ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.172 by root, Sun Dec 9 02:27:44 2007 UTC vs.
Revision 1.365 by root, Sun Oct 31 22:01:20 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
202#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
205#endif 373#endif
206 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
207#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 397# include <winsock.h>
209#endif 398#endif
210 399
211#if !EV_STAT_ENABLE 400#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
213#endif 405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
214 415
215#if EV_USE_INOTIFY 416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
217#endif 436#endif
218 437
219/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 455
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
225#if __GNUC__ >= 3 462#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
228#else 465#else
229# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
230# define noinline 467# define noinline
231# if __STDC_VERSION__ < 199901L 468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
232# define inline 469# define inline
233# endif 470# endif
234#endif 471#endif
235 472
236#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
237#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
238#define inline_size static inline 475#define inline_size static inline
239 476
240#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
241# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
242#else 487#else
243# define inline_speed static inline
244#endif
245
246#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
247#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
248 490
249#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
250#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
251 493
252typedef ev_watcher *W; 494typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
255 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
257 520
258#ifdef _WIN32 521#ifdef _WIN32
259# include "ev_win32.c" 522# include "ev_win32.c"
260#endif 523#endif
261 524
262/*****************************************************************************/ 525/*****************************************************************************/
263 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
264static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
265 578
266void 579void
267ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
268{ 581{
269 syserr_cb = cb; 582 syserr_cb = cb;
270} 583}
271 584
272static void noinline 585static void noinline
273syserr (const char *msg) 586ev_syserr (const char *msg)
274{ 587{
275 if (!msg) 588 if (!msg)
276 msg = "(libev) system error"; 589 msg = "(libev) system error";
277 590
278 if (syserr_cb) 591 if (syserr_cb)
279 syserr_cb (msg); 592 syserr_cb (msg);
280 else 593 else
281 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
282 perror (msg); 601 perror (msg);
602#endif
283 abort (); 603 abort ();
284 } 604 }
285} 605}
286 606
607static void *
608ev_realloc_emul (void *ptr, long size)
609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623#endif
624}
625
287static void *(*alloc)(void *ptr, long size); 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
288 627
289void 628void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 629ev_set_allocator (void *(*cb)(void *ptr, long size))
291{ 630{
292 alloc = cb; 631 alloc = cb;
293} 632}
294 633
295inline_speed void * 634inline_speed void *
296ev_realloc (void *ptr, long size) 635ev_realloc (void *ptr, long size)
297{ 636{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 637 ptr = alloc (ptr, size);
299 638
300 if (!ptr && size) 639 if (!ptr && size)
301 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
303 abort (); 646 abort ();
304 } 647 }
305 648
306 return ptr; 649 return ptr;
307} 650}
309#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
310#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
311 654
312/*****************************************************************************/ 655/*****************************************************************************/
313 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
314typedef struct 661typedef struct
315{ 662{
316 WL head; 663 WL head;
317 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
318 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
319#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
320 SOCKET handle; 672 SOCKET handle;
321#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
322} ANFD; 677} ANFD;
323 678
679/* stores the pending event set for a given watcher */
324typedef struct 680typedef struct
325{ 681{
326 W w; 682 W w;
327 int events; 683 int events; /* the pending event set for the given watcher */
328} ANPENDING; 684} ANPENDING;
329 685
330#if EV_USE_INOTIFY 686#if EV_USE_INOTIFY
687/* hash table entry per inotify-id */
331typedef struct 688typedef struct
332{ 689{
333 WL head; 690 WL head;
334} ANFS; 691} ANFS;
692#endif
693
694/* Heap Entry */
695#if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705#else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
335#endif 712#endif
336 713
337#if EV_MULTIPLICITY 714#if EV_MULTIPLICITY
338 715
339 struct ev_loop 716 struct ev_loop
358 735
359 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
360 737
361#endif 738#endif
362 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
363/*****************************************************************************/ 752/*****************************************************************************/
364 753
754#ifndef EV_HAVE_EV_TIME
365ev_tstamp 755ev_tstamp
366ev_time (void) 756ev_time (void)
367{ 757{
368#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
369 struct timespec ts; 761 struct timespec ts;
370 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
371 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
372#else 764 }
765#endif
766
373 struct timeval tv; 767 struct timeval tv;
374 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
375 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
376#endif
377} 770}
771#endif
378 772
379ev_tstamp inline_size 773inline_size ev_tstamp
380get_clock (void) 774get_clock (void)
381{ 775{
382#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
383 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
384 { 778 {
397{ 791{
398 return ev_rt_now; 792 return ev_rt_now;
399} 793}
400#endif 794#endif
401 795
402int inline_size 796void
797ev_sleep (ev_tstamp delay)
798{
799 if (delay > 0.)
800 {
801#if EV_USE_NANOSLEEP
802 struct timespec ts;
803
804 EV_TS_SET (ts, delay);
805 nanosleep (&ts, 0);
806#elif defined(_WIN32)
807 Sleep ((unsigned long)(delay * 1e3));
808#else
809 struct timeval tv;
810
811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
812 /* something not guaranteed by newer posix versions, but guaranteed */
813 /* by older ones */
814 EV_TV_SET (tv, delay);
815 select (0, 0, 0, 0, &tv);
816#endif
817 }
818}
819
820/*****************************************************************************/
821
822#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
823
824/* find a suitable new size for the given array, */
825/* hopefully by rounding to a nice-to-malloc size */
826inline_size int
403array_nextsize (int elem, int cur, int cnt) 827array_nextsize (int elem, int cur, int cnt)
404{ 828{
405 int ncur = cur + 1; 829 int ncur = cur + 1;
406 830
407 do 831 do
408 ncur <<= 1; 832 ncur <<= 1;
409 while (cnt > ncur); 833 while (cnt > ncur);
410 834
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 835 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
412 if (elem * ncur > 4096) 836 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 837 {
414 ncur *= elem; 838 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 839 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 840 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 841 ncur /= elem;
418 } 842 }
419 843
420 return ncur; 844 return ncur;
424array_realloc (int elem, void *base, int *cur, int cnt) 848array_realloc (int elem, void *base, int *cur, int cnt)
425{ 849{
426 *cur = array_nextsize (elem, *cur, cnt); 850 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 851 return ev_realloc (base, elem * *cur);
428} 852}
853
854#define array_init_zero(base,count) \
855 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 856
430#define array_needsize(type,base,cur,cnt,init) \ 857#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 858 if (expect_false ((cnt) > (cur))) \
432 { \ 859 { \
433 int ocur_ = (cur); \ 860 int ocur_ = (cur); \
445 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 872 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
446 } 873 }
447#endif 874#endif
448 875
449#define array_free(stem, idx) \ 876#define array_free(stem, idx) \
450 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 877 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
451 878
452/*****************************************************************************/ 879/*****************************************************************************/
880
881/* dummy callback for pending events */
882static void noinline
883pendingcb (EV_P_ ev_prepare *w, int revents)
884{
885}
453 886
454void noinline 887void noinline
455ev_feed_event (EV_P_ void *w, int revents) 888ev_feed_event (EV_P_ void *w, int revents)
456{ 889{
457 W w_ = (W)w; 890 W w_ = (W)w;
466 pendings [pri][w_->pending - 1].w = w_; 899 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 900 pendings [pri][w_->pending - 1].events = revents;
468 } 901 }
469} 902}
470 903
471void inline_size 904inline_speed void
905feed_reverse (EV_P_ W w)
906{
907 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
908 rfeeds [rfeedcnt++] = w;
909}
910
911inline_size void
912feed_reverse_done (EV_P_ int revents)
913{
914 do
915 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
916 while (rfeedcnt);
917}
918
919inline_speed void
472queue_events (EV_P_ W *events, int eventcnt, int type) 920queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 921{
474 int i; 922 int i;
475 923
476 for (i = 0; i < eventcnt; ++i) 924 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 925 ev_feed_event (EV_A_ events [i], type);
478} 926}
479 927
480/*****************************************************************************/ 928/*****************************************************************************/
481 929
482void inline_size 930inline_speed void
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494
495void inline_speed
496fd_event (EV_P_ int fd, int revents) 931fd_event_nocheck (EV_P_ int fd, int revents)
497{ 932{
498 ANFD *anfd = anfds + fd; 933 ANFD *anfd = anfds + fd;
499 ev_io *w; 934 ev_io *w;
500 935
501 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 936 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
505 if (ev) 940 if (ev)
506 ev_feed_event (EV_A_ (W)w, ev); 941 ev_feed_event (EV_A_ (W)w, ev);
507 } 942 }
508} 943}
509 944
945/* do not submit kernel events for fds that have reify set */
946/* because that means they changed while we were polling for new events */
947inline_speed void
948fd_event (EV_P_ int fd, int revents)
949{
950 ANFD *anfd = anfds + fd;
951
952 if (expect_true (!anfd->reify))
953 fd_event_nocheck (EV_A_ fd, revents);
954}
955
510void 956void
511ev_feed_fd_event (EV_P_ int fd, int revents) 957ev_feed_fd_event (EV_P_ int fd, int revents)
512{ 958{
513 if (fd >= 0 && fd < anfdmax) 959 if (fd >= 0 && fd < anfdmax)
514 fd_event (EV_A_ fd, revents); 960 fd_event_nocheck (EV_A_ fd, revents);
515} 961}
516 962
517void inline_size 963/* make sure the external fd watch events are in-sync */
964/* with the kernel/libev internal state */
965inline_size void
518fd_reify (EV_P) 966fd_reify (EV_P)
519{ 967{
520 int i; 968 int i;
521 969
522 for (i = 0; i < fdchangecnt; ++i) 970 for (i = 0; i < fdchangecnt; ++i)
523 { 971 {
524 int fd = fdchanges [i]; 972 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 973 ANFD *anfd = anfds + fd;
526 ev_io *w; 974 ev_io *w;
527 975
528 int events = 0; 976 unsigned char o_events = anfd->events;
977 unsigned char o_reify = anfd->reify;
529 978
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 979 anfd->reify = 0;
531 events |= w->events;
532 980
533#if EV_SELECT_IS_WINSOCKET 981#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
534 if (events) 982 if (o_reify & EV__IOFDSET)
535 { 983 {
536 unsigned long argp; 984 unsigned long arg;
537 anfd->handle = _get_osfhandle (fd); 985 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 986 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
987 printf ("oi %d %x\n", fd, anfd->handle);//D
539 } 988 }
540#endif 989#endif
541 990
542 anfd->reify = 0; 991 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
992 {
993 anfd->events = 0;
543 994
995 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
996 anfd->events |= (unsigned char)w->events;
997
998 if (o_events != anfd->events)
999 o_reify = EV__IOFDSET; /* actually |= */
1000 }
1001
1002 if (o_reify & EV__IOFDSET)
544 backend_modify (EV_A_ fd, anfd->events, events); 1003 backend_modify (EV_A_ fd, o_events, anfd->events);
545 anfd->events = events;
546 } 1004 }
547 1005
548 fdchangecnt = 0; 1006 fdchangecnt = 0;
549} 1007}
550 1008
551void inline_size 1009/* something about the given fd changed */
1010inline_size void
552fd_change (EV_P_ int fd) 1011fd_change (EV_P_ int fd, int flags)
553{ 1012{
554 if (expect_false (anfds [fd].reify)) 1013 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 1014 anfds [fd].reify |= flags;
558 1015
1016 if (expect_true (!reify))
1017 {
559 ++fdchangecnt; 1018 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1019 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 1020 fdchanges [fdchangecnt - 1] = fd;
1021 }
562} 1022}
563 1023
564void inline_speed 1024/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1025inline_speed void
565fd_kill (EV_P_ int fd) 1026fd_kill (EV_P_ int fd)
566{ 1027{
567 ev_io *w; 1028 ev_io *w;
568 1029
569 while ((w = (ev_io *)anfds [fd].head)) 1030 while ((w = (ev_io *)anfds [fd].head))
571 ev_io_stop (EV_A_ w); 1032 ev_io_stop (EV_A_ w);
572 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1033 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
573 } 1034 }
574} 1035}
575 1036
576int inline_size 1037/* check whether the given fd is actually valid, for error recovery */
1038inline_size int
577fd_valid (int fd) 1039fd_valid (int fd)
578{ 1040{
579#ifdef _WIN32 1041#ifdef _WIN32
580 return _get_osfhandle (fd) != -1; 1042 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
581#else 1043#else
582 return fcntl (fd, F_GETFD) != -1; 1044 return fcntl (fd, F_GETFD) != -1;
583#endif 1045#endif
584} 1046}
585 1047
589{ 1051{
590 int fd; 1052 int fd;
591 1053
592 for (fd = 0; fd < anfdmax; ++fd) 1054 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 1055 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 1056 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 1057 fd_kill (EV_A_ fd);
596} 1058}
597 1059
598/* called on ENOMEM in select/poll to kill some fds and retry */ 1060/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 1061static void noinline
603 1065
604 for (fd = anfdmax; fd--; ) 1066 for (fd = anfdmax; fd--; )
605 if (anfds [fd].events) 1067 if (anfds [fd].events)
606 { 1068 {
607 fd_kill (EV_A_ fd); 1069 fd_kill (EV_A_ fd);
608 return; 1070 break;
609 } 1071 }
610} 1072}
611 1073
612/* usually called after fork if backend needs to re-arm all fds from scratch */ 1074/* usually called after fork if backend needs to re-arm all fds from scratch */
613static void noinline 1075static void noinline
617 1079
618 for (fd = 0; fd < anfdmax; ++fd) 1080 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 1081 if (anfds [fd].events)
620 { 1082 {
621 anfds [fd].events = 0; 1083 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 1084 anfds [fd].emask = 0;
1085 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
623 } 1086 }
624} 1087}
625 1088
626/*****************************************************************************/ 1089/* used to prepare libev internal fd's */
627 1090/* this is not fork-safe */
628void inline_speed 1091inline_speed void
629upheap (WT *heap, int k)
630{
631 WT w = heap [k];
632
633 while (k && heap [k >> 1]->at > w->at)
634 {
635 heap [k] = heap [k >> 1];
636 ((W)heap [k])->active = k + 1;
637 k >>= 1;
638 }
639
640 heap [k] = w;
641 ((W)heap [k])->active = k + 1;
642
643}
644
645void inline_speed
646downheap (WT *heap, int N, int k)
647{
648 WT w = heap [k];
649
650 while (k < (N >> 1))
651 {
652 int j = k << 1;
653
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break;
659
660 heap [k] = heap [j];
661 ((W)heap [k])->active = k + 1;
662 k = j;
663 }
664
665 heap [k] = w;
666 ((W)heap [k])->active = k + 1;
667}
668
669void inline_size
670adjustheap (WT *heap, int N, int k)
671{
672 upheap (heap, k);
673 downheap (heap, N, k);
674}
675
676/*****************************************************************************/
677
678typedef struct
679{
680 WL head;
681 sig_atomic_t volatile gotsig;
682} ANSIG;
683
684static ANSIG *signals;
685static int signalmax;
686
687static int sigpipe [2];
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690
691void inline_size
692signals_init (ANSIG *base, int count)
693{
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698
699 ++base;
700 }
701}
702
703static void
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753
754void inline_speed
755fd_intern (int fd) 1092fd_intern (int fd)
756{ 1093{
757#ifdef _WIN32 1094#ifdef _WIN32
758 int arg = 1; 1095 unsigned long arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
760#else 1097#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 1100#endif
764} 1101}
765 1102
1103/*****************************************************************************/
1104
1105/*
1106 * the heap functions want a real array index. array index 0 is guaranteed to not
1107 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1108 * the branching factor of the d-tree.
1109 */
1110
1111/*
1112 * at the moment we allow libev the luxury of two heaps,
1113 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1114 * which is more cache-efficient.
1115 * the difference is about 5% with 50000+ watchers.
1116 */
1117#if EV_USE_4HEAP
1118
1119#define DHEAP 4
1120#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1121#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1122#define UPHEAP_DONE(p,k) ((p) == (k))
1123
1124/* away from the root */
1125inline_speed void
1126downheap (ANHE *heap, int N, int k)
1127{
1128 ANHE he = heap [k];
1129 ANHE *E = heap + N + HEAP0;
1130
1131 for (;;)
1132 {
1133 ev_tstamp minat;
1134 ANHE *minpos;
1135 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1136
1137 /* find minimum child */
1138 if (expect_true (pos + DHEAP - 1 < E))
1139 {
1140 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1141 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1142 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1144 }
1145 else if (pos < E)
1146 {
1147 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1148 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1149 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1150 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1151 }
1152 else
1153 break;
1154
1155 if (ANHE_at (he) <= minat)
1156 break;
1157
1158 heap [k] = *minpos;
1159 ev_active (ANHE_w (*minpos)) = k;
1160
1161 k = minpos - heap;
1162 }
1163
1164 heap [k] = he;
1165 ev_active (ANHE_w (he)) = k;
1166}
1167
1168#else /* 4HEAP */
1169
1170#define HEAP0 1
1171#define HPARENT(k) ((k) >> 1)
1172#define UPHEAP_DONE(p,k) (!(p))
1173
1174/* away from the root */
1175inline_speed void
1176downheap (ANHE *heap, int N, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int c = k << 1;
1183
1184 if (c >= N + HEAP0)
1185 break;
1186
1187 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1188 ? 1 : 0;
1189
1190 if (ANHE_at (he) <= ANHE_at (heap [c]))
1191 break;
1192
1193 heap [k] = heap [c];
1194 ev_active (ANHE_w (heap [k])) = k;
1195
1196 k = c;
1197 }
1198
1199 heap [k] = he;
1200 ev_active (ANHE_w (he)) = k;
1201}
1202#endif
1203
1204/* towards the root */
1205inline_speed void
1206upheap (ANHE *heap, int k)
1207{
1208 ANHE he = heap [k];
1209
1210 for (;;)
1211 {
1212 int p = HPARENT (k);
1213
1214 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1215 break;
1216
1217 heap [k] = heap [p];
1218 ev_active (ANHE_w (heap [k])) = k;
1219 k = p;
1220 }
1221
1222 heap [k] = he;
1223 ev_active (ANHE_w (he)) = k;
1224}
1225
1226/* move an element suitably so it is in a correct place */
1227inline_size void
1228adjustheap (ANHE *heap, int N, int k)
1229{
1230 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1231 upheap (heap, k);
1232 else
1233 downheap (heap, N, k);
1234}
1235
1236/* rebuild the heap: this function is used only once and executed rarely */
1237inline_size void
1238reheap (ANHE *heap, int N)
1239{
1240 int i;
1241
1242 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1243 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1244 for (i = 0; i < N; ++i)
1245 upheap (heap, i + HEAP0);
1246}
1247
1248/*****************************************************************************/
1249
1250/* associate signal watchers to a signal signal */
1251typedef struct
1252{
1253 EV_ATOMIC_T pending;
1254#if EV_MULTIPLICITY
1255 EV_P;
1256#endif
1257 WL head;
1258} ANSIG;
1259
1260static ANSIG signals [EV_NSIG - 1];
1261
1262/*****************************************************************************/
1263
1264#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1265
766static void noinline 1266static void noinline
767siginit (EV_P) 1267evpipe_init (EV_P)
768{ 1268{
1269 if (!ev_is_active (&pipe_w))
1270 {
1271# if EV_USE_EVENTFD
1272 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1273 if (evfd < 0 && errno == EINVAL)
1274 evfd = eventfd (0, 0);
1275
1276 if (evfd >= 0)
1277 {
1278 evpipe [0] = -1;
1279 fd_intern (evfd); /* doing it twice doesn't hurt */
1280 ev_io_set (&pipe_w, evfd, EV_READ);
1281 }
1282 else
1283# endif
1284 {
1285 while (pipe (evpipe))
1286 ev_syserr ("(libev) error creating signal/async pipe");
1287
769 fd_intern (sigpipe [0]); 1288 fd_intern (evpipe [0]);
770 fd_intern (sigpipe [1]); 1289 fd_intern (evpipe [1]);
1290 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1291 }
771 1292
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev); 1293 ev_io_start (EV_A_ &pipe_w);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1294 ev_unref (EV_A); /* watcher should not keep loop alive */
1295 }
1296}
1297
1298inline_size void
1299evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1300{
1301 if (!*flag)
1302 {
1303 int old_errno = errno; /* save errno because write might clobber it */
1304 char dummy;
1305
1306 *flag = 1;
1307
1308#if EV_USE_EVENTFD
1309 if (evfd >= 0)
1310 {
1311 uint64_t counter = 1;
1312 write (evfd, &counter, sizeof (uint64_t));
1313 }
1314 else
1315#endif
1316 /* win32 people keep sending patches that change this write() to send() */
1317 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1318 /* so when you think this write should be a send instead, please find out */
1319 /* where your send() is from - it's definitely not the microsoft send, and */
1320 /* tell me. thank you. */
1321 write (evpipe [1], &dummy, 1);
1322
1323 errno = old_errno;
1324 }
1325}
1326
1327/* called whenever the libev signal pipe */
1328/* got some events (signal, async) */
1329static void
1330pipecb (EV_P_ ev_io *iow, int revents)
1331{
1332 int i;
1333
1334#if EV_USE_EVENTFD
1335 if (evfd >= 0)
1336 {
1337 uint64_t counter;
1338 read (evfd, &counter, sizeof (uint64_t));
1339 }
1340 else
1341#endif
1342 {
1343 char dummy;
1344 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1345 read (evpipe [0], &dummy, 1);
1346 }
1347
1348 if (sig_pending)
1349 {
1350 sig_pending = 0;
1351
1352 for (i = EV_NSIG - 1; i--; )
1353 if (expect_false (signals [i].pending))
1354 ev_feed_signal_event (EV_A_ i + 1);
1355 }
1356
1357#if EV_ASYNC_ENABLE
1358 if (async_pending)
1359 {
1360 async_pending = 0;
1361
1362 for (i = asynccnt; i--; )
1363 if (asyncs [i]->sent)
1364 {
1365 asyncs [i]->sent = 0;
1366 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1367 }
1368 }
1369#endif
775} 1370}
776 1371
777/*****************************************************************************/ 1372/*****************************************************************************/
778 1373
779static ev_child *childs [EV_PID_HASHSIZE]; 1374static void
1375ev_sighandler (int signum)
1376{
1377#if EV_MULTIPLICITY
1378 EV_P = signals [signum - 1].loop;
1379#endif
780 1380
781#ifndef _WIN32 1381#ifdef _WIN32
1382 signal (signum, ev_sighandler);
1383#endif
1384
1385 signals [signum - 1].pending = 1;
1386 evpipe_write (EV_A_ &sig_pending);
1387}
1388
1389void noinline
1390ev_feed_signal_event (EV_P_ int signum)
1391{
1392 WL w;
1393
1394 if (expect_false (signum <= 0 || signum > EV_NSIG))
1395 return;
1396
1397 --signum;
1398
1399#if EV_MULTIPLICITY
1400 /* it is permissible to try to feed a signal to the wrong loop */
1401 /* or, likely more useful, feeding a signal nobody is waiting for */
1402
1403 if (expect_false (signals [signum].loop != EV_A))
1404 return;
1405#endif
1406
1407 signals [signum].pending = 0;
1408
1409 for (w = signals [signum].head; w; w = w->next)
1410 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1411}
1412
1413#if EV_USE_SIGNALFD
1414static void
1415sigfdcb (EV_P_ ev_io *iow, int revents)
1416{
1417 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1418
1419 for (;;)
1420 {
1421 ssize_t res = read (sigfd, si, sizeof (si));
1422
1423 /* not ISO-C, as res might be -1, but works with SuS */
1424 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1425 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1426
1427 if (res < (ssize_t)sizeof (si))
1428 break;
1429 }
1430}
1431#endif
1432
1433#endif
1434
1435/*****************************************************************************/
1436
1437#if EV_CHILD_ENABLE
1438static WL childs [EV_PID_HASHSIZE];
782 1439
783static ev_signal childev; 1440static ev_signal childev;
784 1441
785void inline_speed 1442#ifndef WIFCONTINUED
1443# define WIFCONTINUED(status) 0
1444#endif
1445
1446/* handle a single child status event */
1447inline_speed void
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1448child_reap (EV_P_ int chain, int pid, int status)
787{ 1449{
788 ev_child *w; 1450 ev_child *w;
1451 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 1452
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1453 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1454 {
791 if (w->pid == pid || !w->pid) 1455 if ((w->pid == pid || !w->pid)
1456 && (!traced || (w->flags & 1)))
792 { 1457 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1458 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 1459 w->rpid = pid;
795 w->rstatus = status; 1460 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1461 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 1462 }
1463 }
798} 1464}
799 1465
800#ifndef WCONTINUED 1466#ifndef WCONTINUED
801# define WCONTINUED 0 1467# define WCONTINUED 0
802#endif 1468#endif
803 1469
1470/* called on sigchld etc., calls waitpid */
804static void 1471static void
805childcb (EV_P_ ev_signal *sw, int revents) 1472childcb (EV_P_ ev_signal *sw, int revents)
806{ 1473{
807 int pid, status; 1474 int pid, status;
808 1475
811 if (!WCONTINUED 1478 if (!WCONTINUED
812 || errno != EINVAL 1479 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1480 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 1481 return;
815 1482
816 /* make sure we are called again until all childs have been reaped */ 1483 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 1484 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1485 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 1486
820 child_reap (EV_A_ sw, pid, pid, status); 1487 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 1488 if ((EV_PID_HASHSIZE) > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1489 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 1490}
824 1491
825#endif 1492#endif
826 1493
827/*****************************************************************************/ 1494/*****************************************************************************/
828 1495
1496#if EV_USE_IOCP
1497# include "ev_iocp.c"
1498#endif
829#if EV_USE_PORT 1499#if EV_USE_PORT
830# include "ev_port.c" 1500# include "ev_port.c"
831#endif 1501#endif
832#if EV_USE_KQUEUE 1502#if EV_USE_KQUEUE
833# include "ev_kqueue.c" 1503# include "ev_kqueue.c"
889 /* kqueue is borked on everything but netbsd apparently */ 1559 /* kqueue is borked on everything but netbsd apparently */
890 /* it usually doesn't work correctly on anything but sockets and pipes */ 1560 /* it usually doesn't work correctly on anything but sockets and pipes */
891 flags &= ~EVBACKEND_KQUEUE; 1561 flags &= ~EVBACKEND_KQUEUE;
892#endif 1562#endif
893#ifdef __APPLE__ 1563#ifdef __APPLE__
894 // flags &= ~EVBACKEND_KQUEUE; for documentation 1564 /* only select works correctly on that "unix-certified" platform */
895 flags &= ~EVBACKEND_POLL; 1565 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1566 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1567#endif
1568#ifdef __FreeBSD__
1569 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
896#endif 1570#endif
897 1571
898 return flags; 1572 return flags;
899} 1573}
900 1574
901unsigned int 1575unsigned int
902ev_embeddable_backends (void) 1576ev_embeddable_backends (void)
903{ 1577{
904 return EVBACKEND_EPOLL 1578 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 1579
906 | EVBACKEND_PORT; 1580 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1581 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1582 flags &= ~EVBACKEND_EPOLL;
1583
1584 return flags;
907} 1585}
908 1586
909unsigned int 1587unsigned int
910ev_backend (EV_P) 1588ev_backend (EV_P)
911{ 1589{
912 return backend; 1590 return backend;
913} 1591}
914 1592
1593#if EV_FEATURE_API
915unsigned int 1594unsigned int
916ev_loop_count (EV_P) 1595ev_iteration (EV_P)
917{ 1596{
918 return loop_count; 1597 return loop_count;
919} 1598}
920 1599
1600unsigned int
1601ev_depth (EV_P)
1602{
1603 return loop_depth;
1604}
1605
1606void
1607ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1608{
1609 io_blocktime = interval;
1610}
1611
1612void
1613ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1614{
1615 timeout_blocktime = interval;
1616}
1617
1618void
1619ev_set_userdata (EV_P_ void *data)
1620{
1621 userdata = data;
1622}
1623
1624void *
1625ev_userdata (EV_P)
1626{
1627 return userdata;
1628}
1629
1630void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1631{
1632 invoke_cb = invoke_pending_cb;
1633}
1634
1635void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1636{
1637 release_cb = release;
1638 acquire_cb = acquire;
1639}
1640#endif
1641
1642/* initialise a loop structure, must be zero-initialised */
921static void noinline 1643static void noinline
922loop_init (EV_P_ unsigned int flags) 1644loop_init (EV_P_ unsigned int flags)
923{ 1645{
924 if (!backend) 1646 if (!backend)
925 { 1647 {
1648#if EV_USE_REALTIME
1649 if (!have_realtime)
1650 {
1651 struct timespec ts;
1652
1653 if (!clock_gettime (CLOCK_REALTIME, &ts))
1654 have_realtime = 1;
1655 }
1656#endif
1657
926#if EV_USE_MONOTONIC 1658#if EV_USE_MONOTONIC
1659 if (!have_monotonic)
927 { 1660 {
928 struct timespec ts; 1661 struct timespec ts;
1662
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1663 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 1664 have_monotonic = 1;
931 } 1665 }
932#endif 1666#endif
933
934 ev_rt_now = ev_time ();
935 mn_now = get_clock ();
936 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now;
938 1667
939 /* pid check not overridable via env */ 1668 /* pid check not overridable via env */
940#ifndef _WIN32 1669#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1670 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1671 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 1674 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 1675 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 1676 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 1677 flags = atoi (getenv ("LIBEV_FLAGS"));
949 1678
1679 ev_rt_now = ev_time ();
1680 mn_now = get_clock ();
1681 now_floor = mn_now;
1682 rtmn_diff = ev_rt_now - mn_now;
1683#if EV_FEATURE_API
1684 invoke_cb = ev_invoke_pending;
1685#endif
1686
1687 io_blocktime = 0.;
1688 timeout_blocktime = 0.;
1689 backend = 0;
1690 backend_fd = -1;
1691 sig_pending = 0;
1692#if EV_ASYNC_ENABLE
1693 async_pending = 0;
1694#endif
1695#if EV_USE_INOTIFY
1696 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1697#endif
1698#if EV_USE_SIGNALFD
1699 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1700#endif
1701
950 if (!(flags & 0x0000ffffUL)) 1702 if (!(flags & 0x0000ffffU))
951 flags |= ev_recommended_backends (); 1703 flags |= ev_recommended_backends ();
952 1704
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY 1705#if EV_USE_IOCP
956 fs_fd = -2; 1706 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
957#endif 1707#endif
958
959#if EV_USE_PORT 1708#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1709 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 1710#endif
962#if EV_USE_KQUEUE 1711#if EV_USE_KQUEUE
963 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1712 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
970#endif 1719#endif
971#if EV_USE_SELECT 1720#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1721 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 1722#endif
974 1723
1724 ev_prepare_init (&pending_w, pendingcb);
1725
1726#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
975 ev_init (&sigev, sigcb); 1727 ev_init (&pipe_w, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 1728 ev_set_priority (&pipe_w, EV_MAXPRI);
1729#endif
977 } 1730 }
978} 1731}
979 1732
980static void noinline 1733/* free up a loop structure */
1734void
981loop_destroy (EV_P) 1735ev_loop_destroy (EV_P)
982{ 1736{
983 int i; 1737 int i;
1738
1739#if EV_MULTIPLICITY
1740 /* mimic free (0) */
1741 if (!EV_A)
1742 return;
1743#endif
1744
1745#if EV_CLEANUP_ENABLE
1746 /* queue cleanup watchers (and execute them) */
1747 if (expect_false (cleanupcnt))
1748 {
1749 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1750 EV_INVOKE_PENDING;
1751 }
1752#endif
1753
1754#if EV_CHILD_ENABLE
1755 if (ev_is_active (&childev))
1756 {
1757 ev_ref (EV_A); /* child watcher */
1758 ev_signal_stop (EV_A_ &childev);
1759 }
1760#endif
1761
1762 if (ev_is_active (&pipe_w))
1763 {
1764 /*ev_ref (EV_A);*/
1765 /*ev_io_stop (EV_A_ &pipe_w);*/
1766
1767#if EV_USE_EVENTFD
1768 if (evfd >= 0)
1769 close (evfd);
1770#endif
1771
1772 if (evpipe [0] >= 0)
1773 {
1774 EV_WIN32_CLOSE_FD (evpipe [0]);
1775 EV_WIN32_CLOSE_FD (evpipe [1]);
1776 }
1777 }
1778
1779#if EV_USE_SIGNALFD
1780 if (ev_is_active (&sigfd_w))
1781 close (sigfd);
1782#endif
984 1783
985#if EV_USE_INOTIFY 1784#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 1785 if (fs_fd >= 0)
987 close (fs_fd); 1786 close (fs_fd);
988#endif 1787#endif
989 1788
990 if (backend_fd >= 0) 1789 if (backend_fd >= 0)
991 close (backend_fd); 1790 close (backend_fd);
992 1791
1792#if EV_USE_IOCP
1793 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1794#endif
993#if EV_USE_PORT 1795#if EV_USE_PORT
994 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1796 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
995#endif 1797#endif
996#if EV_USE_KQUEUE 1798#if EV_USE_KQUEUE
997 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1799 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1012#if EV_IDLE_ENABLE 1814#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1815 array_free (idle, [i]);
1014#endif 1816#endif
1015 } 1817 }
1016 1818
1819 ev_free (anfds); anfds = 0; anfdmax = 0;
1820
1017 /* have to use the microsoft-never-gets-it-right macro */ 1821 /* have to use the microsoft-never-gets-it-right macro */
1822 array_free (rfeed, EMPTY);
1018 array_free (fdchange, EMPTY); 1823 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1824 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1825#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1826 array_free (periodic, EMPTY);
1022#endif 1827#endif
1828#if EV_FORK_ENABLE
1829 array_free (fork, EMPTY);
1830#endif
1831#if EV_CLEANUP_ENABLE
1832 array_free (cleanup, EMPTY);
1833#endif
1023 array_free (prepare, EMPTY); 1834 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1835 array_free (check, EMPTY);
1836#if EV_ASYNC_ENABLE
1837 array_free (async, EMPTY);
1838#endif
1025 1839
1026 backend = 0; 1840 backend = 0;
1027}
1028 1841
1842#if EV_MULTIPLICITY
1843 if (ev_is_default_loop (EV_A))
1844#endif
1845 ev_default_loop_ptr = 0;
1846#if EV_MULTIPLICITY
1847 else
1848 ev_free (EV_A);
1849#endif
1850}
1851
1852#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 1853inline_size void infy_fork (EV_P);
1854#endif
1030 1855
1031void inline_size 1856inline_size void
1032loop_fork (EV_P) 1857loop_fork (EV_P)
1033{ 1858{
1034#if EV_USE_PORT 1859#if EV_USE_PORT
1035 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1860 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1036#endif 1861#endif
1042#endif 1867#endif
1043#if EV_USE_INOTIFY 1868#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 1869 infy_fork (EV_A);
1045#endif 1870#endif
1046 1871
1047 if (ev_is_active (&sigev)) 1872 if (ev_is_active (&pipe_w))
1048 { 1873 {
1049 /* default loop */ 1874 /* this "locks" the handlers against writing to the pipe */
1875 /* while we modify the fd vars */
1876 sig_pending = 1;
1877#if EV_ASYNC_ENABLE
1878 async_pending = 1;
1879#endif
1050 1880
1051 ev_ref (EV_A); 1881 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 1882 ev_io_stop (EV_A_ &pipe_w);
1053 close (sigpipe [0]);
1054 close (sigpipe [1]);
1055 1883
1056 while (pipe (sigpipe)) 1884#if EV_USE_EVENTFD
1057 syserr ("(libev) error creating pipe"); 1885 if (evfd >= 0)
1886 close (evfd);
1887#endif
1058 1888
1889 if (evpipe [0] >= 0)
1890 {
1891 EV_WIN32_CLOSE_FD (evpipe [0]);
1892 EV_WIN32_CLOSE_FD (evpipe [1]);
1893 }
1894
1895#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1059 siginit (EV_A); 1896 evpipe_init (EV_A);
1897 /* now iterate over everything, in case we missed something */
1898 pipecb (EV_A_ &pipe_w, EV_READ);
1899#endif
1060 } 1900 }
1061 1901
1062 postfork = 0; 1902 postfork = 0;
1063} 1903}
1904
1905#if EV_MULTIPLICITY
1906
1907struct ev_loop *
1908ev_loop_new (unsigned int flags)
1909{
1910 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1911
1912 memset (EV_A, 0, sizeof (struct ev_loop));
1913 loop_init (EV_A_ flags);
1914
1915 if (ev_backend (EV_A))
1916 return EV_A;
1917
1918 ev_free (EV_A);
1919 return 0;
1920}
1921
1922#endif /* multiplicity */
1923
1924#if EV_VERIFY
1925static void noinline
1926verify_watcher (EV_P_ W w)
1927{
1928 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1929
1930 if (w->pending)
1931 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1932}
1933
1934static void noinline
1935verify_heap (EV_P_ ANHE *heap, int N)
1936{
1937 int i;
1938
1939 for (i = HEAP0; i < N + HEAP0; ++i)
1940 {
1941 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1942 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1943 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1944
1945 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1946 }
1947}
1948
1949static void noinline
1950array_verify (EV_P_ W *ws, int cnt)
1951{
1952 while (cnt--)
1953 {
1954 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1955 verify_watcher (EV_A_ ws [cnt]);
1956 }
1957}
1958#endif
1959
1960#if EV_FEATURE_API
1961void
1962ev_verify (EV_P)
1963{
1964#if EV_VERIFY
1965 int i;
1966 WL w;
1967
1968 assert (activecnt >= -1);
1969
1970 assert (fdchangemax >= fdchangecnt);
1971 for (i = 0; i < fdchangecnt; ++i)
1972 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1973
1974 assert (anfdmax >= 0);
1975 for (i = 0; i < anfdmax; ++i)
1976 for (w = anfds [i].head; w; w = w->next)
1977 {
1978 verify_watcher (EV_A_ (W)w);
1979 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1980 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1981 }
1982
1983 assert (timermax >= timercnt);
1984 verify_heap (EV_A_ timers, timercnt);
1985
1986#if EV_PERIODIC_ENABLE
1987 assert (periodicmax >= periodiccnt);
1988 verify_heap (EV_A_ periodics, periodiccnt);
1989#endif
1990
1991 for (i = NUMPRI; i--; )
1992 {
1993 assert (pendingmax [i] >= pendingcnt [i]);
1994#if EV_IDLE_ENABLE
1995 assert (idleall >= 0);
1996 assert (idlemax [i] >= idlecnt [i]);
1997 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1998#endif
1999 }
2000
2001#if EV_FORK_ENABLE
2002 assert (forkmax >= forkcnt);
2003 array_verify (EV_A_ (W *)forks, forkcnt);
2004#endif
2005
2006#if EV_CLEANUP_ENABLE
2007 assert (cleanupmax >= cleanupcnt);
2008 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2009#endif
2010
2011#if EV_ASYNC_ENABLE
2012 assert (asyncmax >= asynccnt);
2013 array_verify (EV_A_ (W *)asyncs, asynccnt);
2014#endif
2015
2016#if EV_PREPARE_ENABLE
2017 assert (preparemax >= preparecnt);
2018 array_verify (EV_A_ (W *)prepares, preparecnt);
2019#endif
2020
2021#if EV_CHECK_ENABLE
2022 assert (checkmax >= checkcnt);
2023 array_verify (EV_A_ (W *)checks, checkcnt);
2024#endif
2025
2026# if 0
2027#if EV_CHILD_ENABLE
2028 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2029 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2030#endif
2031# endif
2032#endif
2033}
2034#endif
1064 2035
1065#if EV_MULTIPLICITY 2036#if EV_MULTIPLICITY
1066struct ev_loop * 2037struct ev_loop *
1067ev_loop_new (unsigned int flags)
1068{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070
1071 memset (loop, 0, sizeof (struct ev_loop));
1072
1073 loop_init (EV_A_ flags);
1074
1075 if (ev_backend (EV_A))
1076 return loop;
1077
1078 return 0;
1079}
1080
1081void
1082ev_loop_destroy (EV_P)
1083{
1084 loop_destroy (EV_A);
1085 ev_free (loop);
1086}
1087
1088void
1089ev_loop_fork (EV_P)
1090{
1091 postfork = 1;
1092}
1093
1094#endif
1095
1096#if EV_MULTIPLICITY
1097struct ev_loop *
1098ev_default_loop_init (unsigned int flags)
1099#else 2038#else
1100int 2039int
2040#endif
1101ev_default_loop (unsigned int flags) 2041ev_default_loop (unsigned int flags)
1102#endif
1103{ 2042{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 2043 if (!ev_default_loop_ptr)
1109 { 2044 {
1110#if EV_MULTIPLICITY 2045#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2046 EV_P = ev_default_loop_ptr = &default_loop_struct;
1112#else 2047#else
1113 ev_default_loop_ptr = 1; 2048 ev_default_loop_ptr = 1;
1114#endif 2049#endif
1115 2050
1116 loop_init (EV_A_ flags); 2051 loop_init (EV_A_ flags);
1117 2052
1118 if (ev_backend (EV_A)) 2053 if (ev_backend (EV_A))
1119 { 2054 {
1120 siginit (EV_A); 2055#if EV_CHILD_ENABLE
1121
1122#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 2056 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 2057 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 2058 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2059 ev_unref (EV_A); /* child watcher should not keep loop alive */
1127#endif 2060#endif
1132 2065
1133 return ev_default_loop_ptr; 2066 return ev_default_loop_ptr;
1134} 2067}
1135 2068
1136void 2069void
1137ev_default_destroy (void) 2070ev_loop_fork (EV_P)
1138{ 2071{
1139#if EV_MULTIPLICITY 2072 postfork = 1; /* must be in line with ev_default_fork */
1140 struct ev_loop *loop = ev_default_loop_ptr;
1141#endif
1142
1143#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev);
1146#endif
1147
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A);
1155}
1156
1157void
1158ev_default_fork (void)
1159{
1160#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif
1163
1164 if (backend)
1165 postfork = 1;
1166} 2073}
1167 2074
1168/*****************************************************************************/ 2075/*****************************************************************************/
1169 2076
1170void 2077void
1171ev_invoke (EV_P_ void *w, int revents) 2078ev_invoke (EV_P_ void *w, int revents)
1172{ 2079{
1173 EV_CB_INVOKE ((W)w, revents); 2080 EV_CB_INVOKE ((W)w, revents);
1174} 2081}
1175 2082
1176void inline_speed 2083unsigned int
1177call_pending (EV_P) 2084ev_pending_count (EV_P)
2085{
2086 int pri;
2087 unsigned int count = 0;
2088
2089 for (pri = NUMPRI; pri--; )
2090 count += pendingcnt [pri];
2091
2092 return count;
2093}
2094
2095void noinline
2096ev_invoke_pending (EV_P)
1178{ 2097{
1179 int pri; 2098 int pri;
1180 2099
1181 for (pri = NUMPRI; pri--; ) 2100 for (pri = NUMPRI; pri--; )
1182 while (pendingcnt [pri]) 2101 while (pendingcnt [pri])
1183 { 2102 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2103 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185 2104
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2105 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2106 /* ^ this is no longer true, as pending_w could be here */
1189 2107
1190 p->w->pending = 0; 2108 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 2109 EV_CB_INVOKE (p->w, p->events);
1192 } 2110 EV_FREQUENT_CHECK;
1193 } 2111 }
1194} 2112}
1195 2113
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209
1210 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 {
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274
1275#if EV_IDLE_ENABLE 2114#if EV_IDLE_ENABLE
1276void inline_size 2115/* make idle watchers pending. this handles the "call-idle */
2116/* only when higher priorities are idle" logic */
2117inline_size void
1277idle_reify (EV_P) 2118idle_reify (EV_P)
1278{ 2119{
1279 if (expect_false (idleall)) 2120 if (expect_false (idleall))
1280 { 2121 {
1281 int pri; 2122 int pri;
1293 } 2134 }
1294 } 2135 }
1295} 2136}
1296#endif 2137#endif
1297 2138
1298int inline_size 2139/* make timers pending */
1299time_update_monotonic (EV_P) 2140inline_size void
2141timers_reify (EV_P)
1300{ 2142{
2143 EV_FREQUENT_CHECK;
2144
2145 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2146 {
2147 do
2148 {
2149 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2150
2151 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2152
2153 /* first reschedule or stop timer */
2154 if (w->repeat)
2155 {
2156 ev_at (w) += w->repeat;
2157 if (ev_at (w) < mn_now)
2158 ev_at (w) = mn_now;
2159
2160 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2161
2162 ANHE_at_cache (timers [HEAP0]);
2163 downheap (timers, timercnt, HEAP0);
2164 }
2165 else
2166 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2167
2168 EV_FREQUENT_CHECK;
2169 feed_reverse (EV_A_ (W)w);
2170 }
2171 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2172
2173 feed_reverse_done (EV_A_ EV_TIMER);
2174 }
2175}
2176
2177#if EV_PERIODIC_ENABLE
2178/* make periodics pending */
2179inline_size void
2180periodics_reify (EV_P)
2181{
2182 EV_FREQUENT_CHECK;
2183
2184 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2185 {
2186 int feed_count = 0;
2187
2188 do
2189 {
2190 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2191
2192 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2193
2194 /* first reschedule or stop timer */
2195 if (w->reschedule_cb)
2196 {
2197 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2198
2199 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2200
2201 ANHE_at_cache (periodics [HEAP0]);
2202 downheap (periodics, periodiccnt, HEAP0);
2203 }
2204 else if (w->interval)
2205 {
2206 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2207 /* if next trigger time is not sufficiently in the future, put it there */
2208 /* this might happen because of floating point inexactness */
2209 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2210 {
2211 ev_at (w) += w->interval;
2212
2213 /* if interval is unreasonably low we might still have a time in the past */
2214 /* so correct this. this will make the periodic very inexact, but the user */
2215 /* has effectively asked to get triggered more often than possible */
2216 if (ev_at (w) < ev_rt_now)
2217 ev_at (w) = ev_rt_now;
2218 }
2219
2220 ANHE_at_cache (periodics [HEAP0]);
2221 downheap (periodics, periodiccnt, HEAP0);
2222 }
2223 else
2224 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2225
2226 EV_FREQUENT_CHECK;
2227 feed_reverse (EV_A_ (W)w);
2228 }
2229 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2230
2231 feed_reverse_done (EV_A_ EV_PERIODIC);
2232 }
2233}
2234
2235/* simply recalculate all periodics */
2236/* TODO: maybe ensure that at least one event happens when jumping forward? */
2237static void noinline
2238periodics_reschedule (EV_P)
2239{
2240 int i;
2241
2242 /* adjust periodics after time jump */
2243 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2244 {
2245 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2246
2247 if (w->reschedule_cb)
2248 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2249 else if (w->interval)
2250 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2251
2252 ANHE_at_cache (periodics [i]);
2253 }
2254
2255 reheap (periodics, periodiccnt);
2256}
2257#endif
2258
2259/* adjust all timers by a given offset */
2260static void noinline
2261timers_reschedule (EV_P_ ev_tstamp adjust)
2262{
2263 int i;
2264
2265 for (i = 0; i < timercnt; ++i)
2266 {
2267 ANHE *he = timers + i + HEAP0;
2268 ANHE_w (*he)->at += adjust;
2269 ANHE_at_cache (*he);
2270 }
2271}
2272
2273/* fetch new monotonic and realtime times from the kernel */
2274/* also detect if there was a timejump, and act accordingly */
2275inline_speed void
2276time_update (EV_P_ ev_tstamp max_block)
2277{
2278#if EV_USE_MONOTONIC
2279 if (expect_true (have_monotonic))
2280 {
2281 int i;
2282 ev_tstamp odiff = rtmn_diff;
2283
1301 mn_now = get_clock (); 2284 mn_now = get_clock ();
1302 2285
2286 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2287 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2288 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 2289 {
1305 ev_rt_now = rtmn_diff + mn_now; 2290 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 2291 return;
1307 } 2292 }
1308 else 2293
1309 {
1310 now_floor = mn_now; 2294 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 2295 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 2296
1316void inline_size 2297 /* loop a few times, before making important decisions.
1317time_update (EV_P) 2298 * on the choice of "4": one iteration isn't enough,
1318{ 2299 * in case we get preempted during the calls to
1319 int i; 2300 * ev_time and get_clock. a second call is almost guaranteed
1320 2301 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 2302 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 2303 * in the unlikely event of having been preempted here.
1323 { 2304 */
1324 if (time_update_monotonic (EV_A)) 2305 for (i = 4; --i; )
1325 { 2306 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 2307 rtmn_diff = ev_rt_now - mn_now;
1339 2308
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2309 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 2310 return; /* all is well */
1342 2311
1343 ev_rt_now = ev_time (); 2312 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 2313 mn_now = get_clock ();
1345 now_floor = mn_now; 2314 now_floor = mn_now;
1346 } 2315 }
1347 2316
2317 /* no timer adjustment, as the monotonic clock doesn't jump */
2318 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1348# if EV_PERIODIC_ENABLE 2319# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 2320 periodics_reschedule (EV_A);
1350# endif 2321# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 2322 }
1355 else 2323 else
1356#endif 2324#endif
1357 { 2325 {
1358 ev_rt_now = ev_time (); 2326 ev_rt_now = ev_time ();
1359 2327
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2328 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 2329 {
2330 /* adjust timers. this is easy, as the offset is the same for all of them */
2331 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1362#if EV_PERIODIC_ENABLE 2332#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 2333 periodics_reschedule (EV_A);
1364#endif 2334#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now;
1369 } 2335 }
1370 2336
1371 mn_now = ev_rt_now; 2337 mn_now = ev_rt_now;
1372 } 2338 }
1373} 2339}
1374 2340
1375void 2341void
1376ev_ref (EV_P)
1377{
1378 ++activecnt;
1379}
1380
1381void
1382ev_unref (EV_P)
1383{
1384 --activecnt;
1385}
1386
1387static int loop_done;
1388
1389void
1390ev_loop (EV_P_ int flags) 2342ev_run (EV_P_ int flags)
1391{ 2343{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2344#if EV_FEATURE_API
1393 ? EVUNLOOP_ONE 2345 ++loop_depth;
1394 : EVUNLOOP_CANCEL; 2346#endif
1395 2347
2348 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2349
2350 loop_done = EVBREAK_CANCEL;
2351
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2352 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1397 2353
1398 do 2354 do
1399 { 2355 {
2356#if EV_VERIFY >= 2
2357 ev_verify (EV_A);
2358#endif
2359
1400#ifndef _WIN32 2360#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 2361 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 2362 if (expect_false (getpid () != curpid))
1403 { 2363 {
1404 curpid = getpid (); 2364 curpid = getpid ();
1410 /* we might have forked, so queue fork handlers */ 2370 /* we might have forked, so queue fork handlers */
1411 if (expect_false (postfork)) 2371 if (expect_false (postfork))
1412 if (forkcnt) 2372 if (forkcnt)
1413 { 2373 {
1414 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2374 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1415 call_pending (EV_A); 2375 EV_INVOKE_PENDING;
1416 } 2376 }
1417#endif 2377#endif
1418 2378
2379#if EV_PREPARE_ENABLE
1419 /* queue prepare watchers (and execute them) */ 2380 /* queue prepare watchers (and execute them) */
1420 if (expect_false (preparecnt)) 2381 if (expect_false (preparecnt))
1421 { 2382 {
1422 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2383 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1423 call_pending (EV_A); 2384 EV_INVOKE_PENDING;
1424 } 2385 }
2386#endif
1425 2387
1426 if (expect_false (!activecnt)) 2388 if (expect_false (loop_done))
1427 break; 2389 break;
1428 2390
1429 /* we might have forked, so reify kernel state if necessary */ 2391 /* we might have forked, so reify kernel state if necessary */
1430 if (expect_false (postfork)) 2392 if (expect_false (postfork))
1431 loop_fork (EV_A); 2393 loop_fork (EV_A);
1433 /* update fd-related kernel structures */ 2395 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 2396 fd_reify (EV_A);
1435 2397
1436 /* calculate blocking time */ 2398 /* calculate blocking time */
1437 { 2399 {
1438 ev_tstamp block; 2400 ev_tstamp waittime = 0.;
2401 ev_tstamp sleeptime = 0.;
1439 2402
2403 /* remember old timestamp for io_blocktime calculation */
2404 ev_tstamp prev_mn_now = mn_now;
2405
2406 /* update time to cancel out callback processing overhead */
2407 time_update (EV_A_ 1e100);
2408
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2409 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 2410 {
1444 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454
1455 block = MAX_BLOCKTIME; 2411 waittime = MAX_BLOCKTIME;
1456 2412
1457 if (timercnt) 2413 if (timercnt)
1458 { 2414 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2415 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1460 if (block > to) block = to; 2416 if (waittime > to) waittime = to;
1461 } 2417 }
1462 2418
1463#if EV_PERIODIC_ENABLE 2419#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 2420 if (periodiccnt)
1465 { 2421 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2422 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 2423 if (waittime > to) waittime = to;
1468 } 2424 }
1469#endif 2425#endif
1470 2426
2427 /* don't let timeouts decrease the waittime below timeout_blocktime */
2428 if (expect_false (waittime < timeout_blocktime))
2429 waittime = timeout_blocktime;
2430
2431 /* extra check because io_blocktime is commonly 0 */
1471 if (expect_false (block < 0.)) block = 0.; 2432 if (expect_false (io_blocktime))
2433 {
2434 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2435
2436 if (sleeptime > waittime - backend_fudge)
2437 sleeptime = waittime - backend_fudge;
2438
2439 if (expect_true (sleeptime > 0.))
2440 {
2441 ev_sleep (sleeptime);
2442 waittime -= sleeptime;
2443 }
2444 }
1472 } 2445 }
1473 2446
2447#if EV_FEATURE_API
1474 ++loop_count; 2448 ++loop_count;
2449#endif
2450 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1475 backend_poll (EV_A_ block); 2451 backend_poll (EV_A_ waittime);
2452 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2453
2454 /* update ev_rt_now, do magic */
2455 time_update (EV_A_ waittime + sleeptime);
1476 } 2456 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 2457
1481 /* queue pending timers and reschedule them */ 2458 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 2459 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 2460#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 2461 periodics_reify (EV_A); /* absolute timers called first */
1487#if EV_IDLE_ENABLE 2464#if EV_IDLE_ENABLE
1488 /* queue idle watchers unless other events are pending */ 2465 /* queue idle watchers unless other events are pending */
1489 idle_reify (EV_A); 2466 idle_reify (EV_A);
1490#endif 2467#endif
1491 2468
2469#if EV_CHECK_ENABLE
1492 /* queue check watchers, to be executed first */ 2470 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 2471 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2472 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2473#endif
1495 2474
1496 call_pending (EV_A); 2475 EV_INVOKE_PENDING;
1497
1498 } 2476 }
1499 while (expect_true (activecnt && !loop_done)); 2477 while (expect_true (
2478 activecnt
2479 && !loop_done
2480 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2481 ));
1500 2482
1501 if (loop_done == EVUNLOOP_ONE) 2483 if (loop_done == EVBREAK_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 2484 loop_done = EVBREAK_CANCEL;
1503}
1504 2485
2486#if EV_FEATURE_API
2487 --loop_depth;
2488#endif
2489}
2490
1505void 2491void
1506ev_unloop (EV_P_ int how) 2492ev_break (EV_P_ int how)
1507{ 2493{
1508 loop_done = how; 2494 loop_done = how;
1509} 2495}
1510 2496
2497void
2498ev_ref (EV_P)
2499{
2500 ++activecnt;
2501}
2502
2503void
2504ev_unref (EV_P)
2505{
2506 --activecnt;
2507}
2508
2509void
2510ev_now_update (EV_P)
2511{
2512 time_update (EV_A_ 1e100);
2513}
2514
2515void
2516ev_suspend (EV_P)
2517{
2518 ev_now_update (EV_A);
2519}
2520
2521void
2522ev_resume (EV_P)
2523{
2524 ev_tstamp mn_prev = mn_now;
2525
2526 ev_now_update (EV_A);
2527 timers_reschedule (EV_A_ mn_now - mn_prev);
2528#if EV_PERIODIC_ENABLE
2529 /* TODO: really do this? */
2530 periodics_reschedule (EV_A);
2531#endif
2532}
2533
1511/*****************************************************************************/ 2534/*****************************************************************************/
2535/* singly-linked list management, used when the expected list length is short */
1512 2536
1513void inline_size 2537inline_size void
1514wlist_add (WL *head, WL elem) 2538wlist_add (WL *head, WL elem)
1515{ 2539{
1516 elem->next = *head; 2540 elem->next = *head;
1517 *head = elem; 2541 *head = elem;
1518} 2542}
1519 2543
1520void inline_size 2544inline_size void
1521wlist_del (WL *head, WL elem) 2545wlist_del (WL *head, WL elem)
1522{ 2546{
1523 while (*head) 2547 while (*head)
1524 { 2548 {
1525 if (*head == elem) 2549 if (expect_true (*head == elem))
1526 { 2550 {
1527 *head = elem->next; 2551 *head = elem->next;
1528 return; 2552 break;
1529 } 2553 }
1530 2554
1531 head = &(*head)->next; 2555 head = &(*head)->next;
1532 } 2556 }
1533} 2557}
1534 2558
1535void inline_speed 2559/* internal, faster, version of ev_clear_pending */
2560inline_speed void
1536clear_pending (EV_P_ W w) 2561clear_pending (EV_P_ W w)
1537{ 2562{
1538 if (w->pending) 2563 if (w->pending)
1539 { 2564 {
1540 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2565 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1541 w->pending = 0; 2566 w->pending = 0;
1542 } 2567 }
1543} 2568}
1544 2569
1545int 2570int
1549 int pending = w_->pending; 2574 int pending = w_->pending;
1550 2575
1551 if (expect_true (pending)) 2576 if (expect_true (pending))
1552 { 2577 {
1553 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2578 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2579 p->w = (W)&pending_w;
1554 w_->pending = 0; 2580 w_->pending = 0;
1555 p->w = 0;
1556 return p->events; 2581 return p->events;
1557 } 2582 }
1558 else 2583 else
1559 return 0; 2584 return 0;
1560} 2585}
1561 2586
1562void inline_size 2587inline_size void
1563pri_adjust (EV_P_ W w) 2588pri_adjust (EV_P_ W w)
1564{ 2589{
1565 int pri = w->priority; 2590 int pri = ev_priority (w);
1566 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2591 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1567 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2592 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1568 w->priority = pri; 2593 ev_set_priority (w, pri);
1569} 2594}
1570 2595
1571void inline_speed 2596inline_speed void
1572ev_start (EV_P_ W w, int active) 2597ev_start (EV_P_ W w, int active)
1573{ 2598{
1574 pri_adjust (EV_A_ w); 2599 pri_adjust (EV_A_ w);
1575 w->active = active; 2600 w->active = active;
1576 ev_ref (EV_A); 2601 ev_ref (EV_A);
1577} 2602}
1578 2603
1579void inline_size 2604inline_size void
1580ev_stop (EV_P_ W w) 2605ev_stop (EV_P_ W w)
1581{ 2606{
1582 ev_unref (EV_A); 2607 ev_unref (EV_A);
1583 w->active = 0; 2608 w->active = 0;
1584} 2609}
1591 int fd = w->fd; 2616 int fd = w->fd;
1592 2617
1593 if (expect_false (ev_is_active (w))) 2618 if (expect_false (ev_is_active (w)))
1594 return; 2619 return;
1595 2620
1596 assert (("ev_io_start called with negative fd", fd >= 0)); 2621 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2622 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2623
2624 EV_FREQUENT_CHECK;
1597 2625
1598 ev_start (EV_A_ (W)w, 1); 2626 ev_start (EV_A_ (W)w, 1);
1599 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2627 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1600 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2628 wlist_add (&anfds[fd].head, (WL)w);
1601 2629
1602 fd_change (EV_A_ fd); 2630 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2631 w->events &= ~EV__IOFDSET;
2632
2633 EV_FREQUENT_CHECK;
1603} 2634}
1604 2635
1605void noinline 2636void noinline
1606ev_io_stop (EV_P_ ev_io *w) 2637ev_io_stop (EV_P_ ev_io *w)
1607{ 2638{
1608 clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
1609 if (expect_false (!ev_is_active (w))) 2640 if (expect_false (!ev_is_active (w)))
1610 return; 2641 return;
1611 2642
1612 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2643 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1613 2644
2645 EV_FREQUENT_CHECK;
2646
1614 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2647 wlist_del (&anfds[w->fd].head, (WL)w);
1615 ev_stop (EV_A_ (W)w); 2648 ev_stop (EV_A_ (W)w);
1616 2649
1617 fd_change (EV_A_ w->fd); 2650 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2651
2652 EV_FREQUENT_CHECK;
1618} 2653}
1619 2654
1620void noinline 2655void noinline
1621ev_timer_start (EV_P_ ev_timer *w) 2656ev_timer_start (EV_P_ ev_timer *w)
1622{ 2657{
1623 if (expect_false (ev_is_active (w))) 2658 if (expect_false (ev_is_active (w)))
1624 return; 2659 return;
1625 2660
1626 ((WT)w)->at += mn_now; 2661 ev_at (w) += mn_now;
1627 2662
1628 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2663 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1629 2664
2665 EV_FREQUENT_CHECK;
2666
2667 ++timercnt;
1630 ev_start (EV_A_ (W)w, ++timercnt); 2668 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1631 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2669 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1632 timers [timercnt - 1] = w; 2670 ANHE_w (timers [ev_active (w)]) = (WT)w;
1633 upheap ((WT *)timers, timercnt - 1); 2671 ANHE_at_cache (timers [ev_active (w)]);
2672 upheap (timers, ev_active (w));
1634 2673
2674 EV_FREQUENT_CHECK;
2675
1635 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2676 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1636} 2677}
1637 2678
1638void noinline 2679void noinline
1639ev_timer_stop (EV_P_ ev_timer *w) 2680ev_timer_stop (EV_P_ ev_timer *w)
1640{ 2681{
1641 clear_pending (EV_A_ (W)w); 2682 clear_pending (EV_A_ (W)w);
1642 if (expect_false (!ev_is_active (w))) 2683 if (expect_false (!ev_is_active (w)))
1643 return; 2684 return;
1644 2685
1645 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2686 EV_FREQUENT_CHECK;
1646 2687
1647 { 2688 {
1648 int active = ((W)w)->active; 2689 int active = ev_active (w);
1649 2690
2691 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2692
2693 --timercnt;
2694
1650 if (expect_true (--active < --timercnt)) 2695 if (expect_true (active < timercnt + HEAP0))
1651 { 2696 {
1652 timers [active] = timers [timercnt]; 2697 timers [active] = timers [timercnt + HEAP0];
1653 adjustheap ((WT *)timers, timercnt, active); 2698 adjustheap (timers, timercnt, active);
1654 } 2699 }
1655 } 2700 }
1656 2701
1657 ((WT)w)->at -= mn_now; 2702 ev_at (w) -= mn_now;
1658 2703
1659 ev_stop (EV_A_ (W)w); 2704 ev_stop (EV_A_ (W)w);
2705
2706 EV_FREQUENT_CHECK;
1660} 2707}
1661 2708
1662void noinline 2709void noinline
1663ev_timer_again (EV_P_ ev_timer *w) 2710ev_timer_again (EV_P_ ev_timer *w)
1664{ 2711{
2712 EV_FREQUENT_CHECK;
2713
1665 if (ev_is_active (w)) 2714 if (ev_is_active (w))
1666 { 2715 {
1667 if (w->repeat) 2716 if (w->repeat)
1668 { 2717 {
1669 ((WT)w)->at = mn_now + w->repeat; 2718 ev_at (w) = mn_now + w->repeat;
2719 ANHE_at_cache (timers [ev_active (w)]);
1670 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2720 adjustheap (timers, timercnt, ev_active (w));
1671 } 2721 }
1672 else 2722 else
1673 ev_timer_stop (EV_A_ w); 2723 ev_timer_stop (EV_A_ w);
1674 } 2724 }
1675 else if (w->repeat) 2725 else if (w->repeat)
1676 { 2726 {
1677 w->at = w->repeat; 2727 ev_at (w) = w->repeat;
1678 ev_timer_start (EV_A_ w); 2728 ev_timer_start (EV_A_ w);
1679 } 2729 }
2730
2731 EV_FREQUENT_CHECK;
2732}
2733
2734ev_tstamp
2735ev_timer_remaining (EV_P_ ev_timer *w)
2736{
2737 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1680} 2738}
1681 2739
1682#if EV_PERIODIC_ENABLE 2740#if EV_PERIODIC_ENABLE
1683void noinline 2741void noinline
1684ev_periodic_start (EV_P_ ev_periodic *w) 2742ev_periodic_start (EV_P_ ev_periodic *w)
1685{ 2743{
1686 if (expect_false (ev_is_active (w))) 2744 if (expect_false (ev_is_active (w)))
1687 return; 2745 return;
1688 2746
1689 if (w->reschedule_cb) 2747 if (w->reschedule_cb)
1690 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2748 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1691 else if (w->interval) 2749 else if (w->interval)
1692 { 2750 {
1693 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2751 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1694 /* this formula differs from the one in periodic_reify because we do not always round up */ 2752 /* this formula differs from the one in periodic_reify because we do not always round up */
1695 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2753 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1696 } 2754 }
2755 else
2756 ev_at (w) = w->offset;
1697 2757
2758 EV_FREQUENT_CHECK;
2759
2760 ++periodiccnt;
1698 ev_start (EV_A_ (W)w, ++periodiccnt); 2761 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1699 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2762 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1700 periodics [periodiccnt - 1] = w; 2763 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1701 upheap ((WT *)periodics, periodiccnt - 1); 2764 ANHE_at_cache (periodics [ev_active (w)]);
2765 upheap (periodics, ev_active (w));
1702 2766
2767 EV_FREQUENT_CHECK;
2768
1703 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2769 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1704} 2770}
1705 2771
1706void noinline 2772void noinline
1707ev_periodic_stop (EV_P_ ev_periodic *w) 2773ev_periodic_stop (EV_P_ ev_periodic *w)
1708{ 2774{
1709 clear_pending (EV_A_ (W)w); 2775 clear_pending (EV_A_ (W)w);
1710 if (expect_false (!ev_is_active (w))) 2776 if (expect_false (!ev_is_active (w)))
1711 return; 2777 return;
1712 2778
1713 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2779 EV_FREQUENT_CHECK;
1714 2780
1715 { 2781 {
1716 int active = ((W)w)->active; 2782 int active = ev_active (w);
1717 2783
2784 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2785
2786 --periodiccnt;
2787
1718 if (expect_true (--active < --periodiccnt)) 2788 if (expect_true (active < periodiccnt + HEAP0))
1719 { 2789 {
1720 periodics [active] = periodics [periodiccnt]; 2790 periodics [active] = periodics [periodiccnt + HEAP0];
1721 adjustheap ((WT *)periodics, periodiccnt, active); 2791 adjustheap (periodics, periodiccnt, active);
1722 } 2792 }
1723 } 2793 }
1724 2794
1725 ev_stop (EV_A_ (W)w); 2795 ev_stop (EV_A_ (W)w);
2796
2797 EV_FREQUENT_CHECK;
1726} 2798}
1727 2799
1728void noinline 2800void noinline
1729ev_periodic_again (EV_P_ ev_periodic *w) 2801ev_periodic_again (EV_P_ ev_periodic *w)
1730{ 2802{
1736 2808
1737#ifndef SA_RESTART 2809#ifndef SA_RESTART
1738# define SA_RESTART 0 2810# define SA_RESTART 0
1739#endif 2811#endif
1740 2812
2813#if EV_SIGNAL_ENABLE
2814
1741void noinline 2815void noinline
1742ev_signal_start (EV_P_ ev_signal *w) 2816ev_signal_start (EV_P_ ev_signal *w)
1743{ 2817{
1744#if EV_MULTIPLICITY
1745 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1746#endif
1747 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
1748 return; 2819 return;
1749 2820
1750 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2821 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2822
2823#if EV_MULTIPLICITY
2824 assert (("libev: a signal must not be attached to two different loops",
2825 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2826
2827 signals [w->signum - 1].loop = EV_A;
2828#endif
2829
2830 EV_FREQUENT_CHECK;
2831
2832#if EV_USE_SIGNALFD
2833 if (sigfd == -2)
2834 {
2835 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2836 if (sigfd < 0 && errno == EINVAL)
2837 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2838
2839 if (sigfd >= 0)
2840 {
2841 fd_intern (sigfd); /* doing it twice will not hurt */
2842
2843 sigemptyset (&sigfd_set);
2844
2845 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2846 ev_set_priority (&sigfd_w, EV_MAXPRI);
2847 ev_io_start (EV_A_ &sigfd_w);
2848 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2849 }
2850 }
2851
2852 if (sigfd >= 0)
2853 {
2854 /* TODO: check .head */
2855 sigaddset (&sigfd_set, w->signum);
2856 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2857
2858 signalfd (sigfd, &sigfd_set, 0);
2859 }
2860#endif
1751 2861
1752 ev_start (EV_A_ (W)w, 1); 2862 ev_start (EV_A_ (W)w, 1);
1753 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1754 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2863 wlist_add (&signals [w->signum - 1].head, (WL)w);
1755 2864
1756 if (!((WL)w)->next) 2865 if (!((WL)w)->next)
2866# if EV_USE_SIGNALFD
2867 if (sigfd < 0) /*TODO*/
2868# endif
1757 { 2869 {
1758#if _WIN32 2870# ifdef _WIN32
2871 evpipe_init (EV_A);
2872
1759 signal (w->signum, sighandler); 2873 signal (w->signum, ev_sighandler);
1760#else 2874# else
1761 struct sigaction sa; 2875 struct sigaction sa;
2876
2877 evpipe_init (EV_A);
2878
1762 sa.sa_handler = sighandler; 2879 sa.sa_handler = ev_sighandler;
1763 sigfillset (&sa.sa_mask); 2880 sigfillset (&sa.sa_mask);
1764 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2881 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1765 sigaction (w->signum, &sa, 0); 2882 sigaction (w->signum, &sa, 0);
2883
2884 sigemptyset (&sa.sa_mask);
2885 sigaddset (&sa.sa_mask, w->signum);
2886 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1766#endif 2887#endif
1767 } 2888 }
2889
2890 EV_FREQUENT_CHECK;
1768} 2891}
1769 2892
1770void noinline 2893void noinline
1771ev_signal_stop (EV_P_ ev_signal *w) 2894ev_signal_stop (EV_P_ ev_signal *w)
1772{ 2895{
1773 clear_pending (EV_A_ (W)w); 2896 clear_pending (EV_A_ (W)w);
1774 if (expect_false (!ev_is_active (w))) 2897 if (expect_false (!ev_is_active (w)))
1775 return; 2898 return;
1776 2899
2900 EV_FREQUENT_CHECK;
2901
1777 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2902 wlist_del (&signals [w->signum - 1].head, (WL)w);
1778 ev_stop (EV_A_ (W)w); 2903 ev_stop (EV_A_ (W)w);
1779 2904
1780 if (!signals [w->signum - 1].head) 2905 if (!signals [w->signum - 1].head)
2906 {
2907#if EV_MULTIPLICITY
2908 signals [w->signum - 1].loop = 0; /* unattach from signal */
2909#endif
2910#if EV_USE_SIGNALFD
2911 if (sigfd >= 0)
2912 {
2913 sigset_t ss;
2914
2915 sigemptyset (&ss);
2916 sigaddset (&ss, w->signum);
2917 sigdelset (&sigfd_set, w->signum);
2918
2919 signalfd (sigfd, &sigfd_set, 0);
2920 sigprocmask (SIG_UNBLOCK, &ss, 0);
2921 }
2922 else
2923#endif
1781 signal (w->signum, SIG_DFL); 2924 signal (w->signum, SIG_DFL);
2925 }
2926
2927 EV_FREQUENT_CHECK;
1782} 2928}
2929
2930#endif
2931
2932#if EV_CHILD_ENABLE
1783 2933
1784void 2934void
1785ev_child_start (EV_P_ ev_child *w) 2935ev_child_start (EV_P_ ev_child *w)
1786{ 2936{
1787#if EV_MULTIPLICITY 2937#if EV_MULTIPLICITY
1788 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2938 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1789#endif 2939#endif
1790 if (expect_false (ev_is_active (w))) 2940 if (expect_false (ev_is_active (w)))
1791 return; 2941 return;
1792 2942
2943 EV_FREQUENT_CHECK;
2944
1793 ev_start (EV_A_ (W)w, 1); 2945 ev_start (EV_A_ (W)w, 1);
1794 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2946 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2947
2948 EV_FREQUENT_CHECK;
1795} 2949}
1796 2950
1797void 2951void
1798ev_child_stop (EV_P_ ev_child *w) 2952ev_child_stop (EV_P_ ev_child *w)
1799{ 2953{
1800 clear_pending (EV_A_ (W)w); 2954 clear_pending (EV_A_ (W)w);
1801 if (expect_false (!ev_is_active (w))) 2955 if (expect_false (!ev_is_active (w)))
1802 return; 2956 return;
1803 2957
2958 EV_FREQUENT_CHECK;
2959
1804 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2960 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1805 ev_stop (EV_A_ (W)w); 2961 ev_stop (EV_A_ (W)w);
2962
2963 EV_FREQUENT_CHECK;
1806} 2964}
2965
2966#endif
1807 2967
1808#if EV_STAT_ENABLE 2968#if EV_STAT_ENABLE
1809 2969
1810# ifdef _WIN32 2970# ifdef _WIN32
1811# undef lstat 2971# undef lstat
1812# define lstat(a,b) _stati64 (a,b) 2972# define lstat(a,b) _stati64 (a,b)
1813# endif 2973# endif
1814 2974
1815#define DEF_STAT_INTERVAL 5.0074891 2975#define DEF_STAT_INTERVAL 5.0074891
2976#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1816#define MIN_STAT_INTERVAL 0.1074891 2977#define MIN_STAT_INTERVAL 0.1074891
1817 2978
1818static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2979static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1819 2980
1820#if EV_USE_INOTIFY 2981#if EV_USE_INOTIFY
1821# define EV_INOTIFY_BUFSIZE 8192 2982
2983/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2984# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1822 2985
1823static void noinline 2986static void noinline
1824infy_add (EV_P_ ev_stat *w) 2987infy_add (EV_P_ ev_stat *w)
1825{ 2988{
1826 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2989 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1827 2990
1828 if (w->wd < 0) 2991 if (w->wd >= 0)
2992 {
2993 struct statfs sfs;
2994
2995 /* now local changes will be tracked by inotify, but remote changes won't */
2996 /* unless the filesystem is known to be local, we therefore still poll */
2997 /* also do poll on <2.6.25, but with normal frequency */
2998
2999 if (!fs_2625)
3000 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3001 else if (!statfs (w->path, &sfs)
3002 && (sfs.f_type == 0x1373 /* devfs */
3003 || sfs.f_type == 0xEF53 /* ext2/3 */
3004 || sfs.f_type == 0x3153464a /* jfs */
3005 || sfs.f_type == 0x52654973 /* reiser3 */
3006 || sfs.f_type == 0x01021994 /* tempfs */
3007 || sfs.f_type == 0x58465342 /* xfs */))
3008 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3009 else
3010 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1829 { 3011 }
1830 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3012 else
3013 {
3014 /* can't use inotify, continue to stat */
3015 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1831 3016
1832 /* monitor some parent directory for speedup hints */ 3017 /* if path is not there, monitor some parent directory for speedup hints */
3018 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3019 /* but an efficiency issue only */
1833 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3020 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1834 { 3021 {
1835 char path [4096]; 3022 char path [4096];
1836 strcpy (path, w->path); 3023 strcpy (path, w->path);
1837 3024
1840 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3027 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1841 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3028 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1842 3029
1843 char *pend = strrchr (path, '/'); 3030 char *pend = strrchr (path, '/');
1844 3031
1845 if (!pend) 3032 if (!pend || pend == path)
1846 break; /* whoops, no '/', complain to your admin */ 3033 break;
1847 3034
1848 *pend = 0; 3035 *pend = 0;
1849 w->wd = inotify_add_watch (fs_fd, path, mask); 3036 w->wd = inotify_add_watch (fs_fd, path, mask);
1850 } 3037 }
1851 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3038 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1852 } 3039 }
1853 } 3040 }
1854 else
1855 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1856 3041
1857 if (w->wd >= 0) 3042 if (w->wd >= 0)
1858 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3043 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3044
3045 /* now re-arm timer, if required */
3046 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3047 ev_timer_again (EV_A_ &w->timer);
3048 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1859} 3049}
1860 3050
1861static void noinline 3051static void noinline
1862infy_del (EV_P_ ev_stat *w) 3052infy_del (EV_P_ ev_stat *w)
1863{ 3053{
1866 3056
1867 if (wd < 0) 3057 if (wd < 0)
1868 return; 3058 return;
1869 3059
1870 w->wd = -2; 3060 w->wd = -2;
1871 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3061 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1872 wlist_del (&fs_hash [slot].head, (WL)w); 3062 wlist_del (&fs_hash [slot].head, (WL)w);
1873 3063
1874 /* remove this watcher, if others are watching it, they will rearm */ 3064 /* remove this watcher, if others are watching it, they will rearm */
1875 inotify_rm_watch (fs_fd, wd); 3065 inotify_rm_watch (fs_fd, wd);
1876} 3066}
1877 3067
1878static void noinline 3068static void noinline
1879infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3069infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1880{ 3070{
1881 if (slot < 0) 3071 if (slot < 0)
1882 /* overflow, need to check for all hahs slots */ 3072 /* overflow, need to check for all hash slots */
1883 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3073 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1884 infy_wd (EV_A_ slot, wd, ev); 3074 infy_wd (EV_A_ slot, wd, ev);
1885 else 3075 else
1886 { 3076 {
1887 WL w_; 3077 WL w_;
1888 3078
1889 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3079 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1890 { 3080 {
1891 ev_stat *w = (ev_stat *)w_; 3081 ev_stat *w = (ev_stat *)w_;
1892 w_ = w_->next; /* lets us remove this watcher and all before it */ 3082 w_ = w_->next; /* lets us remove this watcher and all before it */
1893 3083
1894 if (w->wd == wd || wd == -1) 3084 if (w->wd == wd || wd == -1)
1895 { 3085 {
1896 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3086 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1897 { 3087 {
3088 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1898 w->wd = -1; 3089 w->wd = -1;
1899 infy_add (EV_A_ w); /* re-add, no matter what */ 3090 infy_add (EV_A_ w); /* re-add, no matter what */
1900 } 3091 }
1901 3092
1902 stat_timer_cb (EV_A_ &w->timer, 0); 3093 stat_timer_cb (EV_A_ &w->timer, 0);
1907 3098
1908static void 3099static void
1909infy_cb (EV_P_ ev_io *w, int revents) 3100infy_cb (EV_P_ ev_io *w, int revents)
1910{ 3101{
1911 char buf [EV_INOTIFY_BUFSIZE]; 3102 char buf [EV_INOTIFY_BUFSIZE];
1912 struct inotify_event *ev = (struct inotify_event *)buf;
1913 int ofs; 3103 int ofs;
1914 int len = read (fs_fd, buf, sizeof (buf)); 3104 int len = read (fs_fd, buf, sizeof (buf));
1915 3105
1916 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3106 for (ofs = 0; ofs < len; )
3107 {
3108 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1917 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3109 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3110 ofs += sizeof (struct inotify_event) + ev->len;
3111 }
1918} 3112}
1919 3113
1920void inline_size 3114inline_size void
3115ev_check_2625 (EV_P)
3116{
3117 /* kernels < 2.6.25 are borked
3118 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3119 */
3120 if (ev_linux_version () < 0x020619)
3121 return;
3122
3123 fs_2625 = 1;
3124}
3125
3126inline_size int
3127infy_newfd (void)
3128{
3129#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3130 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3131 if (fd >= 0)
3132 return fd;
3133#endif
3134 return inotify_init ();
3135}
3136
3137inline_size void
1921infy_init (EV_P) 3138infy_init (EV_P)
1922{ 3139{
1923 if (fs_fd != -2) 3140 if (fs_fd != -2)
1924 return; 3141 return;
1925 3142
3143 fs_fd = -1;
3144
3145 ev_check_2625 (EV_A);
3146
1926 fs_fd = inotify_init (); 3147 fs_fd = infy_newfd ();
1927 3148
1928 if (fs_fd >= 0) 3149 if (fs_fd >= 0)
1929 { 3150 {
3151 fd_intern (fs_fd);
1930 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3152 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1931 ev_set_priority (&fs_w, EV_MAXPRI); 3153 ev_set_priority (&fs_w, EV_MAXPRI);
1932 ev_io_start (EV_A_ &fs_w); 3154 ev_io_start (EV_A_ &fs_w);
3155 ev_unref (EV_A);
1933 } 3156 }
1934} 3157}
1935 3158
1936void inline_size 3159inline_size void
1937infy_fork (EV_P) 3160infy_fork (EV_P)
1938{ 3161{
1939 int slot; 3162 int slot;
1940 3163
1941 if (fs_fd < 0) 3164 if (fs_fd < 0)
1942 return; 3165 return;
1943 3166
3167 ev_ref (EV_A);
3168 ev_io_stop (EV_A_ &fs_w);
1944 close (fs_fd); 3169 close (fs_fd);
1945 fs_fd = inotify_init (); 3170 fs_fd = infy_newfd ();
1946 3171
3172 if (fs_fd >= 0)
3173 {
3174 fd_intern (fs_fd);
3175 ev_io_set (&fs_w, fs_fd, EV_READ);
3176 ev_io_start (EV_A_ &fs_w);
3177 ev_unref (EV_A);
3178 }
3179
1947 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3180 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1948 { 3181 {
1949 WL w_ = fs_hash [slot].head; 3182 WL w_ = fs_hash [slot].head;
1950 fs_hash [slot].head = 0; 3183 fs_hash [slot].head = 0;
1951 3184
1952 while (w_) 3185 while (w_)
1957 w->wd = -1; 3190 w->wd = -1;
1958 3191
1959 if (fs_fd >= 0) 3192 if (fs_fd >= 0)
1960 infy_add (EV_A_ w); /* re-add, no matter what */ 3193 infy_add (EV_A_ w); /* re-add, no matter what */
1961 else 3194 else
3195 {
3196 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3197 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1962 ev_timer_start (EV_A_ &w->timer); 3198 ev_timer_again (EV_A_ &w->timer);
3199 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3200 }
1963 } 3201 }
1964
1965 } 3202 }
1966} 3203}
1967 3204
3205#endif
3206
3207#ifdef _WIN32
3208# define EV_LSTAT(p,b) _stati64 (p, b)
3209#else
3210# define EV_LSTAT(p,b) lstat (p, b)
1968#endif 3211#endif
1969 3212
1970void 3213void
1971ev_stat_stat (EV_P_ ev_stat *w) 3214ev_stat_stat (EV_P_ ev_stat *w)
1972{ 3215{
1979static void noinline 3222static void noinline
1980stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3223stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1981{ 3224{
1982 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3225 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1983 3226
1984 /* we copy this here each the time so that */ 3227 ev_statdata prev = w->attr;
1985 /* prev has the old value when the callback gets invoked */
1986 w->prev = w->attr;
1987 ev_stat_stat (EV_A_ w); 3228 ev_stat_stat (EV_A_ w);
1988 3229
1989 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3230 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1990 if ( 3231 if (
1991 w->prev.st_dev != w->attr.st_dev 3232 prev.st_dev != w->attr.st_dev
1992 || w->prev.st_ino != w->attr.st_ino 3233 || prev.st_ino != w->attr.st_ino
1993 || w->prev.st_mode != w->attr.st_mode 3234 || prev.st_mode != w->attr.st_mode
1994 || w->prev.st_nlink != w->attr.st_nlink 3235 || prev.st_nlink != w->attr.st_nlink
1995 || w->prev.st_uid != w->attr.st_uid 3236 || prev.st_uid != w->attr.st_uid
1996 || w->prev.st_gid != w->attr.st_gid 3237 || prev.st_gid != w->attr.st_gid
1997 || w->prev.st_rdev != w->attr.st_rdev 3238 || prev.st_rdev != w->attr.st_rdev
1998 || w->prev.st_size != w->attr.st_size 3239 || prev.st_size != w->attr.st_size
1999 || w->prev.st_atime != w->attr.st_atime 3240 || prev.st_atime != w->attr.st_atime
2000 || w->prev.st_mtime != w->attr.st_mtime 3241 || prev.st_mtime != w->attr.st_mtime
2001 || w->prev.st_ctime != w->attr.st_ctime 3242 || prev.st_ctime != w->attr.st_ctime
2002 ) { 3243 ) {
3244 /* we only update w->prev on actual differences */
3245 /* in case we test more often than invoke the callback, */
3246 /* to ensure that prev is always different to attr */
3247 w->prev = prev;
3248
2003 #if EV_USE_INOTIFY 3249 #if EV_USE_INOTIFY
3250 if (fs_fd >= 0)
3251 {
2004 infy_del (EV_A_ w); 3252 infy_del (EV_A_ w);
2005 infy_add (EV_A_ w); 3253 infy_add (EV_A_ w);
2006 ev_stat_stat (EV_A_ w); /* avoid race... */ 3254 ev_stat_stat (EV_A_ w); /* avoid race... */
3255 }
2007 #endif 3256 #endif
2008 3257
2009 ev_feed_event (EV_A_ w, EV_STAT); 3258 ev_feed_event (EV_A_ w, EV_STAT);
2010 } 3259 }
2011} 3260}
2014ev_stat_start (EV_P_ ev_stat *w) 3263ev_stat_start (EV_P_ ev_stat *w)
2015{ 3264{
2016 if (expect_false (ev_is_active (w))) 3265 if (expect_false (ev_is_active (w)))
2017 return; 3266 return;
2018 3267
2019 /* since we use memcmp, we need to clear any padding data etc. */
2020 memset (&w->prev, 0, sizeof (ev_statdata));
2021 memset (&w->attr, 0, sizeof (ev_statdata));
2022
2023 ev_stat_stat (EV_A_ w); 3268 ev_stat_stat (EV_A_ w);
2024 3269
3270 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2025 if (w->interval < MIN_STAT_INTERVAL) 3271 w->interval = MIN_STAT_INTERVAL;
2026 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2027 3272
2028 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3273 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2029 ev_set_priority (&w->timer, ev_priority (w)); 3274 ev_set_priority (&w->timer, ev_priority (w));
2030 3275
2031#if EV_USE_INOTIFY 3276#if EV_USE_INOTIFY
2032 infy_init (EV_A); 3277 infy_init (EV_A);
2033 3278
2034 if (fs_fd >= 0) 3279 if (fs_fd >= 0)
2035 infy_add (EV_A_ w); 3280 infy_add (EV_A_ w);
2036 else 3281 else
2037#endif 3282#endif
3283 {
2038 ev_timer_start (EV_A_ &w->timer); 3284 ev_timer_again (EV_A_ &w->timer);
3285 ev_unref (EV_A);
3286 }
2039 3287
2040 ev_start (EV_A_ (W)w, 1); 3288 ev_start (EV_A_ (W)w, 1);
3289
3290 EV_FREQUENT_CHECK;
2041} 3291}
2042 3292
2043void 3293void
2044ev_stat_stop (EV_P_ ev_stat *w) 3294ev_stat_stop (EV_P_ ev_stat *w)
2045{ 3295{
2046 clear_pending (EV_A_ (W)w); 3296 clear_pending (EV_A_ (W)w);
2047 if (expect_false (!ev_is_active (w))) 3297 if (expect_false (!ev_is_active (w)))
2048 return; 3298 return;
2049 3299
3300 EV_FREQUENT_CHECK;
3301
2050#if EV_USE_INOTIFY 3302#if EV_USE_INOTIFY
2051 infy_del (EV_A_ w); 3303 infy_del (EV_A_ w);
2052#endif 3304#endif
3305
3306 if (ev_is_active (&w->timer))
3307 {
3308 ev_ref (EV_A);
2053 ev_timer_stop (EV_A_ &w->timer); 3309 ev_timer_stop (EV_A_ &w->timer);
3310 }
2054 3311
2055 ev_stop (EV_A_ (W)w); 3312 ev_stop (EV_A_ (W)w);
3313
3314 EV_FREQUENT_CHECK;
2056} 3315}
2057#endif 3316#endif
2058 3317
2059#if EV_IDLE_ENABLE 3318#if EV_IDLE_ENABLE
2060void 3319void
2062{ 3321{
2063 if (expect_false (ev_is_active (w))) 3322 if (expect_false (ev_is_active (w)))
2064 return; 3323 return;
2065 3324
2066 pri_adjust (EV_A_ (W)w); 3325 pri_adjust (EV_A_ (W)w);
3326
3327 EV_FREQUENT_CHECK;
2067 3328
2068 { 3329 {
2069 int active = ++idlecnt [ABSPRI (w)]; 3330 int active = ++idlecnt [ABSPRI (w)];
2070 3331
2071 ++idleall; 3332 ++idleall;
2072 ev_start (EV_A_ (W)w, active); 3333 ev_start (EV_A_ (W)w, active);
2073 3334
2074 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3335 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2075 idles [ABSPRI (w)][active - 1] = w; 3336 idles [ABSPRI (w)][active - 1] = w;
2076 } 3337 }
3338
3339 EV_FREQUENT_CHECK;
2077} 3340}
2078 3341
2079void 3342void
2080ev_idle_stop (EV_P_ ev_idle *w) 3343ev_idle_stop (EV_P_ ev_idle *w)
2081{ 3344{
2082 clear_pending (EV_A_ (W)w); 3345 clear_pending (EV_A_ (W)w);
2083 if (expect_false (!ev_is_active (w))) 3346 if (expect_false (!ev_is_active (w)))
2084 return; 3347 return;
2085 3348
3349 EV_FREQUENT_CHECK;
3350
2086 { 3351 {
2087 int active = ((W)w)->active; 3352 int active = ev_active (w);
2088 3353
2089 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3354 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2090 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3355 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2091 3356
2092 ev_stop (EV_A_ (W)w); 3357 ev_stop (EV_A_ (W)w);
2093 --idleall; 3358 --idleall;
2094 } 3359 }
2095}
2096#endif
2097 3360
3361 EV_FREQUENT_CHECK;
3362}
3363#endif
3364
3365#if EV_PREPARE_ENABLE
2098void 3366void
2099ev_prepare_start (EV_P_ ev_prepare *w) 3367ev_prepare_start (EV_P_ ev_prepare *w)
2100{ 3368{
2101 if (expect_false (ev_is_active (w))) 3369 if (expect_false (ev_is_active (w)))
2102 return; 3370 return;
3371
3372 EV_FREQUENT_CHECK;
2103 3373
2104 ev_start (EV_A_ (W)w, ++preparecnt); 3374 ev_start (EV_A_ (W)w, ++preparecnt);
2105 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3375 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2106 prepares [preparecnt - 1] = w; 3376 prepares [preparecnt - 1] = w;
3377
3378 EV_FREQUENT_CHECK;
2107} 3379}
2108 3380
2109void 3381void
2110ev_prepare_stop (EV_P_ ev_prepare *w) 3382ev_prepare_stop (EV_P_ ev_prepare *w)
2111{ 3383{
2112 clear_pending (EV_A_ (W)w); 3384 clear_pending (EV_A_ (W)w);
2113 if (expect_false (!ev_is_active (w))) 3385 if (expect_false (!ev_is_active (w)))
2114 return; 3386 return;
2115 3387
3388 EV_FREQUENT_CHECK;
3389
2116 { 3390 {
2117 int active = ((W)w)->active; 3391 int active = ev_active (w);
3392
2118 prepares [active - 1] = prepares [--preparecnt]; 3393 prepares [active - 1] = prepares [--preparecnt];
2119 ((W)prepares [active - 1])->active = active; 3394 ev_active (prepares [active - 1]) = active;
2120 } 3395 }
2121 3396
2122 ev_stop (EV_A_ (W)w); 3397 ev_stop (EV_A_ (W)w);
2123}
2124 3398
3399 EV_FREQUENT_CHECK;
3400}
3401#endif
3402
3403#if EV_CHECK_ENABLE
2125void 3404void
2126ev_check_start (EV_P_ ev_check *w) 3405ev_check_start (EV_P_ ev_check *w)
2127{ 3406{
2128 if (expect_false (ev_is_active (w))) 3407 if (expect_false (ev_is_active (w)))
2129 return; 3408 return;
3409
3410 EV_FREQUENT_CHECK;
2130 3411
2131 ev_start (EV_A_ (W)w, ++checkcnt); 3412 ev_start (EV_A_ (W)w, ++checkcnt);
2132 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3413 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2133 checks [checkcnt - 1] = w; 3414 checks [checkcnt - 1] = w;
3415
3416 EV_FREQUENT_CHECK;
2134} 3417}
2135 3418
2136void 3419void
2137ev_check_stop (EV_P_ ev_check *w) 3420ev_check_stop (EV_P_ ev_check *w)
2138{ 3421{
2139 clear_pending (EV_A_ (W)w); 3422 clear_pending (EV_A_ (W)w);
2140 if (expect_false (!ev_is_active (w))) 3423 if (expect_false (!ev_is_active (w)))
2141 return; 3424 return;
2142 3425
3426 EV_FREQUENT_CHECK;
3427
2143 { 3428 {
2144 int active = ((W)w)->active; 3429 int active = ev_active (w);
3430
2145 checks [active - 1] = checks [--checkcnt]; 3431 checks [active - 1] = checks [--checkcnt];
2146 ((W)checks [active - 1])->active = active; 3432 ev_active (checks [active - 1]) = active;
2147 } 3433 }
2148 3434
2149 ev_stop (EV_A_ (W)w); 3435 ev_stop (EV_A_ (W)w);
3436
3437 EV_FREQUENT_CHECK;
2150} 3438}
3439#endif
2151 3440
2152#if EV_EMBED_ENABLE 3441#if EV_EMBED_ENABLE
2153void noinline 3442void noinline
2154ev_embed_sweep (EV_P_ ev_embed *w) 3443ev_embed_sweep (EV_P_ ev_embed *w)
2155{ 3444{
2156 ev_loop (w->loop, EVLOOP_NONBLOCK); 3445 ev_run (w->other, EVRUN_NOWAIT);
2157} 3446}
2158 3447
2159static void 3448static void
2160embed_cb (EV_P_ ev_io *io, int revents) 3449embed_io_cb (EV_P_ ev_io *io, int revents)
2161{ 3450{
2162 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3451 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2163 3452
2164 if (ev_cb (w)) 3453 if (ev_cb (w))
2165 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3454 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2166 else 3455 else
2167 ev_embed_sweep (loop, w); 3456 ev_run (w->other, EVRUN_NOWAIT);
2168} 3457}
3458
3459static void
3460embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3461{
3462 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3463
3464 {
3465 EV_P = w->other;
3466
3467 while (fdchangecnt)
3468 {
3469 fd_reify (EV_A);
3470 ev_run (EV_A_ EVRUN_NOWAIT);
3471 }
3472 }
3473}
3474
3475static void
3476embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3477{
3478 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3479
3480 ev_embed_stop (EV_A_ w);
3481
3482 {
3483 EV_P = w->other;
3484
3485 ev_loop_fork (EV_A);
3486 ev_run (EV_A_ EVRUN_NOWAIT);
3487 }
3488
3489 ev_embed_start (EV_A_ w);
3490}
3491
3492#if 0
3493static void
3494embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3495{
3496 ev_idle_stop (EV_A_ idle);
3497}
3498#endif
2169 3499
2170void 3500void
2171ev_embed_start (EV_P_ ev_embed *w) 3501ev_embed_start (EV_P_ ev_embed *w)
2172{ 3502{
2173 if (expect_false (ev_is_active (w))) 3503 if (expect_false (ev_is_active (w)))
2174 return; 3504 return;
2175 3505
2176 { 3506 {
2177 struct ev_loop *loop = w->loop; 3507 EV_P = w->other;
2178 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3508 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2179 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3509 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2180 } 3510 }
3511
3512 EV_FREQUENT_CHECK;
2181 3513
2182 ev_set_priority (&w->io, ev_priority (w)); 3514 ev_set_priority (&w->io, ev_priority (w));
2183 ev_io_start (EV_A_ &w->io); 3515 ev_io_start (EV_A_ &w->io);
2184 3516
3517 ev_prepare_init (&w->prepare, embed_prepare_cb);
3518 ev_set_priority (&w->prepare, EV_MINPRI);
3519 ev_prepare_start (EV_A_ &w->prepare);
3520
3521 ev_fork_init (&w->fork, embed_fork_cb);
3522 ev_fork_start (EV_A_ &w->fork);
3523
3524 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3525
2185 ev_start (EV_A_ (W)w, 1); 3526 ev_start (EV_A_ (W)w, 1);
3527
3528 EV_FREQUENT_CHECK;
2186} 3529}
2187 3530
2188void 3531void
2189ev_embed_stop (EV_P_ ev_embed *w) 3532ev_embed_stop (EV_P_ ev_embed *w)
2190{ 3533{
2191 clear_pending (EV_A_ (W)w); 3534 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 3535 if (expect_false (!ev_is_active (w)))
2193 return; 3536 return;
2194 3537
3538 EV_FREQUENT_CHECK;
3539
2195 ev_io_stop (EV_A_ &w->io); 3540 ev_io_stop (EV_A_ &w->io);
3541 ev_prepare_stop (EV_A_ &w->prepare);
3542 ev_fork_stop (EV_A_ &w->fork);
2196 3543
2197 ev_stop (EV_A_ (W)w); 3544 ev_stop (EV_A_ (W)w);
3545
3546 EV_FREQUENT_CHECK;
2198} 3547}
2199#endif 3548#endif
2200 3549
2201#if EV_FORK_ENABLE 3550#if EV_FORK_ENABLE
2202void 3551void
2203ev_fork_start (EV_P_ ev_fork *w) 3552ev_fork_start (EV_P_ ev_fork *w)
2204{ 3553{
2205 if (expect_false (ev_is_active (w))) 3554 if (expect_false (ev_is_active (w)))
2206 return; 3555 return;
3556
3557 EV_FREQUENT_CHECK;
2207 3558
2208 ev_start (EV_A_ (W)w, ++forkcnt); 3559 ev_start (EV_A_ (W)w, ++forkcnt);
2209 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3560 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2210 forks [forkcnt - 1] = w; 3561 forks [forkcnt - 1] = w;
3562
3563 EV_FREQUENT_CHECK;
2211} 3564}
2212 3565
2213void 3566void
2214ev_fork_stop (EV_P_ ev_fork *w) 3567ev_fork_stop (EV_P_ ev_fork *w)
2215{ 3568{
2216 clear_pending (EV_A_ (W)w); 3569 clear_pending (EV_A_ (W)w);
2217 if (expect_false (!ev_is_active (w))) 3570 if (expect_false (!ev_is_active (w)))
2218 return; 3571 return;
2219 3572
3573 EV_FREQUENT_CHECK;
3574
2220 { 3575 {
2221 int active = ((W)w)->active; 3576 int active = ev_active (w);
3577
2222 forks [active - 1] = forks [--forkcnt]; 3578 forks [active - 1] = forks [--forkcnt];
2223 ((W)forks [active - 1])->active = active; 3579 ev_active (forks [active - 1]) = active;
2224 } 3580 }
2225 3581
2226 ev_stop (EV_A_ (W)w); 3582 ev_stop (EV_A_ (W)w);
3583
3584 EV_FREQUENT_CHECK;
3585}
3586#endif
3587
3588#if EV_CLEANUP_ENABLE
3589void
3590ev_cleanup_start (EV_P_ ev_cleanup *w)
3591{
3592 if (expect_false (ev_is_active (w)))
3593 return;
3594
3595 EV_FREQUENT_CHECK;
3596
3597 ev_start (EV_A_ (W)w, ++cleanupcnt);
3598 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3599 cleanups [cleanupcnt - 1] = w;
3600
3601 /* cleanup watchers should never keep a refcount on the loop */
3602 ev_unref (EV_A);
3603 EV_FREQUENT_CHECK;
3604}
3605
3606void
3607ev_cleanup_stop (EV_P_ ev_cleanup *w)
3608{
3609 clear_pending (EV_A_ (W)w);
3610 if (expect_false (!ev_is_active (w)))
3611 return;
3612
3613 EV_FREQUENT_CHECK;
3614 ev_ref (EV_A);
3615
3616 {
3617 int active = ev_active (w);
3618
3619 cleanups [active - 1] = cleanups [--cleanupcnt];
3620 ev_active (cleanups [active - 1]) = active;
3621 }
3622
3623 ev_stop (EV_A_ (W)w);
3624
3625 EV_FREQUENT_CHECK;
3626}
3627#endif
3628
3629#if EV_ASYNC_ENABLE
3630void
3631ev_async_start (EV_P_ ev_async *w)
3632{
3633 if (expect_false (ev_is_active (w)))
3634 return;
3635
3636 w->sent = 0;
3637
3638 evpipe_init (EV_A);
3639
3640 EV_FREQUENT_CHECK;
3641
3642 ev_start (EV_A_ (W)w, ++asynccnt);
3643 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3644 asyncs [asynccnt - 1] = w;
3645
3646 EV_FREQUENT_CHECK;
3647}
3648
3649void
3650ev_async_stop (EV_P_ ev_async *w)
3651{
3652 clear_pending (EV_A_ (W)w);
3653 if (expect_false (!ev_is_active (w)))
3654 return;
3655
3656 EV_FREQUENT_CHECK;
3657
3658 {
3659 int active = ev_active (w);
3660
3661 asyncs [active - 1] = asyncs [--asynccnt];
3662 ev_active (asyncs [active - 1]) = active;
3663 }
3664
3665 ev_stop (EV_A_ (W)w);
3666
3667 EV_FREQUENT_CHECK;
3668}
3669
3670void
3671ev_async_send (EV_P_ ev_async *w)
3672{
3673 w->sent = 1;
3674 evpipe_write (EV_A_ &async_pending);
2227} 3675}
2228#endif 3676#endif
2229 3677
2230/*****************************************************************************/ 3678/*****************************************************************************/
2231 3679
2241once_cb (EV_P_ struct ev_once *once, int revents) 3689once_cb (EV_P_ struct ev_once *once, int revents)
2242{ 3690{
2243 void (*cb)(int revents, void *arg) = once->cb; 3691 void (*cb)(int revents, void *arg) = once->cb;
2244 void *arg = once->arg; 3692 void *arg = once->arg;
2245 3693
2246 ev_io_stop (EV_A_ &once->io); 3694 ev_io_stop (EV_A_ &once->io);
2247 ev_timer_stop (EV_A_ &once->to); 3695 ev_timer_stop (EV_A_ &once->to);
2248 ev_free (once); 3696 ev_free (once);
2249 3697
2250 cb (revents, arg); 3698 cb (revents, arg);
2251} 3699}
2252 3700
2253static void 3701static void
2254once_cb_io (EV_P_ ev_io *w, int revents) 3702once_cb_io (EV_P_ ev_io *w, int revents)
2255{ 3703{
2256 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3704 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3705
3706 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2257} 3707}
2258 3708
2259static void 3709static void
2260once_cb_to (EV_P_ ev_timer *w, int revents) 3710once_cb_to (EV_P_ ev_timer *w, int revents)
2261{ 3711{
2262 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3712 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3713
3714 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2263} 3715}
2264 3716
2265void 3717void
2266ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3718ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2267{ 3719{
2268 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3720 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2269 3721
2270 if (expect_false (!once)) 3722 if (expect_false (!once))
2271 { 3723 {
2272 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3724 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2273 return; 3725 return;
2274 } 3726 }
2275 3727
2276 once->cb = cb; 3728 once->cb = cb;
2277 once->arg = arg; 3729 once->arg = arg;
2289 ev_timer_set (&once->to, timeout, 0.); 3741 ev_timer_set (&once->to, timeout, 0.);
2290 ev_timer_start (EV_A_ &once->to); 3742 ev_timer_start (EV_A_ &once->to);
2291 } 3743 }
2292} 3744}
2293 3745
2294#ifdef __cplusplus 3746/*****************************************************************************/
2295} 3747
3748#if EV_WALK_ENABLE
3749void
3750ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3751{
3752 int i, j;
3753 ev_watcher_list *wl, *wn;
3754
3755 if (types & (EV_IO | EV_EMBED))
3756 for (i = 0; i < anfdmax; ++i)
3757 for (wl = anfds [i].head; wl; )
3758 {
3759 wn = wl->next;
3760
3761#if EV_EMBED_ENABLE
3762 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3763 {
3764 if (types & EV_EMBED)
3765 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3766 }
3767 else
3768#endif
3769#if EV_USE_INOTIFY
3770 if (ev_cb ((ev_io *)wl) == infy_cb)
3771 ;
3772 else
3773#endif
3774 if ((ev_io *)wl != &pipe_w)
3775 if (types & EV_IO)
3776 cb (EV_A_ EV_IO, wl);
3777
3778 wl = wn;
3779 }
3780
3781 if (types & (EV_TIMER | EV_STAT))
3782 for (i = timercnt + HEAP0; i-- > HEAP0; )
3783#if EV_STAT_ENABLE
3784 /*TODO: timer is not always active*/
3785 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3786 {
3787 if (types & EV_STAT)
3788 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3789 }
3790 else
3791#endif
3792 if (types & EV_TIMER)
3793 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3794
3795#if EV_PERIODIC_ENABLE
3796 if (types & EV_PERIODIC)
3797 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3798 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3799#endif
3800
3801#if EV_IDLE_ENABLE
3802 if (types & EV_IDLE)
3803 for (j = NUMPRI; i--; )
3804 for (i = idlecnt [j]; i--; )
3805 cb (EV_A_ EV_IDLE, idles [j][i]);
3806#endif
3807
3808#if EV_FORK_ENABLE
3809 if (types & EV_FORK)
3810 for (i = forkcnt; i--; )
3811 if (ev_cb (forks [i]) != embed_fork_cb)
3812 cb (EV_A_ EV_FORK, forks [i]);
3813#endif
3814
3815#if EV_ASYNC_ENABLE
3816 if (types & EV_ASYNC)
3817 for (i = asynccnt; i--; )
3818 cb (EV_A_ EV_ASYNC, asyncs [i]);
3819#endif
3820
3821#if EV_PREPARE_ENABLE
3822 if (types & EV_PREPARE)
3823 for (i = preparecnt; i--; )
3824# if EV_EMBED_ENABLE
3825 if (ev_cb (prepares [i]) != embed_prepare_cb)
2296#endif 3826# endif
3827 cb (EV_A_ EV_PREPARE, prepares [i]);
3828#endif
2297 3829
3830#if EV_CHECK_ENABLE
3831 if (types & EV_CHECK)
3832 for (i = checkcnt; i--; )
3833 cb (EV_A_ EV_CHECK, checks [i]);
3834#endif
3835
3836#if EV_SIGNAL_ENABLE
3837 if (types & EV_SIGNAL)
3838 for (i = 0; i < EV_NSIG - 1; ++i)
3839 for (wl = signals [i].head; wl; )
3840 {
3841 wn = wl->next;
3842 cb (EV_A_ EV_SIGNAL, wl);
3843 wl = wn;
3844 }
3845#endif
3846
3847#if EV_CHILD_ENABLE
3848 if (types & EV_CHILD)
3849 for (i = (EV_PID_HASHSIZE); i--; )
3850 for (wl = childs [i]; wl; )
3851 {
3852 wn = wl->next;
3853 cb (EV_A_ EV_CHILD, wl);
3854 wl = wn;
3855 }
3856#endif
3857/* EV_STAT 0x00001000 /* stat data changed */
3858/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3859}
3860#endif
3861
3862#if EV_MULTIPLICITY
3863 #include "ev_wrap.h"
3864#endif
3865
3866EV_CPP(})
3867

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines