ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.180 by root, Tue Dec 11 22:04:55 2007 UTC vs.
Revision 1.366 by root, Mon Jan 10 01:58:54 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
202#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
205#endif 373#endif
206 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
207#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 397# include <winsock.h>
209#endif 398#endif
210 399
211#if !EV_STAT_ENABLE 400#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
213#endif 405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
214 415
215#if EV_USE_INOTIFY 416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
217#endif 436#endif
218 437
219/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
220 445
221/* 446/*
222 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
228 */ 453 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230 455
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
235#if __GNUC__ >= 3 462#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
238#else 465#else
239# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
240# define noinline 467# define noinline
241# if __STDC_VERSION__ < 199901L 468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 469# define inline
243# endif 470# endif
244#endif 471#endif
245 472
246#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
247#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline 475#define inline_size static inline
249 476
250#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
251# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
252#else 487#else
253# define inline_speed static inline
254#endif
255
256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
258 490
259#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
261 493
262typedef ev_watcher *W; 494typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
265 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
267 520
268#ifdef _WIN32 521#ifdef _WIN32
269# include "ev_win32.c" 522# include "ev_win32.c"
270#endif 523#endif
271 524
272/*****************************************************************************/ 525/*****************************************************************************/
273 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
274static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
275 578
276void 579void
277ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
278{ 581{
279 syserr_cb = cb; 582 syserr_cb = cb;
280} 583}
281 584
282static void noinline 585static void noinline
283syserr (const char *msg) 586ev_syserr (const char *msg)
284{ 587{
285 if (!msg) 588 if (!msg)
286 msg = "(libev) system error"; 589 msg = "(libev) system error";
287 590
288 if (syserr_cb) 591 if (syserr_cb)
289 syserr_cb (msg); 592 syserr_cb (msg);
290 else 593 else
291 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
292 perror (msg); 601 perror (msg);
602#endif
293 abort (); 603 abort ();
294 } 604 }
295} 605}
296 606
607static void *
608ev_realloc_emul (void *ptr, long size)
609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623#endif
624}
625
297static void *(*alloc)(void *ptr, long size); 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 627
299void 628void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 629ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 630{
302 alloc = cb; 631 alloc = cb;
303} 632}
304 633
305inline_speed void * 634inline_speed void *
306ev_realloc (void *ptr, long size) 635ev_realloc (void *ptr, long size)
307{ 636{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 637 ptr = alloc (ptr, size);
309 638
310 if (!ptr && size) 639 if (!ptr && size)
311 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
313 abort (); 646 abort ();
314 } 647 }
315 648
316 return ptr; 649 return ptr;
317} 650}
319#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
320#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
321 654
322/*****************************************************************************/ 655/*****************************************************************************/
323 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
324typedef struct 661typedef struct
325{ 662{
326 WL head; 663 WL head;
327 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
328 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
329#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
330 SOCKET handle; 672 SOCKET handle;
331#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
332} ANFD; 677} ANFD;
333 678
679/* stores the pending event set for a given watcher */
334typedef struct 680typedef struct
335{ 681{
336 W w; 682 W w;
337 int events; 683 int events; /* the pending event set for the given watcher */
338} ANPENDING; 684} ANPENDING;
339 685
340#if EV_USE_INOTIFY 686#if EV_USE_INOTIFY
687/* hash table entry per inotify-id */
341typedef struct 688typedef struct
342{ 689{
343 WL head; 690 WL head;
344} ANFS; 691} ANFS;
692#endif
693
694/* Heap Entry */
695#if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705#else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
345#endif 712#endif
346 713
347#if EV_MULTIPLICITY 714#if EV_MULTIPLICITY
348 715
349 struct ev_loop 716 struct ev_loop
368 735
369 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
370 737
371#endif 738#endif
372 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
373/*****************************************************************************/ 752/*****************************************************************************/
374 753
754#ifndef EV_HAVE_EV_TIME
375ev_tstamp 755ev_tstamp
376ev_time (void) 756ev_time (void)
377{ 757{
378#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
379 struct timespec ts; 761 struct timespec ts;
380 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
381 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
382#else 764 }
765#endif
766
383 struct timeval tv; 767 struct timeval tv;
384 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
385 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
386#endif
387} 770}
771#endif
388 772
389ev_tstamp inline_size 773inline_size ev_tstamp
390get_clock (void) 774get_clock (void)
391{ 775{
392#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
393 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
394 { 778 {
407{ 791{
408 return ev_rt_now; 792 return ev_rt_now;
409} 793}
410#endif 794#endif
411 795
412int inline_size 796void
797ev_sleep (ev_tstamp delay)
798{
799 if (delay > 0.)
800 {
801#if EV_USE_NANOSLEEP
802 struct timespec ts;
803
804 EV_TS_SET (ts, delay);
805 nanosleep (&ts, 0);
806#elif defined(_WIN32)
807 Sleep ((unsigned long)(delay * 1e3));
808#else
809 struct timeval tv;
810
811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
812 /* something not guaranteed by newer posix versions, but guaranteed */
813 /* by older ones */
814 EV_TV_SET (tv, delay);
815 select (0, 0, 0, 0, &tv);
816#endif
817 }
818}
819
820/*****************************************************************************/
821
822#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
823
824/* find a suitable new size for the given array, */
825/* hopefully by rounding to a nice-to-malloc size */
826inline_size int
413array_nextsize (int elem, int cur, int cnt) 827array_nextsize (int elem, int cur, int cnt)
414{ 828{
415 int ncur = cur + 1; 829 int ncur = cur + 1;
416 830
417 do 831 do
418 ncur <<= 1; 832 ncur <<= 1;
419 while (cnt > ncur); 833 while (cnt > ncur);
420 834
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 835 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 836 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 837 {
424 ncur *= elem; 838 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 839 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 840 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 841 ncur /= elem;
428 } 842 }
429 843
430 return ncur; 844 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 848array_realloc (int elem, void *base, int *cur, int cnt)
435{ 849{
436 *cur = array_nextsize (elem, *cur, cnt); 850 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 851 return ev_realloc (base, elem * *cur);
438} 852}
853
854#define array_init_zero(base,count) \
855 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 856
440#define array_needsize(type,base,cur,cnt,init) \ 857#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 858 if (expect_false ((cnt) > (cur))) \
442 { \ 859 { \
443 int ocur_ = (cur); \ 860 int ocur_ = (cur); \
455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 872 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
456 } 873 }
457#endif 874#endif
458 875
459#define array_free(stem, idx) \ 876#define array_free(stem, idx) \
460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 877 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
461 878
462/*****************************************************************************/ 879/*****************************************************************************/
880
881/* dummy callback for pending events */
882static void noinline
883pendingcb (EV_P_ ev_prepare *w, int revents)
884{
885}
463 886
464void noinline 887void noinline
465ev_feed_event (EV_P_ void *w, int revents) 888ev_feed_event (EV_P_ void *w, int revents)
466{ 889{
467 W w_ = (W)w; 890 W w_ = (W)w;
476 pendings [pri][w_->pending - 1].w = w_; 899 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 900 pendings [pri][w_->pending - 1].events = revents;
478 } 901 }
479} 902}
480 903
481void inline_speed 904inline_speed void
905feed_reverse (EV_P_ W w)
906{
907 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
908 rfeeds [rfeedcnt++] = w;
909}
910
911inline_size void
912feed_reverse_done (EV_P_ int revents)
913{
914 do
915 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
916 while (rfeedcnt);
917}
918
919inline_speed void
482queue_events (EV_P_ W *events, int eventcnt, int type) 920queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 921{
484 int i; 922 int i;
485 923
486 for (i = 0; i < eventcnt; ++i) 924 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type); 925 ev_feed_event (EV_A_ events [i], type);
488} 926}
489 927
490/*****************************************************************************/ 928/*****************************************************************************/
491 929
492void inline_size 930inline_speed void
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed
506fd_event (EV_P_ int fd, int revents) 931fd_event_nocheck (EV_P_ int fd, int revents)
507{ 932{
508 ANFD *anfd = anfds + fd; 933 ANFD *anfd = anfds + fd;
509 ev_io *w; 934 ev_io *w;
510 935
511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 936 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
515 if (ev) 940 if (ev)
516 ev_feed_event (EV_A_ (W)w, ev); 941 ev_feed_event (EV_A_ (W)w, ev);
517 } 942 }
518} 943}
519 944
945/* do not submit kernel events for fds that have reify set */
946/* because that means they changed while we were polling for new events */
947inline_speed void
948fd_event (EV_P_ int fd, int revents)
949{
950 ANFD *anfd = anfds + fd;
951
952 if (expect_true (!anfd->reify))
953 fd_event_nocheck (EV_A_ fd, revents);
954}
955
520void 956void
521ev_feed_fd_event (EV_P_ int fd, int revents) 957ev_feed_fd_event (EV_P_ int fd, int revents)
522{ 958{
523 if (fd >= 0 && fd < anfdmax) 959 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents); 960 fd_event_nocheck (EV_A_ fd, revents);
525} 961}
526 962
527void inline_size 963/* make sure the external fd watch events are in-sync */
964/* with the kernel/libev internal state */
965inline_size void
528fd_reify (EV_P) 966fd_reify (EV_P)
529{ 967{
530 int i; 968 int i;
531 969
532 for (i = 0; i < fdchangecnt; ++i) 970 for (i = 0; i < fdchangecnt; ++i)
533 { 971 {
534 int fd = fdchanges [i]; 972 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 973 ANFD *anfd = anfds + fd;
536 ev_io *w; 974 ev_io *w;
537 975
538 int events = 0; 976 unsigned char o_events = anfd->events;
977 unsigned char o_reify = anfd->reify;
539 978
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 979 anfd->reify = 0;
541 events |= w->events;
542 980
543#if EV_SELECT_IS_WINSOCKET 981#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
544 if (events) 982 if (o_reify & EV__IOFDSET)
545 { 983 {
546 unsigned long argp; 984 unsigned long arg;
547 anfd->handle = _get_osfhandle (fd); 985 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 986 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
987 printf ("oi %d %x\n", fd, anfd->handle);//D
549 } 988 }
550#endif 989#endif
551 990
552 anfd->reify = 0; 991 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
992 {
993 anfd->events = 0;
553 994
995 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
996 anfd->events |= (unsigned char)w->events;
997
998 if (o_events != anfd->events)
999 o_reify = EV__IOFDSET; /* actually |= */
1000 }
1001
1002 if (o_reify & EV__IOFDSET)
554 backend_modify (EV_A_ fd, anfd->events, events); 1003 backend_modify (EV_A_ fd, o_events, anfd->events);
555 anfd->events = events;
556 } 1004 }
557 1005
558 fdchangecnt = 0; 1006 fdchangecnt = 0;
559} 1007}
560 1008
561void inline_size 1009/* something about the given fd changed */
1010inline_size void
562fd_change (EV_P_ int fd) 1011fd_change (EV_P_ int fd, int flags)
563{ 1012{
564 if (expect_false (anfds [fd].reify)) 1013 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 1014 anfds [fd].reify |= flags;
568 1015
1016 if (expect_true (!reify))
1017 {
569 ++fdchangecnt; 1018 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1019 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 1020 fdchanges [fdchangecnt - 1] = fd;
1021 }
572} 1022}
573 1023
574void inline_speed 1024/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1025inline_speed void
575fd_kill (EV_P_ int fd) 1026fd_kill (EV_P_ int fd)
576{ 1027{
577 ev_io *w; 1028 ev_io *w;
578 1029
579 while ((w = (ev_io *)anfds [fd].head)) 1030 while ((w = (ev_io *)anfds [fd].head))
581 ev_io_stop (EV_A_ w); 1032 ev_io_stop (EV_A_ w);
582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1033 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
583 } 1034 }
584} 1035}
585 1036
586int inline_size 1037/* check whether the given fd is actually valid, for error recovery */
1038inline_size int
587fd_valid (int fd) 1039fd_valid (int fd)
588{ 1040{
589#ifdef _WIN32 1041#ifdef _WIN32
590 return _get_osfhandle (fd) != -1; 1042 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
591#else 1043#else
592 return fcntl (fd, F_GETFD) != -1; 1044 return fcntl (fd, F_GETFD) != -1;
593#endif 1045#endif
594} 1046}
595 1047
599{ 1051{
600 int fd; 1052 int fd;
601 1053
602 for (fd = 0; fd < anfdmax; ++fd) 1054 for (fd = 0; fd < anfdmax; ++fd)
603 if (anfds [fd].events) 1055 if (anfds [fd].events)
604 if (!fd_valid (fd) == -1 && errno == EBADF) 1056 if (!fd_valid (fd) && errno == EBADF)
605 fd_kill (EV_A_ fd); 1057 fd_kill (EV_A_ fd);
606} 1058}
607 1059
608/* called on ENOMEM in select/poll to kill some fds and retry */ 1060/* called on ENOMEM in select/poll to kill some fds and retry */
609static void noinline 1061static void noinline
613 1065
614 for (fd = anfdmax; fd--; ) 1066 for (fd = anfdmax; fd--; )
615 if (anfds [fd].events) 1067 if (anfds [fd].events)
616 { 1068 {
617 fd_kill (EV_A_ fd); 1069 fd_kill (EV_A_ fd);
618 return; 1070 break;
619 } 1071 }
620} 1072}
621 1073
622/* usually called after fork if backend needs to re-arm all fds from scratch */ 1074/* usually called after fork if backend needs to re-arm all fds from scratch */
623static void noinline 1075static void noinline
627 1079
628 for (fd = 0; fd < anfdmax; ++fd) 1080 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 1081 if (anfds [fd].events)
630 { 1082 {
631 anfds [fd].events = 0; 1083 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 1084 anfds [fd].emask = 0;
1085 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
633 } 1086 }
634} 1087}
635 1088
636/*****************************************************************************/ 1089/* used to prepare libev internal fd's */
637 1090/* this is not fork-safe */
638void inline_speed 1091inline_speed void
639upheap (WT *heap, int k)
640{
641 WT w = heap [k];
642
643 while (k)
644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
650 heap [k] = heap [p];
651 ((W)heap [k])->active = k + 1;
652 k = p;
653 }
654
655 heap [k] = w;
656 ((W)heap [k])->active = k + 1;
657
658}
659
660void inline_speed
661downheap (WT *heap, int N, int k)
662{
663 WT w = heap [k];
664
665 for (;;)
666 {
667 int c = (k << 1) + 1;
668
669 if (c >= N)
670 break;
671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
678 heap [k] = heap [c];
679 ((W)heap [k])->active = k + 1;
680
681 k = c;
682 }
683
684 heap [k] = w;
685 ((W)heap [k])->active = k + 1;
686}
687
688void inline_size
689adjustheap (WT *heap, int N, int k)
690{
691 upheap (heap, k);
692 downheap (heap, N, k);
693}
694
695/*****************************************************************************/
696
697typedef struct
698{
699 WL head;
700 sig_atomic_t volatile gotsig;
701} ANSIG;
702
703static ANSIG *signals;
704static int signalmax;
705
706static int sigpipe [2];
707static sig_atomic_t volatile gotsig;
708static ev_io sigev;
709
710void inline_size
711signals_init (ANSIG *base, int count)
712{
713 while (count--)
714 {
715 base->head = 0;
716 base->gotsig = 0;
717
718 ++base;
719 }
720}
721
722static void
723sighandler (int signum)
724{
725#if _WIN32
726 signal (signum, sighandler);
727#endif
728
729 signals [signum - 1].gotsig = 1;
730
731 if (!gotsig)
732 {
733 int old_errno = errno;
734 gotsig = 1;
735 write (sigpipe [1], &signum, 1);
736 errno = old_errno;
737 }
738}
739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
760static void
761sigcb (EV_P_ ev_io *iow, int revents)
762{
763 int signum;
764
765 read (sigpipe [0], &revents, 1);
766 gotsig = 0;
767
768 for (signum = signalmax; signum--; )
769 if (signals [signum].gotsig)
770 ev_feed_signal_event (EV_A_ signum + 1);
771}
772
773void inline_speed
774fd_intern (int fd) 1092fd_intern (int fd)
775{ 1093{
776#ifdef _WIN32 1094#ifdef _WIN32
777 int arg = 1; 1095 unsigned long arg = 1;
778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
779#else 1097#else
780 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
781 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif 1100#endif
783} 1101}
784 1102
1103/*****************************************************************************/
1104
1105/*
1106 * the heap functions want a real array index. array index 0 is guaranteed to not
1107 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1108 * the branching factor of the d-tree.
1109 */
1110
1111/*
1112 * at the moment we allow libev the luxury of two heaps,
1113 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1114 * which is more cache-efficient.
1115 * the difference is about 5% with 50000+ watchers.
1116 */
1117#if EV_USE_4HEAP
1118
1119#define DHEAP 4
1120#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1121#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1122#define UPHEAP_DONE(p,k) ((p) == (k))
1123
1124/* away from the root */
1125inline_speed void
1126downheap (ANHE *heap, int N, int k)
1127{
1128 ANHE he = heap [k];
1129 ANHE *E = heap + N + HEAP0;
1130
1131 for (;;)
1132 {
1133 ev_tstamp minat;
1134 ANHE *minpos;
1135 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1136
1137 /* find minimum child */
1138 if (expect_true (pos + DHEAP - 1 < E))
1139 {
1140 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1141 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1142 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1144 }
1145 else if (pos < E)
1146 {
1147 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1148 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1149 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1150 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1151 }
1152 else
1153 break;
1154
1155 if (ANHE_at (he) <= minat)
1156 break;
1157
1158 heap [k] = *minpos;
1159 ev_active (ANHE_w (*minpos)) = k;
1160
1161 k = minpos - heap;
1162 }
1163
1164 heap [k] = he;
1165 ev_active (ANHE_w (he)) = k;
1166}
1167
1168#else /* 4HEAP */
1169
1170#define HEAP0 1
1171#define HPARENT(k) ((k) >> 1)
1172#define UPHEAP_DONE(p,k) (!(p))
1173
1174/* away from the root */
1175inline_speed void
1176downheap (ANHE *heap, int N, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int c = k << 1;
1183
1184 if (c >= N + HEAP0)
1185 break;
1186
1187 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1188 ? 1 : 0;
1189
1190 if (ANHE_at (he) <= ANHE_at (heap [c]))
1191 break;
1192
1193 heap [k] = heap [c];
1194 ev_active (ANHE_w (heap [k])) = k;
1195
1196 k = c;
1197 }
1198
1199 heap [k] = he;
1200 ev_active (ANHE_w (he)) = k;
1201}
1202#endif
1203
1204/* towards the root */
1205inline_speed void
1206upheap (ANHE *heap, int k)
1207{
1208 ANHE he = heap [k];
1209
1210 for (;;)
1211 {
1212 int p = HPARENT (k);
1213
1214 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1215 break;
1216
1217 heap [k] = heap [p];
1218 ev_active (ANHE_w (heap [k])) = k;
1219 k = p;
1220 }
1221
1222 heap [k] = he;
1223 ev_active (ANHE_w (he)) = k;
1224}
1225
1226/* move an element suitably so it is in a correct place */
1227inline_size void
1228adjustheap (ANHE *heap, int N, int k)
1229{
1230 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1231 upheap (heap, k);
1232 else
1233 downheap (heap, N, k);
1234}
1235
1236/* rebuild the heap: this function is used only once and executed rarely */
1237inline_size void
1238reheap (ANHE *heap, int N)
1239{
1240 int i;
1241
1242 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1243 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1244 for (i = 0; i < N; ++i)
1245 upheap (heap, i + HEAP0);
1246}
1247
1248/*****************************************************************************/
1249
1250/* associate signal watchers to a signal signal */
1251typedef struct
1252{
1253 EV_ATOMIC_T pending;
1254#if EV_MULTIPLICITY
1255 EV_P;
1256#endif
1257 WL head;
1258} ANSIG;
1259
1260static ANSIG signals [EV_NSIG - 1];
1261
1262/*****************************************************************************/
1263
1264#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1265
785static void noinline 1266static void noinline
786siginit (EV_P) 1267evpipe_init (EV_P)
787{ 1268{
1269 if (!ev_is_active (&pipe_w))
1270 {
1271# if EV_USE_EVENTFD
1272 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1273 if (evfd < 0 && errno == EINVAL)
1274 evfd = eventfd (0, 0);
1275
1276 if (evfd >= 0)
1277 {
1278 evpipe [0] = -1;
1279 fd_intern (evfd); /* doing it twice doesn't hurt */
1280 ev_io_set (&pipe_w, evfd, EV_READ);
1281 }
1282 else
1283# endif
1284 {
1285 while (pipe (evpipe))
1286 ev_syserr ("(libev) error creating signal/async pipe");
1287
788 fd_intern (sigpipe [0]); 1288 fd_intern (evpipe [0]);
789 fd_intern (sigpipe [1]); 1289 fd_intern (evpipe [1]);
1290 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1291 }
790 1292
791 ev_io_set (&sigev, sigpipe [0], EV_READ);
792 ev_io_start (EV_A_ &sigev); 1293 ev_io_start (EV_A_ &pipe_w);
793 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1294 ev_unref (EV_A); /* watcher should not keep loop alive */
1295 }
1296}
1297
1298inline_size void
1299evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1300{
1301 if (!*flag)
1302 {
1303 int old_errno = errno; /* save errno because write might clobber it */
1304 char dummy;
1305
1306 *flag = 1;
1307
1308#if EV_USE_EVENTFD
1309 if (evfd >= 0)
1310 {
1311 uint64_t counter = 1;
1312 write (evfd, &counter, sizeof (uint64_t));
1313 }
1314 else
1315#endif
1316 /* win32 people keep sending patches that change this write() to send() */
1317 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1318 /* so when you think this write should be a send instead, please find out */
1319 /* where your send() is from - it's definitely not the microsoft send, and */
1320 /* tell me. thank you. */
1321 write (evpipe [1], &dummy, 1);
1322
1323 errno = old_errno;
1324 }
1325}
1326
1327/* called whenever the libev signal pipe */
1328/* got some events (signal, async) */
1329static void
1330pipecb (EV_P_ ev_io *iow, int revents)
1331{
1332 int i;
1333
1334#if EV_USE_EVENTFD
1335 if (evfd >= 0)
1336 {
1337 uint64_t counter;
1338 read (evfd, &counter, sizeof (uint64_t));
1339 }
1340 else
1341#endif
1342 {
1343 char dummy;
1344 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1345 read (evpipe [0], &dummy, 1);
1346 }
1347
1348 if (sig_pending)
1349 {
1350 sig_pending = 0;
1351
1352 for (i = EV_NSIG - 1; i--; )
1353 if (expect_false (signals [i].pending))
1354 ev_feed_signal_event (EV_A_ i + 1);
1355 }
1356
1357#if EV_ASYNC_ENABLE
1358 if (async_pending)
1359 {
1360 async_pending = 0;
1361
1362 for (i = asynccnt; i--; )
1363 if (asyncs [i]->sent)
1364 {
1365 asyncs [i]->sent = 0;
1366 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1367 }
1368 }
1369#endif
794} 1370}
795 1371
796/*****************************************************************************/ 1372/*****************************************************************************/
797 1373
798static ev_child *childs [EV_PID_HASHSIZE]; 1374void
1375ev_feed_signal (int signum)
1376{
1377#if EV_MULTIPLICITY
1378 EV_P = signals [signum - 1].loop;
799 1379
1380 if (!EV_A)
1381 return;
1382#endif
1383
1384 signals [signum - 1].pending = 1;
1385 evpipe_write (EV_A_ &sig_pending);
1386}
1387
1388static void
1389ev_sighandler (int signum)
1390{
800#ifndef _WIN32 1391#ifdef _WIN32
1392 signal (signum, ev_sighandler);
1393#endif
1394
1395 ev_feed_signal (signum);
1396}
1397
1398void noinline
1399ev_feed_signal_event (EV_P_ int signum)
1400{
1401 WL w;
1402
1403 if (expect_false (signum <= 0 || signum > EV_NSIG))
1404 return;
1405
1406 --signum;
1407
1408#if EV_MULTIPLICITY
1409 /* it is permissible to try to feed a signal to the wrong loop */
1410 /* or, likely more useful, feeding a signal nobody is waiting for */
1411
1412 if (expect_false (signals [signum].loop != EV_A))
1413 return;
1414#endif
1415
1416 signals [signum].pending = 0;
1417
1418 for (w = signals [signum].head; w; w = w->next)
1419 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1420}
1421
1422#if EV_USE_SIGNALFD
1423static void
1424sigfdcb (EV_P_ ev_io *iow, int revents)
1425{
1426 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1427
1428 for (;;)
1429 {
1430 ssize_t res = read (sigfd, si, sizeof (si));
1431
1432 /* not ISO-C, as res might be -1, but works with SuS */
1433 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1434 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1435
1436 if (res < (ssize_t)sizeof (si))
1437 break;
1438 }
1439}
1440#endif
1441
1442#endif
1443
1444/*****************************************************************************/
1445
1446#if EV_CHILD_ENABLE
1447static WL childs [EV_PID_HASHSIZE];
801 1448
802static ev_signal childev; 1449static ev_signal childev;
803 1450
804void inline_speed 1451#ifndef WIFCONTINUED
1452# define WIFCONTINUED(status) 0
1453#endif
1454
1455/* handle a single child status event */
1456inline_speed void
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1457child_reap (EV_P_ int chain, int pid, int status)
806{ 1458{
807 ev_child *w; 1459 ev_child *w;
1460 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
808 1461
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1462 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1463 {
810 if (w->pid == pid || !w->pid) 1464 if ((w->pid == pid || !w->pid)
1465 && (!traced || (w->flags & 1)))
811 { 1466 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1467 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
813 w->rpid = pid; 1468 w->rpid = pid;
814 w->rstatus = status; 1469 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1470 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 } 1471 }
1472 }
817} 1473}
818 1474
819#ifndef WCONTINUED 1475#ifndef WCONTINUED
820# define WCONTINUED 0 1476# define WCONTINUED 0
821#endif 1477#endif
822 1478
1479/* called on sigchld etc., calls waitpid */
823static void 1480static void
824childcb (EV_P_ ev_signal *sw, int revents) 1481childcb (EV_P_ ev_signal *sw, int revents)
825{ 1482{
826 int pid, status; 1483 int pid, status;
827 1484
830 if (!WCONTINUED 1487 if (!WCONTINUED
831 || errno != EINVAL 1488 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1489 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return; 1490 return;
834 1491
835 /* make sure we are called again until all childs have been reaped */ 1492 /* make sure we are called again until all children have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */ 1493 /* we need to do it this way so that the callback gets called before we continue */
837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1494 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
838 1495
839 child_reap (EV_A_ sw, pid, pid, status); 1496 child_reap (EV_A_ pid, pid, status);
840 if (EV_PID_HASHSIZE > 1) 1497 if ((EV_PID_HASHSIZE) > 1)
841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1498 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
842} 1499}
843 1500
844#endif 1501#endif
845 1502
846/*****************************************************************************/ 1503/*****************************************************************************/
847 1504
1505#if EV_USE_IOCP
1506# include "ev_iocp.c"
1507#endif
848#if EV_USE_PORT 1508#if EV_USE_PORT
849# include "ev_port.c" 1509# include "ev_port.c"
850#endif 1510#endif
851#if EV_USE_KQUEUE 1511#if EV_USE_KQUEUE
852# include "ev_kqueue.c" 1512# include "ev_kqueue.c"
908 /* kqueue is borked on everything but netbsd apparently */ 1568 /* kqueue is borked on everything but netbsd apparently */
909 /* it usually doesn't work correctly on anything but sockets and pipes */ 1569 /* it usually doesn't work correctly on anything but sockets and pipes */
910 flags &= ~EVBACKEND_KQUEUE; 1570 flags &= ~EVBACKEND_KQUEUE;
911#endif 1571#endif
912#ifdef __APPLE__ 1572#ifdef __APPLE__
913 // flags &= ~EVBACKEND_KQUEUE; for documentation 1573 /* only select works correctly on that "unix-certified" platform */
914 flags &= ~EVBACKEND_POLL; 1574 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1575 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1576#endif
1577#ifdef __FreeBSD__
1578 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
915#endif 1579#endif
916 1580
917 return flags; 1581 return flags;
918} 1582}
919 1583
920unsigned int 1584unsigned int
921ev_embeddable_backends (void) 1585ev_embeddable_backends (void)
922{ 1586{
923 return EVBACKEND_EPOLL 1587 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
924 | EVBACKEND_KQUEUE 1588
925 | EVBACKEND_PORT; 1589 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1590 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1591 flags &= ~EVBACKEND_EPOLL;
1592
1593 return flags;
926} 1594}
927 1595
928unsigned int 1596unsigned int
929ev_backend (EV_P) 1597ev_backend (EV_P)
930{ 1598{
931 return backend; 1599 return backend;
932} 1600}
933 1601
1602#if EV_FEATURE_API
934unsigned int 1603unsigned int
935ev_loop_count (EV_P) 1604ev_iteration (EV_P)
936{ 1605{
937 return loop_count; 1606 return loop_count;
938} 1607}
939 1608
1609unsigned int
1610ev_depth (EV_P)
1611{
1612 return loop_depth;
1613}
1614
1615void
1616ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1617{
1618 io_blocktime = interval;
1619}
1620
1621void
1622ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1623{
1624 timeout_blocktime = interval;
1625}
1626
1627void
1628ev_set_userdata (EV_P_ void *data)
1629{
1630 userdata = data;
1631}
1632
1633void *
1634ev_userdata (EV_P)
1635{
1636 return userdata;
1637}
1638
1639void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1640{
1641 invoke_cb = invoke_pending_cb;
1642}
1643
1644void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1645{
1646 release_cb = release;
1647 acquire_cb = acquire;
1648}
1649#endif
1650
1651/* initialise a loop structure, must be zero-initialised */
940static void noinline 1652static void noinline
941loop_init (EV_P_ unsigned int flags) 1653loop_init (EV_P_ unsigned int flags)
942{ 1654{
943 if (!backend) 1655 if (!backend)
944 { 1656 {
1657 origflags = flags;
1658
1659#if EV_USE_REALTIME
1660 if (!have_realtime)
1661 {
1662 struct timespec ts;
1663
1664 if (!clock_gettime (CLOCK_REALTIME, &ts))
1665 have_realtime = 1;
1666 }
1667#endif
1668
945#if EV_USE_MONOTONIC 1669#if EV_USE_MONOTONIC
1670 if (!have_monotonic)
946 { 1671 {
947 struct timespec ts; 1672 struct timespec ts;
1673
948 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1674 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
949 have_monotonic = 1; 1675 have_monotonic = 1;
950 } 1676 }
951#endif 1677#endif
952
953 ev_rt_now = ev_time ();
954 mn_now = get_clock ();
955 now_floor = mn_now;
956 rtmn_diff = ev_rt_now - mn_now;
957 1678
958 /* pid check not overridable via env */ 1679 /* pid check not overridable via env */
959#ifndef _WIN32 1680#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK) 1681 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid (); 1682 curpid = getpid ();
964 if (!(flags & EVFLAG_NOENV) 1685 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure () 1686 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS")) 1687 && getenv ("LIBEV_FLAGS"))
967 flags = atoi (getenv ("LIBEV_FLAGS")); 1688 flags = atoi (getenv ("LIBEV_FLAGS"));
968 1689
969 if (!(flags & 0x0000ffffUL)) 1690 ev_rt_now = ev_time ();
1691 mn_now = get_clock ();
1692 now_floor = mn_now;
1693 rtmn_diff = ev_rt_now - mn_now;
1694#if EV_FEATURE_API
1695 invoke_cb = ev_invoke_pending;
1696#endif
1697
1698 io_blocktime = 0.;
1699 timeout_blocktime = 0.;
1700 backend = 0;
1701 backend_fd = -1;
1702 sig_pending = 0;
1703#if EV_ASYNC_ENABLE
1704 async_pending = 0;
1705#endif
1706#if EV_USE_INOTIFY
1707 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1708#endif
1709#if EV_USE_SIGNALFD
1710 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1711#endif
1712
1713 if (!(flags & EVBACKEND_MASK))
970 flags |= ev_recommended_backends (); 1714 flags |= ev_recommended_backends ();
971 1715
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY 1716#if EV_USE_IOCP
975 fs_fd = -2; 1717 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
976#endif 1718#endif
977
978#if EV_USE_PORT 1719#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1720 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif 1721#endif
981#if EV_USE_KQUEUE 1722#if EV_USE_KQUEUE
982 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
989#endif 1730#endif
990#if EV_USE_SELECT 1731#if EV_USE_SELECT
991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1732 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
992#endif 1733#endif
993 1734
1735 ev_prepare_init (&pending_w, pendingcb);
1736
1737#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
994 ev_init (&sigev, sigcb); 1738 ev_init (&pipe_w, pipecb);
995 ev_set_priority (&sigev, EV_MAXPRI); 1739 ev_set_priority (&pipe_w, EV_MAXPRI);
1740#endif
996 } 1741 }
997} 1742}
998 1743
999static void noinline 1744/* free up a loop structure */
1745void
1000loop_destroy (EV_P) 1746ev_loop_destroy (EV_P)
1001{ 1747{
1002 int i; 1748 int i;
1749
1750#if EV_MULTIPLICITY
1751 /* mimic free (0) */
1752 if (!EV_A)
1753 return;
1754#endif
1755
1756#if EV_CLEANUP_ENABLE
1757 /* queue cleanup watchers (and execute them) */
1758 if (expect_false (cleanupcnt))
1759 {
1760 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1761 EV_INVOKE_PENDING;
1762 }
1763#endif
1764
1765#if EV_CHILD_ENABLE
1766 if (ev_is_active (&childev))
1767 {
1768 ev_ref (EV_A); /* child watcher */
1769 ev_signal_stop (EV_A_ &childev);
1770 }
1771#endif
1772
1773 if (ev_is_active (&pipe_w))
1774 {
1775 /*ev_ref (EV_A);*/
1776 /*ev_io_stop (EV_A_ &pipe_w);*/
1777
1778#if EV_USE_EVENTFD
1779 if (evfd >= 0)
1780 close (evfd);
1781#endif
1782
1783 if (evpipe [0] >= 0)
1784 {
1785 EV_WIN32_CLOSE_FD (evpipe [0]);
1786 EV_WIN32_CLOSE_FD (evpipe [1]);
1787 }
1788 }
1789
1790#if EV_USE_SIGNALFD
1791 if (ev_is_active (&sigfd_w))
1792 close (sigfd);
1793#endif
1003 1794
1004#if EV_USE_INOTIFY 1795#if EV_USE_INOTIFY
1005 if (fs_fd >= 0) 1796 if (fs_fd >= 0)
1006 close (fs_fd); 1797 close (fs_fd);
1007#endif 1798#endif
1008 1799
1009 if (backend_fd >= 0) 1800 if (backend_fd >= 0)
1010 close (backend_fd); 1801 close (backend_fd);
1011 1802
1803#if EV_USE_IOCP
1804 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1805#endif
1012#if EV_USE_PORT 1806#if EV_USE_PORT
1013 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1807 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1014#endif 1808#endif
1015#if EV_USE_KQUEUE 1809#if EV_USE_KQUEUE
1016 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1810 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1031#if EV_IDLE_ENABLE 1825#if EV_IDLE_ENABLE
1032 array_free (idle, [i]); 1826 array_free (idle, [i]);
1033#endif 1827#endif
1034 } 1828 }
1035 1829
1830 ev_free (anfds); anfds = 0; anfdmax = 0;
1831
1036 /* have to use the microsoft-never-gets-it-right macro */ 1832 /* have to use the microsoft-never-gets-it-right macro */
1833 array_free (rfeed, EMPTY);
1037 array_free (fdchange, EMPTY); 1834 array_free (fdchange, EMPTY);
1038 array_free (timer, EMPTY); 1835 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE 1836#if EV_PERIODIC_ENABLE
1040 array_free (periodic, EMPTY); 1837 array_free (periodic, EMPTY);
1041#endif 1838#endif
1839#if EV_FORK_ENABLE
1840 array_free (fork, EMPTY);
1841#endif
1842#if EV_CLEANUP_ENABLE
1843 array_free (cleanup, EMPTY);
1844#endif
1042 array_free (prepare, EMPTY); 1845 array_free (prepare, EMPTY);
1043 array_free (check, EMPTY); 1846 array_free (check, EMPTY);
1847#if EV_ASYNC_ENABLE
1848 array_free (async, EMPTY);
1849#endif
1044 1850
1045 backend = 0; 1851 backend = 0;
1046}
1047 1852
1853#if EV_MULTIPLICITY
1854 if (ev_is_default_loop (EV_A))
1855#endif
1856 ev_default_loop_ptr = 0;
1857#if EV_MULTIPLICITY
1858 else
1859 ev_free (EV_A);
1860#endif
1861}
1862
1863#if EV_USE_INOTIFY
1048void inline_size infy_fork (EV_P); 1864inline_size void infy_fork (EV_P);
1865#endif
1049 1866
1050void inline_size 1867inline_size void
1051loop_fork (EV_P) 1868loop_fork (EV_P)
1052{ 1869{
1053#if EV_USE_PORT 1870#if EV_USE_PORT
1054 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1871 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1055#endif 1872#endif
1061#endif 1878#endif
1062#if EV_USE_INOTIFY 1879#if EV_USE_INOTIFY
1063 infy_fork (EV_A); 1880 infy_fork (EV_A);
1064#endif 1881#endif
1065 1882
1066 if (ev_is_active (&sigev)) 1883 if (ev_is_active (&pipe_w))
1067 { 1884 {
1068 /* default loop */ 1885 /* this "locks" the handlers against writing to the pipe */
1886 /* while we modify the fd vars */
1887 sig_pending = 1;
1888#if EV_ASYNC_ENABLE
1889 async_pending = 1;
1890#endif
1069 1891
1070 ev_ref (EV_A); 1892 ev_ref (EV_A);
1071 ev_io_stop (EV_A_ &sigev); 1893 ev_io_stop (EV_A_ &pipe_w);
1072 close (sigpipe [0]);
1073 close (sigpipe [1]);
1074 1894
1075 while (pipe (sigpipe)) 1895#if EV_USE_EVENTFD
1076 syserr ("(libev) error creating pipe"); 1896 if (evfd >= 0)
1897 close (evfd);
1898#endif
1077 1899
1900 if (evpipe [0] >= 0)
1901 {
1902 EV_WIN32_CLOSE_FD (evpipe [0]);
1903 EV_WIN32_CLOSE_FD (evpipe [1]);
1904 }
1905
1906#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1078 siginit (EV_A); 1907 evpipe_init (EV_A);
1908 /* now iterate over everything, in case we missed something */
1909 pipecb (EV_A_ &pipe_w, EV_READ);
1910#endif
1079 } 1911 }
1080 1912
1081 postfork = 0; 1913 postfork = 0;
1082} 1914}
1915
1916#if EV_MULTIPLICITY
1917
1918struct ev_loop *
1919ev_loop_new (unsigned int flags)
1920{
1921 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1922
1923 memset (EV_A, 0, sizeof (struct ev_loop));
1924 loop_init (EV_A_ flags);
1925
1926 if (ev_backend (EV_A))
1927 return EV_A;
1928
1929 ev_free (EV_A);
1930 return 0;
1931}
1932
1933#endif /* multiplicity */
1934
1935#if EV_VERIFY
1936static void noinline
1937verify_watcher (EV_P_ W w)
1938{
1939 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1940
1941 if (w->pending)
1942 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1943}
1944
1945static void noinline
1946verify_heap (EV_P_ ANHE *heap, int N)
1947{
1948 int i;
1949
1950 for (i = HEAP0; i < N + HEAP0; ++i)
1951 {
1952 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1953 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1954 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1955
1956 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1957 }
1958}
1959
1960static void noinline
1961array_verify (EV_P_ W *ws, int cnt)
1962{
1963 while (cnt--)
1964 {
1965 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1966 verify_watcher (EV_A_ ws [cnt]);
1967 }
1968}
1969#endif
1970
1971#if EV_FEATURE_API
1972void
1973ev_verify (EV_P)
1974{
1975#if EV_VERIFY
1976 int i;
1977 WL w;
1978
1979 assert (activecnt >= -1);
1980
1981 assert (fdchangemax >= fdchangecnt);
1982 for (i = 0; i < fdchangecnt; ++i)
1983 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1984
1985 assert (anfdmax >= 0);
1986 for (i = 0; i < anfdmax; ++i)
1987 for (w = anfds [i].head; w; w = w->next)
1988 {
1989 verify_watcher (EV_A_ (W)w);
1990 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1991 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1992 }
1993
1994 assert (timermax >= timercnt);
1995 verify_heap (EV_A_ timers, timercnt);
1996
1997#if EV_PERIODIC_ENABLE
1998 assert (periodicmax >= periodiccnt);
1999 verify_heap (EV_A_ periodics, periodiccnt);
2000#endif
2001
2002 for (i = NUMPRI; i--; )
2003 {
2004 assert (pendingmax [i] >= pendingcnt [i]);
2005#if EV_IDLE_ENABLE
2006 assert (idleall >= 0);
2007 assert (idlemax [i] >= idlecnt [i]);
2008 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2009#endif
2010 }
2011
2012#if EV_FORK_ENABLE
2013 assert (forkmax >= forkcnt);
2014 array_verify (EV_A_ (W *)forks, forkcnt);
2015#endif
2016
2017#if EV_CLEANUP_ENABLE
2018 assert (cleanupmax >= cleanupcnt);
2019 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2020#endif
2021
2022#if EV_ASYNC_ENABLE
2023 assert (asyncmax >= asynccnt);
2024 array_verify (EV_A_ (W *)asyncs, asynccnt);
2025#endif
2026
2027#if EV_PREPARE_ENABLE
2028 assert (preparemax >= preparecnt);
2029 array_verify (EV_A_ (W *)prepares, preparecnt);
2030#endif
2031
2032#if EV_CHECK_ENABLE
2033 assert (checkmax >= checkcnt);
2034 array_verify (EV_A_ (W *)checks, checkcnt);
2035#endif
2036
2037# if 0
2038#if EV_CHILD_ENABLE
2039 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2040 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2041#endif
2042# endif
2043#endif
2044}
2045#endif
1083 2046
1084#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
1085struct ev_loop * 2048struct ev_loop *
1086ev_loop_new (unsigned int flags)
1087{
1088 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1089
1090 memset (loop, 0, sizeof (struct ev_loop));
1091
1092 loop_init (EV_A_ flags);
1093
1094 if (ev_backend (EV_A))
1095 return loop;
1096
1097 return 0;
1098}
1099
1100void
1101ev_loop_destroy (EV_P)
1102{
1103 loop_destroy (EV_A);
1104 ev_free (loop);
1105}
1106
1107void
1108ev_loop_fork (EV_P)
1109{
1110 postfork = 1;
1111}
1112
1113#endif
1114
1115#if EV_MULTIPLICITY
1116struct ev_loop *
1117ev_default_loop_init (unsigned int flags)
1118#else 2049#else
1119int 2050int
2051#endif
1120ev_default_loop (unsigned int flags) 2052ev_default_loop (unsigned int flags)
1121#endif
1122{ 2053{
1123 if (sigpipe [0] == sigpipe [1])
1124 if (pipe (sigpipe))
1125 return 0;
1126
1127 if (!ev_default_loop_ptr) 2054 if (!ev_default_loop_ptr)
1128 { 2055 {
1129#if EV_MULTIPLICITY 2056#if EV_MULTIPLICITY
1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2057 EV_P = ev_default_loop_ptr = &default_loop_struct;
1131#else 2058#else
1132 ev_default_loop_ptr = 1; 2059 ev_default_loop_ptr = 1;
1133#endif 2060#endif
1134 2061
1135 loop_init (EV_A_ flags); 2062 loop_init (EV_A_ flags);
1136 2063
1137 if (ev_backend (EV_A)) 2064 if (ev_backend (EV_A))
1138 { 2065 {
1139 siginit (EV_A); 2066#if EV_CHILD_ENABLE
1140
1141#ifndef _WIN32
1142 ev_signal_init (&childev, childcb, SIGCHLD); 2067 ev_signal_init (&childev, childcb, SIGCHLD);
1143 ev_set_priority (&childev, EV_MAXPRI); 2068 ev_set_priority (&childev, EV_MAXPRI);
1144 ev_signal_start (EV_A_ &childev); 2069 ev_signal_start (EV_A_ &childev);
1145 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2070 ev_unref (EV_A); /* child watcher should not keep loop alive */
1146#endif 2071#endif
1151 2076
1152 return ev_default_loop_ptr; 2077 return ev_default_loop_ptr;
1153} 2078}
1154 2079
1155void 2080void
1156ev_default_destroy (void) 2081ev_loop_fork (EV_P)
1157{ 2082{
1158#if EV_MULTIPLICITY 2083 postfork = 1; /* must be in line with ev_default_fork */
1159 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif
1161
1162#ifndef _WIN32
1163 ev_ref (EV_A); /* child watcher */
1164 ev_signal_stop (EV_A_ &childev);
1165#endif
1166
1167 ev_ref (EV_A); /* signal watcher */
1168 ev_io_stop (EV_A_ &sigev);
1169
1170 close (sigpipe [0]); sigpipe [0] = 0;
1171 close (sigpipe [1]); sigpipe [1] = 0;
1172
1173 loop_destroy (EV_A);
1174}
1175
1176void
1177ev_default_fork (void)
1178{
1179#if EV_MULTIPLICITY
1180 struct ev_loop *loop = ev_default_loop_ptr;
1181#endif
1182
1183 if (backend)
1184 postfork = 1;
1185} 2084}
1186 2085
1187/*****************************************************************************/ 2086/*****************************************************************************/
1188 2087
1189void 2088void
1190ev_invoke (EV_P_ void *w, int revents) 2089ev_invoke (EV_P_ void *w, int revents)
1191{ 2090{
1192 EV_CB_INVOKE ((W)w, revents); 2091 EV_CB_INVOKE ((W)w, revents);
1193} 2092}
1194 2093
1195void inline_speed 2094unsigned int
1196call_pending (EV_P) 2095ev_pending_count (EV_P)
2096{
2097 int pri;
2098 unsigned int count = 0;
2099
2100 for (pri = NUMPRI; pri--; )
2101 count += pendingcnt [pri];
2102
2103 return count;
2104}
2105
2106void noinline
2107ev_invoke_pending (EV_P)
1197{ 2108{
1198 int pri; 2109 int pri;
1199 2110
1200 for (pri = NUMPRI; pri--; ) 2111 for (pri = NUMPRI; pri--; )
1201 while (pendingcnt [pri]) 2112 while (pendingcnt [pri])
1202 { 2113 {
1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2114 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1204 2115
1205 if (expect_true (p->w))
1206 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2116 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2117 /* ^ this is no longer true, as pending_w could be here */
1208 2118
1209 p->w->pending = 0; 2119 p->w->pending = 0;
1210 EV_CB_INVOKE (p->w, p->events); 2120 EV_CB_INVOKE (p->w, p->events);
1211 } 2121 EV_FREQUENT_CHECK;
1212 } 2122 }
1213} 2123}
1214 2124
1215void inline_size
1216timers_reify (EV_P)
1217{
1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1219 {
1220 ev_timer *w = timers [0];
1221
1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1223
1224 /* first reschedule or stop timer */
1225 if (w->repeat)
1226 {
1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
1233 downheap ((WT *)timers, timercnt, 0);
1234 }
1235 else
1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1237
1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1239 }
1240}
1241
1242#if EV_PERIODIC_ENABLE
1243void inline_size
1244periodics_reify (EV_P)
1245{
1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1247 {
1248 ev_periodic *w = periodics [0];
1249
1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1251
1252 /* first reschedule or stop timer */
1253 if (w->reschedule_cb)
1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap ((WT *)periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1264 downheap ((WT *)periodics, periodiccnt, 0);
1265 }
1266 else
1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1268
1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1270 }
1271}
1272
1273static void noinline
1274periodics_reschedule (EV_P)
1275{
1276 int i;
1277
1278 /* adjust periodics after time jump */
1279 for (i = 0; i < periodiccnt; ++i)
1280 {
1281 ev_periodic *w = periodics [i];
1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap ((WT *)periodics, periodiccnt, i);
1292}
1293#endif
1294
1295#if EV_IDLE_ENABLE 2125#if EV_IDLE_ENABLE
1296void inline_size 2126/* make idle watchers pending. this handles the "call-idle */
2127/* only when higher priorities are idle" logic */
2128inline_size void
1297idle_reify (EV_P) 2129idle_reify (EV_P)
1298{ 2130{
1299 if (expect_false (idleall)) 2131 if (expect_false (idleall))
1300 { 2132 {
1301 int pri; 2133 int pri;
1313 } 2145 }
1314 } 2146 }
1315} 2147}
1316#endif 2148#endif
1317 2149
1318void inline_speed 2150/* make timers pending */
2151inline_size void
2152timers_reify (EV_P)
2153{
2154 EV_FREQUENT_CHECK;
2155
2156 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2157 {
2158 do
2159 {
2160 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2161
2162 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2163
2164 /* first reschedule or stop timer */
2165 if (w->repeat)
2166 {
2167 ev_at (w) += w->repeat;
2168 if (ev_at (w) < mn_now)
2169 ev_at (w) = mn_now;
2170
2171 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2172
2173 ANHE_at_cache (timers [HEAP0]);
2174 downheap (timers, timercnt, HEAP0);
2175 }
2176 else
2177 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2178
2179 EV_FREQUENT_CHECK;
2180 feed_reverse (EV_A_ (W)w);
2181 }
2182 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2183
2184 feed_reverse_done (EV_A_ EV_TIMER);
2185 }
2186}
2187
2188#if EV_PERIODIC_ENABLE
2189/* make periodics pending */
2190inline_size void
2191periodics_reify (EV_P)
2192{
2193 EV_FREQUENT_CHECK;
2194
2195 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2196 {
2197 int feed_count = 0;
2198
2199 do
2200 {
2201 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2202
2203 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2204
2205 /* first reschedule or stop timer */
2206 if (w->reschedule_cb)
2207 {
2208 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2209
2210 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2211
2212 ANHE_at_cache (periodics [HEAP0]);
2213 downheap (periodics, periodiccnt, HEAP0);
2214 }
2215 else if (w->interval)
2216 {
2217 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2218 /* if next trigger time is not sufficiently in the future, put it there */
2219 /* this might happen because of floating point inexactness */
2220 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2221 {
2222 ev_at (w) += w->interval;
2223
2224 /* if interval is unreasonably low we might still have a time in the past */
2225 /* so correct this. this will make the periodic very inexact, but the user */
2226 /* has effectively asked to get triggered more often than possible */
2227 if (ev_at (w) < ev_rt_now)
2228 ev_at (w) = ev_rt_now;
2229 }
2230
2231 ANHE_at_cache (periodics [HEAP0]);
2232 downheap (periodics, periodiccnt, HEAP0);
2233 }
2234 else
2235 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2236
2237 EV_FREQUENT_CHECK;
2238 feed_reverse (EV_A_ (W)w);
2239 }
2240 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2241
2242 feed_reverse_done (EV_A_ EV_PERIODIC);
2243 }
2244}
2245
2246/* simply recalculate all periodics */
2247/* TODO: maybe ensure that at least one event happens when jumping forward? */
2248static void noinline
2249periodics_reschedule (EV_P)
2250{
2251 int i;
2252
2253 /* adjust periodics after time jump */
2254 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2255 {
2256 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2257
2258 if (w->reschedule_cb)
2259 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2260 else if (w->interval)
2261 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2262
2263 ANHE_at_cache (periodics [i]);
2264 }
2265
2266 reheap (periodics, periodiccnt);
2267}
2268#endif
2269
2270/* adjust all timers by a given offset */
2271static void noinline
2272timers_reschedule (EV_P_ ev_tstamp adjust)
2273{
2274 int i;
2275
2276 for (i = 0; i < timercnt; ++i)
2277 {
2278 ANHE *he = timers + i + HEAP0;
2279 ANHE_w (*he)->at += adjust;
2280 ANHE_at_cache (*he);
2281 }
2282}
2283
2284/* fetch new monotonic and realtime times from the kernel */
2285/* also detect if there was a timejump, and act accordingly */
2286inline_speed void
1319time_update (EV_P_ ev_tstamp max_block) 2287time_update (EV_P_ ev_tstamp max_block)
1320{ 2288{
1321 int i;
1322
1323#if EV_USE_MONOTONIC 2289#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic)) 2290 if (expect_true (have_monotonic))
1325 { 2291 {
2292 int i;
1326 ev_tstamp odiff = rtmn_diff; 2293 ev_tstamp odiff = rtmn_diff;
1327 2294
1328 mn_now = get_clock (); 2295 mn_now = get_clock ();
1329 2296
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2297 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1348 */ 2315 */
1349 for (i = 4; --i; ) 2316 for (i = 4; --i; )
1350 { 2317 {
1351 rtmn_diff = ev_rt_now - mn_now; 2318 rtmn_diff = ev_rt_now - mn_now;
1352 2319
1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2320 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1354 return; /* all is well */ 2321 return; /* all is well */
1355 2322
1356 ev_rt_now = ev_time (); 2323 ev_rt_now = ev_time ();
1357 mn_now = get_clock (); 2324 mn_now = get_clock ();
1358 now_floor = mn_now; 2325 now_floor = mn_now;
1359 } 2326 }
1360 2327
2328 /* no timer adjustment, as the monotonic clock doesn't jump */
2329 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1361# if EV_PERIODIC_ENABLE 2330# if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 2331 periodics_reschedule (EV_A);
1363# endif 2332# endif
1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1366 } 2333 }
1367 else 2334 else
1368#endif 2335#endif
1369 { 2336 {
1370 ev_rt_now = ev_time (); 2337 ev_rt_now = ev_time ();
1371 2338
1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2339 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1373 { 2340 {
2341 /* adjust timers. this is easy, as the offset is the same for all of them */
2342 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1374#if EV_PERIODIC_ENABLE 2343#if EV_PERIODIC_ENABLE
1375 periodics_reschedule (EV_A); 2344 periodics_reschedule (EV_A);
1376#endif 2345#endif
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2346 }
1381 2347
1382 mn_now = ev_rt_now; 2348 mn_now = ev_rt_now;
1383 } 2349 }
1384} 2350}
1385 2351
1386void 2352void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done;
1399
1400void
1401ev_loop (EV_P_ int flags) 2353ev_run (EV_P_ int flags)
1402{ 2354{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2355#if EV_FEATURE_API
1404 ? EVUNLOOP_ONE 2356 ++loop_depth;
1405 : EVUNLOOP_CANCEL; 2357#endif
1406 2358
2359 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2360
2361 loop_done = EVBREAK_CANCEL;
2362
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2363 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1408 2364
1409 do 2365 do
1410 { 2366 {
2367#if EV_VERIFY >= 2
2368 ev_verify (EV_A);
2369#endif
2370
1411#ifndef _WIN32 2371#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2372 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2373 if (expect_false (getpid () != curpid))
1414 { 2374 {
1415 curpid = getpid (); 2375 curpid = getpid ();
1421 /* we might have forked, so queue fork handlers */ 2381 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork)) 2382 if (expect_false (postfork))
1423 if (forkcnt) 2383 if (forkcnt)
1424 { 2384 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2385 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A); 2386 EV_INVOKE_PENDING;
1427 } 2387 }
1428#endif 2388#endif
1429 2389
2390#if EV_PREPARE_ENABLE
1430 /* queue prepare watchers (and execute them) */ 2391 /* queue prepare watchers (and execute them) */
1431 if (expect_false (preparecnt)) 2392 if (expect_false (preparecnt))
1432 { 2393 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2394 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2395 EV_INVOKE_PENDING;
1435 } 2396 }
2397#endif
1436 2398
1437 if (expect_false (!activecnt)) 2399 if (expect_false (loop_done))
1438 break; 2400 break;
1439 2401
1440 /* we might have forked, so reify kernel state if necessary */ 2402 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2403 if (expect_false (postfork))
1442 loop_fork (EV_A); 2404 loop_fork (EV_A);
1444 /* update fd-related kernel structures */ 2406 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2407 fd_reify (EV_A);
1446 2408
1447 /* calculate blocking time */ 2409 /* calculate blocking time */
1448 { 2410 {
1449 ev_tstamp block; 2411 ev_tstamp waittime = 0.;
2412 ev_tstamp sleeptime = 0.;
1450 2413
2414 /* remember old timestamp for io_blocktime calculation */
2415 ev_tstamp prev_mn_now = mn_now;
2416
2417 /* update time to cancel out callback processing overhead */
2418 time_update (EV_A_ 1e100);
2419
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2420 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2421 {
1455 /* update time to cancel out callback processing overhead */
1456 time_update (EV_A_ 1e100);
1457
1458 block = MAX_BLOCKTIME; 2422 waittime = MAX_BLOCKTIME;
1459 2423
1460 if (timercnt) 2424 if (timercnt)
1461 { 2425 {
1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2426 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1463 if (block > to) block = to; 2427 if (waittime > to) waittime = to;
1464 } 2428 }
1465 2429
1466#if EV_PERIODIC_ENABLE 2430#if EV_PERIODIC_ENABLE
1467 if (periodiccnt) 2431 if (periodiccnt)
1468 { 2432 {
1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2433 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1470 if (block > to) block = to; 2434 if (waittime > to) waittime = to;
1471 } 2435 }
1472#endif 2436#endif
1473 2437
2438 /* don't let timeouts decrease the waittime below timeout_blocktime */
2439 if (expect_false (waittime < timeout_blocktime))
2440 waittime = timeout_blocktime;
2441
2442 /* extra check because io_blocktime is commonly 0 */
1474 if (expect_false (block < 0.)) block = 0.; 2443 if (expect_false (io_blocktime))
2444 {
2445 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2446
2447 if (sleeptime > waittime - backend_fudge)
2448 sleeptime = waittime - backend_fudge;
2449
2450 if (expect_true (sleeptime > 0.))
2451 {
2452 ev_sleep (sleeptime);
2453 waittime -= sleeptime;
2454 }
2455 }
1475 } 2456 }
1476 2457
2458#if EV_FEATURE_API
1477 ++loop_count; 2459 ++loop_count;
2460#endif
2461 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1478 backend_poll (EV_A_ block); 2462 backend_poll (EV_A_ waittime);
2463 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1479 2464
1480 /* update ev_rt_now, do magic */ 2465 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block); 2466 time_update (EV_A_ waittime + sleeptime);
1482 } 2467 }
1483 2468
1484 /* queue pending timers and reschedule them */ 2469 /* queue pending timers and reschedule them */
1485 timers_reify (EV_A); /* relative timers called last */ 2470 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE 2471#if EV_PERIODIC_ENABLE
1490#if EV_IDLE_ENABLE 2475#if EV_IDLE_ENABLE
1491 /* queue idle watchers unless other events are pending */ 2476 /* queue idle watchers unless other events are pending */
1492 idle_reify (EV_A); 2477 idle_reify (EV_A);
1493#endif 2478#endif
1494 2479
2480#if EV_CHECK_ENABLE
1495 /* queue check watchers, to be executed first */ 2481 /* queue check watchers, to be executed first */
1496 if (expect_false (checkcnt)) 2482 if (expect_false (checkcnt))
1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2483 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2484#endif
1498 2485
1499 call_pending (EV_A); 2486 EV_INVOKE_PENDING;
1500
1501 } 2487 }
1502 while (expect_true (activecnt && !loop_done)); 2488 while (expect_true (
2489 activecnt
2490 && !loop_done
2491 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2492 ));
1503 2493
1504 if (loop_done == EVUNLOOP_ONE) 2494 if (loop_done == EVBREAK_ONE)
1505 loop_done = EVUNLOOP_CANCEL; 2495 loop_done = EVBREAK_CANCEL;
1506}
1507 2496
2497#if EV_FEATURE_API
2498 --loop_depth;
2499#endif
2500}
2501
1508void 2502void
1509ev_unloop (EV_P_ int how) 2503ev_break (EV_P_ int how)
1510{ 2504{
1511 loop_done = how; 2505 loop_done = how;
1512} 2506}
1513 2507
2508void
2509ev_ref (EV_P)
2510{
2511 ++activecnt;
2512}
2513
2514void
2515ev_unref (EV_P)
2516{
2517 --activecnt;
2518}
2519
2520void
2521ev_now_update (EV_P)
2522{
2523 time_update (EV_A_ 1e100);
2524}
2525
2526void
2527ev_suspend (EV_P)
2528{
2529 ev_now_update (EV_A);
2530}
2531
2532void
2533ev_resume (EV_P)
2534{
2535 ev_tstamp mn_prev = mn_now;
2536
2537 ev_now_update (EV_A);
2538 timers_reschedule (EV_A_ mn_now - mn_prev);
2539#if EV_PERIODIC_ENABLE
2540 /* TODO: really do this? */
2541 periodics_reschedule (EV_A);
2542#endif
2543}
2544
1514/*****************************************************************************/ 2545/*****************************************************************************/
2546/* singly-linked list management, used when the expected list length is short */
1515 2547
1516void inline_size 2548inline_size void
1517wlist_add (WL *head, WL elem) 2549wlist_add (WL *head, WL elem)
1518{ 2550{
1519 elem->next = *head; 2551 elem->next = *head;
1520 *head = elem; 2552 *head = elem;
1521} 2553}
1522 2554
1523void inline_size 2555inline_size void
1524wlist_del (WL *head, WL elem) 2556wlist_del (WL *head, WL elem)
1525{ 2557{
1526 while (*head) 2558 while (*head)
1527 { 2559 {
1528 if (*head == elem) 2560 if (expect_true (*head == elem))
1529 { 2561 {
1530 *head = elem->next; 2562 *head = elem->next;
1531 return; 2563 break;
1532 } 2564 }
1533 2565
1534 head = &(*head)->next; 2566 head = &(*head)->next;
1535 } 2567 }
1536} 2568}
1537 2569
1538void inline_speed 2570/* internal, faster, version of ev_clear_pending */
2571inline_speed void
1539clear_pending (EV_P_ W w) 2572clear_pending (EV_P_ W w)
1540{ 2573{
1541 if (w->pending) 2574 if (w->pending)
1542 { 2575 {
1543 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2576 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1544 w->pending = 0; 2577 w->pending = 0;
1545 } 2578 }
1546} 2579}
1547 2580
1548int 2581int
1552 int pending = w_->pending; 2585 int pending = w_->pending;
1553 2586
1554 if (expect_true (pending)) 2587 if (expect_true (pending))
1555 { 2588 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2589 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2590 p->w = (W)&pending_w;
1557 w_->pending = 0; 2591 w_->pending = 0;
1558 p->w = 0;
1559 return p->events; 2592 return p->events;
1560 } 2593 }
1561 else 2594 else
1562 return 0; 2595 return 0;
1563} 2596}
1564 2597
1565void inline_size 2598inline_size void
1566pri_adjust (EV_P_ W w) 2599pri_adjust (EV_P_ W w)
1567{ 2600{
1568 int pri = w->priority; 2601 int pri = ev_priority (w);
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2602 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2603 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri; 2604 ev_set_priority (w, pri);
1572} 2605}
1573 2606
1574void inline_speed 2607inline_speed void
1575ev_start (EV_P_ W w, int active) 2608ev_start (EV_P_ W w, int active)
1576{ 2609{
1577 pri_adjust (EV_A_ w); 2610 pri_adjust (EV_A_ w);
1578 w->active = active; 2611 w->active = active;
1579 ev_ref (EV_A); 2612 ev_ref (EV_A);
1580} 2613}
1581 2614
1582void inline_size 2615inline_size void
1583ev_stop (EV_P_ W w) 2616ev_stop (EV_P_ W w)
1584{ 2617{
1585 ev_unref (EV_A); 2618 ev_unref (EV_A);
1586 w->active = 0; 2619 w->active = 0;
1587} 2620}
1594 int fd = w->fd; 2627 int fd = w->fd;
1595 2628
1596 if (expect_false (ev_is_active (w))) 2629 if (expect_false (ev_is_active (w)))
1597 return; 2630 return;
1598 2631
1599 assert (("ev_io_start called with negative fd", fd >= 0)); 2632 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2633 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2634
2635 EV_FREQUENT_CHECK;
1600 2636
1601 ev_start (EV_A_ (W)w, 1); 2637 ev_start (EV_A_ (W)w, 1);
1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2638 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1603 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2639 wlist_add (&anfds[fd].head, (WL)w);
1604 2640
1605 fd_change (EV_A_ fd); 2641 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2642 w->events &= ~EV__IOFDSET;
2643
2644 EV_FREQUENT_CHECK;
1606} 2645}
1607 2646
1608void noinline 2647void noinline
1609ev_io_stop (EV_P_ ev_io *w) 2648ev_io_stop (EV_P_ ev_io *w)
1610{ 2649{
1611 clear_pending (EV_A_ (W)w); 2650 clear_pending (EV_A_ (W)w);
1612 if (expect_false (!ev_is_active (w))) 2651 if (expect_false (!ev_is_active (w)))
1613 return; 2652 return;
1614 2653
1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2654 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1616 2655
2656 EV_FREQUENT_CHECK;
2657
1617 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2658 wlist_del (&anfds[w->fd].head, (WL)w);
1618 ev_stop (EV_A_ (W)w); 2659 ev_stop (EV_A_ (W)w);
1619 2660
1620 fd_change (EV_A_ w->fd); 2661 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2662
2663 EV_FREQUENT_CHECK;
1621} 2664}
1622 2665
1623void noinline 2666void noinline
1624ev_timer_start (EV_P_ ev_timer *w) 2667ev_timer_start (EV_P_ ev_timer *w)
1625{ 2668{
1626 if (expect_false (ev_is_active (w))) 2669 if (expect_false (ev_is_active (w)))
1627 return; 2670 return;
1628 2671
1629 ((WT)w)->at += mn_now; 2672 ev_at (w) += mn_now;
1630 2673
1631 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2674 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1632 2675
2676 EV_FREQUENT_CHECK;
2677
2678 ++timercnt;
1633 ev_start (EV_A_ (W)w, ++timercnt); 2679 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1634 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2680 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1635 timers [timercnt - 1] = w; 2681 ANHE_w (timers [ev_active (w)]) = (WT)w;
1636 upheap ((WT *)timers, timercnt - 1); 2682 ANHE_at_cache (timers [ev_active (w)]);
2683 upheap (timers, ev_active (w));
1637 2684
2685 EV_FREQUENT_CHECK;
2686
1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2687 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1639} 2688}
1640 2689
1641void noinline 2690void noinline
1642ev_timer_stop (EV_P_ ev_timer *w) 2691ev_timer_stop (EV_P_ ev_timer *w)
1643{ 2692{
1644 clear_pending (EV_A_ (W)w); 2693 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 2694 if (expect_false (!ev_is_active (w)))
1646 return; 2695 return;
1647 2696
1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2697 EV_FREQUENT_CHECK;
1649 2698
1650 { 2699 {
1651 int active = ((W)w)->active; 2700 int active = ev_active (w);
1652 2701
2702 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2703
2704 --timercnt;
2705
1653 if (expect_true (--active < --timercnt)) 2706 if (expect_true (active < timercnt + HEAP0))
1654 { 2707 {
1655 timers [active] = timers [timercnt]; 2708 timers [active] = timers [timercnt + HEAP0];
1656 adjustheap ((WT *)timers, timercnt, active); 2709 adjustheap (timers, timercnt, active);
1657 } 2710 }
1658 } 2711 }
1659 2712
1660 ((WT)w)->at -= mn_now; 2713 ev_at (w) -= mn_now;
1661 2714
1662 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
2716
2717 EV_FREQUENT_CHECK;
1663} 2718}
1664 2719
1665void noinline 2720void noinline
1666ev_timer_again (EV_P_ ev_timer *w) 2721ev_timer_again (EV_P_ ev_timer *w)
1667{ 2722{
2723 EV_FREQUENT_CHECK;
2724
1668 if (ev_is_active (w)) 2725 if (ev_is_active (w))
1669 { 2726 {
1670 if (w->repeat) 2727 if (w->repeat)
1671 { 2728 {
1672 ((WT)w)->at = mn_now + w->repeat; 2729 ev_at (w) = mn_now + w->repeat;
2730 ANHE_at_cache (timers [ev_active (w)]);
1673 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2731 adjustheap (timers, timercnt, ev_active (w));
1674 } 2732 }
1675 else 2733 else
1676 ev_timer_stop (EV_A_ w); 2734 ev_timer_stop (EV_A_ w);
1677 } 2735 }
1678 else if (w->repeat) 2736 else if (w->repeat)
1679 { 2737 {
1680 w->at = w->repeat; 2738 ev_at (w) = w->repeat;
1681 ev_timer_start (EV_A_ w); 2739 ev_timer_start (EV_A_ w);
1682 } 2740 }
2741
2742 EV_FREQUENT_CHECK;
2743}
2744
2745ev_tstamp
2746ev_timer_remaining (EV_P_ ev_timer *w)
2747{
2748 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1683} 2749}
1684 2750
1685#if EV_PERIODIC_ENABLE 2751#if EV_PERIODIC_ENABLE
1686void noinline 2752void noinline
1687ev_periodic_start (EV_P_ ev_periodic *w) 2753ev_periodic_start (EV_P_ ev_periodic *w)
1688{ 2754{
1689 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
1690 return; 2756 return;
1691 2757
1692 if (w->reschedule_cb) 2758 if (w->reschedule_cb)
1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2759 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1694 else if (w->interval) 2760 else if (w->interval)
1695 { 2761 {
1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2762 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1697 /* this formula differs from the one in periodic_reify because we do not always round up */ 2763 /* this formula differs from the one in periodic_reify because we do not always round up */
1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2764 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1699 } 2765 }
1700 else 2766 else
1701 ((WT)w)->at = w->offset; 2767 ev_at (w) = w->offset;
1702 2768
2769 EV_FREQUENT_CHECK;
2770
2771 ++periodiccnt;
1703 ev_start (EV_A_ (W)w, ++periodiccnt); 2772 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2773 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1705 periodics [periodiccnt - 1] = w; 2774 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1706 upheap ((WT *)periodics, periodiccnt - 1); 2775 ANHE_at_cache (periodics [ev_active (w)]);
2776 upheap (periodics, ev_active (w));
1707 2777
2778 EV_FREQUENT_CHECK;
2779
1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2780 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1709} 2781}
1710 2782
1711void noinline 2783void noinline
1712ev_periodic_stop (EV_P_ ev_periodic *w) 2784ev_periodic_stop (EV_P_ ev_periodic *w)
1713{ 2785{
1714 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
1715 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
1716 return; 2788 return;
1717 2789
1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2790 EV_FREQUENT_CHECK;
1719 2791
1720 { 2792 {
1721 int active = ((W)w)->active; 2793 int active = ev_active (w);
1722 2794
2795 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2796
2797 --periodiccnt;
2798
1723 if (expect_true (--active < --periodiccnt)) 2799 if (expect_true (active < periodiccnt + HEAP0))
1724 { 2800 {
1725 periodics [active] = periodics [periodiccnt]; 2801 periodics [active] = periodics [periodiccnt + HEAP0];
1726 adjustheap ((WT *)periodics, periodiccnt, active); 2802 adjustheap (periodics, periodiccnt, active);
1727 } 2803 }
1728 } 2804 }
1729 2805
1730 ev_stop (EV_A_ (W)w); 2806 ev_stop (EV_A_ (W)w);
2807
2808 EV_FREQUENT_CHECK;
1731} 2809}
1732 2810
1733void noinline 2811void noinline
1734ev_periodic_again (EV_P_ ev_periodic *w) 2812ev_periodic_again (EV_P_ ev_periodic *w)
1735{ 2813{
1741 2819
1742#ifndef SA_RESTART 2820#ifndef SA_RESTART
1743# define SA_RESTART 0 2821# define SA_RESTART 0
1744#endif 2822#endif
1745 2823
2824#if EV_SIGNAL_ENABLE
2825
1746void noinline 2826void noinline
1747ev_signal_start (EV_P_ ev_signal *w) 2827ev_signal_start (EV_P_ ev_signal *w)
1748{ 2828{
1749#if EV_MULTIPLICITY
1750 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1751#endif
1752 if (expect_false (ev_is_active (w))) 2829 if (expect_false (ev_is_active (w)))
1753 return; 2830 return;
1754 2831
1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2832 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1756 2833
2834#if EV_MULTIPLICITY
2835 assert (("libev: a signal must not be attached to two different loops",
2836 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2837
2838 signals [w->signum - 1].loop = EV_A;
2839#endif
2840
2841 EV_FREQUENT_CHECK;
2842
2843#if EV_USE_SIGNALFD
2844 if (sigfd == -2)
1757 { 2845 {
1758#ifndef _WIN32 2846 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1759 sigset_t full, prev; 2847 if (sigfd < 0 && errno == EINVAL)
1760 sigfillset (&full); 2848 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1761 sigprocmask (SIG_SETMASK, &full, &prev);
1762#endif
1763 2849
1764 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2850 if (sigfd >= 0)
2851 {
2852 fd_intern (sigfd); /* doing it twice will not hurt */
1765 2853
1766#ifndef _WIN32 2854 sigemptyset (&sigfd_set);
1767 sigprocmask (SIG_SETMASK, &prev, 0); 2855
1768#endif 2856 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2857 ev_set_priority (&sigfd_w, EV_MAXPRI);
2858 ev_io_start (EV_A_ &sigfd_w);
2859 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2860 }
1769 } 2861 }
2862
2863 if (sigfd >= 0)
2864 {
2865 /* TODO: check .head */
2866 sigaddset (&sigfd_set, w->signum);
2867 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2868
2869 signalfd (sigfd, &sigfd_set, 0);
2870 }
2871#endif
1770 2872
1771 ev_start (EV_A_ (W)w, 1); 2873 ev_start (EV_A_ (W)w, 1);
1772 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2874 wlist_add (&signals [w->signum - 1].head, (WL)w);
1773 2875
1774 if (!((WL)w)->next) 2876 if (!((WL)w)->next)
2877# if EV_USE_SIGNALFD
2878 if (sigfd < 0) /*TODO*/
2879# endif
1775 { 2880 {
1776#if _WIN32 2881# ifdef _WIN32
2882 evpipe_init (EV_A);
2883
1777 signal (w->signum, sighandler); 2884 signal (w->signum, ev_sighandler);
1778#else 2885# else
1779 struct sigaction sa; 2886 struct sigaction sa;
2887
2888 evpipe_init (EV_A);
2889
1780 sa.sa_handler = sighandler; 2890 sa.sa_handler = ev_sighandler;
1781 sigfillset (&sa.sa_mask); 2891 sigfillset (&sa.sa_mask);
1782 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2892 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1783 sigaction (w->signum, &sa, 0); 2893 sigaction (w->signum, &sa, 0);
2894
2895 if (origflags & EVFLAG_NOSIGMASK)
2896 {
2897 sigemptyset (&sa.sa_mask);
2898 sigaddset (&sa.sa_mask, w->signum);
2899 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2900 }
1784#endif 2901#endif
1785 } 2902 }
2903
2904 EV_FREQUENT_CHECK;
1786} 2905}
1787 2906
1788void noinline 2907void noinline
1789ev_signal_stop (EV_P_ ev_signal *w) 2908ev_signal_stop (EV_P_ ev_signal *w)
1790{ 2909{
1791 clear_pending (EV_A_ (W)w); 2910 clear_pending (EV_A_ (W)w);
1792 if (expect_false (!ev_is_active (w))) 2911 if (expect_false (!ev_is_active (w)))
1793 return; 2912 return;
1794 2913
2914 EV_FREQUENT_CHECK;
2915
1795 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2916 wlist_del (&signals [w->signum - 1].head, (WL)w);
1796 ev_stop (EV_A_ (W)w); 2917 ev_stop (EV_A_ (W)w);
1797 2918
1798 if (!signals [w->signum - 1].head) 2919 if (!signals [w->signum - 1].head)
2920 {
2921#if EV_MULTIPLICITY
2922 signals [w->signum - 1].loop = 0; /* unattach from signal */
2923#endif
2924#if EV_USE_SIGNALFD
2925 if (sigfd >= 0)
2926 {
2927 sigset_t ss;
2928
2929 sigemptyset (&ss);
2930 sigaddset (&ss, w->signum);
2931 sigdelset (&sigfd_set, w->signum);
2932
2933 signalfd (sigfd, &sigfd_set, 0);
2934 sigprocmask (SIG_UNBLOCK, &ss, 0);
2935 }
2936 else
2937#endif
1799 signal (w->signum, SIG_DFL); 2938 signal (w->signum, SIG_DFL);
2939 }
2940
2941 EV_FREQUENT_CHECK;
1800} 2942}
2943
2944#endif
2945
2946#if EV_CHILD_ENABLE
1801 2947
1802void 2948void
1803ev_child_start (EV_P_ ev_child *w) 2949ev_child_start (EV_P_ ev_child *w)
1804{ 2950{
1805#if EV_MULTIPLICITY 2951#if EV_MULTIPLICITY
1806 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2952 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1807#endif 2953#endif
1808 if (expect_false (ev_is_active (w))) 2954 if (expect_false (ev_is_active (w)))
1809 return; 2955 return;
1810 2956
2957 EV_FREQUENT_CHECK;
2958
1811 ev_start (EV_A_ (W)w, 1); 2959 ev_start (EV_A_ (W)w, 1);
1812 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2960 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2961
2962 EV_FREQUENT_CHECK;
1813} 2963}
1814 2964
1815void 2965void
1816ev_child_stop (EV_P_ ev_child *w) 2966ev_child_stop (EV_P_ ev_child *w)
1817{ 2967{
1818 clear_pending (EV_A_ (W)w); 2968 clear_pending (EV_A_ (W)w);
1819 if (expect_false (!ev_is_active (w))) 2969 if (expect_false (!ev_is_active (w)))
1820 return; 2970 return;
1821 2971
2972 EV_FREQUENT_CHECK;
2973
1822 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2974 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1823 ev_stop (EV_A_ (W)w); 2975 ev_stop (EV_A_ (W)w);
2976
2977 EV_FREQUENT_CHECK;
1824} 2978}
2979
2980#endif
1825 2981
1826#if EV_STAT_ENABLE 2982#if EV_STAT_ENABLE
1827 2983
1828# ifdef _WIN32 2984# ifdef _WIN32
1829# undef lstat 2985# undef lstat
1830# define lstat(a,b) _stati64 (a,b) 2986# define lstat(a,b) _stati64 (a,b)
1831# endif 2987# endif
1832 2988
1833#define DEF_STAT_INTERVAL 5.0074891 2989#define DEF_STAT_INTERVAL 5.0074891
2990#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1834#define MIN_STAT_INTERVAL 0.1074891 2991#define MIN_STAT_INTERVAL 0.1074891
1835 2992
1836static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2993static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1837 2994
1838#if EV_USE_INOTIFY 2995#if EV_USE_INOTIFY
1839# define EV_INOTIFY_BUFSIZE 8192 2996
2997/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2998# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1840 2999
1841static void noinline 3000static void noinline
1842infy_add (EV_P_ ev_stat *w) 3001infy_add (EV_P_ ev_stat *w)
1843{ 3002{
1844 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3003 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1845 3004
1846 if (w->wd < 0) 3005 if (w->wd >= 0)
3006 {
3007 struct statfs sfs;
3008
3009 /* now local changes will be tracked by inotify, but remote changes won't */
3010 /* unless the filesystem is known to be local, we therefore still poll */
3011 /* also do poll on <2.6.25, but with normal frequency */
3012
3013 if (!fs_2625)
3014 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3015 else if (!statfs (w->path, &sfs)
3016 && (sfs.f_type == 0x1373 /* devfs */
3017 || sfs.f_type == 0xEF53 /* ext2/3 */
3018 || sfs.f_type == 0x3153464a /* jfs */
3019 || sfs.f_type == 0x52654973 /* reiser3 */
3020 || sfs.f_type == 0x01021994 /* tempfs */
3021 || sfs.f_type == 0x58465342 /* xfs */))
3022 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3023 else
3024 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1847 { 3025 }
1848 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3026 else
3027 {
3028 /* can't use inotify, continue to stat */
3029 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1849 3030
1850 /* monitor some parent directory for speedup hints */ 3031 /* if path is not there, monitor some parent directory for speedup hints */
3032 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3033 /* but an efficiency issue only */
1851 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3034 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1852 { 3035 {
1853 char path [4096]; 3036 char path [4096];
1854 strcpy (path, w->path); 3037 strcpy (path, w->path);
1855 3038
1858 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3041 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1859 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3042 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1860 3043
1861 char *pend = strrchr (path, '/'); 3044 char *pend = strrchr (path, '/');
1862 3045
1863 if (!pend) 3046 if (!pend || pend == path)
1864 break; /* whoops, no '/', complain to your admin */ 3047 break;
1865 3048
1866 *pend = 0; 3049 *pend = 0;
1867 w->wd = inotify_add_watch (fs_fd, path, mask); 3050 w->wd = inotify_add_watch (fs_fd, path, mask);
1868 } 3051 }
1869 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3052 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1870 } 3053 }
1871 } 3054 }
1872 else
1873 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1874 3055
1875 if (w->wd >= 0) 3056 if (w->wd >= 0)
1876 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3057 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3058
3059 /* now re-arm timer, if required */
3060 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3061 ev_timer_again (EV_A_ &w->timer);
3062 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1877} 3063}
1878 3064
1879static void noinline 3065static void noinline
1880infy_del (EV_P_ ev_stat *w) 3066infy_del (EV_P_ ev_stat *w)
1881{ 3067{
1884 3070
1885 if (wd < 0) 3071 if (wd < 0)
1886 return; 3072 return;
1887 3073
1888 w->wd = -2; 3074 w->wd = -2;
1889 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3075 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1890 wlist_del (&fs_hash [slot].head, (WL)w); 3076 wlist_del (&fs_hash [slot].head, (WL)w);
1891 3077
1892 /* remove this watcher, if others are watching it, they will rearm */ 3078 /* remove this watcher, if others are watching it, they will rearm */
1893 inotify_rm_watch (fs_fd, wd); 3079 inotify_rm_watch (fs_fd, wd);
1894} 3080}
1895 3081
1896static void noinline 3082static void noinline
1897infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3083infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1898{ 3084{
1899 if (slot < 0) 3085 if (slot < 0)
1900 /* overflow, need to check for all hahs slots */ 3086 /* overflow, need to check for all hash slots */
1901 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3087 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1902 infy_wd (EV_A_ slot, wd, ev); 3088 infy_wd (EV_A_ slot, wd, ev);
1903 else 3089 else
1904 { 3090 {
1905 WL w_; 3091 WL w_;
1906 3092
1907 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3093 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1908 { 3094 {
1909 ev_stat *w = (ev_stat *)w_; 3095 ev_stat *w = (ev_stat *)w_;
1910 w_ = w_->next; /* lets us remove this watcher and all before it */ 3096 w_ = w_->next; /* lets us remove this watcher and all before it */
1911 3097
1912 if (w->wd == wd || wd == -1) 3098 if (w->wd == wd || wd == -1)
1913 { 3099 {
1914 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3100 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1915 { 3101 {
3102 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1916 w->wd = -1; 3103 w->wd = -1;
1917 infy_add (EV_A_ w); /* re-add, no matter what */ 3104 infy_add (EV_A_ w); /* re-add, no matter what */
1918 } 3105 }
1919 3106
1920 stat_timer_cb (EV_A_ &w->timer, 0); 3107 stat_timer_cb (EV_A_ &w->timer, 0);
1925 3112
1926static void 3113static void
1927infy_cb (EV_P_ ev_io *w, int revents) 3114infy_cb (EV_P_ ev_io *w, int revents)
1928{ 3115{
1929 char buf [EV_INOTIFY_BUFSIZE]; 3116 char buf [EV_INOTIFY_BUFSIZE];
1930 struct inotify_event *ev = (struct inotify_event *)buf;
1931 int ofs; 3117 int ofs;
1932 int len = read (fs_fd, buf, sizeof (buf)); 3118 int len = read (fs_fd, buf, sizeof (buf));
1933 3119
1934 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3120 for (ofs = 0; ofs < len; )
3121 {
3122 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1935 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3123 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3124 ofs += sizeof (struct inotify_event) + ev->len;
3125 }
1936} 3126}
1937 3127
1938void inline_size 3128inline_size void
3129ev_check_2625 (EV_P)
3130{
3131 /* kernels < 2.6.25 are borked
3132 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3133 */
3134 if (ev_linux_version () < 0x020619)
3135 return;
3136
3137 fs_2625 = 1;
3138}
3139
3140inline_size int
3141infy_newfd (void)
3142{
3143#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3144 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3145 if (fd >= 0)
3146 return fd;
3147#endif
3148 return inotify_init ();
3149}
3150
3151inline_size void
1939infy_init (EV_P) 3152infy_init (EV_P)
1940{ 3153{
1941 if (fs_fd != -2) 3154 if (fs_fd != -2)
1942 return; 3155 return;
1943 3156
3157 fs_fd = -1;
3158
3159 ev_check_2625 (EV_A);
3160
1944 fs_fd = inotify_init (); 3161 fs_fd = infy_newfd ();
1945 3162
1946 if (fs_fd >= 0) 3163 if (fs_fd >= 0)
1947 { 3164 {
3165 fd_intern (fs_fd);
1948 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3166 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1949 ev_set_priority (&fs_w, EV_MAXPRI); 3167 ev_set_priority (&fs_w, EV_MAXPRI);
1950 ev_io_start (EV_A_ &fs_w); 3168 ev_io_start (EV_A_ &fs_w);
3169 ev_unref (EV_A);
1951 } 3170 }
1952} 3171}
1953 3172
1954void inline_size 3173inline_size void
1955infy_fork (EV_P) 3174infy_fork (EV_P)
1956{ 3175{
1957 int slot; 3176 int slot;
1958 3177
1959 if (fs_fd < 0) 3178 if (fs_fd < 0)
1960 return; 3179 return;
1961 3180
3181 ev_ref (EV_A);
3182 ev_io_stop (EV_A_ &fs_w);
1962 close (fs_fd); 3183 close (fs_fd);
1963 fs_fd = inotify_init (); 3184 fs_fd = infy_newfd ();
1964 3185
3186 if (fs_fd >= 0)
3187 {
3188 fd_intern (fs_fd);
3189 ev_io_set (&fs_w, fs_fd, EV_READ);
3190 ev_io_start (EV_A_ &fs_w);
3191 ev_unref (EV_A);
3192 }
3193
1965 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3194 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1966 { 3195 {
1967 WL w_ = fs_hash [slot].head; 3196 WL w_ = fs_hash [slot].head;
1968 fs_hash [slot].head = 0; 3197 fs_hash [slot].head = 0;
1969 3198
1970 while (w_) 3199 while (w_)
1975 w->wd = -1; 3204 w->wd = -1;
1976 3205
1977 if (fs_fd >= 0) 3206 if (fs_fd >= 0)
1978 infy_add (EV_A_ w); /* re-add, no matter what */ 3207 infy_add (EV_A_ w); /* re-add, no matter what */
1979 else 3208 else
3209 {
3210 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3211 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1980 ev_timer_start (EV_A_ &w->timer); 3212 ev_timer_again (EV_A_ &w->timer);
3213 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3214 }
1981 } 3215 }
1982
1983 } 3216 }
1984} 3217}
1985 3218
3219#endif
3220
3221#ifdef _WIN32
3222# define EV_LSTAT(p,b) _stati64 (p, b)
3223#else
3224# define EV_LSTAT(p,b) lstat (p, b)
1986#endif 3225#endif
1987 3226
1988void 3227void
1989ev_stat_stat (EV_P_ ev_stat *w) 3228ev_stat_stat (EV_P_ ev_stat *w)
1990{ 3229{
1997static void noinline 3236static void noinline
1998stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3237stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1999{ 3238{
2000 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3239 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2001 3240
2002 /* we copy this here each the time so that */ 3241 ev_statdata prev = w->attr;
2003 /* prev has the old value when the callback gets invoked */
2004 w->prev = w->attr;
2005 ev_stat_stat (EV_A_ w); 3242 ev_stat_stat (EV_A_ w);
2006 3243
2007 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3244 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2008 if ( 3245 if (
2009 w->prev.st_dev != w->attr.st_dev 3246 prev.st_dev != w->attr.st_dev
2010 || w->prev.st_ino != w->attr.st_ino 3247 || prev.st_ino != w->attr.st_ino
2011 || w->prev.st_mode != w->attr.st_mode 3248 || prev.st_mode != w->attr.st_mode
2012 || w->prev.st_nlink != w->attr.st_nlink 3249 || prev.st_nlink != w->attr.st_nlink
2013 || w->prev.st_uid != w->attr.st_uid 3250 || prev.st_uid != w->attr.st_uid
2014 || w->prev.st_gid != w->attr.st_gid 3251 || prev.st_gid != w->attr.st_gid
2015 || w->prev.st_rdev != w->attr.st_rdev 3252 || prev.st_rdev != w->attr.st_rdev
2016 || w->prev.st_size != w->attr.st_size 3253 || prev.st_size != w->attr.st_size
2017 || w->prev.st_atime != w->attr.st_atime 3254 || prev.st_atime != w->attr.st_atime
2018 || w->prev.st_mtime != w->attr.st_mtime 3255 || prev.st_mtime != w->attr.st_mtime
2019 || w->prev.st_ctime != w->attr.st_ctime 3256 || prev.st_ctime != w->attr.st_ctime
2020 ) { 3257 ) {
3258 /* we only update w->prev on actual differences */
3259 /* in case we test more often than invoke the callback, */
3260 /* to ensure that prev is always different to attr */
3261 w->prev = prev;
3262
2021 #if EV_USE_INOTIFY 3263 #if EV_USE_INOTIFY
3264 if (fs_fd >= 0)
3265 {
2022 infy_del (EV_A_ w); 3266 infy_del (EV_A_ w);
2023 infy_add (EV_A_ w); 3267 infy_add (EV_A_ w);
2024 ev_stat_stat (EV_A_ w); /* avoid race... */ 3268 ev_stat_stat (EV_A_ w); /* avoid race... */
3269 }
2025 #endif 3270 #endif
2026 3271
2027 ev_feed_event (EV_A_ w, EV_STAT); 3272 ev_feed_event (EV_A_ w, EV_STAT);
2028 } 3273 }
2029} 3274}
2032ev_stat_start (EV_P_ ev_stat *w) 3277ev_stat_start (EV_P_ ev_stat *w)
2033{ 3278{
2034 if (expect_false (ev_is_active (w))) 3279 if (expect_false (ev_is_active (w)))
2035 return; 3280 return;
2036 3281
2037 /* since we use memcmp, we need to clear any padding data etc. */
2038 memset (&w->prev, 0, sizeof (ev_statdata));
2039 memset (&w->attr, 0, sizeof (ev_statdata));
2040
2041 ev_stat_stat (EV_A_ w); 3282 ev_stat_stat (EV_A_ w);
2042 3283
3284 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2043 if (w->interval < MIN_STAT_INTERVAL) 3285 w->interval = MIN_STAT_INTERVAL;
2044 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2045 3286
2046 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3287 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2047 ev_set_priority (&w->timer, ev_priority (w)); 3288 ev_set_priority (&w->timer, ev_priority (w));
2048 3289
2049#if EV_USE_INOTIFY 3290#if EV_USE_INOTIFY
2050 infy_init (EV_A); 3291 infy_init (EV_A);
2051 3292
2052 if (fs_fd >= 0) 3293 if (fs_fd >= 0)
2053 infy_add (EV_A_ w); 3294 infy_add (EV_A_ w);
2054 else 3295 else
2055#endif 3296#endif
3297 {
2056 ev_timer_start (EV_A_ &w->timer); 3298 ev_timer_again (EV_A_ &w->timer);
3299 ev_unref (EV_A);
3300 }
2057 3301
2058 ev_start (EV_A_ (W)w, 1); 3302 ev_start (EV_A_ (W)w, 1);
3303
3304 EV_FREQUENT_CHECK;
2059} 3305}
2060 3306
2061void 3307void
2062ev_stat_stop (EV_P_ ev_stat *w) 3308ev_stat_stop (EV_P_ ev_stat *w)
2063{ 3309{
2064 clear_pending (EV_A_ (W)w); 3310 clear_pending (EV_A_ (W)w);
2065 if (expect_false (!ev_is_active (w))) 3311 if (expect_false (!ev_is_active (w)))
2066 return; 3312 return;
2067 3313
3314 EV_FREQUENT_CHECK;
3315
2068#if EV_USE_INOTIFY 3316#if EV_USE_INOTIFY
2069 infy_del (EV_A_ w); 3317 infy_del (EV_A_ w);
2070#endif 3318#endif
3319
3320 if (ev_is_active (&w->timer))
3321 {
3322 ev_ref (EV_A);
2071 ev_timer_stop (EV_A_ &w->timer); 3323 ev_timer_stop (EV_A_ &w->timer);
3324 }
2072 3325
2073 ev_stop (EV_A_ (W)w); 3326 ev_stop (EV_A_ (W)w);
3327
3328 EV_FREQUENT_CHECK;
2074} 3329}
2075#endif 3330#endif
2076 3331
2077#if EV_IDLE_ENABLE 3332#if EV_IDLE_ENABLE
2078void 3333void
2080{ 3335{
2081 if (expect_false (ev_is_active (w))) 3336 if (expect_false (ev_is_active (w)))
2082 return; 3337 return;
2083 3338
2084 pri_adjust (EV_A_ (W)w); 3339 pri_adjust (EV_A_ (W)w);
3340
3341 EV_FREQUENT_CHECK;
2085 3342
2086 { 3343 {
2087 int active = ++idlecnt [ABSPRI (w)]; 3344 int active = ++idlecnt [ABSPRI (w)];
2088 3345
2089 ++idleall; 3346 ++idleall;
2090 ev_start (EV_A_ (W)w, active); 3347 ev_start (EV_A_ (W)w, active);
2091 3348
2092 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3349 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2093 idles [ABSPRI (w)][active - 1] = w; 3350 idles [ABSPRI (w)][active - 1] = w;
2094 } 3351 }
3352
3353 EV_FREQUENT_CHECK;
2095} 3354}
2096 3355
2097void 3356void
2098ev_idle_stop (EV_P_ ev_idle *w) 3357ev_idle_stop (EV_P_ ev_idle *w)
2099{ 3358{
2100 clear_pending (EV_A_ (W)w); 3359 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 3360 if (expect_false (!ev_is_active (w)))
2102 return; 3361 return;
2103 3362
3363 EV_FREQUENT_CHECK;
3364
2104 { 3365 {
2105 int active = ((W)w)->active; 3366 int active = ev_active (w);
2106 3367
2107 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3368 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2108 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3369 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2109 3370
2110 ev_stop (EV_A_ (W)w); 3371 ev_stop (EV_A_ (W)w);
2111 --idleall; 3372 --idleall;
2112 } 3373 }
2113}
2114#endif
2115 3374
3375 EV_FREQUENT_CHECK;
3376}
3377#endif
3378
3379#if EV_PREPARE_ENABLE
2116void 3380void
2117ev_prepare_start (EV_P_ ev_prepare *w) 3381ev_prepare_start (EV_P_ ev_prepare *w)
2118{ 3382{
2119 if (expect_false (ev_is_active (w))) 3383 if (expect_false (ev_is_active (w)))
2120 return; 3384 return;
3385
3386 EV_FREQUENT_CHECK;
2121 3387
2122 ev_start (EV_A_ (W)w, ++preparecnt); 3388 ev_start (EV_A_ (W)w, ++preparecnt);
2123 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3389 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2124 prepares [preparecnt - 1] = w; 3390 prepares [preparecnt - 1] = w;
3391
3392 EV_FREQUENT_CHECK;
2125} 3393}
2126 3394
2127void 3395void
2128ev_prepare_stop (EV_P_ ev_prepare *w) 3396ev_prepare_stop (EV_P_ ev_prepare *w)
2129{ 3397{
2130 clear_pending (EV_A_ (W)w); 3398 clear_pending (EV_A_ (W)w);
2131 if (expect_false (!ev_is_active (w))) 3399 if (expect_false (!ev_is_active (w)))
2132 return; 3400 return;
2133 3401
3402 EV_FREQUENT_CHECK;
3403
2134 { 3404 {
2135 int active = ((W)w)->active; 3405 int active = ev_active (w);
3406
2136 prepares [active - 1] = prepares [--preparecnt]; 3407 prepares [active - 1] = prepares [--preparecnt];
2137 ((W)prepares [active - 1])->active = active; 3408 ev_active (prepares [active - 1]) = active;
2138 } 3409 }
2139 3410
2140 ev_stop (EV_A_ (W)w); 3411 ev_stop (EV_A_ (W)w);
2141}
2142 3412
3413 EV_FREQUENT_CHECK;
3414}
3415#endif
3416
3417#if EV_CHECK_ENABLE
2143void 3418void
2144ev_check_start (EV_P_ ev_check *w) 3419ev_check_start (EV_P_ ev_check *w)
2145{ 3420{
2146 if (expect_false (ev_is_active (w))) 3421 if (expect_false (ev_is_active (w)))
2147 return; 3422 return;
3423
3424 EV_FREQUENT_CHECK;
2148 3425
2149 ev_start (EV_A_ (W)w, ++checkcnt); 3426 ev_start (EV_A_ (W)w, ++checkcnt);
2150 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3427 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2151 checks [checkcnt - 1] = w; 3428 checks [checkcnt - 1] = w;
3429
3430 EV_FREQUENT_CHECK;
2152} 3431}
2153 3432
2154void 3433void
2155ev_check_stop (EV_P_ ev_check *w) 3434ev_check_stop (EV_P_ ev_check *w)
2156{ 3435{
2157 clear_pending (EV_A_ (W)w); 3436 clear_pending (EV_A_ (W)w);
2158 if (expect_false (!ev_is_active (w))) 3437 if (expect_false (!ev_is_active (w)))
2159 return; 3438 return;
2160 3439
3440 EV_FREQUENT_CHECK;
3441
2161 { 3442 {
2162 int active = ((W)w)->active; 3443 int active = ev_active (w);
3444
2163 checks [active - 1] = checks [--checkcnt]; 3445 checks [active - 1] = checks [--checkcnt];
2164 ((W)checks [active - 1])->active = active; 3446 ev_active (checks [active - 1]) = active;
2165 } 3447 }
2166 3448
2167 ev_stop (EV_A_ (W)w); 3449 ev_stop (EV_A_ (W)w);
3450
3451 EV_FREQUENT_CHECK;
2168} 3452}
3453#endif
2169 3454
2170#if EV_EMBED_ENABLE 3455#if EV_EMBED_ENABLE
2171void noinline 3456void noinline
2172ev_embed_sweep (EV_P_ ev_embed *w) 3457ev_embed_sweep (EV_P_ ev_embed *w)
2173{ 3458{
2174 ev_loop (w->loop, EVLOOP_NONBLOCK); 3459 ev_run (w->other, EVRUN_NOWAIT);
2175} 3460}
2176 3461
2177static void 3462static void
2178embed_cb (EV_P_ ev_io *io, int revents) 3463embed_io_cb (EV_P_ ev_io *io, int revents)
2179{ 3464{
2180 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3465 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2181 3466
2182 if (ev_cb (w)) 3467 if (ev_cb (w))
2183 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3468 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2184 else 3469 else
2185 ev_embed_sweep (loop, w); 3470 ev_run (w->other, EVRUN_NOWAIT);
2186} 3471}
3472
3473static void
3474embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3475{
3476 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3477
3478 {
3479 EV_P = w->other;
3480
3481 while (fdchangecnt)
3482 {
3483 fd_reify (EV_A);
3484 ev_run (EV_A_ EVRUN_NOWAIT);
3485 }
3486 }
3487}
3488
3489static void
3490embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3491{
3492 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3493
3494 ev_embed_stop (EV_A_ w);
3495
3496 {
3497 EV_P = w->other;
3498
3499 ev_loop_fork (EV_A);
3500 ev_run (EV_A_ EVRUN_NOWAIT);
3501 }
3502
3503 ev_embed_start (EV_A_ w);
3504}
3505
3506#if 0
3507static void
3508embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3509{
3510 ev_idle_stop (EV_A_ idle);
3511}
3512#endif
2187 3513
2188void 3514void
2189ev_embed_start (EV_P_ ev_embed *w) 3515ev_embed_start (EV_P_ ev_embed *w)
2190{ 3516{
2191 if (expect_false (ev_is_active (w))) 3517 if (expect_false (ev_is_active (w)))
2192 return; 3518 return;
2193 3519
2194 { 3520 {
2195 struct ev_loop *loop = w->loop; 3521 EV_P = w->other;
2196 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3522 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2197 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3523 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2198 } 3524 }
3525
3526 EV_FREQUENT_CHECK;
2199 3527
2200 ev_set_priority (&w->io, ev_priority (w)); 3528 ev_set_priority (&w->io, ev_priority (w));
2201 ev_io_start (EV_A_ &w->io); 3529 ev_io_start (EV_A_ &w->io);
2202 3530
3531 ev_prepare_init (&w->prepare, embed_prepare_cb);
3532 ev_set_priority (&w->prepare, EV_MINPRI);
3533 ev_prepare_start (EV_A_ &w->prepare);
3534
3535 ev_fork_init (&w->fork, embed_fork_cb);
3536 ev_fork_start (EV_A_ &w->fork);
3537
3538 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3539
2203 ev_start (EV_A_ (W)w, 1); 3540 ev_start (EV_A_ (W)w, 1);
3541
3542 EV_FREQUENT_CHECK;
2204} 3543}
2205 3544
2206void 3545void
2207ev_embed_stop (EV_P_ ev_embed *w) 3546ev_embed_stop (EV_P_ ev_embed *w)
2208{ 3547{
2209 clear_pending (EV_A_ (W)w); 3548 clear_pending (EV_A_ (W)w);
2210 if (expect_false (!ev_is_active (w))) 3549 if (expect_false (!ev_is_active (w)))
2211 return; 3550 return;
2212 3551
3552 EV_FREQUENT_CHECK;
3553
2213 ev_io_stop (EV_A_ &w->io); 3554 ev_io_stop (EV_A_ &w->io);
3555 ev_prepare_stop (EV_A_ &w->prepare);
3556 ev_fork_stop (EV_A_ &w->fork);
2214 3557
2215 ev_stop (EV_A_ (W)w); 3558 ev_stop (EV_A_ (W)w);
3559
3560 EV_FREQUENT_CHECK;
2216} 3561}
2217#endif 3562#endif
2218 3563
2219#if EV_FORK_ENABLE 3564#if EV_FORK_ENABLE
2220void 3565void
2221ev_fork_start (EV_P_ ev_fork *w) 3566ev_fork_start (EV_P_ ev_fork *w)
2222{ 3567{
2223 if (expect_false (ev_is_active (w))) 3568 if (expect_false (ev_is_active (w)))
2224 return; 3569 return;
3570
3571 EV_FREQUENT_CHECK;
2225 3572
2226 ev_start (EV_A_ (W)w, ++forkcnt); 3573 ev_start (EV_A_ (W)w, ++forkcnt);
2227 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3574 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2228 forks [forkcnt - 1] = w; 3575 forks [forkcnt - 1] = w;
3576
3577 EV_FREQUENT_CHECK;
2229} 3578}
2230 3579
2231void 3580void
2232ev_fork_stop (EV_P_ ev_fork *w) 3581ev_fork_stop (EV_P_ ev_fork *w)
2233{ 3582{
2234 clear_pending (EV_A_ (W)w); 3583 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 3584 if (expect_false (!ev_is_active (w)))
2236 return; 3585 return;
2237 3586
3587 EV_FREQUENT_CHECK;
3588
2238 { 3589 {
2239 int active = ((W)w)->active; 3590 int active = ev_active (w);
3591
2240 forks [active - 1] = forks [--forkcnt]; 3592 forks [active - 1] = forks [--forkcnt];
2241 ((W)forks [active - 1])->active = active; 3593 ev_active (forks [active - 1]) = active;
2242 } 3594 }
2243 3595
2244 ev_stop (EV_A_ (W)w); 3596 ev_stop (EV_A_ (W)w);
3597
3598 EV_FREQUENT_CHECK;
3599}
3600#endif
3601
3602#if EV_CLEANUP_ENABLE
3603void
3604ev_cleanup_start (EV_P_ ev_cleanup *w)
3605{
3606 if (expect_false (ev_is_active (w)))
3607 return;
3608
3609 EV_FREQUENT_CHECK;
3610
3611 ev_start (EV_A_ (W)w, ++cleanupcnt);
3612 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3613 cleanups [cleanupcnt - 1] = w;
3614
3615 /* cleanup watchers should never keep a refcount on the loop */
3616 ev_unref (EV_A);
3617 EV_FREQUENT_CHECK;
3618}
3619
3620void
3621ev_cleanup_stop (EV_P_ ev_cleanup *w)
3622{
3623 clear_pending (EV_A_ (W)w);
3624 if (expect_false (!ev_is_active (w)))
3625 return;
3626
3627 EV_FREQUENT_CHECK;
3628 ev_ref (EV_A);
3629
3630 {
3631 int active = ev_active (w);
3632
3633 cleanups [active - 1] = cleanups [--cleanupcnt];
3634 ev_active (cleanups [active - 1]) = active;
3635 }
3636
3637 ev_stop (EV_A_ (W)w);
3638
3639 EV_FREQUENT_CHECK;
3640}
3641#endif
3642
3643#if EV_ASYNC_ENABLE
3644void
3645ev_async_start (EV_P_ ev_async *w)
3646{
3647 if (expect_false (ev_is_active (w)))
3648 return;
3649
3650 w->sent = 0;
3651
3652 evpipe_init (EV_A);
3653
3654 EV_FREQUENT_CHECK;
3655
3656 ev_start (EV_A_ (W)w, ++asynccnt);
3657 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3658 asyncs [asynccnt - 1] = w;
3659
3660 EV_FREQUENT_CHECK;
3661}
3662
3663void
3664ev_async_stop (EV_P_ ev_async *w)
3665{
3666 clear_pending (EV_A_ (W)w);
3667 if (expect_false (!ev_is_active (w)))
3668 return;
3669
3670 EV_FREQUENT_CHECK;
3671
3672 {
3673 int active = ev_active (w);
3674
3675 asyncs [active - 1] = asyncs [--asynccnt];
3676 ev_active (asyncs [active - 1]) = active;
3677 }
3678
3679 ev_stop (EV_A_ (W)w);
3680
3681 EV_FREQUENT_CHECK;
3682}
3683
3684void
3685ev_async_send (EV_P_ ev_async *w)
3686{
3687 w->sent = 1;
3688 evpipe_write (EV_A_ &async_pending);
2245} 3689}
2246#endif 3690#endif
2247 3691
2248/*****************************************************************************/ 3692/*****************************************************************************/
2249 3693
2259once_cb (EV_P_ struct ev_once *once, int revents) 3703once_cb (EV_P_ struct ev_once *once, int revents)
2260{ 3704{
2261 void (*cb)(int revents, void *arg) = once->cb; 3705 void (*cb)(int revents, void *arg) = once->cb;
2262 void *arg = once->arg; 3706 void *arg = once->arg;
2263 3707
2264 ev_io_stop (EV_A_ &once->io); 3708 ev_io_stop (EV_A_ &once->io);
2265 ev_timer_stop (EV_A_ &once->to); 3709 ev_timer_stop (EV_A_ &once->to);
2266 ev_free (once); 3710 ev_free (once);
2267 3711
2268 cb (revents, arg); 3712 cb (revents, arg);
2269} 3713}
2270 3714
2271static void 3715static void
2272once_cb_io (EV_P_ ev_io *w, int revents) 3716once_cb_io (EV_P_ ev_io *w, int revents)
2273{ 3717{
2274 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3718 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3719
3720 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2275} 3721}
2276 3722
2277static void 3723static void
2278once_cb_to (EV_P_ ev_timer *w, int revents) 3724once_cb_to (EV_P_ ev_timer *w, int revents)
2279{ 3725{
2280 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3726 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3727
3728 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2281} 3729}
2282 3730
2283void 3731void
2284ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3732ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2285{ 3733{
2286 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3734 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2287 3735
2288 if (expect_false (!once)) 3736 if (expect_false (!once))
2289 { 3737 {
2290 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3738 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2291 return; 3739 return;
2292 } 3740 }
2293 3741
2294 once->cb = cb; 3742 once->cb = cb;
2295 once->arg = arg; 3743 once->arg = arg;
2307 ev_timer_set (&once->to, timeout, 0.); 3755 ev_timer_set (&once->to, timeout, 0.);
2308 ev_timer_start (EV_A_ &once->to); 3756 ev_timer_start (EV_A_ &once->to);
2309 } 3757 }
2310} 3758}
2311 3759
2312#ifdef __cplusplus 3760/*****************************************************************************/
2313} 3761
3762#if EV_WALK_ENABLE
3763void
3764ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3765{
3766 int i, j;
3767 ev_watcher_list *wl, *wn;
3768
3769 if (types & (EV_IO | EV_EMBED))
3770 for (i = 0; i < anfdmax; ++i)
3771 for (wl = anfds [i].head; wl; )
3772 {
3773 wn = wl->next;
3774
3775#if EV_EMBED_ENABLE
3776 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3777 {
3778 if (types & EV_EMBED)
3779 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3780 }
3781 else
3782#endif
3783#if EV_USE_INOTIFY
3784 if (ev_cb ((ev_io *)wl) == infy_cb)
3785 ;
3786 else
3787#endif
3788 if ((ev_io *)wl != &pipe_w)
3789 if (types & EV_IO)
3790 cb (EV_A_ EV_IO, wl);
3791
3792 wl = wn;
3793 }
3794
3795 if (types & (EV_TIMER | EV_STAT))
3796 for (i = timercnt + HEAP0; i-- > HEAP0; )
3797#if EV_STAT_ENABLE
3798 /*TODO: timer is not always active*/
3799 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3800 {
3801 if (types & EV_STAT)
3802 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3803 }
3804 else
3805#endif
3806 if (types & EV_TIMER)
3807 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3808
3809#if EV_PERIODIC_ENABLE
3810 if (types & EV_PERIODIC)
3811 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3812 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3813#endif
3814
3815#if EV_IDLE_ENABLE
3816 if (types & EV_IDLE)
3817 for (j = NUMPRI; i--; )
3818 for (i = idlecnt [j]; i--; )
3819 cb (EV_A_ EV_IDLE, idles [j][i]);
3820#endif
3821
3822#if EV_FORK_ENABLE
3823 if (types & EV_FORK)
3824 for (i = forkcnt; i--; )
3825 if (ev_cb (forks [i]) != embed_fork_cb)
3826 cb (EV_A_ EV_FORK, forks [i]);
3827#endif
3828
3829#if EV_ASYNC_ENABLE
3830 if (types & EV_ASYNC)
3831 for (i = asynccnt; i--; )
3832 cb (EV_A_ EV_ASYNC, asyncs [i]);
3833#endif
3834
3835#if EV_PREPARE_ENABLE
3836 if (types & EV_PREPARE)
3837 for (i = preparecnt; i--; )
3838# if EV_EMBED_ENABLE
3839 if (ev_cb (prepares [i]) != embed_prepare_cb)
2314#endif 3840# endif
3841 cb (EV_A_ EV_PREPARE, prepares [i]);
3842#endif
2315 3843
3844#if EV_CHECK_ENABLE
3845 if (types & EV_CHECK)
3846 for (i = checkcnt; i--; )
3847 cb (EV_A_ EV_CHECK, checks [i]);
3848#endif
3849
3850#if EV_SIGNAL_ENABLE
3851 if (types & EV_SIGNAL)
3852 for (i = 0; i < EV_NSIG - 1; ++i)
3853 for (wl = signals [i].head; wl; )
3854 {
3855 wn = wl->next;
3856 cb (EV_A_ EV_SIGNAL, wl);
3857 wl = wn;
3858 }
3859#endif
3860
3861#if EV_CHILD_ENABLE
3862 if (types & EV_CHILD)
3863 for (i = (EV_PID_HASHSIZE); i--; )
3864 for (wl = childs [i]; wl; )
3865 {
3866 wn = wl->next;
3867 cb (EV_A_ EV_CHILD, wl);
3868 wl = wn;
3869 }
3870#endif
3871/* EV_STAT 0x00001000 /* stat data changed */
3872/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3873}
3874#endif
3875
3876#if EV_MULTIPLICITY
3877 #include "ev_wrap.h"
3878#endif
3879
3880EV_CPP(})
3881

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines