ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC vs.
Revision 1.364 by root, Sun Oct 24 21:51:03 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
130# endif 148# endif
131 149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
237# endif 314# endif
238#endif 315#endif
239 316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
240#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
242#endif 337#endif
243 338
244#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
246#endif 355#endif
247 356
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
249 364
250#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
253#endif 368#endif
267# include <sys/select.h> 382# include <sys/select.h>
268# endif 383# endif
269#endif 384#endif
270 385
271#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
272# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
273#endif 394#endif
274 395
275#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 397# include <winsock.h>
277#endif 398#endif
278 399
279#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 402# include <stdint.h>
282# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
283extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
284# endif 405# endif
285int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
286# ifdef __cplusplus 407# ifdef O_CLOEXEC
287} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
288# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
289#endif 436#endif
290 437
291/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
292 445
293/* 446/*
294 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
300 */ 453 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302 455
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
306 461
307#if __GNUC__ >= 4 462#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
310#else 465#else
317 472
318#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
319#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
320#define inline_size static inline 475#define inline_size static inline
321 476
322#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
323# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
324#else 487#else
325# define inline_speed static inline
326#endif
327
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
330 490
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
333 493
334typedef ev_watcher *W; 494typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
337 497
338#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
340 500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
341#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 519#endif
346 520
347#ifdef _WIN32 521#ifdef _WIN32
348# include "ev_win32.c" 522# include "ev_win32.c"
349#endif 523#endif
350 524
351/*****************************************************************************/ 525/*****************************************************************************/
352 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
353static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
354 578
355void 579void
356ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
357{ 581{
358 syserr_cb = cb; 582 syserr_cb = cb;
359} 583}
360 584
361static void noinline 585static void noinline
362syserr (const char *msg) 586ev_syserr (const char *msg)
363{ 587{
364 if (!msg) 588 if (!msg)
365 msg = "(libev) system error"; 589 msg = "(libev) system error";
366 590
367 if (syserr_cb) 591 if (syserr_cb)
368 syserr_cb (msg); 592 syserr_cb (msg);
369 else 593 else
370 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
371 perror (msg); 603 perror (msg);
604#endif
372 abort (); 605 abort ();
373 } 606 }
374} 607}
375 608
376static void * 609static void *
377ev_realloc_emul (void *ptr, long size) 610ev_realloc_emul (void *ptr, long size)
378{ 611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
379 /* some systems, notably openbsd and darwin, fail to properly 615 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and 616 * implement realloc (x, 0) (as required by both ansi c-89 and
381 * the single unix specification, so work around them here. 617 * the single unix specification, so work around them here.
382 */ 618 */
383 619
384 if (size) 620 if (size)
385 return realloc (ptr, size); 621 return realloc (ptr, size);
386 622
387 free (ptr); 623 free (ptr);
388 return 0; 624 return 0;
625#endif
389} 626}
390 627
391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
392 629
393void 630void
401{ 638{
402 ptr = alloc (ptr, size); 639 ptr = alloc (ptr, size);
403 640
404 if (!ptr && size) 641 if (!ptr && size)
405 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
407 abort (); 648 abort ();
408 } 649 }
409 650
410 return ptr; 651 return ptr;
411} 652}
413#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
415 656
416/*****************************************************************************/ 657/*****************************************************************************/
417 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
418typedef struct 663typedef struct
419{ 664{
420 WL head; 665 WL head;
421 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
423#if EV_SELECT_IS_WINSOCKET 673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
424 SOCKET handle; 674 SOCKET handle;
425#endif 675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
426} ANFD; 679} ANFD;
427 680
681/* stores the pending event set for a given watcher */
428typedef struct 682typedef struct
429{ 683{
430 W w; 684 W w;
431 int events; 685 int events; /* the pending event set for the given watcher */
432} ANPENDING; 686} ANPENDING;
433 687
434#if EV_USE_INOTIFY 688#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 689/* hash table entry per inotify-id */
436typedef struct 690typedef struct
439} ANFS; 693} ANFS;
440#endif 694#endif
441 695
442/* Heap Entry */ 696/* Heap Entry */
443#if EV_HEAP_CACHE_AT 697#if EV_HEAP_CACHE_AT
698 /* a heap element */
444 typedef struct { 699 typedef struct {
445 ev_tstamp at; 700 ev_tstamp at;
446 WT w; 701 WT w;
447 } ANHE; 702 } ANHE;
448 703
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 704 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 705 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 707#else
708 /* a heap element */
453 typedef WT ANHE; 709 typedef WT ANHE;
454 710
455 #define ANHE_w(he) (he) 711 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 712 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 713 #define ANHE_at_cache(he)
458#endif 714#endif
459 715
460#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
461 717
462 struct ev_loop 718 struct ev_loop
481 737
482 static int ev_default_loop_ptr; 738 static int ev_default_loop_ptr;
483 739
484#endif 740#endif
485 741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
753
486/*****************************************************************************/ 754/*****************************************************************************/
487 755
756#ifndef EV_HAVE_EV_TIME
488ev_tstamp 757ev_tstamp
489ev_time (void) 758ev_time (void)
490{ 759{
491#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
492 struct timespec ts; 763 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 766 }
767#endif
768
496 struct timeval tv; 769 struct timeval tv;
497 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 772}
773#endif
501 774
502ev_tstamp inline_size 775inline_size ev_tstamp
503get_clock (void) 776get_clock (void)
504{ 777{
505#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
507 { 780 {
528 if (delay > 0.) 801 if (delay > 0.)
529 { 802 {
530#if EV_USE_NANOSLEEP 803#if EV_USE_NANOSLEEP
531 struct timespec ts; 804 struct timespec ts;
532 805
533 ts.tv_sec = (time_t)delay; 806 EV_TS_SET (ts, delay);
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0); 807 nanosleep (&ts, 0);
537#elif defined(_WIN32) 808#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3)); 809 Sleep ((unsigned long)(delay * 1e3));
539#else 810#else
540 struct timeval tv; 811 struct timeval tv;
541 812
542 tv.tv_sec = (time_t)delay; 813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 814 /* something not guaranteed by newer posix versions, but guaranteed */
544 815 /* by older ones */
816 EV_TV_SET (tv, delay);
545 select (0, 0, 0, 0, &tv); 817 select (0, 0, 0, 0, &tv);
546#endif 818#endif
547 } 819 }
548} 820}
549 821
550/*****************************************************************************/ 822/*****************************************************************************/
551 823
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 825
554int inline_size 826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
555array_nextsize (int elem, int cur, int cnt) 829array_nextsize (int elem, int cur, int cnt)
556{ 830{
557 int ncur = cur + 1; 831 int ncur = cur + 1;
558 832
559 do 833 do
576array_realloc (int elem, void *base, int *cur, int cnt) 850array_realloc (int elem, void *base, int *cur, int cnt)
577{ 851{
578 *cur = array_nextsize (elem, *cur, cnt); 852 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 853 return ev_realloc (base, elem * *cur);
580} 854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 858
582#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 860 if (expect_false ((cnt) > (cur))) \
584 { \ 861 { \
585 int ocur_ = (cur); \ 862 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 875 }
599#endif 876#endif
600 877
601#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 880
604/*****************************************************************************/ 881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
605 888
606void noinline 889void noinline
607ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
608{ 891{
609 W w_ = (W)w; 892 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 901 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 902 pendings [pri][w_->pending - 1].events = revents;
620 } 903 }
621} 904}
622 905
623void inline_speed 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 923{
626 int i; 924 int i;
627 925
628 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
630} 928}
631 929
632/*****************************************************************************/ 930/*****************************************************************************/
633 931
634void inline_size 932inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
649{ 934{
650 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
651 ev_io *w; 936 ev_io *w;
652 937
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 942 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
659 } 944 }
660} 945}
661 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
662void 958void
663ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 960{
665 if (fd >= 0 && fd < anfdmax) 961 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
667} 963}
668 964
669void inline_size 965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
670fd_reify (EV_P) 968fd_reify (EV_P)
671{ 969{
672 int i; 970 int i;
673 971
674 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
675 { 973 {
676 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
677 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
678 ev_io *w; 976 ev_io *w;
679 977
680 unsigned char events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
681 980
682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 981 anfd->reify = 0;
683 events |= (unsigned char)w->events;
684 982
685#if EV_SELECT_IS_WINSOCKET 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
686 if (events) 984 if (o_reify & EV__IOFDSET)
687 { 985 {
688 unsigned long argp; 986 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
695 } 990 }
696#endif 991#endif
697 992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
698 { 994 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
702 anfd->reify = 0;
703 anfd->events = events; 995 anfd->events = 0;
704 996
705 if (o_events != events || o_reify & EV_IOFDSET) 997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 1005 backend_modify (EV_A_ fd, o_events, anfd->events);
707 }
708 } 1006 }
709 1007
710 fdchangecnt = 0; 1008 fdchangecnt = 0;
711} 1009}
712 1010
713void inline_size 1011/* something about the given fd changed */
1012inline_size void
714fd_change (EV_P_ int fd, int flags) 1013fd_change (EV_P_ int fd, int flags)
715{ 1014{
716 unsigned char reify = anfds [fd].reify; 1015 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 1016 anfds [fd].reify |= flags;
718 1017
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
724 } 1023 }
725} 1024}
726 1025
727void inline_speed 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
728fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
729{ 1029{
730 ev_io *w; 1030 ev_io *w;
731 1031
732 while ((w = (ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 1036 }
737} 1037}
738 1038
739int inline_size 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
740fd_valid (int fd) 1041fd_valid (int fd)
741{ 1042{
742#ifdef _WIN32 1043#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
744#else 1045#else
745 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
746#endif 1047#endif
747} 1048}
748 1049
752{ 1053{
753 int fd; 1054 int fd;
754 1055
755 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 1057 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
759} 1060}
760 1061
761/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 1063static void noinline
766 1067
767 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 1069 if (anfds [fd].events)
769 { 1070 {
770 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
771 return; 1072 break;
772 } 1073 }
773} 1074}
774 1075
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1077static void noinline
780 1081
781 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1083 if (anfds [fd].events)
783 { 1084 {
784 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
1086 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1088 }
787} 1089}
788 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
789/*****************************************************************************/ 1105/*****************************************************************************/
790 1106
791/* 1107/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not 1108 * the heap functions want a real array index. array index 0 is guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree. 1110 * the branching factor of the d-tree.
795 */ 1111 */
796 1112
797/* 1113/*
803#if EV_USE_4HEAP 1119#if EV_USE_4HEAP
804 1120
805#define DHEAP 4 1121#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808 1124#define UPHEAP_DONE(p,k) ((p) == (k))
809/* towards the root */
810void inline_speed
811upheap (ANHE *heap, int k)
812{
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829}
830 1125
831/* away from the root */ 1126/* away from the root */
832void inline_speed 1127inline_speed void
833downheap (ANHE *heap, int N, int k) 1128downheap (ANHE *heap, int N, int k)
834{ 1129{
835 ANHE he = heap [k]; 1130 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0; 1131 ANHE *E = heap + N + HEAP0;
837 1132
838 for (;;) 1133 for (;;)
839 { 1134 {
840 ev_tstamp minat; 1135 ev_tstamp minat;
841 ANHE *minpos; 1136 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
843 1138
844 // find minimum child 1139 /* find minimum child */
845 if (expect_true (pos + DHEAP - 1 < E)) 1140 if (expect_true (pos + DHEAP - 1 < E))
846 { 1141 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 1165
871 heap [k] = he; 1166 heap [k] = he;
872 ev_active (ANHE_w (he)) = k; 1167 ev_active (ANHE_w (he)) = k;
873} 1168}
874 1169
875#else // 4HEAP 1170#else /* 4HEAP */
876 1171
877#define HEAP0 1 1172#define HEAP0 1
878#define HPARENT(k) ((k) >> 1) 1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
879 1175
880/* towards the root */ 1176/* away from the root */
881void inline_speed 1177inline_speed void
882upheap (ANHE *heap, int k) 1178downheap (ANHE *heap, int N, int k)
883{ 1179{
884 ANHE he = heap [k]; 1180 ANHE he = heap [k];
885 1181
886 for (;;) 1182 for (;;)
887 { 1183 {
888 int p = HPARENT (k); 1184 int c = k << 1;
889 1185
890 /* maybe we could use a dummy element at heap [0]? */ 1186 if (c >= N + HEAP0)
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break; 1187 break;
893 1188
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0; 1190 ? 1 : 0;
918 1191
919 if (ANHE_at (he) <= ANHE_at (heap [c])) 1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break; 1193 break;
921 1194
928 heap [k] = he; 1201 heap [k] = he;
929 ev_active (ANHE_w (he)) = k; 1202 ev_active (ANHE_w (he)) = k;
930} 1203}
931#endif 1204#endif
932 1205
933void inline_size 1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
934adjustheap (ANHE *heap, int N, int k) 1230adjustheap (ANHE *heap, int N, int k)
935{ 1231{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
937 upheap (heap, k); 1233 upheap (heap, k);
938 else 1234 else
939 downheap (heap, N, k); 1235 downheap (heap, N, k);
940} 1236}
941 1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
942/*****************************************************************************/ 1250/*****************************************************************************/
943 1251
1252/* associate signal watchers to a signal signal */
944typedef struct 1253typedef struct
945{ 1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
946 WL head; 1259 WL head;
947 EV_ATOMIC_T gotsig;
948} ANSIG; 1260} ANSIG;
949 1261
950static ANSIG *signals; 1262static ANSIG signals [EV_NSIG - 1];
951static int signalmax;
952
953static EV_ATOMIC_T gotsig;
954
955void inline_size
956signals_init (ANSIG *base, int count)
957{
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965}
966 1263
967/*****************************************************************************/ 1264/*****************************************************************************/
968 1265
969void inline_speed 1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
970fd_intern (int fd)
971{
972#ifdef _WIN32
973 int arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
975#else
976 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK);
978#endif
979}
980 1267
981static void noinline 1268static void noinline
982evpipe_init (EV_P) 1269evpipe_init (EV_P)
983{ 1270{
984 if (!ev_is_active (&pipeev)) 1271 if (!ev_is_active (&pipe_w))
985 { 1272 {
986#if EV_USE_EVENTFD 1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
987 if ((evfd = eventfd (0, 0)) >= 0) 1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
988 { 1279 {
989 evpipe [0] = -1; 1280 evpipe [0] = -1;
990 fd_intern (evfd); 1281 fd_intern (evfd); /* doing it twice doesn't hurt */
991 ev_io_set (&pipeev, evfd, EV_READ); 1282 ev_io_set (&pipe_w, evfd, EV_READ);
992 } 1283 }
993 else 1284 else
994#endif 1285# endif
995 { 1286 {
996 while (pipe (evpipe)) 1287 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe"); 1288 ev_syserr ("(libev) error creating signal/async pipe");
998 1289
999 fd_intern (evpipe [0]); 1290 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]); 1291 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ); 1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1002 } 1293 }
1003 1294
1004 ev_io_start (EV_A_ &pipeev); 1295 ev_io_start (EV_A_ &pipe_w);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */ 1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 } 1297 }
1007} 1298}
1008 1299
1009void inline_size 1300inline_size void
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{ 1302{
1012 if (!*flag) 1303 if (!*flag)
1013 { 1304 {
1014 int old_errno = errno; /* save errno because write might clobber it */ 1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1015 1307
1016 *flag = 1; 1308 *flag = 1;
1017 1309
1018#if EV_USE_EVENTFD 1310#if EV_USE_EVENTFD
1019 if (evfd >= 0) 1311 if (evfd >= 0)
1021 uint64_t counter = 1; 1313 uint64_t counter = 1;
1022 write (evfd, &counter, sizeof (uint64_t)); 1314 write (evfd, &counter, sizeof (uint64_t));
1023 } 1315 }
1024 else 1316 else
1025#endif 1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1026 write (evpipe [1], &old_errno, 1); 1323 write (evpipe [1], &dummy, 1);
1027 1324
1028 errno = old_errno; 1325 errno = old_errno;
1029 } 1326 }
1030} 1327}
1031 1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
1032static void 1331static void
1033pipecb (EV_P_ ev_io *iow, int revents) 1332pipecb (EV_P_ ev_io *iow, int revents)
1034{ 1333{
1334 int i;
1335
1035#if EV_USE_EVENTFD 1336#if EV_USE_EVENTFD
1036 if (evfd >= 0) 1337 if (evfd >= 0)
1037 { 1338 {
1038 uint64_t counter; 1339 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t)); 1340 read (evfd, &counter, sizeof (uint64_t));
1040 } 1341 }
1041 else 1342 else
1042#endif 1343#endif
1043 { 1344 {
1044 char dummy; 1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1045 read (evpipe [0], &dummy, 1); 1347 read (evpipe [0], &dummy, 1);
1046 } 1348 }
1047 1349
1048 if (gotsig && ev_is_default_loop (EV_A)) 1350 if (sig_pending)
1049 { 1351 {
1050 int signum; 1352 sig_pending = 0;
1051 gotsig = 0;
1052 1353
1053 for (signum = signalmax; signum--; ) 1354 for (i = EV_NSIG - 1; i--; )
1054 if (signals [signum].gotsig) 1355 if (expect_false (signals [i].pending))
1055 ev_feed_signal_event (EV_A_ signum + 1); 1356 ev_feed_signal_event (EV_A_ i + 1);
1056 } 1357 }
1057 1358
1058#if EV_ASYNC_ENABLE 1359#if EV_ASYNC_ENABLE
1059 if (gotasync) 1360 if (async_pending)
1060 { 1361 {
1061 int i; 1362 async_pending = 0;
1062 gotasync = 0;
1063 1363
1064 for (i = asynccnt; i--; ) 1364 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent) 1365 if (asyncs [i]->sent)
1066 { 1366 {
1067 asyncs [i]->sent = 0; 1367 asyncs [i]->sent = 0;
1075 1375
1076static void 1376static void
1077ev_sighandler (int signum) 1377ev_sighandler (int signum)
1078{ 1378{
1079#if EV_MULTIPLICITY 1379#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct; 1380 EV_P = signals [signum - 1].loop;
1081#endif 1381#endif
1082 1382
1083#if _WIN32 1383#ifdef _WIN32
1084 signal (signum, ev_sighandler); 1384 signal (signum, ev_sighandler);
1085#endif 1385#endif
1086 1386
1087 signals [signum - 1].gotsig = 1; 1387 signals [signum - 1].pending = 1;
1088 evpipe_write (EV_A_ &gotsig); 1388 evpipe_write (EV_A_ &sig_pending);
1089} 1389}
1090 1390
1091void noinline 1391void noinline
1092ev_feed_signal_event (EV_P_ int signum) 1392ev_feed_signal_event (EV_P_ int signum)
1093{ 1393{
1094 WL w; 1394 WL w;
1095 1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1096#if EV_MULTIPLICITY 1401#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1402 /* it is permissible to try to feed a signal to the wrong loop */
1098#endif 1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1099 1404
1100 --signum; 1405 if (expect_false (signals [signum].loop != EV_A))
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return; 1406 return;
1407#endif
1104 1408
1105 signals [signum].gotsig = 0; 1409 signals [signum].pending = 0;
1106 1410
1107 for (w = signals [signum].head; w; w = w->next) 1411 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109} 1413}
1110 1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
1430 break;
1431 }
1432}
1433#endif
1434
1435#endif
1436
1111/*****************************************************************************/ 1437/*****************************************************************************/
1112 1438
1439#if EV_CHILD_ENABLE
1113static WL childs [EV_PID_HASHSIZE]; 1440static WL childs [EV_PID_HASHSIZE];
1114
1115#ifndef _WIN32
1116 1441
1117static ev_signal childev; 1442static ev_signal childev;
1118 1443
1119#ifndef WIFCONTINUED 1444#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0 1445# define WIFCONTINUED(status) 0
1121#endif 1446#endif
1122 1447
1123void inline_speed 1448/* handle a single child status event */
1449inline_speed void
1124child_reap (EV_P_ int chain, int pid, int status) 1450child_reap (EV_P_ int chain, int pid, int status)
1125{ 1451{
1126 ev_child *w; 1452 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128 1454
1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1130 { 1456 {
1131 if ((w->pid == pid || !w->pid) 1457 if ((w->pid == pid || !w->pid)
1132 && (!traced || (w->flags & 1))) 1458 && (!traced || (w->flags & 1)))
1133 { 1459 {
1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1141 1467
1142#ifndef WCONTINUED 1468#ifndef WCONTINUED
1143# define WCONTINUED 0 1469# define WCONTINUED 0
1144#endif 1470#endif
1145 1471
1472/* called on sigchld etc., calls waitpid */
1146static void 1473static void
1147childcb (EV_P_ ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
1148{ 1475{
1149 int pid, status; 1476 int pid, status;
1150 1477
1158 /* make sure we are called again until all children have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1159 /* we need to do it this way so that the callback gets called before we continue */ 1486 /* we need to do it this way so that the callback gets called before we continue */
1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1161 1488
1162 child_reap (EV_A_ pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1163 if (EV_PID_HASHSIZE > 1) 1490 if ((EV_PID_HASHSIZE) > 1)
1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1165} 1492}
1166 1493
1167#endif 1494#endif
1168 1495
1169/*****************************************************************************/ 1496/*****************************************************************************/
1170 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1171#if EV_USE_PORT 1501#if EV_USE_PORT
1172# include "ev_port.c" 1502# include "ev_port.c"
1173#endif 1503#endif
1174#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
1175# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
1231 /* kqueue is borked on everything but netbsd apparently */ 1561 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */ 1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE; 1563 flags &= ~EVBACKEND_KQUEUE;
1234#endif 1564#endif
1235#ifdef __APPLE__ 1565#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation 1566 /* only select works correctly on that "unix-certified" platform */
1237 flags &= ~EVBACKEND_POLL; 1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1238#endif 1572#endif
1239 1573
1240 return flags; 1574 return flags;
1241} 1575}
1242 1576
1244ev_embeddable_backends (void) 1578ev_embeddable_backends (void)
1245{ 1579{
1246 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1247 1581
1248 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1249 /* please fix it and tell me how to detect the fix */ 1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1250 flags &= ~EVBACKEND_EPOLL; 1584 flags &= ~EVBACKEND_EPOLL;
1251 1585
1252 return flags; 1586 return flags;
1253} 1587}
1254 1588
1255unsigned int 1589unsigned int
1256ev_backend (EV_P) 1590ev_backend (EV_P)
1257{ 1591{
1258 return backend; 1592 return backend;
1259} 1593}
1260 1594
1595#if EV_FEATURE_API
1261unsigned int 1596unsigned int
1262ev_loop_count (EV_P) 1597ev_iteration (EV_P)
1263{ 1598{
1264 return loop_count; 1599 return loop_count;
1265} 1600}
1266 1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1267void 1608void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{ 1610{
1270 io_blocktime = interval; 1611 io_blocktime = interval;
1271} 1612}
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{ 1616{
1276 timeout_blocktime = interval; 1617 timeout_blocktime = interval;
1277} 1618}
1278 1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1279static void noinline 1645static void noinline
1280loop_init (EV_P_ unsigned int flags) 1646loop_init (EV_P_ unsigned int flags)
1281{ 1647{
1282 if (!backend) 1648 if (!backend)
1283 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
1284#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1285 { 1662 {
1286 struct timespec ts; 1663 struct timespec ts;
1664
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1; 1666 have_monotonic = 1;
1289 } 1667 }
1290#endif 1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1291 1680
1292 ev_rt_now = ev_time (); 1681 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1682 mn_now = get_clock ();
1294 now_floor = mn_now; 1683 now_floor = mn_now;
1295 rtmn_diff = ev_rt_now - mn_now; 1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1296 1688
1297 io_blocktime = 0.; 1689 io_blocktime = 0.;
1298 timeout_blocktime = 0.; 1690 timeout_blocktime = 0.;
1299 backend = 0; 1691 backend = 0;
1300 backend_fd = -1; 1692 backend_fd = -1;
1301 gotasync = 0; 1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1302#if EV_USE_INOTIFY 1697#if EV_USE_INOTIFY
1303 fs_fd = -2; 1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1304#endif 1699#endif
1305 1700#if EV_USE_SIGNALFD
1306 /* pid check not overridable via env */ 1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1307#ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK)
1309 curpid = getpid ();
1310#endif 1702#endif
1311
1312 if (!(flags & EVFLAG_NOENV)
1313 && !enable_secure ()
1314 && getenv ("LIBEV_FLAGS"))
1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1316 1703
1317 if (!(flags & 0x0000ffffU)) 1704 if (!(flags & 0x0000ffffU))
1318 flags |= ev_recommended_backends (); 1705 flags |= ev_recommended_backends ();
1319 1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1320#if EV_USE_PORT 1710#if EV_USE_PORT
1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1322#endif 1712#endif
1323#if EV_USE_KQUEUE 1713#if EV_USE_KQUEUE
1324 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1331#endif 1721#endif
1332#if EV_USE_SELECT 1722#if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1334#endif 1724#endif
1335 1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1336 ev_init (&pipeev, pipecb); 1729 ev_init (&pipe_w, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI); 1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1338 } 1732 }
1339} 1733}
1340 1734
1341static void noinline 1735/* free up a loop structure */
1736void
1342loop_destroy (EV_P) 1737ev_loop_destroy (EV_P)
1343{ 1738{
1344 int i; 1739 int i;
1345 1740
1741#if EV_MULTIPLICITY
1742 /* mimic free (0) */
1743 if (!EV_A)
1744 return;
1745#endif
1746
1747#if EV_CLEANUP_ENABLE
1748 /* queue cleanup watchers (and execute them) */
1749 if (expect_false (cleanupcnt))
1750 {
1751 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1752 EV_INVOKE_PENDING;
1753 }
1754#endif
1755
1756#if EV_CHILD_ENABLE
1757 if (ev_is_active (&childev))
1758 {
1759 ev_ref (EV_A); /* child watcher */
1760 ev_signal_stop (EV_A_ &childev);
1761 }
1762#endif
1763
1346 if (ev_is_active (&pipeev)) 1764 if (ev_is_active (&pipe_w))
1347 { 1765 {
1348 ev_ref (EV_A); /* signal watcher */ 1766 /*ev_ref (EV_A);*/
1349 ev_io_stop (EV_A_ &pipeev); 1767 /*ev_io_stop (EV_A_ &pipe_w);*/
1350 1768
1351#if EV_USE_EVENTFD 1769#if EV_USE_EVENTFD
1352 if (evfd >= 0) 1770 if (evfd >= 0)
1353 close (evfd); 1771 close (evfd);
1354#endif 1772#endif
1355 1773
1356 if (evpipe [0] >= 0) 1774 if (evpipe [0] >= 0)
1357 { 1775 {
1358 close (evpipe [0]); 1776 EV_WIN32_CLOSE_FD (evpipe [0]);
1359 close (evpipe [1]); 1777 EV_WIN32_CLOSE_FD (evpipe [1]);
1360 } 1778 }
1361 } 1779 }
1780
1781#if EV_USE_SIGNALFD
1782 if (ev_is_active (&sigfd_w))
1783 close (sigfd);
1784#endif
1362 1785
1363#if EV_USE_INOTIFY 1786#if EV_USE_INOTIFY
1364 if (fs_fd >= 0) 1787 if (fs_fd >= 0)
1365 close (fs_fd); 1788 close (fs_fd);
1366#endif 1789#endif
1367 1790
1368 if (backend_fd >= 0) 1791 if (backend_fd >= 0)
1369 close (backend_fd); 1792 close (backend_fd);
1370 1793
1794#if EV_USE_IOCP
1795 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1796#endif
1371#if EV_USE_PORT 1797#if EV_USE_PORT
1372 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1798 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1373#endif 1799#endif
1374#if EV_USE_KQUEUE 1800#if EV_USE_KQUEUE
1375 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1801 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1390#if EV_IDLE_ENABLE 1816#if EV_IDLE_ENABLE
1391 array_free (idle, [i]); 1817 array_free (idle, [i]);
1392#endif 1818#endif
1393 } 1819 }
1394 1820
1395 ev_free (anfds); anfdmax = 0; 1821 ev_free (anfds); anfds = 0; anfdmax = 0;
1396 1822
1397 /* have to use the microsoft-never-gets-it-right macro */ 1823 /* have to use the microsoft-never-gets-it-right macro */
1824 array_free (rfeed, EMPTY);
1398 array_free (fdchange, EMPTY); 1825 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY); 1826 array_free (timer, EMPTY);
1400#if EV_PERIODIC_ENABLE 1827#if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY); 1828 array_free (periodic, EMPTY);
1402#endif 1829#endif
1403#if EV_FORK_ENABLE 1830#if EV_FORK_ENABLE
1404 array_free (fork, EMPTY); 1831 array_free (fork, EMPTY);
1405#endif 1832#endif
1833#if EV_CLEANUP_ENABLE
1834 array_free (cleanup, EMPTY);
1835#endif
1406 array_free (prepare, EMPTY); 1836 array_free (prepare, EMPTY);
1407 array_free (check, EMPTY); 1837 array_free (check, EMPTY);
1408#if EV_ASYNC_ENABLE 1838#if EV_ASYNC_ENABLE
1409 array_free (async, EMPTY); 1839 array_free (async, EMPTY);
1410#endif 1840#endif
1411 1841
1412 backend = 0; 1842 backend = 0;
1843
1844#if EV_MULTIPLICITY
1845 if (ev_is_default_loop (EV_A))
1846#endif
1847 ev_default_loop_ptr = 0;
1848#if EV_MULTIPLICITY
1849 else
1850 ev_free (EV_A);
1851#endif
1413} 1852}
1414 1853
1415#if EV_USE_INOTIFY 1854#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P); 1855inline_size void infy_fork (EV_P);
1417#endif 1856#endif
1418 1857
1419void inline_size 1858inline_size void
1420loop_fork (EV_P) 1859loop_fork (EV_P)
1421{ 1860{
1422#if EV_USE_PORT 1861#if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1862 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424#endif 1863#endif
1430#endif 1869#endif
1431#if EV_USE_INOTIFY 1870#if EV_USE_INOTIFY
1432 infy_fork (EV_A); 1871 infy_fork (EV_A);
1433#endif 1872#endif
1434 1873
1435 if (ev_is_active (&pipeev)) 1874 if (ev_is_active (&pipe_w))
1436 { 1875 {
1437 /* this "locks" the handlers against writing to the pipe */ 1876 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */ 1877 /* while we modify the fd vars */
1439 gotsig = 1; 1878 sig_pending = 1;
1440#if EV_ASYNC_ENABLE 1879#if EV_ASYNC_ENABLE
1441 gotasync = 1; 1880 async_pending = 1;
1442#endif 1881#endif
1443 1882
1444 ev_ref (EV_A); 1883 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev); 1884 ev_io_stop (EV_A_ &pipe_w);
1446 1885
1447#if EV_USE_EVENTFD 1886#if EV_USE_EVENTFD
1448 if (evfd >= 0) 1887 if (evfd >= 0)
1449 close (evfd); 1888 close (evfd);
1450#endif 1889#endif
1451 1890
1452 if (evpipe [0] >= 0) 1891 if (evpipe [0] >= 0)
1453 { 1892 {
1454 close (evpipe [0]); 1893 EV_WIN32_CLOSE_FD (evpipe [0]);
1455 close (evpipe [1]); 1894 EV_WIN32_CLOSE_FD (evpipe [1]);
1456 } 1895 }
1457 1896
1897#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1458 evpipe_init (EV_A); 1898 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */ 1899 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ); 1900 pipecb (EV_A_ &pipe_w, EV_READ);
1901#endif
1461 } 1902 }
1462 1903
1463 postfork = 0; 1904 postfork = 0;
1464} 1905}
1906
1907#if EV_MULTIPLICITY
1908
1909struct ev_loop *
1910ev_loop_new (unsigned int flags)
1911{
1912 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1913
1914 memset (EV_A, 0, sizeof (struct ev_loop));
1915 loop_init (EV_A_ flags);
1916
1917 if (ev_backend (EV_A))
1918 return EV_A;
1919
1920 ev_free (EV_A);
1921 return 0;
1922}
1923
1924#endif /* multiplicity */
1925
1926#if EV_VERIFY
1927static void noinline
1928verify_watcher (EV_P_ W w)
1929{
1930 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1931
1932 if (w->pending)
1933 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1934}
1935
1936static void noinline
1937verify_heap (EV_P_ ANHE *heap, int N)
1938{
1939 int i;
1940
1941 for (i = HEAP0; i < N + HEAP0; ++i)
1942 {
1943 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1944 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1945 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1946
1947 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1948 }
1949}
1950
1951static void noinline
1952array_verify (EV_P_ W *ws, int cnt)
1953{
1954 while (cnt--)
1955 {
1956 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1957 verify_watcher (EV_A_ ws [cnt]);
1958 }
1959}
1960#endif
1961
1962#if EV_FEATURE_API
1963void
1964ev_verify (EV_P)
1965{
1966#if EV_VERIFY
1967 int i;
1968 WL w;
1969
1970 assert (activecnt >= -1);
1971
1972 assert (fdchangemax >= fdchangecnt);
1973 for (i = 0; i < fdchangecnt; ++i)
1974 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1975
1976 assert (anfdmax >= 0);
1977 for (i = 0; i < anfdmax; ++i)
1978 for (w = anfds [i].head; w; w = w->next)
1979 {
1980 verify_watcher (EV_A_ (W)w);
1981 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1982 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1983 }
1984
1985 assert (timermax >= timercnt);
1986 verify_heap (EV_A_ timers, timercnt);
1987
1988#if EV_PERIODIC_ENABLE
1989 assert (periodicmax >= periodiccnt);
1990 verify_heap (EV_A_ periodics, periodiccnt);
1991#endif
1992
1993 for (i = NUMPRI; i--; )
1994 {
1995 assert (pendingmax [i] >= pendingcnt [i]);
1996#if EV_IDLE_ENABLE
1997 assert (idleall >= 0);
1998 assert (idlemax [i] >= idlecnt [i]);
1999 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2000#endif
2001 }
2002
2003#if EV_FORK_ENABLE
2004 assert (forkmax >= forkcnt);
2005 array_verify (EV_A_ (W *)forks, forkcnt);
2006#endif
2007
2008#if EV_CLEANUP_ENABLE
2009 assert (cleanupmax >= cleanupcnt);
2010 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2011#endif
2012
2013#if EV_ASYNC_ENABLE
2014 assert (asyncmax >= asynccnt);
2015 array_verify (EV_A_ (W *)asyncs, asynccnt);
2016#endif
2017
2018#if EV_PREPARE_ENABLE
2019 assert (preparemax >= preparecnt);
2020 array_verify (EV_A_ (W *)prepares, preparecnt);
2021#endif
2022
2023#if EV_CHECK_ENABLE
2024 assert (checkmax >= checkcnt);
2025 array_verify (EV_A_ (W *)checks, checkcnt);
2026#endif
2027
2028# if 0
2029#if EV_CHILD_ENABLE
2030 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2031 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2032#endif
2033# endif
2034#endif
2035}
2036#endif
1465 2037
1466#if EV_MULTIPLICITY 2038#if EV_MULTIPLICITY
1467struct ev_loop * 2039struct ev_loop *
1468ev_loop_new (unsigned int flags)
1469{
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471
1472 memset (loop, 0, sizeof (struct ev_loop));
1473
1474 loop_init (EV_A_ flags);
1475
1476 if (ev_backend (EV_A))
1477 return loop;
1478
1479 return 0;
1480}
1481
1482void
1483ev_loop_destroy (EV_P)
1484{
1485 loop_destroy (EV_A);
1486 ev_free (loop);
1487}
1488
1489void
1490ev_loop_fork (EV_P)
1491{
1492 postfork = 1; /* must be in line with ev_default_fork */
1493}
1494#endif
1495
1496#if EV_MULTIPLICITY
1497struct ev_loop *
1498ev_default_loop_init (unsigned int flags)
1499#else 2040#else
1500int 2041int
2042#endif
1501ev_default_loop (unsigned int flags) 2043ev_default_loop (unsigned int flags)
1502#endif
1503{ 2044{
1504 if (!ev_default_loop_ptr) 2045 if (!ev_default_loop_ptr)
1505 { 2046 {
1506#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2048 EV_P = ev_default_loop_ptr = &default_loop_struct;
1508#else 2049#else
1509 ev_default_loop_ptr = 1; 2050 ev_default_loop_ptr = 1;
1510#endif 2051#endif
1511 2052
1512 loop_init (EV_A_ flags); 2053 loop_init (EV_A_ flags);
1513 2054
1514 if (ev_backend (EV_A)) 2055 if (ev_backend (EV_A))
1515 { 2056 {
1516#ifndef _WIN32 2057#if EV_CHILD_ENABLE
1517 ev_signal_init (&childev, childcb, SIGCHLD); 2058 ev_signal_init (&childev, childcb, SIGCHLD);
1518 ev_set_priority (&childev, EV_MAXPRI); 2059 ev_set_priority (&childev, EV_MAXPRI);
1519 ev_signal_start (EV_A_ &childev); 2060 ev_signal_start (EV_A_ &childev);
1520 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2061 ev_unref (EV_A); /* child watcher should not keep loop alive */
1521#endif 2062#endif
1526 2067
1527 return ev_default_loop_ptr; 2068 return ev_default_loop_ptr;
1528} 2069}
1529 2070
1530void 2071void
1531ev_default_destroy (void) 2072ev_loop_fork (EV_P)
1532{ 2073{
1533#if EV_MULTIPLICITY
1534 struct ev_loop *loop = ev_default_loop_ptr;
1535#endif
1536
1537#ifndef _WIN32
1538 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev);
1540#endif
1541
1542 loop_destroy (EV_A);
1543}
1544
1545void
1546ev_default_fork (void)
1547{
1548#if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr;
1550#endif
1551
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */ 2074 postfork = 1; /* must be in line with ev_default_fork */
1554} 2075}
1555 2076
1556/*****************************************************************************/ 2077/*****************************************************************************/
1557 2078
1558void 2079void
1559ev_invoke (EV_P_ void *w, int revents) 2080ev_invoke (EV_P_ void *w, int revents)
1560{ 2081{
1561 EV_CB_INVOKE ((W)w, revents); 2082 EV_CB_INVOKE ((W)w, revents);
1562} 2083}
1563 2084
1564void inline_speed 2085unsigned int
1565call_pending (EV_P) 2086ev_pending_count (EV_P)
2087{
2088 int pri;
2089 unsigned int count = 0;
2090
2091 for (pri = NUMPRI; pri--; )
2092 count += pendingcnt [pri];
2093
2094 return count;
2095}
2096
2097void noinline
2098ev_invoke_pending (EV_P)
1566{ 2099{
1567 int pri; 2100 int pri;
1568 2101
1569 for (pri = NUMPRI; pri--; ) 2102 for (pri = NUMPRI; pri--; )
1570 while (pendingcnt [pri]) 2103 while (pendingcnt [pri])
1571 { 2104 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2105 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573 2106
1574 if (expect_true (p->w))
1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2107 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2108 /* ^ this is no longer true, as pending_w could be here */
1577 2109
1578 p->w->pending = 0; 2110 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events); 2111 EV_CB_INVOKE (p->w, p->events);
1580 } 2112 EV_FREQUENT_CHECK;
1581 } 2113 }
1582} 2114}
1583 2115
1584#if EV_IDLE_ENABLE 2116#if EV_IDLE_ENABLE
1585void inline_size 2117/* make idle watchers pending. this handles the "call-idle */
2118/* only when higher priorities are idle" logic */
2119inline_size void
1586idle_reify (EV_P) 2120idle_reify (EV_P)
1587{ 2121{
1588 if (expect_false (idleall)) 2122 if (expect_false (idleall))
1589 { 2123 {
1590 int pri; 2124 int pri;
1602 } 2136 }
1603 } 2137 }
1604} 2138}
1605#endif 2139#endif
1606 2140
1607void inline_size 2141/* make timers pending */
2142inline_size void
1608timers_reify (EV_P) 2143timers_reify (EV_P)
1609{ 2144{
2145 EV_FREQUENT_CHECK;
2146
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2147 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 { 2148 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2149 do
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 { 2150 {
2151 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2152
2153 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2154
2155 /* first reschedule or stop timer */
2156 if (w->repeat)
2157 {
1619 ev_at (w) += w->repeat; 2158 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now) 2159 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now; 2160 ev_at (w) = mn_now;
1622 2161
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2162 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624 2163
1625 ANHE_at_set (timers [HEAP0]); 2164 ANHE_at_cache (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0); 2165 downheap (timers, timercnt, HEAP0);
2166 }
2167 else
2168 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2169
2170 EV_FREQUENT_CHECK;
2171 feed_reverse (EV_A_ (W)w);
1627 } 2172 }
1628 else 2173 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630 2174
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2175 feed_reverse_done (EV_A_ EV_TIMER);
1632 } 2176 }
1633} 2177}
1634 2178
1635#if EV_PERIODIC_ENABLE 2179#if EV_PERIODIC_ENABLE
1636void inline_size 2180/* make periodics pending */
2181inline_size void
1637periodics_reify (EV_P) 2182periodics_reify (EV_P)
1638{ 2183{
2184 EV_FREQUENT_CHECK;
2185
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2186 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 { 2187 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2188 int feed_count = 0;
1642 2189
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2190 do
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 { 2191 {
2192 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2193
2194 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2195
2196 /* first reschedule or stop timer */
2197 if (w->reschedule_cb)
2198 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2199 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649 2200
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2201 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651 2202
1652 ANHE_at_set (periodics [HEAP0]); 2203 ANHE_at_cache (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0); 2204 downheap (periodics, periodiccnt, HEAP0);
2205 }
2206 else if (w->interval)
2207 {
2208 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2209 /* if next trigger time is not sufficiently in the future, put it there */
2210 /* this might happen because of floating point inexactness */
2211 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2212 {
2213 ev_at (w) += w->interval;
2214
2215 /* if interval is unreasonably low we might still have a time in the past */
2216 /* so correct this. this will make the periodic very inexact, but the user */
2217 /* has effectively asked to get triggered more often than possible */
2218 if (ev_at (w) < ev_rt_now)
2219 ev_at (w) = ev_rt_now;
2220 }
2221
2222 ANHE_at_cache (periodics [HEAP0]);
2223 downheap (periodics, periodiccnt, HEAP0);
2224 }
2225 else
2226 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2227
2228 EV_FREQUENT_CHECK;
2229 feed_reverse (EV_A_ (W)w);
1654 } 2230 }
1655 else if (w->interval) 2231 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663 2232
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2233 feed_reverse_done (EV_A_ EV_PERIODIC);
1678 } 2234 }
1679} 2235}
1680 2236
2237/* simply recalculate all periodics */
2238/* TODO: maybe ensure that at least one event happens when jumping forward? */
1681static void noinline 2239static void noinline
1682periodics_reschedule (EV_P) 2240periodics_reschedule (EV_P)
1683{ 2241{
1684 int i; 2242 int i;
1685 2243
1691 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 2251 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 2253
1696 ANHE_at_set (periodics [i]); 2254 ANHE_at_cache (periodics [i]);
1697 } 2255 }
1698 2256
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2257 reheap (periodics, periodiccnt);
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2258}
2259#endif
2260
2261/* adjust all timers by a given offset */
2262static void noinline
2263timers_reschedule (EV_P_ ev_tstamp adjust)
2264{
2265 int i;
2266
1701 for (i = 0; i < periodiccnt; ++i) 2267 for (i = 0; i < timercnt; ++i)
1702 upheap (periodics, i + HEAP0); 2268 {
2269 ANHE *he = timers + i + HEAP0;
2270 ANHE_w (*he)->at += adjust;
2271 ANHE_at_cache (*he);
2272 }
1703} 2273}
1704#endif
1705 2274
1706void inline_speed 2275/* fetch new monotonic and realtime times from the kernel */
2276/* also detect if there was a timejump, and act accordingly */
2277inline_speed void
1707time_update (EV_P_ ev_tstamp max_block) 2278time_update (EV_P_ ev_tstamp max_block)
1708{ 2279{
1709 int i;
1710
1711#if EV_USE_MONOTONIC 2280#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic)) 2281 if (expect_true (have_monotonic))
1713 { 2282 {
2283 int i;
1714 ev_tstamp odiff = rtmn_diff; 2284 ev_tstamp odiff = rtmn_diff;
1715 2285
1716 mn_now = get_clock (); 2286 mn_now = get_clock ();
1717 2287
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2288 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1744 ev_rt_now = ev_time (); 2314 ev_rt_now = ev_time ();
1745 mn_now = get_clock (); 2315 mn_now = get_clock ();
1746 now_floor = mn_now; 2316 now_floor = mn_now;
1747 } 2317 }
1748 2318
2319 /* no timer adjustment, as the monotonic clock doesn't jump */
2320 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1749# if EV_PERIODIC_ENABLE 2321# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2322 periodics_reschedule (EV_A);
1751# endif 2323# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 } 2324 }
1755 else 2325 else
1756#endif 2326#endif
1757 { 2327 {
1758 ev_rt_now = ev_time (); 2328 ev_rt_now = ev_time ();
1759 2329
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2330 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 { 2331 {
2332 /* adjust timers. this is easy, as the offset is the same for all of them */
2333 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1762#if EV_PERIODIC_ENABLE 2334#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A); 2335 periodics_reschedule (EV_A);
1764#endif 2336#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 } 2337 }
1773 2338
1774 mn_now = ev_rt_now; 2339 mn_now = ev_rt_now;
1775 } 2340 }
1776} 2341}
1777 2342
1778void 2343void
1779ev_ref (EV_P)
1780{
1781 ++activecnt;
1782}
1783
1784void
1785ev_unref (EV_P)
1786{
1787 --activecnt;
1788}
1789
1790static int loop_done;
1791
1792void
1793ev_loop (EV_P_ int flags) 2344ev_run (EV_P_ int flags)
1794{ 2345{
2346#if EV_FEATURE_API
2347 ++loop_depth;
2348#endif
2349
2350 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2351
1795 loop_done = EVUNLOOP_CANCEL; 2352 loop_done = EVBREAK_CANCEL;
1796 2353
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2354 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1798 2355
1799 do 2356 do
1800 { 2357 {
2358#if EV_VERIFY >= 2
2359 ev_verify (EV_A);
2360#endif
2361
1801#ifndef _WIN32 2362#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */ 2363 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid)) 2364 if (expect_false (getpid () != curpid))
1804 { 2365 {
1805 curpid = getpid (); 2366 curpid = getpid ();
1811 /* we might have forked, so queue fork handlers */ 2372 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork)) 2373 if (expect_false (postfork))
1813 if (forkcnt) 2374 if (forkcnt)
1814 { 2375 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2376 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A); 2377 EV_INVOKE_PENDING;
1817 } 2378 }
1818#endif 2379#endif
1819 2380
2381#if EV_PREPARE_ENABLE
1820 /* queue prepare watchers (and execute them) */ 2382 /* queue prepare watchers (and execute them) */
1821 if (expect_false (preparecnt)) 2383 if (expect_false (preparecnt))
1822 { 2384 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2385 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A); 2386 EV_INVOKE_PENDING;
1825 } 2387 }
2388#endif
1826 2389
1827 if (expect_false (!activecnt)) 2390 if (expect_false (loop_done))
1828 break; 2391 break;
1829 2392
1830 /* we might have forked, so reify kernel state if necessary */ 2393 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork)) 2394 if (expect_false (postfork))
1832 loop_fork (EV_A); 2395 loop_fork (EV_A);
1837 /* calculate blocking time */ 2400 /* calculate blocking time */
1838 { 2401 {
1839 ev_tstamp waittime = 0.; 2402 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.; 2403 ev_tstamp sleeptime = 0.;
1841 2404
2405 /* remember old timestamp for io_blocktime calculation */
2406 ev_tstamp prev_mn_now = mn_now;
2407
2408 /* update time to cancel out callback processing overhead */
2409 time_update (EV_A_ 1e100);
2410
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2411 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1843 { 2412 {
1844 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100);
1846
1847 waittime = MAX_BLOCKTIME; 2413 waittime = MAX_BLOCKTIME;
1848 2414
1849 if (timercnt) 2415 if (timercnt)
1850 { 2416 {
1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2417 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2424 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1859 if (waittime > to) waittime = to; 2425 if (waittime > to) waittime = to;
1860 } 2426 }
1861#endif 2427#endif
1862 2428
2429 /* don't let timeouts decrease the waittime below timeout_blocktime */
1863 if (expect_false (waittime < timeout_blocktime)) 2430 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime; 2431 waittime = timeout_blocktime;
1865 2432
1866 sleeptime = waittime - backend_fudge; 2433 /* extra check because io_blocktime is commonly 0 */
1867
1868 if (expect_true (sleeptime > io_blocktime)) 2434 if (expect_false (io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 { 2435 {
2436 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2437
2438 if (sleeptime > waittime - backend_fudge)
2439 sleeptime = waittime - backend_fudge;
2440
2441 if (expect_true (sleeptime > 0.))
2442 {
1873 ev_sleep (sleeptime); 2443 ev_sleep (sleeptime);
1874 waittime -= sleeptime; 2444 waittime -= sleeptime;
2445 }
1875 } 2446 }
1876 } 2447 }
1877 2448
2449#if EV_FEATURE_API
1878 ++loop_count; 2450 ++loop_count;
2451#endif
2452 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1879 backend_poll (EV_A_ waittime); 2453 backend_poll (EV_A_ waittime);
2454 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1880 2455
1881 /* update ev_rt_now, do magic */ 2456 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime); 2457 time_update (EV_A_ waittime + sleeptime);
1883 } 2458 }
1884 2459
1891#if EV_IDLE_ENABLE 2466#if EV_IDLE_ENABLE
1892 /* queue idle watchers unless other events are pending */ 2467 /* queue idle watchers unless other events are pending */
1893 idle_reify (EV_A); 2468 idle_reify (EV_A);
1894#endif 2469#endif
1895 2470
2471#if EV_CHECK_ENABLE
1896 /* queue check watchers, to be executed first */ 2472 /* queue check watchers, to be executed first */
1897 if (expect_false (checkcnt)) 2473 if (expect_false (checkcnt))
1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2474 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2475#endif
1899 2476
1900 call_pending (EV_A); 2477 EV_INVOKE_PENDING;
1901 } 2478 }
1902 while (expect_true ( 2479 while (expect_true (
1903 activecnt 2480 activecnt
1904 && !loop_done 2481 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2482 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1906 )); 2483 ));
1907 2484
1908 if (loop_done == EVUNLOOP_ONE) 2485 if (loop_done == EVBREAK_ONE)
1909 loop_done = EVUNLOOP_CANCEL; 2486 loop_done = EVBREAK_CANCEL;
1910}
1911 2487
2488#if EV_FEATURE_API
2489 --loop_depth;
2490#endif
2491}
2492
1912void 2493void
1913ev_unloop (EV_P_ int how) 2494ev_break (EV_P_ int how)
1914{ 2495{
1915 loop_done = how; 2496 loop_done = how;
1916} 2497}
1917 2498
2499void
2500ev_ref (EV_P)
2501{
2502 ++activecnt;
2503}
2504
2505void
2506ev_unref (EV_P)
2507{
2508 --activecnt;
2509}
2510
2511void
2512ev_now_update (EV_P)
2513{
2514 time_update (EV_A_ 1e100);
2515}
2516
2517void
2518ev_suspend (EV_P)
2519{
2520 ev_now_update (EV_A);
2521}
2522
2523void
2524ev_resume (EV_P)
2525{
2526 ev_tstamp mn_prev = mn_now;
2527
2528 ev_now_update (EV_A);
2529 timers_reschedule (EV_A_ mn_now - mn_prev);
2530#if EV_PERIODIC_ENABLE
2531 /* TODO: really do this? */
2532 periodics_reschedule (EV_A);
2533#endif
2534}
2535
1918/*****************************************************************************/ 2536/*****************************************************************************/
2537/* singly-linked list management, used when the expected list length is short */
1919 2538
1920void inline_size 2539inline_size void
1921wlist_add (WL *head, WL elem) 2540wlist_add (WL *head, WL elem)
1922{ 2541{
1923 elem->next = *head; 2542 elem->next = *head;
1924 *head = elem; 2543 *head = elem;
1925} 2544}
1926 2545
1927void inline_size 2546inline_size void
1928wlist_del (WL *head, WL elem) 2547wlist_del (WL *head, WL elem)
1929{ 2548{
1930 while (*head) 2549 while (*head)
1931 { 2550 {
1932 if (*head == elem) 2551 if (expect_true (*head == elem))
1933 { 2552 {
1934 *head = elem->next; 2553 *head = elem->next;
1935 return; 2554 break;
1936 } 2555 }
1937 2556
1938 head = &(*head)->next; 2557 head = &(*head)->next;
1939 } 2558 }
1940} 2559}
1941 2560
1942void inline_speed 2561/* internal, faster, version of ev_clear_pending */
2562inline_speed void
1943clear_pending (EV_P_ W w) 2563clear_pending (EV_P_ W w)
1944{ 2564{
1945 if (w->pending) 2565 if (w->pending)
1946 { 2566 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2567 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1948 w->pending = 0; 2568 w->pending = 0;
1949 } 2569 }
1950} 2570}
1951 2571
1952int 2572int
1956 int pending = w_->pending; 2576 int pending = w_->pending;
1957 2577
1958 if (expect_true (pending)) 2578 if (expect_true (pending))
1959 { 2579 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2580 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2581 p->w = (W)&pending_w;
1961 w_->pending = 0; 2582 w_->pending = 0;
1962 p->w = 0;
1963 return p->events; 2583 return p->events;
1964 } 2584 }
1965 else 2585 else
1966 return 0; 2586 return 0;
1967} 2587}
1968 2588
1969void inline_size 2589inline_size void
1970pri_adjust (EV_P_ W w) 2590pri_adjust (EV_P_ W w)
1971{ 2591{
1972 int pri = w->priority; 2592 int pri = ev_priority (w);
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2593 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2594 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri; 2595 ev_set_priority (w, pri);
1976} 2596}
1977 2597
1978void inline_speed 2598inline_speed void
1979ev_start (EV_P_ W w, int active) 2599ev_start (EV_P_ W w, int active)
1980{ 2600{
1981 pri_adjust (EV_A_ w); 2601 pri_adjust (EV_A_ w);
1982 w->active = active; 2602 w->active = active;
1983 ev_ref (EV_A); 2603 ev_ref (EV_A);
1984} 2604}
1985 2605
1986void inline_size 2606inline_size void
1987ev_stop (EV_P_ W w) 2607ev_stop (EV_P_ W w)
1988{ 2608{
1989 ev_unref (EV_A); 2609 ev_unref (EV_A);
1990 w->active = 0; 2610 w->active = 0;
1991} 2611}
1998 int fd = w->fd; 2618 int fd = w->fd;
1999 2619
2000 if (expect_false (ev_is_active (w))) 2620 if (expect_false (ev_is_active (w)))
2001 return; 2621 return;
2002 2622
2003 assert (("ev_io_start called with negative fd", fd >= 0)); 2623 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2624 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2625
2626 EV_FREQUENT_CHECK;
2004 2627
2005 ev_start (EV_A_ (W)w, 1); 2628 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2629 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2007 wlist_add (&anfds[fd].head, (WL)w); 2630 wlist_add (&anfds[fd].head, (WL)w);
2008 2631
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2632 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2010 w->events &= ~EV_IOFDSET; 2633 w->events &= ~EV__IOFDSET;
2634
2635 EV_FREQUENT_CHECK;
2011} 2636}
2012 2637
2013void noinline 2638void noinline
2014ev_io_stop (EV_P_ ev_io *w) 2639ev_io_stop (EV_P_ ev_io *w)
2015{ 2640{
2016 clear_pending (EV_A_ (W)w); 2641 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w))) 2642 if (expect_false (!ev_is_active (w)))
2018 return; 2643 return;
2019 2644
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2645 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2646
2647 EV_FREQUENT_CHECK;
2021 2648
2022 wlist_del (&anfds[w->fd].head, (WL)w); 2649 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
2024 2651
2025 fd_change (EV_A_ w->fd, 1); 2652 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2653
2654 EV_FREQUENT_CHECK;
2026} 2655}
2027 2656
2028void noinline 2657void noinline
2029ev_timer_start (EV_P_ ev_timer *w) 2658ev_timer_start (EV_P_ ev_timer *w)
2030{ 2659{
2031 if (expect_false (ev_is_active (w))) 2660 if (expect_false (ev_is_active (w)))
2032 return; 2661 return;
2033 2662
2034 ev_at (w) += mn_now; 2663 ev_at (w) += mn_now;
2035 2664
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2665 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037 2666
2667 EV_FREQUENT_CHECK;
2668
2669 ++timercnt;
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2670 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2671 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w; 2672 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]); 2673 ANHE_at_cache (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w)); 2674 upheap (timers, ev_active (w));
2043 2675
2676 EV_FREQUENT_CHECK;
2677
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2678 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045} 2679}
2046 2680
2047void noinline 2681void noinline
2048ev_timer_stop (EV_P_ ev_timer *w) 2682ev_timer_stop (EV_P_ ev_timer *w)
2049{ 2683{
2050 clear_pending (EV_A_ (W)w); 2684 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 2685 if (expect_false (!ev_is_active (w)))
2052 return; 2686 return;
2053 2687
2688 EV_FREQUENT_CHECK;
2689
2054 { 2690 {
2055 int active = ev_active (w); 2691 int active = ev_active (w);
2056 2692
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2693 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058 2694
2695 --timercnt;
2696
2059 if (expect_true (active < timercnt + HEAP0 - 1)) 2697 if (expect_true (active < timercnt + HEAP0))
2060 { 2698 {
2061 timers [active] = timers [timercnt + HEAP0 - 1]; 2699 timers [active] = timers [timercnt + HEAP0];
2062 adjustheap (timers, timercnt, active); 2700 adjustheap (timers, timercnt, active);
2063 } 2701 }
2064
2065 --timercnt;
2066 } 2702 }
2067 2703
2068 ev_at (w) -= mn_now; 2704 ev_at (w) -= mn_now;
2069 2705
2070 ev_stop (EV_A_ (W)w); 2706 ev_stop (EV_A_ (W)w);
2707
2708 EV_FREQUENT_CHECK;
2071} 2709}
2072 2710
2073void noinline 2711void noinline
2074ev_timer_again (EV_P_ ev_timer *w) 2712ev_timer_again (EV_P_ ev_timer *w)
2075{ 2713{
2714 EV_FREQUENT_CHECK;
2715
2076 if (ev_is_active (w)) 2716 if (ev_is_active (w))
2077 { 2717 {
2078 if (w->repeat) 2718 if (w->repeat)
2079 { 2719 {
2080 ev_at (w) = mn_now + w->repeat; 2720 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]); 2721 ANHE_at_cache (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w)); 2722 adjustheap (timers, timercnt, ev_active (w));
2083 } 2723 }
2084 else 2724 else
2085 ev_timer_stop (EV_A_ w); 2725 ev_timer_stop (EV_A_ w);
2086 } 2726 }
2087 else if (w->repeat) 2727 else if (w->repeat)
2088 { 2728 {
2089 ev_at (w) = w->repeat; 2729 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w); 2730 ev_timer_start (EV_A_ w);
2091 } 2731 }
2732
2733 EV_FREQUENT_CHECK;
2734}
2735
2736ev_tstamp
2737ev_timer_remaining (EV_P_ ev_timer *w)
2738{
2739 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2092} 2740}
2093 2741
2094#if EV_PERIODIC_ENABLE 2742#if EV_PERIODIC_ENABLE
2095void noinline 2743void noinline
2096ev_periodic_start (EV_P_ ev_periodic *w) 2744ev_periodic_start (EV_P_ ev_periodic *w)
2100 2748
2101 if (w->reschedule_cb) 2749 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2750 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval) 2751 else if (w->interval)
2104 { 2752 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2753 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */ 2754 /* this formula differs from the one in periodic_reify because we do not always round up */
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2755 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 } 2756 }
2109 else 2757 else
2110 ev_at (w) = w->offset; 2758 ev_at (w) = w->offset;
2111 2759
2760 EV_FREQUENT_CHECK;
2761
2762 ++periodiccnt;
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2763 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2764 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2765 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]); 2766 ANHE_at_cache (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w)); 2767 upheap (periodics, ev_active (w));
2117 2768
2769 EV_FREQUENT_CHECK;
2770
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2771 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119} 2772}
2120 2773
2121void noinline 2774void noinline
2122ev_periodic_stop (EV_P_ ev_periodic *w) 2775ev_periodic_stop (EV_P_ ev_periodic *w)
2123{ 2776{
2124 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
2126 return; 2779 return;
2127 2780
2781 EV_FREQUENT_CHECK;
2782
2128 { 2783 {
2129 int active = ev_active (w); 2784 int active = ev_active (w);
2130 2785
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2786 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132 2787
2788 --periodiccnt;
2789
2133 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2790 if (expect_true (active < periodiccnt + HEAP0))
2134 { 2791 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2792 periodics [active] = periodics [periodiccnt + HEAP0];
2136 adjustheap (periodics, periodiccnt, active); 2793 adjustheap (periodics, periodiccnt, active);
2137 } 2794 }
2138
2139 --periodiccnt;
2140 } 2795 }
2141 2796
2142 ev_stop (EV_A_ (W)w); 2797 ev_stop (EV_A_ (W)w);
2798
2799 EV_FREQUENT_CHECK;
2143} 2800}
2144 2801
2145void noinline 2802void noinline
2146ev_periodic_again (EV_P_ ev_periodic *w) 2803ev_periodic_again (EV_P_ ev_periodic *w)
2147{ 2804{
2153 2810
2154#ifndef SA_RESTART 2811#ifndef SA_RESTART
2155# define SA_RESTART 0 2812# define SA_RESTART 0
2156#endif 2813#endif
2157 2814
2815#if EV_SIGNAL_ENABLE
2816
2158void noinline 2817void noinline
2159ev_signal_start (EV_P_ ev_signal *w) 2818ev_signal_start (EV_P_ ev_signal *w)
2160{ 2819{
2161#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif
2164 if (expect_false (ev_is_active (w))) 2820 if (expect_false (ev_is_active (w)))
2165 return; 2821 return;
2166 2822
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2823 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2168 2824
2169 evpipe_init (EV_A); 2825#if EV_MULTIPLICITY
2826 assert (("libev: a signal must not be attached to two different loops",
2827 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2170 2828
2829 signals [w->signum - 1].loop = EV_A;
2830#endif
2831
2832 EV_FREQUENT_CHECK;
2833
2834#if EV_USE_SIGNALFD
2835 if (sigfd == -2)
2171 { 2836 {
2172#ifndef _WIN32 2837 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2173 sigset_t full, prev; 2838 if (sigfd < 0 && errno == EINVAL)
2174 sigfillset (&full); 2839 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177 2840
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2841 if (sigfd >= 0)
2842 {
2843 fd_intern (sigfd); /* doing it twice will not hurt */
2179 2844
2180#ifndef _WIN32 2845 sigemptyset (&sigfd_set);
2181 sigprocmask (SIG_SETMASK, &prev, 0); 2846
2182#endif 2847 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2848 ev_set_priority (&sigfd_w, EV_MAXPRI);
2849 ev_io_start (EV_A_ &sigfd_w);
2850 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2851 }
2183 } 2852 }
2853
2854 if (sigfd >= 0)
2855 {
2856 /* TODO: check .head */
2857 sigaddset (&sigfd_set, w->signum);
2858 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2859
2860 signalfd (sigfd, &sigfd_set, 0);
2861 }
2862#endif
2184 2863
2185 ev_start (EV_A_ (W)w, 1); 2864 ev_start (EV_A_ (W)w, 1);
2186 wlist_add (&signals [w->signum - 1].head, (WL)w); 2865 wlist_add (&signals [w->signum - 1].head, (WL)w);
2187 2866
2188 if (!((WL)w)->next) 2867 if (!((WL)w)->next)
2868# if EV_USE_SIGNALFD
2869 if (sigfd < 0) /*TODO*/
2870# endif
2189 { 2871 {
2190#if _WIN32 2872# ifdef _WIN32
2873 evpipe_init (EV_A);
2874
2191 signal (w->signum, ev_sighandler); 2875 signal (w->signum, ev_sighandler);
2192#else 2876# else
2193 struct sigaction sa; 2877 struct sigaction sa;
2878
2879 evpipe_init (EV_A);
2880
2194 sa.sa_handler = ev_sighandler; 2881 sa.sa_handler = ev_sighandler;
2195 sigfillset (&sa.sa_mask); 2882 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2883 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0); 2884 sigaction (w->signum, &sa, 0);
2885
2886 sigemptyset (&sa.sa_mask);
2887 sigaddset (&sa.sa_mask, w->signum);
2888 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2198#endif 2889#endif
2199 } 2890 }
2891
2892 EV_FREQUENT_CHECK;
2200} 2893}
2201 2894
2202void noinline 2895void noinline
2203ev_signal_stop (EV_P_ ev_signal *w) 2896ev_signal_stop (EV_P_ ev_signal *w)
2204{ 2897{
2205 clear_pending (EV_A_ (W)w); 2898 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2899 if (expect_false (!ev_is_active (w)))
2207 return; 2900 return;
2208 2901
2902 EV_FREQUENT_CHECK;
2903
2209 wlist_del (&signals [w->signum - 1].head, (WL)w); 2904 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w); 2905 ev_stop (EV_A_ (W)w);
2211 2906
2212 if (!signals [w->signum - 1].head) 2907 if (!signals [w->signum - 1].head)
2908 {
2909#if EV_MULTIPLICITY
2910 signals [w->signum - 1].loop = 0; /* unattach from signal */
2911#endif
2912#if EV_USE_SIGNALFD
2913 if (sigfd >= 0)
2914 {
2915 sigset_t ss;
2916
2917 sigemptyset (&ss);
2918 sigaddset (&ss, w->signum);
2919 sigdelset (&sigfd_set, w->signum);
2920
2921 signalfd (sigfd, &sigfd_set, 0);
2922 sigprocmask (SIG_UNBLOCK, &ss, 0);
2923 }
2924 else
2925#endif
2213 signal (w->signum, SIG_DFL); 2926 signal (w->signum, SIG_DFL);
2927 }
2928
2929 EV_FREQUENT_CHECK;
2214} 2930}
2931
2932#endif
2933
2934#if EV_CHILD_ENABLE
2215 2935
2216void 2936void
2217ev_child_start (EV_P_ ev_child *w) 2937ev_child_start (EV_P_ ev_child *w)
2218{ 2938{
2219#if EV_MULTIPLICITY 2939#if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2940 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221#endif 2941#endif
2222 if (expect_false (ev_is_active (w))) 2942 if (expect_false (ev_is_active (w)))
2223 return; 2943 return;
2224 2944
2945 EV_FREQUENT_CHECK;
2946
2225 ev_start (EV_A_ (W)w, 1); 2947 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2948 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2949
2950 EV_FREQUENT_CHECK;
2227} 2951}
2228 2952
2229void 2953void
2230ev_child_stop (EV_P_ ev_child *w) 2954ev_child_stop (EV_P_ ev_child *w)
2231{ 2955{
2232 clear_pending (EV_A_ (W)w); 2956 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w))) 2957 if (expect_false (!ev_is_active (w)))
2234 return; 2958 return;
2235 2959
2960 EV_FREQUENT_CHECK;
2961
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2962 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w); 2963 ev_stop (EV_A_ (W)w);
2964
2965 EV_FREQUENT_CHECK;
2238} 2966}
2967
2968#endif
2239 2969
2240#if EV_STAT_ENABLE 2970#if EV_STAT_ENABLE
2241 2971
2242# ifdef _WIN32 2972# ifdef _WIN32
2243# undef lstat 2973# undef lstat
2244# define lstat(a,b) _stati64 (a,b) 2974# define lstat(a,b) _stati64 (a,b)
2245# endif 2975# endif
2246 2976
2247#define DEF_STAT_INTERVAL 5.0074891 2977#define DEF_STAT_INTERVAL 5.0074891
2978#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2248#define MIN_STAT_INTERVAL 0.1074891 2979#define MIN_STAT_INTERVAL 0.1074891
2249 2980
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2981static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251 2982
2252#if EV_USE_INOTIFY 2983#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192 2984
2985/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2986# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2254 2987
2255static void noinline 2988static void noinline
2256infy_add (EV_P_ ev_stat *w) 2989infy_add (EV_P_ ev_stat *w)
2257{ 2990{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2991 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259 2992
2260 if (w->wd < 0) 2993 if (w->wd >= 0)
2994 {
2995 struct statfs sfs;
2996
2997 /* now local changes will be tracked by inotify, but remote changes won't */
2998 /* unless the filesystem is known to be local, we therefore still poll */
2999 /* also do poll on <2.6.25, but with normal frequency */
3000
3001 if (!fs_2625)
3002 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3003 else if (!statfs (w->path, &sfs)
3004 && (sfs.f_type == 0x1373 /* devfs */
3005 || sfs.f_type == 0xEF53 /* ext2/3 */
3006 || sfs.f_type == 0x3153464a /* jfs */
3007 || sfs.f_type == 0x52654973 /* reiser3 */
3008 || sfs.f_type == 0x01021994 /* tempfs */
3009 || sfs.f_type == 0x58465342 /* xfs */))
3010 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3011 else
3012 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2261 { 3013 }
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3014 else
3015 {
3016 /* can't use inotify, continue to stat */
3017 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2263 3018
2264 /* monitor some parent directory for speedup hints */ 3019 /* if path is not there, monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3020 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2266 /* but an efficiency issue only */ 3021 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3022 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 { 3023 {
2269 char path [4096]; 3024 char path [4096];
2270 strcpy (path, w->path); 3025 strcpy (path, w->path);
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3029 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3030 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276 3031
2277 char *pend = strrchr (path, '/'); 3032 char *pend = strrchr (path, '/');
2278 3033
2279 if (!pend) 3034 if (!pend || pend == path)
2280 break; /* whoops, no '/', complain to your admin */ 3035 break;
2281 3036
2282 *pend = 0; 3037 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask); 3038 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 } 3039 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3040 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 } 3041 }
2287 } 3042 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290 3043
2291 if (w->wd >= 0) 3044 if (w->wd >= 0)
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3045 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3046
3047 /* now re-arm timer, if required */
3048 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3049 ev_timer_again (EV_A_ &w->timer);
3050 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2293} 3051}
2294 3052
2295static void noinline 3053static void noinline
2296infy_del (EV_P_ ev_stat *w) 3054infy_del (EV_P_ ev_stat *w)
2297{ 3055{
2300 3058
2301 if (wd < 0) 3059 if (wd < 0)
2302 return; 3060 return;
2303 3061
2304 w->wd = -2; 3062 w->wd = -2;
2305 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3063 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2306 wlist_del (&fs_hash [slot].head, (WL)w); 3064 wlist_del (&fs_hash [slot].head, (WL)w);
2307 3065
2308 /* remove this watcher, if others are watching it, they will rearm */ 3066 /* remove this watcher, if others are watching it, they will rearm */
2309 inotify_rm_watch (fs_fd, wd); 3067 inotify_rm_watch (fs_fd, wd);
2310} 3068}
2311 3069
2312static void noinline 3070static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3071infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{ 3072{
2315 if (slot < 0) 3073 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */ 3074 /* overflow, need to check for all hash slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3075 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2318 infy_wd (EV_A_ slot, wd, ev); 3076 infy_wd (EV_A_ slot, wd, ev);
2319 else 3077 else
2320 { 3078 {
2321 WL w_; 3079 WL w_;
2322 3080
2323 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3081 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2324 { 3082 {
2325 ev_stat *w = (ev_stat *)w_; 3083 ev_stat *w = (ev_stat *)w_;
2326 w_ = w_->next; /* lets us remove this watcher and all before it */ 3084 w_ = w_->next; /* lets us remove this watcher and all before it */
2327 3085
2328 if (w->wd == wd || wd == -1) 3086 if (w->wd == wd || wd == -1)
2329 { 3087 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3088 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 { 3089 {
3090 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2332 w->wd = -1; 3091 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 3092 infy_add (EV_A_ w); /* re-add, no matter what */
2334 } 3093 }
2335 3094
2336 stat_timer_cb (EV_A_ &w->timer, 0); 3095 stat_timer_cb (EV_A_ &w->timer, 0);
2341 3100
2342static void 3101static void
2343infy_cb (EV_P_ ev_io *w, int revents) 3102infy_cb (EV_P_ ev_io *w, int revents)
2344{ 3103{
2345 char buf [EV_INOTIFY_BUFSIZE]; 3104 char buf [EV_INOTIFY_BUFSIZE];
2346 struct inotify_event *ev = (struct inotify_event *)buf;
2347 int ofs; 3105 int ofs;
2348 int len = read (fs_fd, buf, sizeof (buf)); 3106 int len = read (fs_fd, buf, sizeof (buf));
2349 3107
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3108 for (ofs = 0; ofs < len; )
3109 {
3110 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3111 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3112 ofs += sizeof (struct inotify_event) + ev->len;
3113 }
2352} 3114}
2353 3115
2354void inline_size 3116inline_size void
3117ev_check_2625 (EV_P)
3118{
3119 /* kernels < 2.6.25 are borked
3120 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3121 */
3122 if (ev_linux_version () < 0x020619)
3123 return;
3124
3125 fs_2625 = 1;
3126}
3127
3128inline_size int
3129infy_newfd (void)
3130{
3131#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3132 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3133 if (fd >= 0)
3134 return fd;
3135#endif
3136 return inotify_init ();
3137}
3138
3139inline_size void
2355infy_init (EV_P) 3140infy_init (EV_P)
2356{ 3141{
2357 if (fs_fd != -2) 3142 if (fs_fd != -2)
2358 return; 3143 return;
2359 3144
3145 fs_fd = -1;
3146
3147 ev_check_2625 (EV_A);
3148
2360 fs_fd = inotify_init (); 3149 fs_fd = infy_newfd ();
2361 3150
2362 if (fs_fd >= 0) 3151 if (fs_fd >= 0)
2363 { 3152 {
3153 fd_intern (fs_fd);
2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3154 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2365 ev_set_priority (&fs_w, EV_MAXPRI); 3155 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w); 3156 ev_io_start (EV_A_ &fs_w);
3157 ev_unref (EV_A);
2367 } 3158 }
2368} 3159}
2369 3160
2370void inline_size 3161inline_size void
2371infy_fork (EV_P) 3162infy_fork (EV_P)
2372{ 3163{
2373 int slot; 3164 int slot;
2374 3165
2375 if (fs_fd < 0) 3166 if (fs_fd < 0)
2376 return; 3167 return;
2377 3168
3169 ev_ref (EV_A);
3170 ev_io_stop (EV_A_ &fs_w);
2378 close (fs_fd); 3171 close (fs_fd);
2379 fs_fd = inotify_init (); 3172 fs_fd = infy_newfd ();
2380 3173
3174 if (fs_fd >= 0)
3175 {
3176 fd_intern (fs_fd);
3177 ev_io_set (&fs_w, fs_fd, EV_READ);
3178 ev_io_start (EV_A_ &fs_w);
3179 ev_unref (EV_A);
3180 }
3181
2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3182 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2382 { 3183 {
2383 WL w_ = fs_hash [slot].head; 3184 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0; 3185 fs_hash [slot].head = 0;
2385 3186
2386 while (w_) 3187 while (w_)
2391 w->wd = -1; 3192 w->wd = -1;
2392 3193
2393 if (fs_fd >= 0) 3194 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */ 3195 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else 3196 else
3197 {
3198 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3199 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2396 ev_timer_start (EV_A_ &w->timer); 3200 ev_timer_again (EV_A_ &w->timer);
3201 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3202 }
2397 } 3203 }
2398
2399 } 3204 }
2400} 3205}
2401 3206
3207#endif
3208
3209#ifdef _WIN32
3210# define EV_LSTAT(p,b) _stati64 (p, b)
3211#else
3212# define EV_LSTAT(p,b) lstat (p, b)
2402#endif 3213#endif
2403 3214
2404void 3215void
2405ev_stat_stat (EV_P_ ev_stat *w) 3216ev_stat_stat (EV_P_ ev_stat *w)
2406{ 3217{
2413static void noinline 3224static void noinline
2414stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3225stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2415{ 3226{
2416 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3227 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2417 3228
2418 /* we copy this here each the time so that */ 3229 ev_statdata prev = w->attr;
2419 /* prev has the old value when the callback gets invoked */
2420 w->prev = w->attr;
2421 ev_stat_stat (EV_A_ w); 3230 ev_stat_stat (EV_A_ w);
2422 3231
2423 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3232 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2424 if ( 3233 if (
2425 w->prev.st_dev != w->attr.st_dev 3234 prev.st_dev != w->attr.st_dev
2426 || w->prev.st_ino != w->attr.st_ino 3235 || prev.st_ino != w->attr.st_ino
2427 || w->prev.st_mode != w->attr.st_mode 3236 || prev.st_mode != w->attr.st_mode
2428 || w->prev.st_nlink != w->attr.st_nlink 3237 || prev.st_nlink != w->attr.st_nlink
2429 || w->prev.st_uid != w->attr.st_uid 3238 || prev.st_uid != w->attr.st_uid
2430 || w->prev.st_gid != w->attr.st_gid 3239 || prev.st_gid != w->attr.st_gid
2431 || w->prev.st_rdev != w->attr.st_rdev 3240 || prev.st_rdev != w->attr.st_rdev
2432 || w->prev.st_size != w->attr.st_size 3241 || prev.st_size != w->attr.st_size
2433 || w->prev.st_atime != w->attr.st_atime 3242 || prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime 3243 || prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime 3244 || prev.st_ctime != w->attr.st_ctime
2436 ) { 3245 ) {
3246 /* we only update w->prev on actual differences */
3247 /* in case we test more often than invoke the callback, */
3248 /* to ensure that prev is always different to attr */
3249 w->prev = prev;
3250
2437 #if EV_USE_INOTIFY 3251 #if EV_USE_INOTIFY
3252 if (fs_fd >= 0)
3253 {
2438 infy_del (EV_A_ w); 3254 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w); 3255 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */ 3256 ev_stat_stat (EV_A_ w); /* avoid race... */
3257 }
2441 #endif 3258 #endif
2442 3259
2443 ev_feed_event (EV_A_ w, EV_STAT); 3260 ev_feed_event (EV_A_ w, EV_STAT);
2444 } 3261 }
2445} 3262}
2448ev_stat_start (EV_P_ ev_stat *w) 3265ev_stat_start (EV_P_ ev_stat *w)
2449{ 3266{
2450 if (expect_false (ev_is_active (w))) 3267 if (expect_false (ev_is_active (w)))
2451 return; 3268 return;
2452 3269
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w); 3270 ev_stat_stat (EV_A_ w);
2458 3271
3272 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2459 if (w->interval < MIN_STAT_INTERVAL) 3273 w->interval = MIN_STAT_INTERVAL;
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461 3274
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3275 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2463 ev_set_priority (&w->timer, ev_priority (w)); 3276 ev_set_priority (&w->timer, ev_priority (w));
2464 3277
2465#if EV_USE_INOTIFY 3278#if EV_USE_INOTIFY
2466 infy_init (EV_A); 3279 infy_init (EV_A);
2467 3280
2468 if (fs_fd >= 0) 3281 if (fs_fd >= 0)
2469 infy_add (EV_A_ w); 3282 infy_add (EV_A_ w);
2470 else 3283 else
2471#endif 3284#endif
3285 {
2472 ev_timer_start (EV_A_ &w->timer); 3286 ev_timer_again (EV_A_ &w->timer);
3287 ev_unref (EV_A);
3288 }
2473 3289
2474 ev_start (EV_A_ (W)w, 1); 3290 ev_start (EV_A_ (W)w, 1);
3291
3292 EV_FREQUENT_CHECK;
2475} 3293}
2476 3294
2477void 3295void
2478ev_stat_stop (EV_P_ ev_stat *w) 3296ev_stat_stop (EV_P_ ev_stat *w)
2479{ 3297{
2480 clear_pending (EV_A_ (W)w); 3298 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 3299 if (expect_false (!ev_is_active (w)))
2482 return; 3300 return;
2483 3301
3302 EV_FREQUENT_CHECK;
3303
2484#if EV_USE_INOTIFY 3304#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w); 3305 infy_del (EV_A_ w);
2486#endif 3306#endif
3307
3308 if (ev_is_active (&w->timer))
3309 {
3310 ev_ref (EV_A);
2487 ev_timer_stop (EV_A_ &w->timer); 3311 ev_timer_stop (EV_A_ &w->timer);
3312 }
2488 3313
2489 ev_stop (EV_A_ (W)w); 3314 ev_stop (EV_A_ (W)w);
3315
3316 EV_FREQUENT_CHECK;
2490} 3317}
2491#endif 3318#endif
2492 3319
2493#if EV_IDLE_ENABLE 3320#if EV_IDLE_ENABLE
2494void 3321void
2496{ 3323{
2497 if (expect_false (ev_is_active (w))) 3324 if (expect_false (ev_is_active (w)))
2498 return; 3325 return;
2499 3326
2500 pri_adjust (EV_A_ (W)w); 3327 pri_adjust (EV_A_ (W)w);
3328
3329 EV_FREQUENT_CHECK;
2501 3330
2502 { 3331 {
2503 int active = ++idlecnt [ABSPRI (w)]; 3332 int active = ++idlecnt [ABSPRI (w)];
2504 3333
2505 ++idleall; 3334 ++idleall;
2506 ev_start (EV_A_ (W)w, active); 3335 ev_start (EV_A_ (W)w, active);
2507 3336
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3337 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w; 3338 idles [ABSPRI (w)][active - 1] = w;
2510 } 3339 }
3340
3341 EV_FREQUENT_CHECK;
2511} 3342}
2512 3343
2513void 3344void
2514ev_idle_stop (EV_P_ ev_idle *w) 3345ev_idle_stop (EV_P_ ev_idle *w)
2515{ 3346{
2516 clear_pending (EV_A_ (W)w); 3347 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w))) 3348 if (expect_false (!ev_is_active (w)))
2518 return; 3349 return;
2519 3350
3351 EV_FREQUENT_CHECK;
3352
2520 { 3353 {
2521 int active = ev_active (w); 3354 int active = ev_active (w);
2522 3355
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3356 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3357 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525 3358
2526 ev_stop (EV_A_ (W)w); 3359 ev_stop (EV_A_ (W)w);
2527 --idleall; 3360 --idleall;
2528 } 3361 }
2529}
2530#endif
2531 3362
3363 EV_FREQUENT_CHECK;
3364}
3365#endif
3366
3367#if EV_PREPARE_ENABLE
2532void 3368void
2533ev_prepare_start (EV_P_ ev_prepare *w) 3369ev_prepare_start (EV_P_ ev_prepare *w)
2534{ 3370{
2535 if (expect_false (ev_is_active (w))) 3371 if (expect_false (ev_is_active (w)))
2536 return; 3372 return;
3373
3374 EV_FREQUENT_CHECK;
2537 3375
2538 ev_start (EV_A_ (W)w, ++preparecnt); 3376 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3377 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w; 3378 prepares [preparecnt - 1] = w;
3379
3380 EV_FREQUENT_CHECK;
2541} 3381}
2542 3382
2543void 3383void
2544ev_prepare_stop (EV_P_ ev_prepare *w) 3384ev_prepare_stop (EV_P_ ev_prepare *w)
2545{ 3385{
2546 clear_pending (EV_A_ (W)w); 3386 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 3387 if (expect_false (!ev_is_active (w)))
2548 return; 3388 return;
2549 3389
3390 EV_FREQUENT_CHECK;
3391
2550 { 3392 {
2551 int active = ev_active (w); 3393 int active = ev_active (w);
2552 3394
2553 prepares [active - 1] = prepares [--preparecnt]; 3395 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active; 3396 ev_active (prepares [active - 1]) = active;
2555 } 3397 }
2556 3398
2557 ev_stop (EV_A_ (W)w); 3399 ev_stop (EV_A_ (W)w);
2558}
2559 3400
3401 EV_FREQUENT_CHECK;
3402}
3403#endif
3404
3405#if EV_CHECK_ENABLE
2560void 3406void
2561ev_check_start (EV_P_ ev_check *w) 3407ev_check_start (EV_P_ ev_check *w)
2562{ 3408{
2563 if (expect_false (ev_is_active (w))) 3409 if (expect_false (ev_is_active (w)))
2564 return; 3410 return;
3411
3412 EV_FREQUENT_CHECK;
2565 3413
2566 ev_start (EV_A_ (W)w, ++checkcnt); 3414 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3415 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w; 3416 checks [checkcnt - 1] = w;
3417
3418 EV_FREQUENT_CHECK;
2569} 3419}
2570 3420
2571void 3421void
2572ev_check_stop (EV_P_ ev_check *w) 3422ev_check_stop (EV_P_ ev_check *w)
2573{ 3423{
2574 clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w))) 3425 if (expect_false (!ev_is_active (w)))
2576 return; 3426 return;
2577 3427
3428 EV_FREQUENT_CHECK;
3429
2578 { 3430 {
2579 int active = ev_active (w); 3431 int active = ev_active (w);
2580 3432
2581 checks [active - 1] = checks [--checkcnt]; 3433 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active; 3434 ev_active (checks [active - 1]) = active;
2583 } 3435 }
2584 3436
2585 ev_stop (EV_A_ (W)w); 3437 ev_stop (EV_A_ (W)w);
3438
3439 EV_FREQUENT_CHECK;
2586} 3440}
3441#endif
2587 3442
2588#if EV_EMBED_ENABLE 3443#if EV_EMBED_ENABLE
2589void noinline 3444void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w) 3445ev_embed_sweep (EV_P_ ev_embed *w)
2591{ 3446{
2592 ev_loop (w->other, EVLOOP_NONBLOCK); 3447 ev_run (w->other, EVRUN_NOWAIT);
2593} 3448}
2594 3449
2595static void 3450static void
2596embed_io_cb (EV_P_ ev_io *io, int revents) 3451embed_io_cb (EV_P_ ev_io *io, int revents)
2597{ 3452{
2598 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3453 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2599 3454
2600 if (ev_cb (w)) 3455 if (ev_cb (w))
2601 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3456 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2602 else 3457 else
2603 ev_loop (w->other, EVLOOP_NONBLOCK); 3458 ev_run (w->other, EVRUN_NOWAIT);
2604} 3459}
2605 3460
2606static void 3461static void
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3462embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{ 3463{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3464 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610 3465
2611 { 3466 {
2612 struct ev_loop *loop = w->other; 3467 EV_P = w->other;
2613 3468
2614 while (fdchangecnt) 3469 while (fdchangecnt)
2615 { 3470 {
2616 fd_reify (EV_A); 3471 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3472 ev_run (EV_A_ EVRUN_NOWAIT);
2618 } 3473 }
2619 } 3474 }
3475}
3476
3477static void
3478embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3479{
3480 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3481
3482 ev_embed_stop (EV_A_ w);
3483
3484 {
3485 EV_P = w->other;
3486
3487 ev_loop_fork (EV_A);
3488 ev_run (EV_A_ EVRUN_NOWAIT);
3489 }
3490
3491 ev_embed_start (EV_A_ w);
2620} 3492}
2621 3493
2622#if 0 3494#if 0
2623static void 3495static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3496embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2632{ 3504{
2633 if (expect_false (ev_is_active (w))) 3505 if (expect_false (ev_is_active (w)))
2634 return; 3506 return;
2635 3507
2636 { 3508 {
2637 struct ev_loop *loop = w->other; 3509 EV_P = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3510 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3511 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 } 3512 }
3513
3514 EV_FREQUENT_CHECK;
2641 3515
2642 ev_set_priority (&w->io, ev_priority (w)); 3516 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io); 3517 ev_io_start (EV_A_ &w->io);
2644 3518
2645 ev_prepare_init (&w->prepare, embed_prepare_cb); 3519 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI); 3520 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare); 3521 ev_prepare_start (EV_A_ &w->prepare);
2648 3522
3523 ev_fork_init (&w->fork, embed_fork_cb);
3524 ev_fork_start (EV_A_ &w->fork);
3525
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3526 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650 3527
2651 ev_start (EV_A_ (W)w, 1); 3528 ev_start (EV_A_ (W)w, 1);
3529
3530 EV_FREQUENT_CHECK;
2652} 3531}
2653 3532
2654void 3533void
2655ev_embed_stop (EV_P_ ev_embed *w) 3534ev_embed_stop (EV_P_ ev_embed *w)
2656{ 3535{
2657 clear_pending (EV_A_ (W)w); 3536 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w))) 3537 if (expect_false (!ev_is_active (w)))
2659 return; 3538 return;
2660 3539
3540 EV_FREQUENT_CHECK;
3541
2661 ev_io_stop (EV_A_ &w->io); 3542 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare); 3543 ev_prepare_stop (EV_A_ &w->prepare);
3544 ev_fork_stop (EV_A_ &w->fork);
2663 3545
2664 ev_stop (EV_A_ (W)w); 3546 ev_stop (EV_A_ (W)w);
3547
3548 EV_FREQUENT_CHECK;
2665} 3549}
2666#endif 3550#endif
2667 3551
2668#if EV_FORK_ENABLE 3552#if EV_FORK_ENABLE
2669void 3553void
2670ev_fork_start (EV_P_ ev_fork *w) 3554ev_fork_start (EV_P_ ev_fork *w)
2671{ 3555{
2672 if (expect_false (ev_is_active (w))) 3556 if (expect_false (ev_is_active (w)))
2673 return; 3557 return;
3558
3559 EV_FREQUENT_CHECK;
2674 3560
2675 ev_start (EV_A_ (W)w, ++forkcnt); 3561 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3562 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w; 3563 forks [forkcnt - 1] = w;
3564
3565 EV_FREQUENT_CHECK;
2678} 3566}
2679 3567
2680void 3568void
2681ev_fork_stop (EV_P_ ev_fork *w) 3569ev_fork_stop (EV_P_ ev_fork *w)
2682{ 3570{
2683 clear_pending (EV_A_ (W)w); 3571 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 3572 if (expect_false (!ev_is_active (w)))
2685 return; 3573 return;
2686 3574
3575 EV_FREQUENT_CHECK;
3576
2687 { 3577 {
2688 int active = ev_active (w); 3578 int active = ev_active (w);
2689 3579
2690 forks [active - 1] = forks [--forkcnt]; 3580 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active; 3581 ev_active (forks [active - 1]) = active;
2692 } 3582 }
2693 3583
2694 ev_stop (EV_A_ (W)w); 3584 ev_stop (EV_A_ (W)w);
2695}
2696#endif
2697 3585
3586 EV_FREQUENT_CHECK;
3587}
3588#endif
3589
2698#if EV_ASYNC_ENABLE 3590#if EV_CLEANUP_ENABLE
2699void 3591void
2700ev_async_start (EV_P_ ev_async *w) 3592ev_cleanup_start (EV_P_ ev_cleanup *w)
2701{ 3593{
2702 if (expect_false (ev_is_active (w))) 3594 if (expect_false (ev_is_active (w)))
2703 return; 3595 return;
2704 3596
3597 EV_FREQUENT_CHECK;
3598
3599 ev_start (EV_A_ (W)w, ++cleanupcnt);
3600 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3601 cleanups [cleanupcnt - 1] = w;
3602
3603 /* cleanup watchers should never keep a refcount on the loop */
3604 ev_unref (EV_A);
3605 EV_FREQUENT_CHECK;
3606}
3607
3608void
3609ev_cleanup_stop (EV_P_ ev_cleanup *w)
3610{
3611 clear_pending (EV_A_ (W)w);
3612 if (expect_false (!ev_is_active (w)))
3613 return;
3614
3615 EV_FREQUENT_CHECK;
3616 ev_ref (EV_A);
3617
3618 {
3619 int active = ev_active (w);
3620
3621 cleanups [active - 1] = cleanups [--cleanupcnt];
3622 ev_active (cleanups [active - 1]) = active;
3623 }
3624
3625 ev_stop (EV_A_ (W)w);
3626
3627 EV_FREQUENT_CHECK;
3628}
3629#endif
3630
3631#if EV_ASYNC_ENABLE
3632void
3633ev_async_start (EV_P_ ev_async *w)
3634{
3635 if (expect_false (ev_is_active (w)))
3636 return;
3637
3638 w->sent = 0;
3639
2705 evpipe_init (EV_A); 3640 evpipe_init (EV_A);
3641
3642 EV_FREQUENT_CHECK;
2706 3643
2707 ev_start (EV_A_ (W)w, ++asynccnt); 3644 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3645 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w; 3646 asyncs [asynccnt - 1] = w;
3647
3648 EV_FREQUENT_CHECK;
2710} 3649}
2711 3650
2712void 3651void
2713ev_async_stop (EV_P_ ev_async *w) 3652ev_async_stop (EV_P_ ev_async *w)
2714{ 3653{
2715 clear_pending (EV_A_ (W)w); 3654 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w))) 3655 if (expect_false (!ev_is_active (w)))
2717 return; 3656 return;
2718 3657
3658 EV_FREQUENT_CHECK;
3659
2719 { 3660 {
2720 int active = ev_active (w); 3661 int active = ev_active (w);
2721 3662
2722 asyncs [active - 1] = asyncs [--asynccnt]; 3663 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active; 3664 ev_active (asyncs [active - 1]) = active;
2724 } 3665 }
2725 3666
2726 ev_stop (EV_A_ (W)w); 3667 ev_stop (EV_A_ (W)w);
3668
3669 EV_FREQUENT_CHECK;
2727} 3670}
2728 3671
2729void 3672void
2730ev_async_send (EV_P_ ev_async *w) 3673ev_async_send (EV_P_ ev_async *w)
2731{ 3674{
2732 w->sent = 1; 3675 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync); 3676 evpipe_write (EV_A_ &async_pending);
2734} 3677}
2735#endif 3678#endif
2736 3679
2737/*****************************************************************************/ 3680/*****************************************************************************/
2738 3681
2748once_cb (EV_P_ struct ev_once *once, int revents) 3691once_cb (EV_P_ struct ev_once *once, int revents)
2749{ 3692{
2750 void (*cb)(int revents, void *arg) = once->cb; 3693 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg; 3694 void *arg = once->arg;
2752 3695
2753 ev_io_stop (EV_A_ &once->io); 3696 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to); 3697 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once); 3698 ev_free (once);
2756 3699
2757 cb (revents, arg); 3700 cb (revents, arg);
2758} 3701}
2759 3702
2760static void 3703static void
2761once_cb_io (EV_P_ ev_io *w, int revents) 3704once_cb_io (EV_P_ ev_io *w, int revents)
2762{ 3705{
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3706 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3707
3708 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2764} 3709}
2765 3710
2766static void 3711static void
2767once_cb_to (EV_P_ ev_timer *w, int revents) 3712once_cb_to (EV_P_ ev_timer *w, int revents)
2768{ 3713{
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3714 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3715
3716 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2770} 3717}
2771 3718
2772void 3719void
2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3720ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2774{ 3721{
2775 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3722 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2776 3723
2777 if (expect_false (!once)) 3724 if (expect_false (!once))
2778 { 3725 {
2779 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3726 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2780 return; 3727 return;
2781 } 3728 }
2782 3729
2783 once->cb = cb; 3730 once->cb = cb;
2784 once->arg = arg; 3731 once->arg = arg;
2796 ev_timer_set (&once->to, timeout, 0.); 3743 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to); 3744 ev_timer_start (EV_A_ &once->to);
2798 } 3745 }
2799} 3746}
2800 3747
3748/*****************************************************************************/
3749
3750#if EV_WALK_ENABLE
3751void
3752ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3753{
3754 int i, j;
3755 ev_watcher_list *wl, *wn;
3756
3757 if (types & (EV_IO | EV_EMBED))
3758 for (i = 0; i < anfdmax; ++i)
3759 for (wl = anfds [i].head; wl; )
3760 {
3761 wn = wl->next;
3762
3763#if EV_EMBED_ENABLE
3764 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3765 {
3766 if (types & EV_EMBED)
3767 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3768 }
3769 else
3770#endif
3771#if EV_USE_INOTIFY
3772 if (ev_cb ((ev_io *)wl) == infy_cb)
3773 ;
3774 else
3775#endif
3776 if ((ev_io *)wl != &pipe_w)
3777 if (types & EV_IO)
3778 cb (EV_A_ EV_IO, wl);
3779
3780 wl = wn;
3781 }
3782
3783 if (types & (EV_TIMER | EV_STAT))
3784 for (i = timercnt + HEAP0; i-- > HEAP0; )
3785#if EV_STAT_ENABLE
3786 /*TODO: timer is not always active*/
3787 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3788 {
3789 if (types & EV_STAT)
3790 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3791 }
3792 else
3793#endif
3794 if (types & EV_TIMER)
3795 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3796
3797#if EV_PERIODIC_ENABLE
3798 if (types & EV_PERIODIC)
3799 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3800 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3801#endif
3802
3803#if EV_IDLE_ENABLE
3804 if (types & EV_IDLE)
3805 for (j = NUMPRI; i--; )
3806 for (i = idlecnt [j]; i--; )
3807 cb (EV_A_ EV_IDLE, idles [j][i]);
3808#endif
3809
3810#if EV_FORK_ENABLE
3811 if (types & EV_FORK)
3812 for (i = forkcnt; i--; )
3813 if (ev_cb (forks [i]) != embed_fork_cb)
3814 cb (EV_A_ EV_FORK, forks [i]);
3815#endif
3816
3817#if EV_ASYNC_ENABLE
3818 if (types & EV_ASYNC)
3819 for (i = asynccnt; i--; )
3820 cb (EV_A_ EV_ASYNC, asyncs [i]);
3821#endif
3822
3823#if EV_PREPARE_ENABLE
3824 if (types & EV_PREPARE)
3825 for (i = preparecnt; i--; )
3826# if EV_EMBED_ENABLE
3827 if (ev_cb (prepares [i]) != embed_prepare_cb)
3828# endif
3829 cb (EV_A_ EV_PREPARE, prepares [i]);
3830#endif
3831
3832#if EV_CHECK_ENABLE
3833 if (types & EV_CHECK)
3834 for (i = checkcnt; i--; )
3835 cb (EV_A_ EV_CHECK, checks [i]);
3836#endif
3837
3838#if EV_SIGNAL_ENABLE
3839 if (types & EV_SIGNAL)
3840 for (i = 0; i < EV_NSIG - 1; ++i)
3841 for (wl = signals [i].head; wl; )
3842 {
3843 wn = wl->next;
3844 cb (EV_A_ EV_SIGNAL, wl);
3845 wl = wn;
3846 }
3847#endif
3848
3849#if EV_CHILD_ENABLE
3850 if (types & EV_CHILD)
3851 for (i = (EV_PID_HASHSIZE); i--; )
3852 for (wl = childs [i]; wl; )
3853 {
3854 wn = wl->next;
3855 cb (EV_A_ EV_CHILD, wl);
3856 wl = wn;
3857 }
3858#endif
3859/* EV_STAT 0x00001000 /* stat data changed */
3860/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3861}
3862#endif
3863
2801#if EV_MULTIPLICITY 3864#if EV_MULTIPLICITY
2802 #include "ev_wrap.h" 3865 #include "ev_wrap.h"
2803#endif 3866#endif
2804 3867
2805#ifdef __cplusplus 3868EV_CPP(})
2806}
2807#endif
2808 3869

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines