639 ((W)heap [k])->active = k + 1;
640
641}
642
643void inline_speed
644downheap (WT *heap, int N, int k)
645{
646 WT w = heap [k];
647
648 while (k < (N >> 1))
649 {
650 int j = k << 1;
651
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break;
657
658 heap [k] = heap [j];
659 ((W)heap [k])->active = k + 1;
660 k = j;
661 }
662
663 heap [k] = w;
664 ((W)heap [k])->active = k + 1;
665}
666
667void inline_size
668adjustheap (WT *heap, int N, int k)
669{
670 upheap (heap, k);
671 downheap (heap, N, k);
672}
673
674/*****************************************************************************/
675
676typedef struct
677{
678 WL head;
679 sig_atomic_t volatile gotsig;
680} ANSIG;
681
682static ANSIG *signals;
683static int signalmax;
684
685static int sigpipe [2];
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688
689void inline_size
690signals_init (ANSIG *base, int count)
691{
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696
697 ++base;
698 }
699}
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1094fd_intern (int fd)
754{ 1095{
755#ifdef _WIN32 1096#ifdef _WIN32
756 int arg = 1; 1097 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
758#else 1099#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1101 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1102#endif
762} 1103}
763 1104
1105/*****************************************************************************/
1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
764static void noinline 1268static void noinline
765siginit (EV_P) 1269evpipe_init (EV_P)
766{ 1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
767 fd_intern (sigpipe [0]); 1290 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
769 1294
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1295 ev_io_start (EV_A_ &pipe_w);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
1331static void
1332pipecb (EV_P_ ev_io *iow, int revents)
1333{
1334 int i;
1335
1336#if EV_USE_EVENTFD
1337 if (evfd >= 0)
1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
1349
1350 if (sig_pending)
1351 {
1352 sig_pending = 0;
1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
773} 1372}
774 1373
775/*****************************************************************************/ 1374/*****************************************************************************/
776 1375
777static ev_child *childs [EV_PID_HASHSIZE]; 1376static void
1377ev_sighandler (int signum)
1378{
1379#if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381#endif
778 1382
779#ifndef _WIN32 1383#ifdef _WIN32
1384 signal (signum, ev_sighandler);
1385#endif
1386
1387 signals [signum - 1].pending = 1;
1388 evpipe_write (EV_A_ &sig_pending);
1389}
1390
1391void noinline
1392ev_feed_signal_event (EV_P_ int signum)
1393{
1394 WL w;
1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1401#if EV_MULTIPLICITY
1402 /* it is permissible to try to feed a signal to the wrong loop */
1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1404
1405 if (expect_false (signals [signum].loop != EV_A))
1406 return;
1407#endif
1408
1409 signals [signum].pending = 0;
1410
1411 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413}
1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
1437/*****************************************************************************/
1438
1439#if EV_CHILD_ENABLE
1440static WL childs [EV_PID_HASHSIZE];
780 1441
781static ev_signal childev; 1442static ev_signal childev;
782 1443
783void inline_speed 1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1450child_reap (EV_P_ int chain, int pid, int status)
785{ 1451{
786 ev_child *w; 1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1454
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
789 if (w->pid == pid || !w->pid) 1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
790 { 1459 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1461 w->rpid = pid;
793 w->rstatus = status; 1462 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1464 }
1465 }
796} 1466}
797 1467
798#ifndef WCONTINUED 1468#ifndef WCONTINUED
799# define WCONTINUED 0 1469# define WCONTINUED 0
800#endif 1470#endif
801 1471
1472/* called on sigchld etc., calls waitpid */
802static void 1473static void
803childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
804{ 1475{
805 int pid, status; 1476 int pid, status;
806 1477
809 if (!WCONTINUED 1480 if (!WCONTINUED
810 || errno != EINVAL 1481 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1483 return;
813 1484
814 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1488
818 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1490 if ((EV_PID_HASHSIZE) > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1492}
822 1493
823#endif 1494#endif
824 1495
825/*****************************************************************************/ 1496/*****************************************************************************/
826 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
827#if EV_USE_PORT 1501#if EV_USE_PORT
828# include "ev_port.c" 1502# include "ev_port.c"
829#endif 1503#endif
830#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
831# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
887 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
890#endif 1564#endif
891#ifdef __APPLE__ 1565#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
894#endif 1572#endif
895 1573
896 return flags; 1574 return flags;
897} 1575}
898 1576
899unsigned int 1577unsigned int
900ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
901{ 1579{
902 return EVBACKEND_EPOLL 1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1581
904 | EVBACKEND_PORT; 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
905} 1587}
906 1588
907unsigned int 1589unsigned int
908ev_backend (EV_P) 1590ev_backend (EV_P)
909{ 1591{
910 return backend; 1592 return backend;
911} 1593}
912 1594
1595#if EV_FEATURE_API
913unsigned int 1596unsigned int
914ev_loop_count (EV_P) 1597ev_iteration (EV_P)
915{ 1598{
916 return loop_count; 1599 return loop_count;
917} 1600}
918 1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1608void
1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1610{
1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
919static void noinline 1645static void noinline
920loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
921{ 1647{
922 if (!backend) 1648 if (!backend)
923 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
924#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
925 { 1662 {
926 struct timespec ts; 1663 struct timespec ts;
1664
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1666 have_monotonic = 1;
929 } 1667 }
930#endif 1668#endif
931
932 ev_rt_now = ev_time ();
933 mn_now = get_clock ();
934 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now;
936 1669
937 /* pid check not overridable via env */ 1670 /* pid check not overridable via env */
938#ifndef _WIN32 1671#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1672 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1673 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1676 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1677 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1678 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1679 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
948 if (!(flags & 0x0000ffffUL)) 1704 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
950 1706
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY 1707#if EV_USE_IOCP
954 fs_fd = -2; 1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
955#endif 1709#endif
956
957#if EV_USE_PORT 1710#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1712#endif
960#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
961 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
968#endif 1721#endif
969#if EV_USE_SELECT 1722#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1724#endif
972 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
973 ev_init (&sigev, sigcb); 1729 ev_init (&pipe_w, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
975 } 1732 }
976} 1733}
977 1734
978static void noinline 1735/* free up a loop structure */
1736void
979loop_destroy (EV_P) 1737ev_loop_destroy (EV_P)
980{ 1738{
981 int i; 1739 int i;
1740
1741#if EV_CLEANUP_ENABLE
1742 /* queue cleanup watchers (and execute them) */
1743 if (expect_false (cleanupcnt))
1744 {
1745 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1746 EV_INVOKE_PENDING;
1747 }
1748#endif
1749
1750#if EV_CHILD_ENABLE
1751 if (ev_is_active (&childev))
1752 {
1753 ev_ref (EV_A); /* child watcher */
1754 ev_signal_stop (EV_A_ &childev);
1755 }
1756#endif
1757
1758 if (ev_is_active (&pipe_w))
1759 {
1760 /*ev_ref (EV_A);*/
1761 /*ev_io_stop (EV_A_ &pipe_w);*/
1762
1763#if EV_USE_EVENTFD
1764 if (evfd >= 0)
1765 close (evfd);
1766#endif
1767
1768 if (evpipe [0] >= 0)
1769 {
1770 EV_WIN32_CLOSE_FD (evpipe [0]);
1771 EV_WIN32_CLOSE_FD (evpipe [1]);
1772 }
1773 }
1774
1775#if EV_USE_SIGNALFD
1776 if (ev_is_active (&sigfd_w))
1777 close (sigfd);
1778#endif
982 1779
983#if EV_USE_INOTIFY 1780#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1781 if (fs_fd >= 0)
985 close (fs_fd); 1782 close (fs_fd);
986#endif 1783#endif
987 1784
988 if (backend_fd >= 0) 1785 if (backend_fd >= 0)
989 close (backend_fd); 1786 close (backend_fd);
990 1787
1788#if EV_USE_IOCP
1789 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1790#endif
991#if EV_USE_PORT 1791#if EV_USE_PORT
992 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1792 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
993#endif 1793#endif
994#if EV_USE_KQUEUE 1794#if EV_USE_KQUEUE
995 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1795 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1010#if EV_IDLE_ENABLE 1810#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1811 array_free (idle, [i]);
1012#endif 1812#endif
1013 } 1813 }
1014 1814
1815 ev_free (anfds); anfds = 0; anfdmax = 0;
1816
1015 /* have to use the microsoft-never-gets-it-right macro */ 1817 /* have to use the microsoft-never-gets-it-right macro */
1818 array_free (rfeed, EMPTY);
1016 array_free (fdchange, EMPTY); 1819 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1820 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1821#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1822 array_free (periodic, EMPTY);
1020#endif 1823#endif
1824#if EV_FORK_ENABLE
1825 array_free (fork, EMPTY);
1826#endif
1827#if EV_CLEANUP_ENABLE
1828 array_free (cleanup, EMPTY);
1829#endif
1021 array_free (prepare, EMPTY); 1830 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1831 array_free (check, EMPTY);
1832#if EV_ASYNC_ENABLE
1833 array_free (async, EMPTY);
1834#endif
1023 1835
1024 backend = 0; 1836 backend = 0;
1025}
1026 1837
1838#if EV_MULTIPLICITY
1839 if (ev_is_default_loop (EV_A))
1840#endif
1841 ev_default_loop_ptr = 0;
1842#if EV_MULTIPLICITY
1843 else
1844 ev_free (EV_A);
1845#endif
1846}
1847
1848#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1849inline_size void infy_fork (EV_P);
1850#endif
1028 1851
1029void inline_size 1852inline_size void
1030loop_fork (EV_P) 1853loop_fork (EV_P)
1031{ 1854{
1032#if EV_USE_PORT 1855#if EV_USE_PORT
1033 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1856 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1034#endif 1857#endif
1040#endif 1863#endif
1041#if EV_USE_INOTIFY 1864#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1865 infy_fork (EV_A);
1043#endif 1866#endif
1044 1867
1045 if (ev_is_active (&sigev)) 1868 if (ev_is_active (&pipe_w))
1046 { 1869 {
1047 /* default loop */ 1870 /* this "locks" the handlers against writing to the pipe */
1871 /* while we modify the fd vars */
1872 sig_pending = 1;
1873#if EV_ASYNC_ENABLE
1874 async_pending = 1;
1875#endif
1048 1876
1049 ev_ref (EV_A); 1877 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1878 ev_io_stop (EV_A_ &pipe_w);
1051 close (sigpipe [0]);
1052 close (sigpipe [1]);
1053 1879
1054 while (pipe (sigpipe)) 1880#if EV_USE_EVENTFD
1055 syserr ("(libev) error creating pipe"); 1881 if (evfd >= 0)
1882 close (evfd);
1883#endif
1056 1884
1885 if (evpipe [0] >= 0)
1886 {
1887 EV_WIN32_CLOSE_FD (evpipe [0]);
1888 EV_WIN32_CLOSE_FD (evpipe [1]);
1889 }
1890
1891#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1057 siginit (EV_A); 1892 evpipe_init (EV_A);
1893 /* now iterate over everything, in case we missed something */
1894 pipecb (EV_A_ &pipe_w, EV_READ);
1895#endif
1058 } 1896 }
1059 1897
1060 postfork = 0; 1898 postfork = 0;
1061} 1899}
1900
1901#if EV_MULTIPLICITY
1902
1903struct ev_loop *
1904ev_loop_new (unsigned int flags)
1905{
1906 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1907
1908 memset (EV_A, 0, sizeof (struct ev_loop));
1909 loop_init (EV_A_ flags);
1910
1911 if (ev_backend (EV_A))
1912 return EV_A;
1913
1914 ev_free (EV_A);
1915 return 0;
1916}
1917
1918#endif /* multiplicity */
1919
1920#if EV_VERIFY
1921static void noinline
1922verify_watcher (EV_P_ W w)
1923{
1924 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1925
1926 if (w->pending)
1927 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1928}
1929
1930static void noinline
1931verify_heap (EV_P_ ANHE *heap, int N)
1932{
1933 int i;
1934
1935 for (i = HEAP0; i < N + HEAP0; ++i)
1936 {
1937 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1938 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1939 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1940
1941 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1942 }
1943}
1944
1945static void noinline
1946array_verify (EV_P_ W *ws, int cnt)
1947{
1948 while (cnt--)
1949 {
1950 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1951 verify_watcher (EV_A_ ws [cnt]);
1952 }
1953}
1954#endif
1955
1956#if EV_FEATURE_API
1957void
1958ev_verify (EV_P)
1959{
1960#if EV_VERIFY
1961 int i;
1962 WL w;
1963
1964 assert (activecnt >= -1);
1965
1966 assert (fdchangemax >= fdchangecnt);
1967 for (i = 0; i < fdchangecnt; ++i)
1968 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1969
1970 assert (anfdmax >= 0);
1971 for (i = 0; i < anfdmax; ++i)
1972 for (w = anfds [i].head; w; w = w->next)
1973 {
1974 verify_watcher (EV_A_ (W)w);
1975 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1976 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1977 }
1978
1979 assert (timermax >= timercnt);
1980 verify_heap (EV_A_ timers, timercnt);
1981
1982#if EV_PERIODIC_ENABLE
1983 assert (periodicmax >= periodiccnt);
1984 verify_heap (EV_A_ periodics, periodiccnt);
1985#endif
1986
1987 for (i = NUMPRI; i--; )
1988 {
1989 assert (pendingmax [i] >= pendingcnt [i]);
1990#if EV_IDLE_ENABLE
1991 assert (idleall >= 0);
1992 assert (idlemax [i] >= idlecnt [i]);
1993 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1994#endif
1995 }
1996
1997#if EV_FORK_ENABLE
1998 assert (forkmax >= forkcnt);
1999 array_verify (EV_A_ (W *)forks, forkcnt);
2000#endif
2001
2002#if EV_CLEANUP_ENABLE
2003 assert (cleanupmax >= cleanupcnt);
2004 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2005#endif
2006
2007#if EV_ASYNC_ENABLE
2008 assert (asyncmax >= asynccnt);
2009 array_verify (EV_A_ (W *)asyncs, asynccnt);
2010#endif
2011
2012#if EV_PREPARE_ENABLE
2013 assert (preparemax >= preparecnt);
2014 array_verify (EV_A_ (W *)prepares, preparecnt);
2015#endif
2016
2017#if EV_CHECK_ENABLE
2018 assert (checkmax >= checkcnt);
2019 array_verify (EV_A_ (W *)checks, checkcnt);
2020#endif
2021
2022# if 0
2023#if EV_CHILD_ENABLE
2024 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2025 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2026#endif
2027# endif
2028#endif
2029}
2030#endif
1062 2031
1063#if EV_MULTIPLICITY 2032#if EV_MULTIPLICITY
1064struct ev_loop * 2033struct ev_loop *
1065ev_loop_new (unsigned int flags)
1066{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068
1069 memset (loop, 0, sizeof (struct ev_loop));
1070
1071 loop_init (EV_A_ flags);
1072
1073 if (ev_backend (EV_A))
1074 return loop;
1075
1076 return 0;
1077}
1078
1079void
1080ev_loop_destroy (EV_P)
1081{
1082 loop_destroy (EV_A);
1083 ev_free (loop);
1084}
1085
1086void
1087ev_loop_fork (EV_P)
1088{
1089 postfork = 1;
1090}
1091
1092#endif
1093
1094#if EV_MULTIPLICITY
1095struct ev_loop *
1096ev_default_loop_init (unsigned int flags)
1097#else 2034#else
1098int 2035int
2036#endif
1099ev_default_loop (unsigned int flags) 2037ev_default_loop (unsigned int flags)
1100#endif
1101{ 2038{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 2039 if (!ev_default_loop_ptr)
1107 { 2040 {
1108#if EV_MULTIPLICITY 2041#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2042 EV_P = ev_default_loop_ptr = &default_loop_struct;
1110#else 2043#else
1111 ev_default_loop_ptr = 1; 2044 ev_default_loop_ptr = 1;
1112#endif 2045#endif
1113 2046
1114 loop_init (EV_A_ flags); 2047 loop_init (EV_A_ flags);
1115 2048
1116 if (ev_backend (EV_A)) 2049 if (ev_backend (EV_A))
1117 { 2050 {
1118 siginit (EV_A); 2051#if EV_CHILD_ENABLE
1119
1120#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 2052 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 2053 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 2054 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2055 ev_unref (EV_A); /* child watcher should not keep loop alive */
1125#endif 2056#endif
1130 2061
1131 return ev_default_loop_ptr; 2062 return ev_default_loop_ptr;
1132} 2063}
1133 2064
1134void 2065void
1135ev_default_destroy (void) 2066ev_loop_fork (EV_P)
1136{ 2067{
1137#if EV_MULTIPLICITY 2068 postfork = 1; /* must be in line with ev_default_fork */
1138 struct ev_loop *loop = ev_default_loop_ptr;
1139#endif
1140
1141#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev);
1144#endif
1145
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A);
1153}
1154
1155void
1156ev_default_fork (void)
1157{
1158#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif
1161
1162 if (backend)
1163 postfork = 1;
1164} 2069}
1165 2070
1166/*****************************************************************************/ 2071/*****************************************************************************/
1167 2072
1168void inline_speed 2073void
1169call_pending (EV_P) 2074ev_invoke (EV_P_ void *w, int revents)
2075{
2076 EV_CB_INVOKE ((W)w, revents);
2077}
2078
2079unsigned int
2080ev_pending_count (EV_P)
2081{
2082 int pri;
2083 unsigned int count = 0;
2084
2085 for (pri = NUMPRI; pri--; )
2086 count += pendingcnt [pri];
2087
2088 return count;
2089}
2090
2091void noinline
2092ev_invoke_pending (EV_P)
1170{ 2093{
1171 int pri; 2094 int pri;
1172 2095
1173 for (pri = NUMPRI; pri--; ) 2096 for (pri = NUMPRI; pri--; )
1174 while (pendingcnt [pri]) 2097 while (pendingcnt [pri])
1175 { 2098 {
1176 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2099 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1177 2100
1178 if (expect_true (p->w))
1179 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2101 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2102 /* ^ this is no longer true, as pending_w could be here */
1181 2103
1182 p->w->pending = 0; 2104 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 2105 EV_CB_INVOKE (p->w, p->events);
1184 } 2106 EV_FREQUENT_CHECK;
1185 } 2107 }
1186} 2108}
1187 2109
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266
1267#if EV_IDLE_ENABLE 2110#if EV_IDLE_ENABLE
1268void inline_size 2111/* make idle watchers pending. this handles the "call-idle */
2112/* only when higher priorities are idle" logic */
2113inline_size void
1269idle_reify (EV_P) 2114idle_reify (EV_P)
1270{ 2115{
1271 if (expect_false (idleall)) 2116 if (expect_false (idleall))
1272 { 2117 {
1273 int pri; 2118 int pri;
1285 } 2130 }
1286 } 2131 }
1287} 2132}
1288#endif 2133#endif
1289 2134
1290int inline_size 2135/* make timers pending */
1291time_update_monotonic (EV_P) 2136inline_size void
2137timers_reify (EV_P)
1292{ 2138{
2139 EV_FREQUENT_CHECK;
2140
2141 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2142 {
2143 do
2144 {
2145 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2146
2147 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2148
2149 /* first reschedule or stop timer */
2150 if (w->repeat)
2151 {
2152 ev_at (w) += w->repeat;
2153 if (ev_at (w) < mn_now)
2154 ev_at (w) = mn_now;
2155
2156 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2157
2158 ANHE_at_cache (timers [HEAP0]);
2159 downheap (timers, timercnt, HEAP0);
2160 }
2161 else
2162 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2163
2164 EV_FREQUENT_CHECK;
2165 feed_reverse (EV_A_ (W)w);
2166 }
2167 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2168
2169 feed_reverse_done (EV_A_ EV_TIMER);
2170 }
2171}
2172
2173#if EV_PERIODIC_ENABLE
2174/* make periodics pending */
2175inline_size void
2176periodics_reify (EV_P)
2177{
2178 EV_FREQUENT_CHECK;
2179
2180 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2181 {
2182 int feed_count = 0;
2183
2184 do
2185 {
2186 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2187
2188 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2189
2190 /* first reschedule or stop timer */
2191 if (w->reschedule_cb)
2192 {
2193 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2194
2195 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2196
2197 ANHE_at_cache (periodics [HEAP0]);
2198 downheap (periodics, periodiccnt, HEAP0);
2199 }
2200 else if (w->interval)
2201 {
2202 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2203 /* if next trigger time is not sufficiently in the future, put it there */
2204 /* this might happen because of floating point inexactness */
2205 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2206 {
2207 ev_at (w) += w->interval;
2208
2209 /* if interval is unreasonably low we might still have a time in the past */
2210 /* so correct this. this will make the periodic very inexact, but the user */
2211 /* has effectively asked to get triggered more often than possible */
2212 if (ev_at (w) < ev_rt_now)
2213 ev_at (w) = ev_rt_now;
2214 }
2215
2216 ANHE_at_cache (periodics [HEAP0]);
2217 downheap (periodics, periodiccnt, HEAP0);
2218 }
2219 else
2220 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2221
2222 EV_FREQUENT_CHECK;
2223 feed_reverse (EV_A_ (W)w);
2224 }
2225 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2226
2227 feed_reverse_done (EV_A_ EV_PERIODIC);
2228 }
2229}
2230
2231/* simply recalculate all periodics */
2232/* TODO: maybe ensure that at least one event happens when jumping forward? */
2233static void noinline
2234periodics_reschedule (EV_P)
2235{
2236 int i;
2237
2238 /* adjust periodics after time jump */
2239 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2240 {
2241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2242
2243 if (w->reschedule_cb)
2244 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2245 else if (w->interval)
2246 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2247
2248 ANHE_at_cache (periodics [i]);
2249 }
2250
2251 reheap (periodics, periodiccnt);
2252}
2253#endif
2254
2255/* adjust all timers by a given offset */
2256static void noinline
2257timers_reschedule (EV_P_ ev_tstamp adjust)
2258{
2259 int i;
2260
2261 for (i = 0; i < timercnt; ++i)
2262 {
2263 ANHE *he = timers + i + HEAP0;
2264 ANHE_w (*he)->at += adjust;
2265 ANHE_at_cache (*he);
2266 }
2267}
2268
2269/* fetch new monotonic and realtime times from the kernel */
2270/* also detect if there was a timejump, and act accordingly */
2271inline_speed void
2272time_update (EV_P_ ev_tstamp max_block)
2273{
2274#if EV_USE_MONOTONIC
2275 if (expect_true (have_monotonic))
2276 {
2277 int i;
2278 ev_tstamp odiff = rtmn_diff;
2279
1293 mn_now = get_clock (); 2280 mn_now = get_clock ();
1294 2281
2282 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2283 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2284 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 2285 {
1297 ev_rt_now = rtmn_diff + mn_now; 2286 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 2287 return;
1299 } 2288 }
1300 else 2289
1301 {
1302 now_floor = mn_now; 2290 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 2291 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 2292
1308void inline_size 2293 /* loop a few times, before making important decisions.
1309time_update (EV_P) 2294 * on the choice of "4": one iteration isn't enough,
1310{ 2295 * in case we get preempted during the calls to
1311 int i; 2296 * ev_time and get_clock. a second call is almost guaranteed
1312 2297 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 2298 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 2299 * in the unlikely event of having been preempted here.
1315 { 2300 */
1316 if (time_update_monotonic (EV_A)) 2301 for (i = 4; --i; )
1317 { 2302 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 2303 rtmn_diff = ev_rt_now - mn_now;
1331 2304
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2305 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 2306 return; /* all is well */
1334 2307
1335 ev_rt_now = ev_time (); 2308 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 2309 mn_now = get_clock ();
1337 now_floor = mn_now; 2310 now_floor = mn_now;
1338 } 2311 }
1339 2312
2313 /* no timer adjustment, as the monotonic clock doesn't jump */
2314 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1340# if EV_PERIODIC_ENABLE 2315# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 2316 periodics_reschedule (EV_A);
1342# endif 2317# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 2318 }
1347 else 2319 else
1348#endif 2320#endif
1349 { 2321 {
1350 ev_rt_now = ev_time (); 2322 ev_rt_now = ev_time ();
1351 2323
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2324 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 2325 {
2326 /* adjust timers. this is easy, as the offset is the same for all of them */
2327 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1354#if EV_PERIODIC_ENABLE 2328#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 2329 periodics_reschedule (EV_A);
1356#endif 2330#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 2331 }
1362 2332
1363 mn_now = ev_rt_now; 2333 mn_now = ev_rt_now;
1364 } 2334 }
1365} 2335}
1366 2336
1367void 2337void
1368ev_ref (EV_P)
1369{
1370 ++activecnt;
1371}
1372
1373void
1374ev_unref (EV_P)
1375{
1376 --activecnt;
1377}
1378
1379static int loop_done;
1380
1381void
1382ev_loop (EV_P_ int flags) 2338ev_run (EV_P_ int flags)
1383{ 2339{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2340#if EV_FEATURE_API
1385 ? EVUNLOOP_ONE 2341 ++loop_depth;
1386 : EVUNLOOP_CANCEL; 2342#endif
1387 2343
2344 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2345
2346 loop_done = EVBREAK_CANCEL;
2347
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2348 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1389 2349
1390 do 2350 do
1391 { 2351 {
2352#if EV_VERIFY >= 2
2353 ev_verify (EV_A);
2354#endif
2355
1392#ifndef _WIN32 2356#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 2357 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 2358 if (expect_false (getpid () != curpid))
1395 { 2359 {
1396 curpid = getpid (); 2360 curpid = getpid ();
1402 /* we might have forked, so queue fork handlers */ 2366 /* we might have forked, so queue fork handlers */
1403 if (expect_false (postfork)) 2367 if (expect_false (postfork))
1404 if (forkcnt) 2368 if (forkcnt)
1405 { 2369 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2370 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 2371 EV_INVOKE_PENDING;
1408 } 2372 }
1409#endif 2373#endif
1410 2374
2375#if EV_PREPARE_ENABLE
1411 /* queue check watchers (and execute them) */ 2376 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 2377 if (expect_false (preparecnt))
1413 { 2378 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2379 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 2380 EV_INVOKE_PENDING;
1416 } 2381 }
2382#endif
1417 2383
1418 if (expect_false (!activecnt)) 2384 if (expect_false (loop_done))
1419 break; 2385 break;
1420 2386
1421 /* we might have forked, so reify kernel state if necessary */ 2387 /* we might have forked, so reify kernel state if necessary */
1422 if (expect_false (postfork)) 2388 if (expect_false (postfork))
1423 loop_fork (EV_A); 2389 loop_fork (EV_A);
1425 /* update fd-related kernel structures */ 2391 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 2392 fd_reify (EV_A);
1427 2393
1428 /* calculate blocking time */ 2394 /* calculate blocking time */
1429 { 2395 {
1430 ev_tstamp block; 2396 ev_tstamp waittime = 0.;
2397 ev_tstamp sleeptime = 0.;
1431 2398
2399 /* remember old timestamp for io_blocktime calculation */
2400 ev_tstamp prev_mn_now = mn_now;
2401
2402 /* update time to cancel out callback processing overhead */
2403 time_update (EV_A_ 1e100);
2404
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2405 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 2406 {
1436 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446
1447 block = MAX_BLOCKTIME; 2407 waittime = MAX_BLOCKTIME;
1448 2408
1449 if (timercnt) 2409 if (timercnt)
1450 { 2410 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2411 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 2412 if (waittime > to) waittime = to;
1453 } 2413 }
1454 2414
1455#if EV_PERIODIC_ENABLE 2415#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 2416 if (periodiccnt)
1457 { 2417 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2418 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 2419 if (waittime > to) waittime = to;
1460 } 2420 }
1461#endif 2421#endif
1462 2422
2423 /* don't let timeouts decrease the waittime below timeout_blocktime */
2424 if (expect_false (waittime < timeout_blocktime))
2425 waittime = timeout_blocktime;
2426
2427 /* extra check because io_blocktime is commonly 0 */
1463 if (expect_false (block < 0.)) block = 0.; 2428 if (expect_false (io_blocktime))
2429 {
2430 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2431
2432 if (sleeptime > waittime - backend_fudge)
2433 sleeptime = waittime - backend_fudge;
2434
2435 if (expect_true (sleeptime > 0.))
2436 {
2437 ev_sleep (sleeptime);
2438 waittime -= sleeptime;
2439 }
2440 }
1464 } 2441 }
1465 2442
2443#if EV_FEATURE_API
1466 ++loop_count; 2444 ++loop_count;
2445#endif
2446 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1467 backend_poll (EV_A_ block); 2447 backend_poll (EV_A_ waittime);
2448 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2449
2450 /* update ev_rt_now, do magic */
2451 time_update (EV_A_ waittime + sleeptime);
1468 } 2452 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 2453
1473 /* queue pending timers and reschedule them */ 2454 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 2455 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 2456#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 2457 periodics_reify (EV_A); /* absolute timers called first */
1479#if EV_IDLE_ENABLE 2460#if EV_IDLE_ENABLE
1480 /* queue idle watchers unless other events are pending */ 2461 /* queue idle watchers unless other events are pending */
1481 idle_reify (EV_A); 2462 idle_reify (EV_A);
1482#endif 2463#endif
1483 2464
2465#if EV_CHECK_ENABLE
1484 /* queue check watchers, to be executed first */ 2466 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 2467 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2468 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2469#endif
1487 2470
1488 call_pending (EV_A); 2471 EV_INVOKE_PENDING;
1489
1490 } 2472 }
1491 while (expect_true (activecnt && !loop_done)); 2473 while (expect_true (
2474 activecnt
2475 && !loop_done
2476 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2477 ));
1492 2478
1493 if (loop_done == EVUNLOOP_ONE) 2479 if (loop_done == EVBREAK_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 2480 loop_done = EVBREAK_CANCEL;
1495}
1496 2481
2482#if EV_FEATURE_API
2483 --loop_depth;
2484#endif
2485}
2486
1497void 2487void
1498ev_unloop (EV_P_ int how) 2488ev_break (EV_P_ int how)
1499{ 2489{
1500 loop_done = how; 2490 loop_done = how;
1501} 2491}
1502 2492
2493void
2494ev_ref (EV_P)
2495{
2496 ++activecnt;
2497}
2498
2499void
2500ev_unref (EV_P)
2501{
2502 --activecnt;
2503}
2504
2505void
2506ev_now_update (EV_P)
2507{
2508 time_update (EV_A_ 1e100);
2509}
2510
2511void
2512ev_suspend (EV_P)
2513{
2514 ev_now_update (EV_A);
2515}
2516
2517void
2518ev_resume (EV_P)
2519{
2520 ev_tstamp mn_prev = mn_now;
2521
2522 ev_now_update (EV_A);
2523 timers_reschedule (EV_A_ mn_now - mn_prev);
2524#if EV_PERIODIC_ENABLE
2525 /* TODO: really do this? */
2526 periodics_reschedule (EV_A);
2527#endif
2528}
2529
1503/*****************************************************************************/ 2530/*****************************************************************************/
2531/* singly-linked list management, used when the expected list length is short */
1504 2532
1505void inline_size 2533inline_size void
1506wlist_add (WL *head, WL elem) 2534wlist_add (WL *head, WL elem)
1507{ 2535{
1508 elem->next = *head; 2536 elem->next = *head;
1509 *head = elem; 2537 *head = elem;
1510} 2538}
1511 2539
1512void inline_size 2540inline_size void
1513wlist_del (WL *head, WL elem) 2541wlist_del (WL *head, WL elem)
1514{ 2542{
1515 while (*head) 2543 while (*head)
1516 { 2544 {
1517 if (*head == elem) 2545 if (expect_true (*head == elem))
1518 { 2546 {
1519 *head = elem->next; 2547 *head = elem->next;
1520 return; 2548 break;
1521 } 2549 }
1522 2550
1523 head = &(*head)->next; 2551 head = &(*head)->next;
1524 } 2552 }
1525} 2553}
1526 2554
1527void inline_speed 2555/* internal, faster, version of ev_clear_pending */
2556inline_speed void
1528ev_clear_pending (EV_P_ W w) 2557clear_pending (EV_P_ W w)
1529{ 2558{
1530 if (w->pending) 2559 if (w->pending)
1531 { 2560 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2561 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1533 w->pending = 0; 2562 w->pending = 0;
1534 } 2563 }
1535} 2564}
1536 2565
1537void inline_size 2566int
2567ev_clear_pending (EV_P_ void *w)
2568{
2569 W w_ = (W)w;
2570 int pending = w_->pending;
2571
2572 if (expect_true (pending))
2573 {
2574 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2575 p->w = (W)&pending_w;
2576 w_->pending = 0;
2577 return p->events;
2578 }
2579 else
2580 return 0;
2581}
2582
2583inline_size void
1538pri_adjust (EV_P_ W w) 2584pri_adjust (EV_P_ W w)
1539{ 2585{
1540 int pri = w->priority; 2586 int pri = ev_priority (w);
1541 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2587 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1542 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2588 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1543 w->priority = pri; 2589 ev_set_priority (w, pri);
1544} 2590}
1545 2591
1546void inline_speed 2592inline_speed void
1547ev_start (EV_P_ W w, int active) 2593ev_start (EV_P_ W w, int active)
1548{ 2594{
1549 pri_adjust (EV_A_ w); 2595 pri_adjust (EV_A_ w);
1550 w->active = active; 2596 w->active = active;
1551 ev_ref (EV_A); 2597 ev_ref (EV_A);
1552} 2598}
1553 2599
1554void inline_size 2600inline_size void
1555ev_stop (EV_P_ W w) 2601ev_stop (EV_P_ W w)
1556{ 2602{
1557 ev_unref (EV_A); 2603 ev_unref (EV_A);
1558 w->active = 0; 2604 w->active = 0;
1559} 2605}
1560 2606
1561/*****************************************************************************/ 2607/*****************************************************************************/
1562 2608
1563void 2609void noinline
1564ev_io_start (EV_P_ ev_io *w) 2610ev_io_start (EV_P_ ev_io *w)
1565{ 2611{
1566 int fd = w->fd; 2612 int fd = w->fd;
1567 2613
1568 if (expect_false (ev_is_active (w))) 2614 if (expect_false (ev_is_active (w)))
1569 return; 2615 return;
1570 2616
1571 assert (("ev_io_start called with negative fd", fd >= 0)); 2617 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2618 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2619
2620 EV_FREQUENT_CHECK;
1572 2621
1573 ev_start (EV_A_ (W)w, 1); 2622 ev_start (EV_A_ (W)w, 1);
1574 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2623 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1575 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2624 wlist_add (&anfds[fd].head, (WL)w);
1576 2625
1577 fd_change (EV_A_ fd); 2626 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1578} 2627 w->events &= ~EV__IOFDSET;
1579 2628
1580void 2629 EV_FREQUENT_CHECK;
2630}
2631
2632void noinline
1581ev_io_stop (EV_P_ ev_io *w) 2633ev_io_stop (EV_P_ ev_io *w)
1582{ 2634{
1583 ev_clear_pending (EV_A_ (W)w); 2635 clear_pending (EV_A_ (W)w);
1584 if (expect_false (!ev_is_active (w))) 2636 if (expect_false (!ev_is_active (w)))
1585 return; 2637 return;
1586 2638
1587 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2639 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1588 2640
2641 EV_FREQUENT_CHECK;
2642
1589 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2643 wlist_del (&anfds[w->fd].head, (WL)w);
1590 ev_stop (EV_A_ (W)w); 2644 ev_stop (EV_A_ (W)w);
1591 2645
1592 fd_change (EV_A_ w->fd); 2646 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1593}
1594 2647
1595void 2648 EV_FREQUENT_CHECK;
2649}
2650
2651void noinline
1596ev_timer_start (EV_P_ ev_timer *w) 2652ev_timer_start (EV_P_ ev_timer *w)
1597{ 2653{
1598 if (expect_false (ev_is_active (w))) 2654 if (expect_false (ev_is_active (w)))
1599 return; 2655 return;
1600 2656
1601 ((WT)w)->at += mn_now; 2657 ev_at (w) += mn_now;
1602 2658
1603 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2659 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1604 2660
2661 EV_FREQUENT_CHECK;
2662
2663 ++timercnt;
1605 ev_start (EV_A_ (W)w, ++timercnt); 2664 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1606 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2665 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1607 timers [timercnt - 1] = w; 2666 ANHE_w (timers [ev_active (w)]) = (WT)w;
1608 upheap ((WT *)timers, timercnt - 1); 2667 ANHE_at_cache (timers [ev_active (w)]);
2668 upheap (timers, ev_active (w));
1609 2669
2670 EV_FREQUENT_CHECK;
2671
1610 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2672 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1611} 2673}
1612 2674
1613void 2675void noinline
1614ev_timer_stop (EV_P_ ev_timer *w) 2676ev_timer_stop (EV_P_ ev_timer *w)
1615{ 2677{
1616 ev_clear_pending (EV_A_ (W)w); 2678 clear_pending (EV_A_ (W)w);
1617 if (expect_false (!ev_is_active (w))) 2679 if (expect_false (!ev_is_active (w)))
1618 return; 2680 return;
1619 2681
1620 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2682 EV_FREQUENT_CHECK;
1621 2683
1622 { 2684 {
1623 int active = ((W)w)->active; 2685 int active = ev_active (w);
1624 2686
2687 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2688
2689 --timercnt;
2690
1625 if (expect_true (--active < --timercnt)) 2691 if (expect_true (active < timercnt + HEAP0))
1626 { 2692 {
1627 timers [active] = timers [timercnt]; 2693 timers [active] = timers [timercnt + HEAP0];
1628 adjustheap ((WT *)timers, timercnt, active); 2694 adjustheap (timers, timercnt, active);
1629 } 2695 }
1630 } 2696 }
1631 2697
1632 ((WT)w)->at -= mn_now; 2698 ev_at (w) -= mn_now;
1633 2699
1634 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
1635}
1636 2701
1637void 2702 EV_FREQUENT_CHECK;
2703}
2704
2705void noinline
1638ev_timer_again (EV_P_ ev_timer *w) 2706ev_timer_again (EV_P_ ev_timer *w)
1639{ 2707{
2708 EV_FREQUENT_CHECK;
2709
1640 if (ev_is_active (w)) 2710 if (ev_is_active (w))
1641 { 2711 {
1642 if (w->repeat) 2712 if (w->repeat)
1643 { 2713 {
1644 ((WT)w)->at = mn_now + w->repeat; 2714 ev_at (w) = mn_now + w->repeat;
2715 ANHE_at_cache (timers [ev_active (w)]);
1645 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2716 adjustheap (timers, timercnt, ev_active (w));
1646 } 2717 }
1647 else 2718 else
1648 ev_timer_stop (EV_A_ w); 2719 ev_timer_stop (EV_A_ w);
1649 } 2720 }
1650 else if (w->repeat) 2721 else if (w->repeat)
1651 { 2722 {
1652 w->at = w->repeat; 2723 ev_at (w) = w->repeat;
1653 ev_timer_start (EV_A_ w); 2724 ev_timer_start (EV_A_ w);
1654 } 2725 }
2726
2727 EV_FREQUENT_CHECK;
2728}
2729
2730ev_tstamp
2731ev_timer_remaining (EV_P_ ev_timer *w)
2732{
2733 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1655} 2734}
1656 2735
1657#if EV_PERIODIC_ENABLE 2736#if EV_PERIODIC_ENABLE
1658void 2737void noinline
1659ev_periodic_start (EV_P_ ev_periodic *w) 2738ev_periodic_start (EV_P_ ev_periodic *w)
1660{ 2739{
1661 if (expect_false (ev_is_active (w))) 2740 if (expect_false (ev_is_active (w)))
1662 return; 2741 return;
1663 2742
1664 if (w->reschedule_cb) 2743 if (w->reschedule_cb)
1665 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2744 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 2745 else if (w->interval)
1667 { 2746 {
1668 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2747 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1669 /* this formula differs from the one in periodic_reify because we do not always round up */ 2748 /* this formula differs from the one in periodic_reify because we do not always round up */
1670 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2749 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1671 } 2750 }
2751 else
2752 ev_at (w) = w->offset;
1672 2753
2754 EV_FREQUENT_CHECK;
2755
2756 ++periodiccnt;
1673 ev_start (EV_A_ (W)w, ++periodiccnt); 2757 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1674 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2758 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1675 periodics [periodiccnt - 1] = w; 2759 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1676 upheap ((WT *)periodics, periodiccnt - 1); 2760 ANHE_at_cache (periodics [ev_active (w)]);
2761 upheap (periodics, ev_active (w));
1677 2762
2763 EV_FREQUENT_CHECK;
2764
1678 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2765 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1679} 2766}
1680 2767
1681void 2768void noinline
1682ev_periodic_stop (EV_P_ ev_periodic *w) 2769ev_periodic_stop (EV_P_ ev_periodic *w)
1683{ 2770{
1684 ev_clear_pending (EV_A_ (W)w); 2771 clear_pending (EV_A_ (W)w);
1685 if (expect_false (!ev_is_active (w))) 2772 if (expect_false (!ev_is_active (w)))
1686 return; 2773 return;
1687 2774
1688 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2775 EV_FREQUENT_CHECK;
1689 2776
1690 { 2777 {
1691 int active = ((W)w)->active; 2778 int active = ev_active (w);
1692 2779
2780 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2781
2782 --periodiccnt;
2783
1693 if (expect_true (--active < --periodiccnt)) 2784 if (expect_true (active < periodiccnt + HEAP0))
1694 { 2785 {
1695 periodics [active] = periodics [periodiccnt]; 2786 periodics [active] = periodics [periodiccnt + HEAP0];
1696 adjustheap ((WT *)periodics, periodiccnt, active); 2787 adjustheap (periodics, periodiccnt, active);
1697 } 2788 }
1698 } 2789 }
1699 2790
1700 ev_stop (EV_A_ (W)w); 2791 ev_stop (EV_A_ (W)w);
1701}
1702 2792
1703void 2793 EV_FREQUENT_CHECK;
2794}
2795
2796void noinline
1704ev_periodic_again (EV_P_ ev_periodic *w) 2797ev_periodic_again (EV_P_ ev_periodic *w)
1705{ 2798{
1706 /* TODO: use adjustheap and recalculation */ 2799 /* TODO: use adjustheap and recalculation */
1707 ev_periodic_stop (EV_A_ w); 2800 ev_periodic_stop (EV_A_ w);
1708 ev_periodic_start (EV_A_ w); 2801 ev_periodic_start (EV_A_ w);
1711 2804
1712#ifndef SA_RESTART 2805#ifndef SA_RESTART
1713# define SA_RESTART 0 2806# define SA_RESTART 0
1714#endif 2807#endif
1715 2808
1716void 2809#if EV_SIGNAL_ENABLE
2810
2811void noinline
1717ev_signal_start (EV_P_ ev_signal *w) 2812ev_signal_start (EV_P_ ev_signal *w)
1718{ 2813{
1719#if EV_MULTIPLICITY
1720 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1721#endif
1722 if (expect_false (ev_is_active (w))) 2814 if (expect_false (ev_is_active (w)))
1723 return; 2815 return;
1724 2816
1725 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2817 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2818
2819#if EV_MULTIPLICITY
2820 assert (("libev: a signal must not be attached to two different loops",
2821 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2822
2823 signals [w->signum - 1].loop = EV_A;
2824#endif
2825
2826 EV_FREQUENT_CHECK;
2827
2828#if EV_USE_SIGNALFD
2829 if (sigfd == -2)
2830 {
2831 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2832 if (sigfd < 0 && errno == EINVAL)
2833 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2834
2835 if (sigfd >= 0)
2836 {
2837 fd_intern (sigfd); /* doing it twice will not hurt */
2838
2839 sigemptyset (&sigfd_set);
2840
2841 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2842 ev_set_priority (&sigfd_w, EV_MAXPRI);
2843 ev_io_start (EV_A_ &sigfd_w);
2844 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2845 }
2846 }
2847
2848 if (sigfd >= 0)
2849 {
2850 /* TODO: check .head */
2851 sigaddset (&sigfd_set, w->signum);
2852 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2853
2854 signalfd (sigfd, &sigfd_set, 0);
2855 }
2856#endif
1726 2857
1727 ev_start (EV_A_ (W)w, 1); 2858 ev_start (EV_A_ (W)w, 1);
1728 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1729 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2859 wlist_add (&signals [w->signum - 1].head, (WL)w);
1730 2860
1731 if (!((WL)w)->next) 2861 if (!((WL)w)->next)
2862# if EV_USE_SIGNALFD
2863 if (sigfd < 0) /*TODO*/
2864# endif
1732 { 2865 {
1733#if _WIN32 2866# ifdef _WIN32
2867 evpipe_init (EV_A);
2868
1734 signal (w->signum, sighandler); 2869 signal (w->signum, ev_sighandler);
1735#else 2870# else
1736 struct sigaction sa; 2871 struct sigaction sa;
2872
2873 evpipe_init (EV_A);
2874
1737 sa.sa_handler = sighandler; 2875 sa.sa_handler = ev_sighandler;
1738 sigfillset (&sa.sa_mask); 2876 sigfillset (&sa.sa_mask);
1739 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2877 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1740 sigaction (w->signum, &sa, 0); 2878 sigaction (w->signum, &sa, 0);
2879
2880 sigemptyset (&sa.sa_mask);
2881 sigaddset (&sa.sa_mask, w->signum);
2882 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1741#endif 2883#endif
1742 } 2884 }
1743}
1744 2885
1745void 2886 EV_FREQUENT_CHECK;
2887}
2888
2889void noinline
1746ev_signal_stop (EV_P_ ev_signal *w) 2890ev_signal_stop (EV_P_ ev_signal *w)
1747{ 2891{
1748 ev_clear_pending (EV_A_ (W)w); 2892 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2893 if (expect_false (!ev_is_active (w)))
1750 return; 2894 return;
1751 2895
2896 EV_FREQUENT_CHECK;
2897
1752 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2898 wlist_del (&signals [w->signum - 1].head, (WL)w);
1753 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
1754 2900
1755 if (!signals [w->signum - 1].head) 2901 if (!signals [w->signum - 1].head)
2902 {
2903#if EV_MULTIPLICITY
2904 signals [w->signum - 1].loop = 0; /* unattach from signal */
2905#endif
2906#if EV_USE_SIGNALFD
2907 if (sigfd >= 0)
2908 {
2909 sigset_t ss;
2910
2911 sigemptyset (&ss);
2912 sigaddset (&ss, w->signum);
2913 sigdelset (&sigfd_set, w->signum);
2914
2915 signalfd (sigfd, &sigfd_set, 0);
2916 sigprocmask (SIG_UNBLOCK, &ss, 0);
2917 }
2918 else
2919#endif
1756 signal (w->signum, SIG_DFL); 2920 signal (w->signum, SIG_DFL);
2921 }
2922
2923 EV_FREQUENT_CHECK;
1757} 2924}
2925
2926#endif
2927
2928#if EV_CHILD_ENABLE
1758 2929
1759void 2930void
1760ev_child_start (EV_P_ ev_child *w) 2931ev_child_start (EV_P_ ev_child *w)
1761{ 2932{
1762#if EV_MULTIPLICITY 2933#if EV_MULTIPLICITY
1763 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2934 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif 2935#endif
1765 if (expect_false (ev_is_active (w))) 2936 if (expect_false (ev_is_active (w)))
1766 return; 2937 return;
1767 2938
2939 EV_FREQUENT_CHECK;
2940
1768 ev_start (EV_A_ (W)w, 1); 2941 ev_start (EV_A_ (W)w, 1);
1769 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2942 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2943
2944 EV_FREQUENT_CHECK;
1770} 2945}
1771 2946
1772void 2947void
1773ev_child_stop (EV_P_ ev_child *w) 2948ev_child_stop (EV_P_ ev_child *w)
1774{ 2949{
1775 ev_clear_pending (EV_A_ (W)w); 2950 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 2951 if (expect_false (!ev_is_active (w)))
1777 return; 2952 return;
1778 2953
2954 EV_FREQUENT_CHECK;
2955
1779 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2956 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1780 ev_stop (EV_A_ (W)w); 2957 ev_stop (EV_A_ (W)w);
2958
2959 EV_FREQUENT_CHECK;
1781} 2960}
2961
2962#endif
1782 2963
1783#if EV_STAT_ENABLE 2964#if EV_STAT_ENABLE
1784 2965
1785# ifdef _WIN32 2966# ifdef _WIN32
1786# undef lstat 2967# undef lstat
1787# define lstat(a,b) _stati64 (a,b) 2968# define lstat(a,b) _stati64 (a,b)
1788# endif 2969# endif
1789 2970
1790#define DEF_STAT_INTERVAL 5.0074891 2971#define DEF_STAT_INTERVAL 5.0074891
2972#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1791#define MIN_STAT_INTERVAL 0.1074891 2973#define MIN_STAT_INTERVAL 0.1074891
1792 2974
1793static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2975static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1794 2976
1795#if EV_USE_INOTIFY 2977#if EV_USE_INOTIFY
1796# define EV_INOTIFY_BUFSIZE 8192 2978
2979/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2980# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1797 2981
1798static void noinline 2982static void noinline
1799infy_add (EV_P_ ev_stat *w) 2983infy_add (EV_P_ ev_stat *w)
1800{ 2984{
1801 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2985 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1802 2986
1803 if (w->wd < 0) 2987 if (w->wd >= 0)
2988 {
2989 struct statfs sfs;
2990
2991 /* now local changes will be tracked by inotify, but remote changes won't */
2992 /* unless the filesystem is known to be local, we therefore still poll */
2993 /* also do poll on <2.6.25, but with normal frequency */
2994
2995 if (!fs_2625)
2996 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2997 else if (!statfs (w->path, &sfs)
2998 && (sfs.f_type == 0x1373 /* devfs */
2999 || sfs.f_type == 0xEF53 /* ext2/3 */
3000 || sfs.f_type == 0x3153464a /* jfs */
3001 || sfs.f_type == 0x52654973 /* reiser3 */
3002 || sfs.f_type == 0x01021994 /* tempfs */
3003 || sfs.f_type == 0x58465342 /* xfs */))
3004 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3005 else
3006 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1804 { 3007 }
1805 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3008 else
3009 {
3010 /* can't use inotify, continue to stat */
3011 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1806 3012
1807 /* monitor some parent directory for speedup hints */ 3013 /* if path is not there, monitor some parent directory for speedup hints */
3014 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3015 /* but an efficiency issue only */
1808 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3016 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1809 { 3017 {
1810 char path [4096]; 3018 char path [4096];
1811 strcpy (path, w->path); 3019 strcpy (path, w->path);
1812 3020
1815 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3023 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1816 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3024 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1817 3025
1818 char *pend = strrchr (path, '/'); 3026 char *pend = strrchr (path, '/');
1819 3027
1820 if (!pend) 3028 if (!pend || pend == path)
1821 break; /* whoops, no '/', complain to your admin */ 3029 break;
1822 3030
1823 *pend = 0; 3031 *pend = 0;
1824 w->wd = inotify_add_watch (fs_fd, path, mask); 3032 w->wd = inotify_add_watch (fs_fd, path, mask);
1825 } 3033 }
1826 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3034 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1827 } 3035 }
1828 } 3036 }
1829 else
1830 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1831 3037
1832 if (w->wd >= 0) 3038 if (w->wd >= 0)
1833 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3039 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3040
3041 /* now re-arm timer, if required */
3042 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3043 ev_timer_again (EV_A_ &w->timer);
3044 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1834} 3045}
1835 3046
1836static void noinline 3047static void noinline
1837infy_del (EV_P_ ev_stat *w) 3048infy_del (EV_P_ ev_stat *w)
1838{ 3049{
1841 3052
1842 if (wd < 0) 3053 if (wd < 0)
1843 return; 3054 return;
1844 3055
1845 w->wd = -2; 3056 w->wd = -2;
1846 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3057 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1847 wlist_del (&fs_hash [slot].head, (WL)w); 3058 wlist_del (&fs_hash [slot].head, (WL)w);
1848 3059
1849 /* remove this watcher, if others are watching it, they will rearm */ 3060 /* remove this watcher, if others are watching it, they will rearm */
1850 inotify_rm_watch (fs_fd, wd); 3061 inotify_rm_watch (fs_fd, wd);
1851} 3062}
1852 3063
1853static void noinline 3064static void noinline
1854infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3065infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1855{ 3066{
1856 if (slot < 0) 3067 if (slot < 0)
1857 /* overflow, need to check for all hahs slots */ 3068 /* overflow, need to check for all hash slots */
1858 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3069 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1859 infy_wd (EV_A_ slot, wd, ev); 3070 infy_wd (EV_A_ slot, wd, ev);
1860 else 3071 else
1861 { 3072 {
1862 WL w_; 3073 WL w_;
1863 3074
1864 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3075 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1865 { 3076 {
1866 ev_stat *w = (ev_stat *)w_; 3077 ev_stat *w = (ev_stat *)w_;
1867 w_ = w_->next; /* lets us remove this watcher and all before it */ 3078 w_ = w_->next; /* lets us remove this watcher and all before it */
1868 3079
1869 if (w->wd == wd || wd == -1) 3080 if (w->wd == wd || wd == -1)
1870 { 3081 {
1871 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3082 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1872 { 3083 {
3084 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1873 w->wd = -1; 3085 w->wd = -1;
1874 infy_add (EV_A_ w); /* re-add, no matter what */ 3086 infy_add (EV_A_ w); /* re-add, no matter what */
1875 } 3087 }
1876 3088
1877 stat_timer_cb (EV_A_ &w->timer, 0); 3089 stat_timer_cb (EV_A_ &w->timer, 0);
1882 3094
1883static void 3095static void
1884infy_cb (EV_P_ ev_io *w, int revents) 3096infy_cb (EV_P_ ev_io *w, int revents)
1885{ 3097{
1886 char buf [EV_INOTIFY_BUFSIZE]; 3098 char buf [EV_INOTIFY_BUFSIZE];
1887 struct inotify_event *ev = (struct inotify_event *)buf;
1888 int ofs; 3099 int ofs;
1889 int len = read (fs_fd, buf, sizeof (buf)); 3100 int len = read (fs_fd, buf, sizeof (buf));
1890 3101
1891 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3102 for (ofs = 0; ofs < len; )
3103 {
3104 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1892 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3105 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3106 ofs += sizeof (struct inotify_event) + ev->len;
3107 }
1893} 3108}
1894 3109
1895void inline_size 3110inline_size void
3111ev_check_2625 (EV_P)
3112{
3113 /* kernels < 2.6.25 are borked
3114 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3115 */
3116 if (ev_linux_version () < 0x020619)
3117 return;
3118
3119 fs_2625 = 1;
3120}
3121
3122inline_size int
3123infy_newfd (void)
3124{
3125#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3126 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3127 if (fd >= 0)
3128 return fd;
3129#endif
3130 return inotify_init ();
3131}
3132
3133inline_size void
1896infy_init (EV_P) 3134infy_init (EV_P)
1897{ 3135{
1898 if (fs_fd != -2) 3136 if (fs_fd != -2)
1899 return; 3137 return;
1900 3138
3139 fs_fd = -1;
3140
3141 ev_check_2625 (EV_A);
3142
1901 fs_fd = inotify_init (); 3143 fs_fd = infy_newfd ();
1902 3144
1903 if (fs_fd >= 0) 3145 if (fs_fd >= 0)
1904 { 3146 {
3147 fd_intern (fs_fd);
1905 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3148 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1906 ev_set_priority (&fs_w, EV_MAXPRI); 3149 ev_set_priority (&fs_w, EV_MAXPRI);
1907 ev_io_start (EV_A_ &fs_w); 3150 ev_io_start (EV_A_ &fs_w);
3151 ev_unref (EV_A);
1908 } 3152 }
1909} 3153}
1910 3154
1911void inline_size 3155inline_size void
1912infy_fork (EV_P) 3156infy_fork (EV_P)
1913{ 3157{
1914 int slot; 3158 int slot;
1915 3159
1916 if (fs_fd < 0) 3160 if (fs_fd < 0)
1917 return; 3161 return;
1918 3162
3163 ev_ref (EV_A);
3164 ev_io_stop (EV_A_ &fs_w);
1919 close (fs_fd); 3165 close (fs_fd);
1920 fs_fd = inotify_init (); 3166 fs_fd = infy_newfd ();
1921 3167
3168 if (fs_fd >= 0)
3169 {
3170 fd_intern (fs_fd);
3171 ev_io_set (&fs_w, fs_fd, EV_READ);
3172 ev_io_start (EV_A_ &fs_w);
3173 ev_unref (EV_A);
3174 }
3175
1922 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3176 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1923 { 3177 {
1924 WL w_ = fs_hash [slot].head; 3178 WL w_ = fs_hash [slot].head;
1925 fs_hash [slot].head = 0; 3179 fs_hash [slot].head = 0;
1926 3180
1927 while (w_) 3181 while (w_)
1932 w->wd = -1; 3186 w->wd = -1;
1933 3187
1934 if (fs_fd >= 0) 3188 if (fs_fd >= 0)
1935 infy_add (EV_A_ w); /* re-add, no matter what */ 3189 infy_add (EV_A_ w); /* re-add, no matter what */
1936 else 3190 else
3191 {
3192 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3193 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1937 ev_timer_start (EV_A_ &w->timer); 3194 ev_timer_again (EV_A_ &w->timer);
3195 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3196 }
1938 } 3197 }
1939
1940 } 3198 }
1941} 3199}
1942 3200
3201#endif
3202
3203#ifdef _WIN32
3204# define EV_LSTAT(p,b) _stati64 (p, b)
3205#else
3206# define EV_LSTAT(p,b) lstat (p, b)
1943#endif 3207#endif
1944 3208
1945void 3209void
1946ev_stat_stat (EV_P_ ev_stat *w) 3210ev_stat_stat (EV_P_ ev_stat *w)
1947{ 3211{
1954static void noinline 3218static void noinline
1955stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3219stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1956{ 3220{
1957 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3221 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1958 3222
1959 /* we copy this here each the time so that */ 3223 ev_statdata prev = w->attr;
1960 /* prev has the old value when the callback gets invoked */
1961 w->prev = w->attr;
1962 ev_stat_stat (EV_A_ w); 3224 ev_stat_stat (EV_A_ w);
1963 3225
1964 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3226 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1965 if ( 3227 if (
1966 w->prev.st_dev != w->attr.st_dev 3228 prev.st_dev != w->attr.st_dev
1967 || w->prev.st_ino != w->attr.st_ino 3229 || prev.st_ino != w->attr.st_ino
1968 || w->prev.st_mode != w->attr.st_mode 3230 || prev.st_mode != w->attr.st_mode
1969 || w->prev.st_nlink != w->attr.st_nlink 3231 || prev.st_nlink != w->attr.st_nlink
1970 || w->prev.st_uid != w->attr.st_uid 3232 || prev.st_uid != w->attr.st_uid
1971 || w->prev.st_gid != w->attr.st_gid 3233 || prev.st_gid != w->attr.st_gid
1972 || w->prev.st_rdev != w->attr.st_rdev 3234 || prev.st_rdev != w->attr.st_rdev
1973 || w->prev.st_size != w->attr.st_size 3235 || prev.st_size != w->attr.st_size
1974 || w->prev.st_atime != w->attr.st_atime 3236 || prev.st_atime != w->attr.st_atime
1975 || w->prev.st_mtime != w->attr.st_mtime 3237 || prev.st_mtime != w->attr.st_mtime
1976 || w->prev.st_ctime != w->attr.st_ctime 3238 || prev.st_ctime != w->attr.st_ctime
1977 ) { 3239 ) {
3240 /* we only update w->prev on actual differences */
3241 /* in case we test more often than invoke the callback, */
3242 /* to ensure that prev is always different to attr */
3243 w->prev = prev;
3244
1978 #if EV_USE_INOTIFY 3245 #if EV_USE_INOTIFY
3246 if (fs_fd >= 0)
3247 {
1979 infy_del (EV_A_ w); 3248 infy_del (EV_A_ w);
1980 infy_add (EV_A_ w); 3249 infy_add (EV_A_ w);
1981 ev_stat_stat (EV_A_ w); /* avoid race... */ 3250 ev_stat_stat (EV_A_ w); /* avoid race... */
3251 }
1982 #endif 3252 #endif
1983 3253
1984 ev_feed_event (EV_A_ w, EV_STAT); 3254 ev_feed_event (EV_A_ w, EV_STAT);
1985 } 3255 }
1986} 3256}
1989ev_stat_start (EV_P_ ev_stat *w) 3259ev_stat_start (EV_P_ ev_stat *w)
1990{ 3260{
1991 if (expect_false (ev_is_active (w))) 3261 if (expect_false (ev_is_active (w)))
1992 return; 3262 return;
1993 3263
1994 /* since we use memcmp, we need to clear any padding data etc. */
1995 memset (&w->prev, 0, sizeof (ev_statdata));
1996 memset (&w->attr, 0, sizeof (ev_statdata));
1997
1998 ev_stat_stat (EV_A_ w); 3264 ev_stat_stat (EV_A_ w);
1999 3265
3266 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2000 if (w->interval < MIN_STAT_INTERVAL) 3267 w->interval = MIN_STAT_INTERVAL;
2001 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2002 3268
2003 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3269 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2004 ev_set_priority (&w->timer, ev_priority (w)); 3270 ev_set_priority (&w->timer, ev_priority (w));
2005 3271
2006#if EV_USE_INOTIFY 3272#if EV_USE_INOTIFY
2007 infy_init (EV_A); 3273 infy_init (EV_A);
2008 3274
2009 if (fs_fd >= 0) 3275 if (fs_fd >= 0)
2010 infy_add (EV_A_ w); 3276 infy_add (EV_A_ w);
2011 else 3277 else
2012#endif 3278#endif
3279 {
2013 ev_timer_start (EV_A_ &w->timer); 3280 ev_timer_again (EV_A_ &w->timer);
3281 ev_unref (EV_A);
3282 }
2014 3283
2015 ev_start (EV_A_ (W)w, 1); 3284 ev_start (EV_A_ (W)w, 1);
3285
3286 EV_FREQUENT_CHECK;
2016} 3287}
2017 3288
2018void 3289void
2019ev_stat_stop (EV_P_ ev_stat *w) 3290ev_stat_stop (EV_P_ ev_stat *w)
2020{ 3291{
2021 ev_clear_pending (EV_A_ (W)w); 3292 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 3293 if (expect_false (!ev_is_active (w)))
2023 return; 3294 return;
2024 3295
3296 EV_FREQUENT_CHECK;
3297
2025#if EV_USE_INOTIFY 3298#if EV_USE_INOTIFY
2026 infy_del (EV_A_ w); 3299 infy_del (EV_A_ w);
2027#endif 3300#endif
3301
3302 if (ev_is_active (&w->timer))
3303 {
3304 ev_ref (EV_A);
2028 ev_timer_stop (EV_A_ &w->timer); 3305 ev_timer_stop (EV_A_ &w->timer);
3306 }
2029 3307
2030 ev_stop (EV_A_ (W)w); 3308 ev_stop (EV_A_ (W)w);
3309
3310 EV_FREQUENT_CHECK;
2031} 3311}
2032#endif 3312#endif
2033 3313
2034#if EV_IDLE_ENABLE 3314#if EV_IDLE_ENABLE
2035void 3315void
2037{ 3317{
2038 if (expect_false (ev_is_active (w))) 3318 if (expect_false (ev_is_active (w)))
2039 return; 3319 return;
2040 3320
2041 pri_adjust (EV_A_ (W)w); 3321 pri_adjust (EV_A_ (W)w);
3322
3323 EV_FREQUENT_CHECK;
2042 3324
2043 { 3325 {
2044 int active = ++idlecnt [ABSPRI (w)]; 3326 int active = ++idlecnt [ABSPRI (w)];
2045 3327
2046 ++idleall; 3328 ++idleall;
2047 ev_start (EV_A_ (W)w, active); 3329 ev_start (EV_A_ (W)w, active);
2048 3330
2049 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3331 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2050 idles [ABSPRI (w)][active - 1] = w; 3332 idles [ABSPRI (w)][active - 1] = w;
2051 } 3333 }
3334
3335 EV_FREQUENT_CHECK;
2052} 3336}
2053 3337
2054void 3338void
2055ev_idle_stop (EV_P_ ev_idle *w) 3339ev_idle_stop (EV_P_ ev_idle *w)
2056{ 3340{
2057 ev_clear_pending (EV_A_ (W)w); 3341 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 3342 if (expect_false (!ev_is_active (w)))
2059 return; 3343 return;
2060 3344
3345 EV_FREQUENT_CHECK;
3346
2061 { 3347 {
2062 int active = ((W)w)->active; 3348 int active = ev_active (w);
2063 3349
2064 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3350 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2065 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3351 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2066 3352
2067 ev_stop (EV_A_ (W)w); 3353 ev_stop (EV_A_ (W)w);
2068 --idleall; 3354 --idleall;
2069 } 3355 }
2070}
2071#endif
2072 3356
3357 EV_FREQUENT_CHECK;
3358}
3359#endif
3360
3361#if EV_PREPARE_ENABLE
2073void 3362void
2074ev_prepare_start (EV_P_ ev_prepare *w) 3363ev_prepare_start (EV_P_ ev_prepare *w)
2075{ 3364{
2076 if (expect_false (ev_is_active (w))) 3365 if (expect_false (ev_is_active (w)))
2077 return; 3366 return;
3367
3368 EV_FREQUENT_CHECK;
2078 3369
2079 ev_start (EV_A_ (W)w, ++preparecnt); 3370 ev_start (EV_A_ (W)w, ++preparecnt);
2080 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3371 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2081 prepares [preparecnt - 1] = w; 3372 prepares [preparecnt - 1] = w;
3373
3374 EV_FREQUENT_CHECK;
2082} 3375}
2083 3376
2084void 3377void
2085ev_prepare_stop (EV_P_ ev_prepare *w) 3378ev_prepare_stop (EV_P_ ev_prepare *w)
2086{ 3379{
2087 ev_clear_pending (EV_A_ (W)w); 3380 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 3381 if (expect_false (!ev_is_active (w)))
2089 return; 3382 return;
2090 3383
3384 EV_FREQUENT_CHECK;
3385
2091 { 3386 {
2092 int active = ((W)w)->active; 3387 int active = ev_active (w);
3388
2093 prepares [active - 1] = prepares [--preparecnt]; 3389 prepares [active - 1] = prepares [--preparecnt];
2094 ((W)prepares [active - 1])->active = active; 3390 ev_active (prepares [active - 1]) = active;
2095 } 3391 }
2096 3392
2097 ev_stop (EV_A_ (W)w); 3393 ev_stop (EV_A_ (W)w);
2098}
2099 3394
3395 EV_FREQUENT_CHECK;
3396}
3397#endif
3398
3399#if EV_CHECK_ENABLE
2100void 3400void
2101ev_check_start (EV_P_ ev_check *w) 3401ev_check_start (EV_P_ ev_check *w)
2102{ 3402{
2103 if (expect_false (ev_is_active (w))) 3403 if (expect_false (ev_is_active (w)))
2104 return; 3404 return;
3405
3406 EV_FREQUENT_CHECK;
2105 3407
2106 ev_start (EV_A_ (W)w, ++checkcnt); 3408 ev_start (EV_A_ (W)w, ++checkcnt);
2107 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3409 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2108 checks [checkcnt - 1] = w; 3410 checks [checkcnt - 1] = w;
3411
3412 EV_FREQUENT_CHECK;
2109} 3413}
2110 3414
2111void 3415void
2112ev_check_stop (EV_P_ ev_check *w) 3416ev_check_stop (EV_P_ ev_check *w)
2113{ 3417{
2114 ev_clear_pending (EV_A_ (W)w); 3418 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 3419 if (expect_false (!ev_is_active (w)))
2116 return; 3420 return;
2117 3421
3422 EV_FREQUENT_CHECK;
3423
2118 { 3424 {
2119 int active = ((W)w)->active; 3425 int active = ev_active (w);
3426
2120 checks [active - 1] = checks [--checkcnt]; 3427 checks [active - 1] = checks [--checkcnt];
2121 ((W)checks [active - 1])->active = active; 3428 ev_active (checks [active - 1]) = active;
2122 } 3429 }
2123 3430
2124 ev_stop (EV_A_ (W)w); 3431 ev_stop (EV_A_ (W)w);
3432
3433 EV_FREQUENT_CHECK;
2125} 3434}
3435#endif
2126 3436
2127#if EV_EMBED_ENABLE 3437#if EV_EMBED_ENABLE
2128void noinline 3438void noinline
2129ev_embed_sweep (EV_P_ ev_embed *w) 3439ev_embed_sweep (EV_P_ ev_embed *w)
2130{ 3440{
2131 ev_loop (w->loop, EVLOOP_NONBLOCK); 3441 ev_run (w->other, EVRUN_NOWAIT);
2132} 3442}
2133 3443
2134static void 3444static void
2135embed_cb (EV_P_ ev_io *io, int revents) 3445embed_io_cb (EV_P_ ev_io *io, int revents)
2136{ 3446{
2137 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2138 3448
2139 if (ev_cb (w)) 3449 if (ev_cb (w))
2140 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3450 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2141 else 3451 else
2142 ev_embed_sweep (loop, w); 3452 ev_run (w->other, EVRUN_NOWAIT);
2143} 3453}
3454
3455static void
3456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3457{
3458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3459
3460 {
3461 EV_P = w->other;
3462
3463 while (fdchangecnt)
3464 {
3465 fd_reify (EV_A);
3466 ev_run (EV_A_ EVRUN_NOWAIT);
3467 }
3468 }
3469}
3470
3471static void
3472embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3473{
3474 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3475
3476 ev_embed_stop (EV_A_ w);
3477
3478 {
3479 EV_P = w->other;
3480
3481 ev_loop_fork (EV_A);
3482 ev_run (EV_A_ EVRUN_NOWAIT);
3483 }
3484
3485 ev_embed_start (EV_A_ w);
3486}
3487
3488#if 0
3489static void
3490embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3491{
3492 ev_idle_stop (EV_A_ idle);
3493}
3494#endif
2144 3495
2145void 3496void
2146ev_embed_start (EV_P_ ev_embed *w) 3497ev_embed_start (EV_P_ ev_embed *w)
2147{ 3498{
2148 if (expect_false (ev_is_active (w))) 3499 if (expect_false (ev_is_active (w)))
2149 return; 3500 return;
2150 3501
2151 { 3502 {
2152 struct ev_loop *loop = w->loop; 3503 EV_P = w->other;
2153 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3504 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2154 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3505 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2155 } 3506 }
3507
3508 EV_FREQUENT_CHECK;
2156 3509
2157 ev_set_priority (&w->io, ev_priority (w)); 3510 ev_set_priority (&w->io, ev_priority (w));
2158 ev_io_start (EV_A_ &w->io); 3511 ev_io_start (EV_A_ &w->io);
2159 3512
3513 ev_prepare_init (&w->prepare, embed_prepare_cb);
3514 ev_set_priority (&w->prepare, EV_MINPRI);
3515 ev_prepare_start (EV_A_ &w->prepare);
3516
3517 ev_fork_init (&w->fork, embed_fork_cb);
3518 ev_fork_start (EV_A_ &w->fork);
3519
3520 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3521
2160 ev_start (EV_A_ (W)w, 1); 3522 ev_start (EV_A_ (W)w, 1);
3523
3524 EV_FREQUENT_CHECK;
2161} 3525}
2162 3526
2163void 3527void
2164ev_embed_stop (EV_P_ ev_embed *w) 3528ev_embed_stop (EV_P_ ev_embed *w)
2165{ 3529{
2166 ev_clear_pending (EV_A_ (W)w); 3530 clear_pending (EV_A_ (W)w);
2167 if (expect_false (!ev_is_active (w))) 3531 if (expect_false (!ev_is_active (w)))
2168 return; 3532 return;
2169 3533
3534 EV_FREQUENT_CHECK;
3535
2170 ev_io_stop (EV_A_ &w->io); 3536 ev_io_stop (EV_A_ &w->io);
3537 ev_prepare_stop (EV_A_ &w->prepare);
3538 ev_fork_stop (EV_A_ &w->fork);
2171 3539
2172 ev_stop (EV_A_ (W)w); 3540 ev_stop (EV_A_ (W)w);
3541
3542 EV_FREQUENT_CHECK;
2173} 3543}
2174#endif 3544#endif
2175 3545
2176#if EV_FORK_ENABLE 3546#if EV_FORK_ENABLE
2177void 3547void
2178ev_fork_start (EV_P_ ev_fork *w) 3548ev_fork_start (EV_P_ ev_fork *w)
2179{ 3549{
2180 if (expect_false (ev_is_active (w))) 3550 if (expect_false (ev_is_active (w)))
2181 return; 3551 return;
3552
3553 EV_FREQUENT_CHECK;
2182 3554
2183 ev_start (EV_A_ (W)w, ++forkcnt); 3555 ev_start (EV_A_ (W)w, ++forkcnt);
2184 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3556 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2185 forks [forkcnt - 1] = w; 3557 forks [forkcnt - 1] = w;
3558
3559 EV_FREQUENT_CHECK;
2186} 3560}
2187 3561
2188void 3562void
2189ev_fork_stop (EV_P_ ev_fork *w) 3563ev_fork_stop (EV_P_ ev_fork *w)
2190{ 3564{
2191 ev_clear_pending (EV_A_ (W)w); 3565 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 3566 if (expect_false (!ev_is_active (w)))
2193 return; 3567 return;
2194 3568
3569 EV_FREQUENT_CHECK;
3570
2195 { 3571 {
2196 int active = ((W)w)->active; 3572 int active = ev_active (w);
3573
2197 forks [active - 1] = forks [--forkcnt]; 3574 forks [active - 1] = forks [--forkcnt];
2198 ((W)forks [active - 1])->active = active; 3575 ev_active (forks [active - 1]) = active;
2199 } 3576 }
2200 3577
2201 ev_stop (EV_A_ (W)w); 3578 ev_stop (EV_A_ (W)w);
3579
3580 EV_FREQUENT_CHECK;
3581}
3582#endif
3583
3584#if EV_CLEANUP_ENABLE
3585void
3586ev_cleanup_start (EV_P_ ev_cleanup *w)
3587{
3588 if (expect_false (ev_is_active (w)))
3589 return;
3590
3591 EV_FREQUENT_CHECK;
3592
3593 ev_start (EV_A_ (W)w, ++cleanupcnt);
3594 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3595 cleanups [cleanupcnt - 1] = w;
3596
3597 /* cleanup watchers should never keep a refcount on the loop */
3598 ev_unref (EV_A);
3599 EV_FREQUENT_CHECK;
3600}
3601
3602void
3603ev_cleanup_stop (EV_P_ ev_cleanup *w)
3604{
3605 clear_pending (EV_A_ (W)w);
3606 if (expect_false (!ev_is_active (w)))
3607 return;
3608
3609 EV_FREQUENT_CHECK;
3610 ev_ref (EV_A);
3611
3612 {
3613 int active = ev_active (w);
3614
3615 cleanups [active - 1] = cleanups [--cleanupcnt];
3616 ev_active (cleanups [active - 1]) = active;
3617 }
3618
3619 ev_stop (EV_A_ (W)w);
3620
3621 EV_FREQUENT_CHECK;
3622}
3623#endif
3624
3625#if EV_ASYNC_ENABLE
3626void
3627ev_async_start (EV_P_ ev_async *w)
3628{
3629 if (expect_false (ev_is_active (w)))
3630 return;
3631
3632 w->sent = 0;
3633
3634 evpipe_init (EV_A);
3635
3636 EV_FREQUENT_CHECK;
3637
3638 ev_start (EV_A_ (W)w, ++asynccnt);
3639 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3640 asyncs [asynccnt - 1] = w;
3641
3642 EV_FREQUENT_CHECK;
3643}
3644
3645void
3646ev_async_stop (EV_P_ ev_async *w)
3647{
3648 clear_pending (EV_A_ (W)w);
3649 if (expect_false (!ev_is_active (w)))
3650 return;
3651
3652 EV_FREQUENT_CHECK;
3653
3654 {
3655 int active = ev_active (w);
3656
3657 asyncs [active - 1] = asyncs [--asynccnt];
3658 ev_active (asyncs [active - 1]) = active;
3659 }
3660
3661 ev_stop (EV_A_ (W)w);
3662
3663 EV_FREQUENT_CHECK;
3664}
3665
3666void
3667ev_async_send (EV_P_ ev_async *w)
3668{
3669 w->sent = 1;
3670 evpipe_write (EV_A_ &async_pending);
2202} 3671}
2203#endif 3672#endif
2204 3673
2205/*****************************************************************************/ 3674/*****************************************************************************/
2206 3675
2216once_cb (EV_P_ struct ev_once *once, int revents) 3685once_cb (EV_P_ struct ev_once *once, int revents)
2217{ 3686{
2218 void (*cb)(int revents, void *arg) = once->cb; 3687 void (*cb)(int revents, void *arg) = once->cb;
2219 void *arg = once->arg; 3688 void *arg = once->arg;
2220 3689
2221 ev_io_stop (EV_A_ &once->io); 3690 ev_io_stop (EV_A_ &once->io);
2222 ev_timer_stop (EV_A_ &once->to); 3691 ev_timer_stop (EV_A_ &once->to);
2223 ev_free (once); 3692 ev_free (once);
2224 3693
2225 cb (revents, arg); 3694 cb (revents, arg);
2226} 3695}
2227 3696
2228static void 3697static void
2229once_cb_io (EV_P_ ev_io *w, int revents) 3698once_cb_io (EV_P_ ev_io *w, int revents)
2230{ 3699{
2231 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3700 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3701
3702 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2232} 3703}
2233 3704
2234static void 3705static void
2235once_cb_to (EV_P_ ev_timer *w, int revents) 3706once_cb_to (EV_P_ ev_timer *w, int revents)
2236{ 3707{
2237 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3708 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3709
3710 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2238} 3711}
2239 3712
2240void 3713void
2241ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3714ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2242{ 3715{
2243 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3716 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2244 3717
2245 if (expect_false (!once)) 3718 if (expect_false (!once))
2246 { 3719 {
2247 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3720 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2248 return; 3721 return;
2249 } 3722 }
2250 3723
2251 once->cb = cb; 3724 once->cb = cb;
2252 once->arg = arg; 3725 once->arg = arg;
2264 ev_timer_set (&once->to, timeout, 0.); 3737 ev_timer_set (&once->to, timeout, 0.);
2265 ev_timer_start (EV_A_ &once->to); 3738 ev_timer_start (EV_A_ &once->to);
2266 } 3739 }
2267} 3740}
2268 3741
2269#ifdef __cplusplus 3742/*****************************************************************************/
2270} 3743
3744#if EV_WALK_ENABLE
3745void
3746ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3747{
3748 int i, j;
3749 ev_watcher_list *wl, *wn;
3750
3751 if (types & (EV_IO | EV_EMBED))
3752 for (i = 0; i < anfdmax; ++i)
3753 for (wl = anfds [i].head; wl; )
3754 {
3755 wn = wl->next;
3756
3757#if EV_EMBED_ENABLE
3758 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3759 {
3760 if (types & EV_EMBED)
3761 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3762 }
3763 else
3764#endif
3765#if EV_USE_INOTIFY
3766 if (ev_cb ((ev_io *)wl) == infy_cb)
3767 ;
3768 else
3769#endif
3770 if ((ev_io *)wl != &pipe_w)
3771 if (types & EV_IO)
3772 cb (EV_A_ EV_IO, wl);
3773
3774 wl = wn;
3775 }
3776
3777 if (types & (EV_TIMER | EV_STAT))
3778 for (i = timercnt + HEAP0; i-- > HEAP0; )
3779#if EV_STAT_ENABLE
3780 /*TODO: timer is not always active*/
3781 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3782 {
3783 if (types & EV_STAT)
3784 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3785 }
3786 else
3787#endif
3788 if (types & EV_TIMER)
3789 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3790
3791#if EV_PERIODIC_ENABLE
3792 if (types & EV_PERIODIC)
3793 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3794 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3795#endif
3796
3797#if EV_IDLE_ENABLE
3798 if (types & EV_IDLE)
3799 for (j = NUMPRI; i--; )
3800 for (i = idlecnt [j]; i--; )
3801 cb (EV_A_ EV_IDLE, idles [j][i]);
3802#endif
3803
3804#if EV_FORK_ENABLE
3805 if (types & EV_FORK)
3806 for (i = forkcnt; i--; )
3807 if (ev_cb (forks [i]) != embed_fork_cb)
3808 cb (EV_A_ EV_FORK, forks [i]);
3809#endif
3810
3811#if EV_ASYNC_ENABLE
3812 if (types & EV_ASYNC)
3813 for (i = asynccnt; i--; )
3814 cb (EV_A_ EV_ASYNC, asyncs [i]);
3815#endif
3816
3817#if EV_PREPARE_ENABLE
3818 if (types & EV_PREPARE)
3819 for (i = preparecnt; i--; )
3820# if EV_EMBED_ENABLE
3821 if (ev_cb (prepares [i]) != embed_prepare_cb)
2271#endif 3822# endif
3823 cb (EV_A_ EV_PREPARE, prepares [i]);
3824#endif
2272 3825
3826#if EV_CHECK_ENABLE
3827 if (types & EV_CHECK)
3828 for (i = checkcnt; i--; )
3829 cb (EV_A_ EV_CHECK, checks [i]);
3830#endif
3831
3832#if EV_SIGNAL_ENABLE
3833 if (types & EV_SIGNAL)
3834 for (i = 0; i < EV_NSIG - 1; ++i)
3835 for (wl = signals [i].head; wl; )
3836 {
3837 wn = wl->next;
3838 cb (EV_A_ EV_SIGNAL, wl);
3839 wl = wn;
3840 }
3841#endif
3842
3843#if EV_CHILD_ENABLE
3844 if (types & EV_CHILD)
3845 for (i = (EV_PID_HASHSIZE); i--; )
3846 for (wl = childs [i]; wl; )
3847 {
3848 wn = wl->next;
3849 cb (EV_A_ EV_CHILD, wl);
3850 wl = wn;
3851 }
3852#endif
3853/* EV_STAT 0x00001000 /* stat data changed */
3854/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3855}
3856#endif
3857
3858#if EV_MULTIPLICITY
3859 #include "ev_wrap.h"
3860#endif
3861
3862EV_CPP(})
3863

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines