ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC vs.
Revision 1.368 by root, Mon Jan 17 12:11:11 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
57# endif 53# endif
58# ifndef EV_USE_MONOTONIC 54# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 55# define EV_USE_MONOTONIC 1
60# endif 56# endif
61# endif 57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
62# endif 60# endif
63 61
64# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
77# endif 75# endif
78# endif 76# endif
79 77
78# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
83# else 82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
86# endif 94# endif
87 95
96# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 99# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 100# else
101# undef EV_USE_POLL
100# define EV_USE_POLL 0 102# define EV_USE_POLL 0
101# endif
102# endif 103# endif
103 104
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
107# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
110# endif 112# endif
111 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
118# endif 121# endif
119 122
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
123# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
126# endif 130# endif
127 131
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
134# endif 139# endif
135 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
142# endif 157# endif
143 158
144#endif 159#endif
145 160
146#include <math.h> 161#include <math.h>
147#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
148#include <fcntl.h> 164#include <fcntl.h>
149#include <stddef.h> 165#include <stddef.h>
150 166
151#include <stdio.h> 167#include <stdio.h>
152 168
153#include <assert.h> 169#include <assert.h>
154#include <errno.h> 170#include <errno.h>
155#include <sys/types.h> 171#include <sys/types.h>
156#include <time.h> 172#include <time.h>
173#include <limits.h>
157 174
158#include <signal.h> 175#include <signal.h>
159 176
160#ifdef EV_H 177#ifdef EV_H
161# include EV_H 178# include EV_H
162#else 179#else
163# include "ev.h" 180# include "ev.h"
164#endif 181#endif
182
183EV_CPP(extern "C" {)
165 184
166#ifndef _WIN32 185#ifndef _WIN32
167# include <sys/time.h> 186# include <sys/time.h>
168# include <sys/wait.h> 187# include <sys/wait.h>
169# include <unistd.h> 188# include <unistd.h>
172# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
173# include <windows.h> 192# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
176# endif 195# endif
196# undef EV_AVOID_STDIO
177#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
178 206
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
180 236
181#ifndef EV_USE_CLOCK_SYSCALL 237#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 238# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 240# else
185# define EV_USE_CLOCK_SYSCALL 0 241# define EV_USE_CLOCK_SYSCALL 0
186# endif 242# endif
187#endif 243#endif
188 244
189#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 247# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 248# else
193# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
194# endif 250# endif
195#endif 251#endif
196 252
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 255#endif
200 256
201#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 258# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 259# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 260# else
205# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
206# endif 262# endif
207#endif 263#endif
208 264
209#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 267#endif
212 268
213#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
214# ifdef _WIN32 270# ifdef _WIN32
215# define EV_USE_POLL 0 271# define EV_USE_POLL 0
216# else 272# else
217# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 274# endif
219#endif 275#endif
220 276
221#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 280# else
225# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
226# endif 282# endif
227#endif 283#endif
228 284
234# define EV_USE_PORT 0 290# define EV_USE_PORT 0
235#endif 291#endif
236 292
237#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 296# else
241# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
242# endif 298# endif
243#endif 299#endif
244 300
245#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 303#endif
252 304
253#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 307#endif
260 308
261#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 312# else
265# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
266# endif 322# endif
267#endif 323#endif
268 324
269#if 0 /* debugging */ 325#if 0 /* debugging */
270# define EV_VERIFY 3 326# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 327# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 328# define EV_HEAP_CACHE_AT 1
273#endif 329#endif
274 330
275#ifndef EV_VERIFY 331#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 333#endif
278 334
279#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 337#endif
282 338
283#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
285#endif 355#endif
286 356
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
288 364
289#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
292#endif 368#endif
306# include <sys/select.h> 382# include <sys/select.h>
307# endif 383# endif
308#endif 384#endif
309 385
310#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 387# include <sys/statfs.h>
313# include <sys/inotify.h> 388# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 390# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 391# undef EV_USE_INOTIFY
320 395
321#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 397# include <winsock.h>
323#endif 398#endif
324 399
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 402# include <stdint.h>
337# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
338extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
339# endif 405# endif
340int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 407# ifdef O_CLOEXEC
342} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
343# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
344#endif 436#endif
345 437
346/**/ 438/**/
347 439
348#if EV_VERIFY >= 3 440#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 441# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 442#else
351# define EV_FREQUENT_CHECK do { } while (0) 443# define EV_FREQUENT_CHECK do { } while (0)
352#endif 444#endif
353 445
354/* 446/*
361 */ 453 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363 455
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
367 461
368#if __GNUC__ >= 4 462#if __GNUC__ >= 4
369# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
371#else 465#else
378 472
379#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline 475#define inline_size static inline
382 476
383#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
384# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
385#else 487#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
391 490
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
394 493
395typedef ev_watcher *W; 494typedef ev_watcher *W;
399#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
401 500
402#if EV_USE_REALTIME 501#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 503/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 505#endif
407 506
408#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 509#endif
411 510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
520
412#ifdef _WIN32 521#ifdef _WIN32
413# include "ev_win32.c" 522# include "ev_win32.c"
414#endif 523#endif
415 524
416/*****************************************************************************/ 525/*****************************************************************************/
526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
417 576
418static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
419 578
420void 579void
421ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
431 590
432 if (syserr_cb) 591 if (syserr_cb)
433 syserr_cb (msg); 592 syserr_cb (msg);
434 else 593 else
435 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
436 perror (msg); 601 perror (msg);
602#endif
437 abort (); 603 abort ();
438 } 604 }
439} 605}
440 606
441static void * 607static void *
442ev_realloc_emul (void *ptr, long size) 608ev_realloc_emul (void *ptr, long size)
443{ 609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
444 /* some systems, notably openbsd and darwin, fail to properly 613 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 614 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 615 * the single unix specification, so work around them here.
447 */ 616 */
448 617
449 if (size) 618 if (size)
450 return realloc (ptr, size); 619 return realloc (ptr, size);
451 620
452 free (ptr); 621 free (ptr);
453 return 0; 622 return 0;
623#endif
454} 624}
455 625
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457 627
458void 628void
466{ 636{
467 ptr = alloc (ptr, size); 637 ptr = alloc (ptr, size);
468 638
469 if (!ptr && size) 639 if (!ptr && size)
470 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
472 abort (); 646 abort ();
473 } 647 }
474 648
475 return ptr; 649 return ptr;
476} 650}
478#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
480 654
481/*****************************************************************************/ 655/*****************************************************************************/
482 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
483typedef struct 661typedef struct
484{ 662{
485 WL head; 663 WL head;
486 unsigned char events; 664 unsigned char events; /* the events watched for */
487 unsigned char reify; 665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 667 unsigned char unused;
490#if EV_USE_EPOLL 668#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 669 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 670#endif
493#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
494 SOCKET handle; 672 SOCKET handle;
495#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
496} ANFD; 677} ANFD;
497 678
679/* stores the pending event set for a given watcher */
498typedef struct 680typedef struct
499{ 681{
500 W w; 682 W w;
501 int events; 683 int events; /* the pending event set for the given watcher */
502} ANPENDING; 684} ANPENDING;
503 685
504#if EV_USE_INOTIFY 686#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 687/* hash table entry per inotify-id */
506typedef struct 688typedef struct
509} ANFS; 691} ANFS;
510#endif 692#endif
511 693
512/* Heap Entry */ 694/* Heap Entry */
513#if EV_HEAP_CACHE_AT 695#if EV_HEAP_CACHE_AT
696 /* a heap element */
514 typedef struct { 697 typedef struct {
515 ev_tstamp at; 698 ev_tstamp at;
516 WT w; 699 WT w;
517 } ANHE; 700 } ANHE;
518 701
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 702 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 703 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 705#else
706 /* a heap element */
523 typedef WT ANHE; 707 typedef WT ANHE;
524 708
525 #define ANHE_w(he) (he) 709 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 710 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 711 #define ANHE_at_cache(he)
551 735
552 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
553 737
554#endif 738#endif
555 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
556/*****************************************************************************/ 752/*****************************************************************************/
557 753
754#ifndef EV_HAVE_EV_TIME
558ev_tstamp 755ev_tstamp
559ev_time (void) 756ev_time (void)
560{ 757{
561#if EV_USE_REALTIME 758#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 759 if (expect_true (have_realtime))
569 766
570 struct timeval tv; 767 struct timeval tv;
571 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 770}
771#endif
574 772
575ev_tstamp inline_size 773inline_size ev_tstamp
576get_clock (void) 774get_clock (void)
577{ 775{
578#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
580 { 778 {
601 if (delay > 0.) 799 if (delay > 0.)
602 { 800 {
603#if EV_USE_NANOSLEEP 801#if EV_USE_NANOSLEEP
604 struct timespec ts; 802 struct timespec ts;
605 803
606 ts.tv_sec = (time_t)delay; 804 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 805 nanosleep (&ts, 0);
610#elif defined(_WIN32) 806#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3)); 807 Sleep ((unsigned long)(delay * 1e3));
612#else 808#else
613 struct timeval tv; 809 struct timeval tv;
614 810
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 812 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 813 /* by older ones */
814 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 815 select (0, 0, 0, 0, &tv);
622#endif 816#endif
623 } 817 }
624} 818}
625 819
820inline_speed int
821ev_timeout_to_ms (ev_tstamp timeout)
822{
823 int ms = timeout * 1000. + .999999;
824
825 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
826}
827
626/*****************************************************************************/ 828/*****************************************************************************/
627 829
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 830#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 831
630int inline_size 832/* find a suitable new size for the given array, */
833/* hopefully by rounding to a nice-to-malloc size */
834inline_size int
631array_nextsize (int elem, int cur, int cnt) 835array_nextsize (int elem, int cur, int cnt)
632{ 836{
633 int ncur = cur + 1; 837 int ncur = cur + 1;
634 838
635 do 839 do
680#define array_free(stem, idx) \ 884#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 885 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 886
683/*****************************************************************************/ 887/*****************************************************************************/
684 888
889/* dummy callback for pending events */
890static void noinline
891pendingcb (EV_P_ ev_prepare *w, int revents)
892{
893}
894
685void noinline 895void noinline
686ev_feed_event (EV_P_ void *w, int revents) 896ev_feed_event (EV_P_ void *w, int revents)
687{ 897{
688 W w_ = (W)w; 898 W w_ = (W)w;
689 int pri = ABSPRI (w_); 899 int pri = ABSPRI (w_);
697 pendings [pri][w_->pending - 1].w = w_; 907 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 908 pendings [pri][w_->pending - 1].events = revents;
699 } 909 }
700} 910}
701 911
702void inline_speed 912inline_speed void
913feed_reverse (EV_P_ W w)
914{
915 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
916 rfeeds [rfeedcnt++] = w;
917}
918
919inline_size void
920feed_reverse_done (EV_P_ int revents)
921{
922 do
923 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
924 while (rfeedcnt);
925}
926
927inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 928queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 929{
705 int i; 930 int i;
706 931
707 for (i = 0; i < eventcnt; ++i) 932 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 933 ev_feed_event (EV_A_ events [i], type);
709} 934}
710 935
711/*****************************************************************************/ 936/*****************************************************************************/
712 937
713void inline_speed 938inline_speed void
714fd_event (EV_P_ int fd, int revents) 939fd_event_nocheck (EV_P_ int fd, int revents)
715{ 940{
716 ANFD *anfd = anfds + fd; 941 ANFD *anfd = anfds + fd;
717 ev_io *w; 942 ev_io *w;
718 943
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 944 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 948 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 949 ev_feed_event (EV_A_ (W)w, ev);
725 } 950 }
726} 951}
727 952
953/* do not submit kernel events for fds that have reify set */
954/* because that means they changed while we were polling for new events */
955inline_speed void
956fd_event (EV_P_ int fd, int revents)
957{
958 ANFD *anfd = anfds + fd;
959
960 if (expect_true (!anfd->reify))
961 fd_event_nocheck (EV_A_ fd, revents);
962}
963
728void 964void
729ev_feed_fd_event (EV_P_ int fd, int revents) 965ev_feed_fd_event (EV_P_ int fd, int revents)
730{ 966{
731 if (fd >= 0 && fd < anfdmax) 967 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 968 fd_event_nocheck (EV_A_ fd, revents);
733} 969}
734 970
735void inline_size 971/* make sure the external fd watch events are in-sync */
972/* with the kernel/libev internal state */
973inline_size void
736fd_reify (EV_P) 974fd_reify (EV_P)
737{ 975{
738 int i; 976 int i;
739 977
740 for (i = 0; i < fdchangecnt; ++i) 978 for (i = 0; i < fdchangecnt; ++i)
741 { 979 {
742 int fd = fdchanges [i]; 980 int fd = fdchanges [i];
743 ANFD *anfd = anfds + fd; 981 ANFD *anfd = anfds + fd;
744 ev_io *w; 982 ev_io *w;
745 983
746 unsigned char events = 0; 984 unsigned char o_events = anfd->events;
985 unsigned char o_reify = anfd->reify;
747 986
748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 987 anfd->reify = 0;
749 events |= (unsigned char)w->events;
750 988
751#if EV_SELECT_IS_WINSOCKET 989#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
752 if (events) 990 if (o_reify & EV__IOFDSET)
753 { 991 {
754 unsigned long arg; 992 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 993 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
758 anfd->handle = _get_osfhandle (fd);
759 #endif
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 994 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
995 printf ("oi %d %x\n", fd, anfd->handle);//D
761 } 996 }
762#endif 997#endif
763 998
999 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
764 { 1000 {
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events; 1001 anfd->events = 0;
770 1002
771 if (o_events != events || o_reify & EV__IOFDSET) 1003 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1004 anfd->events |= (unsigned char)w->events;
1005
1006 if (o_events != anfd->events)
1007 o_reify = EV__IOFDSET; /* actually |= */
1008 }
1009
1010 if (o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 1011 backend_modify (EV_A_ fd, o_events, anfd->events);
773 }
774 } 1012 }
775 1013
776 fdchangecnt = 0; 1014 fdchangecnt = 0;
777} 1015}
778 1016
779void inline_size 1017/* something about the given fd changed */
1018inline_size void
780fd_change (EV_P_ int fd, int flags) 1019fd_change (EV_P_ int fd, int flags)
781{ 1020{
782 unsigned char reify = anfds [fd].reify; 1021 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 1022 anfds [fd].reify |= flags;
784 1023
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1027 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 1028 fdchanges [fdchangecnt - 1] = fd;
790 } 1029 }
791} 1030}
792 1031
793void inline_speed 1032/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1033inline_speed void
794fd_kill (EV_P_ int fd) 1034fd_kill (EV_P_ int fd)
795{ 1035{
796 ev_io *w; 1036 ev_io *w;
797 1037
798 while ((w = (ev_io *)anfds [fd].head)) 1038 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 1040 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1041 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 1042 }
803} 1043}
804 1044
805int inline_size 1045/* check whether the given fd is actually valid, for error recovery */
1046inline_size int
806fd_valid (int fd) 1047fd_valid (int fd)
807{ 1048{
808#ifdef _WIN32 1049#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 1050 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 1051#else
811 return fcntl (fd, F_GETFD) != -1; 1052 return fcntl (fd, F_GETFD) != -1;
812#endif 1053#endif
813} 1054}
814 1055
832 1073
833 for (fd = anfdmax; fd--; ) 1074 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 1075 if (anfds [fd].events)
835 { 1076 {
836 fd_kill (EV_A_ fd); 1077 fd_kill (EV_A_ fd);
837 return; 1078 break;
838 } 1079 }
839} 1080}
840 1081
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 1082/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 1083static void noinline
847 for (fd = 0; fd < anfdmax; ++fd) 1088 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 1089 if (anfds [fd].events)
849 { 1090 {
850 anfds [fd].events = 0; 1091 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 1092 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 1093 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 1094 }
854} 1095}
855 1096
1097/* used to prepare libev internal fd's */
1098/* this is not fork-safe */
1099inline_speed void
1100fd_intern (int fd)
1101{
1102#ifdef _WIN32
1103 unsigned long arg = 1;
1104 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1105#else
1106 fcntl (fd, F_SETFD, FD_CLOEXEC);
1107 fcntl (fd, F_SETFL, O_NONBLOCK);
1108#endif
1109}
1110
856/*****************************************************************************/ 1111/*****************************************************************************/
857 1112
858/* 1113/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not 1114 * the heap functions want a real array index. array index 0 is guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1115 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree. 1116 * the branching factor of the d-tree.
862 */ 1117 */
863 1118
864/* 1119/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1128#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1129#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 1130#define UPHEAP_DONE(p,k) ((p) == (k))
876 1131
877/* away from the root */ 1132/* away from the root */
878void inline_speed 1133inline_speed void
879downheap (ANHE *heap, int N, int k) 1134downheap (ANHE *heap, int N, int k)
880{ 1135{
881 ANHE he = heap [k]; 1136 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 1137 ANHE *E = heap + N + HEAP0;
883 1138
923#define HEAP0 1 1178#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 1179#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 1180#define UPHEAP_DONE(p,k) (!(p))
926 1181
927/* away from the root */ 1182/* away from the root */
928void inline_speed 1183inline_speed void
929downheap (ANHE *heap, int N, int k) 1184downheap (ANHE *heap, int N, int k)
930{ 1185{
931 ANHE he = heap [k]; 1186 ANHE he = heap [k];
932 1187
933 for (;;) 1188 for (;;)
934 { 1189 {
935 int c = k << 1; 1190 int c = k << 1;
936 1191
937 if (c > N + HEAP0 - 1) 1192 if (c >= N + HEAP0)
938 break; 1193 break;
939 1194
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1195 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 1196 ? 1 : 0;
942 1197
953 ev_active (ANHE_w (he)) = k; 1208 ev_active (ANHE_w (he)) = k;
954} 1209}
955#endif 1210#endif
956 1211
957/* towards the root */ 1212/* towards the root */
958void inline_speed 1213inline_speed void
959upheap (ANHE *heap, int k) 1214upheap (ANHE *heap, int k)
960{ 1215{
961 ANHE he = heap [k]; 1216 ANHE he = heap [k];
962 1217
963 for (;;) 1218 for (;;)
974 1229
975 heap [k] = he; 1230 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1231 ev_active (ANHE_w (he)) = k;
977} 1232}
978 1233
979void inline_size 1234/* move an element suitably so it is in a correct place */
1235inline_size void
980adjustheap (ANHE *heap, int N, int k) 1236adjustheap (ANHE *heap, int N, int k)
981{ 1237{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1238 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 1239 upheap (heap, k);
984 else 1240 else
985 downheap (heap, N, k); 1241 downheap (heap, N, k);
986} 1242}
987 1243
988/* rebuild the heap: this function is used only once and executed rarely */ 1244/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1245inline_size void
990reheap (ANHE *heap, int N) 1246reheap (ANHE *heap, int N)
991{ 1247{
992 int i; 1248 int i;
993 1249
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1250 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1253 upheap (heap, i + HEAP0);
998} 1254}
999 1255
1000/*****************************************************************************/ 1256/*****************************************************************************/
1001 1257
1258/* associate signal watchers to a signal signal */
1002typedef struct 1259typedef struct
1003{ 1260{
1261 EV_ATOMIC_T pending;
1262#if EV_MULTIPLICITY
1263 EV_P;
1264#endif
1004 WL head; 1265 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 1266} ANSIG;
1007 1267
1008static ANSIG *signals; 1268static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 1269
1013/*****************************************************************************/ 1270/*****************************************************************************/
1014 1271
1015void inline_speed 1272#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 1273
1027static void noinline 1274static void noinline
1028evpipe_init (EV_P) 1275evpipe_init (EV_P)
1029{ 1276{
1030 if (!ev_is_active (&pipeev)) 1277 if (!ev_is_active (&pipe_w))
1031 { 1278 {
1032#if EV_USE_EVENTFD 1279# if EV_USE_EVENTFD
1280 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1281 if (evfd < 0 && errno == EINVAL)
1033 if ((evfd = eventfd (0, 0)) >= 0) 1282 evfd = eventfd (0, 0);
1283
1284 if (evfd >= 0)
1034 { 1285 {
1035 evpipe [0] = -1; 1286 evpipe [0] = -1;
1036 fd_intern (evfd); 1287 fd_intern (evfd); /* doing it twice doesn't hurt */
1037 ev_io_set (&pipeev, evfd, EV_READ); 1288 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1289 }
1039 else 1290 else
1040#endif 1291# endif
1041 { 1292 {
1042 while (pipe (evpipe)) 1293 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1294 ev_syserr ("(libev) error creating signal/async pipe");
1044 1295
1045 fd_intern (evpipe [0]); 1296 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1297 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1298 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1299 }
1049 1300
1050 ev_io_start (EV_A_ &pipeev); 1301 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1302 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1303 }
1053} 1304}
1054 1305
1055void inline_size 1306inline_size void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1307evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1308{
1058 if (!*flag) 1309 if (!*flag)
1059 { 1310 {
1060 int old_errno = errno; /* save errno because write might clobber it */ 1311 int old_errno = errno; /* save errno because write might clobber it */
1312 char dummy;
1061 1313
1062 *flag = 1; 1314 *flag = 1;
1063 1315
1064#if EV_USE_EVENTFD 1316#if EV_USE_EVENTFD
1065 if (evfd >= 0) 1317 if (evfd >= 0)
1067 uint64_t counter = 1; 1319 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t)); 1320 write (evfd, &counter, sizeof (uint64_t));
1069 } 1321 }
1070 else 1322 else
1071#endif 1323#endif
1324 /* win32 people keep sending patches that change this write() to send() */
1325 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1326 /* so when you think this write should be a send instead, please find out */
1327 /* where your send() is from - it's definitely not the microsoft send, and */
1328 /* tell me. thank you. */
1072 write (evpipe [1], &old_errno, 1); 1329 write (evpipe [1], &dummy, 1);
1073 1330
1074 errno = old_errno; 1331 errno = old_errno;
1075 } 1332 }
1076} 1333}
1077 1334
1335/* called whenever the libev signal pipe */
1336/* got some events (signal, async) */
1078static void 1337static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1338pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1339{
1340 int i;
1341
1081#if EV_USE_EVENTFD 1342#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1343 if (evfd >= 0)
1083 { 1344 {
1084 uint64_t counter; 1345 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t)); 1346 read (evfd, &counter, sizeof (uint64_t));
1086 } 1347 }
1087 else 1348 else
1088#endif 1349#endif
1089 { 1350 {
1090 char dummy; 1351 char dummy;
1352 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1091 read (evpipe [0], &dummy, 1); 1353 read (evpipe [0], &dummy, 1);
1092 } 1354 }
1093 1355
1094 if (gotsig && ev_is_default_loop (EV_A)) 1356 if (sig_pending)
1095 { 1357 {
1096 int signum; 1358 sig_pending = 0;
1097 gotsig = 0;
1098 1359
1099 for (signum = signalmax; signum--; ) 1360 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 1361 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 1362 ev_feed_signal_event (EV_A_ i + 1);
1102 } 1363 }
1103 1364
1104#if EV_ASYNC_ENABLE 1365#if EV_ASYNC_ENABLE
1105 if (gotasync) 1366 if (async_pending)
1106 { 1367 {
1107 int i; 1368 async_pending = 0;
1108 gotasync = 0;
1109 1369
1110 for (i = asynccnt; i--; ) 1370 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 1371 if (asyncs [i]->sent)
1112 { 1372 {
1113 asyncs [i]->sent = 0; 1373 asyncs [i]->sent = 0;
1117#endif 1377#endif
1118} 1378}
1119 1379
1120/*****************************************************************************/ 1380/*****************************************************************************/
1121 1381
1382void
1383ev_feed_signal (int signum)
1384{
1385#if EV_MULTIPLICITY
1386 EV_P = signals [signum - 1].loop;
1387
1388 if (!EV_A)
1389 return;
1390#endif
1391
1392 signals [signum - 1].pending = 1;
1393 evpipe_write (EV_A_ &sig_pending);
1394}
1395
1122static void 1396static void
1123ev_sighandler (int signum) 1397ev_sighandler (int signum)
1124{ 1398{
1125#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct;
1127#endif
1128
1129#if _WIN32 1399#ifdef _WIN32
1130 signal (signum, ev_sighandler); 1400 signal (signum, ev_sighandler);
1131#endif 1401#endif
1132 1402
1133 signals [signum - 1].gotsig = 1; 1403 ev_feed_signal (signum);
1134 evpipe_write (EV_A_ &gotsig);
1135} 1404}
1136 1405
1137void noinline 1406void noinline
1138ev_feed_signal_event (EV_P_ int signum) 1407ev_feed_signal_event (EV_P_ int signum)
1139{ 1408{
1140 WL w; 1409 WL w;
1141 1410
1411 if (expect_false (signum <= 0 || signum > EV_NSIG))
1412 return;
1413
1414 --signum;
1415
1142#if EV_MULTIPLICITY 1416#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1417 /* it is permissible to try to feed a signal to the wrong loop */
1144#endif 1418 /* or, likely more useful, feeding a signal nobody is waiting for */
1145 1419
1146 --signum; 1420 if (expect_false (signals [signum].loop != EV_A))
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 1421 return;
1422#endif
1150 1423
1151 signals [signum].gotsig = 0; 1424 signals [signum].pending = 0;
1152 1425
1153 for (w = signals [signum].head; w; w = w->next) 1426 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1427 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 1428}
1156 1429
1430#if EV_USE_SIGNALFD
1431static void
1432sigfdcb (EV_P_ ev_io *iow, int revents)
1433{
1434 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1435
1436 for (;;)
1437 {
1438 ssize_t res = read (sigfd, si, sizeof (si));
1439
1440 /* not ISO-C, as res might be -1, but works with SuS */
1441 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1442 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1443
1444 if (res < (ssize_t)sizeof (si))
1445 break;
1446 }
1447}
1448#endif
1449
1450#endif
1451
1157/*****************************************************************************/ 1452/*****************************************************************************/
1158 1453
1454#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 1455static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 1456
1163static ev_signal childev; 1457static ev_signal childev;
1164 1458
1165#ifndef WIFCONTINUED 1459#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 1460# define WIFCONTINUED(status) 0
1167#endif 1461#endif
1168 1462
1169void inline_speed 1463/* handle a single child status event */
1464inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 1465child_reap (EV_P_ int chain, int pid, int status)
1171{ 1466{
1172 ev_child *w; 1467 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1468 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 1469
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1470 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 1471 {
1177 if ((w->pid == pid || !w->pid) 1472 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 1473 && (!traced || (w->flags & 1)))
1179 { 1474 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1475 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 1482
1188#ifndef WCONTINUED 1483#ifndef WCONTINUED
1189# define WCONTINUED 0 1484# define WCONTINUED 0
1190#endif 1485#endif
1191 1486
1487/* called on sigchld etc., calls waitpid */
1192static void 1488static void
1193childcb (EV_P_ ev_signal *sw, int revents) 1489childcb (EV_P_ ev_signal *sw, int revents)
1194{ 1490{
1195 int pid, status; 1491 int pid, status;
1196 1492
1204 /* make sure we are called again until all children have been reaped */ 1500 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 1501 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1502 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 1503
1208 child_reap (EV_A_ pid, pid, status); 1504 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 1505 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1506 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 1507}
1212 1508
1213#endif 1509#endif
1214 1510
1215/*****************************************************************************/ 1511/*****************************************************************************/
1216 1512
1513#if EV_USE_IOCP
1514# include "ev_iocp.c"
1515#endif
1217#if EV_USE_PORT 1516#if EV_USE_PORT
1218# include "ev_port.c" 1517# include "ev_port.c"
1219#endif 1518#endif
1220#if EV_USE_KQUEUE 1519#if EV_USE_KQUEUE
1221# include "ev_kqueue.c" 1520# include "ev_kqueue.c"
1281#ifdef __APPLE__ 1580#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 1581 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 1582 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 1583 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 1584#endif
1585#ifdef __FreeBSD__
1586 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1587#endif
1286 1588
1287 return flags; 1589 return flags;
1288} 1590}
1289 1591
1290unsigned int 1592unsigned int
1291ev_embeddable_backends (void) 1593ev_embeddable_backends (void)
1292{ 1594{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1595 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1294 1596
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1597 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */ 1598 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1297 flags &= ~EVBACKEND_EPOLL; 1599 flags &= ~EVBACKEND_EPOLL;
1298 1600
1299 return flags; 1601 return flags;
1300} 1602}
1301 1603
1302unsigned int 1604unsigned int
1303ev_backend (EV_P) 1605ev_backend (EV_P)
1304{ 1606{
1305 return backend; 1607 return backend;
1306} 1608}
1307 1609
1610#if EV_FEATURE_API
1308unsigned int 1611unsigned int
1309ev_loop_count (EV_P) 1612ev_iteration (EV_P)
1310{ 1613{
1311 return loop_count; 1614 return loop_count;
1312} 1615}
1313 1616
1617unsigned int
1618ev_depth (EV_P)
1619{
1620 return loop_depth;
1621}
1622
1314void 1623void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1624ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{ 1625{
1317 io_blocktime = interval; 1626 io_blocktime = interval;
1318} 1627}
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1630ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{ 1631{
1323 timeout_blocktime = interval; 1632 timeout_blocktime = interval;
1324} 1633}
1325 1634
1635void
1636ev_set_userdata (EV_P_ void *data)
1637{
1638 userdata = data;
1639}
1640
1641void *
1642ev_userdata (EV_P)
1643{
1644 return userdata;
1645}
1646
1647void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1648{
1649 invoke_cb = invoke_pending_cb;
1650}
1651
1652void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1653{
1654 release_cb = release;
1655 acquire_cb = acquire;
1656}
1657#endif
1658
1659/* initialise a loop structure, must be zero-initialised */
1326static void noinline 1660static void noinline
1327loop_init (EV_P_ unsigned int flags) 1661loop_init (EV_P_ unsigned int flags)
1328{ 1662{
1329 if (!backend) 1663 if (!backend)
1330 { 1664 {
1665 origflags = flags;
1666
1331#if EV_USE_REALTIME 1667#if EV_USE_REALTIME
1332 if (!have_realtime) 1668 if (!have_realtime)
1333 { 1669 {
1334 struct timespec ts; 1670 struct timespec ts;
1335 1671
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1682 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 1683 have_monotonic = 1;
1348 } 1684 }
1349#endif 1685#endif
1350 1686
1687 /* pid check not overridable via env */
1688#ifndef _WIN32
1689 if (flags & EVFLAG_FORKCHECK)
1690 curpid = getpid ();
1691#endif
1692
1693 if (!(flags & EVFLAG_NOENV)
1694 && !enable_secure ()
1695 && getenv ("LIBEV_FLAGS"))
1696 flags = atoi (getenv ("LIBEV_FLAGS"));
1697
1351 ev_rt_now = ev_time (); 1698 ev_rt_now = ev_time ();
1352 mn_now = get_clock (); 1699 mn_now = get_clock ();
1353 now_floor = mn_now; 1700 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now; 1701 rtmn_diff = ev_rt_now - mn_now;
1702#if EV_FEATURE_API
1703 invoke_cb = ev_invoke_pending;
1704#endif
1355 1705
1356 io_blocktime = 0.; 1706 io_blocktime = 0.;
1357 timeout_blocktime = 0.; 1707 timeout_blocktime = 0.;
1358 backend = 0; 1708 backend = 0;
1359 backend_fd = -1; 1709 backend_fd = -1;
1360 gotasync = 0; 1710 sig_pending = 0;
1711#if EV_ASYNC_ENABLE
1712 async_pending = 0;
1713#endif
1361#if EV_USE_INOTIFY 1714#if EV_USE_INOTIFY
1362 fs_fd = -2; 1715 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1363#endif 1716#endif
1364 1717#if EV_USE_SIGNALFD
1365 /* pid check not overridable via env */ 1718 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif 1719#endif
1370 1720
1371 if (!(flags & EVFLAG_NOENV) 1721 if (!(flags & EVBACKEND_MASK))
1372 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1375
1376 if (!(flags & 0x0000ffffU))
1377 flags |= ev_recommended_backends (); 1722 flags |= ev_recommended_backends ();
1378 1723
1724#if EV_USE_IOCP
1725 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1726#endif
1379#if EV_USE_PORT 1727#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1728 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif 1729#endif
1382#if EV_USE_KQUEUE 1730#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1731 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1390#endif 1738#endif
1391#if EV_USE_SELECT 1739#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1740 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 1741#endif
1394 1742
1743 ev_prepare_init (&pending_w, pendingcb);
1744
1745#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 1746 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 1747 ev_set_priority (&pipe_w, EV_MAXPRI);
1748#endif
1397 } 1749 }
1398} 1750}
1399 1751
1400static void noinline 1752/* free up a loop structure */
1753void
1401loop_destroy (EV_P) 1754ev_loop_destroy (EV_P)
1402{ 1755{
1403 int i; 1756 int i;
1404 1757
1758#if EV_MULTIPLICITY
1759 /* mimic free (0) */
1760 if (!EV_A)
1761 return;
1762#endif
1763
1764#if EV_CLEANUP_ENABLE
1765 /* queue cleanup watchers (and execute them) */
1766 if (expect_false (cleanupcnt))
1767 {
1768 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1769 EV_INVOKE_PENDING;
1770 }
1771#endif
1772
1773#if EV_CHILD_ENABLE
1774 if (ev_is_active (&childev))
1775 {
1776 ev_ref (EV_A); /* child watcher */
1777 ev_signal_stop (EV_A_ &childev);
1778 }
1779#endif
1780
1405 if (ev_is_active (&pipeev)) 1781 if (ev_is_active (&pipe_w))
1406 { 1782 {
1407 ev_ref (EV_A); /* signal watcher */ 1783 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 1784 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 1785
1410#if EV_USE_EVENTFD 1786#if EV_USE_EVENTFD
1411 if (evfd >= 0) 1787 if (evfd >= 0)
1412 close (evfd); 1788 close (evfd);
1413#endif 1789#endif
1414 1790
1415 if (evpipe [0] >= 0) 1791 if (evpipe [0] >= 0)
1416 { 1792 {
1417 close (evpipe [0]); 1793 EV_WIN32_CLOSE_FD (evpipe [0]);
1418 close (evpipe [1]); 1794 EV_WIN32_CLOSE_FD (evpipe [1]);
1419 } 1795 }
1420 } 1796 }
1797
1798#if EV_USE_SIGNALFD
1799 if (ev_is_active (&sigfd_w))
1800 close (sigfd);
1801#endif
1421 1802
1422#if EV_USE_INOTIFY 1803#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 1804 if (fs_fd >= 0)
1424 close (fs_fd); 1805 close (fs_fd);
1425#endif 1806#endif
1426 1807
1427 if (backend_fd >= 0) 1808 if (backend_fd >= 0)
1428 close (backend_fd); 1809 close (backend_fd);
1429 1810
1811#if EV_USE_IOCP
1812 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1813#endif
1430#if EV_USE_PORT 1814#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1815 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif 1816#endif
1433#if EV_USE_KQUEUE 1817#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1818 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1449#if EV_IDLE_ENABLE 1833#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 1834 array_free (idle, [i]);
1451#endif 1835#endif
1452 } 1836 }
1453 1837
1454 ev_free (anfds); anfdmax = 0; 1838 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 1839
1456 /* have to use the microsoft-never-gets-it-right macro */ 1840 /* have to use the microsoft-never-gets-it-right macro */
1841 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 1842 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 1843 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 1844#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 1845 array_free (periodic, EMPTY);
1461#endif 1846#endif
1462#if EV_FORK_ENABLE 1847#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY); 1848 array_free (fork, EMPTY);
1464#endif 1849#endif
1850#if EV_CLEANUP_ENABLE
1851 array_free (cleanup, EMPTY);
1852#endif
1465 array_free (prepare, EMPTY); 1853 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY); 1854 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE 1855#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY); 1856 array_free (async, EMPTY);
1469#endif 1857#endif
1470 1858
1471 backend = 0; 1859 backend = 0;
1860
1861#if EV_MULTIPLICITY
1862 if (ev_is_default_loop (EV_A))
1863#endif
1864 ev_default_loop_ptr = 0;
1865#if EV_MULTIPLICITY
1866 else
1867 ev_free (EV_A);
1868#endif
1472} 1869}
1473 1870
1474#if EV_USE_INOTIFY 1871#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 1872inline_size void infy_fork (EV_P);
1476#endif 1873#endif
1477 1874
1478void inline_size 1875inline_size void
1479loop_fork (EV_P) 1876loop_fork (EV_P)
1480{ 1877{
1481#if EV_USE_PORT 1878#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1879 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 1880#endif
1489#endif 1886#endif
1490#if EV_USE_INOTIFY 1887#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 1888 infy_fork (EV_A);
1492#endif 1889#endif
1493 1890
1494 if (ev_is_active (&pipeev)) 1891 if (ev_is_active (&pipe_w))
1495 { 1892 {
1496 /* this "locks" the handlers against writing to the pipe */ 1893 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */ 1894 /* while we modify the fd vars */
1498 gotsig = 1; 1895 sig_pending = 1;
1499#if EV_ASYNC_ENABLE 1896#if EV_ASYNC_ENABLE
1500 gotasync = 1; 1897 async_pending = 1;
1501#endif 1898#endif
1502 1899
1503 ev_ref (EV_A); 1900 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 1901 ev_io_stop (EV_A_ &pipe_w);
1505 1902
1506#if EV_USE_EVENTFD 1903#if EV_USE_EVENTFD
1507 if (evfd >= 0) 1904 if (evfd >= 0)
1508 close (evfd); 1905 close (evfd);
1509#endif 1906#endif
1510 1907
1511 if (evpipe [0] >= 0) 1908 if (evpipe [0] >= 0)
1512 { 1909 {
1513 close (evpipe [0]); 1910 EV_WIN32_CLOSE_FD (evpipe [0]);
1514 close (evpipe [1]); 1911 EV_WIN32_CLOSE_FD (evpipe [1]);
1515 } 1912 }
1516 1913
1914#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1517 evpipe_init (EV_A); 1915 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 1916 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 1917 pipecb (EV_A_ &pipe_w, EV_READ);
1918#endif
1520 } 1919 }
1521 1920
1522 postfork = 0; 1921 postfork = 0;
1523} 1922}
1524 1923
1525#if EV_MULTIPLICITY 1924#if EV_MULTIPLICITY
1526 1925
1527struct ev_loop * 1926struct ev_loop *
1528ev_loop_new (unsigned int flags) 1927ev_loop_new (unsigned int flags)
1529{ 1928{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1929 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 1930
1532 memset (loop, 0, sizeof (struct ev_loop)); 1931 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 1932 loop_init (EV_A_ flags);
1535 1933
1536 if (ev_backend (EV_A)) 1934 if (ev_backend (EV_A))
1537 return loop; 1935 return EV_A;
1538 1936
1937 ev_free (EV_A);
1539 return 0; 1938 return 0;
1540} 1939}
1541 1940
1542void 1941#endif /* multiplicity */
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554 1942
1555#if EV_VERIFY 1943#if EV_VERIFY
1556static void noinline 1944static void noinline
1557verify_watcher (EV_P_ W w) 1945verify_watcher (EV_P_ W w)
1558{ 1946{
1586 verify_watcher (EV_A_ ws [cnt]); 1974 verify_watcher (EV_A_ ws [cnt]);
1587 } 1975 }
1588} 1976}
1589#endif 1977#endif
1590 1978
1979#if EV_FEATURE_API
1591void 1980void
1592ev_loop_verify (EV_P) 1981ev_verify (EV_P)
1593{ 1982{
1594#if EV_VERIFY 1983#if EV_VERIFY
1595 int i; 1984 int i;
1596 WL w; 1985 WL w;
1597 1986
1631#if EV_FORK_ENABLE 2020#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt); 2021 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt); 2022 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif 2023#endif
1635 2024
2025#if EV_CLEANUP_ENABLE
2026 assert (cleanupmax >= cleanupcnt);
2027 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2028#endif
2029
1636#if EV_ASYNC_ENABLE 2030#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 2031 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 2032 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 2033#endif
1640 2034
2035#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 2036 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 2037 array_verify (EV_A_ (W *)prepares, preparecnt);
2038#endif
1643 2039
2040#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 2041 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 2042 array_verify (EV_A_ (W *)checks, checkcnt);
2043#endif
1646 2044
1647# if 0 2045# if 0
2046#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2047 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2048 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2049#endif
1650# endif 2050# endif
1651#endif 2051#endif
1652} 2052}
1653 2053#endif
1654#endif /* multiplicity */
1655 2054
1656#if EV_MULTIPLICITY 2055#if EV_MULTIPLICITY
1657struct ev_loop * 2056struct ev_loop *
1658ev_default_loop_init (unsigned int flags)
1659#else 2057#else
1660int 2058int
2059#endif
1661ev_default_loop (unsigned int flags) 2060ev_default_loop (unsigned int flags)
1662#endif
1663{ 2061{
1664 if (!ev_default_loop_ptr) 2062 if (!ev_default_loop_ptr)
1665 { 2063 {
1666#if EV_MULTIPLICITY 2064#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2065 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 2066#else
1669 ev_default_loop_ptr = 1; 2067 ev_default_loop_ptr = 1;
1670#endif 2068#endif
1671 2069
1672 loop_init (EV_A_ flags); 2070 loop_init (EV_A_ flags);
1673 2071
1674 if (ev_backend (EV_A)) 2072 if (ev_backend (EV_A))
1675 { 2073 {
1676#ifndef _WIN32 2074#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 2075 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 2076 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 2077 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2078 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 2079#endif
1686 2084
1687 return ev_default_loop_ptr; 2085 return ev_default_loop_ptr;
1688} 2086}
1689 2087
1690void 2088void
1691ev_default_destroy (void) 2089ev_loop_fork (EV_P)
1692{ 2090{
1693#if EV_MULTIPLICITY
1694 struct ev_loop *loop = ev_default_loop_ptr;
1695#endif
1696
1697 ev_default_loop_ptr = 0;
1698
1699#ifndef _WIN32
1700 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev);
1702#endif
1703
1704 loop_destroy (EV_A);
1705}
1706
1707void
1708ev_default_fork (void)
1709{
1710#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr;
1712#endif
1713
1714 postfork = 1; /* must be in line with ev_loop_fork */ 2091 postfork = 1; /* must be in line with ev_default_fork */
1715} 2092}
1716 2093
1717/*****************************************************************************/ 2094/*****************************************************************************/
1718 2095
1719void 2096void
1720ev_invoke (EV_P_ void *w, int revents) 2097ev_invoke (EV_P_ void *w, int revents)
1721{ 2098{
1722 EV_CB_INVOKE ((W)w, revents); 2099 EV_CB_INVOKE ((W)w, revents);
1723} 2100}
1724 2101
1725void inline_speed 2102unsigned int
1726call_pending (EV_P) 2103ev_pending_count (EV_P)
2104{
2105 int pri;
2106 unsigned int count = 0;
2107
2108 for (pri = NUMPRI; pri--; )
2109 count += pendingcnt [pri];
2110
2111 return count;
2112}
2113
2114void noinline
2115ev_invoke_pending (EV_P)
1727{ 2116{
1728 int pri; 2117 int pri;
1729 2118
1730 for (pri = NUMPRI; pri--; ) 2119 for (pri = NUMPRI; pri--; )
1731 while (pendingcnt [pri]) 2120 while (pendingcnt [pri])
1732 { 2121 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2122 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734 2123
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1738
1739 p->w->pending = 0; 2124 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 2125 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 2126 EV_FREQUENT_CHECK;
1742 }
1743 } 2127 }
1744} 2128}
1745 2129
1746#if EV_IDLE_ENABLE 2130#if EV_IDLE_ENABLE
1747void inline_size 2131/* make idle watchers pending. this handles the "call-idle */
2132/* only when higher priorities are idle" logic */
2133inline_size void
1748idle_reify (EV_P) 2134idle_reify (EV_P)
1749{ 2135{
1750 if (expect_false (idleall)) 2136 if (expect_false (idleall))
1751 { 2137 {
1752 int pri; 2138 int pri;
1764 } 2150 }
1765 } 2151 }
1766} 2152}
1767#endif 2153#endif
1768 2154
1769void inline_size 2155/* make timers pending */
2156inline_size void
1770timers_reify (EV_P) 2157timers_reify (EV_P)
1771{ 2158{
1772 EV_FREQUENT_CHECK; 2159 EV_FREQUENT_CHECK;
1773 2160
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2161 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 2162 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2163 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 2164 {
2165 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2166
2167 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2168
2169 /* first reschedule or stop timer */
2170 if (w->repeat)
2171 {
1783 ev_at (w) += w->repeat; 2172 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 2173 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 2174 ev_at (w) = mn_now;
1786 2175
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2176 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 2177
1789 ANHE_at_cache (timers [HEAP0]); 2178 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 2179 downheap (timers, timercnt, HEAP0);
2180 }
2181 else
2182 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2183
2184 EV_FREQUENT_CHECK;
2185 feed_reverse (EV_A_ (W)w);
1791 } 2186 }
1792 else 2187 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 2188
1795 EV_FREQUENT_CHECK; 2189 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 2190 }
1798} 2191}
1799 2192
1800#if EV_PERIODIC_ENABLE 2193#if EV_PERIODIC_ENABLE
1801void inline_size 2194/* make periodics pending */
2195inline_size void
1802periodics_reify (EV_P) 2196periodics_reify (EV_P)
1803{ 2197{
1804 EV_FREQUENT_CHECK; 2198 EV_FREQUENT_CHECK;
1805 2199
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2200 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 2201 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2202 int feed_count = 0;
1809 2203
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2204 do
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 2205 {
2206 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2207
2208 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2209
2210 /* first reschedule or stop timer */
2211 if (w->reschedule_cb)
2212 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2213 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 2214
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2215 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 2216
1819 ANHE_at_cache (periodics [HEAP0]); 2217 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 2218 downheap (periodics, periodiccnt, HEAP0);
2219 }
2220 else if (w->interval)
2221 {
2222 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2223 /* if next trigger time is not sufficiently in the future, put it there */
2224 /* this might happen because of floating point inexactness */
2225 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2226 {
2227 ev_at (w) += w->interval;
2228
2229 /* if interval is unreasonably low we might still have a time in the past */
2230 /* so correct this. this will make the periodic very inexact, but the user */
2231 /* has effectively asked to get triggered more often than possible */
2232 if (ev_at (w) < ev_rt_now)
2233 ev_at (w) = ev_rt_now;
2234 }
2235
2236 ANHE_at_cache (periodics [HEAP0]);
2237 downheap (periodics, periodiccnt, HEAP0);
2238 }
2239 else
2240 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2241
2242 EV_FREQUENT_CHECK;
2243 feed_reverse (EV_A_ (W)w);
1821 } 2244 }
1822 else if (w->interval) 2245 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 2246
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2247 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 2248 }
1847} 2249}
1848 2250
2251/* simply recalculate all periodics */
2252/* TODO: maybe ensure that at least one event happens when jumping forward? */
1849static void noinline 2253static void noinline
1850periodics_reschedule (EV_P) 2254periodics_reschedule (EV_P)
1851{ 2255{
1852 int i; 2256 int i;
1853 2257
1866 2270
1867 reheap (periodics, periodiccnt); 2271 reheap (periodics, periodiccnt);
1868} 2272}
1869#endif 2273#endif
1870 2274
1871void inline_speed 2275/* adjust all timers by a given offset */
2276static void noinline
2277timers_reschedule (EV_P_ ev_tstamp adjust)
2278{
2279 int i;
2280
2281 for (i = 0; i < timercnt; ++i)
2282 {
2283 ANHE *he = timers + i + HEAP0;
2284 ANHE_w (*he)->at += adjust;
2285 ANHE_at_cache (*he);
2286 }
2287}
2288
2289/* fetch new monotonic and realtime times from the kernel */
2290/* also detect if there was a timejump, and act accordingly */
2291inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 2292time_update (EV_P_ ev_tstamp max_block)
1873{ 2293{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 2294#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 2295 if (expect_true (have_monotonic))
1878 { 2296 {
2297 int i;
1879 ev_tstamp odiff = rtmn_diff; 2298 ev_tstamp odiff = rtmn_diff;
1880 2299
1881 mn_now = get_clock (); 2300 mn_now = get_clock ();
1882 2301
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2302 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1909 ev_rt_now = ev_time (); 2328 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2329 mn_now = get_clock ();
1911 now_floor = mn_now; 2330 now_floor = mn_now;
1912 } 2331 }
1913 2332
2333 /* no timer adjustment, as the monotonic clock doesn't jump */
2334 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2335# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2336 periodics_reschedule (EV_A);
1916# endif 2337# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2338 }
1920 else 2339 else
1921#endif 2340#endif
1922 { 2341 {
1923 ev_rt_now = ev_time (); 2342 ev_rt_now = ev_time ();
1924 2343
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2344 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 2345 {
2346 /* adjust timers. this is easy, as the offset is the same for all of them */
2347 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 2348#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 2349 periodics_reschedule (EV_A);
1929#endif 2350#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 2351 }
1938 2352
1939 mn_now = ev_rt_now; 2353 mn_now = ev_rt_now;
1940 } 2354 }
1941} 2355}
1942 2356
1943void 2357void
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 2358ev_run (EV_P_ int flags)
1965{ 2359{
2360#if EV_FEATURE_API
2361 ++loop_depth;
2362#endif
2363
2364 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2365
1966 loop_done = EVUNLOOP_CANCEL; 2366 loop_done = EVBREAK_CANCEL;
1967 2367
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2368 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 2369
1970 do 2370 do
1971 { 2371 {
1972#if EV_VERIFY >= 2 2372#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 2373 ev_verify (EV_A);
1974#endif 2374#endif
1975 2375
1976#ifndef _WIN32 2376#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 2377 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 2378 if (expect_false (getpid () != curpid))
1986 /* we might have forked, so queue fork handlers */ 2386 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 2387 if (expect_false (postfork))
1988 if (forkcnt) 2388 if (forkcnt)
1989 { 2389 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2390 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 2391 EV_INVOKE_PENDING;
1992 } 2392 }
1993#endif 2393#endif
1994 2394
2395#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 2396 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 2397 if (expect_false (preparecnt))
1997 { 2398 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 2400 EV_INVOKE_PENDING;
2000 } 2401 }
2402#endif
2403
2404 if (expect_false (loop_done))
2405 break;
2001 2406
2002 /* we might have forked, so reify kernel state if necessary */ 2407 /* we might have forked, so reify kernel state if necessary */
2003 if (expect_false (postfork)) 2408 if (expect_false (postfork))
2004 loop_fork (EV_A); 2409 loop_fork (EV_A);
2005 2410
2009 /* calculate blocking time */ 2414 /* calculate blocking time */
2010 { 2415 {
2011 ev_tstamp waittime = 0.; 2416 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.; 2417 ev_tstamp sleeptime = 0.;
2013 2418
2419 /* remember old timestamp for io_blocktime calculation */
2420 ev_tstamp prev_mn_now = mn_now;
2421
2422 /* update time to cancel out callback processing overhead */
2423 time_update (EV_A_ 1e100);
2424
2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2425 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
2015 { 2426 {
2016 /* update time to cancel out callback processing overhead */
2017 time_update (EV_A_ 1e100);
2018
2019 waittime = MAX_BLOCKTIME; 2427 waittime = MAX_BLOCKTIME;
2020 2428
2021 if (timercnt) 2429 if (timercnt)
2022 { 2430 {
2023 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2431 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2438 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2031 if (waittime > to) waittime = to; 2439 if (waittime > to) waittime = to;
2032 } 2440 }
2033#endif 2441#endif
2034 2442
2443 /* don't let timeouts decrease the waittime below timeout_blocktime */
2035 if (expect_false (waittime < timeout_blocktime)) 2444 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime; 2445 waittime = timeout_blocktime;
2037 2446
2038 sleeptime = waittime - backend_fudge; 2447 /* extra check because io_blocktime is commonly 0 */
2039
2040 if (expect_true (sleeptime > io_blocktime)) 2448 if (expect_false (io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 { 2449 {
2450 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2451
2452 if (sleeptime > waittime - backend_fudge)
2453 sleeptime = waittime - backend_fudge;
2454
2455 if (expect_true (sleeptime > 0.))
2456 {
2045 ev_sleep (sleeptime); 2457 ev_sleep (sleeptime);
2046 waittime -= sleeptime; 2458 waittime -= sleeptime;
2459 }
2047 } 2460 }
2048 } 2461 }
2049 2462
2463#if EV_FEATURE_API
2050 ++loop_count; 2464 ++loop_count;
2465#endif
2466 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2051 backend_poll (EV_A_ waittime); 2467 backend_poll (EV_A_ waittime);
2468 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2052 2469
2053 /* update ev_rt_now, do magic */ 2470 /* update ev_rt_now, do magic */
2054 time_update (EV_A_ waittime + sleeptime); 2471 time_update (EV_A_ waittime + sleeptime);
2055 } 2472 }
2056 2473
2063#if EV_IDLE_ENABLE 2480#if EV_IDLE_ENABLE
2064 /* queue idle watchers unless other events are pending */ 2481 /* queue idle watchers unless other events are pending */
2065 idle_reify (EV_A); 2482 idle_reify (EV_A);
2066#endif 2483#endif
2067 2484
2485#if EV_CHECK_ENABLE
2068 /* queue check watchers, to be executed first */ 2486 /* queue check watchers, to be executed first */
2069 if (expect_false (checkcnt)) 2487 if (expect_false (checkcnt))
2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2488 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2489#endif
2071 2490
2072 call_pending (EV_A); 2491 EV_INVOKE_PENDING;
2073 } 2492 }
2074 while (expect_true ( 2493 while (expect_true (
2075 activecnt 2494 activecnt
2076 && !loop_done 2495 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2496 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2078 )); 2497 ));
2079 2498
2080 if (loop_done == EVUNLOOP_ONE) 2499 if (loop_done == EVBREAK_ONE)
2081 loop_done = EVUNLOOP_CANCEL; 2500 loop_done = EVBREAK_CANCEL;
2082}
2083 2501
2502#if EV_FEATURE_API
2503 --loop_depth;
2504#endif
2505}
2506
2084void 2507void
2085ev_unloop (EV_P_ int how) 2508ev_break (EV_P_ int how)
2086{ 2509{
2087 loop_done = how; 2510 loop_done = how;
2088} 2511}
2089 2512
2513void
2514ev_ref (EV_P)
2515{
2516 ++activecnt;
2517}
2518
2519void
2520ev_unref (EV_P)
2521{
2522 --activecnt;
2523}
2524
2525void
2526ev_now_update (EV_P)
2527{
2528 time_update (EV_A_ 1e100);
2529}
2530
2531void
2532ev_suspend (EV_P)
2533{
2534 ev_now_update (EV_A);
2535}
2536
2537void
2538ev_resume (EV_P)
2539{
2540 ev_tstamp mn_prev = mn_now;
2541
2542 ev_now_update (EV_A);
2543 timers_reschedule (EV_A_ mn_now - mn_prev);
2544#if EV_PERIODIC_ENABLE
2545 /* TODO: really do this? */
2546 periodics_reschedule (EV_A);
2547#endif
2548}
2549
2090/*****************************************************************************/ 2550/*****************************************************************************/
2551/* singly-linked list management, used when the expected list length is short */
2091 2552
2092void inline_size 2553inline_size void
2093wlist_add (WL *head, WL elem) 2554wlist_add (WL *head, WL elem)
2094{ 2555{
2095 elem->next = *head; 2556 elem->next = *head;
2096 *head = elem; 2557 *head = elem;
2097} 2558}
2098 2559
2099void inline_size 2560inline_size void
2100wlist_del (WL *head, WL elem) 2561wlist_del (WL *head, WL elem)
2101{ 2562{
2102 while (*head) 2563 while (*head)
2103 { 2564 {
2104 if (*head == elem) 2565 if (expect_true (*head == elem))
2105 { 2566 {
2106 *head = elem->next; 2567 *head = elem->next;
2107 return; 2568 break;
2108 } 2569 }
2109 2570
2110 head = &(*head)->next; 2571 head = &(*head)->next;
2111 } 2572 }
2112} 2573}
2113 2574
2114void inline_speed 2575/* internal, faster, version of ev_clear_pending */
2576inline_speed void
2115clear_pending (EV_P_ W w) 2577clear_pending (EV_P_ W w)
2116{ 2578{
2117 if (w->pending) 2579 if (w->pending)
2118 { 2580 {
2119 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2581 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2120 w->pending = 0; 2582 w->pending = 0;
2121 } 2583 }
2122} 2584}
2123 2585
2124int 2586int
2128 int pending = w_->pending; 2590 int pending = w_->pending;
2129 2591
2130 if (expect_true (pending)) 2592 if (expect_true (pending))
2131 { 2593 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2594 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2595 p->w = (W)&pending_w;
2133 w_->pending = 0; 2596 w_->pending = 0;
2134 p->w = 0;
2135 return p->events; 2597 return p->events;
2136 } 2598 }
2137 else 2599 else
2138 return 0; 2600 return 0;
2139} 2601}
2140 2602
2141void inline_size 2603inline_size void
2142pri_adjust (EV_P_ W w) 2604pri_adjust (EV_P_ W w)
2143{ 2605{
2144 int pri = w->priority; 2606 int pri = ev_priority (w);
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2607 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2608 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri; 2609 ev_set_priority (w, pri);
2148} 2610}
2149 2611
2150void inline_speed 2612inline_speed void
2151ev_start (EV_P_ W w, int active) 2613ev_start (EV_P_ W w, int active)
2152{ 2614{
2153 pri_adjust (EV_A_ w); 2615 pri_adjust (EV_A_ w);
2154 w->active = active; 2616 w->active = active;
2155 ev_ref (EV_A); 2617 ev_ref (EV_A);
2156} 2618}
2157 2619
2158void inline_size 2620inline_size void
2159ev_stop (EV_P_ W w) 2621ev_stop (EV_P_ W w)
2160{ 2622{
2161 ev_unref (EV_A); 2623 ev_unref (EV_A);
2162 w->active = 0; 2624 w->active = 0;
2163} 2625}
2171 2633
2172 if (expect_false (ev_is_active (w))) 2634 if (expect_false (ev_is_active (w)))
2173 return; 2635 return;
2174 2636
2175 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2637 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2176 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 2638 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2177 2639
2178 EV_FREQUENT_CHECK; 2640 EV_FREQUENT_CHECK;
2179 2641
2180 ev_start (EV_A_ (W)w, 1); 2642 ev_start (EV_A_ (W)w, 1);
2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2643 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2182 wlist_add (&anfds[fd].head, (WL)w); 2644 wlist_add (&anfds[fd].head, (WL)w);
2183 2645
2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 2646 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2185 w->events &= ~EV__IOFDSET; 2647 w->events &= ~EV__IOFDSET;
2186 2648
2187 EV_FREQUENT_CHECK; 2649 EV_FREQUENT_CHECK;
2188} 2650}
2189 2651
2199 EV_FREQUENT_CHECK; 2661 EV_FREQUENT_CHECK;
2200 2662
2201 wlist_del (&anfds[w->fd].head, (WL)w); 2663 wlist_del (&anfds[w->fd].head, (WL)w);
2202 ev_stop (EV_A_ (W)w); 2664 ev_stop (EV_A_ (W)w);
2203 2665
2204 fd_change (EV_A_ w->fd, 1); 2666 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2205 2667
2206 EV_FREQUENT_CHECK; 2668 EV_FREQUENT_CHECK;
2207} 2669}
2208 2670
2209void noinline 2671void noinline
2251 timers [active] = timers [timercnt + HEAP0]; 2713 timers [active] = timers [timercnt + HEAP0];
2252 adjustheap (timers, timercnt, active); 2714 adjustheap (timers, timercnt, active);
2253 } 2715 }
2254 } 2716 }
2255 2717
2256 EV_FREQUENT_CHECK;
2257
2258 ev_at (w) -= mn_now; 2718 ev_at (w) -= mn_now;
2259 2719
2260 ev_stop (EV_A_ (W)w); 2720 ev_stop (EV_A_ (W)w);
2721
2722 EV_FREQUENT_CHECK;
2261} 2723}
2262 2724
2263void noinline 2725void noinline
2264ev_timer_again (EV_P_ ev_timer *w) 2726ev_timer_again (EV_P_ ev_timer *w)
2265{ 2727{
2283 } 2745 }
2284 2746
2285 EV_FREQUENT_CHECK; 2747 EV_FREQUENT_CHECK;
2286} 2748}
2287 2749
2750ev_tstamp
2751ev_timer_remaining (EV_P_ ev_timer *w)
2752{
2753 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2754}
2755
2288#if EV_PERIODIC_ENABLE 2756#if EV_PERIODIC_ENABLE
2289void noinline 2757void noinline
2290ev_periodic_start (EV_P_ ev_periodic *w) 2758ev_periodic_start (EV_P_ ev_periodic *w)
2291{ 2759{
2292 if (expect_false (ev_is_active (w))) 2760 if (expect_false (ev_is_active (w)))
2338 periodics [active] = periodics [periodiccnt + HEAP0]; 2806 periodics [active] = periodics [periodiccnt + HEAP0];
2339 adjustheap (periodics, periodiccnt, active); 2807 adjustheap (periodics, periodiccnt, active);
2340 } 2808 }
2341 } 2809 }
2342 2810
2343 EV_FREQUENT_CHECK;
2344
2345 ev_stop (EV_A_ (W)w); 2811 ev_stop (EV_A_ (W)w);
2812
2813 EV_FREQUENT_CHECK;
2346} 2814}
2347 2815
2348void noinline 2816void noinline
2349ev_periodic_again (EV_P_ ev_periodic *w) 2817ev_periodic_again (EV_P_ ev_periodic *w)
2350{ 2818{
2356 2824
2357#ifndef SA_RESTART 2825#ifndef SA_RESTART
2358# define SA_RESTART 0 2826# define SA_RESTART 0
2359#endif 2827#endif
2360 2828
2829#if EV_SIGNAL_ENABLE
2830
2361void noinline 2831void noinline
2362ev_signal_start (EV_P_ ev_signal *w) 2832ev_signal_start (EV_P_ ev_signal *w)
2363{ 2833{
2364#if EV_MULTIPLICITY
2365 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2366#endif
2367 if (expect_false (ev_is_active (w))) 2834 if (expect_false (ev_is_active (w)))
2368 return; 2835 return;
2369 2836
2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 2837 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2371 2838
2372 evpipe_init (EV_A); 2839#if EV_MULTIPLICITY
2840 assert (("libev: a signal must not be attached to two different loops",
2841 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2373 2842
2374 EV_FREQUENT_CHECK; 2843 signals [w->signum - 1].loop = EV_A;
2844#endif
2375 2845
2846 EV_FREQUENT_CHECK;
2847
2848#if EV_USE_SIGNALFD
2849 if (sigfd == -2)
2376 { 2850 {
2377#ifndef _WIN32 2851 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2378 sigset_t full, prev; 2852 if (sigfd < 0 && errno == EINVAL)
2379 sigfillset (&full); 2853 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2380 sigprocmask (SIG_SETMASK, &full, &prev);
2381#endif
2382 2854
2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2855 if (sigfd >= 0)
2856 {
2857 fd_intern (sigfd); /* doing it twice will not hurt */
2384 2858
2385#ifndef _WIN32 2859 sigemptyset (&sigfd_set);
2386 sigprocmask (SIG_SETMASK, &prev, 0); 2860
2387#endif 2861 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2862 ev_set_priority (&sigfd_w, EV_MAXPRI);
2863 ev_io_start (EV_A_ &sigfd_w);
2864 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2865 }
2388 } 2866 }
2867
2868 if (sigfd >= 0)
2869 {
2870 /* TODO: check .head */
2871 sigaddset (&sigfd_set, w->signum);
2872 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2873
2874 signalfd (sigfd, &sigfd_set, 0);
2875 }
2876#endif
2389 2877
2390 ev_start (EV_A_ (W)w, 1); 2878 ev_start (EV_A_ (W)w, 1);
2391 wlist_add (&signals [w->signum - 1].head, (WL)w); 2879 wlist_add (&signals [w->signum - 1].head, (WL)w);
2392 2880
2393 if (!((WL)w)->next) 2881 if (!((WL)w)->next)
2882# if EV_USE_SIGNALFD
2883 if (sigfd < 0) /*TODO*/
2884# endif
2394 { 2885 {
2395#if _WIN32 2886# ifdef _WIN32
2887 evpipe_init (EV_A);
2888
2396 signal (w->signum, ev_sighandler); 2889 signal (w->signum, ev_sighandler);
2397#else 2890# else
2398 struct sigaction sa; 2891 struct sigaction sa;
2892
2893 evpipe_init (EV_A);
2894
2399 sa.sa_handler = ev_sighandler; 2895 sa.sa_handler = ev_sighandler;
2400 sigfillset (&sa.sa_mask); 2896 sigfillset (&sa.sa_mask);
2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2897 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2402 sigaction (w->signum, &sa, 0); 2898 sigaction (w->signum, &sa, 0);
2899
2900 if (origflags & EVFLAG_NOSIGMASK)
2901 {
2902 sigemptyset (&sa.sa_mask);
2903 sigaddset (&sa.sa_mask, w->signum);
2904 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2905 }
2403#endif 2906#endif
2404 } 2907 }
2405 2908
2406 EV_FREQUENT_CHECK; 2909 EV_FREQUENT_CHECK;
2407} 2910}
2408 2911
2409void noinline 2912void noinline
2417 2920
2418 wlist_del (&signals [w->signum - 1].head, (WL)w); 2921 wlist_del (&signals [w->signum - 1].head, (WL)w);
2419 ev_stop (EV_A_ (W)w); 2922 ev_stop (EV_A_ (W)w);
2420 2923
2421 if (!signals [w->signum - 1].head) 2924 if (!signals [w->signum - 1].head)
2925 {
2926#if EV_MULTIPLICITY
2927 signals [w->signum - 1].loop = 0; /* unattach from signal */
2928#endif
2929#if EV_USE_SIGNALFD
2930 if (sigfd >= 0)
2931 {
2932 sigset_t ss;
2933
2934 sigemptyset (&ss);
2935 sigaddset (&ss, w->signum);
2936 sigdelset (&sigfd_set, w->signum);
2937
2938 signalfd (sigfd, &sigfd_set, 0);
2939 sigprocmask (SIG_UNBLOCK, &ss, 0);
2940 }
2941 else
2942#endif
2422 signal (w->signum, SIG_DFL); 2943 signal (w->signum, SIG_DFL);
2944 }
2423 2945
2424 EV_FREQUENT_CHECK; 2946 EV_FREQUENT_CHECK;
2425} 2947}
2948
2949#endif
2950
2951#if EV_CHILD_ENABLE
2426 2952
2427void 2953void
2428ev_child_start (EV_P_ ev_child *w) 2954ev_child_start (EV_P_ ev_child *w)
2429{ 2955{
2430#if EV_MULTIPLICITY 2956#if EV_MULTIPLICITY
2434 return; 2960 return;
2435 2961
2436 EV_FREQUENT_CHECK; 2962 EV_FREQUENT_CHECK;
2437 2963
2438 ev_start (EV_A_ (W)w, 1); 2964 ev_start (EV_A_ (W)w, 1);
2439 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2965 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2440 2966
2441 EV_FREQUENT_CHECK; 2967 EV_FREQUENT_CHECK;
2442} 2968}
2443 2969
2444void 2970void
2448 if (expect_false (!ev_is_active (w))) 2974 if (expect_false (!ev_is_active (w)))
2449 return; 2975 return;
2450 2976
2451 EV_FREQUENT_CHECK; 2977 EV_FREQUENT_CHECK;
2452 2978
2453 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2979 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2454 ev_stop (EV_A_ (W)w); 2980 ev_stop (EV_A_ (W)w);
2455 2981
2456 EV_FREQUENT_CHECK; 2982 EV_FREQUENT_CHECK;
2457} 2983}
2984
2985#endif
2458 2986
2459#if EV_STAT_ENABLE 2987#if EV_STAT_ENABLE
2460 2988
2461# ifdef _WIN32 2989# ifdef _WIN32
2462# undef lstat 2990# undef lstat
2468#define MIN_STAT_INTERVAL 0.1074891 2996#define MIN_STAT_INTERVAL 0.1074891
2469 2997
2470static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2998static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2471 2999
2472#if EV_USE_INOTIFY 3000#if EV_USE_INOTIFY
2473# define EV_INOTIFY_BUFSIZE 8192 3001
3002/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3003# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2474 3004
2475static void noinline 3005static void noinline
2476infy_add (EV_P_ ev_stat *w) 3006infy_add (EV_P_ ev_stat *w)
2477{ 3007{
2478 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3008 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2479 3009
2480 if (w->wd < 0) 3010 if (w->wd >= 0)
3011 {
3012 struct statfs sfs;
3013
3014 /* now local changes will be tracked by inotify, but remote changes won't */
3015 /* unless the filesystem is known to be local, we therefore still poll */
3016 /* also do poll on <2.6.25, but with normal frequency */
3017
3018 if (!fs_2625)
3019 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3020 else if (!statfs (w->path, &sfs)
3021 && (sfs.f_type == 0x1373 /* devfs */
3022 || sfs.f_type == 0xEF53 /* ext2/3 */
3023 || sfs.f_type == 0x3153464a /* jfs */
3024 || sfs.f_type == 0x52654973 /* reiser3 */
3025 || sfs.f_type == 0x01021994 /* tempfs */
3026 || sfs.f_type == 0x58465342 /* xfs */))
3027 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3028 else
3029 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2481 { 3030 }
3031 else
3032 {
3033 /* can't use inotify, continue to stat */
2482 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 3034 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2483 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2484 3035
2485 /* monitor some parent directory for speedup hints */ 3036 /* if path is not there, monitor some parent directory for speedup hints */
2486 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 3037 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2487 /* but an efficiency issue only */ 3038 /* but an efficiency issue only */
2488 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3039 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2489 { 3040 {
2490 char path [4096]; 3041 char path [4096];
2506 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3057 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2507 } 3058 }
2508 } 3059 }
2509 3060
2510 if (w->wd >= 0) 3061 if (w->wd >= 0)
2511 {
2512 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3062 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2513 3063
2514 /* now local changes will be tracked by inotify, but remote changes won't */ 3064 /* now re-arm timer, if required */
2515 /* unless the filesystem it known to be local, we therefore still poll */ 3065 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2516 /* also do poll on <2.6.25, but with normal frequency */
2517 struct statfs sfs;
2518
2519 if (fs_2625 && !statfs (w->path, &sfs))
2520 if (sfs.f_type == 0x1373 /* devfs */
2521 || sfs.f_type == 0xEF53 /* ext2/3 */
2522 || sfs.f_type == 0x3153464a /* jfs */
2523 || sfs.f_type == 0x52654973 /* reiser3 */
2524 || sfs.f_type == 0x01021994 /* tempfs */
2525 || sfs.f_type == 0x58465342 /* xfs */)
2526 return;
2527
2528 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2529 ev_timer_again (EV_A_ &w->timer); 3066 ev_timer_again (EV_A_ &w->timer);
2530 } 3067 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2531} 3068}
2532 3069
2533static void noinline 3070static void noinline
2534infy_del (EV_P_ ev_stat *w) 3071infy_del (EV_P_ ev_stat *w)
2535{ 3072{
2538 3075
2539 if (wd < 0) 3076 if (wd < 0)
2540 return; 3077 return;
2541 3078
2542 w->wd = -2; 3079 w->wd = -2;
2543 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3080 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2544 wlist_del (&fs_hash [slot].head, (WL)w); 3081 wlist_del (&fs_hash [slot].head, (WL)w);
2545 3082
2546 /* remove this watcher, if others are watching it, they will rearm */ 3083 /* remove this watcher, if others are watching it, they will rearm */
2547 inotify_rm_watch (fs_fd, wd); 3084 inotify_rm_watch (fs_fd, wd);
2548} 3085}
2550static void noinline 3087static void noinline
2551infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3088infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2552{ 3089{
2553 if (slot < 0) 3090 if (slot < 0)
2554 /* overflow, need to check for all hash slots */ 3091 /* overflow, need to check for all hash slots */
2555 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3092 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2556 infy_wd (EV_A_ slot, wd, ev); 3093 infy_wd (EV_A_ slot, wd, ev);
2557 else 3094 else
2558 { 3095 {
2559 WL w_; 3096 WL w_;
2560 3097
2561 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3098 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2562 { 3099 {
2563 ev_stat *w = (ev_stat *)w_; 3100 ev_stat *w = (ev_stat *)w_;
2564 w_ = w_->next; /* lets us remove this watcher and all before it */ 3101 w_ = w_->next; /* lets us remove this watcher and all before it */
2565 3102
2566 if (w->wd == wd || wd == -1) 3103 if (w->wd == wd || wd == -1)
2567 { 3104 {
2568 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3105 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2569 { 3106 {
2570 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3107 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2571 w->wd = -1; 3108 w->wd = -1;
2572 infy_add (EV_A_ w); /* re-add, no matter what */ 3109 infy_add (EV_A_ w); /* re-add, no matter what */
2573 } 3110 }
2574 3111
2575 stat_timer_cb (EV_A_ &w->timer, 0); 3112 stat_timer_cb (EV_A_ &w->timer, 0);
2580 3117
2581static void 3118static void
2582infy_cb (EV_P_ ev_io *w, int revents) 3119infy_cb (EV_P_ ev_io *w, int revents)
2583{ 3120{
2584 char buf [EV_INOTIFY_BUFSIZE]; 3121 char buf [EV_INOTIFY_BUFSIZE];
2585 struct inotify_event *ev = (struct inotify_event *)buf;
2586 int ofs; 3122 int ofs;
2587 int len = read (fs_fd, buf, sizeof (buf)); 3123 int len = read (fs_fd, buf, sizeof (buf));
2588 3124
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3125 for (ofs = 0; ofs < len; )
3126 {
3127 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3128 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3129 ofs += sizeof (struct inotify_event) + ev->len;
3130 }
2591} 3131}
2592 3132
2593void inline_size 3133inline_size void
2594check_2625 (EV_P) 3134ev_check_2625 (EV_P)
2595{ 3135{
2596 /* kernels < 2.6.25 are borked 3136 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3137 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */ 3138 */
2599 struct utsname buf; 3139 if (ev_linux_version () < 0x020619)
2600 int major, minor, micro;
2601
2602 if (uname (&buf))
2603 return; 3140 return;
2604 3141
2605 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2606 return;
2607
2608 if (major < 2
2609 || (major == 2 && minor < 6)
2610 || (major == 2 && minor == 6 && micro < 25))
2611 return;
2612
2613 fs_2625 = 1; 3142 fs_2625 = 1;
2614} 3143}
2615 3144
2616void inline_size 3145inline_size int
3146infy_newfd (void)
3147{
3148#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3149 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3150 if (fd >= 0)
3151 return fd;
3152#endif
3153 return inotify_init ();
3154}
3155
3156inline_size void
2617infy_init (EV_P) 3157infy_init (EV_P)
2618{ 3158{
2619 if (fs_fd != -2) 3159 if (fs_fd != -2)
2620 return; 3160 return;
2621 3161
2622 fs_fd = -1; 3162 fs_fd = -1;
2623 3163
2624 check_2625 (EV_A); 3164 ev_check_2625 (EV_A);
2625 3165
2626 fs_fd = inotify_init (); 3166 fs_fd = infy_newfd ();
2627 3167
2628 if (fs_fd >= 0) 3168 if (fs_fd >= 0)
2629 { 3169 {
3170 fd_intern (fs_fd);
2630 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3171 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2631 ev_set_priority (&fs_w, EV_MAXPRI); 3172 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w); 3173 ev_io_start (EV_A_ &fs_w);
3174 ev_unref (EV_A);
2633 } 3175 }
2634} 3176}
2635 3177
2636void inline_size 3178inline_size void
2637infy_fork (EV_P) 3179infy_fork (EV_P)
2638{ 3180{
2639 int slot; 3181 int slot;
2640 3182
2641 if (fs_fd < 0) 3183 if (fs_fd < 0)
2642 return; 3184 return;
2643 3185
3186 ev_ref (EV_A);
3187 ev_io_stop (EV_A_ &fs_w);
2644 close (fs_fd); 3188 close (fs_fd);
2645 fs_fd = inotify_init (); 3189 fs_fd = infy_newfd ();
2646 3190
3191 if (fs_fd >= 0)
3192 {
3193 fd_intern (fs_fd);
3194 ev_io_set (&fs_w, fs_fd, EV_READ);
3195 ev_io_start (EV_A_ &fs_w);
3196 ev_unref (EV_A);
3197 }
3198
2647 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3199 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2648 { 3200 {
2649 WL w_ = fs_hash [slot].head; 3201 WL w_ = fs_hash [slot].head;
2650 fs_hash [slot].head = 0; 3202 fs_hash [slot].head = 0;
2651 3203
2652 while (w_) 3204 while (w_)
2657 w->wd = -1; 3209 w->wd = -1;
2658 3210
2659 if (fs_fd >= 0) 3211 if (fs_fd >= 0)
2660 infy_add (EV_A_ w); /* re-add, no matter what */ 3212 infy_add (EV_A_ w); /* re-add, no matter what */
2661 else 3213 else
3214 {
3215 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3216 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2662 ev_timer_again (EV_A_ &w->timer); 3217 ev_timer_again (EV_A_ &w->timer);
3218 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3219 }
2663 } 3220 }
2664 } 3221 }
2665} 3222}
2666 3223
2667#endif 3224#endif
2684static void noinline 3241static void noinline
2685stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3242stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2686{ 3243{
2687 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3244 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2688 3245
2689 /* we copy this here each the time so that */ 3246 ev_statdata prev = w->attr;
2690 /* prev has the old value when the callback gets invoked */
2691 w->prev = w->attr;
2692 ev_stat_stat (EV_A_ w); 3247 ev_stat_stat (EV_A_ w);
2693 3248
2694 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3249 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2695 if ( 3250 if (
2696 w->prev.st_dev != w->attr.st_dev 3251 prev.st_dev != w->attr.st_dev
2697 || w->prev.st_ino != w->attr.st_ino 3252 || prev.st_ino != w->attr.st_ino
2698 || w->prev.st_mode != w->attr.st_mode 3253 || prev.st_mode != w->attr.st_mode
2699 || w->prev.st_nlink != w->attr.st_nlink 3254 || prev.st_nlink != w->attr.st_nlink
2700 || w->prev.st_uid != w->attr.st_uid 3255 || prev.st_uid != w->attr.st_uid
2701 || w->prev.st_gid != w->attr.st_gid 3256 || prev.st_gid != w->attr.st_gid
2702 || w->prev.st_rdev != w->attr.st_rdev 3257 || prev.st_rdev != w->attr.st_rdev
2703 || w->prev.st_size != w->attr.st_size 3258 || prev.st_size != w->attr.st_size
2704 || w->prev.st_atime != w->attr.st_atime 3259 || prev.st_atime != w->attr.st_atime
2705 || w->prev.st_mtime != w->attr.st_mtime 3260 || prev.st_mtime != w->attr.st_mtime
2706 || w->prev.st_ctime != w->attr.st_ctime 3261 || prev.st_ctime != w->attr.st_ctime
2707 ) { 3262 ) {
3263 /* we only update w->prev on actual differences */
3264 /* in case we test more often than invoke the callback, */
3265 /* to ensure that prev is always different to attr */
3266 w->prev = prev;
3267
2708 #if EV_USE_INOTIFY 3268 #if EV_USE_INOTIFY
2709 if (fs_fd >= 0) 3269 if (fs_fd >= 0)
2710 { 3270 {
2711 infy_del (EV_A_ w); 3271 infy_del (EV_A_ w);
2712 infy_add (EV_A_ w); 3272 infy_add (EV_A_ w);
2737 3297
2738 if (fs_fd >= 0) 3298 if (fs_fd >= 0)
2739 infy_add (EV_A_ w); 3299 infy_add (EV_A_ w);
2740 else 3300 else
2741#endif 3301#endif
3302 {
2742 ev_timer_again (EV_A_ &w->timer); 3303 ev_timer_again (EV_A_ &w->timer);
3304 ev_unref (EV_A);
3305 }
2743 3306
2744 ev_start (EV_A_ (W)w, 1); 3307 ev_start (EV_A_ (W)w, 1);
2745 3308
2746 EV_FREQUENT_CHECK; 3309 EV_FREQUENT_CHECK;
2747} 3310}
2756 EV_FREQUENT_CHECK; 3319 EV_FREQUENT_CHECK;
2757 3320
2758#if EV_USE_INOTIFY 3321#if EV_USE_INOTIFY
2759 infy_del (EV_A_ w); 3322 infy_del (EV_A_ w);
2760#endif 3323#endif
3324
3325 if (ev_is_active (&w->timer))
3326 {
3327 ev_ref (EV_A);
2761 ev_timer_stop (EV_A_ &w->timer); 3328 ev_timer_stop (EV_A_ &w->timer);
3329 }
2762 3330
2763 ev_stop (EV_A_ (W)w); 3331 ev_stop (EV_A_ (W)w);
2764 3332
2765 EV_FREQUENT_CHECK; 3333 EV_FREQUENT_CHECK;
2766} 3334}
2811 3379
2812 EV_FREQUENT_CHECK; 3380 EV_FREQUENT_CHECK;
2813} 3381}
2814#endif 3382#endif
2815 3383
3384#if EV_PREPARE_ENABLE
2816void 3385void
2817ev_prepare_start (EV_P_ ev_prepare *w) 3386ev_prepare_start (EV_P_ ev_prepare *w)
2818{ 3387{
2819 if (expect_false (ev_is_active (w))) 3388 if (expect_false (ev_is_active (w)))
2820 return; 3389 return;
2846 3415
2847 ev_stop (EV_A_ (W)w); 3416 ev_stop (EV_A_ (W)w);
2848 3417
2849 EV_FREQUENT_CHECK; 3418 EV_FREQUENT_CHECK;
2850} 3419}
3420#endif
2851 3421
3422#if EV_CHECK_ENABLE
2852void 3423void
2853ev_check_start (EV_P_ ev_check *w) 3424ev_check_start (EV_P_ ev_check *w)
2854{ 3425{
2855 if (expect_false (ev_is_active (w))) 3426 if (expect_false (ev_is_active (w)))
2856 return; 3427 return;
2882 3453
2883 ev_stop (EV_A_ (W)w); 3454 ev_stop (EV_A_ (W)w);
2884 3455
2885 EV_FREQUENT_CHECK; 3456 EV_FREQUENT_CHECK;
2886} 3457}
3458#endif
2887 3459
2888#if EV_EMBED_ENABLE 3460#if EV_EMBED_ENABLE
2889void noinline 3461void noinline
2890ev_embed_sweep (EV_P_ ev_embed *w) 3462ev_embed_sweep (EV_P_ ev_embed *w)
2891{ 3463{
2892 ev_loop (w->other, EVLOOP_NONBLOCK); 3464 ev_run (w->other, EVRUN_NOWAIT);
2893} 3465}
2894 3466
2895static void 3467static void
2896embed_io_cb (EV_P_ ev_io *io, int revents) 3468embed_io_cb (EV_P_ ev_io *io, int revents)
2897{ 3469{
2898 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3470 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2899 3471
2900 if (ev_cb (w)) 3472 if (ev_cb (w))
2901 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3473 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2902 else 3474 else
2903 ev_loop (w->other, EVLOOP_NONBLOCK); 3475 ev_run (w->other, EVRUN_NOWAIT);
2904} 3476}
2905 3477
2906static void 3478static void
2907embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3479embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2908{ 3480{
2909 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3481 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2910 3482
2911 { 3483 {
2912 struct ev_loop *loop = w->other; 3484 EV_P = w->other;
2913 3485
2914 while (fdchangecnt) 3486 while (fdchangecnt)
2915 { 3487 {
2916 fd_reify (EV_A); 3488 fd_reify (EV_A);
2917 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3489 ev_run (EV_A_ EVRUN_NOWAIT);
2918 } 3490 }
2919 } 3491 }
2920} 3492}
2921 3493
2922static void 3494static void
2925 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3497 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2926 3498
2927 ev_embed_stop (EV_A_ w); 3499 ev_embed_stop (EV_A_ w);
2928 3500
2929 { 3501 {
2930 struct ev_loop *loop = w->other; 3502 EV_P = w->other;
2931 3503
2932 ev_loop_fork (EV_A); 3504 ev_loop_fork (EV_A);
2933 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3505 ev_run (EV_A_ EVRUN_NOWAIT);
2934 } 3506 }
2935 3507
2936 ev_embed_start (EV_A_ w); 3508 ev_embed_start (EV_A_ w);
2937} 3509}
2938 3510
2949{ 3521{
2950 if (expect_false (ev_is_active (w))) 3522 if (expect_false (ev_is_active (w)))
2951 return; 3523 return;
2952 3524
2953 { 3525 {
2954 struct ev_loop *loop = w->other; 3526 EV_P = w->other;
2955 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3527 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2956 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3528 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2957 } 3529 }
2958 3530
2959 EV_FREQUENT_CHECK; 3531 EV_FREQUENT_CHECK;
2986 3558
2987 ev_io_stop (EV_A_ &w->io); 3559 ev_io_stop (EV_A_ &w->io);
2988 ev_prepare_stop (EV_A_ &w->prepare); 3560 ev_prepare_stop (EV_A_ &w->prepare);
2989 ev_fork_stop (EV_A_ &w->fork); 3561 ev_fork_stop (EV_A_ &w->fork);
2990 3562
3563 ev_stop (EV_A_ (W)w);
3564
2991 EV_FREQUENT_CHECK; 3565 EV_FREQUENT_CHECK;
2992} 3566}
2993#endif 3567#endif
2994 3568
2995#if EV_FORK_ENABLE 3569#if EV_FORK_ENABLE
3028 3602
3029 EV_FREQUENT_CHECK; 3603 EV_FREQUENT_CHECK;
3030} 3604}
3031#endif 3605#endif
3032 3606
3033#if EV_ASYNC_ENABLE 3607#if EV_CLEANUP_ENABLE
3034void 3608void
3035ev_async_start (EV_P_ ev_async *w) 3609ev_cleanup_start (EV_P_ ev_cleanup *w)
3036{ 3610{
3037 if (expect_false (ev_is_active (w))) 3611 if (expect_false (ev_is_active (w)))
3038 return; 3612 return;
3613
3614 EV_FREQUENT_CHECK;
3615
3616 ev_start (EV_A_ (W)w, ++cleanupcnt);
3617 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3618 cleanups [cleanupcnt - 1] = w;
3619
3620 /* cleanup watchers should never keep a refcount on the loop */
3621 ev_unref (EV_A);
3622 EV_FREQUENT_CHECK;
3623}
3624
3625void
3626ev_cleanup_stop (EV_P_ ev_cleanup *w)
3627{
3628 clear_pending (EV_A_ (W)w);
3629 if (expect_false (!ev_is_active (w)))
3630 return;
3631
3632 EV_FREQUENT_CHECK;
3633 ev_ref (EV_A);
3634
3635 {
3636 int active = ev_active (w);
3637
3638 cleanups [active - 1] = cleanups [--cleanupcnt];
3639 ev_active (cleanups [active - 1]) = active;
3640 }
3641
3642 ev_stop (EV_A_ (W)w);
3643
3644 EV_FREQUENT_CHECK;
3645}
3646#endif
3647
3648#if EV_ASYNC_ENABLE
3649void
3650ev_async_start (EV_P_ ev_async *w)
3651{
3652 if (expect_false (ev_is_active (w)))
3653 return;
3654
3655 w->sent = 0;
3039 3656
3040 evpipe_init (EV_A); 3657 evpipe_init (EV_A);
3041 3658
3042 EV_FREQUENT_CHECK; 3659 EV_FREQUENT_CHECK;
3043 3660
3071 3688
3072void 3689void
3073ev_async_send (EV_P_ ev_async *w) 3690ev_async_send (EV_P_ ev_async *w)
3074{ 3691{
3075 w->sent = 1; 3692 w->sent = 1;
3076 evpipe_write (EV_A_ &gotasync); 3693 evpipe_write (EV_A_ &async_pending);
3077} 3694}
3078#endif 3695#endif
3079 3696
3080/*****************************************************************************/ 3697/*****************************************************************************/
3081 3698
3121{ 3738{
3122 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3739 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3123 3740
3124 if (expect_false (!once)) 3741 if (expect_false (!once))
3125 { 3742 {
3126 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3743 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3127 return; 3744 return;
3128 } 3745 }
3129 3746
3130 once->cb = cb; 3747 once->cb = cb;
3131 once->arg = arg; 3748 once->arg = arg;
3145 } 3762 }
3146} 3763}
3147 3764
3148/*****************************************************************************/ 3765/*****************************************************************************/
3149 3766
3150#if 0 3767#if EV_WALK_ENABLE
3151void 3768void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 3769ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3153{ 3770{
3154 int i, j; 3771 int i, j;
3155 ev_watcher_list *wl, *wn; 3772 ev_watcher_list *wl, *wn;
3171#if EV_USE_INOTIFY 3788#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb) 3789 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ; 3790 ;
3174 else 3791 else
3175#endif 3792#endif
3176 if ((ev_io *)wl != &pipeev) 3793 if ((ev_io *)wl != &pipe_w)
3177 if (types & EV_IO) 3794 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl); 3795 cb (EV_A_ EV_IO, wl);
3179 3796
3180 wl = wn; 3797 wl = wn;
3181 } 3798 }
3218 if (types & EV_ASYNC) 3835 if (types & EV_ASYNC)
3219 for (i = asynccnt; i--; ) 3836 for (i = asynccnt; i--; )
3220 cb (EV_A_ EV_ASYNC, asyncs [i]); 3837 cb (EV_A_ EV_ASYNC, asyncs [i]);
3221#endif 3838#endif
3222 3839
3840#if EV_PREPARE_ENABLE
3223 if (types & EV_PREPARE) 3841 if (types & EV_PREPARE)
3224 for (i = preparecnt; i--; ) 3842 for (i = preparecnt; i--; )
3225#if EV_EMBED_ENABLE 3843# if EV_EMBED_ENABLE
3226 if (ev_cb (prepares [i]) != embed_prepare_cb) 3844 if (ev_cb (prepares [i]) != embed_prepare_cb)
3227#endif 3845# endif
3228 cb (EV_A_ EV_PREPARE, prepares [i]); 3846 cb (EV_A_ EV_PREPARE, prepares [i]);
3847#endif
3229 3848
3849#if EV_CHECK_ENABLE
3230 if (types & EV_CHECK) 3850 if (types & EV_CHECK)
3231 for (i = checkcnt; i--; ) 3851 for (i = checkcnt; i--; )
3232 cb (EV_A_ EV_CHECK, checks [i]); 3852 cb (EV_A_ EV_CHECK, checks [i]);
3853#endif
3233 3854
3855#if EV_SIGNAL_ENABLE
3234 if (types & EV_SIGNAL) 3856 if (types & EV_SIGNAL)
3235 for (i = 0; i < signalmax; ++i) 3857 for (i = 0; i < EV_NSIG - 1; ++i)
3236 for (wl = signals [i].head; wl; ) 3858 for (wl = signals [i].head; wl; )
3237 { 3859 {
3238 wn = wl->next; 3860 wn = wl->next;
3239 cb (EV_A_ EV_SIGNAL, wl); 3861 cb (EV_A_ EV_SIGNAL, wl);
3240 wl = wn; 3862 wl = wn;
3241 } 3863 }
3864#endif
3242 3865
3866#if EV_CHILD_ENABLE
3243 if (types & EV_CHILD) 3867 if (types & EV_CHILD)
3244 for (i = EV_PID_HASHSIZE; i--; ) 3868 for (i = (EV_PID_HASHSIZE); i--; )
3245 for (wl = childs [i]; wl; ) 3869 for (wl = childs [i]; wl; )
3246 { 3870 {
3247 wn = wl->next; 3871 wn = wl->next;
3248 cb (EV_A_ EV_CHILD, wl); 3872 cb (EV_A_ EV_CHILD, wl);
3249 wl = wn; 3873 wl = wn;
3250 } 3874 }
3875#endif
3251/* EV_STAT 0x00001000 /* stat data changed */ 3876/* EV_STAT 0x00001000 /* stat data changed */
3252/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 3877/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3253} 3878}
3254#endif 3879#endif
3255 3880
3256#if EV_MULTIPLICITY 3881#if EV_MULTIPLICITY
3257 #include "ev_wrap.h" 3882 #include "ev_wrap.h"
3258#endif 3883#endif
3259 3884
3260#ifdef __cplusplus 3885EV_CPP(})
3261}
3262#endif
3263 3886

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines