ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.256 by root, Thu Jun 19 06:53:49 2008 UTC vs.
Revision 1.368 by root, Mon Jan 17 12:11:11 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
52# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
55# endif 65# endif
56# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
58# endif 68# endif
59# else 69# else
60# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
62# endif 72# endif
63# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
65# endif 75# endif
66# endif 76# endif
67 77
78# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
71# else 82# else
83# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
74# endif 94# endif
75 95
96# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 99# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 100# else
101# undef EV_USE_POLL
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif
90# endif 103# endif
91 104
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
95# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
98# endif 112# endif
99 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
106# endif 121# endif
107 122
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
111# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
114# endif 130# endif
115 131
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
122# endif 139# endif
123 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
130# endif 157# endif
131 158
132#endif 159#endif
133 160
134#include <math.h> 161#include <math.h>
135#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
136#include <fcntl.h> 164#include <fcntl.h>
137#include <stddef.h> 165#include <stddef.h>
138 166
139#include <stdio.h> 167#include <stdio.h>
140 168
141#include <assert.h> 169#include <assert.h>
142#include <errno.h> 170#include <errno.h>
143#include <sys/types.h> 171#include <sys/types.h>
144#include <time.h> 172#include <time.h>
173#include <limits.h>
145 174
146#include <signal.h> 175#include <signal.h>
147 176
148#ifdef EV_H 177#ifdef EV_H
149# include EV_H 178# include EV_H
150#else 179#else
151# include "ev.h" 180# include "ev.h"
152#endif 181#endif
182
183EV_CPP(extern "C" {)
153 184
154#ifndef _WIN32 185#ifndef _WIN32
155# include <sys/time.h> 186# include <sys/time.h>
156# include <sys/wait.h> 187# include <sys/wait.h>
157# include <unistd.h> 188# include <unistd.h>
160# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
161# include <windows.h> 192# include <windows.h>
162# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
163# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
164# endif 195# endif
196# undef EV_AVOID_STDIO
165#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
166 206
167/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
168 244
169#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1 247# define EV_USE_MONOTONIC EV_FEATURE_OS
172# else 248# else
173# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
174# endif 250# endif
175#endif 251#endif
176 252
177#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
179#endif 255#endif
180 256
181#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L 258# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1 259# define EV_USE_NANOSLEEP EV_FEATURE_OS
184# else 260# else
185# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
186# endif 262# endif
187#endif 263#endif
188 264
189#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
190# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
191#endif 267#endif
192 268
193#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
194# ifdef _WIN32 270# ifdef _WIN32
195# define EV_USE_POLL 0 271# define EV_USE_POLL 0
196# else 272# else
197# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
198# endif 274# endif
199#endif 275#endif
200 276
201#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
204# else 280# else
205# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
206# endif 282# endif
207#endif 283#endif
208 284
214# define EV_USE_PORT 0 290# define EV_USE_PORT 0
215#endif 291#endif
216 292
217#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
220# else 296# else
221# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
222# endif 298# endif
223#endif 299#endif
224 300
225#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
226# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
227# define EV_PID_HASHSIZE 1
228# else
229# define EV_PID_HASHSIZE 16
230# endif
231#endif 303#endif
232 304
233#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
234# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
235# define EV_INOTIFY_HASHSIZE 1
236# else
237# define EV_INOTIFY_HASHSIZE 16
238# endif
239#endif 307#endif
240 308
241#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
244# else 312# else
245# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
246# endif 322# endif
247#endif 323#endif
248 324
249#if 0 /* debugging */ 325#if 0 /* debugging */
250# define EV_VERIFY 3 326# define EV_VERIFY 3
251# define EV_USE_4HEAP 1 327# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1 328# define EV_HEAP_CACHE_AT 1
253#endif 329#endif
254 330
255#ifndef EV_VERIFY 331#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL 332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
257#endif 333#endif
258 334
259#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
261#endif 337#endif
262 338
263#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
265#endif 355#endif
266 356
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
268 364
269#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
270# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
271# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
272#endif 368#endif
286# include <sys/select.h> 382# include <sys/select.h>
287# endif 383# endif
288#endif 384#endif
289 385
290#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
291# include <sys/inotify.h> 388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
292#endif 394#endif
293 395
294#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
295# include <winsock.h> 397# include <winsock.h>
296#endif 398#endif
297 399
298#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h> 402# include <stdint.h>
301# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
302extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
303# endif 405# endif
304int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
305# ifdef __cplusplus 407# ifdef O_CLOEXEC
306} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
307# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
308#endif 436#endif
309 437
310/**/ 438/**/
311 439
312#if EV_VERIFY >= 3 440#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 441# define EV_FREQUENT_CHECK ev_verify (EV_A)
314#else 442#else
315# define EV_FREQUENT_CHECK do { } while (0) 443# define EV_FREQUENT_CHECK do { } while (0)
316#endif 444#endif
317 445
318/* 446/*
325 */ 453 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
327 455
328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
331 461
332#if __GNUC__ >= 4 462#if __GNUC__ >= 4
333# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
334# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
335#else 465#else
342 472
343#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
344#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
345#define inline_size static inline 475#define inline_size static inline
346 476
347#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
348# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
349#else 487#else
350# define inline_speed static inline
351#endif
352
353#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
354#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
355 490
356#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
357#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
358 493
359typedef ev_watcher *W; 494typedef ev_watcher *W;
361typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
362 497
363#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
365 500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
366#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
370#endif 519#endif
371 520
372#ifdef _WIN32 521#ifdef _WIN32
373# include "ev_win32.c" 522# include "ev_win32.c"
374#endif 523#endif
375 524
376/*****************************************************************************/ 525/*****************************************************************************/
377 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
378static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
379 578
380void 579void
381ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
382{ 581{
383 syserr_cb = cb; 582 syserr_cb = cb;
384} 583}
385 584
386static void noinline 585static void noinline
387syserr (const char *msg) 586ev_syserr (const char *msg)
388{ 587{
389 if (!msg) 588 if (!msg)
390 msg = "(libev) system error"; 589 msg = "(libev) system error";
391 590
392 if (syserr_cb) 591 if (syserr_cb)
393 syserr_cb (msg); 592 syserr_cb (msg);
394 else 593 else
395 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
396 perror (msg); 601 perror (msg);
602#endif
397 abort (); 603 abort ();
398 } 604 }
399} 605}
400 606
401static void * 607static void *
402ev_realloc_emul (void *ptr, long size) 608ev_realloc_emul (void *ptr, long size)
403{ 609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
404 /* some systems, notably openbsd and darwin, fail to properly 613 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and 614 * implement realloc (x, 0) (as required by both ansi c-89 and
406 * the single unix specification, so work around them here. 615 * the single unix specification, so work around them here.
407 */ 616 */
408 617
409 if (size) 618 if (size)
410 return realloc (ptr, size); 619 return realloc (ptr, size);
411 620
412 free (ptr); 621 free (ptr);
413 return 0; 622 return 0;
623#endif
414} 624}
415 625
416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
417 627
418void 628void
426{ 636{
427 ptr = alloc (ptr, size); 637 ptr = alloc (ptr, size);
428 638
429 if (!ptr && size) 639 if (!ptr && size)
430 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
432 abort (); 646 abort ();
433 } 647 }
434 648
435 return ptr; 649 return ptr;
436} 650}
438#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
439#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
440 654
441/*****************************************************************************/ 655/*****************************************************************************/
442 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
443typedef struct 661typedef struct
444{ 662{
445 WL head; 663 WL head;
446 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
447 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
448#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
449 SOCKET handle; 672 SOCKET handle;
450#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
451} ANFD; 677} ANFD;
452 678
679/* stores the pending event set for a given watcher */
453typedef struct 680typedef struct
454{ 681{
455 W w; 682 W w;
456 int events; 683 int events; /* the pending event set for the given watcher */
457} ANPENDING; 684} ANPENDING;
458 685
459#if EV_USE_INOTIFY 686#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */ 687/* hash table entry per inotify-id */
461typedef struct 688typedef struct
464} ANFS; 691} ANFS;
465#endif 692#endif
466 693
467/* Heap Entry */ 694/* Heap Entry */
468#if EV_HEAP_CACHE_AT 695#if EV_HEAP_CACHE_AT
696 /* a heap element */
469 typedef struct { 697 typedef struct {
470 ev_tstamp at; 698 ev_tstamp at;
471 WT w; 699 WT w;
472 } ANHE; 700 } ANHE;
473 701
474 #define ANHE_w(he) (he).w /* access watcher, read-write */ 702 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */ 703 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else 705#else
706 /* a heap element */
478 typedef WT ANHE; 707 typedef WT ANHE;
479 708
480 #define ANHE_w(he) (he) 709 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at 710 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he) 711 #define ANHE_at_cache(he)
506 735
507 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
508 737
509#endif 738#endif
510 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
511/*****************************************************************************/ 752/*****************************************************************************/
512 753
754#ifndef EV_HAVE_EV_TIME
513ev_tstamp 755ev_tstamp
514ev_time (void) 756ev_time (void)
515{ 757{
516#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
517 struct timespec ts; 761 struct timespec ts;
518 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
519 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
520#else 764 }
765#endif
766
521 struct timeval tv; 767 struct timeval tv;
522 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
523 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
524#endif
525} 770}
771#endif
526 772
527ev_tstamp inline_size 773inline_size ev_tstamp
528get_clock (void) 774get_clock (void)
529{ 775{
530#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
531 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
532 { 778 {
553 if (delay > 0.) 799 if (delay > 0.)
554 { 800 {
555#if EV_USE_NANOSLEEP 801#if EV_USE_NANOSLEEP
556 struct timespec ts; 802 struct timespec ts;
557 803
558 ts.tv_sec = (time_t)delay; 804 EV_TS_SET (ts, delay);
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0); 805 nanosleep (&ts, 0);
562#elif defined(_WIN32) 806#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3)); 807 Sleep ((unsigned long)(delay * 1e3));
564#else 808#else
565 struct timeval tv; 809 struct timeval tv;
566 810
567 tv.tv_sec = (time_t)delay; 811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 812 /* something not guaranteed by newer posix versions, but guaranteed */
569 813 /* by older ones */
814 EV_TV_SET (tv, delay);
570 select (0, 0, 0, 0, &tv); 815 select (0, 0, 0, 0, &tv);
571#endif 816#endif
572 } 817 }
573} 818}
574 819
820inline_speed int
821ev_timeout_to_ms (ev_tstamp timeout)
822{
823 int ms = timeout * 1000. + .999999;
824
825 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
826}
827
575/*****************************************************************************/ 828/*****************************************************************************/
576 829
577#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 830#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
578 831
579int inline_size 832/* find a suitable new size for the given array, */
833/* hopefully by rounding to a nice-to-malloc size */
834inline_size int
580array_nextsize (int elem, int cur, int cnt) 835array_nextsize (int elem, int cur, int cnt)
581{ 836{
582 int ncur = cur + 1; 837 int ncur = cur + 1;
583 838
584 do 839 do
601array_realloc (int elem, void *base, int *cur, int cnt) 856array_realloc (int elem, void *base, int *cur, int cnt)
602{ 857{
603 *cur = array_nextsize (elem, *cur, cnt); 858 *cur = array_nextsize (elem, *cur, cnt);
604 return ev_realloc (base, elem * *cur); 859 return ev_realloc (base, elem * *cur);
605} 860}
861
862#define array_init_zero(base,count) \
863 memset ((void *)(base), 0, sizeof (*(base)) * (count))
606 864
607#define array_needsize(type,base,cur,cnt,init) \ 865#define array_needsize(type,base,cur,cnt,init) \
608 if (expect_false ((cnt) > (cur))) \ 866 if (expect_false ((cnt) > (cur))) \
609 { \ 867 { \
610 int ocur_ = (cur); \ 868 int ocur_ = (cur); \
622 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 880 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
623 } 881 }
624#endif 882#endif
625 883
626#define array_free(stem, idx) \ 884#define array_free(stem, idx) \
627 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 885 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
628 886
629/*****************************************************************************/ 887/*****************************************************************************/
888
889/* dummy callback for pending events */
890static void noinline
891pendingcb (EV_P_ ev_prepare *w, int revents)
892{
893}
630 894
631void noinline 895void noinline
632ev_feed_event (EV_P_ void *w, int revents) 896ev_feed_event (EV_P_ void *w, int revents)
633{ 897{
634 W w_ = (W)w; 898 W w_ = (W)w;
643 pendings [pri][w_->pending - 1].w = w_; 907 pendings [pri][w_->pending - 1].w = w_;
644 pendings [pri][w_->pending - 1].events = revents; 908 pendings [pri][w_->pending - 1].events = revents;
645 } 909 }
646} 910}
647 911
648void inline_speed 912inline_speed void
913feed_reverse (EV_P_ W w)
914{
915 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
916 rfeeds [rfeedcnt++] = w;
917}
918
919inline_size void
920feed_reverse_done (EV_P_ int revents)
921{
922 do
923 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
924 while (rfeedcnt);
925}
926
927inline_speed void
649queue_events (EV_P_ W *events, int eventcnt, int type) 928queue_events (EV_P_ W *events, int eventcnt, int type)
650{ 929{
651 int i; 930 int i;
652 931
653 for (i = 0; i < eventcnt; ++i) 932 for (i = 0; i < eventcnt; ++i)
654 ev_feed_event (EV_A_ events [i], type); 933 ev_feed_event (EV_A_ events [i], type);
655} 934}
656 935
657/*****************************************************************************/ 936/*****************************************************************************/
658 937
659void inline_size 938inline_speed void
660anfds_init (ANFD *base, int count)
661{
662 while (count--)
663 {
664 base->head = 0;
665 base->events = EV_NONE;
666 base->reify = 0;
667
668 ++base;
669 }
670}
671
672void inline_speed
673fd_event (EV_P_ int fd, int revents) 939fd_event_nocheck (EV_P_ int fd, int revents)
674{ 940{
675 ANFD *anfd = anfds + fd; 941 ANFD *anfd = anfds + fd;
676 ev_io *w; 942 ev_io *w;
677 943
678 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 944 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
682 if (ev) 948 if (ev)
683 ev_feed_event (EV_A_ (W)w, ev); 949 ev_feed_event (EV_A_ (W)w, ev);
684 } 950 }
685} 951}
686 952
953/* do not submit kernel events for fds that have reify set */
954/* because that means they changed while we were polling for new events */
955inline_speed void
956fd_event (EV_P_ int fd, int revents)
957{
958 ANFD *anfd = anfds + fd;
959
960 if (expect_true (!anfd->reify))
961 fd_event_nocheck (EV_A_ fd, revents);
962}
963
687void 964void
688ev_feed_fd_event (EV_P_ int fd, int revents) 965ev_feed_fd_event (EV_P_ int fd, int revents)
689{ 966{
690 if (fd >= 0 && fd < anfdmax) 967 if (fd >= 0 && fd < anfdmax)
691 fd_event (EV_A_ fd, revents); 968 fd_event_nocheck (EV_A_ fd, revents);
692} 969}
693 970
694void inline_size 971/* make sure the external fd watch events are in-sync */
972/* with the kernel/libev internal state */
973inline_size void
695fd_reify (EV_P) 974fd_reify (EV_P)
696{ 975{
697 int i; 976 int i;
698 977
699 for (i = 0; i < fdchangecnt; ++i) 978 for (i = 0; i < fdchangecnt; ++i)
700 { 979 {
701 int fd = fdchanges [i]; 980 int fd = fdchanges [i];
702 ANFD *anfd = anfds + fd; 981 ANFD *anfd = anfds + fd;
703 ev_io *w; 982 ev_io *w;
704 983
705 unsigned char events = 0; 984 unsigned char o_events = anfd->events;
985 unsigned char o_reify = anfd->reify;
706 986
707 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 987 anfd->reify = 0;
708 events |= (unsigned char)w->events;
709 988
710#if EV_SELECT_IS_WINSOCKET 989#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
711 if (events) 990 if (o_reify & EV__IOFDSET)
712 { 991 {
713 unsigned long arg; 992 unsigned long arg;
714 #ifdef EV_FD_TO_WIN32_HANDLE
715 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 993 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
716 #else
717 anfd->handle = _get_osfhandle (fd);
718 #endif
719 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 994 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
995 printf ("oi %d %x\n", fd, anfd->handle);//D
720 } 996 }
721#endif 997#endif
722 998
999 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
723 { 1000 {
724 unsigned char o_events = anfd->events;
725 unsigned char o_reify = anfd->reify;
726
727 anfd->reify = 0;
728 anfd->events = events; 1001 anfd->events = 0;
729 1002
730 if (o_events != events || o_reify & EV_IOFDSET) 1003 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1004 anfd->events |= (unsigned char)w->events;
1005
1006 if (o_events != anfd->events)
1007 o_reify = EV__IOFDSET; /* actually |= */
1008 }
1009
1010 if (o_reify & EV__IOFDSET)
731 backend_modify (EV_A_ fd, o_events, events); 1011 backend_modify (EV_A_ fd, o_events, anfd->events);
732 }
733 } 1012 }
734 1013
735 fdchangecnt = 0; 1014 fdchangecnt = 0;
736} 1015}
737 1016
738void inline_size 1017/* something about the given fd changed */
1018inline_size void
739fd_change (EV_P_ int fd, int flags) 1019fd_change (EV_P_ int fd, int flags)
740{ 1020{
741 unsigned char reify = anfds [fd].reify; 1021 unsigned char reify = anfds [fd].reify;
742 anfds [fd].reify |= flags; 1022 anfds [fd].reify |= flags;
743 1023
747 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1027 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
748 fdchanges [fdchangecnt - 1] = fd; 1028 fdchanges [fdchangecnt - 1] = fd;
749 } 1029 }
750} 1030}
751 1031
752void inline_speed 1032/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1033inline_speed void
753fd_kill (EV_P_ int fd) 1034fd_kill (EV_P_ int fd)
754{ 1035{
755 ev_io *w; 1036 ev_io *w;
756 1037
757 while ((w = (ev_io *)anfds [fd].head)) 1038 while ((w = (ev_io *)anfds [fd].head))
759 ev_io_stop (EV_A_ w); 1040 ev_io_stop (EV_A_ w);
760 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1041 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
761 } 1042 }
762} 1043}
763 1044
764int inline_size 1045/* check whether the given fd is actually valid, for error recovery */
1046inline_size int
765fd_valid (int fd) 1047fd_valid (int fd)
766{ 1048{
767#ifdef _WIN32 1049#ifdef _WIN32
768 return _get_osfhandle (fd) != -1; 1050 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
769#else 1051#else
770 return fcntl (fd, F_GETFD) != -1; 1052 return fcntl (fd, F_GETFD) != -1;
771#endif 1053#endif
772} 1054}
773 1055
791 1073
792 for (fd = anfdmax; fd--; ) 1074 for (fd = anfdmax; fd--; )
793 if (anfds [fd].events) 1075 if (anfds [fd].events)
794 { 1076 {
795 fd_kill (EV_A_ fd); 1077 fd_kill (EV_A_ fd);
796 return; 1078 break;
797 } 1079 }
798} 1080}
799 1081
800/* usually called after fork if backend needs to re-arm all fds from scratch */ 1082/* usually called after fork if backend needs to re-arm all fds from scratch */
801static void noinline 1083static void noinline
805 1087
806 for (fd = 0; fd < anfdmax; ++fd) 1088 for (fd = 0; fd < anfdmax; ++fd)
807 if (anfds [fd].events) 1089 if (anfds [fd].events)
808 { 1090 {
809 anfds [fd].events = 0; 1091 anfds [fd].events = 0;
1092 anfds [fd].emask = 0;
810 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1093 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
811 } 1094 }
812} 1095}
813 1096
1097/* used to prepare libev internal fd's */
1098/* this is not fork-safe */
1099inline_speed void
1100fd_intern (int fd)
1101{
1102#ifdef _WIN32
1103 unsigned long arg = 1;
1104 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1105#else
1106 fcntl (fd, F_SETFD, FD_CLOEXEC);
1107 fcntl (fd, F_SETFL, O_NONBLOCK);
1108#endif
1109}
1110
814/*****************************************************************************/ 1111/*****************************************************************************/
815 1112
816/* 1113/*
817 * the heap functions want a real array index. array index 0 uis guaranteed to not 1114 * the heap functions want a real array index. array index 0 is guaranteed to not
818 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1115 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
819 * the branching factor of the d-tree. 1116 * the branching factor of the d-tree.
820 */ 1117 */
821 1118
822/* 1119/*
831#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1128#define HEAP0 (DHEAP - 1) /* index of first element in heap */
832#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1129#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
833#define UPHEAP_DONE(p,k) ((p) == (k)) 1130#define UPHEAP_DONE(p,k) ((p) == (k))
834 1131
835/* away from the root */ 1132/* away from the root */
836void inline_speed 1133inline_speed void
837downheap (ANHE *heap, int N, int k) 1134downheap (ANHE *heap, int N, int k)
838{ 1135{
839 ANHE he = heap [k]; 1136 ANHE he = heap [k];
840 ANHE *E = heap + N + HEAP0; 1137 ANHE *E = heap + N + HEAP0;
841 1138
881#define HEAP0 1 1178#define HEAP0 1
882#define HPARENT(k) ((k) >> 1) 1179#define HPARENT(k) ((k) >> 1)
883#define UPHEAP_DONE(p,k) (!(p)) 1180#define UPHEAP_DONE(p,k) (!(p))
884 1181
885/* away from the root */ 1182/* away from the root */
886void inline_speed 1183inline_speed void
887downheap (ANHE *heap, int N, int k) 1184downheap (ANHE *heap, int N, int k)
888{ 1185{
889 ANHE he = heap [k]; 1186 ANHE he = heap [k];
890 1187
891 for (;;) 1188 for (;;)
892 { 1189 {
893 int c = k << 1; 1190 int c = k << 1;
894 1191
895 if (c > N + HEAP0 - 1) 1192 if (c >= N + HEAP0)
896 break; 1193 break;
897 1194
898 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1195 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
899 ? 1 : 0; 1196 ? 1 : 0;
900 1197
911 ev_active (ANHE_w (he)) = k; 1208 ev_active (ANHE_w (he)) = k;
912} 1209}
913#endif 1210#endif
914 1211
915/* towards the root */ 1212/* towards the root */
916void inline_speed 1213inline_speed void
917upheap (ANHE *heap, int k) 1214upheap (ANHE *heap, int k)
918{ 1215{
919 ANHE he = heap [k]; 1216 ANHE he = heap [k];
920 1217
921 for (;;) 1218 for (;;)
932 1229
933 heap [k] = he; 1230 heap [k] = he;
934 ev_active (ANHE_w (he)) = k; 1231 ev_active (ANHE_w (he)) = k;
935} 1232}
936 1233
937void inline_size 1234/* move an element suitably so it is in a correct place */
1235inline_size void
938adjustheap (ANHE *heap, int N, int k) 1236adjustheap (ANHE *heap, int N, int k)
939{ 1237{
940 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1238 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
941 upheap (heap, k); 1239 upheap (heap, k);
942 else 1240 else
943 downheap (heap, N, k); 1241 downheap (heap, N, k);
944} 1242}
945 1243
946/* rebuild the heap: this function is used only once and executed rarely */ 1244/* rebuild the heap: this function is used only once and executed rarely */
947void inline_size 1245inline_size void
948reheap (ANHE *heap, int N) 1246reheap (ANHE *heap, int N)
949{ 1247{
950 int i; 1248 int i;
951 1249
952 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1250 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
955 upheap (heap, i + HEAP0); 1253 upheap (heap, i + HEAP0);
956} 1254}
957 1255
958/*****************************************************************************/ 1256/*****************************************************************************/
959 1257
1258/* associate signal watchers to a signal signal */
960typedef struct 1259typedef struct
961{ 1260{
1261 EV_ATOMIC_T pending;
1262#if EV_MULTIPLICITY
1263 EV_P;
1264#endif
962 WL head; 1265 WL head;
963 EV_ATOMIC_T gotsig;
964} ANSIG; 1266} ANSIG;
965 1267
966static ANSIG *signals; 1268static ANSIG signals [EV_NSIG - 1];
967static int signalmax;
968
969static EV_ATOMIC_T gotsig;
970
971void inline_size
972signals_init (ANSIG *base, int count)
973{
974 while (count--)
975 {
976 base->head = 0;
977 base->gotsig = 0;
978
979 ++base;
980 }
981}
982 1269
983/*****************************************************************************/ 1270/*****************************************************************************/
984 1271
985void inline_speed 1272#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
986fd_intern (int fd)
987{
988#ifdef _WIN32
989 unsigned long arg = 1;
990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
991#else
992 fcntl (fd, F_SETFD, FD_CLOEXEC);
993 fcntl (fd, F_SETFL, O_NONBLOCK);
994#endif
995}
996 1273
997static void noinline 1274static void noinline
998evpipe_init (EV_P) 1275evpipe_init (EV_P)
999{ 1276{
1000 if (!ev_is_active (&pipeev)) 1277 if (!ev_is_active (&pipe_w))
1001 { 1278 {
1002#if EV_USE_EVENTFD 1279# if EV_USE_EVENTFD
1280 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1281 if (evfd < 0 && errno == EINVAL)
1003 if ((evfd = eventfd (0, 0)) >= 0) 1282 evfd = eventfd (0, 0);
1283
1284 if (evfd >= 0)
1004 { 1285 {
1005 evpipe [0] = -1; 1286 evpipe [0] = -1;
1006 fd_intern (evfd); 1287 fd_intern (evfd); /* doing it twice doesn't hurt */
1007 ev_io_set (&pipeev, evfd, EV_READ); 1288 ev_io_set (&pipe_w, evfd, EV_READ);
1008 } 1289 }
1009 else 1290 else
1010#endif 1291# endif
1011 { 1292 {
1012 while (pipe (evpipe)) 1293 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe"); 1294 ev_syserr ("(libev) error creating signal/async pipe");
1014 1295
1015 fd_intern (evpipe [0]); 1296 fd_intern (evpipe [0]);
1016 fd_intern (evpipe [1]); 1297 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ); 1298 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1018 } 1299 }
1019 1300
1020 ev_io_start (EV_A_ &pipeev); 1301 ev_io_start (EV_A_ &pipe_w);
1021 ev_unref (EV_A); /* watcher should not keep loop alive */ 1302 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 } 1303 }
1023} 1304}
1024 1305
1025void inline_size 1306inline_size void
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1307evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{ 1308{
1028 if (!*flag) 1309 if (!*flag)
1029 { 1310 {
1030 int old_errno = errno; /* save errno because write might clobber it */ 1311 int old_errno = errno; /* save errno because write might clobber it */
1312 char dummy;
1031 1313
1032 *flag = 1; 1314 *flag = 1;
1033 1315
1034#if EV_USE_EVENTFD 1316#if EV_USE_EVENTFD
1035 if (evfd >= 0) 1317 if (evfd >= 0)
1037 uint64_t counter = 1; 1319 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t)); 1320 write (evfd, &counter, sizeof (uint64_t));
1039 } 1321 }
1040 else 1322 else
1041#endif 1323#endif
1324 /* win32 people keep sending patches that change this write() to send() */
1325 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1326 /* so when you think this write should be a send instead, please find out */
1327 /* where your send() is from - it's definitely not the microsoft send, and */
1328 /* tell me. thank you. */
1042 write (evpipe [1], &old_errno, 1); 1329 write (evpipe [1], &dummy, 1);
1043 1330
1044 errno = old_errno; 1331 errno = old_errno;
1045 } 1332 }
1046} 1333}
1047 1334
1335/* called whenever the libev signal pipe */
1336/* got some events (signal, async) */
1048static void 1337static void
1049pipecb (EV_P_ ev_io *iow, int revents) 1338pipecb (EV_P_ ev_io *iow, int revents)
1050{ 1339{
1340 int i;
1341
1051#if EV_USE_EVENTFD 1342#if EV_USE_EVENTFD
1052 if (evfd >= 0) 1343 if (evfd >= 0)
1053 { 1344 {
1054 uint64_t counter; 1345 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t)); 1346 read (evfd, &counter, sizeof (uint64_t));
1056 } 1347 }
1057 else 1348 else
1058#endif 1349#endif
1059 { 1350 {
1060 char dummy; 1351 char dummy;
1352 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1061 read (evpipe [0], &dummy, 1); 1353 read (evpipe [0], &dummy, 1);
1062 } 1354 }
1063 1355
1064 if (gotsig && ev_is_default_loop (EV_A)) 1356 if (sig_pending)
1065 { 1357 {
1066 int signum; 1358 sig_pending = 0;
1067 gotsig = 0;
1068 1359
1069 for (signum = signalmax; signum--; ) 1360 for (i = EV_NSIG - 1; i--; )
1070 if (signals [signum].gotsig) 1361 if (expect_false (signals [i].pending))
1071 ev_feed_signal_event (EV_A_ signum + 1); 1362 ev_feed_signal_event (EV_A_ i + 1);
1072 } 1363 }
1073 1364
1074#if EV_ASYNC_ENABLE 1365#if EV_ASYNC_ENABLE
1075 if (gotasync) 1366 if (async_pending)
1076 { 1367 {
1077 int i; 1368 async_pending = 0;
1078 gotasync = 0;
1079 1369
1080 for (i = asynccnt; i--; ) 1370 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent) 1371 if (asyncs [i]->sent)
1082 { 1372 {
1083 asyncs [i]->sent = 0; 1373 asyncs [i]->sent = 0;
1087#endif 1377#endif
1088} 1378}
1089 1379
1090/*****************************************************************************/ 1380/*****************************************************************************/
1091 1381
1382void
1383ev_feed_signal (int signum)
1384{
1385#if EV_MULTIPLICITY
1386 EV_P = signals [signum - 1].loop;
1387
1388 if (!EV_A)
1389 return;
1390#endif
1391
1392 signals [signum - 1].pending = 1;
1393 evpipe_write (EV_A_ &sig_pending);
1394}
1395
1092static void 1396static void
1093ev_sighandler (int signum) 1397ev_sighandler (int signum)
1094{ 1398{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32 1399#ifdef _WIN32
1100 signal (signum, ev_sighandler); 1400 signal (signum, ev_sighandler);
1101#endif 1401#endif
1102 1402
1103 signals [signum - 1].gotsig = 1; 1403 ev_feed_signal (signum);
1104 evpipe_write (EV_A_ &gotsig);
1105} 1404}
1106 1405
1107void noinline 1406void noinline
1108ev_feed_signal_event (EV_P_ int signum) 1407ev_feed_signal_event (EV_P_ int signum)
1109{ 1408{
1110 WL w; 1409 WL w;
1111 1410
1411 if (expect_false (signum <= 0 || signum > EV_NSIG))
1412 return;
1413
1414 --signum;
1415
1112#if EV_MULTIPLICITY 1416#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1417 /* it is permissible to try to feed a signal to the wrong loop */
1114#endif 1418 /* or, likely more useful, feeding a signal nobody is waiting for */
1115 1419
1116 --signum; 1420 if (expect_false (signals [signum].loop != EV_A))
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return; 1421 return;
1422#endif
1120 1423
1121 signals [signum].gotsig = 0; 1424 signals [signum].pending = 0;
1122 1425
1123 for (w = signals [signum].head; w; w = w->next) 1426 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1427 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125} 1428}
1126 1429
1430#if EV_USE_SIGNALFD
1431static void
1432sigfdcb (EV_P_ ev_io *iow, int revents)
1433{
1434 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1435
1436 for (;;)
1437 {
1438 ssize_t res = read (sigfd, si, sizeof (si));
1439
1440 /* not ISO-C, as res might be -1, but works with SuS */
1441 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1442 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1443
1444 if (res < (ssize_t)sizeof (si))
1445 break;
1446 }
1447}
1448#endif
1449
1450#endif
1451
1127/*****************************************************************************/ 1452/*****************************************************************************/
1128 1453
1454#if EV_CHILD_ENABLE
1129static WL childs [EV_PID_HASHSIZE]; 1455static WL childs [EV_PID_HASHSIZE];
1130
1131#ifndef _WIN32
1132 1456
1133static ev_signal childev; 1457static ev_signal childev;
1134 1458
1135#ifndef WIFCONTINUED 1459#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0 1460# define WIFCONTINUED(status) 0
1137#endif 1461#endif
1138 1462
1139void inline_speed 1463/* handle a single child status event */
1464inline_speed void
1140child_reap (EV_P_ int chain, int pid, int status) 1465child_reap (EV_P_ int chain, int pid, int status)
1141{ 1466{
1142 ev_child *w; 1467 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1468 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144 1469
1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1470 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 { 1471 {
1147 if ((w->pid == pid || !w->pid) 1472 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1))) 1473 && (!traced || (w->flags & 1)))
1149 { 1474 {
1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1475 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1157 1482
1158#ifndef WCONTINUED 1483#ifndef WCONTINUED
1159# define WCONTINUED 0 1484# define WCONTINUED 0
1160#endif 1485#endif
1161 1486
1487/* called on sigchld etc., calls waitpid */
1162static void 1488static void
1163childcb (EV_P_ ev_signal *sw, int revents) 1489childcb (EV_P_ ev_signal *sw, int revents)
1164{ 1490{
1165 int pid, status; 1491 int pid, status;
1166 1492
1174 /* make sure we are called again until all children have been reaped */ 1500 /* make sure we are called again until all children have been reaped */
1175 /* we need to do it this way so that the callback gets called before we continue */ 1501 /* we need to do it this way so that the callback gets called before we continue */
1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1502 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1177 1503
1178 child_reap (EV_A_ pid, pid, status); 1504 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1) 1505 if ((EV_PID_HASHSIZE) > 1)
1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1506 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1181} 1507}
1182 1508
1183#endif 1509#endif
1184 1510
1185/*****************************************************************************/ 1511/*****************************************************************************/
1186 1512
1513#if EV_USE_IOCP
1514# include "ev_iocp.c"
1515#endif
1187#if EV_USE_PORT 1516#if EV_USE_PORT
1188# include "ev_port.c" 1517# include "ev_port.c"
1189#endif 1518#endif
1190#if EV_USE_KQUEUE 1519#if EV_USE_KQUEUE
1191# include "ev_kqueue.c" 1520# include "ev_kqueue.c"
1247 /* kqueue is borked on everything but netbsd apparently */ 1576 /* kqueue is borked on everything but netbsd apparently */
1248 /* it usually doesn't work correctly on anything but sockets and pipes */ 1577 /* it usually doesn't work correctly on anything but sockets and pipes */
1249 flags &= ~EVBACKEND_KQUEUE; 1578 flags &= ~EVBACKEND_KQUEUE;
1250#endif 1579#endif
1251#ifdef __APPLE__ 1580#ifdef __APPLE__
1252 // flags &= ~EVBACKEND_KQUEUE; for documentation 1581 /* only select works correctly on that "unix-certified" platform */
1253 flags &= ~EVBACKEND_POLL; 1582 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1583 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1584#endif
1585#ifdef __FreeBSD__
1586 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1254#endif 1587#endif
1255 1588
1256 return flags; 1589 return flags;
1257} 1590}
1258 1591
1260ev_embeddable_backends (void) 1593ev_embeddable_backends (void)
1261{ 1594{
1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1595 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1263 1596
1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1597 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */ 1598 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1266 flags &= ~EVBACKEND_EPOLL; 1599 flags &= ~EVBACKEND_EPOLL;
1267 1600
1268 return flags; 1601 return flags;
1269} 1602}
1270 1603
1271unsigned int 1604unsigned int
1272ev_backend (EV_P) 1605ev_backend (EV_P)
1273{ 1606{
1274 return backend; 1607 return backend;
1275} 1608}
1276 1609
1610#if EV_FEATURE_API
1277unsigned int 1611unsigned int
1278ev_loop_count (EV_P) 1612ev_iteration (EV_P)
1279{ 1613{
1280 return loop_count; 1614 return loop_count;
1281} 1615}
1282 1616
1617unsigned int
1618ev_depth (EV_P)
1619{
1620 return loop_depth;
1621}
1622
1283void 1623void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1624ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{ 1625{
1286 io_blocktime = interval; 1626 io_blocktime = interval;
1287} 1627}
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1630ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{ 1631{
1292 timeout_blocktime = interval; 1632 timeout_blocktime = interval;
1293} 1633}
1294 1634
1635void
1636ev_set_userdata (EV_P_ void *data)
1637{
1638 userdata = data;
1639}
1640
1641void *
1642ev_userdata (EV_P)
1643{
1644 return userdata;
1645}
1646
1647void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1648{
1649 invoke_cb = invoke_pending_cb;
1650}
1651
1652void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1653{
1654 release_cb = release;
1655 acquire_cb = acquire;
1656}
1657#endif
1658
1659/* initialise a loop structure, must be zero-initialised */
1295static void noinline 1660static void noinline
1296loop_init (EV_P_ unsigned int flags) 1661loop_init (EV_P_ unsigned int flags)
1297{ 1662{
1298 if (!backend) 1663 if (!backend)
1299 { 1664 {
1665 origflags = flags;
1666
1667#if EV_USE_REALTIME
1668 if (!have_realtime)
1669 {
1670 struct timespec ts;
1671
1672 if (!clock_gettime (CLOCK_REALTIME, &ts))
1673 have_realtime = 1;
1674 }
1675#endif
1676
1300#if EV_USE_MONOTONIC 1677#if EV_USE_MONOTONIC
1678 if (!have_monotonic)
1301 { 1679 {
1302 struct timespec ts; 1680 struct timespec ts;
1681
1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1682 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1304 have_monotonic = 1; 1683 have_monotonic = 1;
1305 } 1684 }
1306#endif 1685#endif
1686
1687 /* pid check not overridable via env */
1688#ifndef _WIN32
1689 if (flags & EVFLAG_FORKCHECK)
1690 curpid = getpid ();
1691#endif
1692
1693 if (!(flags & EVFLAG_NOENV)
1694 && !enable_secure ()
1695 && getenv ("LIBEV_FLAGS"))
1696 flags = atoi (getenv ("LIBEV_FLAGS"));
1307 1697
1308 ev_rt_now = ev_time (); 1698 ev_rt_now = ev_time ();
1309 mn_now = get_clock (); 1699 mn_now = get_clock ();
1310 now_floor = mn_now; 1700 now_floor = mn_now;
1311 rtmn_diff = ev_rt_now - mn_now; 1701 rtmn_diff = ev_rt_now - mn_now;
1702#if EV_FEATURE_API
1703 invoke_cb = ev_invoke_pending;
1704#endif
1312 1705
1313 io_blocktime = 0.; 1706 io_blocktime = 0.;
1314 timeout_blocktime = 0.; 1707 timeout_blocktime = 0.;
1315 backend = 0; 1708 backend = 0;
1316 backend_fd = -1; 1709 backend_fd = -1;
1317 gotasync = 0; 1710 sig_pending = 0;
1711#if EV_ASYNC_ENABLE
1712 async_pending = 0;
1713#endif
1318#if EV_USE_INOTIFY 1714#if EV_USE_INOTIFY
1319 fs_fd = -2; 1715 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1320#endif 1716#endif
1321 1717#if EV_USE_SIGNALFD
1322 /* pid check not overridable via env */ 1718 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1323#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK)
1325 curpid = getpid ();
1326#endif 1719#endif
1327 1720
1328 if (!(flags & EVFLAG_NOENV) 1721 if (!(flags & EVBACKEND_MASK))
1329 && !enable_secure ()
1330 && getenv ("LIBEV_FLAGS"))
1331 flags = atoi (getenv ("LIBEV_FLAGS"));
1332
1333 if (!(flags & 0x0000ffffU))
1334 flags |= ev_recommended_backends (); 1722 flags |= ev_recommended_backends ();
1335 1723
1724#if EV_USE_IOCP
1725 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1726#endif
1336#if EV_USE_PORT 1727#if EV_USE_PORT
1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1728 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1338#endif 1729#endif
1339#if EV_USE_KQUEUE 1730#if EV_USE_KQUEUE
1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1731 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1347#endif 1738#endif
1348#if EV_USE_SELECT 1739#if EV_USE_SELECT
1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1740 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1350#endif 1741#endif
1351 1742
1743 ev_prepare_init (&pending_w, pendingcb);
1744
1745#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1352 ev_init (&pipeev, pipecb); 1746 ev_init (&pipe_w, pipecb);
1353 ev_set_priority (&pipeev, EV_MAXPRI); 1747 ev_set_priority (&pipe_w, EV_MAXPRI);
1748#endif
1354 } 1749 }
1355} 1750}
1356 1751
1357static void noinline 1752/* free up a loop structure */
1753void
1358loop_destroy (EV_P) 1754ev_loop_destroy (EV_P)
1359{ 1755{
1360 int i; 1756 int i;
1361 1757
1758#if EV_MULTIPLICITY
1759 /* mimic free (0) */
1760 if (!EV_A)
1761 return;
1762#endif
1763
1764#if EV_CLEANUP_ENABLE
1765 /* queue cleanup watchers (and execute them) */
1766 if (expect_false (cleanupcnt))
1767 {
1768 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1769 EV_INVOKE_PENDING;
1770 }
1771#endif
1772
1773#if EV_CHILD_ENABLE
1774 if (ev_is_active (&childev))
1775 {
1776 ev_ref (EV_A); /* child watcher */
1777 ev_signal_stop (EV_A_ &childev);
1778 }
1779#endif
1780
1362 if (ev_is_active (&pipeev)) 1781 if (ev_is_active (&pipe_w))
1363 { 1782 {
1364 ev_ref (EV_A); /* signal watcher */ 1783 /*ev_ref (EV_A);*/
1365 ev_io_stop (EV_A_ &pipeev); 1784 /*ev_io_stop (EV_A_ &pipe_w);*/
1366 1785
1367#if EV_USE_EVENTFD 1786#if EV_USE_EVENTFD
1368 if (evfd >= 0) 1787 if (evfd >= 0)
1369 close (evfd); 1788 close (evfd);
1370#endif 1789#endif
1371 1790
1372 if (evpipe [0] >= 0) 1791 if (evpipe [0] >= 0)
1373 { 1792 {
1374 close (evpipe [0]); 1793 EV_WIN32_CLOSE_FD (evpipe [0]);
1375 close (evpipe [1]); 1794 EV_WIN32_CLOSE_FD (evpipe [1]);
1376 } 1795 }
1377 } 1796 }
1797
1798#if EV_USE_SIGNALFD
1799 if (ev_is_active (&sigfd_w))
1800 close (sigfd);
1801#endif
1378 1802
1379#if EV_USE_INOTIFY 1803#if EV_USE_INOTIFY
1380 if (fs_fd >= 0) 1804 if (fs_fd >= 0)
1381 close (fs_fd); 1805 close (fs_fd);
1382#endif 1806#endif
1383 1807
1384 if (backend_fd >= 0) 1808 if (backend_fd >= 0)
1385 close (backend_fd); 1809 close (backend_fd);
1386 1810
1811#if EV_USE_IOCP
1812 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1813#endif
1387#if EV_USE_PORT 1814#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1815 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1389#endif 1816#endif
1390#if EV_USE_KQUEUE 1817#if EV_USE_KQUEUE
1391 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1818 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1406#if EV_IDLE_ENABLE 1833#if EV_IDLE_ENABLE
1407 array_free (idle, [i]); 1834 array_free (idle, [i]);
1408#endif 1835#endif
1409 } 1836 }
1410 1837
1411 ev_free (anfds); anfdmax = 0; 1838 ev_free (anfds); anfds = 0; anfdmax = 0;
1412 1839
1413 /* have to use the microsoft-never-gets-it-right macro */ 1840 /* have to use the microsoft-never-gets-it-right macro */
1841 array_free (rfeed, EMPTY);
1414 array_free (fdchange, EMPTY); 1842 array_free (fdchange, EMPTY);
1415 array_free (timer, EMPTY); 1843 array_free (timer, EMPTY);
1416#if EV_PERIODIC_ENABLE 1844#if EV_PERIODIC_ENABLE
1417 array_free (periodic, EMPTY); 1845 array_free (periodic, EMPTY);
1418#endif 1846#endif
1419#if EV_FORK_ENABLE 1847#if EV_FORK_ENABLE
1420 array_free (fork, EMPTY); 1848 array_free (fork, EMPTY);
1421#endif 1849#endif
1850#if EV_CLEANUP_ENABLE
1851 array_free (cleanup, EMPTY);
1852#endif
1422 array_free (prepare, EMPTY); 1853 array_free (prepare, EMPTY);
1423 array_free (check, EMPTY); 1854 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE 1855#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY); 1856 array_free (async, EMPTY);
1426#endif 1857#endif
1427 1858
1428 backend = 0; 1859 backend = 0;
1860
1861#if EV_MULTIPLICITY
1862 if (ev_is_default_loop (EV_A))
1863#endif
1864 ev_default_loop_ptr = 0;
1865#if EV_MULTIPLICITY
1866 else
1867 ev_free (EV_A);
1868#endif
1429} 1869}
1430 1870
1431#if EV_USE_INOTIFY 1871#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P); 1872inline_size void infy_fork (EV_P);
1433#endif 1873#endif
1434 1874
1435void inline_size 1875inline_size void
1436loop_fork (EV_P) 1876loop_fork (EV_P)
1437{ 1877{
1438#if EV_USE_PORT 1878#if EV_USE_PORT
1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1879 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1440#endif 1880#endif
1446#endif 1886#endif
1447#if EV_USE_INOTIFY 1887#if EV_USE_INOTIFY
1448 infy_fork (EV_A); 1888 infy_fork (EV_A);
1449#endif 1889#endif
1450 1890
1451 if (ev_is_active (&pipeev)) 1891 if (ev_is_active (&pipe_w))
1452 { 1892 {
1453 /* this "locks" the handlers against writing to the pipe */ 1893 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */ 1894 /* while we modify the fd vars */
1455 gotsig = 1; 1895 sig_pending = 1;
1456#if EV_ASYNC_ENABLE 1896#if EV_ASYNC_ENABLE
1457 gotasync = 1; 1897 async_pending = 1;
1458#endif 1898#endif
1459 1899
1460 ev_ref (EV_A); 1900 ev_ref (EV_A);
1461 ev_io_stop (EV_A_ &pipeev); 1901 ev_io_stop (EV_A_ &pipe_w);
1462 1902
1463#if EV_USE_EVENTFD 1903#if EV_USE_EVENTFD
1464 if (evfd >= 0) 1904 if (evfd >= 0)
1465 close (evfd); 1905 close (evfd);
1466#endif 1906#endif
1467 1907
1468 if (evpipe [0] >= 0) 1908 if (evpipe [0] >= 0)
1469 { 1909 {
1470 close (evpipe [0]); 1910 EV_WIN32_CLOSE_FD (evpipe [0]);
1471 close (evpipe [1]); 1911 EV_WIN32_CLOSE_FD (evpipe [1]);
1472 } 1912 }
1473 1913
1914#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1474 evpipe_init (EV_A); 1915 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */ 1916 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ); 1917 pipecb (EV_A_ &pipe_w, EV_READ);
1918#endif
1477 } 1919 }
1478 1920
1479 postfork = 0; 1921 postfork = 0;
1480} 1922}
1481 1923
1482#if EV_MULTIPLICITY 1924#if EV_MULTIPLICITY
1483 1925
1484struct ev_loop * 1926struct ev_loop *
1485ev_loop_new (unsigned int flags) 1927ev_loop_new (unsigned int flags)
1486{ 1928{
1487 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1929 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1488 1930
1489 memset (loop, 0, sizeof (struct ev_loop)); 1931 memset (EV_A, 0, sizeof (struct ev_loop));
1490
1491 loop_init (EV_A_ flags); 1932 loop_init (EV_A_ flags);
1492 1933
1493 if (ev_backend (EV_A)) 1934 if (ev_backend (EV_A))
1494 return loop; 1935 return EV_A;
1495 1936
1937 ev_free (EV_A);
1496 return 0; 1938 return 0;
1497} 1939}
1498 1940
1499void 1941#endif /* multiplicity */
1500ev_loop_destroy (EV_P)
1501{
1502 loop_destroy (EV_A);
1503 ev_free (loop);
1504}
1505
1506void
1507ev_loop_fork (EV_P)
1508{
1509 postfork = 1; /* must be in line with ev_default_fork */
1510}
1511 1942
1512#if EV_VERIFY 1943#if EV_VERIFY
1513void noinline 1944static void noinline
1514verify_watcher (EV_P_ W w) 1945verify_watcher (EV_P_ W w)
1515{ 1946{
1516 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 1947 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1517 1948
1518 if (w->pending) 1949 if (w->pending)
1519 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 1950 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1520} 1951}
1521 1952
1522static void noinline 1953static void noinline
1523verify_heap (EV_P_ ANHE *heap, int N) 1954verify_heap (EV_P_ ANHE *heap, int N)
1524{ 1955{
1525 int i; 1956 int i;
1526 1957
1527 for (i = HEAP0; i < N + HEAP0; ++i) 1958 for (i = HEAP0; i < N + HEAP0; ++i)
1528 { 1959 {
1529 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 1960 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1530 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 1961 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1531 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 1962 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1532 1963
1533 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 1964 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1534 } 1965 }
1535} 1966}
1536 1967
1537static void noinline 1968static void noinline
1538array_verify (EV_P_ W *ws, int cnt) 1969array_verify (EV_P_ W *ws, int cnt)
1539{ 1970{
1540 while (cnt--) 1971 while (cnt--)
1541 { 1972 {
1542 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 1973 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1543 verify_watcher (EV_A_ ws [cnt]); 1974 verify_watcher (EV_A_ ws [cnt]);
1544 } 1975 }
1545} 1976}
1546#endif 1977#endif
1547 1978
1979#if EV_FEATURE_API
1548void 1980void
1549ev_loop_verify (EV_P) 1981ev_verify (EV_P)
1550{ 1982{
1551#if EV_VERIFY 1983#if EV_VERIFY
1552 int i; 1984 int i;
1553 WL w; 1985 WL w;
1554 1986
1555 assert (activecnt >= -1); 1987 assert (activecnt >= -1);
1556 1988
1557 assert (fdchangemax >= fdchangecnt); 1989 assert (fdchangemax >= fdchangecnt);
1558 for (i = 0; i < fdchangecnt; ++i) 1990 for (i = 0; i < fdchangecnt; ++i)
1559 assert (("negative fd in fdchanges", fdchanges [i] >= 0)); 1991 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1560 1992
1561 assert (anfdmax >= 0); 1993 assert (anfdmax >= 0);
1562 for (i = 0; i < anfdmax; ++i) 1994 for (i = 0; i < anfdmax; ++i)
1563 for (w = anfds [i].head; w; w = w->next) 1995 for (w = anfds [i].head; w; w = w->next)
1564 { 1996 {
1565 verify_watcher (EV_A_ (W)w); 1997 verify_watcher (EV_A_ (W)w);
1566 assert (("inactive fd watcher on anfd list", ev_active (w) == 1)); 1998 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1567 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 1999 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1568 } 2000 }
1569 2001
1570 assert (timermax >= timercnt); 2002 assert (timermax >= timercnt);
1571 verify_heap (EV_A_ timers, timercnt); 2003 verify_heap (EV_A_ timers, timercnt);
1572 2004
1588#if EV_FORK_ENABLE 2020#if EV_FORK_ENABLE
1589 assert (forkmax >= forkcnt); 2021 assert (forkmax >= forkcnt);
1590 array_verify (EV_A_ (W *)forks, forkcnt); 2022 array_verify (EV_A_ (W *)forks, forkcnt);
1591#endif 2023#endif
1592 2024
2025#if EV_CLEANUP_ENABLE
2026 assert (cleanupmax >= cleanupcnt);
2027 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2028#endif
2029
1593#if EV_ASYNC_ENABLE 2030#if EV_ASYNC_ENABLE
1594 assert (asyncmax >= asynccnt); 2031 assert (asyncmax >= asynccnt);
1595 array_verify (EV_A_ (W *)asyncs, asynccnt); 2032 array_verify (EV_A_ (W *)asyncs, asynccnt);
1596#endif 2033#endif
1597 2034
2035#if EV_PREPARE_ENABLE
1598 assert (preparemax >= preparecnt); 2036 assert (preparemax >= preparecnt);
1599 array_verify (EV_A_ (W *)prepares, preparecnt); 2037 array_verify (EV_A_ (W *)prepares, preparecnt);
2038#endif
1600 2039
2040#if EV_CHECK_ENABLE
1601 assert (checkmax >= checkcnt); 2041 assert (checkmax >= checkcnt);
1602 array_verify (EV_A_ (W *)checks, checkcnt); 2042 array_verify (EV_A_ (W *)checks, checkcnt);
2043#endif
1603 2044
1604# if 0 2045# if 0
2046#if EV_CHILD_ENABLE
1605 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2047 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1606 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2048 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2049#endif
1607# endif 2050# endif
1608#endif 2051#endif
1609} 2052}
1610 2053#endif
1611#endif /* multiplicity */
1612 2054
1613#if EV_MULTIPLICITY 2055#if EV_MULTIPLICITY
1614struct ev_loop * 2056struct ev_loop *
1615ev_default_loop_init (unsigned int flags)
1616#else 2057#else
1617int 2058int
2059#endif
1618ev_default_loop (unsigned int flags) 2060ev_default_loop (unsigned int flags)
1619#endif
1620{ 2061{
1621 if (!ev_default_loop_ptr) 2062 if (!ev_default_loop_ptr)
1622 { 2063 {
1623#if EV_MULTIPLICITY 2064#if EV_MULTIPLICITY
1624 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2065 EV_P = ev_default_loop_ptr = &default_loop_struct;
1625#else 2066#else
1626 ev_default_loop_ptr = 1; 2067 ev_default_loop_ptr = 1;
1627#endif 2068#endif
1628 2069
1629 loop_init (EV_A_ flags); 2070 loop_init (EV_A_ flags);
1630 2071
1631 if (ev_backend (EV_A)) 2072 if (ev_backend (EV_A))
1632 { 2073 {
1633#ifndef _WIN32 2074#if EV_CHILD_ENABLE
1634 ev_signal_init (&childev, childcb, SIGCHLD); 2075 ev_signal_init (&childev, childcb, SIGCHLD);
1635 ev_set_priority (&childev, EV_MAXPRI); 2076 ev_set_priority (&childev, EV_MAXPRI);
1636 ev_signal_start (EV_A_ &childev); 2077 ev_signal_start (EV_A_ &childev);
1637 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2078 ev_unref (EV_A); /* child watcher should not keep loop alive */
1638#endif 2079#endif
1643 2084
1644 return ev_default_loop_ptr; 2085 return ev_default_loop_ptr;
1645} 2086}
1646 2087
1647void 2088void
1648ev_default_destroy (void) 2089ev_loop_fork (EV_P)
1649{ 2090{
1650#if EV_MULTIPLICITY
1651 struct ev_loop *loop = ev_default_loop_ptr;
1652#endif
1653
1654#ifndef _WIN32
1655 ev_ref (EV_A); /* child watcher */
1656 ev_signal_stop (EV_A_ &childev);
1657#endif
1658
1659 loop_destroy (EV_A);
1660}
1661
1662void
1663ev_default_fork (void)
1664{
1665#if EV_MULTIPLICITY
1666 struct ev_loop *loop = ev_default_loop_ptr;
1667#endif
1668
1669 if (backend)
1670 postfork = 1; /* must be in line with ev_loop_fork */ 2091 postfork = 1; /* must be in line with ev_default_fork */
1671} 2092}
1672 2093
1673/*****************************************************************************/ 2094/*****************************************************************************/
1674 2095
1675void 2096void
1676ev_invoke (EV_P_ void *w, int revents) 2097ev_invoke (EV_P_ void *w, int revents)
1677{ 2098{
1678 EV_CB_INVOKE ((W)w, revents); 2099 EV_CB_INVOKE ((W)w, revents);
1679} 2100}
1680 2101
1681void inline_speed 2102unsigned int
1682call_pending (EV_P) 2103ev_pending_count (EV_P)
2104{
2105 int pri;
2106 unsigned int count = 0;
2107
2108 for (pri = NUMPRI; pri--; )
2109 count += pendingcnt [pri];
2110
2111 return count;
2112}
2113
2114void noinline
2115ev_invoke_pending (EV_P)
1683{ 2116{
1684 int pri; 2117 int pri;
1685 2118
1686 for (pri = NUMPRI; pri--; ) 2119 for (pri = NUMPRI; pri--; )
1687 while (pendingcnt [pri]) 2120 while (pendingcnt [pri])
1688 { 2121 {
1689 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2122 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1690 2123
1691 if (expect_true (p->w))
1692 {
1693 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1694
1695 p->w->pending = 0; 2124 p->w->pending = 0;
1696 EV_CB_INVOKE (p->w, p->events); 2125 EV_CB_INVOKE (p->w, p->events);
1697 EV_FREQUENT_CHECK; 2126 EV_FREQUENT_CHECK;
1698 }
1699 } 2127 }
1700} 2128}
1701 2129
1702#if EV_IDLE_ENABLE 2130#if EV_IDLE_ENABLE
1703void inline_size 2131/* make idle watchers pending. this handles the "call-idle */
2132/* only when higher priorities are idle" logic */
2133inline_size void
1704idle_reify (EV_P) 2134idle_reify (EV_P)
1705{ 2135{
1706 if (expect_false (idleall)) 2136 if (expect_false (idleall))
1707 { 2137 {
1708 int pri; 2138 int pri;
1720 } 2150 }
1721 } 2151 }
1722} 2152}
1723#endif 2153#endif
1724 2154
1725void inline_size 2155/* make timers pending */
2156inline_size void
1726timers_reify (EV_P) 2157timers_reify (EV_P)
1727{ 2158{
1728 EV_FREQUENT_CHECK; 2159 EV_FREQUENT_CHECK;
1729 2160
1730 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2161 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1731 { 2162 {
1732 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2163 do
1733
1734 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1735
1736 /* first reschedule or stop timer */
1737 if (w->repeat)
1738 { 2164 {
2165 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2166
2167 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2168
2169 /* first reschedule or stop timer */
2170 if (w->repeat)
2171 {
1739 ev_at (w) += w->repeat; 2172 ev_at (w) += w->repeat;
1740 if (ev_at (w) < mn_now) 2173 if (ev_at (w) < mn_now)
1741 ev_at (w) = mn_now; 2174 ev_at (w) = mn_now;
1742 2175
1743 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2176 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1744 2177
1745 ANHE_at_cache (timers [HEAP0]); 2178 ANHE_at_cache (timers [HEAP0]);
1746 downheap (timers, timercnt, HEAP0); 2179 downheap (timers, timercnt, HEAP0);
2180 }
2181 else
2182 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2183
2184 EV_FREQUENT_CHECK;
2185 feed_reverse (EV_A_ (W)w);
1747 } 2186 }
1748 else 2187 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1749 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1750 2188
1751 EV_FREQUENT_CHECK; 2189 feed_reverse_done (EV_A_ EV_TIMER);
1752 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1753 } 2190 }
1754} 2191}
1755 2192
1756#if EV_PERIODIC_ENABLE 2193#if EV_PERIODIC_ENABLE
1757void inline_size 2194/* make periodics pending */
2195inline_size void
1758periodics_reify (EV_P) 2196periodics_reify (EV_P)
1759{ 2197{
1760 EV_FREQUENT_CHECK; 2198 EV_FREQUENT_CHECK;
1761 2199
1762 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2200 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1763 { 2201 {
1764 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2202 int feed_count = 0;
1765 2203
1766 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2204 do
1767
1768 /* first reschedule or stop timer */
1769 if (w->reschedule_cb)
1770 { 2205 {
2206 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2207
2208 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2209
2210 /* first reschedule or stop timer */
2211 if (w->reschedule_cb)
2212 {
1771 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2213 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1772 2214
1773 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2215 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1774 2216
1775 ANHE_at_cache (periodics [HEAP0]); 2217 ANHE_at_cache (periodics [HEAP0]);
1776 downheap (periodics, periodiccnt, HEAP0); 2218 downheap (periodics, periodiccnt, HEAP0);
2219 }
2220 else if (w->interval)
2221 {
2222 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2223 /* if next trigger time is not sufficiently in the future, put it there */
2224 /* this might happen because of floating point inexactness */
2225 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2226 {
2227 ev_at (w) += w->interval;
2228
2229 /* if interval is unreasonably low we might still have a time in the past */
2230 /* so correct this. this will make the periodic very inexact, but the user */
2231 /* has effectively asked to get triggered more often than possible */
2232 if (ev_at (w) < ev_rt_now)
2233 ev_at (w) = ev_rt_now;
2234 }
2235
2236 ANHE_at_cache (periodics [HEAP0]);
2237 downheap (periodics, periodiccnt, HEAP0);
2238 }
2239 else
2240 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2241
2242 EV_FREQUENT_CHECK;
2243 feed_reverse (EV_A_ (W)w);
1777 } 2244 }
1778 else if (w->interval) 2245 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1779 {
1780 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1781 /* if next trigger time is not sufficiently in the future, put it there */
1782 /* this might happen because of floating point inexactness */
1783 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1784 {
1785 ev_at (w) += w->interval;
1786 2246
1787 /* if interval is unreasonably low we might still have a time in the past */
1788 /* so correct this. this will make the periodic very inexact, but the user */
1789 /* has effectively asked to get triggered more often than possible */
1790 if (ev_at (w) < ev_rt_now)
1791 ev_at (w) = ev_rt_now;
1792 }
1793
1794 ANHE_at_cache (periodics [HEAP0]);
1795 downheap (periodics, periodiccnt, HEAP0);
1796 }
1797 else
1798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1799
1800 EV_FREQUENT_CHECK;
1801 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2247 feed_reverse_done (EV_A_ EV_PERIODIC);
1802 } 2248 }
1803} 2249}
1804 2250
2251/* simply recalculate all periodics */
2252/* TODO: maybe ensure that at least one event happens when jumping forward? */
1805static void noinline 2253static void noinline
1806periodics_reschedule (EV_P) 2254periodics_reschedule (EV_P)
1807{ 2255{
1808 int i; 2256 int i;
1809 2257
1822 2270
1823 reheap (periodics, periodiccnt); 2271 reheap (periodics, periodiccnt);
1824} 2272}
1825#endif 2273#endif
1826 2274
1827void inline_speed 2275/* adjust all timers by a given offset */
2276static void noinline
2277timers_reschedule (EV_P_ ev_tstamp adjust)
2278{
2279 int i;
2280
2281 for (i = 0; i < timercnt; ++i)
2282 {
2283 ANHE *he = timers + i + HEAP0;
2284 ANHE_w (*he)->at += adjust;
2285 ANHE_at_cache (*he);
2286 }
2287}
2288
2289/* fetch new monotonic and realtime times from the kernel */
2290/* also detect if there was a timejump, and act accordingly */
2291inline_speed void
1828time_update (EV_P_ ev_tstamp max_block) 2292time_update (EV_P_ ev_tstamp max_block)
1829{ 2293{
1830 int i;
1831
1832#if EV_USE_MONOTONIC 2294#if EV_USE_MONOTONIC
1833 if (expect_true (have_monotonic)) 2295 if (expect_true (have_monotonic))
1834 { 2296 {
2297 int i;
1835 ev_tstamp odiff = rtmn_diff; 2298 ev_tstamp odiff = rtmn_diff;
1836 2299
1837 mn_now = get_clock (); 2300 mn_now = get_clock ();
1838 2301
1839 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2302 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1865 ev_rt_now = ev_time (); 2328 ev_rt_now = ev_time ();
1866 mn_now = get_clock (); 2329 mn_now = get_clock ();
1867 now_floor = mn_now; 2330 now_floor = mn_now;
1868 } 2331 }
1869 2332
2333 /* no timer adjustment, as the monotonic clock doesn't jump */
2334 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1870# if EV_PERIODIC_ENABLE 2335# if EV_PERIODIC_ENABLE
1871 periodics_reschedule (EV_A); 2336 periodics_reschedule (EV_A);
1872# endif 2337# endif
1873 /* no timer adjustment, as the monotonic clock doesn't jump */
1874 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1875 } 2338 }
1876 else 2339 else
1877#endif 2340#endif
1878 { 2341 {
1879 ev_rt_now = ev_time (); 2342 ev_rt_now = ev_time ();
1880 2343
1881 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2344 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1882 { 2345 {
2346 /* adjust timers. this is easy, as the offset is the same for all of them */
2347 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1883#if EV_PERIODIC_ENABLE 2348#if EV_PERIODIC_ENABLE
1884 periodics_reschedule (EV_A); 2349 periodics_reschedule (EV_A);
1885#endif 2350#endif
1886 /* adjust timers. this is easy, as the offset is the same for all of them */
1887 for (i = 0; i < timercnt; ++i)
1888 {
1889 ANHE *he = timers + i + HEAP0;
1890 ANHE_w (*he)->at += ev_rt_now - mn_now;
1891 ANHE_at_cache (*he);
1892 }
1893 } 2351 }
1894 2352
1895 mn_now = ev_rt_now; 2353 mn_now = ev_rt_now;
1896 } 2354 }
1897} 2355}
1898 2356
1899void 2357void
1900ev_ref (EV_P)
1901{
1902 ++activecnt;
1903}
1904
1905void
1906ev_unref (EV_P)
1907{
1908 --activecnt;
1909}
1910
1911static int loop_done;
1912
1913void
1914ev_loop (EV_P_ int flags) 2358ev_run (EV_P_ int flags)
1915{ 2359{
2360#if EV_FEATURE_API
2361 ++loop_depth;
2362#endif
2363
2364 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2365
1916 loop_done = EVUNLOOP_CANCEL; 2366 loop_done = EVBREAK_CANCEL;
1917 2367
1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2368 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1919 2369
1920 do 2370 do
1921 { 2371 {
1922#if EV_VERIFY >= 2 2372#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A); 2373 ev_verify (EV_A);
1924#endif 2374#endif
1925 2375
1926#ifndef _WIN32 2376#ifndef _WIN32
1927 if (expect_false (curpid)) /* penalise the forking check even more */ 2377 if (expect_false (curpid)) /* penalise the forking check even more */
1928 if (expect_false (getpid () != curpid)) 2378 if (expect_false (getpid () != curpid))
1936 /* we might have forked, so queue fork handlers */ 2386 /* we might have forked, so queue fork handlers */
1937 if (expect_false (postfork)) 2387 if (expect_false (postfork))
1938 if (forkcnt) 2388 if (forkcnt)
1939 { 2389 {
1940 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2390 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1941 call_pending (EV_A); 2391 EV_INVOKE_PENDING;
1942 } 2392 }
1943#endif 2393#endif
1944 2394
2395#if EV_PREPARE_ENABLE
1945 /* queue prepare watchers (and execute them) */ 2396 /* queue prepare watchers (and execute them) */
1946 if (expect_false (preparecnt)) 2397 if (expect_false (preparecnt))
1947 { 2398 {
1948 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1949 call_pending (EV_A); 2400 EV_INVOKE_PENDING;
1950 } 2401 }
2402#endif
1951 2403
1952 if (expect_false (!activecnt)) 2404 if (expect_false (loop_done))
1953 break; 2405 break;
1954 2406
1955 /* we might have forked, so reify kernel state if necessary */ 2407 /* we might have forked, so reify kernel state if necessary */
1956 if (expect_false (postfork)) 2408 if (expect_false (postfork))
1957 loop_fork (EV_A); 2409 loop_fork (EV_A);
1962 /* calculate blocking time */ 2414 /* calculate blocking time */
1963 { 2415 {
1964 ev_tstamp waittime = 0.; 2416 ev_tstamp waittime = 0.;
1965 ev_tstamp sleeptime = 0.; 2417 ev_tstamp sleeptime = 0.;
1966 2418
2419 /* remember old timestamp for io_blocktime calculation */
2420 ev_tstamp prev_mn_now = mn_now;
2421
2422 /* update time to cancel out callback processing overhead */
2423 time_update (EV_A_ 1e100);
2424
1967 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2425 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1968 { 2426 {
1969 /* update time to cancel out callback processing overhead */
1970 time_update (EV_A_ 1e100);
1971
1972 waittime = MAX_BLOCKTIME; 2427 waittime = MAX_BLOCKTIME;
1973 2428
1974 if (timercnt) 2429 if (timercnt)
1975 { 2430 {
1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2431 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2438 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1984 if (waittime > to) waittime = to; 2439 if (waittime > to) waittime = to;
1985 } 2440 }
1986#endif 2441#endif
1987 2442
2443 /* don't let timeouts decrease the waittime below timeout_blocktime */
1988 if (expect_false (waittime < timeout_blocktime)) 2444 if (expect_false (waittime < timeout_blocktime))
1989 waittime = timeout_blocktime; 2445 waittime = timeout_blocktime;
1990 2446
1991 sleeptime = waittime - backend_fudge; 2447 /* extra check because io_blocktime is commonly 0 */
1992
1993 if (expect_true (sleeptime > io_blocktime)) 2448 if (expect_false (io_blocktime))
1994 sleeptime = io_blocktime;
1995
1996 if (sleeptime)
1997 { 2449 {
2450 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2451
2452 if (sleeptime > waittime - backend_fudge)
2453 sleeptime = waittime - backend_fudge;
2454
2455 if (expect_true (sleeptime > 0.))
2456 {
1998 ev_sleep (sleeptime); 2457 ev_sleep (sleeptime);
1999 waittime -= sleeptime; 2458 waittime -= sleeptime;
2459 }
2000 } 2460 }
2001 } 2461 }
2002 2462
2463#if EV_FEATURE_API
2003 ++loop_count; 2464 ++loop_count;
2465#endif
2466 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2004 backend_poll (EV_A_ waittime); 2467 backend_poll (EV_A_ waittime);
2468 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2005 2469
2006 /* update ev_rt_now, do magic */ 2470 /* update ev_rt_now, do magic */
2007 time_update (EV_A_ waittime + sleeptime); 2471 time_update (EV_A_ waittime + sleeptime);
2008 } 2472 }
2009 2473
2016#if EV_IDLE_ENABLE 2480#if EV_IDLE_ENABLE
2017 /* queue idle watchers unless other events are pending */ 2481 /* queue idle watchers unless other events are pending */
2018 idle_reify (EV_A); 2482 idle_reify (EV_A);
2019#endif 2483#endif
2020 2484
2485#if EV_CHECK_ENABLE
2021 /* queue check watchers, to be executed first */ 2486 /* queue check watchers, to be executed first */
2022 if (expect_false (checkcnt)) 2487 if (expect_false (checkcnt))
2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2488 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2489#endif
2024 2490
2025 call_pending (EV_A); 2491 EV_INVOKE_PENDING;
2026 } 2492 }
2027 while (expect_true ( 2493 while (expect_true (
2028 activecnt 2494 activecnt
2029 && !loop_done 2495 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2496 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2031 )); 2497 ));
2032 2498
2033 if (loop_done == EVUNLOOP_ONE) 2499 if (loop_done == EVBREAK_ONE)
2034 loop_done = EVUNLOOP_CANCEL; 2500 loop_done = EVBREAK_CANCEL;
2035}
2036 2501
2502#if EV_FEATURE_API
2503 --loop_depth;
2504#endif
2505}
2506
2037void 2507void
2038ev_unloop (EV_P_ int how) 2508ev_break (EV_P_ int how)
2039{ 2509{
2040 loop_done = how; 2510 loop_done = how;
2041} 2511}
2042 2512
2513void
2514ev_ref (EV_P)
2515{
2516 ++activecnt;
2517}
2518
2519void
2520ev_unref (EV_P)
2521{
2522 --activecnt;
2523}
2524
2525void
2526ev_now_update (EV_P)
2527{
2528 time_update (EV_A_ 1e100);
2529}
2530
2531void
2532ev_suspend (EV_P)
2533{
2534 ev_now_update (EV_A);
2535}
2536
2537void
2538ev_resume (EV_P)
2539{
2540 ev_tstamp mn_prev = mn_now;
2541
2542 ev_now_update (EV_A);
2543 timers_reschedule (EV_A_ mn_now - mn_prev);
2544#if EV_PERIODIC_ENABLE
2545 /* TODO: really do this? */
2546 periodics_reschedule (EV_A);
2547#endif
2548}
2549
2043/*****************************************************************************/ 2550/*****************************************************************************/
2551/* singly-linked list management, used when the expected list length is short */
2044 2552
2045void inline_size 2553inline_size void
2046wlist_add (WL *head, WL elem) 2554wlist_add (WL *head, WL elem)
2047{ 2555{
2048 elem->next = *head; 2556 elem->next = *head;
2049 *head = elem; 2557 *head = elem;
2050} 2558}
2051 2559
2052void inline_size 2560inline_size void
2053wlist_del (WL *head, WL elem) 2561wlist_del (WL *head, WL elem)
2054{ 2562{
2055 while (*head) 2563 while (*head)
2056 { 2564 {
2057 if (*head == elem) 2565 if (expect_true (*head == elem))
2058 { 2566 {
2059 *head = elem->next; 2567 *head = elem->next;
2060 return; 2568 break;
2061 } 2569 }
2062 2570
2063 head = &(*head)->next; 2571 head = &(*head)->next;
2064 } 2572 }
2065} 2573}
2066 2574
2067void inline_speed 2575/* internal, faster, version of ev_clear_pending */
2576inline_speed void
2068clear_pending (EV_P_ W w) 2577clear_pending (EV_P_ W w)
2069{ 2578{
2070 if (w->pending) 2579 if (w->pending)
2071 { 2580 {
2072 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2581 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2073 w->pending = 0; 2582 w->pending = 0;
2074 } 2583 }
2075} 2584}
2076 2585
2077int 2586int
2081 int pending = w_->pending; 2590 int pending = w_->pending;
2082 2591
2083 if (expect_true (pending)) 2592 if (expect_true (pending))
2084 { 2593 {
2085 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2594 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2595 p->w = (W)&pending_w;
2086 w_->pending = 0; 2596 w_->pending = 0;
2087 p->w = 0;
2088 return p->events; 2597 return p->events;
2089 } 2598 }
2090 else 2599 else
2091 return 0; 2600 return 0;
2092} 2601}
2093 2602
2094void inline_size 2603inline_size void
2095pri_adjust (EV_P_ W w) 2604pri_adjust (EV_P_ W w)
2096{ 2605{
2097 int pri = w->priority; 2606 int pri = ev_priority (w);
2098 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2607 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2099 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2608 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2100 w->priority = pri; 2609 ev_set_priority (w, pri);
2101} 2610}
2102 2611
2103void inline_speed 2612inline_speed void
2104ev_start (EV_P_ W w, int active) 2613ev_start (EV_P_ W w, int active)
2105{ 2614{
2106 pri_adjust (EV_A_ w); 2615 pri_adjust (EV_A_ w);
2107 w->active = active; 2616 w->active = active;
2108 ev_ref (EV_A); 2617 ev_ref (EV_A);
2109} 2618}
2110 2619
2111void inline_size 2620inline_size void
2112ev_stop (EV_P_ W w) 2621ev_stop (EV_P_ W w)
2113{ 2622{
2114 ev_unref (EV_A); 2623 ev_unref (EV_A);
2115 w->active = 0; 2624 w->active = 0;
2116} 2625}
2123 int fd = w->fd; 2632 int fd = w->fd;
2124 2633
2125 if (expect_false (ev_is_active (w))) 2634 if (expect_false (ev_is_active (w)))
2126 return; 2635 return;
2127 2636
2128 assert (("ev_io_start called with negative fd", fd >= 0)); 2637 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2638 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2129 2639
2130 EV_FREQUENT_CHECK; 2640 EV_FREQUENT_CHECK;
2131 2641
2132 ev_start (EV_A_ (W)w, 1); 2642 ev_start (EV_A_ (W)w, 1);
2133 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2643 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2134 wlist_add (&anfds[fd].head, (WL)w); 2644 wlist_add (&anfds[fd].head, (WL)w);
2135 2645
2136 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2646 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2137 w->events &= ~EV_IOFDSET; 2647 w->events &= ~EV__IOFDSET;
2138 2648
2139 EV_FREQUENT_CHECK; 2649 EV_FREQUENT_CHECK;
2140} 2650}
2141 2651
2142void noinline 2652void noinline
2144{ 2654{
2145 clear_pending (EV_A_ (W)w); 2655 clear_pending (EV_A_ (W)w);
2146 if (expect_false (!ev_is_active (w))) 2656 if (expect_false (!ev_is_active (w)))
2147 return; 2657 return;
2148 2658
2149 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2659 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2150 2660
2151 EV_FREQUENT_CHECK; 2661 EV_FREQUENT_CHECK;
2152 2662
2153 wlist_del (&anfds[w->fd].head, (WL)w); 2663 wlist_del (&anfds[w->fd].head, (WL)w);
2154 ev_stop (EV_A_ (W)w); 2664 ev_stop (EV_A_ (W)w);
2155 2665
2156 fd_change (EV_A_ w->fd, 1); 2666 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2157 2667
2158 EV_FREQUENT_CHECK; 2668 EV_FREQUENT_CHECK;
2159} 2669}
2160 2670
2161void noinline 2671void noinline
2164 if (expect_false (ev_is_active (w))) 2674 if (expect_false (ev_is_active (w)))
2165 return; 2675 return;
2166 2676
2167 ev_at (w) += mn_now; 2677 ev_at (w) += mn_now;
2168 2678
2169 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2679 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2170 2680
2171 EV_FREQUENT_CHECK; 2681 EV_FREQUENT_CHECK;
2172 2682
2173 ++timercnt; 2683 ++timercnt;
2174 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 2684 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2177 ANHE_at_cache (timers [ev_active (w)]); 2687 ANHE_at_cache (timers [ev_active (w)]);
2178 upheap (timers, ev_active (w)); 2688 upheap (timers, ev_active (w));
2179 2689
2180 EV_FREQUENT_CHECK; 2690 EV_FREQUENT_CHECK;
2181 2691
2182 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2692 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2183} 2693}
2184 2694
2185void noinline 2695void noinline
2186ev_timer_stop (EV_P_ ev_timer *w) 2696ev_timer_stop (EV_P_ ev_timer *w)
2187{ 2697{
2192 EV_FREQUENT_CHECK; 2702 EV_FREQUENT_CHECK;
2193 2703
2194 { 2704 {
2195 int active = ev_active (w); 2705 int active = ev_active (w);
2196 2706
2197 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2707 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2198 2708
2199 --timercnt; 2709 --timercnt;
2200 2710
2201 if (expect_true (active < timercnt + HEAP0)) 2711 if (expect_true (active < timercnt + HEAP0))
2202 { 2712 {
2203 timers [active] = timers [timercnt + HEAP0]; 2713 timers [active] = timers [timercnt + HEAP0];
2204 adjustheap (timers, timercnt, active); 2714 adjustheap (timers, timercnt, active);
2205 } 2715 }
2206 } 2716 }
2207 2717
2208 EV_FREQUENT_CHECK;
2209
2210 ev_at (w) -= mn_now; 2718 ev_at (w) -= mn_now;
2211 2719
2212 ev_stop (EV_A_ (W)w); 2720 ev_stop (EV_A_ (W)w);
2721
2722 EV_FREQUENT_CHECK;
2213} 2723}
2214 2724
2215void noinline 2725void noinline
2216ev_timer_again (EV_P_ ev_timer *w) 2726ev_timer_again (EV_P_ ev_timer *w)
2217{ 2727{
2235 } 2745 }
2236 2746
2237 EV_FREQUENT_CHECK; 2747 EV_FREQUENT_CHECK;
2238} 2748}
2239 2749
2750ev_tstamp
2751ev_timer_remaining (EV_P_ ev_timer *w)
2752{
2753 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2754}
2755
2240#if EV_PERIODIC_ENABLE 2756#if EV_PERIODIC_ENABLE
2241void noinline 2757void noinline
2242ev_periodic_start (EV_P_ ev_periodic *w) 2758ev_periodic_start (EV_P_ ev_periodic *w)
2243{ 2759{
2244 if (expect_false (ev_is_active (w))) 2760 if (expect_false (ev_is_active (w)))
2246 2762
2247 if (w->reschedule_cb) 2763 if (w->reschedule_cb)
2248 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2764 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2249 else if (w->interval) 2765 else if (w->interval)
2250 { 2766 {
2251 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2767 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2252 /* this formula differs from the one in periodic_reify because we do not always round up */ 2768 /* this formula differs from the one in periodic_reify because we do not always round up */
2253 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2769 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2254 } 2770 }
2255 else 2771 else
2256 ev_at (w) = w->offset; 2772 ev_at (w) = w->offset;
2264 ANHE_at_cache (periodics [ev_active (w)]); 2780 ANHE_at_cache (periodics [ev_active (w)]);
2265 upheap (periodics, ev_active (w)); 2781 upheap (periodics, ev_active (w));
2266 2782
2267 EV_FREQUENT_CHECK; 2783 EV_FREQUENT_CHECK;
2268 2784
2269 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2785 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2270} 2786}
2271 2787
2272void noinline 2788void noinline
2273ev_periodic_stop (EV_P_ ev_periodic *w) 2789ev_periodic_stop (EV_P_ ev_periodic *w)
2274{ 2790{
2279 EV_FREQUENT_CHECK; 2795 EV_FREQUENT_CHECK;
2280 2796
2281 { 2797 {
2282 int active = ev_active (w); 2798 int active = ev_active (w);
2283 2799
2284 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2800 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2285 2801
2286 --periodiccnt; 2802 --periodiccnt;
2287 2803
2288 if (expect_true (active < periodiccnt + HEAP0)) 2804 if (expect_true (active < periodiccnt + HEAP0))
2289 { 2805 {
2290 periodics [active] = periodics [periodiccnt + HEAP0]; 2806 periodics [active] = periodics [periodiccnt + HEAP0];
2291 adjustheap (periodics, periodiccnt, active); 2807 adjustheap (periodics, periodiccnt, active);
2292 } 2808 }
2293 } 2809 }
2294 2810
2295 EV_FREQUENT_CHECK;
2296
2297 ev_stop (EV_A_ (W)w); 2811 ev_stop (EV_A_ (W)w);
2812
2813 EV_FREQUENT_CHECK;
2298} 2814}
2299 2815
2300void noinline 2816void noinline
2301ev_periodic_again (EV_P_ ev_periodic *w) 2817ev_periodic_again (EV_P_ ev_periodic *w)
2302{ 2818{
2308 2824
2309#ifndef SA_RESTART 2825#ifndef SA_RESTART
2310# define SA_RESTART 0 2826# define SA_RESTART 0
2311#endif 2827#endif
2312 2828
2829#if EV_SIGNAL_ENABLE
2830
2313void noinline 2831void noinline
2314ev_signal_start (EV_P_ ev_signal *w) 2832ev_signal_start (EV_P_ ev_signal *w)
2315{ 2833{
2316#if EV_MULTIPLICITY
2317 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2318#endif
2319 if (expect_false (ev_is_active (w))) 2834 if (expect_false (ev_is_active (w)))
2320 return; 2835 return;
2321 2836
2322 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2837 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2323 2838
2324 evpipe_init (EV_A); 2839#if EV_MULTIPLICITY
2840 assert (("libev: a signal must not be attached to two different loops",
2841 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2325 2842
2326 EV_FREQUENT_CHECK; 2843 signals [w->signum - 1].loop = EV_A;
2844#endif
2327 2845
2846 EV_FREQUENT_CHECK;
2847
2848#if EV_USE_SIGNALFD
2849 if (sigfd == -2)
2328 { 2850 {
2329#ifndef _WIN32 2851 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2330 sigset_t full, prev; 2852 if (sigfd < 0 && errno == EINVAL)
2331 sigfillset (&full); 2853 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2332 sigprocmask (SIG_SETMASK, &full, &prev);
2333#endif
2334 2854
2335 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2855 if (sigfd >= 0)
2856 {
2857 fd_intern (sigfd); /* doing it twice will not hurt */
2336 2858
2337#ifndef _WIN32 2859 sigemptyset (&sigfd_set);
2338 sigprocmask (SIG_SETMASK, &prev, 0); 2860
2339#endif 2861 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2862 ev_set_priority (&sigfd_w, EV_MAXPRI);
2863 ev_io_start (EV_A_ &sigfd_w);
2864 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2865 }
2340 } 2866 }
2867
2868 if (sigfd >= 0)
2869 {
2870 /* TODO: check .head */
2871 sigaddset (&sigfd_set, w->signum);
2872 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2873
2874 signalfd (sigfd, &sigfd_set, 0);
2875 }
2876#endif
2341 2877
2342 ev_start (EV_A_ (W)w, 1); 2878 ev_start (EV_A_ (W)w, 1);
2343 wlist_add (&signals [w->signum - 1].head, (WL)w); 2879 wlist_add (&signals [w->signum - 1].head, (WL)w);
2344 2880
2345 if (!((WL)w)->next) 2881 if (!((WL)w)->next)
2882# if EV_USE_SIGNALFD
2883 if (sigfd < 0) /*TODO*/
2884# endif
2346 { 2885 {
2347#if _WIN32 2886# ifdef _WIN32
2887 evpipe_init (EV_A);
2888
2348 signal (w->signum, ev_sighandler); 2889 signal (w->signum, ev_sighandler);
2349#else 2890# else
2350 struct sigaction sa; 2891 struct sigaction sa;
2892
2893 evpipe_init (EV_A);
2894
2351 sa.sa_handler = ev_sighandler; 2895 sa.sa_handler = ev_sighandler;
2352 sigfillset (&sa.sa_mask); 2896 sigfillset (&sa.sa_mask);
2353 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2897 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2354 sigaction (w->signum, &sa, 0); 2898 sigaction (w->signum, &sa, 0);
2899
2900 if (origflags & EVFLAG_NOSIGMASK)
2901 {
2902 sigemptyset (&sa.sa_mask);
2903 sigaddset (&sa.sa_mask, w->signum);
2904 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2905 }
2355#endif 2906#endif
2356 } 2907 }
2357 2908
2358 EV_FREQUENT_CHECK; 2909 EV_FREQUENT_CHECK;
2359} 2910}
2360 2911
2361void noinline 2912void noinline
2369 2920
2370 wlist_del (&signals [w->signum - 1].head, (WL)w); 2921 wlist_del (&signals [w->signum - 1].head, (WL)w);
2371 ev_stop (EV_A_ (W)w); 2922 ev_stop (EV_A_ (W)w);
2372 2923
2373 if (!signals [w->signum - 1].head) 2924 if (!signals [w->signum - 1].head)
2925 {
2926#if EV_MULTIPLICITY
2927 signals [w->signum - 1].loop = 0; /* unattach from signal */
2928#endif
2929#if EV_USE_SIGNALFD
2930 if (sigfd >= 0)
2931 {
2932 sigset_t ss;
2933
2934 sigemptyset (&ss);
2935 sigaddset (&ss, w->signum);
2936 sigdelset (&sigfd_set, w->signum);
2937
2938 signalfd (sigfd, &sigfd_set, 0);
2939 sigprocmask (SIG_UNBLOCK, &ss, 0);
2940 }
2941 else
2942#endif
2374 signal (w->signum, SIG_DFL); 2943 signal (w->signum, SIG_DFL);
2944 }
2375 2945
2376 EV_FREQUENT_CHECK; 2946 EV_FREQUENT_CHECK;
2377} 2947}
2948
2949#endif
2950
2951#if EV_CHILD_ENABLE
2378 2952
2379void 2953void
2380ev_child_start (EV_P_ ev_child *w) 2954ev_child_start (EV_P_ ev_child *w)
2381{ 2955{
2382#if EV_MULTIPLICITY 2956#if EV_MULTIPLICITY
2383 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2957 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2384#endif 2958#endif
2385 if (expect_false (ev_is_active (w))) 2959 if (expect_false (ev_is_active (w)))
2386 return; 2960 return;
2387 2961
2388 EV_FREQUENT_CHECK; 2962 EV_FREQUENT_CHECK;
2389 2963
2390 ev_start (EV_A_ (W)w, 1); 2964 ev_start (EV_A_ (W)w, 1);
2391 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2965 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2392 2966
2393 EV_FREQUENT_CHECK; 2967 EV_FREQUENT_CHECK;
2394} 2968}
2395 2969
2396void 2970void
2400 if (expect_false (!ev_is_active (w))) 2974 if (expect_false (!ev_is_active (w)))
2401 return; 2975 return;
2402 2976
2403 EV_FREQUENT_CHECK; 2977 EV_FREQUENT_CHECK;
2404 2978
2405 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2979 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2406 ev_stop (EV_A_ (W)w); 2980 ev_stop (EV_A_ (W)w);
2407 2981
2408 EV_FREQUENT_CHECK; 2982 EV_FREQUENT_CHECK;
2409} 2983}
2984
2985#endif
2410 2986
2411#if EV_STAT_ENABLE 2987#if EV_STAT_ENABLE
2412 2988
2413# ifdef _WIN32 2989# ifdef _WIN32
2414# undef lstat 2990# undef lstat
2415# define lstat(a,b) _stati64 (a,b) 2991# define lstat(a,b) _stati64 (a,b)
2416# endif 2992# endif
2417 2993
2418#define DEF_STAT_INTERVAL 5.0074891 2994#define DEF_STAT_INTERVAL 5.0074891
2995#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2419#define MIN_STAT_INTERVAL 0.1074891 2996#define MIN_STAT_INTERVAL 0.1074891
2420 2997
2421static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2998static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2422 2999
2423#if EV_USE_INOTIFY 3000#if EV_USE_INOTIFY
2424# define EV_INOTIFY_BUFSIZE 8192 3001
3002/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3003# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2425 3004
2426static void noinline 3005static void noinline
2427infy_add (EV_P_ ev_stat *w) 3006infy_add (EV_P_ ev_stat *w)
2428{ 3007{
2429 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3008 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2430 3009
2431 if (w->wd < 0) 3010 if (w->wd >= 0)
3011 {
3012 struct statfs sfs;
3013
3014 /* now local changes will be tracked by inotify, but remote changes won't */
3015 /* unless the filesystem is known to be local, we therefore still poll */
3016 /* also do poll on <2.6.25, but with normal frequency */
3017
3018 if (!fs_2625)
3019 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3020 else if (!statfs (w->path, &sfs)
3021 && (sfs.f_type == 0x1373 /* devfs */
3022 || sfs.f_type == 0xEF53 /* ext2/3 */
3023 || sfs.f_type == 0x3153464a /* jfs */
3024 || sfs.f_type == 0x52654973 /* reiser3 */
3025 || sfs.f_type == 0x01021994 /* tempfs */
3026 || sfs.f_type == 0x58465342 /* xfs */))
3027 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3028 else
3029 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2432 { 3030 }
2433 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3031 else
3032 {
3033 /* can't use inotify, continue to stat */
3034 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2434 3035
2435 /* monitor some parent directory for speedup hints */ 3036 /* if path is not there, monitor some parent directory for speedup hints */
2436 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3037 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2437 /* but an efficiency issue only */ 3038 /* but an efficiency issue only */
2438 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3039 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2439 { 3040 {
2440 char path [4096]; 3041 char path [4096];
2441 strcpy (path, w->path); 3042 strcpy (path, w->path);
2445 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3046 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2446 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3047 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2447 3048
2448 char *pend = strrchr (path, '/'); 3049 char *pend = strrchr (path, '/');
2449 3050
2450 if (!pend) 3051 if (!pend || pend == path)
2451 break; /* whoops, no '/', complain to your admin */ 3052 break;
2452 3053
2453 *pend = 0; 3054 *pend = 0;
2454 w->wd = inotify_add_watch (fs_fd, path, mask); 3055 w->wd = inotify_add_watch (fs_fd, path, mask);
2455 } 3056 }
2456 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3057 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2457 } 3058 }
2458 } 3059 }
2459 else
2460 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2461 3060
2462 if (w->wd >= 0) 3061 if (w->wd >= 0)
2463 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3062 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3063
3064 /* now re-arm timer, if required */
3065 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3066 ev_timer_again (EV_A_ &w->timer);
3067 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2464} 3068}
2465 3069
2466static void noinline 3070static void noinline
2467infy_del (EV_P_ ev_stat *w) 3071infy_del (EV_P_ ev_stat *w)
2468{ 3072{
2471 3075
2472 if (wd < 0) 3076 if (wd < 0)
2473 return; 3077 return;
2474 3078
2475 w->wd = -2; 3079 w->wd = -2;
2476 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3080 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2477 wlist_del (&fs_hash [slot].head, (WL)w); 3081 wlist_del (&fs_hash [slot].head, (WL)w);
2478 3082
2479 /* remove this watcher, if others are watching it, they will rearm */ 3083 /* remove this watcher, if others are watching it, they will rearm */
2480 inotify_rm_watch (fs_fd, wd); 3084 inotify_rm_watch (fs_fd, wd);
2481} 3085}
2482 3086
2483static void noinline 3087static void noinline
2484infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3088infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2485{ 3089{
2486 if (slot < 0) 3090 if (slot < 0)
2487 /* overflow, need to check for all hahs slots */ 3091 /* overflow, need to check for all hash slots */
2488 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3092 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2489 infy_wd (EV_A_ slot, wd, ev); 3093 infy_wd (EV_A_ slot, wd, ev);
2490 else 3094 else
2491 { 3095 {
2492 WL w_; 3096 WL w_;
2493 3097
2494 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3098 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2495 { 3099 {
2496 ev_stat *w = (ev_stat *)w_; 3100 ev_stat *w = (ev_stat *)w_;
2497 w_ = w_->next; /* lets us remove this watcher and all before it */ 3101 w_ = w_->next; /* lets us remove this watcher and all before it */
2498 3102
2499 if (w->wd == wd || wd == -1) 3103 if (w->wd == wd || wd == -1)
2500 { 3104 {
2501 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3105 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2502 { 3106 {
3107 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2503 w->wd = -1; 3108 w->wd = -1;
2504 infy_add (EV_A_ w); /* re-add, no matter what */ 3109 infy_add (EV_A_ w); /* re-add, no matter what */
2505 } 3110 }
2506 3111
2507 stat_timer_cb (EV_A_ &w->timer, 0); 3112 stat_timer_cb (EV_A_ &w->timer, 0);
2512 3117
2513static void 3118static void
2514infy_cb (EV_P_ ev_io *w, int revents) 3119infy_cb (EV_P_ ev_io *w, int revents)
2515{ 3120{
2516 char buf [EV_INOTIFY_BUFSIZE]; 3121 char buf [EV_INOTIFY_BUFSIZE];
2517 struct inotify_event *ev = (struct inotify_event *)buf;
2518 int ofs; 3122 int ofs;
2519 int len = read (fs_fd, buf, sizeof (buf)); 3123 int len = read (fs_fd, buf, sizeof (buf));
2520 3124
2521 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3125 for (ofs = 0; ofs < len; )
3126 {
3127 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2522 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3128 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3129 ofs += sizeof (struct inotify_event) + ev->len;
3130 }
2523} 3131}
2524 3132
2525void inline_size 3133inline_size void
3134ev_check_2625 (EV_P)
3135{
3136 /* kernels < 2.6.25 are borked
3137 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3138 */
3139 if (ev_linux_version () < 0x020619)
3140 return;
3141
3142 fs_2625 = 1;
3143}
3144
3145inline_size int
3146infy_newfd (void)
3147{
3148#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3149 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3150 if (fd >= 0)
3151 return fd;
3152#endif
3153 return inotify_init ();
3154}
3155
3156inline_size void
2526infy_init (EV_P) 3157infy_init (EV_P)
2527{ 3158{
2528 if (fs_fd != -2) 3159 if (fs_fd != -2)
2529 return; 3160 return;
2530 3161
3162 fs_fd = -1;
3163
3164 ev_check_2625 (EV_A);
3165
2531 fs_fd = inotify_init (); 3166 fs_fd = infy_newfd ();
2532 3167
2533 if (fs_fd >= 0) 3168 if (fs_fd >= 0)
2534 { 3169 {
3170 fd_intern (fs_fd);
2535 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3171 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2536 ev_set_priority (&fs_w, EV_MAXPRI); 3172 ev_set_priority (&fs_w, EV_MAXPRI);
2537 ev_io_start (EV_A_ &fs_w); 3173 ev_io_start (EV_A_ &fs_w);
3174 ev_unref (EV_A);
2538 } 3175 }
2539} 3176}
2540 3177
2541void inline_size 3178inline_size void
2542infy_fork (EV_P) 3179infy_fork (EV_P)
2543{ 3180{
2544 int slot; 3181 int slot;
2545 3182
2546 if (fs_fd < 0) 3183 if (fs_fd < 0)
2547 return; 3184 return;
2548 3185
3186 ev_ref (EV_A);
3187 ev_io_stop (EV_A_ &fs_w);
2549 close (fs_fd); 3188 close (fs_fd);
2550 fs_fd = inotify_init (); 3189 fs_fd = infy_newfd ();
2551 3190
3191 if (fs_fd >= 0)
3192 {
3193 fd_intern (fs_fd);
3194 ev_io_set (&fs_w, fs_fd, EV_READ);
3195 ev_io_start (EV_A_ &fs_w);
3196 ev_unref (EV_A);
3197 }
3198
2552 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3199 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2553 { 3200 {
2554 WL w_ = fs_hash [slot].head; 3201 WL w_ = fs_hash [slot].head;
2555 fs_hash [slot].head = 0; 3202 fs_hash [slot].head = 0;
2556 3203
2557 while (w_) 3204 while (w_)
2562 w->wd = -1; 3209 w->wd = -1;
2563 3210
2564 if (fs_fd >= 0) 3211 if (fs_fd >= 0)
2565 infy_add (EV_A_ w); /* re-add, no matter what */ 3212 infy_add (EV_A_ w); /* re-add, no matter what */
2566 else 3213 else
3214 {
3215 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3216 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2567 ev_timer_start (EV_A_ &w->timer); 3217 ev_timer_again (EV_A_ &w->timer);
3218 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3219 }
2568 } 3220 }
2569
2570 } 3221 }
2571} 3222}
2572 3223
2573#endif 3224#endif
2574 3225
2590static void noinline 3241static void noinline
2591stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3242stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2592{ 3243{
2593 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3244 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2594 3245
2595 /* we copy this here each the time so that */ 3246 ev_statdata prev = w->attr;
2596 /* prev has the old value when the callback gets invoked */
2597 w->prev = w->attr;
2598 ev_stat_stat (EV_A_ w); 3247 ev_stat_stat (EV_A_ w);
2599 3248
2600 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3249 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2601 if ( 3250 if (
2602 w->prev.st_dev != w->attr.st_dev 3251 prev.st_dev != w->attr.st_dev
2603 || w->prev.st_ino != w->attr.st_ino 3252 || prev.st_ino != w->attr.st_ino
2604 || w->prev.st_mode != w->attr.st_mode 3253 || prev.st_mode != w->attr.st_mode
2605 || w->prev.st_nlink != w->attr.st_nlink 3254 || prev.st_nlink != w->attr.st_nlink
2606 || w->prev.st_uid != w->attr.st_uid 3255 || prev.st_uid != w->attr.st_uid
2607 || w->prev.st_gid != w->attr.st_gid 3256 || prev.st_gid != w->attr.st_gid
2608 || w->prev.st_rdev != w->attr.st_rdev 3257 || prev.st_rdev != w->attr.st_rdev
2609 || w->prev.st_size != w->attr.st_size 3258 || prev.st_size != w->attr.st_size
2610 || w->prev.st_atime != w->attr.st_atime 3259 || prev.st_atime != w->attr.st_atime
2611 || w->prev.st_mtime != w->attr.st_mtime 3260 || prev.st_mtime != w->attr.st_mtime
2612 || w->prev.st_ctime != w->attr.st_ctime 3261 || prev.st_ctime != w->attr.st_ctime
2613 ) { 3262 ) {
3263 /* we only update w->prev on actual differences */
3264 /* in case we test more often than invoke the callback, */
3265 /* to ensure that prev is always different to attr */
3266 w->prev = prev;
3267
2614 #if EV_USE_INOTIFY 3268 #if EV_USE_INOTIFY
3269 if (fs_fd >= 0)
3270 {
2615 infy_del (EV_A_ w); 3271 infy_del (EV_A_ w);
2616 infy_add (EV_A_ w); 3272 infy_add (EV_A_ w);
2617 ev_stat_stat (EV_A_ w); /* avoid race... */ 3273 ev_stat_stat (EV_A_ w); /* avoid race... */
3274 }
2618 #endif 3275 #endif
2619 3276
2620 ev_feed_event (EV_A_ w, EV_STAT); 3277 ev_feed_event (EV_A_ w, EV_STAT);
2621 } 3278 }
2622} 3279}
2625ev_stat_start (EV_P_ ev_stat *w) 3282ev_stat_start (EV_P_ ev_stat *w)
2626{ 3283{
2627 if (expect_false (ev_is_active (w))) 3284 if (expect_false (ev_is_active (w)))
2628 return; 3285 return;
2629 3286
2630 /* since we use memcmp, we need to clear any padding data etc. */
2631 memset (&w->prev, 0, sizeof (ev_statdata));
2632 memset (&w->attr, 0, sizeof (ev_statdata));
2633
2634 ev_stat_stat (EV_A_ w); 3287 ev_stat_stat (EV_A_ w);
2635 3288
3289 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2636 if (w->interval < MIN_STAT_INTERVAL) 3290 w->interval = MIN_STAT_INTERVAL;
2637 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2638 3291
2639 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3292 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2640 ev_set_priority (&w->timer, ev_priority (w)); 3293 ev_set_priority (&w->timer, ev_priority (w));
2641 3294
2642#if EV_USE_INOTIFY 3295#if EV_USE_INOTIFY
2643 infy_init (EV_A); 3296 infy_init (EV_A);
2644 3297
2645 if (fs_fd >= 0) 3298 if (fs_fd >= 0)
2646 infy_add (EV_A_ w); 3299 infy_add (EV_A_ w);
2647 else 3300 else
2648#endif 3301#endif
3302 {
2649 ev_timer_start (EV_A_ &w->timer); 3303 ev_timer_again (EV_A_ &w->timer);
3304 ev_unref (EV_A);
3305 }
2650 3306
2651 ev_start (EV_A_ (W)w, 1); 3307 ev_start (EV_A_ (W)w, 1);
2652 3308
2653 EV_FREQUENT_CHECK; 3309 EV_FREQUENT_CHECK;
2654} 3310}
2663 EV_FREQUENT_CHECK; 3319 EV_FREQUENT_CHECK;
2664 3320
2665#if EV_USE_INOTIFY 3321#if EV_USE_INOTIFY
2666 infy_del (EV_A_ w); 3322 infy_del (EV_A_ w);
2667#endif 3323#endif
3324
3325 if (ev_is_active (&w->timer))
3326 {
3327 ev_ref (EV_A);
2668 ev_timer_stop (EV_A_ &w->timer); 3328 ev_timer_stop (EV_A_ &w->timer);
3329 }
2669 3330
2670 ev_stop (EV_A_ (W)w); 3331 ev_stop (EV_A_ (W)w);
2671 3332
2672 EV_FREQUENT_CHECK; 3333 EV_FREQUENT_CHECK;
2673} 3334}
2718 3379
2719 EV_FREQUENT_CHECK; 3380 EV_FREQUENT_CHECK;
2720} 3381}
2721#endif 3382#endif
2722 3383
3384#if EV_PREPARE_ENABLE
2723void 3385void
2724ev_prepare_start (EV_P_ ev_prepare *w) 3386ev_prepare_start (EV_P_ ev_prepare *w)
2725{ 3387{
2726 if (expect_false (ev_is_active (w))) 3388 if (expect_false (ev_is_active (w)))
2727 return; 3389 return;
2753 3415
2754 ev_stop (EV_A_ (W)w); 3416 ev_stop (EV_A_ (W)w);
2755 3417
2756 EV_FREQUENT_CHECK; 3418 EV_FREQUENT_CHECK;
2757} 3419}
3420#endif
2758 3421
3422#if EV_CHECK_ENABLE
2759void 3423void
2760ev_check_start (EV_P_ ev_check *w) 3424ev_check_start (EV_P_ ev_check *w)
2761{ 3425{
2762 if (expect_false (ev_is_active (w))) 3426 if (expect_false (ev_is_active (w)))
2763 return; 3427 return;
2789 3453
2790 ev_stop (EV_A_ (W)w); 3454 ev_stop (EV_A_ (W)w);
2791 3455
2792 EV_FREQUENT_CHECK; 3456 EV_FREQUENT_CHECK;
2793} 3457}
3458#endif
2794 3459
2795#if EV_EMBED_ENABLE 3460#if EV_EMBED_ENABLE
2796void noinline 3461void noinline
2797ev_embed_sweep (EV_P_ ev_embed *w) 3462ev_embed_sweep (EV_P_ ev_embed *w)
2798{ 3463{
2799 ev_loop (w->other, EVLOOP_NONBLOCK); 3464 ev_run (w->other, EVRUN_NOWAIT);
2800} 3465}
2801 3466
2802static void 3467static void
2803embed_io_cb (EV_P_ ev_io *io, int revents) 3468embed_io_cb (EV_P_ ev_io *io, int revents)
2804{ 3469{
2805 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3470 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2806 3471
2807 if (ev_cb (w)) 3472 if (ev_cb (w))
2808 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3473 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2809 else 3474 else
2810 ev_loop (w->other, EVLOOP_NONBLOCK); 3475 ev_run (w->other, EVRUN_NOWAIT);
2811} 3476}
2812 3477
2813static void 3478static void
2814embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3479embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2815{ 3480{
2816 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3481 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2817 3482
2818 { 3483 {
2819 struct ev_loop *loop = w->other; 3484 EV_P = w->other;
2820 3485
2821 while (fdchangecnt) 3486 while (fdchangecnt)
2822 { 3487 {
2823 fd_reify (EV_A); 3488 fd_reify (EV_A);
2824 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3489 ev_run (EV_A_ EVRUN_NOWAIT);
2825 } 3490 }
2826 } 3491 }
3492}
3493
3494static void
3495embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3496{
3497 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3498
3499 ev_embed_stop (EV_A_ w);
3500
3501 {
3502 EV_P = w->other;
3503
3504 ev_loop_fork (EV_A);
3505 ev_run (EV_A_ EVRUN_NOWAIT);
3506 }
3507
3508 ev_embed_start (EV_A_ w);
2827} 3509}
2828 3510
2829#if 0 3511#if 0
2830static void 3512static void
2831embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3513embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2839{ 3521{
2840 if (expect_false (ev_is_active (w))) 3522 if (expect_false (ev_is_active (w)))
2841 return; 3523 return;
2842 3524
2843 { 3525 {
2844 struct ev_loop *loop = w->other; 3526 EV_P = w->other;
2845 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3527 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3528 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2847 } 3529 }
2848 3530
2849 EV_FREQUENT_CHECK; 3531 EV_FREQUENT_CHECK;
2850 3532
2853 3535
2854 ev_prepare_init (&w->prepare, embed_prepare_cb); 3536 ev_prepare_init (&w->prepare, embed_prepare_cb);
2855 ev_set_priority (&w->prepare, EV_MINPRI); 3537 ev_set_priority (&w->prepare, EV_MINPRI);
2856 ev_prepare_start (EV_A_ &w->prepare); 3538 ev_prepare_start (EV_A_ &w->prepare);
2857 3539
3540 ev_fork_init (&w->fork, embed_fork_cb);
3541 ev_fork_start (EV_A_ &w->fork);
3542
2858 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3543 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2859 3544
2860 ev_start (EV_A_ (W)w, 1); 3545 ev_start (EV_A_ (W)w, 1);
2861 3546
2862 EV_FREQUENT_CHECK; 3547 EV_FREQUENT_CHECK;
2869 if (expect_false (!ev_is_active (w))) 3554 if (expect_false (!ev_is_active (w)))
2870 return; 3555 return;
2871 3556
2872 EV_FREQUENT_CHECK; 3557 EV_FREQUENT_CHECK;
2873 3558
2874 ev_io_stop (EV_A_ &w->io); 3559 ev_io_stop (EV_A_ &w->io);
2875 ev_prepare_stop (EV_A_ &w->prepare); 3560 ev_prepare_stop (EV_A_ &w->prepare);
3561 ev_fork_stop (EV_A_ &w->fork);
2876 3562
2877 ev_stop (EV_A_ (W)w); 3563 ev_stop (EV_A_ (W)w);
2878 3564
2879 EV_FREQUENT_CHECK; 3565 EV_FREQUENT_CHECK;
2880} 3566}
2916 3602
2917 EV_FREQUENT_CHECK; 3603 EV_FREQUENT_CHECK;
2918} 3604}
2919#endif 3605#endif
2920 3606
2921#if EV_ASYNC_ENABLE 3607#if EV_CLEANUP_ENABLE
2922void 3608void
2923ev_async_start (EV_P_ ev_async *w) 3609ev_cleanup_start (EV_P_ ev_cleanup *w)
2924{ 3610{
2925 if (expect_false (ev_is_active (w))) 3611 if (expect_false (ev_is_active (w)))
2926 return; 3612 return;
3613
3614 EV_FREQUENT_CHECK;
3615
3616 ev_start (EV_A_ (W)w, ++cleanupcnt);
3617 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3618 cleanups [cleanupcnt - 1] = w;
3619
3620 /* cleanup watchers should never keep a refcount on the loop */
3621 ev_unref (EV_A);
3622 EV_FREQUENT_CHECK;
3623}
3624
3625void
3626ev_cleanup_stop (EV_P_ ev_cleanup *w)
3627{
3628 clear_pending (EV_A_ (W)w);
3629 if (expect_false (!ev_is_active (w)))
3630 return;
3631
3632 EV_FREQUENT_CHECK;
3633 ev_ref (EV_A);
3634
3635 {
3636 int active = ev_active (w);
3637
3638 cleanups [active - 1] = cleanups [--cleanupcnt];
3639 ev_active (cleanups [active - 1]) = active;
3640 }
3641
3642 ev_stop (EV_A_ (W)w);
3643
3644 EV_FREQUENT_CHECK;
3645}
3646#endif
3647
3648#if EV_ASYNC_ENABLE
3649void
3650ev_async_start (EV_P_ ev_async *w)
3651{
3652 if (expect_false (ev_is_active (w)))
3653 return;
3654
3655 w->sent = 0;
2927 3656
2928 evpipe_init (EV_A); 3657 evpipe_init (EV_A);
2929 3658
2930 EV_FREQUENT_CHECK; 3659 EV_FREQUENT_CHECK;
2931 3660
2959 3688
2960void 3689void
2961ev_async_send (EV_P_ ev_async *w) 3690ev_async_send (EV_P_ ev_async *w)
2962{ 3691{
2963 w->sent = 1; 3692 w->sent = 1;
2964 evpipe_write (EV_A_ &gotasync); 3693 evpipe_write (EV_A_ &async_pending);
2965} 3694}
2966#endif 3695#endif
2967 3696
2968/*****************************************************************************/ 3697/*****************************************************************************/
2969 3698
2979once_cb (EV_P_ struct ev_once *once, int revents) 3708once_cb (EV_P_ struct ev_once *once, int revents)
2980{ 3709{
2981 void (*cb)(int revents, void *arg) = once->cb; 3710 void (*cb)(int revents, void *arg) = once->cb;
2982 void *arg = once->arg; 3711 void *arg = once->arg;
2983 3712
2984 ev_io_stop (EV_A_ &once->io); 3713 ev_io_stop (EV_A_ &once->io);
2985 ev_timer_stop (EV_A_ &once->to); 3714 ev_timer_stop (EV_A_ &once->to);
2986 ev_free (once); 3715 ev_free (once);
2987 3716
2988 cb (revents, arg); 3717 cb (revents, arg);
2989} 3718}
2990 3719
2991static void 3720static void
2992once_cb_io (EV_P_ ev_io *w, int revents) 3721once_cb_io (EV_P_ ev_io *w, int revents)
2993{ 3722{
2994 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3723 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3724
3725 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2995} 3726}
2996 3727
2997static void 3728static void
2998once_cb_to (EV_P_ ev_timer *w, int revents) 3729once_cb_to (EV_P_ ev_timer *w, int revents)
2999{ 3730{
3000 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3731 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3732
3733 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3001} 3734}
3002 3735
3003void 3736void
3004ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3737ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3005{ 3738{
3006 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3739 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3007 3740
3008 if (expect_false (!once)) 3741 if (expect_false (!once))
3009 { 3742 {
3010 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3743 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3011 return; 3744 return;
3012 } 3745 }
3013 3746
3014 once->cb = cb; 3747 once->cb = cb;
3015 once->arg = arg; 3748 once->arg = arg;
3027 ev_timer_set (&once->to, timeout, 0.); 3760 ev_timer_set (&once->to, timeout, 0.);
3028 ev_timer_start (EV_A_ &once->to); 3761 ev_timer_start (EV_A_ &once->to);
3029 } 3762 }
3030} 3763}
3031 3764
3765/*****************************************************************************/
3766
3767#if EV_WALK_ENABLE
3768void
3769ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3770{
3771 int i, j;
3772 ev_watcher_list *wl, *wn;
3773
3774 if (types & (EV_IO | EV_EMBED))
3775 for (i = 0; i < anfdmax; ++i)
3776 for (wl = anfds [i].head; wl; )
3777 {
3778 wn = wl->next;
3779
3780#if EV_EMBED_ENABLE
3781 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3782 {
3783 if (types & EV_EMBED)
3784 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3785 }
3786 else
3787#endif
3788#if EV_USE_INOTIFY
3789 if (ev_cb ((ev_io *)wl) == infy_cb)
3790 ;
3791 else
3792#endif
3793 if ((ev_io *)wl != &pipe_w)
3794 if (types & EV_IO)
3795 cb (EV_A_ EV_IO, wl);
3796
3797 wl = wn;
3798 }
3799
3800 if (types & (EV_TIMER | EV_STAT))
3801 for (i = timercnt + HEAP0; i-- > HEAP0; )
3802#if EV_STAT_ENABLE
3803 /*TODO: timer is not always active*/
3804 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3805 {
3806 if (types & EV_STAT)
3807 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3808 }
3809 else
3810#endif
3811 if (types & EV_TIMER)
3812 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3813
3814#if EV_PERIODIC_ENABLE
3815 if (types & EV_PERIODIC)
3816 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3817 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3818#endif
3819
3820#if EV_IDLE_ENABLE
3821 if (types & EV_IDLE)
3822 for (j = NUMPRI; i--; )
3823 for (i = idlecnt [j]; i--; )
3824 cb (EV_A_ EV_IDLE, idles [j][i]);
3825#endif
3826
3827#if EV_FORK_ENABLE
3828 if (types & EV_FORK)
3829 for (i = forkcnt; i--; )
3830 if (ev_cb (forks [i]) != embed_fork_cb)
3831 cb (EV_A_ EV_FORK, forks [i]);
3832#endif
3833
3834#if EV_ASYNC_ENABLE
3835 if (types & EV_ASYNC)
3836 for (i = asynccnt; i--; )
3837 cb (EV_A_ EV_ASYNC, asyncs [i]);
3838#endif
3839
3840#if EV_PREPARE_ENABLE
3841 if (types & EV_PREPARE)
3842 for (i = preparecnt; i--; )
3843# if EV_EMBED_ENABLE
3844 if (ev_cb (prepares [i]) != embed_prepare_cb)
3845# endif
3846 cb (EV_A_ EV_PREPARE, prepares [i]);
3847#endif
3848
3849#if EV_CHECK_ENABLE
3850 if (types & EV_CHECK)
3851 for (i = checkcnt; i--; )
3852 cb (EV_A_ EV_CHECK, checks [i]);
3853#endif
3854
3855#if EV_SIGNAL_ENABLE
3856 if (types & EV_SIGNAL)
3857 for (i = 0; i < EV_NSIG - 1; ++i)
3858 for (wl = signals [i].head; wl; )
3859 {
3860 wn = wl->next;
3861 cb (EV_A_ EV_SIGNAL, wl);
3862 wl = wn;
3863 }
3864#endif
3865
3866#if EV_CHILD_ENABLE
3867 if (types & EV_CHILD)
3868 for (i = (EV_PID_HASHSIZE); i--; )
3869 for (wl = childs [i]; wl; )
3870 {
3871 wn = wl->next;
3872 cb (EV_A_ EV_CHILD, wl);
3873 wl = wn;
3874 }
3875#endif
3876/* EV_STAT 0x00001000 /* stat data changed */
3877/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3878}
3879#endif
3880
3032#if EV_MULTIPLICITY 3881#if EV_MULTIPLICITY
3033 #include "ev_wrap.h" 3882 #include "ev_wrap.h"
3034#endif 3883#endif
3035 3884
3036#ifdef __cplusplus 3885EV_CPP(})
3037}
3038#endif
3039 3886

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines