ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.221 by root, Sun Apr 6 12:44:49 2008 UTC vs.
Revision 1.368 by root, Mon Jan 17 12:11:11 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
130# endif 148# endif
131 149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
158#else 189#else
190# include <io.h>
159# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 192# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
163# endif 195# endif
196# undef EV_AVOID_STDIO
164#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
165 206
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
167 208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
168#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
169# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
170#endif 251#endif
171 252
172#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 255#endif
175 256
176#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
177# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
262# endif
178#endif 263#endif
179 264
180#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 267#endif
183 268
184#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
185# ifdef _WIN32 270# ifdef _WIN32
186# define EV_USE_POLL 0 271# define EV_USE_POLL 0
187# else 272# else
188# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 274# endif
190#endif 275#endif
191 276
192#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 280# else
196# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
197# endif 282# endif
198#endif 283#endif
199 284
205# define EV_USE_PORT 0 290# define EV_USE_PORT 0
206#endif 291#endif
207 292
208#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 296# else
212# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
213# endif 298# endif
214#endif 299#endif
215 300
216#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 303#endif
223 304
224#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 307#endif
231 308
232#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 312# else
236# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
237# endif 314# endif
238#endif 315#endif
239 316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
241 364
242#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
245#endif 368#endif
259# include <sys/select.h> 382# include <sys/select.h>
260# endif 383# endif
261#endif 384#endif
262 385
263#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
264# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
265#endif 394#endif
266 395
267#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 397# include <winsock.h>
269#endif 398#endif
270 399
271#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
274int eventfd (unsigned int initval, int flags); 413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
275#endif 436#endif
276 437
277/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
278 445
279/* 446/*
280 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
281 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
282 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
286 */ 453 */
287#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
288 455
289#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
290#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
291/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
292 461
293#if __GNUC__ >= 4 462#if __GNUC__ >= 4
294# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
295# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
296#else 465#else
297# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
298# define noinline 467# define noinline
299# if __STDC_VERSION__ < 199901L 468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
300# define inline 469# define inline
301# endif 470# endif
302#endif 471#endif
303 472
304#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
305#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
306#define inline_size static inline 475#define inline_size static inline
307 476
308#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
309# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
310#else 487#else
311# define inline_speed static inline
312#endif
313
314#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
315#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
316 490
317#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
318#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
319 493
320typedef ev_watcher *W; 494typedef ev_watcher *W;
321typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
322typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
323 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
324#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
325/* sig_atomic_t is used to avoid per-thread variables or locking but still */
326/* giving it a reasonably high chance of working on typical architetcures */
327static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
328#endif 519#endif
329 520
330#ifdef _WIN32 521#ifdef _WIN32
331# include "ev_win32.c" 522# include "ev_win32.c"
332#endif 523#endif
333 524
334/*****************************************************************************/ 525/*****************************************************************************/
335 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
336static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
337 578
338void 579void
339ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
340{ 581{
341 syserr_cb = cb; 582 syserr_cb = cb;
342} 583}
343 584
344static void noinline 585static void noinline
345syserr (const char *msg) 586ev_syserr (const char *msg)
346{ 587{
347 if (!msg) 588 if (!msg)
348 msg = "(libev) system error"; 589 msg = "(libev) system error";
349 590
350 if (syserr_cb) 591 if (syserr_cb)
351 syserr_cb (msg); 592 syserr_cb (msg);
352 else 593 else
353 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
354 perror (msg); 601 perror (msg);
602#endif
355 abort (); 603 abort ();
356 } 604 }
357} 605}
358 606
607static void *
608ev_realloc_emul (void *ptr, long size)
609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623#endif
624}
625
359static void *(*alloc)(void *ptr, long size); 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
360 627
361void 628void
362ev_set_allocator (void *(*cb)(void *ptr, long size)) 629ev_set_allocator (void *(*cb)(void *ptr, long size))
363{ 630{
364 alloc = cb; 631 alloc = cb;
365} 632}
366 633
367inline_speed void * 634inline_speed void *
368ev_realloc (void *ptr, long size) 635ev_realloc (void *ptr, long size)
369{ 636{
370 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 637 ptr = alloc (ptr, size);
371 638
372 if (!ptr && size) 639 if (!ptr && size)
373 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
374 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
375 abort (); 646 abort ();
376 } 647 }
377 648
378 return ptr; 649 return ptr;
379} 650}
381#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
382#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
383 654
384/*****************************************************************************/ 655/*****************************************************************************/
385 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
386typedef struct 661typedef struct
387{ 662{
388 WL head; 663 WL head;
389 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
390 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
391#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
392 SOCKET handle; 672 SOCKET handle;
393#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
394} ANFD; 677} ANFD;
395 678
679/* stores the pending event set for a given watcher */
396typedef struct 680typedef struct
397{ 681{
398 W w; 682 W w;
399 int events; 683 int events; /* the pending event set for the given watcher */
400} ANPENDING; 684} ANPENDING;
401 685
402#if EV_USE_INOTIFY 686#if EV_USE_INOTIFY
687/* hash table entry per inotify-id */
403typedef struct 688typedef struct
404{ 689{
405 WL head; 690 WL head;
406} ANFS; 691} ANFS;
692#endif
693
694/* Heap Entry */
695#if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705#else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
407#endif 712#endif
408 713
409#if EV_MULTIPLICITY 714#if EV_MULTIPLICITY
410 715
411 struct ev_loop 716 struct ev_loop
430 735
431 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
432 737
433#endif 738#endif
434 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
435/*****************************************************************************/ 752/*****************************************************************************/
436 753
754#ifndef EV_HAVE_EV_TIME
437ev_tstamp 755ev_tstamp
438ev_time (void) 756ev_time (void)
439{ 757{
440#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
441 struct timespec ts; 761 struct timespec ts;
442 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
443 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
444#else 764 }
765#endif
766
445 struct timeval tv; 767 struct timeval tv;
446 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
447 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
448#endif
449} 770}
771#endif
450 772
451ev_tstamp inline_size 773inline_size ev_tstamp
452get_clock (void) 774get_clock (void)
453{ 775{
454#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
455 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
456 { 778 {
477 if (delay > 0.) 799 if (delay > 0.)
478 { 800 {
479#if EV_USE_NANOSLEEP 801#if EV_USE_NANOSLEEP
480 struct timespec ts; 802 struct timespec ts;
481 803
482 ts.tv_sec = (time_t)delay; 804 EV_TS_SET (ts, delay);
483 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
484
485 nanosleep (&ts, 0); 805 nanosleep (&ts, 0);
486#elif defined(_WIN32) 806#elif defined(_WIN32)
487 Sleep ((unsigned long)(delay * 1e3)); 807 Sleep ((unsigned long)(delay * 1e3));
488#else 808#else
489 struct timeval tv; 809 struct timeval tv;
490 810
491 tv.tv_sec = (time_t)delay; 811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
492 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 812 /* something not guaranteed by newer posix versions, but guaranteed */
493 813 /* by older ones */
814 EV_TV_SET (tv, delay);
494 select (0, 0, 0, 0, &tv); 815 select (0, 0, 0, 0, &tv);
495#endif 816#endif
496 } 817 }
497} 818}
498 819
820inline_speed int
821ev_timeout_to_ms (ev_tstamp timeout)
822{
823 int ms = timeout * 1000. + .999999;
824
825 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
826}
827
499/*****************************************************************************/ 828/*****************************************************************************/
500 829
501int inline_size 830#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
831
832/* find a suitable new size for the given array, */
833/* hopefully by rounding to a nice-to-malloc size */
834inline_size int
502array_nextsize (int elem, int cur, int cnt) 835array_nextsize (int elem, int cur, int cnt)
503{ 836{
504 int ncur = cur + 1; 837 int ncur = cur + 1;
505 838
506 do 839 do
507 ncur <<= 1; 840 ncur <<= 1;
508 while (cnt > ncur); 841 while (cnt > ncur);
509 842
510 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 843 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
511 if (elem * ncur > 4096) 844 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
512 { 845 {
513 ncur *= elem; 846 ncur *= elem;
514 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 847 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
515 ncur = ncur - sizeof (void *) * 4; 848 ncur = ncur - sizeof (void *) * 4;
516 ncur /= elem; 849 ncur /= elem;
517 } 850 }
518 851
519 return ncur; 852 return ncur;
523array_realloc (int elem, void *base, int *cur, int cnt) 856array_realloc (int elem, void *base, int *cur, int cnt)
524{ 857{
525 *cur = array_nextsize (elem, *cur, cnt); 858 *cur = array_nextsize (elem, *cur, cnt);
526 return ev_realloc (base, elem * *cur); 859 return ev_realloc (base, elem * *cur);
527} 860}
861
862#define array_init_zero(base,count) \
863 memset ((void *)(base), 0, sizeof (*(base)) * (count))
528 864
529#define array_needsize(type,base,cur,cnt,init) \ 865#define array_needsize(type,base,cur,cnt,init) \
530 if (expect_false ((cnt) > (cur))) \ 866 if (expect_false ((cnt) > (cur))) \
531 { \ 867 { \
532 int ocur_ = (cur); \ 868 int ocur_ = (cur); \
544 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 880 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
545 } 881 }
546#endif 882#endif
547 883
548#define array_free(stem, idx) \ 884#define array_free(stem, idx) \
549 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 885 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
550 886
551/*****************************************************************************/ 887/*****************************************************************************/
888
889/* dummy callback for pending events */
890static void noinline
891pendingcb (EV_P_ ev_prepare *w, int revents)
892{
893}
552 894
553void noinline 895void noinline
554ev_feed_event (EV_P_ void *w, int revents) 896ev_feed_event (EV_P_ void *w, int revents)
555{ 897{
556 W w_ = (W)w; 898 W w_ = (W)w;
565 pendings [pri][w_->pending - 1].w = w_; 907 pendings [pri][w_->pending - 1].w = w_;
566 pendings [pri][w_->pending - 1].events = revents; 908 pendings [pri][w_->pending - 1].events = revents;
567 } 909 }
568} 910}
569 911
570void inline_speed 912inline_speed void
913feed_reverse (EV_P_ W w)
914{
915 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
916 rfeeds [rfeedcnt++] = w;
917}
918
919inline_size void
920feed_reverse_done (EV_P_ int revents)
921{
922 do
923 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
924 while (rfeedcnt);
925}
926
927inline_speed void
571queue_events (EV_P_ W *events, int eventcnt, int type) 928queue_events (EV_P_ W *events, int eventcnt, int type)
572{ 929{
573 int i; 930 int i;
574 931
575 for (i = 0; i < eventcnt; ++i) 932 for (i = 0; i < eventcnt; ++i)
576 ev_feed_event (EV_A_ events [i], type); 933 ev_feed_event (EV_A_ events [i], type);
577} 934}
578 935
579/*****************************************************************************/ 936/*****************************************************************************/
580 937
581void inline_size 938inline_speed void
582anfds_init (ANFD *base, int count)
583{
584 while (count--)
585 {
586 base->head = 0;
587 base->events = EV_NONE;
588 base->reify = 0;
589
590 ++base;
591 }
592}
593
594void inline_speed
595fd_event (EV_P_ int fd, int revents) 939fd_event_nocheck (EV_P_ int fd, int revents)
596{ 940{
597 ANFD *anfd = anfds + fd; 941 ANFD *anfd = anfds + fd;
598 ev_io *w; 942 ev_io *w;
599 943
600 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 944 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
604 if (ev) 948 if (ev)
605 ev_feed_event (EV_A_ (W)w, ev); 949 ev_feed_event (EV_A_ (W)w, ev);
606 } 950 }
607} 951}
608 952
953/* do not submit kernel events for fds that have reify set */
954/* because that means they changed while we were polling for new events */
955inline_speed void
956fd_event (EV_P_ int fd, int revents)
957{
958 ANFD *anfd = anfds + fd;
959
960 if (expect_true (!anfd->reify))
961 fd_event_nocheck (EV_A_ fd, revents);
962}
963
609void 964void
610ev_feed_fd_event (EV_P_ int fd, int revents) 965ev_feed_fd_event (EV_P_ int fd, int revents)
611{ 966{
612 if (fd >= 0 && fd < anfdmax) 967 if (fd >= 0 && fd < anfdmax)
613 fd_event (EV_A_ fd, revents); 968 fd_event_nocheck (EV_A_ fd, revents);
614} 969}
615 970
616void inline_size 971/* make sure the external fd watch events are in-sync */
972/* with the kernel/libev internal state */
973inline_size void
617fd_reify (EV_P) 974fd_reify (EV_P)
618{ 975{
619 int i; 976 int i;
620 977
621 for (i = 0; i < fdchangecnt; ++i) 978 for (i = 0; i < fdchangecnt; ++i)
622 { 979 {
623 int fd = fdchanges [i]; 980 int fd = fdchanges [i];
624 ANFD *anfd = anfds + fd; 981 ANFD *anfd = anfds + fd;
625 ev_io *w; 982 ev_io *w;
626 983
627 unsigned char events = 0; 984 unsigned char o_events = anfd->events;
985 unsigned char o_reify = anfd->reify;
628 986
629 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 987 anfd->reify = 0;
630 events |= (unsigned char)w->events;
631 988
632#if EV_SELECT_IS_WINSOCKET 989#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
633 if (events) 990 if (o_reify & EV__IOFDSET)
634 { 991 {
635 unsigned long argp; 992 unsigned long arg;
636 #ifdef EV_FD_TO_WIN32_HANDLE
637 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 993 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
638 #else
639 anfd->handle = _get_osfhandle (fd);
640 #endif
641 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 994 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
995 printf ("oi %d %x\n", fd, anfd->handle);//D
642 } 996 }
643#endif 997#endif
644 998
999 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
645 { 1000 {
646 unsigned char o_events = anfd->events;
647 unsigned char o_reify = anfd->reify;
648
649 anfd->reify = 0;
650 anfd->events = events; 1001 anfd->events = 0;
651 1002
652 if (o_events != events || o_reify & EV_IOFDSET) 1003 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1004 anfd->events |= (unsigned char)w->events;
1005
1006 if (o_events != anfd->events)
1007 o_reify = EV__IOFDSET; /* actually |= */
1008 }
1009
1010 if (o_reify & EV__IOFDSET)
653 backend_modify (EV_A_ fd, o_events, events); 1011 backend_modify (EV_A_ fd, o_events, anfd->events);
654 }
655 } 1012 }
656 1013
657 fdchangecnt = 0; 1014 fdchangecnt = 0;
658} 1015}
659 1016
660void inline_size 1017/* something about the given fd changed */
1018inline_size void
661fd_change (EV_P_ int fd, int flags) 1019fd_change (EV_P_ int fd, int flags)
662{ 1020{
663 unsigned char reify = anfds [fd].reify; 1021 unsigned char reify = anfds [fd].reify;
664 anfds [fd].reify |= flags; 1022 anfds [fd].reify |= flags;
665 1023
669 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1027 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
670 fdchanges [fdchangecnt - 1] = fd; 1028 fdchanges [fdchangecnt - 1] = fd;
671 } 1029 }
672} 1030}
673 1031
674void inline_speed 1032/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1033inline_speed void
675fd_kill (EV_P_ int fd) 1034fd_kill (EV_P_ int fd)
676{ 1035{
677 ev_io *w; 1036 ev_io *w;
678 1037
679 while ((w = (ev_io *)anfds [fd].head)) 1038 while ((w = (ev_io *)anfds [fd].head))
681 ev_io_stop (EV_A_ w); 1040 ev_io_stop (EV_A_ w);
682 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1041 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
683 } 1042 }
684} 1043}
685 1044
686int inline_size 1045/* check whether the given fd is actually valid, for error recovery */
1046inline_size int
687fd_valid (int fd) 1047fd_valid (int fd)
688{ 1048{
689#ifdef _WIN32 1049#ifdef _WIN32
690 return _get_osfhandle (fd) != -1; 1050 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
691#else 1051#else
692 return fcntl (fd, F_GETFD) != -1; 1052 return fcntl (fd, F_GETFD) != -1;
693#endif 1053#endif
694} 1054}
695 1055
699{ 1059{
700 int fd; 1060 int fd;
701 1061
702 for (fd = 0; fd < anfdmax; ++fd) 1062 for (fd = 0; fd < anfdmax; ++fd)
703 if (anfds [fd].events) 1063 if (anfds [fd].events)
704 if (!fd_valid (fd) == -1 && errno == EBADF) 1064 if (!fd_valid (fd) && errno == EBADF)
705 fd_kill (EV_A_ fd); 1065 fd_kill (EV_A_ fd);
706} 1066}
707 1067
708/* called on ENOMEM in select/poll to kill some fds and retry */ 1068/* called on ENOMEM in select/poll to kill some fds and retry */
709static void noinline 1069static void noinline
713 1073
714 for (fd = anfdmax; fd--; ) 1074 for (fd = anfdmax; fd--; )
715 if (anfds [fd].events) 1075 if (anfds [fd].events)
716 { 1076 {
717 fd_kill (EV_A_ fd); 1077 fd_kill (EV_A_ fd);
718 return; 1078 break;
719 } 1079 }
720} 1080}
721 1081
722/* usually called after fork if backend needs to re-arm all fds from scratch */ 1082/* usually called after fork if backend needs to re-arm all fds from scratch */
723static void noinline 1083static void noinline
727 1087
728 for (fd = 0; fd < anfdmax; ++fd) 1088 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 1089 if (anfds [fd].events)
730 { 1090 {
731 anfds [fd].events = 0; 1091 anfds [fd].events = 0;
1092 anfds [fd].emask = 0;
732 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1093 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
733 } 1094 }
734} 1095}
735 1096
736/*****************************************************************************/ 1097/* used to prepare libev internal fd's */
737 1098/* this is not fork-safe */
738void inline_speed 1099inline_speed void
739upheap (WT *heap, int k)
740{
741 WT w = heap [k];
742
743 while (k)
744 {
745 int p = (k - 1) >> 1;
746
747 if (heap [p]->at <= w->at)
748 break;
749
750 heap [k] = heap [p];
751 ((W)heap [k])->active = k + 1;
752 k = p;
753 }
754
755 heap [k] = w;
756 ((W)heap [k])->active = k + 1;
757}
758
759void inline_speed
760downheap (WT *heap, int N, int k)
761{
762 WT w = heap [k];
763
764 for (;;)
765 {
766 int c = (k << 1) + 1;
767
768 if (c >= N)
769 break;
770
771 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
772 ? 1 : 0;
773
774 if (w->at <= heap [c]->at)
775 break;
776
777 heap [k] = heap [c];
778 ((W)heap [k])->active = k + 1;
779
780 k = c;
781 }
782
783 heap [k] = w;
784 ((W)heap [k])->active = k + 1;
785}
786
787void inline_size
788adjustheap (WT *heap, int N, int k)
789{
790 upheap (heap, k);
791 downheap (heap, N, k);
792}
793
794/*****************************************************************************/
795
796typedef struct
797{
798 WL head;
799 EV_ATOMIC_T gotsig;
800} ANSIG;
801
802static ANSIG *signals;
803static int signalmax;
804
805static EV_ATOMIC_T gotsig;
806
807void inline_size
808signals_init (ANSIG *base, int count)
809{
810 while (count--)
811 {
812 base->head = 0;
813 base->gotsig = 0;
814
815 ++base;
816 }
817}
818
819/*****************************************************************************/
820
821void inline_speed
822fd_intern (int fd) 1100fd_intern (int fd)
823{ 1101{
824#ifdef _WIN32 1102#ifdef _WIN32
825 int arg = 1; 1103 unsigned long arg = 1;
826 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1104 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
827#else 1105#else
828 fcntl (fd, F_SETFD, FD_CLOEXEC); 1106 fcntl (fd, F_SETFD, FD_CLOEXEC);
829 fcntl (fd, F_SETFL, O_NONBLOCK); 1107 fcntl (fd, F_SETFL, O_NONBLOCK);
830#endif 1108#endif
831} 1109}
832 1110
1111/*****************************************************************************/
1112
1113/*
1114 * the heap functions want a real array index. array index 0 is guaranteed to not
1115 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1116 * the branching factor of the d-tree.
1117 */
1118
1119/*
1120 * at the moment we allow libev the luxury of two heaps,
1121 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1122 * which is more cache-efficient.
1123 * the difference is about 5% with 50000+ watchers.
1124 */
1125#if EV_USE_4HEAP
1126
1127#define DHEAP 4
1128#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1129#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1130#define UPHEAP_DONE(p,k) ((p) == (k))
1131
1132/* away from the root */
1133inline_speed void
1134downheap (ANHE *heap, int N, int k)
1135{
1136 ANHE he = heap [k];
1137 ANHE *E = heap + N + HEAP0;
1138
1139 for (;;)
1140 {
1141 ev_tstamp minat;
1142 ANHE *minpos;
1143 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1144
1145 /* find minimum child */
1146 if (expect_true (pos + DHEAP - 1 < E))
1147 {
1148 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1149 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1150 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1151 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1152 }
1153 else if (pos < E)
1154 {
1155 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1156 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1157 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1158 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1159 }
1160 else
1161 break;
1162
1163 if (ANHE_at (he) <= minat)
1164 break;
1165
1166 heap [k] = *minpos;
1167 ev_active (ANHE_w (*minpos)) = k;
1168
1169 k = minpos - heap;
1170 }
1171
1172 heap [k] = he;
1173 ev_active (ANHE_w (he)) = k;
1174}
1175
1176#else /* 4HEAP */
1177
1178#define HEAP0 1
1179#define HPARENT(k) ((k) >> 1)
1180#define UPHEAP_DONE(p,k) (!(p))
1181
1182/* away from the root */
1183inline_speed void
1184downheap (ANHE *heap, int N, int k)
1185{
1186 ANHE he = heap [k];
1187
1188 for (;;)
1189 {
1190 int c = k << 1;
1191
1192 if (c >= N + HEAP0)
1193 break;
1194
1195 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1196 ? 1 : 0;
1197
1198 if (ANHE_at (he) <= ANHE_at (heap [c]))
1199 break;
1200
1201 heap [k] = heap [c];
1202 ev_active (ANHE_w (heap [k])) = k;
1203
1204 k = c;
1205 }
1206
1207 heap [k] = he;
1208 ev_active (ANHE_w (he)) = k;
1209}
1210#endif
1211
1212/* towards the root */
1213inline_speed void
1214upheap (ANHE *heap, int k)
1215{
1216 ANHE he = heap [k];
1217
1218 for (;;)
1219 {
1220 int p = HPARENT (k);
1221
1222 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1223 break;
1224
1225 heap [k] = heap [p];
1226 ev_active (ANHE_w (heap [k])) = k;
1227 k = p;
1228 }
1229
1230 heap [k] = he;
1231 ev_active (ANHE_w (he)) = k;
1232}
1233
1234/* move an element suitably so it is in a correct place */
1235inline_size void
1236adjustheap (ANHE *heap, int N, int k)
1237{
1238 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1239 upheap (heap, k);
1240 else
1241 downheap (heap, N, k);
1242}
1243
1244/* rebuild the heap: this function is used only once and executed rarely */
1245inline_size void
1246reheap (ANHE *heap, int N)
1247{
1248 int i;
1249
1250 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1251 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1252 for (i = 0; i < N; ++i)
1253 upheap (heap, i + HEAP0);
1254}
1255
1256/*****************************************************************************/
1257
1258/* associate signal watchers to a signal signal */
1259typedef struct
1260{
1261 EV_ATOMIC_T pending;
1262#if EV_MULTIPLICITY
1263 EV_P;
1264#endif
1265 WL head;
1266} ANSIG;
1267
1268static ANSIG signals [EV_NSIG - 1];
1269
1270/*****************************************************************************/
1271
1272#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1273
833static void noinline 1274static void noinline
834evpipe_init (EV_P) 1275evpipe_init (EV_P)
835{ 1276{
836 if (!ev_is_active (&pipeev)) 1277 if (!ev_is_active (&pipe_w))
837 { 1278 {
838#if EV_USE_EVENTFD 1279# if EV_USE_EVENTFD
1280 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1281 if (evfd < 0 && errno == EINVAL)
839 if ((evfd = eventfd (0, 0)) >= 0) 1282 evfd = eventfd (0, 0);
1283
1284 if (evfd >= 0)
840 { 1285 {
841 evpipe [0] = -1; 1286 evpipe [0] = -1;
842 fd_intern (evfd); 1287 fd_intern (evfd); /* doing it twice doesn't hurt */
843 ev_io_set (&pipeev, evfd, EV_READ); 1288 ev_io_set (&pipe_w, evfd, EV_READ);
844 } 1289 }
845 else 1290 else
846#endif 1291# endif
847 { 1292 {
848 while (pipe (evpipe)) 1293 while (pipe (evpipe))
849 syserr ("(libev) error creating signal/async pipe"); 1294 ev_syserr ("(libev) error creating signal/async pipe");
850 1295
851 fd_intern (evpipe [0]); 1296 fd_intern (evpipe [0]);
852 fd_intern (evpipe [1]); 1297 fd_intern (evpipe [1]);
853 ev_io_set (&pipeev, evpipe [0], EV_READ); 1298 ev_io_set (&pipe_w, evpipe [0], EV_READ);
854 } 1299 }
855 1300
856 ev_io_start (EV_A_ &pipeev); 1301 ev_io_start (EV_A_ &pipe_w);
857 ev_unref (EV_A); /* watcher should not keep loop alive */ 1302 ev_unref (EV_A); /* watcher should not keep loop alive */
858 } 1303 }
859} 1304}
860 1305
861void inline_size 1306inline_size void
862evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1307evpipe_write (EV_P_ EV_ATOMIC_T *flag)
863{ 1308{
864 if (!*flag) 1309 if (!*flag)
865 { 1310 {
866 int old_errno = errno; /* save errno because write might clobber it */ 1311 int old_errno = errno; /* save errno because write might clobber it */
1312 char dummy;
867 1313
868 *flag = 1; 1314 *flag = 1;
869 1315
870#if EV_USE_EVENTFD 1316#if EV_USE_EVENTFD
871 if (evfd >= 0) 1317 if (evfd >= 0)
873 uint64_t counter = 1; 1319 uint64_t counter = 1;
874 write (evfd, &counter, sizeof (uint64_t)); 1320 write (evfd, &counter, sizeof (uint64_t));
875 } 1321 }
876 else 1322 else
877#endif 1323#endif
1324 /* win32 people keep sending patches that change this write() to send() */
1325 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1326 /* so when you think this write should be a send instead, please find out */
1327 /* where your send() is from - it's definitely not the microsoft send, and */
1328 /* tell me. thank you. */
878 write (evpipe [1], &old_errno, 1); 1329 write (evpipe [1], &dummy, 1);
879 1330
880 errno = old_errno; 1331 errno = old_errno;
881 } 1332 }
882} 1333}
883 1334
1335/* called whenever the libev signal pipe */
1336/* got some events (signal, async) */
884static void 1337static void
885pipecb (EV_P_ ev_io *iow, int revents) 1338pipecb (EV_P_ ev_io *iow, int revents)
886{ 1339{
1340 int i;
1341
887#if EV_USE_EVENTFD 1342#if EV_USE_EVENTFD
888 if (evfd >= 0) 1343 if (evfd >= 0)
889 { 1344 {
890 uint64_t counter = 1; 1345 uint64_t counter;
891 read (evfd, &counter, sizeof (uint64_t)); 1346 read (evfd, &counter, sizeof (uint64_t));
892 } 1347 }
893 else 1348 else
894#endif 1349#endif
895 { 1350 {
896 char dummy; 1351 char dummy;
1352 /* see discussion in evpipe_write when you think this read should be recv in win32 */
897 read (evpipe [0], &dummy, 1); 1353 read (evpipe [0], &dummy, 1);
898 } 1354 }
899 1355
900 if (gotsig && ev_is_default_loop (EV_A)) 1356 if (sig_pending)
901 { 1357 {
902 int signum; 1358 sig_pending = 0;
903 gotsig = 0;
904 1359
905 for (signum = signalmax; signum--; ) 1360 for (i = EV_NSIG - 1; i--; )
906 if (signals [signum].gotsig) 1361 if (expect_false (signals [i].pending))
907 ev_feed_signal_event (EV_A_ signum + 1); 1362 ev_feed_signal_event (EV_A_ i + 1);
908 } 1363 }
909 1364
910#if EV_ASYNC_ENABLE 1365#if EV_ASYNC_ENABLE
911 if (gotasync) 1366 if (async_pending)
912 { 1367 {
913 int i; 1368 async_pending = 0;
914 gotasync = 0;
915 1369
916 for (i = asynccnt; i--; ) 1370 for (i = asynccnt; i--; )
917 if (asyncs [i]->sent) 1371 if (asyncs [i]->sent)
918 { 1372 {
919 asyncs [i]->sent = 0; 1373 asyncs [i]->sent = 0;
923#endif 1377#endif
924} 1378}
925 1379
926/*****************************************************************************/ 1380/*****************************************************************************/
927 1381
1382void
1383ev_feed_signal (int signum)
1384{
1385#if EV_MULTIPLICITY
1386 EV_P = signals [signum - 1].loop;
1387
1388 if (!EV_A)
1389 return;
1390#endif
1391
1392 signals [signum - 1].pending = 1;
1393 evpipe_write (EV_A_ &sig_pending);
1394}
1395
928static void 1396static void
929ev_sighandler (int signum) 1397ev_sighandler (int signum)
930{ 1398{
931#if EV_MULTIPLICITY
932 struct ev_loop *loop = &default_loop_struct;
933#endif
934
935#if _WIN32 1399#ifdef _WIN32
936 signal (signum, ev_sighandler); 1400 signal (signum, ev_sighandler);
937#endif 1401#endif
938 1402
939 signals [signum - 1].gotsig = 1; 1403 ev_feed_signal (signum);
940 evpipe_write (EV_A_ &gotsig);
941} 1404}
942 1405
943void noinline 1406void noinline
944ev_feed_signal_event (EV_P_ int signum) 1407ev_feed_signal_event (EV_P_ int signum)
945{ 1408{
946 WL w; 1409 WL w;
947 1410
1411 if (expect_false (signum <= 0 || signum > EV_NSIG))
1412 return;
1413
1414 --signum;
1415
948#if EV_MULTIPLICITY 1416#if EV_MULTIPLICITY
949 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1417 /* it is permissible to try to feed a signal to the wrong loop */
950#endif 1418 /* or, likely more useful, feeding a signal nobody is waiting for */
951 1419
952 --signum; 1420 if (expect_false (signals [signum].loop != EV_A))
953
954 if (signum < 0 || signum >= signalmax)
955 return; 1421 return;
1422#endif
956 1423
957 signals [signum].gotsig = 0; 1424 signals [signum].pending = 0;
958 1425
959 for (w = signals [signum].head; w; w = w->next) 1426 for (w = signals [signum].head; w; w = w->next)
960 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1427 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
961} 1428}
962 1429
1430#if EV_USE_SIGNALFD
1431static void
1432sigfdcb (EV_P_ ev_io *iow, int revents)
1433{
1434 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1435
1436 for (;;)
1437 {
1438 ssize_t res = read (sigfd, si, sizeof (si));
1439
1440 /* not ISO-C, as res might be -1, but works with SuS */
1441 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1442 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1443
1444 if (res < (ssize_t)sizeof (si))
1445 break;
1446 }
1447}
1448#endif
1449
1450#endif
1451
963/*****************************************************************************/ 1452/*****************************************************************************/
964 1453
1454#if EV_CHILD_ENABLE
965static WL childs [EV_PID_HASHSIZE]; 1455static WL childs [EV_PID_HASHSIZE];
966
967#ifndef _WIN32
968 1456
969static ev_signal childev; 1457static ev_signal childev;
970 1458
971#ifndef WIFCONTINUED 1459#ifndef WIFCONTINUED
972# define WIFCONTINUED(status) 0 1460# define WIFCONTINUED(status) 0
973#endif 1461#endif
974 1462
975void inline_speed 1463/* handle a single child status event */
1464inline_speed void
976child_reap (EV_P_ int chain, int pid, int status) 1465child_reap (EV_P_ int chain, int pid, int status)
977{ 1466{
978 ev_child *w; 1467 ev_child *w;
979 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1468 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
980 1469
981 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1470 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
982 { 1471 {
983 if ((w->pid == pid || !w->pid) 1472 if ((w->pid == pid || !w->pid)
984 && (!traced || (w->flags & 1))) 1473 && (!traced || (w->flags & 1)))
985 { 1474 {
986 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1475 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
993 1482
994#ifndef WCONTINUED 1483#ifndef WCONTINUED
995# define WCONTINUED 0 1484# define WCONTINUED 0
996#endif 1485#endif
997 1486
1487/* called on sigchld etc., calls waitpid */
998static void 1488static void
999childcb (EV_P_ ev_signal *sw, int revents) 1489childcb (EV_P_ ev_signal *sw, int revents)
1000{ 1490{
1001 int pid, status; 1491 int pid, status;
1002 1492
1010 /* make sure we are called again until all children have been reaped */ 1500 /* make sure we are called again until all children have been reaped */
1011 /* we need to do it this way so that the callback gets called before we continue */ 1501 /* we need to do it this way so that the callback gets called before we continue */
1012 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1502 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1013 1503
1014 child_reap (EV_A_ pid, pid, status); 1504 child_reap (EV_A_ pid, pid, status);
1015 if (EV_PID_HASHSIZE > 1) 1505 if ((EV_PID_HASHSIZE) > 1)
1016 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1506 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1017} 1507}
1018 1508
1019#endif 1509#endif
1020 1510
1021/*****************************************************************************/ 1511/*****************************************************************************/
1022 1512
1513#if EV_USE_IOCP
1514# include "ev_iocp.c"
1515#endif
1023#if EV_USE_PORT 1516#if EV_USE_PORT
1024# include "ev_port.c" 1517# include "ev_port.c"
1025#endif 1518#endif
1026#if EV_USE_KQUEUE 1519#if EV_USE_KQUEUE
1027# include "ev_kqueue.c" 1520# include "ev_kqueue.c"
1083 /* kqueue is borked on everything but netbsd apparently */ 1576 /* kqueue is borked on everything but netbsd apparently */
1084 /* it usually doesn't work correctly on anything but sockets and pipes */ 1577 /* it usually doesn't work correctly on anything but sockets and pipes */
1085 flags &= ~EVBACKEND_KQUEUE; 1578 flags &= ~EVBACKEND_KQUEUE;
1086#endif 1579#endif
1087#ifdef __APPLE__ 1580#ifdef __APPLE__
1088 // flags &= ~EVBACKEND_KQUEUE; for documentation 1581 /* only select works correctly on that "unix-certified" platform */
1089 flags &= ~EVBACKEND_POLL; 1582 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1583 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1584#endif
1585#ifdef __FreeBSD__
1586 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1090#endif 1587#endif
1091 1588
1092 return flags; 1589 return flags;
1093} 1590}
1094 1591
1096ev_embeddable_backends (void) 1593ev_embeddable_backends (void)
1097{ 1594{
1098 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1595 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1099 1596
1100 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1597 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1101 /* please fix it and tell me how to detect the fix */ 1598 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1102 flags &= ~EVBACKEND_EPOLL; 1599 flags &= ~EVBACKEND_EPOLL;
1103 1600
1104 return flags; 1601 return flags;
1105} 1602}
1106 1603
1107unsigned int 1604unsigned int
1108ev_backend (EV_P) 1605ev_backend (EV_P)
1109{ 1606{
1110 return backend; 1607 return backend;
1111} 1608}
1112 1609
1610#if EV_FEATURE_API
1113unsigned int 1611unsigned int
1114ev_loop_count (EV_P) 1612ev_iteration (EV_P)
1115{ 1613{
1116 return loop_count; 1614 return loop_count;
1117} 1615}
1118 1616
1617unsigned int
1618ev_depth (EV_P)
1619{
1620 return loop_depth;
1621}
1622
1119void 1623void
1120ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1624ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1121{ 1625{
1122 io_blocktime = interval; 1626 io_blocktime = interval;
1123} 1627}
1126ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1630ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1127{ 1631{
1128 timeout_blocktime = interval; 1632 timeout_blocktime = interval;
1129} 1633}
1130 1634
1635void
1636ev_set_userdata (EV_P_ void *data)
1637{
1638 userdata = data;
1639}
1640
1641void *
1642ev_userdata (EV_P)
1643{
1644 return userdata;
1645}
1646
1647void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1648{
1649 invoke_cb = invoke_pending_cb;
1650}
1651
1652void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1653{
1654 release_cb = release;
1655 acquire_cb = acquire;
1656}
1657#endif
1658
1659/* initialise a loop structure, must be zero-initialised */
1131static void noinline 1660static void noinline
1132loop_init (EV_P_ unsigned int flags) 1661loop_init (EV_P_ unsigned int flags)
1133{ 1662{
1134 if (!backend) 1663 if (!backend)
1135 { 1664 {
1665 origflags = flags;
1666
1667#if EV_USE_REALTIME
1668 if (!have_realtime)
1669 {
1670 struct timespec ts;
1671
1672 if (!clock_gettime (CLOCK_REALTIME, &ts))
1673 have_realtime = 1;
1674 }
1675#endif
1676
1136#if EV_USE_MONOTONIC 1677#if EV_USE_MONOTONIC
1678 if (!have_monotonic)
1137 { 1679 {
1138 struct timespec ts; 1680 struct timespec ts;
1681
1139 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1682 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1140 have_monotonic = 1; 1683 have_monotonic = 1;
1141 } 1684 }
1142#endif 1685#endif
1686
1687 /* pid check not overridable via env */
1688#ifndef _WIN32
1689 if (flags & EVFLAG_FORKCHECK)
1690 curpid = getpid ();
1691#endif
1692
1693 if (!(flags & EVFLAG_NOENV)
1694 && !enable_secure ()
1695 && getenv ("LIBEV_FLAGS"))
1696 flags = atoi (getenv ("LIBEV_FLAGS"));
1143 1697
1144 ev_rt_now = ev_time (); 1698 ev_rt_now = ev_time ();
1145 mn_now = get_clock (); 1699 mn_now = get_clock ();
1146 now_floor = mn_now; 1700 now_floor = mn_now;
1147 rtmn_diff = ev_rt_now - mn_now; 1701 rtmn_diff = ev_rt_now - mn_now;
1702#if EV_FEATURE_API
1703 invoke_cb = ev_invoke_pending;
1704#endif
1148 1705
1149 io_blocktime = 0.; 1706 io_blocktime = 0.;
1150 timeout_blocktime = 0.; 1707 timeout_blocktime = 0.;
1151 backend = 0; 1708 backend = 0;
1152 backend_fd = -1; 1709 backend_fd = -1;
1153 gotasync = 0; 1710 sig_pending = 0;
1711#if EV_ASYNC_ENABLE
1712 async_pending = 0;
1713#endif
1154#if EV_USE_INOTIFY 1714#if EV_USE_INOTIFY
1155 fs_fd = -2; 1715 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1156#endif 1716#endif
1157 1717#if EV_USE_SIGNALFD
1158 /* pid check not overridable via env */ 1718 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1159#ifndef _WIN32
1160 if (flags & EVFLAG_FORKCHECK)
1161 curpid = getpid ();
1162#endif 1719#endif
1163 1720
1164 if (!(flags & EVFLAG_NOENV) 1721 if (!(flags & EVBACKEND_MASK))
1165 && !enable_secure ()
1166 && getenv ("LIBEV_FLAGS"))
1167 flags = atoi (getenv ("LIBEV_FLAGS"));
1168
1169 if (!(flags & 0x0000ffffUL))
1170 flags |= ev_recommended_backends (); 1722 flags |= ev_recommended_backends ();
1171 1723
1724#if EV_USE_IOCP
1725 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1726#endif
1172#if EV_USE_PORT 1727#if EV_USE_PORT
1173 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1728 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1174#endif 1729#endif
1175#if EV_USE_KQUEUE 1730#if EV_USE_KQUEUE
1176 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1731 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1183#endif 1738#endif
1184#if EV_USE_SELECT 1739#if EV_USE_SELECT
1185 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1740 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1186#endif 1741#endif
1187 1742
1743 ev_prepare_init (&pending_w, pendingcb);
1744
1745#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1188 ev_init (&pipeev, pipecb); 1746 ev_init (&pipe_w, pipecb);
1189 ev_set_priority (&pipeev, EV_MAXPRI); 1747 ev_set_priority (&pipe_w, EV_MAXPRI);
1748#endif
1190 } 1749 }
1191} 1750}
1192 1751
1193static void noinline 1752/* free up a loop structure */
1753void
1194loop_destroy (EV_P) 1754ev_loop_destroy (EV_P)
1195{ 1755{
1196 int i; 1756 int i;
1197 1757
1758#if EV_MULTIPLICITY
1759 /* mimic free (0) */
1760 if (!EV_A)
1761 return;
1762#endif
1763
1764#if EV_CLEANUP_ENABLE
1765 /* queue cleanup watchers (and execute them) */
1766 if (expect_false (cleanupcnt))
1767 {
1768 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1769 EV_INVOKE_PENDING;
1770 }
1771#endif
1772
1773#if EV_CHILD_ENABLE
1774 if (ev_is_active (&childev))
1775 {
1776 ev_ref (EV_A); /* child watcher */
1777 ev_signal_stop (EV_A_ &childev);
1778 }
1779#endif
1780
1198 if (ev_is_active (&pipeev)) 1781 if (ev_is_active (&pipe_w))
1199 { 1782 {
1200 ev_ref (EV_A); /* signal watcher */ 1783 /*ev_ref (EV_A);*/
1201 ev_io_stop (EV_A_ &pipeev); 1784 /*ev_io_stop (EV_A_ &pipe_w);*/
1202 1785
1203#if EV_USE_EVENTFD 1786#if EV_USE_EVENTFD
1204 if (evfd >= 0) 1787 if (evfd >= 0)
1205 close (evfd); 1788 close (evfd);
1206#endif 1789#endif
1207 1790
1208 if (evpipe [0] >= 0) 1791 if (evpipe [0] >= 0)
1209 { 1792 {
1210 close (evpipe [0]); 1793 EV_WIN32_CLOSE_FD (evpipe [0]);
1211 close (evpipe [1]); 1794 EV_WIN32_CLOSE_FD (evpipe [1]);
1212 } 1795 }
1213 } 1796 }
1797
1798#if EV_USE_SIGNALFD
1799 if (ev_is_active (&sigfd_w))
1800 close (sigfd);
1801#endif
1214 1802
1215#if EV_USE_INOTIFY 1803#if EV_USE_INOTIFY
1216 if (fs_fd >= 0) 1804 if (fs_fd >= 0)
1217 close (fs_fd); 1805 close (fs_fd);
1218#endif 1806#endif
1219 1807
1220 if (backend_fd >= 0) 1808 if (backend_fd >= 0)
1221 close (backend_fd); 1809 close (backend_fd);
1222 1810
1811#if EV_USE_IOCP
1812 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1813#endif
1223#if EV_USE_PORT 1814#if EV_USE_PORT
1224 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1815 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1225#endif 1816#endif
1226#if EV_USE_KQUEUE 1817#if EV_USE_KQUEUE
1227 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1818 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1242#if EV_IDLE_ENABLE 1833#if EV_IDLE_ENABLE
1243 array_free (idle, [i]); 1834 array_free (idle, [i]);
1244#endif 1835#endif
1245 } 1836 }
1246 1837
1247 ev_free (anfds); anfdmax = 0; 1838 ev_free (anfds); anfds = 0; anfdmax = 0;
1248 1839
1249 /* have to use the microsoft-never-gets-it-right macro */ 1840 /* have to use the microsoft-never-gets-it-right macro */
1841 array_free (rfeed, EMPTY);
1250 array_free (fdchange, EMPTY); 1842 array_free (fdchange, EMPTY);
1251 array_free (timer, EMPTY); 1843 array_free (timer, EMPTY);
1252#if EV_PERIODIC_ENABLE 1844#if EV_PERIODIC_ENABLE
1253 array_free (periodic, EMPTY); 1845 array_free (periodic, EMPTY);
1254#endif 1846#endif
1255#if EV_FORK_ENABLE 1847#if EV_FORK_ENABLE
1256 array_free (fork, EMPTY); 1848 array_free (fork, EMPTY);
1257#endif 1849#endif
1850#if EV_CLEANUP_ENABLE
1851 array_free (cleanup, EMPTY);
1852#endif
1258 array_free (prepare, EMPTY); 1853 array_free (prepare, EMPTY);
1259 array_free (check, EMPTY); 1854 array_free (check, EMPTY);
1260#if EV_ASYNC_ENABLE 1855#if EV_ASYNC_ENABLE
1261 array_free (async, EMPTY); 1856 array_free (async, EMPTY);
1262#endif 1857#endif
1263 1858
1264 backend = 0; 1859 backend = 0;
1265}
1266 1860
1861#if EV_MULTIPLICITY
1862 if (ev_is_default_loop (EV_A))
1863#endif
1864 ev_default_loop_ptr = 0;
1865#if EV_MULTIPLICITY
1866 else
1867 ev_free (EV_A);
1868#endif
1869}
1870
1871#if EV_USE_INOTIFY
1267void inline_size infy_fork (EV_P); 1872inline_size void infy_fork (EV_P);
1873#endif
1268 1874
1269void inline_size 1875inline_size void
1270loop_fork (EV_P) 1876loop_fork (EV_P)
1271{ 1877{
1272#if EV_USE_PORT 1878#if EV_USE_PORT
1273 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1879 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1274#endif 1880#endif
1280#endif 1886#endif
1281#if EV_USE_INOTIFY 1887#if EV_USE_INOTIFY
1282 infy_fork (EV_A); 1888 infy_fork (EV_A);
1283#endif 1889#endif
1284 1890
1285 if (ev_is_active (&pipeev)) 1891 if (ev_is_active (&pipe_w))
1286 { 1892 {
1287 /* this "locks" the handlers against writing to the pipe */ 1893 /* this "locks" the handlers against writing to the pipe */
1288 /* while we modify the fd vars */ 1894 /* while we modify the fd vars */
1289 gotsig = 1; 1895 sig_pending = 1;
1290#if EV_ASYNC_ENABLE 1896#if EV_ASYNC_ENABLE
1291 gotasync = 1; 1897 async_pending = 1;
1292#endif 1898#endif
1293 1899
1294 ev_ref (EV_A); 1900 ev_ref (EV_A);
1295 ev_io_stop (EV_A_ &pipeev); 1901 ev_io_stop (EV_A_ &pipe_w);
1296 1902
1297#if EV_USE_EVENTFD 1903#if EV_USE_EVENTFD
1298 if (evfd >= 0) 1904 if (evfd >= 0)
1299 close (evfd); 1905 close (evfd);
1300#endif 1906#endif
1301 1907
1302 if (evpipe [0] >= 0) 1908 if (evpipe [0] >= 0)
1303 { 1909 {
1304 close (evpipe [0]); 1910 EV_WIN32_CLOSE_FD (evpipe [0]);
1305 close (evpipe [1]); 1911 EV_WIN32_CLOSE_FD (evpipe [1]);
1306 } 1912 }
1307 1913
1914#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1308 evpipe_init (EV_A); 1915 evpipe_init (EV_A);
1309 /* now iterate over everything, in case we missed something */ 1916 /* now iterate over everything, in case we missed something */
1310 pipecb (EV_A_ &pipeev, EV_READ); 1917 pipecb (EV_A_ &pipe_w, EV_READ);
1918#endif
1311 } 1919 }
1312 1920
1313 postfork = 0; 1921 postfork = 0;
1314} 1922}
1923
1924#if EV_MULTIPLICITY
1925
1926struct ev_loop *
1927ev_loop_new (unsigned int flags)
1928{
1929 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1930
1931 memset (EV_A, 0, sizeof (struct ev_loop));
1932 loop_init (EV_A_ flags);
1933
1934 if (ev_backend (EV_A))
1935 return EV_A;
1936
1937 ev_free (EV_A);
1938 return 0;
1939}
1940
1941#endif /* multiplicity */
1942
1943#if EV_VERIFY
1944static void noinline
1945verify_watcher (EV_P_ W w)
1946{
1947 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1948
1949 if (w->pending)
1950 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1951}
1952
1953static void noinline
1954verify_heap (EV_P_ ANHE *heap, int N)
1955{
1956 int i;
1957
1958 for (i = HEAP0; i < N + HEAP0; ++i)
1959 {
1960 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1961 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1962 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1963
1964 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1965 }
1966}
1967
1968static void noinline
1969array_verify (EV_P_ W *ws, int cnt)
1970{
1971 while (cnt--)
1972 {
1973 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1974 verify_watcher (EV_A_ ws [cnt]);
1975 }
1976}
1977#endif
1978
1979#if EV_FEATURE_API
1980void
1981ev_verify (EV_P)
1982{
1983#if EV_VERIFY
1984 int i;
1985 WL w;
1986
1987 assert (activecnt >= -1);
1988
1989 assert (fdchangemax >= fdchangecnt);
1990 for (i = 0; i < fdchangecnt; ++i)
1991 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1992
1993 assert (anfdmax >= 0);
1994 for (i = 0; i < anfdmax; ++i)
1995 for (w = anfds [i].head; w; w = w->next)
1996 {
1997 verify_watcher (EV_A_ (W)w);
1998 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1999 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2000 }
2001
2002 assert (timermax >= timercnt);
2003 verify_heap (EV_A_ timers, timercnt);
2004
2005#if EV_PERIODIC_ENABLE
2006 assert (periodicmax >= periodiccnt);
2007 verify_heap (EV_A_ periodics, periodiccnt);
2008#endif
2009
2010 for (i = NUMPRI; i--; )
2011 {
2012 assert (pendingmax [i] >= pendingcnt [i]);
2013#if EV_IDLE_ENABLE
2014 assert (idleall >= 0);
2015 assert (idlemax [i] >= idlecnt [i]);
2016 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2017#endif
2018 }
2019
2020#if EV_FORK_ENABLE
2021 assert (forkmax >= forkcnt);
2022 array_verify (EV_A_ (W *)forks, forkcnt);
2023#endif
2024
2025#if EV_CLEANUP_ENABLE
2026 assert (cleanupmax >= cleanupcnt);
2027 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2028#endif
2029
2030#if EV_ASYNC_ENABLE
2031 assert (asyncmax >= asynccnt);
2032 array_verify (EV_A_ (W *)asyncs, asynccnt);
2033#endif
2034
2035#if EV_PREPARE_ENABLE
2036 assert (preparemax >= preparecnt);
2037 array_verify (EV_A_ (W *)prepares, preparecnt);
2038#endif
2039
2040#if EV_CHECK_ENABLE
2041 assert (checkmax >= checkcnt);
2042 array_verify (EV_A_ (W *)checks, checkcnt);
2043#endif
2044
2045# if 0
2046#if EV_CHILD_ENABLE
2047 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2048 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2049#endif
2050# endif
2051#endif
2052}
2053#endif
1315 2054
1316#if EV_MULTIPLICITY 2055#if EV_MULTIPLICITY
1317struct ev_loop * 2056struct ev_loop *
1318ev_loop_new (unsigned int flags)
1319{
1320 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1321
1322 memset (loop, 0, sizeof (struct ev_loop));
1323
1324 loop_init (EV_A_ flags);
1325
1326 if (ev_backend (EV_A))
1327 return loop;
1328
1329 return 0;
1330}
1331
1332void
1333ev_loop_destroy (EV_P)
1334{
1335 loop_destroy (EV_A);
1336 ev_free (loop);
1337}
1338
1339void
1340ev_loop_fork (EV_P)
1341{
1342 postfork = 1; /* must be in line with ev_default_fork */
1343}
1344
1345#endif
1346
1347#if EV_MULTIPLICITY
1348struct ev_loop *
1349ev_default_loop_init (unsigned int flags)
1350#else 2057#else
1351int 2058int
2059#endif
1352ev_default_loop (unsigned int flags) 2060ev_default_loop (unsigned int flags)
1353#endif
1354{ 2061{
1355 if (!ev_default_loop_ptr) 2062 if (!ev_default_loop_ptr)
1356 { 2063 {
1357#if EV_MULTIPLICITY 2064#if EV_MULTIPLICITY
1358 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2065 EV_P = ev_default_loop_ptr = &default_loop_struct;
1359#else 2066#else
1360 ev_default_loop_ptr = 1; 2067 ev_default_loop_ptr = 1;
1361#endif 2068#endif
1362 2069
1363 loop_init (EV_A_ flags); 2070 loop_init (EV_A_ flags);
1364 2071
1365 if (ev_backend (EV_A)) 2072 if (ev_backend (EV_A))
1366 { 2073 {
1367#ifndef _WIN32 2074#if EV_CHILD_ENABLE
1368 ev_signal_init (&childev, childcb, SIGCHLD); 2075 ev_signal_init (&childev, childcb, SIGCHLD);
1369 ev_set_priority (&childev, EV_MAXPRI); 2076 ev_set_priority (&childev, EV_MAXPRI);
1370 ev_signal_start (EV_A_ &childev); 2077 ev_signal_start (EV_A_ &childev);
1371 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2078 ev_unref (EV_A); /* child watcher should not keep loop alive */
1372#endif 2079#endif
1377 2084
1378 return ev_default_loop_ptr; 2085 return ev_default_loop_ptr;
1379} 2086}
1380 2087
1381void 2088void
1382ev_default_destroy (void) 2089ev_loop_fork (EV_P)
1383{ 2090{
1384#if EV_MULTIPLICITY
1385 struct ev_loop *loop = ev_default_loop_ptr;
1386#endif
1387
1388#ifndef _WIN32
1389 ev_ref (EV_A); /* child watcher */
1390 ev_signal_stop (EV_A_ &childev);
1391#endif
1392
1393 loop_destroy (EV_A);
1394}
1395
1396void
1397ev_default_fork (void)
1398{
1399#if EV_MULTIPLICITY
1400 struct ev_loop *loop = ev_default_loop_ptr;
1401#endif
1402
1403 if (backend)
1404 postfork = 1; /* must be in line with ev_loop_fork */ 2091 postfork = 1; /* must be in line with ev_default_fork */
1405} 2092}
1406 2093
1407/*****************************************************************************/ 2094/*****************************************************************************/
1408 2095
1409void 2096void
1410ev_invoke (EV_P_ void *w, int revents) 2097ev_invoke (EV_P_ void *w, int revents)
1411{ 2098{
1412 EV_CB_INVOKE ((W)w, revents); 2099 EV_CB_INVOKE ((W)w, revents);
1413} 2100}
1414 2101
1415void inline_speed 2102unsigned int
1416call_pending (EV_P) 2103ev_pending_count (EV_P)
2104{
2105 int pri;
2106 unsigned int count = 0;
2107
2108 for (pri = NUMPRI; pri--; )
2109 count += pendingcnt [pri];
2110
2111 return count;
2112}
2113
2114void noinline
2115ev_invoke_pending (EV_P)
1417{ 2116{
1418 int pri; 2117 int pri;
1419 2118
1420 for (pri = NUMPRI; pri--; ) 2119 for (pri = NUMPRI; pri--; )
1421 while (pendingcnt [pri]) 2120 while (pendingcnt [pri])
1422 { 2121 {
1423 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2122 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1424 2123
1425 if (expect_true (p->w))
1426 {
1427 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1428
1429 p->w->pending = 0; 2124 p->w->pending = 0;
1430 EV_CB_INVOKE (p->w, p->events); 2125 EV_CB_INVOKE (p->w, p->events);
1431 } 2126 EV_FREQUENT_CHECK;
1432 } 2127 }
1433} 2128}
1434 2129
1435void inline_size
1436timers_reify (EV_P)
1437{
1438 while (timercnt && ((WT)timers [0])->at <= mn_now)
1439 {
1440 ev_timer *w = (ev_timer *)timers [0];
1441
1442 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1443
1444 /* first reschedule or stop timer */
1445 if (w->repeat)
1446 {
1447 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1448
1449 ((WT)w)->at += w->repeat;
1450 if (((WT)w)->at < mn_now)
1451 ((WT)w)->at = mn_now;
1452
1453 downheap (timers, timercnt, 0);
1454 }
1455 else
1456 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1457
1458 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1459 }
1460}
1461
1462#if EV_PERIODIC_ENABLE
1463void inline_size
1464periodics_reify (EV_P)
1465{
1466 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1467 {
1468 ev_periodic *w = (ev_periodic *)periodics [0];
1469
1470 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->reschedule_cb)
1474 {
1475 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1476 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1477 downheap (periodics, periodiccnt, 0);
1478 }
1479 else if (w->interval)
1480 {
1481 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1482 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1483 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1484 downheap (periodics, periodiccnt, 0);
1485 }
1486 else
1487 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1490 }
1491}
1492
1493static void noinline
1494periodics_reschedule (EV_P)
1495{
1496 int i;
1497
1498 /* adjust periodics after time jump */
1499 for (i = 0; i < periodiccnt; ++i)
1500 {
1501 ev_periodic *w = (ev_periodic *)periodics [i];
1502
1503 if (w->reschedule_cb)
1504 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1505 else if (w->interval)
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 }
1508
1509 /* now rebuild the heap */
1510 for (i = periodiccnt >> 1; i--; )
1511 downheap (periodics, periodiccnt, i);
1512}
1513#endif
1514
1515#if EV_IDLE_ENABLE 2130#if EV_IDLE_ENABLE
1516void inline_size 2131/* make idle watchers pending. this handles the "call-idle */
2132/* only when higher priorities are idle" logic */
2133inline_size void
1517idle_reify (EV_P) 2134idle_reify (EV_P)
1518{ 2135{
1519 if (expect_false (idleall)) 2136 if (expect_false (idleall))
1520 { 2137 {
1521 int pri; 2138 int pri;
1533 } 2150 }
1534 } 2151 }
1535} 2152}
1536#endif 2153#endif
1537 2154
1538void inline_speed 2155/* make timers pending */
2156inline_size void
2157timers_reify (EV_P)
2158{
2159 EV_FREQUENT_CHECK;
2160
2161 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2162 {
2163 do
2164 {
2165 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2166
2167 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2168
2169 /* first reschedule or stop timer */
2170 if (w->repeat)
2171 {
2172 ev_at (w) += w->repeat;
2173 if (ev_at (w) < mn_now)
2174 ev_at (w) = mn_now;
2175
2176 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2177
2178 ANHE_at_cache (timers [HEAP0]);
2179 downheap (timers, timercnt, HEAP0);
2180 }
2181 else
2182 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2183
2184 EV_FREQUENT_CHECK;
2185 feed_reverse (EV_A_ (W)w);
2186 }
2187 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2188
2189 feed_reverse_done (EV_A_ EV_TIMER);
2190 }
2191}
2192
2193#if EV_PERIODIC_ENABLE
2194/* make periodics pending */
2195inline_size void
2196periodics_reify (EV_P)
2197{
2198 EV_FREQUENT_CHECK;
2199
2200 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2201 {
2202 int feed_count = 0;
2203
2204 do
2205 {
2206 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2207
2208 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2209
2210 /* first reschedule or stop timer */
2211 if (w->reschedule_cb)
2212 {
2213 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2214
2215 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2216
2217 ANHE_at_cache (periodics [HEAP0]);
2218 downheap (periodics, periodiccnt, HEAP0);
2219 }
2220 else if (w->interval)
2221 {
2222 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2223 /* if next trigger time is not sufficiently in the future, put it there */
2224 /* this might happen because of floating point inexactness */
2225 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2226 {
2227 ev_at (w) += w->interval;
2228
2229 /* if interval is unreasonably low we might still have a time in the past */
2230 /* so correct this. this will make the periodic very inexact, but the user */
2231 /* has effectively asked to get triggered more often than possible */
2232 if (ev_at (w) < ev_rt_now)
2233 ev_at (w) = ev_rt_now;
2234 }
2235
2236 ANHE_at_cache (periodics [HEAP0]);
2237 downheap (periodics, periodiccnt, HEAP0);
2238 }
2239 else
2240 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2241
2242 EV_FREQUENT_CHECK;
2243 feed_reverse (EV_A_ (W)w);
2244 }
2245 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2246
2247 feed_reverse_done (EV_A_ EV_PERIODIC);
2248 }
2249}
2250
2251/* simply recalculate all periodics */
2252/* TODO: maybe ensure that at least one event happens when jumping forward? */
2253static void noinline
2254periodics_reschedule (EV_P)
2255{
2256 int i;
2257
2258 /* adjust periodics after time jump */
2259 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2260 {
2261 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2262
2263 if (w->reschedule_cb)
2264 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2265 else if (w->interval)
2266 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2267
2268 ANHE_at_cache (periodics [i]);
2269 }
2270
2271 reheap (periodics, periodiccnt);
2272}
2273#endif
2274
2275/* adjust all timers by a given offset */
2276static void noinline
2277timers_reschedule (EV_P_ ev_tstamp adjust)
2278{
2279 int i;
2280
2281 for (i = 0; i < timercnt; ++i)
2282 {
2283 ANHE *he = timers + i + HEAP0;
2284 ANHE_w (*he)->at += adjust;
2285 ANHE_at_cache (*he);
2286 }
2287}
2288
2289/* fetch new monotonic and realtime times from the kernel */
2290/* also detect if there was a timejump, and act accordingly */
2291inline_speed void
1539time_update (EV_P_ ev_tstamp max_block) 2292time_update (EV_P_ ev_tstamp max_block)
1540{ 2293{
1541 int i;
1542
1543#if EV_USE_MONOTONIC 2294#if EV_USE_MONOTONIC
1544 if (expect_true (have_monotonic)) 2295 if (expect_true (have_monotonic))
1545 { 2296 {
2297 int i;
1546 ev_tstamp odiff = rtmn_diff; 2298 ev_tstamp odiff = rtmn_diff;
1547 2299
1548 mn_now = get_clock (); 2300 mn_now = get_clock ();
1549 2301
1550 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2302 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1568 */ 2320 */
1569 for (i = 4; --i; ) 2321 for (i = 4; --i; )
1570 { 2322 {
1571 rtmn_diff = ev_rt_now - mn_now; 2323 rtmn_diff = ev_rt_now - mn_now;
1572 2324
1573 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2325 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1574 return; /* all is well */ 2326 return; /* all is well */
1575 2327
1576 ev_rt_now = ev_time (); 2328 ev_rt_now = ev_time ();
1577 mn_now = get_clock (); 2329 mn_now = get_clock ();
1578 now_floor = mn_now; 2330 now_floor = mn_now;
1579 } 2331 }
1580 2332
2333 /* no timer adjustment, as the monotonic clock doesn't jump */
2334 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1581# if EV_PERIODIC_ENABLE 2335# if EV_PERIODIC_ENABLE
1582 periodics_reschedule (EV_A); 2336 periodics_reschedule (EV_A);
1583# endif 2337# endif
1584 /* no timer adjustment, as the monotonic clock doesn't jump */
1585 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1586 } 2338 }
1587 else 2339 else
1588#endif 2340#endif
1589 { 2341 {
1590 ev_rt_now = ev_time (); 2342 ev_rt_now = ev_time ();
1591 2343
1592 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2344 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1593 { 2345 {
2346 /* adjust timers. this is easy, as the offset is the same for all of them */
2347 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1594#if EV_PERIODIC_ENABLE 2348#if EV_PERIODIC_ENABLE
1595 periodics_reschedule (EV_A); 2349 periodics_reschedule (EV_A);
1596#endif 2350#endif
1597 /* adjust timers. this is easy, as the offset is the same for all of them */
1598 for (i = 0; i < timercnt; ++i)
1599 ((WT)timers [i])->at += ev_rt_now - mn_now;
1600 } 2351 }
1601 2352
1602 mn_now = ev_rt_now; 2353 mn_now = ev_rt_now;
1603 } 2354 }
1604} 2355}
1605 2356
1606void 2357void
1607ev_ref (EV_P)
1608{
1609 ++activecnt;
1610}
1611
1612void
1613ev_unref (EV_P)
1614{
1615 --activecnt;
1616}
1617
1618static int loop_done;
1619
1620void
1621ev_loop (EV_P_ int flags) 2358ev_run (EV_P_ int flags)
1622{ 2359{
2360#if EV_FEATURE_API
2361 ++loop_depth;
2362#endif
2363
2364 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2365
1623 loop_done = EVUNLOOP_CANCEL; 2366 loop_done = EVBREAK_CANCEL;
1624 2367
1625 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2368 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1626 2369
1627 do 2370 do
1628 { 2371 {
2372#if EV_VERIFY >= 2
2373 ev_verify (EV_A);
2374#endif
2375
1629#ifndef _WIN32 2376#ifndef _WIN32
1630 if (expect_false (curpid)) /* penalise the forking check even more */ 2377 if (expect_false (curpid)) /* penalise the forking check even more */
1631 if (expect_false (getpid () != curpid)) 2378 if (expect_false (getpid () != curpid))
1632 { 2379 {
1633 curpid = getpid (); 2380 curpid = getpid ();
1639 /* we might have forked, so queue fork handlers */ 2386 /* we might have forked, so queue fork handlers */
1640 if (expect_false (postfork)) 2387 if (expect_false (postfork))
1641 if (forkcnt) 2388 if (forkcnt)
1642 { 2389 {
1643 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2390 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1644 call_pending (EV_A); 2391 EV_INVOKE_PENDING;
1645 } 2392 }
1646#endif 2393#endif
1647 2394
2395#if EV_PREPARE_ENABLE
1648 /* queue prepare watchers (and execute them) */ 2396 /* queue prepare watchers (and execute them) */
1649 if (expect_false (preparecnt)) 2397 if (expect_false (preparecnt))
1650 { 2398 {
1651 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1652 call_pending (EV_A); 2400 EV_INVOKE_PENDING;
1653 } 2401 }
2402#endif
1654 2403
1655 if (expect_false (!activecnt)) 2404 if (expect_false (loop_done))
1656 break; 2405 break;
1657 2406
1658 /* we might have forked, so reify kernel state if necessary */ 2407 /* we might have forked, so reify kernel state if necessary */
1659 if (expect_false (postfork)) 2408 if (expect_false (postfork))
1660 loop_fork (EV_A); 2409 loop_fork (EV_A);
1665 /* calculate blocking time */ 2414 /* calculate blocking time */
1666 { 2415 {
1667 ev_tstamp waittime = 0.; 2416 ev_tstamp waittime = 0.;
1668 ev_tstamp sleeptime = 0.; 2417 ev_tstamp sleeptime = 0.;
1669 2418
2419 /* remember old timestamp for io_blocktime calculation */
2420 ev_tstamp prev_mn_now = mn_now;
2421
2422 /* update time to cancel out callback processing overhead */
2423 time_update (EV_A_ 1e100);
2424
1670 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2425 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1671 { 2426 {
1672 /* update time to cancel out callback processing overhead */
1673 time_update (EV_A_ 1e100);
1674
1675 waittime = MAX_BLOCKTIME; 2427 waittime = MAX_BLOCKTIME;
1676 2428
1677 if (timercnt) 2429 if (timercnt)
1678 { 2430 {
1679 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2431 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1680 if (waittime > to) waittime = to; 2432 if (waittime > to) waittime = to;
1681 } 2433 }
1682 2434
1683#if EV_PERIODIC_ENABLE 2435#if EV_PERIODIC_ENABLE
1684 if (periodiccnt) 2436 if (periodiccnt)
1685 { 2437 {
1686 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2438 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1687 if (waittime > to) waittime = to; 2439 if (waittime > to) waittime = to;
1688 } 2440 }
1689#endif 2441#endif
1690 2442
2443 /* don't let timeouts decrease the waittime below timeout_blocktime */
1691 if (expect_false (waittime < timeout_blocktime)) 2444 if (expect_false (waittime < timeout_blocktime))
1692 waittime = timeout_blocktime; 2445 waittime = timeout_blocktime;
1693 2446
1694 sleeptime = waittime - backend_fudge; 2447 /* extra check because io_blocktime is commonly 0 */
1695
1696 if (expect_true (sleeptime > io_blocktime)) 2448 if (expect_false (io_blocktime))
1697 sleeptime = io_blocktime;
1698
1699 if (sleeptime)
1700 { 2449 {
2450 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2451
2452 if (sleeptime > waittime - backend_fudge)
2453 sleeptime = waittime - backend_fudge;
2454
2455 if (expect_true (sleeptime > 0.))
2456 {
1701 ev_sleep (sleeptime); 2457 ev_sleep (sleeptime);
1702 waittime -= sleeptime; 2458 waittime -= sleeptime;
2459 }
1703 } 2460 }
1704 } 2461 }
1705 2462
2463#if EV_FEATURE_API
1706 ++loop_count; 2464 ++loop_count;
2465#endif
2466 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1707 backend_poll (EV_A_ waittime); 2467 backend_poll (EV_A_ waittime);
2468 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1708 2469
1709 /* update ev_rt_now, do magic */ 2470 /* update ev_rt_now, do magic */
1710 time_update (EV_A_ waittime + sleeptime); 2471 time_update (EV_A_ waittime + sleeptime);
1711 } 2472 }
1712 2473
1719#if EV_IDLE_ENABLE 2480#if EV_IDLE_ENABLE
1720 /* queue idle watchers unless other events are pending */ 2481 /* queue idle watchers unless other events are pending */
1721 idle_reify (EV_A); 2482 idle_reify (EV_A);
1722#endif 2483#endif
1723 2484
2485#if EV_CHECK_ENABLE
1724 /* queue check watchers, to be executed first */ 2486 /* queue check watchers, to be executed first */
1725 if (expect_false (checkcnt)) 2487 if (expect_false (checkcnt))
1726 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2488 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2489#endif
1727 2490
1728 call_pending (EV_A); 2491 EV_INVOKE_PENDING;
1729 } 2492 }
1730 while (expect_true ( 2493 while (expect_true (
1731 activecnt 2494 activecnt
1732 && !loop_done 2495 && !loop_done
1733 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2496 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1734 )); 2497 ));
1735 2498
1736 if (loop_done == EVUNLOOP_ONE) 2499 if (loop_done == EVBREAK_ONE)
1737 loop_done = EVUNLOOP_CANCEL; 2500 loop_done = EVBREAK_CANCEL;
1738}
1739 2501
2502#if EV_FEATURE_API
2503 --loop_depth;
2504#endif
2505}
2506
1740void 2507void
1741ev_unloop (EV_P_ int how) 2508ev_break (EV_P_ int how)
1742{ 2509{
1743 loop_done = how; 2510 loop_done = how;
1744} 2511}
1745 2512
2513void
2514ev_ref (EV_P)
2515{
2516 ++activecnt;
2517}
2518
2519void
2520ev_unref (EV_P)
2521{
2522 --activecnt;
2523}
2524
2525void
2526ev_now_update (EV_P)
2527{
2528 time_update (EV_A_ 1e100);
2529}
2530
2531void
2532ev_suspend (EV_P)
2533{
2534 ev_now_update (EV_A);
2535}
2536
2537void
2538ev_resume (EV_P)
2539{
2540 ev_tstamp mn_prev = mn_now;
2541
2542 ev_now_update (EV_A);
2543 timers_reschedule (EV_A_ mn_now - mn_prev);
2544#if EV_PERIODIC_ENABLE
2545 /* TODO: really do this? */
2546 periodics_reschedule (EV_A);
2547#endif
2548}
2549
1746/*****************************************************************************/ 2550/*****************************************************************************/
2551/* singly-linked list management, used when the expected list length is short */
1747 2552
1748void inline_size 2553inline_size void
1749wlist_add (WL *head, WL elem) 2554wlist_add (WL *head, WL elem)
1750{ 2555{
1751 elem->next = *head; 2556 elem->next = *head;
1752 *head = elem; 2557 *head = elem;
1753} 2558}
1754 2559
1755void inline_size 2560inline_size void
1756wlist_del (WL *head, WL elem) 2561wlist_del (WL *head, WL elem)
1757{ 2562{
1758 while (*head) 2563 while (*head)
1759 { 2564 {
1760 if (*head == elem) 2565 if (expect_true (*head == elem))
1761 { 2566 {
1762 *head = elem->next; 2567 *head = elem->next;
1763 return; 2568 break;
1764 } 2569 }
1765 2570
1766 head = &(*head)->next; 2571 head = &(*head)->next;
1767 } 2572 }
1768} 2573}
1769 2574
1770void inline_speed 2575/* internal, faster, version of ev_clear_pending */
2576inline_speed void
1771clear_pending (EV_P_ W w) 2577clear_pending (EV_P_ W w)
1772{ 2578{
1773 if (w->pending) 2579 if (w->pending)
1774 { 2580 {
1775 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2581 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1776 w->pending = 0; 2582 w->pending = 0;
1777 } 2583 }
1778} 2584}
1779 2585
1780int 2586int
1784 int pending = w_->pending; 2590 int pending = w_->pending;
1785 2591
1786 if (expect_true (pending)) 2592 if (expect_true (pending))
1787 { 2593 {
1788 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2594 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2595 p->w = (W)&pending_w;
1789 w_->pending = 0; 2596 w_->pending = 0;
1790 p->w = 0;
1791 return p->events; 2597 return p->events;
1792 } 2598 }
1793 else 2599 else
1794 return 0; 2600 return 0;
1795} 2601}
1796 2602
1797void inline_size 2603inline_size void
1798pri_adjust (EV_P_ W w) 2604pri_adjust (EV_P_ W w)
1799{ 2605{
1800 int pri = w->priority; 2606 int pri = ev_priority (w);
1801 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2607 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1802 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2608 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1803 w->priority = pri; 2609 ev_set_priority (w, pri);
1804} 2610}
1805 2611
1806void inline_speed 2612inline_speed void
1807ev_start (EV_P_ W w, int active) 2613ev_start (EV_P_ W w, int active)
1808{ 2614{
1809 pri_adjust (EV_A_ w); 2615 pri_adjust (EV_A_ w);
1810 w->active = active; 2616 w->active = active;
1811 ev_ref (EV_A); 2617 ev_ref (EV_A);
1812} 2618}
1813 2619
1814void inline_size 2620inline_size void
1815ev_stop (EV_P_ W w) 2621ev_stop (EV_P_ W w)
1816{ 2622{
1817 ev_unref (EV_A); 2623 ev_unref (EV_A);
1818 w->active = 0; 2624 w->active = 0;
1819} 2625}
1826 int fd = w->fd; 2632 int fd = w->fd;
1827 2633
1828 if (expect_false (ev_is_active (w))) 2634 if (expect_false (ev_is_active (w)))
1829 return; 2635 return;
1830 2636
1831 assert (("ev_io_start called with negative fd", fd >= 0)); 2637 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2638 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2639
2640 EV_FREQUENT_CHECK;
1832 2641
1833 ev_start (EV_A_ (W)w, 1); 2642 ev_start (EV_A_ (W)w, 1);
1834 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2643 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1835 wlist_add (&anfds[fd].head, (WL)w); 2644 wlist_add (&anfds[fd].head, (WL)w);
1836 2645
1837 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2646 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1838 w->events &= ~EV_IOFDSET; 2647 w->events &= ~EV__IOFDSET;
2648
2649 EV_FREQUENT_CHECK;
1839} 2650}
1840 2651
1841void noinline 2652void noinline
1842ev_io_stop (EV_P_ ev_io *w) 2653ev_io_stop (EV_P_ ev_io *w)
1843{ 2654{
1844 clear_pending (EV_A_ (W)w); 2655 clear_pending (EV_A_ (W)w);
1845 if (expect_false (!ev_is_active (w))) 2656 if (expect_false (!ev_is_active (w)))
1846 return; 2657 return;
1847 2658
1848 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2659 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2660
2661 EV_FREQUENT_CHECK;
1849 2662
1850 wlist_del (&anfds[w->fd].head, (WL)w); 2663 wlist_del (&anfds[w->fd].head, (WL)w);
1851 ev_stop (EV_A_ (W)w); 2664 ev_stop (EV_A_ (W)w);
1852 2665
1853 fd_change (EV_A_ w->fd, 1); 2666 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2667
2668 EV_FREQUENT_CHECK;
1854} 2669}
1855 2670
1856void noinline 2671void noinline
1857ev_timer_start (EV_P_ ev_timer *w) 2672ev_timer_start (EV_P_ ev_timer *w)
1858{ 2673{
1859 if (expect_false (ev_is_active (w))) 2674 if (expect_false (ev_is_active (w)))
1860 return; 2675 return;
1861 2676
1862 ((WT)w)->at += mn_now; 2677 ev_at (w) += mn_now;
1863 2678
1864 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2679 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1865 2680
2681 EV_FREQUENT_CHECK;
2682
2683 ++timercnt;
1866 ev_start (EV_A_ (W)w, ++timercnt); 2684 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1867 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2685 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1868 timers [timercnt - 1] = (WT)w; 2686 ANHE_w (timers [ev_active (w)]) = (WT)w;
1869 upheap (timers, timercnt - 1); 2687 ANHE_at_cache (timers [ev_active (w)]);
2688 upheap (timers, ev_active (w));
1870 2689
2690 EV_FREQUENT_CHECK;
2691
1871 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2692 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1872} 2693}
1873 2694
1874void noinline 2695void noinline
1875ev_timer_stop (EV_P_ ev_timer *w) 2696ev_timer_stop (EV_P_ ev_timer *w)
1876{ 2697{
1877 clear_pending (EV_A_ (W)w); 2698 clear_pending (EV_A_ (W)w);
1878 if (expect_false (!ev_is_active (w))) 2699 if (expect_false (!ev_is_active (w)))
1879 return; 2700 return;
1880 2701
1881 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2702 EV_FREQUENT_CHECK;
1882 2703
1883 { 2704 {
1884 int active = ((W)w)->active; 2705 int active = ev_active (w);
1885 2706
2707 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2708
2709 --timercnt;
2710
1886 if (expect_true (--active < --timercnt)) 2711 if (expect_true (active < timercnt + HEAP0))
1887 { 2712 {
1888 timers [active] = timers [timercnt]; 2713 timers [active] = timers [timercnt + HEAP0];
1889 adjustheap (timers, timercnt, active); 2714 adjustheap (timers, timercnt, active);
1890 } 2715 }
1891 } 2716 }
1892 2717
1893 ((WT)w)->at -= mn_now; 2718 ev_at (w) -= mn_now;
1894 2719
1895 ev_stop (EV_A_ (W)w); 2720 ev_stop (EV_A_ (W)w);
2721
2722 EV_FREQUENT_CHECK;
1896} 2723}
1897 2724
1898void noinline 2725void noinline
1899ev_timer_again (EV_P_ ev_timer *w) 2726ev_timer_again (EV_P_ ev_timer *w)
1900{ 2727{
2728 EV_FREQUENT_CHECK;
2729
1901 if (ev_is_active (w)) 2730 if (ev_is_active (w))
1902 { 2731 {
1903 if (w->repeat) 2732 if (w->repeat)
1904 { 2733 {
1905 ((WT)w)->at = mn_now + w->repeat; 2734 ev_at (w) = mn_now + w->repeat;
2735 ANHE_at_cache (timers [ev_active (w)]);
1906 adjustheap (timers, timercnt, ((W)w)->active - 1); 2736 adjustheap (timers, timercnt, ev_active (w));
1907 } 2737 }
1908 else 2738 else
1909 ev_timer_stop (EV_A_ w); 2739 ev_timer_stop (EV_A_ w);
1910 } 2740 }
1911 else if (w->repeat) 2741 else if (w->repeat)
1912 { 2742 {
1913 w->at = w->repeat; 2743 ev_at (w) = w->repeat;
1914 ev_timer_start (EV_A_ w); 2744 ev_timer_start (EV_A_ w);
1915 } 2745 }
2746
2747 EV_FREQUENT_CHECK;
2748}
2749
2750ev_tstamp
2751ev_timer_remaining (EV_P_ ev_timer *w)
2752{
2753 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1916} 2754}
1917 2755
1918#if EV_PERIODIC_ENABLE 2756#if EV_PERIODIC_ENABLE
1919void noinline 2757void noinline
1920ev_periodic_start (EV_P_ ev_periodic *w) 2758ev_periodic_start (EV_P_ ev_periodic *w)
1921{ 2759{
1922 if (expect_false (ev_is_active (w))) 2760 if (expect_false (ev_is_active (w)))
1923 return; 2761 return;
1924 2762
1925 if (w->reschedule_cb) 2763 if (w->reschedule_cb)
1926 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2764 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1927 else if (w->interval) 2765 else if (w->interval)
1928 { 2766 {
1929 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2767 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1930 /* this formula differs from the one in periodic_reify because we do not always round up */ 2768 /* this formula differs from the one in periodic_reify because we do not always round up */
1931 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2769 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1932 } 2770 }
1933 else 2771 else
1934 ((WT)w)->at = w->offset; 2772 ev_at (w) = w->offset;
1935 2773
2774 EV_FREQUENT_CHECK;
2775
2776 ++periodiccnt;
1936 ev_start (EV_A_ (W)w, ++periodiccnt); 2777 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1937 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2778 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1938 periodics [periodiccnt - 1] = (WT)w; 2779 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1939 upheap (periodics, periodiccnt - 1); 2780 ANHE_at_cache (periodics [ev_active (w)]);
2781 upheap (periodics, ev_active (w));
1940 2782
2783 EV_FREQUENT_CHECK;
2784
1941 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2785 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1942} 2786}
1943 2787
1944void noinline 2788void noinline
1945ev_periodic_stop (EV_P_ ev_periodic *w) 2789ev_periodic_stop (EV_P_ ev_periodic *w)
1946{ 2790{
1947 clear_pending (EV_A_ (W)w); 2791 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 2792 if (expect_false (!ev_is_active (w)))
1949 return; 2793 return;
1950 2794
1951 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2795 EV_FREQUENT_CHECK;
1952 2796
1953 { 2797 {
1954 int active = ((W)w)->active; 2798 int active = ev_active (w);
1955 2799
2800 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2801
2802 --periodiccnt;
2803
1956 if (expect_true (--active < --periodiccnt)) 2804 if (expect_true (active < periodiccnt + HEAP0))
1957 { 2805 {
1958 periodics [active] = periodics [periodiccnt]; 2806 periodics [active] = periodics [periodiccnt + HEAP0];
1959 adjustheap (periodics, periodiccnt, active); 2807 adjustheap (periodics, periodiccnt, active);
1960 } 2808 }
1961 } 2809 }
1962 2810
1963 ev_stop (EV_A_ (W)w); 2811 ev_stop (EV_A_ (W)w);
2812
2813 EV_FREQUENT_CHECK;
1964} 2814}
1965 2815
1966void noinline 2816void noinline
1967ev_periodic_again (EV_P_ ev_periodic *w) 2817ev_periodic_again (EV_P_ ev_periodic *w)
1968{ 2818{
1974 2824
1975#ifndef SA_RESTART 2825#ifndef SA_RESTART
1976# define SA_RESTART 0 2826# define SA_RESTART 0
1977#endif 2827#endif
1978 2828
2829#if EV_SIGNAL_ENABLE
2830
1979void noinline 2831void noinline
1980ev_signal_start (EV_P_ ev_signal *w) 2832ev_signal_start (EV_P_ ev_signal *w)
1981{ 2833{
1982#if EV_MULTIPLICITY
1983 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1984#endif
1985 if (expect_false (ev_is_active (w))) 2834 if (expect_false (ev_is_active (w)))
1986 return; 2835 return;
1987 2836
1988 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2837 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1989 2838
1990 evpipe_init (EV_A); 2839#if EV_MULTIPLICITY
2840 assert (("libev: a signal must not be attached to two different loops",
2841 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1991 2842
2843 signals [w->signum - 1].loop = EV_A;
2844#endif
2845
2846 EV_FREQUENT_CHECK;
2847
2848#if EV_USE_SIGNALFD
2849 if (sigfd == -2)
1992 { 2850 {
1993#ifndef _WIN32 2851 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1994 sigset_t full, prev; 2852 if (sigfd < 0 && errno == EINVAL)
1995 sigfillset (&full); 2853 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1996 sigprocmask (SIG_SETMASK, &full, &prev);
1997#endif
1998 2854
1999 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2855 if (sigfd >= 0)
2856 {
2857 fd_intern (sigfd); /* doing it twice will not hurt */
2000 2858
2001#ifndef _WIN32 2859 sigemptyset (&sigfd_set);
2002 sigprocmask (SIG_SETMASK, &prev, 0); 2860
2003#endif 2861 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2862 ev_set_priority (&sigfd_w, EV_MAXPRI);
2863 ev_io_start (EV_A_ &sigfd_w);
2864 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2865 }
2004 } 2866 }
2867
2868 if (sigfd >= 0)
2869 {
2870 /* TODO: check .head */
2871 sigaddset (&sigfd_set, w->signum);
2872 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2873
2874 signalfd (sigfd, &sigfd_set, 0);
2875 }
2876#endif
2005 2877
2006 ev_start (EV_A_ (W)w, 1); 2878 ev_start (EV_A_ (W)w, 1);
2007 wlist_add (&signals [w->signum - 1].head, (WL)w); 2879 wlist_add (&signals [w->signum - 1].head, (WL)w);
2008 2880
2009 if (!((WL)w)->next) 2881 if (!((WL)w)->next)
2882# if EV_USE_SIGNALFD
2883 if (sigfd < 0) /*TODO*/
2884# endif
2010 { 2885 {
2011#if _WIN32 2886# ifdef _WIN32
2887 evpipe_init (EV_A);
2888
2012 signal (w->signum, ev_sighandler); 2889 signal (w->signum, ev_sighandler);
2013#else 2890# else
2014 struct sigaction sa; 2891 struct sigaction sa;
2892
2893 evpipe_init (EV_A);
2894
2015 sa.sa_handler = ev_sighandler; 2895 sa.sa_handler = ev_sighandler;
2016 sigfillset (&sa.sa_mask); 2896 sigfillset (&sa.sa_mask);
2017 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2897 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2018 sigaction (w->signum, &sa, 0); 2898 sigaction (w->signum, &sa, 0);
2899
2900 if (origflags & EVFLAG_NOSIGMASK)
2901 {
2902 sigemptyset (&sa.sa_mask);
2903 sigaddset (&sa.sa_mask, w->signum);
2904 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2905 }
2019#endif 2906#endif
2020 } 2907 }
2908
2909 EV_FREQUENT_CHECK;
2021} 2910}
2022 2911
2023void noinline 2912void noinline
2024ev_signal_stop (EV_P_ ev_signal *w) 2913ev_signal_stop (EV_P_ ev_signal *w)
2025{ 2914{
2026 clear_pending (EV_A_ (W)w); 2915 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2916 if (expect_false (!ev_is_active (w)))
2028 return; 2917 return;
2029 2918
2919 EV_FREQUENT_CHECK;
2920
2030 wlist_del (&signals [w->signum - 1].head, (WL)w); 2921 wlist_del (&signals [w->signum - 1].head, (WL)w);
2031 ev_stop (EV_A_ (W)w); 2922 ev_stop (EV_A_ (W)w);
2032 2923
2033 if (!signals [w->signum - 1].head) 2924 if (!signals [w->signum - 1].head)
2925 {
2926#if EV_MULTIPLICITY
2927 signals [w->signum - 1].loop = 0; /* unattach from signal */
2928#endif
2929#if EV_USE_SIGNALFD
2930 if (sigfd >= 0)
2931 {
2932 sigset_t ss;
2933
2934 sigemptyset (&ss);
2935 sigaddset (&ss, w->signum);
2936 sigdelset (&sigfd_set, w->signum);
2937
2938 signalfd (sigfd, &sigfd_set, 0);
2939 sigprocmask (SIG_UNBLOCK, &ss, 0);
2940 }
2941 else
2942#endif
2034 signal (w->signum, SIG_DFL); 2943 signal (w->signum, SIG_DFL);
2944 }
2945
2946 EV_FREQUENT_CHECK;
2035} 2947}
2948
2949#endif
2950
2951#if EV_CHILD_ENABLE
2036 2952
2037void 2953void
2038ev_child_start (EV_P_ ev_child *w) 2954ev_child_start (EV_P_ ev_child *w)
2039{ 2955{
2040#if EV_MULTIPLICITY 2956#if EV_MULTIPLICITY
2041 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2957 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2042#endif 2958#endif
2043 if (expect_false (ev_is_active (w))) 2959 if (expect_false (ev_is_active (w)))
2044 return; 2960 return;
2045 2961
2962 EV_FREQUENT_CHECK;
2963
2046 ev_start (EV_A_ (W)w, 1); 2964 ev_start (EV_A_ (W)w, 1);
2047 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2965 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2966
2967 EV_FREQUENT_CHECK;
2048} 2968}
2049 2969
2050void 2970void
2051ev_child_stop (EV_P_ ev_child *w) 2971ev_child_stop (EV_P_ ev_child *w)
2052{ 2972{
2053 clear_pending (EV_A_ (W)w); 2973 clear_pending (EV_A_ (W)w);
2054 if (expect_false (!ev_is_active (w))) 2974 if (expect_false (!ev_is_active (w)))
2055 return; 2975 return;
2056 2976
2977 EV_FREQUENT_CHECK;
2978
2057 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2979 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2058 ev_stop (EV_A_ (W)w); 2980 ev_stop (EV_A_ (W)w);
2981
2982 EV_FREQUENT_CHECK;
2059} 2983}
2984
2985#endif
2060 2986
2061#if EV_STAT_ENABLE 2987#if EV_STAT_ENABLE
2062 2988
2063# ifdef _WIN32 2989# ifdef _WIN32
2064# undef lstat 2990# undef lstat
2065# define lstat(a,b) _stati64 (a,b) 2991# define lstat(a,b) _stati64 (a,b)
2066# endif 2992# endif
2067 2993
2068#define DEF_STAT_INTERVAL 5.0074891 2994#define DEF_STAT_INTERVAL 5.0074891
2995#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2069#define MIN_STAT_INTERVAL 0.1074891 2996#define MIN_STAT_INTERVAL 0.1074891
2070 2997
2071static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2998static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2072 2999
2073#if EV_USE_INOTIFY 3000#if EV_USE_INOTIFY
2074# define EV_INOTIFY_BUFSIZE 8192 3001
3002/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3003# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2075 3004
2076static void noinline 3005static void noinline
2077infy_add (EV_P_ ev_stat *w) 3006infy_add (EV_P_ ev_stat *w)
2078{ 3007{
2079 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3008 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2080 3009
2081 if (w->wd < 0) 3010 if (w->wd >= 0)
3011 {
3012 struct statfs sfs;
3013
3014 /* now local changes will be tracked by inotify, but remote changes won't */
3015 /* unless the filesystem is known to be local, we therefore still poll */
3016 /* also do poll on <2.6.25, but with normal frequency */
3017
3018 if (!fs_2625)
3019 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3020 else if (!statfs (w->path, &sfs)
3021 && (sfs.f_type == 0x1373 /* devfs */
3022 || sfs.f_type == 0xEF53 /* ext2/3 */
3023 || sfs.f_type == 0x3153464a /* jfs */
3024 || sfs.f_type == 0x52654973 /* reiser3 */
3025 || sfs.f_type == 0x01021994 /* tempfs */
3026 || sfs.f_type == 0x58465342 /* xfs */))
3027 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3028 else
3029 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2082 { 3030 }
2083 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3031 else
3032 {
3033 /* can't use inotify, continue to stat */
3034 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2084 3035
2085 /* monitor some parent directory for speedup hints */ 3036 /* if path is not there, monitor some parent directory for speedup hints */
3037 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3038 /* but an efficiency issue only */
2086 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3039 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2087 { 3040 {
2088 char path [4096]; 3041 char path [4096];
2089 strcpy (path, w->path); 3042 strcpy (path, w->path);
2090 3043
2093 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3046 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2094 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3047 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2095 3048
2096 char *pend = strrchr (path, '/'); 3049 char *pend = strrchr (path, '/');
2097 3050
2098 if (!pend) 3051 if (!pend || pend == path)
2099 break; /* whoops, no '/', complain to your admin */ 3052 break;
2100 3053
2101 *pend = 0; 3054 *pend = 0;
2102 w->wd = inotify_add_watch (fs_fd, path, mask); 3055 w->wd = inotify_add_watch (fs_fd, path, mask);
2103 } 3056 }
2104 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3057 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2105 } 3058 }
2106 } 3059 }
2107 else
2108 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2109 3060
2110 if (w->wd >= 0) 3061 if (w->wd >= 0)
2111 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3062 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3063
3064 /* now re-arm timer, if required */
3065 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3066 ev_timer_again (EV_A_ &w->timer);
3067 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2112} 3068}
2113 3069
2114static void noinline 3070static void noinline
2115infy_del (EV_P_ ev_stat *w) 3071infy_del (EV_P_ ev_stat *w)
2116{ 3072{
2119 3075
2120 if (wd < 0) 3076 if (wd < 0)
2121 return; 3077 return;
2122 3078
2123 w->wd = -2; 3079 w->wd = -2;
2124 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3080 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2125 wlist_del (&fs_hash [slot].head, (WL)w); 3081 wlist_del (&fs_hash [slot].head, (WL)w);
2126 3082
2127 /* remove this watcher, if others are watching it, they will rearm */ 3083 /* remove this watcher, if others are watching it, they will rearm */
2128 inotify_rm_watch (fs_fd, wd); 3084 inotify_rm_watch (fs_fd, wd);
2129} 3085}
2130 3086
2131static void noinline 3087static void noinline
2132infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3088infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2133{ 3089{
2134 if (slot < 0) 3090 if (slot < 0)
2135 /* overflow, need to check for all hahs slots */ 3091 /* overflow, need to check for all hash slots */
2136 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3092 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2137 infy_wd (EV_A_ slot, wd, ev); 3093 infy_wd (EV_A_ slot, wd, ev);
2138 else 3094 else
2139 { 3095 {
2140 WL w_; 3096 WL w_;
2141 3097
2142 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3098 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2143 { 3099 {
2144 ev_stat *w = (ev_stat *)w_; 3100 ev_stat *w = (ev_stat *)w_;
2145 w_ = w_->next; /* lets us remove this watcher and all before it */ 3101 w_ = w_->next; /* lets us remove this watcher and all before it */
2146 3102
2147 if (w->wd == wd || wd == -1) 3103 if (w->wd == wd || wd == -1)
2148 { 3104 {
2149 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3105 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2150 { 3106 {
3107 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2151 w->wd = -1; 3108 w->wd = -1;
2152 infy_add (EV_A_ w); /* re-add, no matter what */ 3109 infy_add (EV_A_ w); /* re-add, no matter what */
2153 } 3110 }
2154 3111
2155 stat_timer_cb (EV_A_ &w->timer, 0); 3112 stat_timer_cb (EV_A_ &w->timer, 0);
2160 3117
2161static void 3118static void
2162infy_cb (EV_P_ ev_io *w, int revents) 3119infy_cb (EV_P_ ev_io *w, int revents)
2163{ 3120{
2164 char buf [EV_INOTIFY_BUFSIZE]; 3121 char buf [EV_INOTIFY_BUFSIZE];
2165 struct inotify_event *ev = (struct inotify_event *)buf;
2166 int ofs; 3122 int ofs;
2167 int len = read (fs_fd, buf, sizeof (buf)); 3123 int len = read (fs_fd, buf, sizeof (buf));
2168 3124
2169 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3125 for (ofs = 0; ofs < len; )
3126 {
3127 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2170 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3128 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3129 ofs += sizeof (struct inotify_event) + ev->len;
3130 }
2171} 3131}
2172 3132
2173void inline_size 3133inline_size void
3134ev_check_2625 (EV_P)
3135{
3136 /* kernels < 2.6.25 are borked
3137 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3138 */
3139 if (ev_linux_version () < 0x020619)
3140 return;
3141
3142 fs_2625 = 1;
3143}
3144
3145inline_size int
3146infy_newfd (void)
3147{
3148#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3149 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3150 if (fd >= 0)
3151 return fd;
3152#endif
3153 return inotify_init ();
3154}
3155
3156inline_size void
2174infy_init (EV_P) 3157infy_init (EV_P)
2175{ 3158{
2176 if (fs_fd != -2) 3159 if (fs_fd != -2)
2177 return; 3160 return;
2178 3161
3162 fs_fd = -1;
3163
3164 ev_check_2625 (EV_A);
3165
2179 fs_fd = inotify_init (); 3166 fs_fd = infy_newfd ();
2180 3167
2181 if (fs_fd >= 0) 3168 if (fs_fd >= 0)
2182 { 3169 {
3170 fd_intern (fs_fd);
2183 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3171 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2184 ev_set_priority (&fs_w, EV_MAXPRI); 3172 ev_set_priority (&fs_w, EV_MAXPRI);
2185 ev_io_start (EV_A_ &fs_w); 3173 ev_io_start (EV_A_ &fs_w);
3174 ev_unref (EV_A);
2186 } 3175 }
2187} 3176}
2188 3177
2189void inline_size 3178inline_size void
2190infy_fork (EV_P) 3179infy_fork (EV_P)
2191{ 3180{
2192 int slot; 3181 int slot;
2193 3182
2194 if (fs_fd < 0) 3183 if (fs_fd < 0)
2195 return; 3184 return;
2196 3185
3186 ev_ref (EV_A);
3187 ev_io_stop (EV_A_ &fs_w);
2197 close (fs_fd); 3188 close (fs_fd);
2198 fs_fd = inotify_init (); 3189 fs_fd = infy_newfd ();
2199 3190
3191 if (fs_fd >= 0)
3192 {
3193 fd_intern (fs_fd);
3194 ev_io_set (&fs_w, fs_fd, EV_READ);
3195 ev_io_start (EV_A_ &fs_w);
3196 ev_unref (EV_A);
3197 }
3198
2200 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3199 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2201 { 3200 {
2202 WL w_ = fs_hash [slot].head; 3201 WL w_ = fs_hash [slot].head;
2203 fs_hash [slot].head = 0; 3202 fs_hash [slot].head = 0;
2204 3203
2205 while (w_) 3204 while (w_)
2210 w->wd = -1; 3209 w->wd = -1;
2211 3210
2212 if (fs_fd >= 0) 3211 if (fs_fd >= 0)
2213 infy_add (EV_A_ w); /* re-add, no matter what */ 3212 infy_add (EV_A_ w); /* re-add, no matter what */
2214 else 3213 else
3214 {
3215 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3216 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2215 ev_timer_start (EV_A_ &w->timer); 3217 ev_timer_again (EV_A_ &w->timer);
3218 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3219 }
2216 } 3220 }
2217
2218 } 3221 }
2219} 3222}
2220 3223
3224#endif
3225
3226#ifdef _WIN32
3227# define EV_LSTAT(p,b) _stati64 (p, b)
3228#else
3229# define EV_LSTAT(p,b) lstat (p, b)
2221#endif 3230#endif
2222 3231
2223void 3232void
2224ev_stat_stat (EV_P_ ev_stat *w) 3233ev_stat_stat (EV_P_ ev_stat *w)
2225{ 3234{
2232static void noinline 3241static void noinline
2233stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3242stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2234{ 3243{
2235 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3244 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2236 3245
2237 /* we copy this here each the time so that */ 3246 ev_statdata prev = w->attr;
2238 /* prev has the old value when the callback gets invoked */
2239 w->prev = w->attr;
2240 ev_stat_stat (EV_A_ w); 3247 ev_stat_stat (EV_A_ w);
2241 3248
2242 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3249 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2243 if ( 3250 if (
2244 w->prev.st_dev != w->attr.st_dev 3251 prev.st_dev != w->attr.st_dev
2245 || w->prev.st_ino != w->attr.st_ino 3252 || prev.st_ino != w->attr.st_ino
2246 || w->prev.st_mode != w->attr.st_mode 3253 || prev.st_mode != w->attr.st_mode
2247 || w->prev.st_nlink != w->attr.st_nlink 3254 || prev.st_nlink != w->attr.st_nlink
2248 || w->prev.st_uid != w->attr.st_uid 3255 || prev.st_uid != w->attr.st_uid
2249 || w->prev.st_gid != w->attr.st_gid 3256 || prev.st_gid != w->attr.st_gid
2250 || w->prev.st_rdev != w->attr.st_rdev 3257 || prev.st_rdev != w->attr.st_rdev
2251 || w->prev.st_size != w->attr.st_size 3258 || prev.st_size != w->attr.st_size
2252 || w->prev.st_atime != w->attr.st_atime 3259 || prev.st_atime != w->attr.st_atime
2253 || w->prev.st_mtime != w->attr.st_mtime 3260 || prev.st_mtime != w->attr.st_mtime
2254 || w->prev.st_ctime != w->attr.st_ctime 3261 || prev.st_ctime != w->attr.st_ctime
2255 ) { 3262 ) {
3263 /* we only update w->prev on actual differences */
3264 /* in case we test more often than invoke the callback, */
3265 /* to ensure that prev is always different to attr */
3266 w->prev = prev;
3267
2256 #if EV_USE_INOTIFY 3268 #if EV_USE_INOTIFY
3269 if (fs_fd >= 0)
3270 {
2257 infy_del (EV_A_ w); 3271 infy_del (EV_A_ w);
2258 infy_add (EV_A_ w); 3272 infy_add (EV_A_ w);
2259 ev_stat_stat (EV_A_ w); /* avoid race... */ 3273 ev_stat_stat (EV_A_ w); /* avoid race... */
3274 }
2260 #endif 3275 #endif
2261 3276
2262 ev_feed_event (EV_A_ w, EV_STAT); 3277 ev_feed_event (EV_A_ w, EV_STAT);
2263 } 3278 }
2264} 3279}
2267ev_stat_start (EV_P_ ev_stat *w) 3282ev_stat_start (EV_P_ ev_stat *w)
2268{ 3283{
2269 if (expect_false (ev_is_active (w))) 3284 if (expect_false (ev_is_active (w)))
2270 return; 3285 return;
2271 3286
2272 /* since we use memcmp, we need to clear any padding data etc. */
2273 memset (&w->prev, 0, sizeof (ev_statdata));
2274 memset (&w->attr, 0, sizeof (ev_statdata));
2275
2276 ev_stat_stat (EV_A_ w); 3287 ev_stat_stat (EV_A_ w);
2277 3288
3289 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2278 if (w->interval < MIN_STAT_INTERVAL) 3290 w->interval = MIN_STAT_INTERVAL;
2279 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2280 3291
2281 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3292 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2282 ev_set_priority (&w->timer, ev_priority (w)); 3293 ev_set_priority (&w->timer, ev_priority (w));
2283 3294
2284#if EV_USE_INOTIFY 3295#if EV_USE_INOTIFY
2285 infy_init (EV_A); 3296 infy_init (EV_A);
2286 3297
2287 if (fs_fd >= 0) 3298 if (fs_fd >= 0)
2288 infy_add (EV_A_ w); 3299 infy_add (EV_A_ w);
2289 else 3300 else
2290#endif 3301#endif
3302 {
2291 ev_timer_start (EV_A_ &w->timer); 3303 ev_timer_again (EV_A_ &w->timer);
3304 ev_unref (EV_A);
3305 }
2292 3306
2293 ev_start (EV_A_ (W)w, 1); 3307 ev_start (EV_A_ (W)w, 1);
3308
3309 EV_FREQUENT_CHECK;
2294} 3310}
2295 3311
2296void 3312void
2297ev_stat_stop (EV_P_ ev_stat *w) 3313ev_stat_stop (EV_P_ ev_stat *w)
2298{ 3314{
2299 clear_pending (EV_A_ (W)w); 3315 clear_pending (EV_A_ (W)w);
2300 if (expect_false (!ev_is_active (w))) 3316 if (expect_false (!ev_is_active (w)))
2301 return; 3317 return;
2302 3318
3319 EV_FREQUENT_CHECK;
3320
2303#if EV_USE_INOTIFY 3321#if EV_USE_INOTIFY
2304 infy_del (EV_A_ w); 3322 infy_del (EV_A_ w);
2305#endif 3323#endif
3324
3325 if (ev_is_active (&w->timer))
3326 {
3327 ev_ref (EV_A);
2306 ev_timer_stop (EV_A_ &w->timer); 3328 ev_timer_stop (EV_A_ &w->timer);
3329 }
2307 3330
2308 ev_stop (EV_A_ (W)w); 3331 ev_stop (EV_A_ (W)w);
3332
3333 EV_FREQUENT_CHECK;
2309} 3334}
2310#endif 3335#endif
2311 3336
2312#if EV_IDLE_ENABLE 3337#if EV_IDLE_ENABLE
2313void 3338void
2315{ 3340{
2316 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
2317 return; 3342 return;
2318 3343
2319 pri_adjust (EV_A_ (W)w); 3344 pri_adjust (EV_A_ (W)w);
3345
3346 EV_FREQUENT_CHECK;
2320 3347
2321 { 3348 {
2322 int active = ++idlecnt [ABSPRI (w)]; 3349 int active = ++idlecnt [ABSPRI (w)];
2323 3350
2324 ++idleall; 3351 ++idleall;
2325 ev_start (EV_A_ (W)w, active); 3352 ev_start (EV_A_ (W)w, active);
2326 3353
2327 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3354 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2328 idles [ABSPRI (w)][active - 1] = w; 3355 idles [ABSPRI (w)][active - 1] = w;
2329 } 3356 }
3357
3358 EV_FREQUENT_CHECK;
2330} 3359}
2331 3360
2332void 3361void
2333ev_idle_stop (EV_P_ ev_idle *w) 3362ev_idle_stop (EV_P_ ev_idle *w)
2334{ 3363{
2335 clear_pending (EV_A_ (W)w); 3364 clear_pending (EV_A_ (W)w);
2336 if (expect_false (!ev_is_active (w))) 3365 if (expect_false (!ev_is_active (w)))
2337 return; 3366 return;
2338 3367
3368 EV_FREQUENT_CHECK;
3369
2339 { 3370 {
2340 int active = ((W)w)->active; 3371 int active = ev_active (w);
2341 3372
2342 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3373 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2343 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3374 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2344 3375
2345 ev_stop (EV_A_ (W)w); 3376 ev_stop (EV_A_ (W)w);
2346 --idleall; 3377 --idleall;
2347 } 3378 }
2348}
2349#endif
2350 3379
3380 EV_FREQUENT_CHECK;
3381}
3382#endif
3383
3384#if EV_PREPARE_ENABLE
2351void 3385void
2352ev_prepare_start (EV_P_ ev_prepare *w) 3386ev_prepare_start (EV_P_ ev_prepare *w)
2353{ 3387{
2354 if (expect_false (ev_is_active (w))) 3388 if (expect_false (ev_is_active (w)))
2355 return; 3389 return;
3390
3391 EV_FREQUENT_CHECK;
2356 3392
2357 ev_start (EV_A_ (W)w, ++preparecnt); 3393 ev_start (EV_A_ (W)w, ++preparecnt);
2358 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3394 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2359 prepares [preparecnt - 1] = w; 3395 prepares [preparecnt - 1] = w;
3396
3397 EV_FREQUENT_CHECK;
2360} 3398}
2361 3399
2362void 3400void
2363ev_prepare_stop (EV_P_ ev_prepare *w) 3401ev_prepare_stop (EV_P_ ev_prepare *w)
2364{ 3402{
2365 clear_pending (EV_A_ (W)w); 3403 clear_pending (EV_A_ (W)w);
2366 if (expect_false (!ev_is_active (w))) 3404 if (expect_false (!ev_is_active (w)))
2367 return; 3405 return;
2368 3406
3407 EV_FREQUENT_CHECK;
3408
2369 { 3409 {
2370 int active = ((W)w)->active; 3410 int active = ev_active (w);
3411
2371 prepares [active - 1] = prepares [--preparecnt]; 3412 prepares [active - 1] = prepares [--preparecnt];
2372 ((W)prepares [active - 1])->active = active; 3413 ev_active (prepares [active - 1]) = active;
2373 } 3414 }
2374 3415
2375 ev_stop (EV_A_ (W)w); 3416 ev_stop (EV_A_ (W)w);
2376}
2377 3417
3418 EV_FREQUENT_CHECK;
3419}
3420#endif
3421
3422#if EV_CHECK_ENABLE
2378void 3423void
2379ev_check_start (EV_P_ ev_check *w) 3424ev_check_start (EV_P_ ev_check *w)
2380{ 3425{
2381 if (expect_false (ev_is_active (w))) 3426 if (expect_false (ev_is_active (w)))
2382 return; 3427 return;
3428
3429 EV_FREQUENT_CHECK;
2383 3430
2384 ev_start (EV_A_ (W)w, ++checkcnt); 3431 ev_start (EV_A_ (W)w, ++checkcnt);
2385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3432 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2386 checks [checkcnt - 1] = w; 3433 checks [checkcnt - 1] = w;
3434
3435 EV_FREQUENT_CHECK;
2387} 3436}
2388 3437
2389void 3438void
2390ev_check_stop (EV_P_ ev_check *w) 3439ev_check_stop (EV_P_ ev_check *w)
2391{ 3440{
2392 clear_pending (EV_A_ (W)w); 3441 clear_pending (EV_A_ (W)w);
2393 if (expect_false (!ev_is_active (w))) 3442 if (expect_false (!ev_is_active (w)))
2394 return; 3443 return;
2395 3444
3445 EV_FREQUENT_CHECK;
3446
2396 { 3447 {
2397 int active = ((W)w)->active; 3448 int active = ev_active (w);
3449
2398 checks [active - 1] = checks [--checkcnt]; 3450 checks [active - 1] = checks [--checkcnt];
2399 ((W)checks [active - 1])->active = active; 3451 ev_active (checks [active - 1]) = active;
2400 } 3452 }
2401 3453
2402 ev_stop (EV_A_ (W)w); 3454 ev_stop (EV_A_ (W)w);
3455
3456 EV_FREQUENT_CHECK;
2403} 3457}
3458#endif
2404 3459
2405#if EV_EMBED_ENABLE 3460#if EV_EMBED_ENABLE
2406void noinline 3461void noinline
2407ev_embed_sweep (EV_P_ ev_embed *w) 3462ev_embed_sweep (EV_P_ ev_embed *w)
2408{ 3463{
2409 ev_loop (w->other, EVLOOP_NONBLOCK); 3464 ev_run (w->other, EVRUN_NOWAIT);
2410} 3465}
2411 3466
2412static void 3467static void
2413embed_io_cb (EV_P_ ev_io *io, int revents) 3468embed_io_cb (EV_P_ ev_io *io, int revents)
2414{ 3469{
2415 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3470 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2416 3471
2417 if (ev_cb (w)) 3472 if (ev_cb (w))
2418 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3473 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2419 else 3474 else
2420 ev_loop (w->other, EVLOOP_NONBLOCK); 3475 ev_run (w->other, EVRUN_NOWAIT);
2421} 3476}
2422 3477
2423static void 3478static void
2424embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3479embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2425{ 3480{
2426 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3481 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2427 3482
2428 { 3483 {
2429 struct ev_loop *loop = w->other; 3484 EV_P = w->other;
2430 3485
2431 while (fdchangecnt) 3486 while (fdchangecnt)
2432 { 3487 {
2433 fd_reify (EV_A); 3488 fd_reify (EV_A);
2434 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3489 ev_run (EV_A_ EVRUN_NOWAIT);
2435 } 3490 }
2436 } 3491 }
3492}
3493
3494static void
3495embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3496{
3497 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3498
3499 ev_embed_stop (EV_A_ w);
3500
3501 {
3502 EV_P = w->other;
3503
3504 ev_loop_fork (EV_A);
3505 ev_run (EV_A_ EVRUN_NOWAIT);
3506 }
3507
3508 ev_embed_start (EV_A_ w);
2437} 3509}
2438 3510
2439#if 0 3511#if 0
2440static void 3512static void
2441embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3513embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2449{ 3521{
2450 if (expect_false (ev_is_active (w))) 3522 if (expect_false (ev_is_active (w)))
2451 return; 3523 return;
2452 3524
2453 { 3525 {
2454 struct ev_loop *loop = w->other; 3526 EV_P = w->other;
2455 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3527 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2456 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3528 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2457 } 3529 }
3530
3531 EV_FREQUENT_CHECK;
2458 3532
2459 ev_set_priority (&w->io, ev_priority (w)); 3533 ev_set_priority (&w->io, ev_priority (w));
2460 ev_io_start (EV_A_ &w->io); 3534 ev_io_start (EV_A_ &w->io);
2461 3535
2462 ev_prepare_init (&w->prepare, embed_prepare_cb); 3536 ev_prepare_init (&w->prepare, embed_prepare_cb);
2463 ev_set_priority (&w->prepare, EV_MINPRI); 3537 ev_set_priority (&w->prepare, EV_MINPRI);
2464 ev_prepare_start (EV_A_ &w->prepare); 3538 ev_prepare_start (EV_A_ &w->prepare);
2465 3539
3540 ev_fork_init (&w->fork, embed_fork_cb);
3541 ev_fork_start (EV_A_ &w->fork);
3542
2466 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3543 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2467 3544
2468 ev_start (EV_A_ (W)w, 1); 3545 ev_start (EV_A_ (W)w, 1);
3546
3547 EV_FREQUENT_CHECK;
2469} 3548}
2470 3549
2471void 3550void
2472ev_embed_stop (EV_P_ ev_embed *w) 3551ev_embed_stop (EV_P_ ev_embed *w)
2473{ 3552{
2474 clear_pending (EV_A_ (W)w); 3553 clear_pending (EV_A_ (W)w);
2475 if (expect_false (!ev_is_active (w))) 3554 if (expect_false (!ev_is_active (w)))
2476 return; 3555 return;
2477 3556
3557 EV_FREQUENT_CHECK;
3558
2478 ev_io_stop (EV_A_ &w->io); 3559 ev_io_stop (EV_A_ &w->io);
2479 ev_prepare_stop (EV_A_ &w->prepare); 3560 ev_prepare_stop (EV_A_ &w->prepare);
3561 ev_fork_stop (EV_A_ &w->fork);
2480 3562
2481 ev_stop (EV_A_ (W)w); 3563 ev_stop (EV_A_ (W)w);
3564
3565 EV_FREQUENT_CHECK;
2482} 3566}
2483#endif 3567#endif
2484 3568
2485#if EV_FORK_ENABLE 3569#if EV_FORK_ENABLE
2486void 3570void
2487ev_fork_start (EV_P_ ev_fork *w) 3571ev_fork_start (EV_P_ ev_fork *w)
2488{ 3572{
2489 if (expect_false (ev_is_active (w))) 3573 if (expect_false (ev_is_active (w)))
2490 return; 3574 return;
3575
3576 EV_FREQUENT_CHECK;
2491 3577
2492 ev_start (EV_A_ (W)w, ++forkcnt); 3578 ev_start (EV_A_ (W)w, ++forkcnt);
2493 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3579 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2494 forks [forkcnt - 1] = w; 3580 forks [forkcnt - 1] = w;
3581
3582 EV_FREQUENT_CHECK;
2495} 3583}
2496 3584
2497void 3585void
2498ev_fork_stop (EV_P_ ev_fork *w) 3586ev_fork_stop (EV_P_ ev_fork *w)
2499{ 3587{
2500 clear_pending (EV_A_ (W)w); 3588 clear_pending (EV_A_ (W)w);
2501 if (expect_false (!ev_is_active (w))) 3589 if (expect_false (!ev_is_active (w)))
2502 return; 3590 return;
2503 3591
3592 EV_FREQUENT_CHECK;
3593
2504 { 3594 {
2505 int active = ((W)w)->active; 3595 int active = ev_active (w);
3596
2506 forks [active - 1] = forks [--forkcnt]; 3597 forks [active - 1] = forks [--forkcnt];
2507 ((W)forks [active - 1])->active = active; 3598 ev_active (forks [active - 1]) = active;
2508 } 3599 }
2509 3600
2510 ev_stop (EV_A_ (W)w); 3601 ev_stop (EV_A_ (W)w);
2511}
2512#endif
2513 3602
3603 EV_FREQUENT_CHECK;
3604}
3605#endif
3606
2514#if EV_ASYNC_ENABLE 3607#if EV_CLEANUP_ENABLE
2515void 3608void
2516ev_async_start (EV_P_ ev_async *w) 3609ev_cleanup_start (EV_P_ ev_cleanup *w)
2517{ 3610{
2518 if (expect_false (ev_is_active (w))) 3611 if (expect_false (ev_is_active (w)))
2519 return; 3612 return;
2520 3613
3614 EV_FREQUENT_CHECK;
3615
3616 ev_start (EV_A_ (W)w, ++cleanupcnt);
3617 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3618 cleanups [cleanupcnt - 1] = w;
3619
3620 /* cleanup watchers should never keep a refcount on the loop */
3621 ev_unref (EV_A);
3622 EV_FREQUENT_CHECK;
3623}
3624
3625void
3626ev_cleanup_stop (EV_P_ ev_cleanup *w)
3627{
3628 clear_pending (EV_A_ (W)w);
3629 if (expect_false (!ev_is_active (w)))
3630 return;
3631
3632 EV_FREQUENT_CHECK;
3633 ev_ref (EV_A);
3634
3635 {
3636 int active = ev_active (w);
3637
3638 cleanups [active - 1] = cleanups [--cleanupcnt];
3639 ev_active (cleanups [active - 1]) = active;
3640 }
3641
3642 ev_stop (EV_A_ (W)w);
3643
3644 EV_FREQUENT_CHECK;
3645}
3646#endif
3647
3648#if EV_ASYNC_ENABLE
3649void
3650ev_async_start (EV_P_ ev_async *w)
3651{
3652 if (expect_false (ev_is_active (w)))
3653 return;
3654
3655 w->sent = 0;
3656
2521 evpipe_init (EV_A); 3657 evpipe_init (EV_A);
3658
3659 EV_FREQUENT_CHECK;
2522 3660
2523 ev_start (EV_A_ (W)w, ++asynccnt); 3661 ev_start (EV_A_ (W)w, ++asynccnt);
2524 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3662 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2525 asyncs [asynccnt - 1] = w; 3663 asyncs [asynccnt - 1] = w;
3664
3665 EV_FREQUENT_CHECK;
2526} 3666}
2527 3667
2528void 3668void
2529ev_async_stop (EV_P_ ev_async *w) 3669ev_async_stop (EV_P_ ev_async *w)
2530{ 3670{
2531 clear_pending (EV_A_ (W)w); 3671 clear_pending (EV_A_ (W)w);
2532 if (expect_false (!ev_is_active (w))) 3672 if (expect_false (!ev_is_active (w)))
2533 return; 3673 return;
2534 3674
3675 EV_FREQUENT_CHECK;
3676
2535 { 3677 {
2536 int active = ((W)w)->active; 3678 int active = ev_active (w);
3679
2537 asyncs [active - 1] = asyncs [--asynccnt]; 3680 asyncs [active - 1] = asyncs [--asynccnt];
2538 ((W)asyncs [active - 1])->active = active; 3681 ev_active (asyncs [active - 1]) = active;
2539 } 3682 }
2540 3683
2541 ev_stop (EV_A_ (W)w); 3684 ev_stop (EV_A_ (W)w);
3685
3686 EV_FREQUENT_CHECK;
2542} 3687}
2543 3688
2544void 3689void
2545ev_async_send (EV_P_ ev_async *w) 3690ev_async_send (EV_P_ ev_async *w)
2546{ 3691{
2547 w->sent = 1; 3692 w->sent = 1;
2548 evpipe_write (EV_A_ &gotasync); 3693 evpipe_write (EV_A_ &async_pending);
2549} 3694}
2550#endif 3695#endif
2551 3696
2552/*****************************************************************************/ 3697/*****************************************************************************/
2553 3698
2563once_cb (EV_P_ struct ev_once *once, int revents) 3708once_cb (EV_P_ struct ev_once *once, int revents)
2564{ 3709{
2565 void (*cb)(int revents, void *arg) = once->cb; 3710 void (*cb)(int revents, void *arg) = once->cb;
2566 void *arg = once->arg; 3711 void *arg = once->arg;
2567 3712
2568 ev_io_stop (EV_A_ &once->io); 3713 ev_io_stop (EV_A_ &once->io);
2569 ev_timer_stop (EV_A_ &once->to); 3714 ev_timer_stop (EV_A_ &once->to);
2570 ev_free (once); 3715 ev_free (once);
2571 3716
2572 cb (revents, arg); 3717 cb (revents, arg);
2573} 3718}
2574 3719
2575static void 3720static void
2576once_cb_io (EV_P_ ev_io *w, int revents) 3721once_cb_io (EV_P_ ev_io *w, int revents)
2577{ 3722{
2578 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3723 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3724
3725 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2579} 3726}
2580 3727
2581static void 3728static void
2582once_cb_to (EV_P_ ev_timer *w, int revents) 3729once_cb_to (EV_P_ ev_timer *w, int revents)
2583{ 3730{
2584 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3731 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3732
3733 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2585} 3734}
2586 3735
2587void 3736void
2588ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3737ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2589{ 3738{
2590 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3739 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2591 3740
2592 if (expect_false (!once)) 3741 if (expect_false (!once))
2593 { 3742 {
2594 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3743 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2595 return; 3744 return;
2596 } 3745 }
2597 3746
2598 once->cb = cb; 3747 once->cb = cb;
2599 once->arg = arg; 3748 once->arg = arg;
2611 ev_timer_set (&once->to, timeout, 0.); 3760 ev_timer_set (&once->to, timeout, 0.);
2612 ev_timer_start (EV_A_ &once->to); 3761 ev_timer_start (EV_A_ &once->to);
2613 } 3762 }
2614} 3763}
2615 3764
3765/*****************************************************************************/
3766
3767#if EV_WALK_ENABLE
3768void
3769ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3770{
3771 int i, j;
3772 ev_watcher_list *wl, *wn;
3773
3774 if (types & (EV_IO | EV_EMBED))
3775 for (i = 0; i < anfdmax; ++i)
3776 for (wl = anfds [i].head; wl; )
3777 {
3778 wn = wl->next;
3779
3780#if EV_EMBED_ENABLE
3781 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3782 {
3783 if (types & EV_EMBED)
3784 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3785 }
3786 else
3787#endif
3788#if EV_USE_INOTIFY
3789 if (ev_cb ((ev_io *)wl) == infy_cb)
3790 ;
3791 else
3792#endif
3793 if ((ev_io *)wl != &pipe_w)
3794 if (types & EV_IO)
3795 cb (EV_A_ EV_IO, wl);
3796
3797 wl = wn;
3798 }
3799
3800 if (types & (EV_TIMER | EV_STAT))
3801 for (i = timercnt + HEAP0; i-- > HEAP0; )
3802#if EV_STAT_ENABLE
3803 /*TODO: timer is not always active*/
3804 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3805 {
3806 if (types & EV_STAT)
3807 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3808 }
3809 else
3810#endif
3811 if (types & EV_TIMER)
3812 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3813
3814#if EV_PERIODIC_ENABLE
3815 if (types & EV_PERIODIC)
3816 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3817 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3818#endif
3819
3820#if EV_IDLE_ENABLE
3821 if (types & EV_IDLE)
3822 for (j = NUMPRI; i--; )
3823 for (i = idlecnt [j]; i--; )
3824 cb (EV_A_ EV_IDLE, idles [j][i]);
3825#endif
3826
3827#if EV_FORK_ENABLE
3828 if (types & EV_FORK)
3829 for (i = forkcnt; i--; )
3830 if (ev_cb (forks [i]) != embed_fork_cb)
3831 cb (EV_A_ EV_FORK, forks [i]);
3832#endif
3833
3834#if EV_ASYNC_ENABLE
3835 if (types & EV_ASYNC)
3836 for (i = asynccnt; i--; )
3837 cb (EV_A_ EV_ASYNC, asyncs [i]);
3838#endif
3839
3840#if EV_PREPARE_ENABLE
3841 if (types & EV_PREPARE)
3842 for (i = preparecnt; i--; )
3843# if EV_EMBED_ENABLE
3844 if (ev_cb (prepares [i]) != embed_prepare_cb)
3845# endif
3846 cb (EV_A_ EV_PREPARE, prepares [i]);
3847#endif
3848
3849#if EV_CHECK_ENABLE
3850 if (types & EV_CHECK)
3851 for (i = checkcnt; i--; )
3852 cb (EV_A_ EV_CHECK, checks [i]);
3853#endif
3854
3855#if EV_SIGNAL_ENABLE
3856 if (types & EV_SIGNAL)
3857 for (i = 0; i < EV_NSIG - 1; ++i)
3858 for (wl = signals [i].head; wl; )
3859 {
3860 wn = wl->next;
3861 cb (EV_A_ EV_SIGNAL, wl);
3862 wl = wn;
3863 }
3864#endif
3865
3866#if EV_CHILD_ENABLE
3867 if (types & EV_CHILD)
3868 for (i = (EV_PID_HASHSIZE); i--; )
3869 for (wl = childs [i]; wl; )
3870 {
3871 wn = wl->next;
3872 cb (EV_A_ EV_CHILD, wl);
3873 wl = wn;
3874 }
3875#endif
3876/* EV_STAT 0x00001000 /* stat data changed */
3877/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3878}
3879#endif
3880
2616#if EV_MULTIPLICITY 3881#if EV_MULTIPLICITY
2617 #include "ev_wrap.h" 3882 #include "ev_wrap.h"
2618#endif 3883#endif
2619 3884
2620#ifdef __cplusplus 3885EV_CPP(})
2621}
2622#endif
2623 3886

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines