ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.81 by root, Fri Nov 9 17:07:59 2007 UTC vs.
Revision 1.368 by root, Mon Jan 17 12:11:11 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
33 61
34# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
63# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
65# endif
66# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
75# endif
37# endif 76# endif
38 77
78# if HAVE_NANOSLEEP
79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
85# endif
86
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 93# define EV_USE_SELECT 0
41# endif 94# endif
42 95
43# if HAVE_POLL && HAVE_POLL_H 96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
44# define EV_USE_POLL 1 102# define EV_USE_POLL 0
45# endif 103# endif
46 104
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 111# define EV_USE_EPOLL 0
49# endif 112# endif
50 113
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 120# define EV_USE_KQUEUE 0
53# endif 121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
54 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
55#endif 159#endif
56 160
57#include <math.h> 161#include <math.h>
58#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
59#include <fcntl.h> 164#include <fcntl.h>
60#include <stddef.h> 165#include <stddef.h>
61 166
62#include <stdio.h> 167#include <stdio.h>
63 168
64#include <assert.h> 169#include <assert.h>
65#include <errno.h> 170#include <errno.h>
66#include <sys/types.h> 171#include <sys/types.h>
67#include <time.h> 172#include <time.h>
173#include <limits.h>
68 174
69#include <signal.h> 175#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
78#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
125
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 176
131#ifdef EV_H 177#ifdef EV_H
132# include EV_H 178# include EV_H
133#else 179#else
134# include "ev.h" 180# include "ev.h"
135#endif 181#endif
136 182
183EV_CPP(extern "C" {)
184
185#ifndef _WIN32
186# include <sys/time.h>
187# include <sys/wait.h>
188# include <unistd.h>
189#else
190# include <io.h>
191# define WIN32_LEAN_AND_MEAN
192# include <windows.h>
193# ifndef EV_SELECT_IS_WINSOCKET
194# define EV_SELECT_IS_WINSOCKET 1
195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
249# define EV_USE_MONOTONIC 0
250# endif
251#endif
252
253#ifndef EV_USE_REALTIME
254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
263#endif
264
265#ifndef EV_USE_SELECT
266# define EV_USE_SELECT EV_FEATURE_BACKENDS
267#endif
268
269#ifndef EV_USE_POLL
270# ifdef _WIN32
271# define EV_USE_POLL 0
272# else
273# define EV_USE_POLL EV_FEATURE_BACKENDS
274# endif
275#endif
276
277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
281# define EV_USE_EPOLL 0
282# endif
283#endif
284
285#ifndef EV_USE_KQUEUE
286# define EV_USE_KQUEUE 0
287#endif
288
289#ifndef EV_USE_PORT
290# define EV_USE_PORT 0
291#endif
292
293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
364
365#ifndef CLOCK_MONOTONIC
366# undef EV_USE_MONOTONIC
367# define EV_USE_MONOTONIC 0
368#endif
369
370#ifndef CLOCK_REALTIME
371# undef EV_USE_REALTIME
372# define EV_USE_REALTIME 0
373#endif
374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
396#if EV_SELECT_IS_WINSOCKET
397# include <winsock.h>
398#endif
399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455
456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
137#if __GNUC__ >= 3 462#if __GNUC__ >= 4
138# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
139# define inline inline 464# define noinline __attribute__ ((noinline))
140#else 465#else
141# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
142# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
143#endif 471#endif
144 472
145#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
146#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
147 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
149#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
150 490
491#define EMPTY /* required for microsofts broken pseudo-c compiler */
492#define EMPTY2(a,b) /* used to suppress some warnings */
493
151typedef struct ev_watcher *W; 494typedef ev_watcher *W;
152typedef struct ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
153typedef struct ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
154 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
156 510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
520
521#ifdef _WIN32
157#include "ev_win32.c" 522# include "ev_win32.c"
523#endif
158 524
159/*****************************************************************************/ 525/*****************************************************************************/
160 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
161static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
162 578
579void
163void ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
164{ 581{
165 syserr_cb = cb; 582 syserr_cb = cb;
166} 583}
167 584
168static void 585static void noinline
169syserr (const char *msg) 586ev_syserr (const char *msg)
170{ 587{
171 if (!msg) 588 if (!msg)
172 msg = "(libev) system error"; 589 msg = "(libev) system error";
173 590
174 if (syserr_cb) 591 if (syserr_cb)
175 syserr_cb (msg); 592 syserr_cb (msg);
176 else 593 else
177 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
178 perror (msg); 601 perror (msg);
602#endif
179 abort (); 603 abort ();
180 } 604 }
181} 605}
182 606
607static void *
608ev_realloc_emul (void *ptr, long size)
609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623#endif
624}
625
183static void *(*alloc)(void *ptr, long size); 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
184 627
628void
185void ev_set_allocator (void *(*cb)(void *ptr, long size)) 629ev_set_allocator (void *(*cb)(void *ptr, long size))
186{ 630{
187 alloc = cb; 631 alloc = cb;
188} 632}
189 633
190static void * 634inline_speed void *
191ev_realloc (void *ptr, long size) 635ev_realloc (void *ptr, long size)
192{ 636{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 637 ptr = alloc (ptr, size);
194 638
195 if (!ptr && size) 639 if (!ptr && size)
196 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
198 abort (); 646 abort ();
199 } 647 }
200 648
201 return ptr; 649 return ptr;
202} 650}
204#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
206 654
207/*****************************************************************************/ 655/*****************************************************************************/
208 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
209typedef struct 661typedef struct
210{ 662{
211 WL head; 663 WL head;
212 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
213 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
672 SOCKET handle;
673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
214} ANFD; 677} ANFD;
215 678
679/* stores the pending event set for a given watcher */
216typedef struct 680typedef struct
217{ 681{
218 W w; 682 W w;
219 int events; 683 int events; /* the pending event set for the given watcher */
220} ANPENDING; 684} ANPENDING;
685
686#if EV_USE_INOTIFY
687/* hash table entry per inotify-id */
688typedef struct
689{
690 WL head;
691} ANFS;
692#endif
693
694/* Heap Entry */
695#if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705#else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
712#endif
221 713
222#if EV_MULTIPLICITY 714#if EV_MULTIPLICITY
223 715
224 struct ev_loop 716 struct ev_loop
225 { 717 {
718 ev_tstamp ev_rt_now;
719 #define ev_rt_now ((loop)->ev_rt_now)
226 #define VAR(name,decl) decl; 720 #define VAR(name,decl) decl;
227 #include "ev_vars.h" 721 #include "ev_vars.h"
228 #undef VAR 722 #undef VAR
229 }; 723 };
230 #include "ev_wrap.h" 724 #include "ev_wrap.h"
231 725
232 struct ev_loop default_loop_struct; 726 static struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop; 727 struct ev_loop *ev_default_loop_ptr;
234 728
235#else 729#else
236 730
731 ev_tstamp ev_rt_now;
237 #define VAR(name,decl) static decl; 732 #define VAR(name,decl) static decl;
238 #include "ev_vars.h" 733 #include "ev_vars.h"
239 #undef VAR 734 #undef VAR
240 735
241 static int default_loop; 736 static int ev_default_loop_ptr;
242 737
243#endif 738#endif
739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
244 751
245/*****************************************************************************/ 752/*****************************************************************************/
246 753
247inline ev_tstamp 754#ifndef EV_HAVE_EV_TIME
755ev_tstamp
248ev_time (void) 756ev_time (void)
249{ 757{
250#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
251 struct timespec ts; 761 struct timespec ts;
252 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
253 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
254#else 764 }
765#endif
766
255 struct timeval tv; 767 struct timeval tv;
256 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
257 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
258#endif
259} 770}
771#endif
260 772
261inline ev_tstamp 773inline_size ev_tstamp
262get_clock (void) 774get_clock (void)
263{ 775{
264#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
265 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
266 { 778 {
271#endif 783#endif
272 784
273 return ev_time (); 785 return ev_time ();
274} 786}
275 787
788#if EV_MULTIPLICITY
276ev_tstamp 789ev_tstamp
277ev_now (EV_P) 790ev_now (EV_P)
278{ 791{
279 return rt_now; 792 return ev_rt_now;
280} 793}
794#endif
281 795
282#define array_roundsize(type,n) ((n) | 4 & ~3) 796void
797ev_sleep (ev_tstamp delay)
798{
799 if (delay > 0.)
800 {
801#if EV_USE_NANOSLEEP
802 struct timespec ts;
803
804 EV_TS_SET (ts, delay);
805 nanosleep (&ts, 0);
806#elif defined(_WIN32)
807 Sleep ((unsigned long)(delay * 1e3));
808#else
809 struct timeval tv;
810
811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
812 /* something not guaranteed by newer posix versions, but guaranteed */
813 /* by older ones */
814 EV_TV_SET (tv, delay);
815 select (0, 0, 0, 0, &tv);
816#endif
817 }
818}
819
820inline_speed int
821ev_timeout_to_ms (ev_tstamp timeout)
822{
823 int ms = timeout * 1000. + .999999;
824
825 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
826}
827
828/*****************************************************************************/
829
830#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
831
832/* find a suitable new size for the given array, */
833/* hopefully by rounding to a nice-to-malloc size */
834inline_size int
835array_nextsize (int elem, int cur, int cnt)
836{
837 int ncur = cur + 1;
838
839 do
840 ncur <<= 1;
841 while (cnt > ncur);
842
843 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
844 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
845 {
846 ncur *= elem;
847 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
848 ncur = ncur - sizeof (void *) * 4;
849 ncur /= elem;
850 }
851
852 return ncur;
853}
854
855static noinline void *
856array_realloc (int elem, void *base, int *cur, int cnt)
857{
858 *cur = array_nextsize (elem, *cur, cnt);
859 return ev_realloc (base, elem * *cur);
860}
861
862#define array_init_zero(base,count) \
863 memset ((void *)(base), 0, sizeof (*(base)) * (count))
283 864
284#define array_needsize(type,base,cur,cnt,init) \ 865#define array_needsize(type,base,cur,cnt,init) \
285 if (expect_false ((cnt) > cur)) \ 866 if (expect_false ((cnt) > (cur))) \
286 { \ 867 { \
287 int newcnt = cur; \ 868 int ocur_ = (cur); \
288 do \ 869 (base) = (type *)array_realloc \
289 { \ 870 (sizeof (type), (base), &(cur), (cnt)); \
290 newcnt = array_roundsize (type, newcnt << 1); \ 871 init ((base) + (ocur_), (cur) - ocur_); \
291 } \
292 while ((cnt) > newcnt); \
293 \
294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
295 init (base + cur, newcnt - cur); \
296 cur = newcnt; \
297 } 872 }
298 873
874#if 0
299#define array_slim(type,stem) \ 875#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 876 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \ 877 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \ 878 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 879 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 880 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 } 881 }
306 882#endif
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311 883
312#define array_free(stem, idx) \ 884#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 885 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
314 886
315/*****************************************************************************/ 887/*****************************************************************************/
316 888
317static void 889/* dummy callback for pending events */
318anfds_init (ANFD *base, int count) 890static void noinline
891pendingcb (EV_P_ ev_prepare *w, int revents)
319{ 892{
320 while (count--)
321 {
322 base->head = 0;
323 base->events = EV_NONE;
324 base->reify = 0;
325
326 ++base;
327 }
328} 893}
329 894
330void 895void noinline
331ev_feed_event (EV_P_ void *w, int revents) 896ev_feed_event (EV_P_ void *w, int revents)
332{ 897{
333 W w_ = (W)w; 898 W w_ = (W)w;
899 int pri = ABSPRI (w_);
334 900
335 if (w_->pending) 901 if (expect_false (w_->pending))
902 pendings [pri][w_->pending - 1].events |= revents;
903 else
336 { 904 {
905 w_->pending = ++pendingcnt [pri];
906 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
907 pendings [pri][w_->pending - 1].w = w_;
337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 908 pendings [pri][w_->pending - 1].events = revents;
338 return;
339 } 909 }
340
341 w_->pending = ++pendingcnt [ABSPRI (w_)];
342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
345} 910}
346 911
347static void 912inline_speed void
913feed_reverse (EV_P_ W w)
914{
915 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
916 rfeeds [rfeedcnt++] = w;
917}
918
919inline_size void
920feed_reverse_done (EV_P_ int revents)
921{
922 do
923 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
924 while (rfeedcnt);
925}
926
927inline_speed void
348queue_events (EV_P_ W *events, int eventcnt, int type) 928queue_events (EV_P_ W *events, int eventcnt, int type)
349{ 929{
350 int i; 930 int i;
351 931
352 for (i = 0; i < eventcnt; ++i) 932 for (i = 0; i < eventcnt; ++i)
353 ev_feed_event (EV_A_ events [i], type); 933 ev_feed_event (EV_A_ events [i], type);
354} 934}
355 935
936/*****************************************************************************/
937
356inline void 938inline_speed void
357fd_event (EV_P_ int fd, int revents) 939fd_event_nocheck (EV_P_ int fd, int revents)
358{ 940{
359 ANFD *anfd = anfds + fd; 941 ANFD *anfd = anfds + fd;
360 struct ev_io *w; 942 ev_io *w;
361 943
362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 944 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
363 { 945 {
364 int ev = w->events & revents; 946 int ev = w->events & revents;
365 947
366 if (ev) 948 if (ev)
367 ev_feed_event (EV_A_ (W)w, ev); 949 ev_feed_event (EV_A_ (W)w, ev);
368 } 950 }
369} 951}
370 952
953/* do not submit kernel events for fds that have reify set */
954/* because that means they changed while we were polling for new events */
955inline_speed void
956fd_event (EV_P_ int fd, int revents)
957{
958 ANFD *anfd = anfds + fd;
959
960 if (expect_true (!anfd->reify))
961 fd_event_nocheck (EV_A_ fd, revents);
962}
963
371void 964void
372ev_feed_fd_event (EV_P_ int fd, int revents) 965ev_feed_fd_event (EV_P_ int fd, int revents)
373{ 966{
967 if (fd >= 0 && fd < anfdmax)
374 fd_event (EV_A_ fd, revents); 968 fd_event_nocheck (EV_A_ fd, revents);
375} 969}
376 970
377/*****************************************************************************/ 971/* make sure the external fd watch events are in-sync */
378 972/* with the kernel/libev internal state */
379static void 973inline_size void
380fd_reify (EV_P) 974fd_reify (EV_P)
381{ 975{
382 int i; 976 int i;
383 977
384 for (i = 0; i < fdchangecnt; ++i) 978 for (i = 0; i < fdchangecnt; ++i)
385 { 979 {
386 int fd = fdchanges [i]; 980 int fd = fdchanges [i];
387 ANFD *anfd = anfds + fd; 981 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 982 ev_io *w;
389 983
390 int events = 0; 984 unsigned char o_events = anfd->events;
985 unsigned char o_reify = anfd->reify;
391 986
392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
393 events |= w->events;
394
395 anfd->reify = 0; 987 anfd->reify = 0;
396 988
397 method_modify (EV_A_ fd, anfd->events, events); 989#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
990 if (o_reify & EV__IOFDSET)
991 {
992 unsigned long arg;
993 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
994 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
995 printf ("oi %d %x\n", fd, anfd->handle);//D
996 }
997#endif
998
999 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1000 {
398 anfd->events = events; 1001 anfd->events = 0;
1002
1003 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1004 anfd->events |= (unsigned char)w->events;
1005
1006 if (o_events != anfd->events)
1007 o_reify = EV__IOFDSET; /* actually |= */
1008 }
1009
1010 if (o_reify & EV__IOFDSET)
1011 backend_modify (EV_A_ fd, o_events, anfd->events);
399 } 1012 }
400 1013
401 fdchangecnt = 0; 1014 fdchangecnt = 0;
402} 1015}
403 1016
404static void 1017/* something about the given fd changed */
1018inline_size void
405fd_change (EV_P_ int fd) 1019fd_change (EV_P_ int fd, int flags)
406{ 1020{
407 if (anfds [fd].reify) 1021 unsigned char reify = anfds [fd].reify;
408 return;
409
410 anfds [fd].reify = 1; 1022 anfds [fd].reify |= flags;
411 1023
1024 if (expect_true (!reify))
1025 {
412 ++fdchangecnt; 1026 ++fdchangecnt;
413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1027 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
414 fdchanges [fdchangecnt - 1] = fd; 1028 fdchanges [fdchangecnt - 1] = fd;
1029 }
415} 1030}
416 1031
417static void 1032/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1033inline_speed void
418fd_kill (EV_P_ int fd) 1034fd_kill (EV_P_ int fd)
419{ 1035{
420 struct ev_io *w; 1036 ev_io *w;
421 1037
422 while ((w = (struct ev_io *)anfds [fd].head)) 1038 while ((w = (ev_io *)anfds [fd].head))
423 { 1039 {
424 ev_io_stop (EV_A_ w); 1040 ev_io_stop (EV_A_ w);
425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1041 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
426 } 1042 }
427} 1043}
428 1044
429static int 1045/* check whether the given fd is actually valid, for error recovery */
1046inline_size int
430fd_valid (int fd) 1047fd_valid (int fd)
431{ 1048{
432#ifdef WIN32 1049#ifdef _WIN32
433 return !!win32_get_osfhandle (fd); 1050 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
434#else 1051#else
435 return fcntl (fd, F_GETFD) != -1; 1052 return fcntl (fd, F_GETFD) != -1;
436#endif 1053#endif
437} 1054}
438 1055
439/* called on EBADF to verify fds */ 1056/* called on EBADF to verify fds */
440static void 1057static void noinline
441fd_ebadf (EV_P) 1058fd_ebadf (EV_P)
442{ 1059{
443 int fd; 1060 int fd;
444 1061
445 for (fd = 0; fd < anfdmax; ++fd) 1062 for (fd = 0; fd < anfdmax; ++fd)
446 if (anfds [fd].events) 1063 if (anfds [fd].events)
447 if (!fd_valid (fd) == -1 && errno == EBADF) 1064 if (!fd_valid (fd) && errno == EBADF)
448 fd_kill (EV_A_ fd); 1065 fd_kill (EV_A_ fd);
449} 1066}
450 1067
451/* called on ENOMEM in select/poll to kill some fds and retry */ 1068/* called on ENOMEM in select/poll to kill some fds and retry */
452static void 1069static void noinline
453fd_enomem (EV_P) 1070fd_enomem (EV_P)
454{ 1071{
455 int fd; 1072 int fd;
456 1073
457 for (fd = anfdmax; fd--; ) 1074 for (fd = anfdmax; fd--; )
458 if (anfds [fd].events) 1075 if (anfds [fd].events)
459 { 1076 {
460 fd_kill (EV_A_ fd); 1077 fd_kill (EV_A_ fd);
461 return; 1078 break;
462 } 1079 }
463} 1080}
464 1081
465/* usually called after fork if method needs to re-arm all fds from scratch */ 1082/* usually called after fork if backend needs to re-arm all fds from scratch */
466static void 1083static void noinline
467fd_rearm_all (EV_P) 1084fd_rearm_all (EV_P)
468{ 1085{
469 int fd; 1086 int fd;
470 1087
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd) 1088 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events) 1089 if (anfds [fd].events)
474 { 1090 {
475 anfds [fd].events = 0; 1091 anfds [fd].events = 0;
476 fd_change (EV_A_ fd); 1092 anfds [fd].emask = 0;
1093 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
477 } 1094 }
478} 1095}
479 1096
1097/* used to prepare libev internal fd's */
1098/* this is not fork-safe */
1099inline_speed void
1100fd_intern (int fd)
1101{
1102#ifdef _WIN32
1103 unsigned long arg = 1;
1104 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1105#else
1106 fcntl (fd, F_SETFD, FD_CLOEXEC);
1107 fcntl (fd, F_SETFL, O_NONBLOCK);
1108#endif
1109}
1110
480/*****************************************************************************/ 1111/*****************************************************************************/
481 1112
1113/*
1114 * the heap functions want a real array index. array index 0 is guaranteed to not
1115 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1116 * the branching factor of the d-tree.
1117 */
1118
1119/*
1120 * at the moment we allow libev the luxury of two heaps,
1121 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1122 * which is more cache-efficient.
1123 * the difference is about 5% with 50000+ watchers.
1124 */
1125#if EV_USE_4HEAP
1126
1127#define DHEAP 4
1128#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1129#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1130#define UPHEAP_DONE(p,k) ((p) == (k))
1131
1132/* away from the root */
1133inline_speed void
1134downheap (ANHE *heap, int N, int k)
1135{
1136 ANHE he = heap [k];
1137 ANHE *E = heap + N + HEAP0;
1138
1139 for (;;)
1140 {
1141 ev_tstamp minat;
1142 ANHE *minpos;
1143 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1144
1145 /* find minimum child */
1146 if (expect_true (pos + DHEAP - 1 < E))
1147 {
1148 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1149 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1150 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1151 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1152 }
1153 else if (pos < E)
1154 {
1155 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1156 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1157 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1158 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1159 }
1160 else
1161 break;
1162
1163 if (ANHE_at (he) <= minat)
1164 break;
1165
1166 heap [k] = *minpos;
1167 ev_active (ANHE_w (*minpos)) = k;
1168
1169 k = minpos - heap;
1170 }
1171
1172 heap [k] = he;
1173 ev_active (ANHE_w (he)) = k;
1174}
1175
1176#else /* 4HEAP */
1177
1178#define HEAP0 1
1179#define HPARENT(k) ((k) >> 1)
1180#define UPHEAP_DONE(p,k) (!(p))
1181
1182/* away from the root */
1183inline_speed void
1184downheap (ANHE *heap, int N, int k)
1185{
1186 ANHE he = heap [k];
1187
1188 for (;;)
1189 {
1190 int c = k << 1;
1191
1192 if (c >= N + HEAP0)
1193 break;
1194
1195 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1196 ? 1 : 0;
1197
1198 if (ANHE_at (he) <= ANHE_at (heap [c]))
1199 break;
1200
1201 heap [k] = heap [c];
1202 ev_active (ANHE_w (heap [k])) = k;
1203
1204 k = c;
1205 }
1206
1207 heap [k] = he;
1208 ev_active (ANHE_w (he)) = k;
1209}
1210#endif
1211
1212/* towards the root */
1213inline_speed void
1214upheap (ANHE *heap, int k)
1215{
1216 ANHE he = heap [k];
1217
1218 for (;;)
1219 {
1220 int p = HPARENT (k);
1221
1222 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1223 break;
1224
1225 heap [k] = heap [p];
1226 ev_active (ANHE_w (heap [k])) = k;
1227 k = p;
1228 }
1229
1230 heap [k] = he;
1231 ev_active (ANHE_w (he)) = k;
1232}
1233
1234/* move an element suitably so it is in a correct place */
1235inline_size void
1236adjustheap (ANHE *heap, int N, int k)
1237{
1238 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1239 upheap (heap, k);
1240 else
1241 downheap (heap, N, k);
1242}
1243
1244/* rebuild the heap: this function is used only once and executed rarely */
1245inline_size void
1246reheap (ANHE *heap, int N)
1247{
1248 int i;
1249
1250 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1251 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1252 for (i = 0; i < N; ++i)
1253 upheap (heap, i + HEAP0);
1254}
1255
1256/*****************************************************************************/
1257
1258/* associate signal watchers to a signal signal */
1259typedef struct
1260{
1261 EV_ATOMIC_T pending;
1262#if EV_MULTIPLICITY
1263 EV_P;
1264#endif
1265 WL head;
1266} ANSIG;
1267
1268static ANSIG signals [EV_NSIG - 1];
1269
1270/*****************************************************************************/
1271
1272#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1273
1274static void noinline
1275evpipe_init (EV_P)
1276{
1277 if (!ev_is_active (&pipe_w))
1278 {
1279# if EV_USE_EVENTFD
1280 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1281 if (evfd < 0 && errno == EINVAL)
1282 evfd = eventfd (0, 0);
1283
1284 if (evfd >= 0)
1285 {
1286 evpipe [0] = -1;
1287 fd_intern (evfd); /* doing it twice doesn't hurt */
1288 ev_io_set (&pipe_w, evfd, EV_READ);
1289 }
1290 else
1291# endif
1292 {
1293 while (pipe (evpipe))
1294 ev_syserr ("(libev) error creating signal/async pipe");
1295
1296 fd_intern (evpipe [0]);
1297 fd_intern (evpipe [1]);
1298 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1299 }
1300
1301 ev_io_start (EV_A_ &pipe_w);
1302 ev_unref (EV_A); /* watcher should not keep loop alive */
1303 }
1304}
1305
1306inline_size void
1307evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1308{
1309 if (!*flag)
1310 {
1311 int old_errno = errno; /* save errno because write might clobber it */
1312 char dummy;
1313
1314 *flag = 1;
1315
1316#if EV_USE_EVENTFD
1317 if (evfd >= 0)
1318 {
1319 uint64_t counter = 1;
1320 write (evfd, &counter, sizeof (uint64_t));
1321 }
1322 else
1323#endif
1324 /* win32 people keep sending patches that change this write() to send() */
1325 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1326 /* so when you think this write should be a send instead, please find out */
1327 /* where your send() is from - it's definitely not the microsoft send, and */
1328 /* tell me. thank you. */
1329 write (evpipe [1], &dummy, 1);
1330
1331 errno = old_errno;
1332 }
1333}
1334
1335/* called whenever the libev signal pipe */
1336/* got some events (signal, async) */
482static void 1337static void
483upheap (WT *heap, int k) 1338pipecb (EV_P_ ev_io *iow, int revents)
484{ 1339{
485 WT w = heap [k]; 1340 int i;
486 1341
487 while (k && heap [k >> 1]->at > w->at) 1342#if EV_USE_EVENTFD
488 { 1343 if (evfd >= 0)
489 heap [k] = heap [k >> 1];
490 ((W)heap [k])->active = k + 1;
491 k >>= 1;
492 } 1344 {
1345 uint64_t counter;
1346 read (evfd, &counter, sizeof (uint64_t));
1347 }
1348 else
1349#endif
1350 {
1351 char dummy;
1352 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1353 read (evpipe [0], &dummy, 1);
1354 }
493 1355
494 heap [k] = w; 1356 if (sig_pending)
495 ((W)heap [k])->active = k + 1; 1357 {
1358 sig_pending = 0;
496 1359
1360 for (i = EV_NSIG - 1; i--; )
1361 if (expect_false (signals [i].pending))
1362 ev_feed_signal_event (EV_A_ i + 1);
1363 }
1364
1365#if EV_ASYNC_ENABLE
1366 if (async_pending)
1367 {
1368 async_pending = 0;
1369
1370 for (i = asynccnt; i--; )
1371 if (asyncs [i]->sent)
1372 {
1373 asyncs [i]->sent = 0;
1374 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1375 }
1376 }
1377#endif
1378}
1379
1380/*****************************************************************************/
1381
1382void
1383ev_feed_signal (int signum)
1384{
1385#if EV_MULTIPLICITY
1386 EV_P = signals [signum - 1].loop;
1387
1388 if (!EV_A)
1389 return;
1390#endif
1391
1392 signals [signum - 1].pending = 1;
1393 evpipe_write (EV_A_ &sig_pending);
497} 1394}
498 1395
499static void 1396static void
500downheap (WT *heap, int N, int k)
501{
502 WT w = heap [k];
503
504 while (k < (N >> 1))
505 {
506 int j = k << 1;
507
508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
509 ++j;
510
511 if (w->at <= heap [j]->at)
512 break;
513
514 heap [k] = heap [j];
515 ((W)heap [k])->active = k + 1;
516 k = j;
517 }
518
519 heap [k] = w;
520 ((W)heap [k])->active = k + 1;
521}
522
523/*****************************************************************************/
524
525typedef struct
526{
527 WL head;
528 sig_atomic_t volatile gotsig;
529} ANSIG;
530
531static ANSIG *signals;
532static int signalmax;
533
534static int sigpipe [2];
535static sig_atomic_t volatile gotsig;
536static struct ev_io sigev;
537
538static void
539signals_init (ANSIG *base, int count)
540{
541 while (count--)
542 {
543 base->head = 0;
544 base->gotsig = 0;
545
546 ++base;
547 }
548}
549
550static void
551sighandler (int signum) 1397ev_sighandler (int signum)
552{ 1398{
553#if WIN32
554 signal (signum, sighandler);
555#endif
556
557 signals [signum - 1].gotsig = 1;
558
559 if (!gotsig)
560 {
561 int old_errno = errno;
562 gotsig = 1;
563#ifdef WIN32 1399#ifdef _WIN32
564 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 1400 signal (signum, ev_sighandler);
565#else
566 write (sigpipe [1], &signum, 1);
567#endif 1401#endif
568 errno = old_errno;
569 }
570}
571 1402
572void 1403 ev_feed_signal (signum);
1404}
1405
1406void noinline
573ev_feed_signal_event (EV_P_ int signum) 1407ev_feed_signal_event (EV_P_ int signum)
574{ 1408{
575 WL w; 1409 WL w;
576 1410
1411 if (expect_false (signum <= 0 || signum > EV_NSIG))
1412 return;
1413
1414 --signum;
1415
577#if EV_MULTIPLICITY 1416#if EV_MULTIPLICITY
578 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1417 /* it is permissible to try to feed a signal to the wrong loop */
579#endif 1418 /* or, likely more useful, feeding a signal nobody is waiting for */
580 1419
581 --signum; 1420 if (expect_false (signals [signum].loop != EV_A))
582
583 if (signum < 0 || signum >= signalmax)
584 return; 1421 return;
1422#endif
585 1423
586 signals [signum].gotsig = 0; 1424 signals [signum].pending = 0;
587 1425
588 for (w = signals [signum].head; w; w = w->next) 1426 for (w = signals [signum].head; w; w = w->next)
589 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1427 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
590} 1428}
591 1429
1430#if EV_USE_SIGNALFD
592static void 1431static void
593sigcb (EV_P_ struct ev_io *iow, int revents) 1432sigfdcb (EV_P_ ev_io *iow, int revents)
594{ 1433{
595 int signum; 1434 struct signalfd_siginfo si[2], *sip; /* these structs are big */
596 1435
597#ifdef WIN32 1436 for (;;)
598 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1437 {
599#else 1438 ssize_t res = read (sigfd, si, sizeof (si));
600 read (sigpipe [0], &revents, 1);
601#endif
602 gotsig = 0;
603 1439
604 for (signum = signalmax; signum--; ) 1440 /* not ISO-C, as res might be -1, but works with SuS */
605 if (signals [signum].gotsig) 1441 for (sip = si; (char *)sip < (char *)si + res; ++sip)
606 ev_feed_signal_event (EV_A_ signum + 1); 1442 ev_feed_signal_event (EV_A_ sip->ssi_signo);
607}
608 1443
609static void 1444 if (res < (ssize_t)sizeof (si))
610siginit (EV_P) 1445 break;
611{ 1446 }
612#ifndef WIN32
613 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
614 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
615
616 /* rather than sort out wether we really need nb, set it */
617 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
618 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
619#endif
620
621 ev_io_set (&sigev, sigpipe [0], EV_READ);
622 ev_io_start (EV_A_ &sigev);
623 ev_unref (EV_A); /* child watcher should not keep loop alive */
624} 1447}
1448#endif
1449
1450#endif
625 1451
626/*****************************************************************************/ 1452/*****************************************************************************/
627 1453
628static struct ev_child *childs [PID_HASHSIZE]; 1454#if EV_CHILD_ENABLE
1455static WL childs [EV_PID_HASHSIZE];
629 1456
630#ifndef WIN32
631
632static struct ev_signal childev; 1457static ev_signal childev;
1458
1459#ifndef WIFCONTINUED
1460# define WIFCONTINUED(status) 0
1461#endif
1462
1463/* handle a single child status event */
1464inline_speed void
1465child_reap (EV_P_ int chain, int pid, int status)
1466{
1467 ev_child *w;
1468 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1469
1470 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1471 {
1472 if ((w->pid == pid || !w->pid)
1473 && (!traced || (w->flags & 1)))
1474 {
1475 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1476 w->rpid = pid;
1477 w->rstatus = status;
1478 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1479 }
1480 }
1481}
633 1482
634#ifndef WCONTINUED 1483#ifndef WCONTINUED
635# define WCONTINUED 0 1484# define WCONTINUED 0
636#endif 1485#endif
637 1486
1487/* called on sigchld etc., calls waitpid */
638static void 1488static void
639child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
640{
641 struct ev_child *w;
642
643 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
644 if (w->pid == pid || !w->pid)
645 {
646 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
647 w->rpid = pid;
648 w->rstatus = status;
649 ev_feed_event (EV_A_ (W)w, EV_CHILD);
650 }
651}
652
653static void
654childcb (EV_P_ struct ev_signal *sw, int revents) 1489childcb (EV_P_ ev_signal *sw, int revents)
655{ 1490{
656 int pid, status; 1491 int pid, status;
657 1492
1493 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
658 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1494 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
659 { 1495 if (!WCONTINUED
1496 || errno != EINVAL
1497 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1498 return;
1499
660 /* make sure we are called again until all childs have been reaped */ 1500 /* make sure we are called again until all children have been reaped */
1501 /* we need to do it this way so that the callback gets called before we continue */
661 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1502 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
662 1503
663 child_reap (EV_A_ sw, pid, pid, status); 1504 child_reap (EV_A_ pid, pid, status);
1505 if ((EV_PID_HASHSIZE) > 1)
664 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1506 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
665 }
666} 1507}
667 1508
668#endif 1509#endif
669 1510
670/*****************************************************************************/ 1511/*****************************************************************************/
671 1512
1513#if EV_USE_IOCP
1514# include "ev_iocp.c"
1515#endif
1516#if EV_USE_PORT
1517# include "ev_port.c"
1518#endif
672#if EV_USE_KQUEUE 1519#if EV_USE_KQUEUE
673# include "ev_kqueue.c" 1520# include "ev_kqueue.c"
674#endif 1521#endif
675#if EV_USE_EPOLL 1522#if EV_USE_EPOLL
676# include "ev_epoll.c" 1523# include "ev_epoll.c"
693{ 1540{
694 return EV_VERSION_MINOR; 1541 return EV_VERSION_MINOR;
695} 1542}
696 1543
697/* return true if we are running with elevated privileges and should ignore env variables */ 1544/* return true if we are running with elevated privileges and should ignore env variables */
698static int 1545int inline_size
699enable_secure (void) 1546enable_secure (void)
700{ 1547{
701#ifdef WIN32 1548#ifdef _WIN32
702 return 0; 1549 return 0;
703#else 1550#else
704 return getuid () != geteuid () 1551 return getuid () != geteuid ()
705 || getgid () != getegid (); 1552 || getgid () != getegid ();
706#endif 1553#endif
707} 1554}
708 1555
709int 1556unsigned int
1557ev_supported_backends (void)
1558{
1559 unsigned int flags = 0;
1560
1561 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1562 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1563 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1564 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1565 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1566
1567 return flags;
1568}
1569
1570unsigned int
1571ev_recommended_backends (void)
1572{
1573 unsigned int flags = ev_supported_backends ();
1574
1575#ifndef __NetBSD__
1576 /* kqueue is borked on everything but netbsd apparently */
1577 /* it usually doesn't work correctly on anything but sockets and pipes */
1578 flags &= ~EVBACKEND_KQUEUE;
1579#endif
1580#ifdef __APPLE__
1581 /* only select works correctly on that "unix-certified" platform */
1582 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1583 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1584#endif
1585#ifdef __FreeBSD__
1586 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1587#endif
1588
1589 return flags;
1590}
1591
1592unsigned int
1593ev_embeddable_backends (void)
1594{
1595 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1596
1597 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1598 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1599 flags &= ~EVBACKEND_EPOLL;
1600
1601 return flags;
1602}
1603
1604unsigned int
1605ev_backend (EV_P)
1606{
1607 return backend;
1608}
1609
1610#if EV_FEATURE_API
1611unsigned int
1612ev_iteration (EV_P)
1613{
1614 return loop_count;
1615}
1616
1617unsigned int
710ev_method (EV_P) 1618ev_depth (EV_P)
711{ 1619{
712 return method; 1620 return loop_depth;
713} 1621}
714 1622
715static void 1623void
716loop_init (EV_P_ int methods) 1624ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
717{ 1625{
718 if (!method) 1626 io_blocktime = interval;
1627}
1628
1629void
1630ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1631{
1632 timeout_blocktime = interval;
1633}
1634
1635void
1636ev_set_userdata (EV_P_ void *data)
1637{
1638 userdata = data;
1639}
1640
1641void *
1642ev_userdata (EV_P)
1643{
1644 return userdata;
1645}
1646
1647void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1648{
1649 invoke_cb = invoke_pending_cb;
1650}
1651
1652void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1653{
1654 release_cb = release;
1655 acquire_cb = acquire;
1656}
1657#endif
1658
1659/* initialise a loop structure, must be zero-initialised */
1660static void noinline
1661loop_init (EV_P_ unsigned int flags)
1662{
1663 if (!backend)
719 { 1664 {
1665 origflags = flags;
1666
1667#if EV_USE_REALTIME
1668 if (!have_realtime)
1669 {
1670 struct timespec ts;
1671
1672 if (!clock_gettime (CLOCK_REALTIME, &ts))
1673 have_realtime = 1;
1674 }
1675#endif
1676
720#if EV_USE_MONOTONIC 1677#if EV_USE_MONOTONIC
1678 if (!have_monotonic)
1679 {
1680 struct timespec ts;
1681
1682 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1683 have_monotonic = 1;
1684 }
1685#endif
1686
1687 /* pid check not overridable via env */
1688#ifndef _WIN32
1689 if (flags & EVFLAG_FORKCHECK)
1690 curpid = getpid ();
1691#endif
1692
1693 if (!(flags & EVFLAG_NOENV)
1694 && !enable_secure ()
1695 && getenv ("LIBEV_FLAGS"))
1696 flags = atoi (getenv ("LIBEV_FLAGS"));
1697
1698 ev_rt_now = ev_time ();
1699 mn_now = get_clock ();
1700 now_floor = mn_now;
1701 rtmn_diff = ev_rt_now - mn_now;
1702#if EV_FEATURE_API
1703 invoke_cb = ev_invoke_pending;
1704#endif
1705
1706 io_blocktime = 0.;
1707 timeout_blocktime = 0.;
1708 backend = 0;
1709 backend_fd = -1;
1710 sig_pending = 0;
1711#if EV_ASYNC_ENABLE
1712 async_pending = 0;
1713#endif
1714#if EV_USE_INOTIFY
1715 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1716#endif
1717#if EV_USE_SIGNALFD
1718 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1719#endif
1720
1721 if (!(flags & EVBACKEND_MASK))
1722 flags |= ev_recommended_backends ();
1723
1724#if EV_USE_IOCP
1725 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1726#endif
1727#if EV_USE_PORT
1728 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1729#endif
1730#if EV_USE_KQUEUE
1731 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1732#endif
1733#if EV_USE_EPOLL
1734 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1735#endif
1736#if EV_USE_POLL
1737 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1738#endif
1739#if EV_USE_SELECT
1740 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1741#endif
1742
1743 ev_prepare_init (&pending_w, pendingcb);
1744
1745#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1746 ev_init (&pipe_w, pipecb);
1747 ev_set_priority (&pipe_w, EV_MAXPRI);
1748#endif
1749 }
1750}
1751
1752/* free up a loop structure */
1753void
1754ev_loop_destroy (EV_P)
1755{
1756 int i;
1757
1758#if EV_MULTIPLICITY
1759 /* mimic free (0) */
1760 if (!EV_A)
1761 return;
1762#endif
1763
1764#if EV_CLEANUP_ENABLE
1765 /* queue cleanup watchers (and execute them) */
1766 if (expect_false (cleanupcnt))
1767 {
1768 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1769 EV_INVOKE_PENDING;
1770 }
1771#endif
1772
1773#if EV_CHILD_ENABLE
1774 if (ev_is_active (&childev))
1775 {
1776 ev_ref (EV_A); /* child watcher */
1777 ev_signal_stop (EV_A_ &childev);
1778 }
1779#endif
1780
1781 if (ev_is_active (&pipe_w))
1782 {
1783 /*ev_ref (EV_A);*/
1784 /*ev_io_stop (EV_A_ &pipe_w);*/
1785
1786#if EV_USE_EVENTFD
1787 if (evfd >= 0)
1788 close (evfd);
1789#endif
1790
1791 if (evpipe [0] >= 0)
1792 {
1793 EV_WIN32_CLOSE_FD (evpipe [0]);
1794 EV_WIN32_CLOSE_FD (evpipe [1]);
1795 }
1796 }
1797
1798#if EV_USE_SIGNALFD
1799 if (ev_is_active (&sigfd_w))
1800 close (sigfd);
1801#endif
1802
1803#if EV_USE_INOTIFY
1804 if (fs_fd >= 0)
1805 close (fs_fd);
1806#endif
1807
1808 if (backend_fd >= 0)
1809 close (backend_fd);
1810
1811#if EV_USE_IOCP
1812 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1813#endif
1814#if EV_USE_PORT
1815 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1816#endif
1817#if EV_USE_KQUEUE
1818 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1819#endif
1820#if EV_USE_EPOLL
1821 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1822#endif
1823#if EV_USE_POLL
1824 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1825#endif
1826#if EV_USE_SELECT
1827 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1828#endif
1829
1830 for (i = NUMPRI; i--; )
1831 {
1832 array_free (pending, [i]);
1833#if EV_IDLE_ENABLE
1834 array_free (idle, [i]);
1835#endif
1836 }
1837
1838 ev_free (anfds); anfds = 0; anfdmax = 0;
1839
1840 /* have to use the microsoft-never-gets-it-right macro */
1841 array_free (rfeed, EMPTY);
1842 array_free (fdchange, EMPTY);
1843 array_free (timer, EMPTY);
1844#if EV_PERIODIC_ENABLE
1845 array_free (periodic, EMPTY);
1846#endif
1847#if EV_FORK_ENABLE
1848 array_free (fork, EMPTY);
1849#endif
1850#if EV_CLEANUP_ENABLE
1851 array_free (cleanup, EMPTY);
1852#endif
1853 array_free (prepare, EMPTY);
1854 array_free (check, EMPTY);
1855#if EV_ASYNC_ENABLE
1856 array_free (async, EMPTY);
1857#endif
1858
1859 backend = 0;
1860
1861#if EV_MULTIPLICITY
1862 if (ev_is_default_loop (EV_A))
1863#endif
1864 ev_default_loop_ptr = 0;
1865#if EV_MULTIPLICITY
1866 else
1867 ev_free (EV_A);
1868#endif
1869}
1870
1871#if EV_USE_INOTIFY
1872inline_size void infy_fork (EV_P);
1873#endif
1874
1875inline_size void
1876loop_fork (EV_P)
1877{
1878#if EV_USE_PORT
1879 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1880#endif
1881#if EV_USE_KQUEUE
1882 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1883#endif
1884#if EV_USE_EPOLL
1885 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1886#endif
1887#if EV_USE_INOTIFY
1888 infy_fork (EV_A);
1889#endif
1890
1891 if (ev_is_active (&pipe_w))
1892 {
1893 /* this "locks" the handlers against writing to the pipe */
1894 /* while we modify the fd vars */
1895 sig_pending = 1;
1896#if EV_ASYNC_ENABLE
1897 async_pending = 1;
1898#endif
1899
1900 ev_ref (EV_A);
1901 ev_io_stop (EV_A_ &pipe_w);
1902
1903#if EV_USE_EVENTFD
1904 if (evfd >= 0)
1905 close (evfd);
1906#endif
1907
1908 if (evpipe [0] >= 0)
1909 {
1910 EV_WIN32_CLOSE_FD (evpipe [0]);
1911 EV_WIN32_CLOSE_FD (evpipe [1]);
1912 }
1913
1914#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1915 evpipe_init (EV_A);
1916 /* now iterate over everything, in case we missed something */
1917 pipecb (EV_A_ &pipe_w, EV_READ);
1918#endif
1919 }
1920
1921 postfork = 0;
1922}
1923
1924#if EV_MULTIPLICITY
1925
1926struct ev_loop *
1927ev_loop_new (unsigned int flags)
1928{
1929 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1930
1931 memset (EV_A, 0, sizeof (struct ev_loop));
1932 loop_init (EV_A_ flags);
1933
1934 if (ev_backend (EV_A))
1935 return EV_A;
1936
1937 ev_free (EV_A);
1938 return 0;
1939}
1940
1941#endif /* multiplicity */
1942
1943#if EV_VERIFY
1944static void noinline
1945verify_watcher (EV_P_ W w)
1946{
1947 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1948
1949 if (w->pending)
1950 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1951}
1952
1953static void noinline
1954verify_heap (EV_P_ ANHE *heap, int N)
1955{
1956 int i;
1957
1958 for (i = HEAP0; i < N + HEAP0; ++i)
1959 {
1960 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1961 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1962 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1963
1964 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1965 }
1966}
1967
1968static void noinline
1969array_verify (EV_P_ W *ws, int cnt)
1970{
1971 while (cnt--)
1972 {
1973 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1974 verify_watcher (EV_A_ ws [cnt]);
1975 }
1976}
1977#endif
1978
1979#if EV_FEATURE_API
1980void
1981ev_verify (EV_P)
1982{
1983#if EV_VERIFY
1984 int i;
1985 WL w;
1986
1987 assert (activecnt >= -1);
1988
1989 assert (fdchangemax >= fdchangecnt);
1990 for (i = 0; i < fdchangecnt; ++i)
1991 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1992
1993 assert (anfdmax >= 0);
1994 for (i = 0; i < anfdmax; ++i)
1995 for (w = anfds [i].head; w; w = w->next)
721 { 1996 {
722 struct timespec ts; 1997 verify_watcher (EV_A_ (W)w);
723 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1998 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
724 have_monotonic = 1; 1999 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
725 } 2000 }
726#endif
727 2001
728 rt_now = ev_time (); 2002 assert (timermax >= timercnt);
729 mn_now = get_clock (); 2003 verify_heap (EV_A_ timers, timercnt);
730 now_floor = mn_now;
731 rtmn_diff = rt_now - mn_now;
732 2004
733 if (methods == EVMETHOD_AUTO) 2005#if EV_PERIODIC_ENABLE
734 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2006 assert (periodicmax >= periodiccnt);
735 methods = atoi (getenv ("LIBEV_METHODS")); 2007 verify_heap (EV_A_ periodics, periodiccnt);
736 else
737 methods = EVMETHOD_ANY;
738
739 method = 0;
740#if EV_USE_WIN32
741 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
742#endif
743#if EV_USE_KQUEUE
744 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
745#endif
746#if EV_USE_EPOLL
747 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
748#endif
749#if EV_USE_POLL
750 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
751#endif
752#if EV_USE_SELECT
753 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
754#endif
755
756 ev_watcher_init (&sigev, sigcb);
757 ev_set_priority (&sigev, EV_MAXPRI);
758 }
759}
760
761void
762loop_destroy (EV_P)
763{
764 int i;
765
766#if EV_USE_WIN32
767 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
768#endif
769#if EV_USE_KQUEUE
770 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
771#endif
772#if EV_USE_EPOLL
773 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
774#endif
775#if EV_USE_POLL
776 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
777#endif
778#if EV_USE_SELECT
779 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
780#endif 2008#endif
781 2009
782 for (i = NUMPRI; i--; ) 2010 for (i = NUMPRI; i--; )
783 array_free (pending, [i]); 2011 {
2012 assert (pendingmax [i] >= pendingcnt [i]);
2013#if EV_IDLE_ENABLE
2014 assert (idleall >= 0);
2015 assert (idlemax [i] >= idlecnt [i]);
2016 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2017#endif
2018 }
784 2019
785 /* have to use the microsoft-never-gets-it-right macro */ 2020#if EV_FORK_ENABLE
786 array_free_microshit (fdchange); 2021 assert (forkmax >= forkcnt);
787 array_free_microshit (timer); 2022 array_verify (EV_A_ (W *)forks, forkcnt);
788 array_free_microshit (periodic); 2023#endif
789 array_free_microshit (idle);
790 array_free_microshit (prepare);
791 array_free_microshit (check);
792 2024
793 method = 0; 2025#if EV_CLEANUP_ENABLE
794} 2026 assert (cleanupmax >= cleanupcnt);
2027 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2028#endif
795 2029
796static void 2030#if EV_ASYNC_ENABLE
797loop_fork (EV_P) 2031 assert (asyncmax >= asynccnt);
798{ 2032 array_verify (EV_A_ (W *)asyncs, asynccnt);
799#if EV_USE_EPOLL 2033#endif
800 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2034
2035#if EV_PREPARE_ENABLE
2036 assert (preparemax >= preparecnt);
2037 array_verify (EV_A_ (W *)prepares, preparecnt);
2038#endif
2039
2040#if EV_CHECK_ENABLE
2041 assert (checkmax >= checkcnt);
2042 array_verify (EV_A_ (W *)checks, checkcnt);
2043#endif
2044
2045# if 0
2046#if EV_CHILD_ENABLE
2047 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2048 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2049#endif
801#endif 2050# endif
802#if EV_USE_KQUEUE
803 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
804#endif 2051#endif
805
806 if (ev_is_active (&sigev))
807 {
808 /* default loop */
809
810 ev_ref (EV_A);
811 ev_io_stop (EV_A_ &sigev);
812 close (sigpipe [0]);
813 close (sigpipe [1]);
814
815 while (pipe (sigpipe))
816 syserr ("(libev) error creating pipe");
817
818 siginit (EV_A);
819 }
820
821 postfork = 0;
822} 2052}
823
824#if EV_MULTIPLICITY
825struct ev_loop *
826ev_loop_new (int methods)
827{
828 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
829
830 memset (loop, 0, sizeof (struct ev_loop));
831
832 loop_init (EV_A_ methods);
833
834 if (ev_method (EV_A))
835 return loop;
836
837 return 0;
838}
839
840void
841ev_loop_destroy (EV_P)
842{
843 loop_destroy (EV_A);
844 ev_free (loop);
845}
846
847void
848ev_loop_fork (EV_P)
849{
850 postfork = 1;
851}
852
853#endif 2053#endif
854 2054
855#if EV_MULTIPLICITY 2055#if EV_MULTIPLICITY
856struct ev_loop * 2056struct ev_loop *
857#else 2057#else
858int 2058int
859#endif 2059#endif
860ev_default_loop (int methods) 2060ev_default_loop (unsigned int flags)
861{ 2061{
862 if (sigpipe [0] == sigpipe [1])
863 if (pipe (sigpipe))
864 return 0;
865
866 if (!default_loop) 2062 if (!ev_default_loop_ptr)
867 { 2063 {
868#if EV_MULTIPLICITY 2064#if EV_MULTIPLICITY
869 struct ev_loop *loop = default_loop = &default_loop_struct; 2065 EV_P = ev_default_loop_ptr = &default_loop_struct;
870#else 2066#else
871 default_loop = 1; 2067 ev_default_loop_ptr = 1;
872#endif 2068#endif
873 2069
874 loop_init (EV_A_ methods); 2070 loop_init (EV_A_ flags);
875 2071
876 if (ev_method (EV_A)) 2072 if (ev_backend (EV_A))
877 { 2073 {
878 siginit (EV_A); 2074#if EV_CHILD_ENABLE
879
880#ifndef WIN32
881 ev_signal_init (&childev, childcb, SIGCHLD); 2075 ev_signal_init (&childev, childcb, SIGCHLD);
882 ev_set_priority (&childev, EV_MAXPRI); 2076 ev_set_priority (&childev, EV_MAXPRI);
883 ev_signal_start (EV_A_ &childev); 2077 ev_signal_start (EV_A_ &childev);
884 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2078 ev_unref (EV_A); /* child watcher should not keep loop alive */
885#endif 2079#endif
886 } 2080 }
887 else 2081 else
888 default_loop = 0; 2082 ev_default_loop_ptr = 0;
889 } 2083 }
890 2084
891 return default_loop; 2085 return ev_default_loop_ptr;
892} 2086}
893 2087
894void 2088void
895ev_default_destroy (void) 2089ev_loop_fork (EV_P)
896{ 2090{
897#if EV_MULTIPLICITY 2091 postfork = 1; /* must be in line with ev_default_fork */
898 struct ev_loop *loop = default_loop;
899#endif
900
901#ifndef WIN32
902 ev_ref (EV_A); /* child watcher */
903 ev_signal_stop (EV_A_ &childev);
904#endif
905
906 ev_ref (EV_A); /* signal watcher */
907 ev_io_stop (EV_A_ &sigev);
908
909 close (sigpipe [0]); sigpipe [0] = 0;
910 close (sigpipe [1]); sigpipe [1] = 0;
911
912 loop_destroy (EV_A);
913}
914
915void
916ev_default_fork (void)
917{
918#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop;
920#endif
921
922 if (method)
923 postfork = 1;
924} 2092}
925 2093
926/*****************************************************************************/ 2094/*****************************************************************************/
927 2095
928static int 2096void
929any_pending (EV_P) 2097ev_invoke (EV_P_ void *w, int revents)
2098{
2099 EV_CB_INVOKE ((W)w, revents);
2100}
2101
2102unsigned int
2103ev_pending_count (EV_P)
930{ 2104{
931 int pri; 2105 int pri;
2106 unsigned int count = 0;
932 2107
933 for (pri = NUMPRI; pri--; ) 2108 for (pri = NUMPRI; pri--; )
934 if (pendingcnt [pri]) 2109 count += pendingcnt [pri];
935 return 1;
936 2110
937 return 0; 2111 return count;
938} 2112}
939 2113
940static void 2114void noinline
941call_pending (EV_P) 2115ev_invoke_pending (EV_P)
942{ 2116{
943 int pri; 2117 int pri;
944 2118
945 for (pri = NUMPRI; pri--; ) 2119 for (pri = NUMPRI; pri--; )
946 while (pendingcnt [pri]) 2120 while (pendingcnt [pri])
947 { 2121 {
948 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2122 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
949 2123
950 if (p->w)
951 {
952 p->w->pending = 0; 2124 p->w->pending = 0;
953 p->w->cb (EV_A_ p->w, p->events); 2125 EV_CB_INVOKE (p->w, p->events);
954 } 2126 EV_FREQUENT_CHECK;
955 } 2127 }
956} 2128}
957 2129
958static void 2130#if EV_IDLE_ENABLE
2131/* make idle watchers pending. this handles the "call-idle */
2132/* only when higher priorities are idle" logic */
2133inline_size void
2134idle_reify (EV_P)
2135{
2136 if (expect_false (idleall))
2137 {
2138 int pri;
2139
2140 for (pri = NUMPRI; pri--; )
2141 {
2142 if (pendingcnt [pri])
2143 break;
2144
2145 if (idlecnt [pri])
2146 {
2147 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2148 break;
2149 }
2150 }
2151 }
2152}
2153#endif
2154
2155/* make timers pending */
2156inline_size void
959timers_reify (EV_P) 2157timers_reify (EV_P)
960{ 2158{
2159 EV_FREQUENT_CHECK;
2160
961 while (timercnt && ((WT)timers [0])->at <= mn_now) 2161 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
962 { 2162 {
963 struct ev_timer *w = timers [0]; 2163 do
964
965 assert (("inactive timer on timer heap detected", ev_is_active (w)));
966
967 /* first reschedule or stop timer */
968 if (w->repeat)
969 { 2164 {
2165 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2166
2167 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2168
2169 /* first reschedule or stop timer */
2170 if (w->repeat)
2171 {
2172 ev_at (w) += w->repeat;
2173 if (ev_at (w) < mn_now)
2174 ev_at (w) = mn_now;
2175
970 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2176 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
971 ((WT)w)->at = mn_now + w->repeat; 2177
2178 ANHE_at_cache (timers [HEAP0]);
972 downheap ((WT *)timers, timercnt, 0); 2179 downheap (timers, timercnt, HEAP0);
2180 }
2181 else
2182 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2183
2184 EV_FREQUENT_CHECK;
2185 feed_reverse (EV_A_ (W)w);
973 } 2186 }
974 else 2187 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
975 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
976 2188
977 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2189 feed_reverse_done (EV_A_ EV_TIMER);
978 } 2190 }
979} 2191}
980 2192
981static void 2193#if EV_PERIODIC_ENABLE
2194/* make periodics pending */
2195inline_size void
982periodics_reify (EV_P) 2196periodics_reify (EV_P)
983{ 2197{
2198 EV_FREQUENT_CHECK;
2199
984 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 2200 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
985 { 2201 {
986 struct ev_periodic *w = periodics [0]; 2202 int feed_count = 0;
987 2203
2204 do
2205 {
2206 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2207
988 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2208 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
989 2209
990 /* first reschedule or stop timer */ 2210 /* first reschedule or stop timer */
2211 if (w->reschedule_cb)
2212 {
2213 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2214
2215 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2216
2217 ANHE_at_cache (periodics [HEAP0]);
2218 downheap (periodics, periodiccnt, HEAP0);
2219 }
2220 else if (w->interval)
2221 {
2222 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2223 /* if next trigger time is not sufficiently in the future, put it there */
2224 /* this might happen because of floating point inexactness */
2225 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2226 {
2227 ev_at (w) += w->interval;
2228
2229 /* if interval is unreasonably low we might still have a time in the past */
2230 /* so correct this. this will make the periodic very inexact, but the user */
2231 /* has effectively asked to get triggered more often than possible */
2232 if (ev_at (w) < ev_rt_now)
2233 ev_at (w) = ev_rt_now;
2234 }
2235
2236 ANHE_at_cache (periodics [HEAP0]);
2237 downheap (periodics, periodiccnt, HEAP0);
2238 }
2239 else
2240 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2241
2242 EV_FREQUENT_CHECK;
2243 feed_reverse (EV_A_ (W)w);
2244 }
2245 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2246
2247 feed_reverse_done (EV_A_ EV_PERIODIC);
2248 }
2249}
2250
2251/* simply recalculate all periodics */
2252/* TODO: maybe ensure that at least one event happens when jumping forward? */
2253static void noinline
2254periodics_reschedule (EV_P)
2255{
2256 int i;
2257
2258 /* adjust periodics after time jump */
2259 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2260 {
2261 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2262
991 if (w->reschedule_cb) 2263 if (w->reschedule_cb)
992 {
993 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 2264 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
994
995 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
996 downheap ((WT *)periodics, periodiccnt, 0);
997 }
998 else if (w->interval) 2265 else if (w->interval)
999 { 2266 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1000 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1001 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
1002 downheap ((WT *)periodics, periodiccnt, 0);
1003 }
1004 else
1005 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1006 2267
1007 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2268 ANHE_at_cache (periodics [i]);
1008 } 2269 }
1009}
1010 2270
1011static void 2271 reheap (periodics, periodiccnt);
1012periodics_reschedule (EV_P) 2272}
2273#endif
2274
2275/* adjust all timers by a given offset */
2276static void noinline
2277timers_reschedule (EV_P_ ev_tstamp adjust)
1013{ 2278{
1014 int i; 2279 int i;
1015 2280
1016 /* adjust periodics after time jump */
1017 for (i = 0; i < periodiccnt; ++i) 2281 for (i = 0; i < timercnt; ++i)
1018 {
1019 struct ev_periodic *w = periodics [i];
1020
1021 if (w->reschedule_cb)
1022 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1023 else if (w->interval)
1024 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1025 } 2282 {
1026 2283 ANHE *he = timers + i + HEAP0;
1027 /* now rebuild the heap */ 2284 ANHE_w (*he)->at += adjust;
1028 for (i = periodiccnt >> 1; i--; ) 2285 ANHE_at_cache (*he);
1029 downheap ((WT *)periodics, periodiccnt, i);
1030}
1031
1032inline int
1033time_update_monotonic (EV_P)
1034{
1035 mn_now = get_clock ();
1036
1037 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1038 { 2286 }
1039 rt_now = rtmn_diff + mn_now;
1040 return 0;
1041 }
1042 else
1043 {
1044 now_floor = mn_now;
1045 rt_now = ev_time ();
1046 return 1;
1047 }
1048} 2287}
1049 2288
1050static void 2289/* fetch new monotonic and realtime times from the kernel */
1051time_update (EV_P) 2290/* also detect if there was a timejump, and act accordingly */
2291inline_speed void
2292time_update (EV_P_ ev_tstamp max_block)
1052{ 2293{
1053 int i;
1054
1055#if EV_USE_MONOTONIC 2294#if EV_USE_MONOTONIC
1056 if (expect_true (have_monotonic)) 2295 if (expect_true (have_monotonic))
1057 { 2296 {
1058 if (time_update_monotonic (EV_A)) 2297 int i;
2298 ev_tstamp odiff = rtmn_diff;
2299
2300 mn_now = get_clock ();
2301
2302 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2303 /* interpolate in the meantime */
2304 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1059 { 2305 {
1060 ev_tstamp odiff = rtmn_diff; 2306 ev_rt_now = rtmn_diff + mn_now;
2307 return;
2308 }
1061 2309
2310 now_floor = mn_now;
2311 ev_rt_now = ev_time ();
2312
1062 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2313 /* loop a few times, before making important decisions.
2314 * on the choice of "4": one iteration isn't enough,
2315 * in case we get preempted during the calls to
2316 * ev_time and get_clock. a second call is almost guaranteed
2317 * to succeed in that case, though. and looping a few more times
2318 * doesn't hurt either as we only do this on time-jumps or
2319 * in the unlikely event of having been preempted here.
2320 */
2321 for (i = 4; --i; )
1063 { 2322 {
1064 rtmn_diff = rt_now - mn_now; 2323 rtmn_diff = ev_rt_now - mn_now;
1065 2324
1066 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2325 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1067 return; /* all is well */ 2326 return; /* all is well */
1068 2327
1069 rt_now = ev_time (); 2328 ev_rt_now = ev_time ();
1070 mn_now = get_clock (); 2329 mn_now = get_clock ();
1071 now_floor = mn_now; 2330 now_floor = mn_now;
1072 } 2331 }
1073 2332
2333 /* no timer adjustment, as the monotonic clock doesn't jump */
2334 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2335# if EV_PERIODIC_ENABLE
2336 periodics_reschedule (EV_A);
2337# endif
2338 }
2339 else
2340#endif
2341 {
2342 ev_rt_now = ev_time ();
2343
2344 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2345 {
2346 /* adjust timers. this is easy, as the offset is the same for all of them */
2347 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2348#if EV_PERIODIC_ENABLE
1074 periodics_reschedule (EV_A); 2349 periodics_reschedule (EV_A);
1075 /* no timer adjustment, as the monotonic clock doesn't jump */ 2350#endif
1076 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1077 } 2351 }
1078 }
1079 else
1080#endif
1081 {
1082 rt_now = ev_time ();
1083 2352
1084 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1085 {
1086 periodics_reschedule (EV_A);
1087
1088 /* adjust timers. this is easy, as the offset is the same for all */
1089 for (i = 0; i < timercnt; ++i)
1090 ((WT)timers [i])->at += rt_now - mn_now;
1091 }
1092
1093 mn_now = rt_now; 2353 mn_now = ev_rt_now;
1094 } 2354 }
1095} 2355}
1096 2356
1097void 2357void
1098ev_ref (EV_P)
1099{
1100 ++activecnt;
1101}
1102
1103void
1104ev_unref (EV_P)
1105{
1106 --activecnt;
1107}
1108
1109static int loop_done;
1110
1111void
1112ev_loop (EV_P_ int flags) 2358ev_run (EV_P_ int flags)
1113{ 2359{
1114 double block; 2360#if EV_FEATURE_API
1115 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2361 ++loop_depth;
2362#endif
2363
2364 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2365
2366 loop_done = EVBREAK_CANCEL;
2367
2368 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1116 2369
1117 do 2370 do
1118 { 2371 {
2372#if EV_VERIFY >= 2
2373 ev_verify (EV_A);
2374#endif
2375
2376#ifndef _WIN32
2377 if (expect_false (curpid)) /* penalise the forking check even more */
2378 if (expect_false (getpid () != curpid))
2379 {
2380 curpid = getpid ();
2381 postfork = 1;
2382 }
2383#endif
2384
2385#if EV_FORK_ENABLE
2386 /* we might have forked, so queue fork handlers */
2387 if (expect_false (postfork))
2388 if (forkcnt)
2389 {
2390 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2391 EV_INVOKE_PENDING;
2392 }
2393#endif
2394
2395#if EV_PREPARE_ENABLE
1119 /* queue check watchers (and execute them) */ 2396 /* queue prepare watchers (and execute them) */
1120 if (expect_false (preparecnt)) 2397 if (expect_false (preparecnt))
1121 { 2398 {
1122 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1123 call_pending (EV_A); 2400 EV_INVOKE_PENDING;
1124 } 2401 }
2402#endif
2403
2404 if (expect_false (loop_done))
2405 break;
1125 2406
1126 /* we might have forked, so reify kernel state if necessary */ 2407 /* we might have forked, so reify kernel state if necessary */
1127 if (expect_false (postfork)) 2408 if (expect_false (postfork))
1128 loop_fork (EV_A); 2409 loop_fork (EV_A);
1129 2410
1130 /* update fd-related kernel structures */ 2411 /* update fd-related kernel structures */
1131 fd_reify (EV_A); 2412 fd_reify (EV_A);
1132 2413
1133 /* calculate blocking time */ 2414 /* calculate blocking time */
2415 {
2416 ev_tstamp waittime = 0.;
2417 ev_tstamp sleeptime = 0.;
1134 2418
1135 /* we only need this for !monotonic clock or timers, but as we basically 2419 /* remember old timestamp for io_blocktime calculation */
1136 always have timers, we just calculate it always */ 2420 ev_tstamp prev_mn_now = mn_now;
1137#if EV_USE_MONOTONIC 2421
1138 if (expect_true (have_monotonic)) 2422 /* update time to cancel out callback processing overhead */
1139 time_update_monotonic (EV_A); 2423 time_update (EV_A_ 1e100);
1140 else 2424
1141#endif 2425 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1142 { 2426 {
1143 rt_now = ev_time ();
1144 mn_now = rt_now;
1145 }
1146
1147 if (flags & EVLOOP_NONBLOCK || idlecnt)
1148 block = 0.;
1149 else
1150 {
1151 block = MAX_BLOCKTIME; 2427 waittime = MAX_BLOCKTIME;
1152 2428
1153 if (timercnt) 2429 if (timercnt)
1154 { 2430 {
1155 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2431 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1156 if (block > to) block = to; 2432 if (waittime > to) waittime = to;
1157 } 2433 }
1158 2434
2435#if EV_PERIODIC_ENABLE
1159 if (periodiccnt) 2436 if (periodiccnt)
1160 { 2437 {
1161 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2438 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1162 if (block > to) block = to; 2439 if (waittime > to) waittime = to;
1163 } 2440 }
2441#endif
1164 2442
1165 if (block < 0.) block = 0.; 2443 /* don't let timeouts decrease the waittime below timeout_blocktime */
2444 if (expect_false (waittime < timeout_blocktime))
2445 waittime = timeout_blocktime;
2446
2447 /* extra check because io_blocktime is commonly 0 */
2448 if (expect_false (io_blocktime))
2449 {
2450 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2451
2452 if (sleeptime > waittime - backend_fudge)
2453 sleeptime = waittime - backend_fudge;
2454
2455 if (expect_true (sleeptime > 0.))
2456 {
2457 ev_sleep (sleeptime);
2458 waittime -= sleeptime;
2459 }
2460 }
1166 } 2461 }
1167 2462
1168 method_poll (EV_A_ block); 2463#if EV_FEATURE_API
2464 ++loop_count;
2465#endif
2466 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2467 backend_poll (EV_A_ waittime);
2468 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1169 2469
1170 /* update rt_now, do magic */ 2470 /* update ev_rt_now, do magic */
1171 time_update (EV_A); 2471 time_update (EV_A_ waittime + sleeptime);
2472 }
1172 2473
1173 /* queue pending timers and reschedule them */ 2474 /* queue pending timers and reschedule them */
1174 timers_reify (EV_A); /* relative timers called last */ 2475 timers_reify (EV_A); /* relative timers called last */
2476#if EV_PERIODIC_ENABLE
1175 periodics_reify (EV_A); /* absolute timers called first */ 2477 periodics_reify (EV_A); /* absolute timers called first */
2478#endif
1176 2479
2480#if EV_IDLE_ENABLE
1177 /* queue idle watchers unless io or timers are pending */ 2481 /* queue idle watchers unless other events are pending */
1178 if (idlecnt && !any_pending (EV_A)) 2482 idle_reify (EV_A);
1179 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2483#endif
1180 2484
2485#if EV_CHECK_ENABLE
1181 /* queue check watchers, to be executed first */ 2486 /* queue check watchers, to be executed first */
1182 if (checkcnt) 2487 if (expect_false (checkcnt))
1183 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2488 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2489#endif
1184 2490
1185 call_pending (EV_A); 2491 EV_INVOKE_PENDING;
1186 } 2492 }
1187 while (activecnt && !loop_done); 2493 while (expect_true (
2494 activecnt
2495 && !loop_done
2496 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2497 ));
1188 2498
1189 if (loop_done != 2) 2499 if (loop_done == EVBREAK_ONE)
1190 loop_done = 0; 2500 loop_done = EVBREAK_CANCEL;
1191}
1192 2501
2502#if EV_FEATURE_API
2503 --loop_depth;
2504#endif
2505}
2506
1193void 2507void
1194ev_unloop (EV_P_ int how) 2508ev_break (EV_P_ int how)
1195{ 2509{
1196 loop_done = how; 2510 loop_done = how;
1197} 2511}
1198 2512
2513void
2514ev_ref (EV_P)
2515{
2516 ++activecnt;
2517}
2518
2519void
2520ev_unref (EV_P)
2521{
2522 --activecnt;
2523}
2524
2525void
2526ev_now_update (EV_P)
2527{
2528 time_update (EV_A_ 1e100);
2529}
2530
2531void
2532ev_suspend (EV_P)
2533{
2534 ev_now_update (EV_A);
2535}
2536
2537void
2538ev_resume (EV_P)
2539{
2540 ev_tstamp mn_prev = mn_now;
2541
2542 ev_now_update (EV_A);
2543 timers_reschedule (EV_A_ mn_now - mn_prev);
2544#if EV_PERIODIC_ENABLE
2545 /* TODO: really do this? */
2546 periodics_reschedule (EV_A);
2547#endif
2548}
2549
1199/*****************************************************************************/ 2550/*****************************************************************************/
2551/* singly-linked list management, used when the expected list length is short */
1200 2552
1201inline void 2553inline_size void
1202wlist_add (WL *head, WL elem) 2554wlist_add (WL *head, WL elem)
1203{ 2555{
1204 elem->next = *head; 2556 elem->next = *head;
1205 *head = elem; 2557 *head = elem;
1206} 2558}
1207 2559
1208inline void 2560inline_size void
1209wlist_del (WL *head, WL elem) 2561wlist_del (WL *head, WL elem)
1210{ 2562{
1211 while (*head) 2563 while (*head)
1212 { 2564 {
1213 if (*head == elem) 2565 if (expect_true (*head == elem))
1214 { 2566 {
1215 *head = elem->next; 2567 *head = elem->next;
1216 return; 2568 break;
1217 } 2569 }
1218 2570
1219 head = &(*head)->next; 2571 head = &(*head)->next;
1220 } 2572 }
1221} 2573}
1222 2574
2575/* internal, faster, version of ev_clear_pending */
1223inline void 2576inline_speed void
1224ev_clear_pending (EV_P_ W w) 2577clear_pending (EV_P_ W w)
1225{ 2578{
1226 if (w->pending) 2579 if (w->pending)
1227 { 2580 {
1228 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2581 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1229 w->pending = 0; 2582 w->pending = 0;
1230 } 2583 }
1231} 2584}
1232 2585
2586int
2587ev_clear_pending (EV_P_ void *w)
2588{
2589 W w_ = (W)w;
2590 int pending = w_->pending;
2591
2592 if (expect_true (pending))
2593 {
2594 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2595 p->w = (W)&pending_w;
2596 w_->pending = 0;
2597 return p->events;
2598 }
2599 else
2600 return 0;
2601}
2602
1233inline void 2603inline_size void
2604pri_adjust (EV_P_ W w)
2605{
2606 int pri = ev_priority (w);
2607 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2608 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2609 ev_set_priority (w, pri);
2610}
2611
2612inline_speed void
1234ev_start (EV_P_ W w, int active) 2613ev_start (EV_P_ W w, int active)
1235{ 2614{
1236 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2615 pri_adjust (EV_A_ w);
1237 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1238
1239 w->active = active; 2616 w->active = active;
1240 ev_ref (EV_A); 2617 ev_ref (EV_A);
1241} 2618}
1242 2619
1243inline void 2620inline_size void
1244ev_stop (EV_P_ W w) 2621ev_stop (EV_P_ W w)
1245{ 2622{
1246 ev_unref (EV_A); 2623 ev_unref (EV_A);
1247 w->active = 0; 2624 w->active = 0;
1248} 2625}
1249 2626
1250/*****************************************************************************/ 2627/*****************************************************************************/
1251 2628
1252void 2629void noinline
1253ev_io_start (EV_P_ struct ev_io *w) 2630ev_io_start (EV_P_ ev_io *w)
1254{ 2631{
1255 int fd = w->fd; 2632 int fd = w->fd;
1256 2633
1257 if (ev_is_active (w)) 2634 if (expect_false (ev_is_active (w)))
1258 return; 2635 return;
1259 2636
1260 assert (("ev_io_start called with negative fd", fd >= 0)); 2637 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2638 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2639
2640 EV_FREQUENT_CHECK;
1261 2641
1262 ev_start (EV_A_ (W)w, 1); 2642 ev_start (EV_A_ (W)w, 1);
1263 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2643 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1264 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2644 wlist_add (&anfds[fd].head, (WL)w);
1265 2645
1266 fd_change (EV_A_ fd); 2646 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1267} 2647 w->events &= ~EV__IOFDSET;
1268 2648
1269void 2649 EV_FREQUENT_CHECK;
2650}
2651
2652void noinline
1270ev_io_stop (EV_P_ struct ev_io *w) 2653ev_io_stop (EV_P_ ev_io *w)
1271{ 2654{
1272 ev_clear_pending (EV_A_ (W)w); 2655 clear_pending (EV_A_ (W)w);
1273 if (!ev_is_active (w)) 2656 if (expect_false (!ev_is_active (w)))
1274 return; 2657 return;
1275 2658
2659 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2660
2661 EV_FREQUENT_CHECK;
2662
1276 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2663 wlist_del (&anfds[w->fd].head, (WL)w);
1277 ev_stop (EV_A_ (W)w); 2664 ev_stop (EV_A_ (W)w);
1278 2665
1279 fd_change (EV_A_ w->fd); 2666 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1280}
1281 2667
1282void 2668 EV_FREQUENT_CHECK;
2669}
2670
2671void noinline
1283ev_timer_start (EV_P_ struct ev_timer *w) 2672ev_timer_start (EV_P_ ev_timer *w)
1284{ 2673{
1285 if (ev_is_active (w)) 2674 if (expect_false (ev_is_active (w)))
1286 return; 2675 return;
1287 2676
1288 ((WT)w)->at += mn_now; 2677 ev_at (w) += mn_now;
1289 2678
1290 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2679 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1291 2680
2681 EV_FREQUENT_CHECK;
2682
2683 ++timercnt;
1292 ev_start (EV_A_ (W)w, ++timercnt); 2684 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1293 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2685 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1294 timers [timercnt - 1] = w; 2686 ANHE_w (timers [ev_active (w)]) = (WT)w;
1295 upheap ((WT *)timers, timercnt - 1); 2687 ANHE_at_cache (timers [ev_active (w)]);
2688 upheap (timers, ev_active (w));
1296 2689
2690 EV_FREQUENT_CHECK;
2691
1297 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2692 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1298} 2693}
1299 2694
1300void 2695void noinline
1301ev_timer_stop (EV_P_ struct ev_timer *w) 2696ev_timer_stop (EV_P_ ev_timer *w)
1302{ 2697{
1303 ev_clear_pending (EV_A_ (W)w); 2698 clear_pending (EV_A_ (W)w);
1304 if (!ev_is_active (w)) 2699 if (expect_false (!ev_is_active (w)))
1305 return; 2700 return;
1306 2701
2702 EV_FREQUENT_CHECK;
2703
2704 {
2705 int active = ev_active (w);
2706
1307 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2707 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1308 2708
1309 if (((W)w)->active < timercnt--) 2709 --timercnt;
2710
2711 if (expect_true (active < timercnt + HEAP0))
1310 { 2712 {
1311 timers [((W)w)->active - 1] = timers [timercnt]; 2713 timers [active] = timers [timercnt + HEAP0];
1312 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2714 adjustheap (timers, timercnt, active);
1313 } 2715 }
2716 }
1314 2717
1315 ((WT)w)->at = w->repeat; 2718 ev_at (w) -= mn_now;
1316 2719
1317 ev_stop (EV_A_ (W)w); 2720 ev_stop (EV_A_ (W)w);
1318}
1319 2721
1320void 2722 EV_FREQUENT_CHECK;
2723}
2724
2725void noinline
1321ev_timer_again (EV_P_ struct ev_timer *w) 2726ev_timer_again (EV_P_ ev_timer *w)
1322{ 2727{
2728 EV_FREQUENT_CHECK;
2729
1323 if (ev_is_active (w)) 2730 if (ev_is_active (w))
1324 { 2731 {
1325 if (w->repeat) 2732 if (w->repeat)
1326 { 2733 {
1327 ((WT)w)->at = mn_now + w->repeat; 2734 ev_at (w) = mn_now + w->repeat;
1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2735 ANHE_at_cache (timers [ev_active (w)]);
2736 adjustheap (timers, timercnt, ev_active (w));
1329 } 2737 }
1330 else 2738 else
1331 ev_timer_stop (EV_A_ w); 2739 ev_timer_stop (EV_A_ w);
1332 } 2740 }
1333 else if (w->repeat) 2741 else if (w->repeat)
2742 {
2743 ev_at (w) = w->repeat;
1334 ev_timer_start (EV_A_ w); 2744 ev_timer_start (EV_A_ w);
1335} 2745 }
1336 2746
1337void 2747 EV_FREQUENT_CHECK;
2748}
2749
2750ev_tstamp
2751ev_timer_remaining (EV_P_ ev_timer *w)
2752{
2753 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2754}
2755
2756#if EV_PERIODIC_ENABLE
2757void noinline
1338ev_periodic_start (EV_P_ struct ev_periodic *w) 2758ev_periodic_start (EV_P_ ev_periodic *w)
1339{ 2759{
1340 if (ev_is_active (w)) 2760 if (expect_false (ev_is_active (w)))
1341 return; 2761 return;
1342 2762
1343 if (w->reschedule_cb) 2763 if (w->reschedule_cb)
1344 ((WT)w)->at = w->reschedule_cb (w, rt_now); 2764 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1345 else if (w->interval) 2765 else if (w->interval)
1346 { 2766 {
1347 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2767 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1348 /* this formula differs from the one in periodic_reify because we do not always round up */ 2768 /* this formula differs from the one in periodic_reify because we do not always round up */
1349 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2769 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 } 2770 }
2771 else
2772 ev_at (w) = w->offset;
1351 2773
2774 EV_FREQUENT_CHECK;
2775
2776 ++periodiccnt;
1352 ev_start (EV_A_ (W)w, ++periodiccnt); 2777 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1353 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2778 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1354 periodics [periodiccnt - 1] = w; 2779 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1355 upheap ((WT *)periodics, periodiccnt - 1); 2780 ANHE_at_cache (periodics [ev_active (w)]);
2781 upheap (periodics, ev_active (w));
1356 2782
2783 EV_FREQUENT_CHECK;
2784
1357 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2785 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1358} 2786}
1359 2787
1360void 2788void noinline
1361ev_periodic_stop (EV_P_ struct ev_periodic *w) 2789ev_periodic_stop (EV_P_ ev_periodic *w)
1362{ 2790{
1363 ev_clear_pending (EV_A_ (W)w); 2791 clear_pending (EV_A_ (W)w);
1364 if (!ev_is_active (w)) 2792 if (expect_false (!ev_is_active (w)))
1365 return; 2793 return;
1366 2794
2795 EV_FREQUENT_CHECK;
2796
2797 {
2798 int active = ev_active (w);
2799
1367 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2800 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1368 2801
1369 if (((W)w)->active < periodiccnt--) 2802 --periodiccnt;
2803
2804 if (expect_true (active < periodiccnt + HEAP0))
1370 { 2805 {
1371 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2806 periodics [active] = periodics [periodiccnt + HEAP0];
1372 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2807 adjustheap (periodics, periodiccnt, active);
1373 } 2808 }
2809 }
1374 2810
1375 ev_stop (EV_A_ (W)w); 2811 ev_stop (EV_A_ (W)w);
1376}
1377 2812
1378void 2813 EV_FREQUENT_CHECK;
2814}
2815
2816void noinline
1379ev_periodic_again (EV_P_ struct ev_periodic *w) 2817ev_periodic_again (EV_P_ ev_periodic *w)
1380{ 2818{
2819 /* TODO: use adjustheap and recalculation */
1381 ev_periodic_stop (EV_A_ w); 2820 ev_periodic_stop (EV_A_ w);
1382 ev_periodic_start (EV_A_ w); 2821 ev_periodic_start (EV_A_ w);
1383} 2822}
1384 2823#endif
1385void
1386ev_idle_start (EV_P_ struct ev_idle *w)
1387{
1388 if (ev_is_active (w))
1389 return;
1390
1391 ev_start (EV_A_ (W)w, ++idlecnt);
1392 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1393 idles [idlecnt - 1] = w;
1394}
1395
1396void
1397ev_idle_stop (EV_P_ struct ev_idle *w)
1398{
1399 ev_clear_pending (EV_A_ (W)w);
1400 if (ev_is_active (w))
1401 return;
1402
1403 idles [((W)w)->active - 1] = idles [--idlecnt];
1404 ev_stop (EV_A_ (W)w);
1405}
1406
1407void
1408ev_prepare_start (EV_P_ struct ev_prepare *w)
1409{
1410 if (ev_is_active (w))
1411 return;
1412
1413 ev_start (EV_A_ (W)w, ++preparecnt);
1414 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1415 prepares [preparecnt - 1] = w;
1416}
1417
1418void
1419ev_prepare_stop (EV_P_ struct ev_prepare *w)
1420{
1421 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w))
1423 return;
1424
1425 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1426 ev_stop (EV_A_ (W)w);
1427}
1428
1429void
1430ev_check_start (EV_P_ struct ev_check *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++checkcnt);
1436 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1437 checks [checkcnt - 1] = w;
1438}
1439
1440void
1441ev_check_stop (EV_P_ struct ev_check *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 checks [((W)w)->active - 1] = checks [--checkcnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450 2824
1451#ifndef SA_RESTART 2825#ifndef SA_RESTART
1452# define SA_RESTART 0 2826# define SA_RESTART 0
1453#endif 2827#endif
1454 2828
1455void 2829#if EV_SIGNAL_ENABLE
2830
2831void noinline
1456ev_signal_start (EV_P_ struct ev_signal *w) 2832ev_signal_start (EV_P_ ev_signal *w)
1457{ 2833{
2834 if (expect_false (ev_is_active (w)))
2835 return;
2836
2837 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2838
1458#if EV_MULTIPLICITY 2839#if EV_MULTIPLICITY
1459 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2840 assert (("libev: a signal must not be attached to two different loops",
2841 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2842
2843 signals [w->signum - 1].loop = EV_A;
2844#endif
2845
2846 EV_FREQUENT_CHECK;
2847
2848#if EV_USE_SIGNALFD
2849 if (sigfd == -2)
2850 {
2851 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2852 if (sigfd < 0 && errno == EINVAL)
2853 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2854
2855 if (sigfd >= 0)
2856 {
2857 fd_intern (sigfd); /* doing it twice will not hurt */
2858
2859 sigemptyset (&sigfd_set);
2860
2861 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2862 ev_set_priority (&sigfd_w, EV_MAXPRI);
2863 ev_io_start (EV_A_ &sigfd_w);
2864 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2865 }
2866 }
2867
2868 if (sigfd >= 0)
2869 {
2870 /* TODO: check .head */
2871 sigaddset (&sigfd_set, w->signum);
2872 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2873
2874 signalfd (sigfd, &sigfd_set, 0);
2875 }
2876#endif
2877
2878 ev_start (EV_A_ (W)w, 1);
2879 wlist_add (&signals [w->signum - 1].head, (WL)w);
2880
2881 if (!((WL)w)->next)
2882# if EV_USE_SIGNALFD
2883 if (sigfd < 0) /*TODO*/
1460#endif 2884# endif
1461 if (ev_is_active (w)) 2885 {
2886# ifdef _WIN32
2887 evpipe_init (EV_A);
2888
2889 signal (w->signum, ev_sighandler);
2890# else
2891 struct sigaction sa;
2892
2893 evpipe_init (EV_A);
2894
2895 sa.sa_handler = ev_sighandler;
2896 sigfillset (&sa.sa_mask);
2897 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2898 sigaction (w->signum, &sa, 0);
2899
2900 if (origflags & EVFLAG_NOSIGMASK)
2901 {
2902 sigemptyset (&sa.sa_mask);
2903 sigaddset (&sa.sa_mask, w->signum);
2904 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2905 }
2906#endif
2907 }
2908
2909 EV_FREQUENT_CHECK;
2910}
2911
2912void noinline
2913ev_signal_stop (EV_P_ ev_signal *w)
2914{
2915 clear_pending (EV_A_ (W)w);
2916 if (expect_false (!ev_is_active (w)))
1462 return; 2917 return;
1463 2918
1464 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2919 EV_FREQUENT_CHECK;
2920
2921 wlist_del (&signals [w->signum - 1].head, (WL)w);
2922 ev_stop (EV_A_ (W)w);
2923
2924 if (!signals [w->signum - 1].head)
2925 {
2926#if EV_MULTIPLICITY
2927 signals [w->signum - 1].loop = 0; /* unattach from signal */
2928#endif
2929#if EV_USE_SIGNALFD
2930 if (sigfd >= 0)
2931 {
2932 sigset_t ss;
2933
2934 sigemptyset (&ss);
2935 sigaddset (&ss, w->signum);
2936 sigdelset (&sigfd_set, w->signum);
2937
2938 signalfd (sigfd, &sigfd_set, 0);
2939 sigprocmask (SIG_UNBLOCK, &ss, 0);
2940 }
2941 else
2942#endif
2943 signal (w->signum, SIG_DFL);
2944 }
2945
2946 EV_FREQUENT_CHECK;
2947}
2948
2949#endif
2950
2951#if EV_CHILD_ENABLE
2952
2953void
2954ev_child_start (EV_P_ ev_child *w)
2955{
2956#if EV_MULTIPLICITY
2957 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2958#endif
2959 if (expect_false (ev_is_active (w)))
2960 return;
2961
2962 EV_FREQUENT_CHECK;
1465 2963
1466 ev_start (EV_A_ (W)w, 1); 2964 ev_start (EV_A_ (W)w, 1);
1467 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2965 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1468 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1469 2966
1470 if (!((WL)w)->next) 2967 EV_FREQUENT_CHECK;
2968}
2969
2970void
2971ev_child_stop (EV_P_ ev_child *w)
2972{
2973 clear_pending (EV_A_ (W)w);
2974 if (expect_false (!ev_is_active (w)))
2975 return;
2976
2977 EV_FREQUENT_CHECK;
2978
2979 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2980 ev_stop (EV_A_ (W)w);
2981
2982 EV_FREQUENT_CHECK;
2983}
2984
2985#endif
2986
2987#if EV_STAT_ENABLE
2988
2989# ifdef _WIN32
2990# undef lstat
2991# define lstat(a,b) _stati64 (a,b)
2992# endif
2993
2994#define DEF_STAT_INTERVAL 5.0074891
2995#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2996#define MIN_STAT_INTERVAL 0.1074891
2997
2998static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2999
3000#if EV_USE_INOTIFY
3001
3002/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3003# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3004
3005static void noinline
3006infy_add (EV_P_ ev_stat *w)
3007{
3008 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3009
3010 if (w->wd >= 0)
3011 {
3012 struct statfs sfs;
3013
3014 /* now local changes will be tracked by inotify, but remote changes won't */
3015 /* unless the filesystem is known to be local, we therefore still poll */
3016 /* also do poll on <2.6.25, but with normal frequency */
3017
3018 if (!fs_2625)
3019 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3020 else if (!statfs (w->path, &sfs)
3021 && (sfs.f_type == 0x1373 /* devfs */
3022 || sfs.f_type == 0xEF53 /* ext2/3 */
3023 || sfs.f_type == 0x3153464a /* jfs */
3024 || sfs.f_type == 0x52654973 /* reiser3 */
3025 || sfs.f_type == 0x01021994 /* tempfs */
3026 || sfs.f_type == 0x58465342 /* xfs */))
3027 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3028 else
3029 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1471 { 3030 }
1472#if WIN32 3031 else
1473 signal (w->signum, sighandler); 3032 {
3033 /* can't use inotify, continue to stat */
3034 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3035
3036 /* if path is not there, monitor some parent directory for speedup hints */
3037 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3038 /* but an efficiency issue only */
3039 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3040 {
3041 char path [4096];
3042 strcpy (path, w->path);
3043
3044 do
3045 {
3046 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3047 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3048
3049 char *pend = strrchr (path, '/');
3050
3051 if (!pend || pend == path)
3052 break;
3053
3054 *pend = 0;
3055 w->wd = inotify_add_watch (fs_fd, path, mask);
3056 }
3057 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3058 }
3059 }
3060
3061 if (w->wd >= 0)
3062 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3063
3064 /* now re-arm timer, if required */
3065 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3066 ev_timer_again (EV_A_ &w->timer);
3067 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3068}
3069
3070static void noinline
3071infy_del (EV_P_ ev_stat *w)
3072{
3073 int slot;
3074 int wd = w->wd;
3075
3076 if (wd < 0)
3077 return;
3078
3079 w->wd = -2;
3080 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3081 wlist_del (&fs_hash [slot].head, (WL)w);
3082
3083 /* remove this watcher, if others are watching it, they will rearm */
3084 inotify_rm_watch (fs_fd, wd);
3085}
3086
3087static void noinline
3088infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3089{
3090 if (slot < 0)
3091 /* overflow, need to check for all hash slots */
3092 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3093 infy_wd (EV_A_ slot, wd, ev);
3094 else
3095 {
3096 WL w_;
3097
3098 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3099 {
3100 ev_stat *w = (ev_stat *)w_;
3101 w_ = w_->next; /* lets us remove this watcher and all before it */
3102
3103 if (w->wd == wd || wd == -1)
3104 {
3105 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3106 {
3107 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3108 w->wd = -1;
3109 infy_add (EV_A_ w); /* re-add, no matter what */
3110 }
3111
3112 stat_timer_cb (EV_A_ &w->timer, 0);
3113 }
3114 }
3115 }
3116}
3117
3118static void
3119infy_cb (EV_P_ ev_io *w, int revents)
3120{
3121 char buf [EV_INOTIFY_BUFSIZE];
3122 int ofs;
3123 int len = read (fs_fd, buf, sizeof (buf));
3124
3125 for (ofs = 0; ofs < len; )
3126 {
3127 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3128 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3129 ofs += sizeof (struct inotify_event) + ev->len;
3130 }
3131}
3132
3133inline_size void
3134ev_check_2625 (EV_P)
3135{
3136 /* kernels < 2.6.25 are borked
3137 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3138 */
3139 if (ev_linux_version () < 0x020619)
3140 return;
3141
3142 fs_2625 = 1;
3143}
3144
3145inline_size int
3146infy_newfd (void)
3147{
3148#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3149 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3150 if (fd >= 0)
3151 return fd;
3152#endif
3153 return inotify_init ();
3154}
3155
3156inline_size void
3157infy_init (EV_P)
3158{
3159 if (fs_fd != -2)
3160 return;
3161
3162 fs_fd = -1;
3163
3164 ev_check_2625 (EV_A);
3165
3166 fs_fd = infy_newfd ();
3167
3168 if (fs_fd >= 0)
3169 {
3170 fd_intern (fs_fd);
3171 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3172 ev_set_priority (&fs_w, EV_MAXPRI);
3173 ev_io_start (EV_A_ &fs_w);
3174 ev_unref (EV_A);
3175 }
3176}
3177
3178inline_size void
3179infy_fork (EV_P)
3180{
3181 int slot;
3182
3183 if (fs_fd < 0)
3184 return;
3185
3186 ev_ref (EV_A);
3187 ev_io_stop (EV_A_ &fs_w);
3188 close (fs_fd);
3189 fs_fd = infy_newfd ();
3190
3191 if (fs_fd >= 0)
3192 {
3193 fd_intern (fs_fd);
3194 ev_io_set (&fs_w, fs_fd, EV_READ);
3195 ev_io_start (EV_A_ &fs_w);
3196 ev_unref (EV_A);
3197 }
3198
3199 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3200 {
3201 WL w_ = fs_hash [slot].head;
3202 fs_hash [slot].head = 0;
3203
3204 while (w_)
3205 {
3206 ev_stat *w = (ev_stat *)w_;
3207 w_ = w_->next; /* lets us add this watcher */
3208
3209 w->wd = -1;
3210
3211 if (fs_fd >= 0)
3212 infy_add (EV_A_ w); /* re-add, no matter what */
3213 else
3214 {
3215 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3216 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3217 ev_timer_again (EV_A_ &w->timer);
3218 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3219 }
3220 }
3221 }
3222}
3223
3224#endif
3225
3226#ifdef _WIN32
3227# define EV_LSTAT(p,b) _stati64 (p, b)
1474#else 3228#else
1475 struct sigaction sa; 3229# define EV_LSTAT(p,b) lstat (p, b)
1476 sa.sa_handler = sighandler;
1477 sigfillset (&sa.sa_mask);
1478 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1479 sigaction (w->signum, &sa, 0);
1480#endif 3230#endif
1481 }
1482}
1483 3231
1484void 3232void
1485ev_signal_stop (EV_P_ struct ev_signal *w) 3233ev_stat_stat (EV_P_ ev_stat *w)
1486{ 3234{
1487 ev_clear_pending (EV_A_ (W)w); 3235 if (lstat (w->path, &w->attr) < 0)
1488 if (!ev_is_active (w)) 3236 w->attr.st_nlink = 0;
3237 else if (!w->attr.st_nlink)
3238 w->attr.st_nlink = 1;
3239}
3240
3241static void noinline
3242stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3243{
3244 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3245
3246 ev_statdata prev = w->attr;
3247 ev_stat_stat (EV_A_ w);
3248
3249 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3250 if (
3251 prev.st_dev != w->attr.st_dev
3252 || prev.st_ino != w->attr.st_ino
3253 || prev.st_mode != w->attr.st_mode
3254 || prev.st_nlink != w->attr.st_nlink
3255 || prev.st_uid != w->attr.st_uid
3256 || prev.st_gid != w->attr.st_gid
3257 || prev.st_rdev != w->attr.st_rdev
3258 || prev.st_size != w->attr.st_size
3259 || prev.st_atime != w->attr.st_atime
3260 || prev.st_mtime != w->attr.st_mtime
3261 || prev.st_ctime != w->attr.st_ctime
3262 ) {
3263 /* we only update w->prev on actual differences */
3264 /* in case we test more often than invoke the callback, */
3265 /* to ensure that prev is always different to attr */
3266 w->prev = prev;
3267
3268 #if EV_USE_INOTIFY
3269 if (fs_fd >= 0)
3270 {
3271 infy_del (EV_A_ w);
3272 infy_add (EV_A_ w);
3273 ev_stat_stat (EV_A_ w); /* avoid race... */
3274 }
3275 #endif
3276
3277 ev_feed_event (EV_A_ w, EV_STAT);
3278 }
3279}
3280
3281void
3282ev_stat_start (EV_P_ ev_stat *w)
3283{
3284 if (expect_false (ev_is_active (w)))
1489 return; 3285 return;
1490 3286
1491 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3287 ev_stat_stat (EV_A_ w);
3288
3289 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3290 w->interval = MIN_STAT_INTERVAL;
3291
3292 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3293 ev_set_priority (&w->timer, ev_priority (w));
3294
3295#if EV_USE_INOTIFY
3296 infy_init (EV_A);
3297
3298 if (fs_fd >= 0)
3299 infy_add (EV_A_ w);
3300 else
3301#endif
3302 {
3303 ev_timer_again (EV_A_ &w->timer);
3304 ev_unref (EV_A);
3305 }
3306
3307 ev_start (EV_A_ (W)w, 1);
3308
3309 EV_FREQUENT_CHECK;
3310}
3311
3312void
3313ev_stat_stop (EV_P_ ev_stat *w)
3314{
3315 clear_pending (EV_A_ (W)w);
3316 if (expect_false (!ev_is_active (w)))
3317 return;
3318
3319 EV_FREQUENT_CHECK;
3320
3321#if EV_USE_INOTIFY
3322 infy_del (EV_A_ w);
3323#endif
3324
3325 if (ev_is_active (&w->timer))
3326 {
3327 ev_ref (EV_A);
3328 ev_timer_stop (EV_A_ &w->timer);
3329 }
3330
1492 ev_stop (EV_A_ (W)w); 3331 ev_stop (EV_A_ (W)w);
1493 3332
1494 if (!signals [w->signum - 1].head) 3333 EV_FREQUENT_CHECK;
1495 signal (w->signum, SIG_DFL);
1496} 3334}
3335#endif
1497 3336
3337#if EV_IDLE_ENABLE
1498void 3338void
1499ev_child_start (EV_P_ struct ev_child *w) 3339ev_idle_start (EV_P_ ev_idle *w)
1500{ 3340{
1501#if EV_MULTIPLICITY
1502 assert (("child watchers are only supported in the default loop", loop == default_loop));
1503#endif
1504 if (ev_is_active (w)) 3341 if (expect_false (ev_is_active (w)))
1505 return; 3342 return;
1506 3343
3344 pri_adjust (EV_A_ (W)w);
3345
3346 EV_FREQUENT_CHECK;
3347
3348 {
3349 int active = ++idlecnt [ABSPRI (w)];
3350
3351 ++idleall;
3352 ev_start (EV_A_ (W)w, active);
3353
3354 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3355 idles [ABSPRI (w)][active - 1] = w;
3356 }
3357
3358 EV_FREQUENT_CHECK;
3359}
3360
3361void
3362ev_idle_stop (EV_P_ ev_idle *w)
3363{
3364 clear_pending (EV_A_ (W)w);
3365 if (expect_false (!ev_is_active (w)))
3366 return;
3367
3368 EV_FREQUENT_CHECK;
3369
3370 {
3371 int active = ev_active (w);
3372
3373 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3374 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3375
3376 ev_stop (EV_A_ (W)w);
3377 --idleall;
3378 }
3379
3380 EV_FREQUENT_CHECK;
3381}
3382#endif
3383
3384#if EV_PREPARE_ENABLE
3385void
3386ev_prepare_start (EV_P_ ev_prepare *w)
3387{
3388 if (expect_false (ev_is_active (w)))
3389 return;
3390
3391 EV_FREQUENT_CHECK;
3392
3393 ev_start (EV_A_ (W)w, ++preparecnt);
3394 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3395 prepares [preparecnt - 1] = w;
3396
3397 EV_FREQUENT_CHECK;
3398}
3399
3400void
3401ev_prepare_stop (EV_P_ ev_prepare *w)
3402{
3403 clear_pending (EV_A_ (W)w);
3404 if (expect_false (!ev_is_active (w)))
3405 return;
3406
3407 EV_FREQUENT_CHECK;
3408
3409 {
3410 int active = ev_active (w);
3411
3412 prepares [active - 1] = prepares [--preparecnt];
3413 ev_active (prepares [active - 1]) = active;
3414 }
3415
3416 ev_stop (EV_A_ (W)w);
3417
3418 EV_FREQUENT_CHECK;
3419}
3420#endif
3421
3422#if EV_CHECK_ENABLE
3423void
3424ev_check_start (EV_P_ ev_check *w)
3425{
3426 if (expect_false (ev_is_active (w)))
3427 return;
3428
3429 EV_FREQUENT_CHECK;
3430
3431 ev_start (EV_A_ (W)w, ++checkcnt);
3432 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3433 checks [checkcnt - 1] = w;
3434
3435 EV_FREQUENT_CHECK;
3436}
3437
3438void
3439ev_check_stop (EV_P_ ev_check *w)
3440{
3441 clear_pending (EV_A_ (W)w);
3442 if (expect_false (!ev_is_active (w)))
3443 return;
3444
3445 EV_FREQUENT_CHECK;
3446
3447 {
3448 int active = ev_active (w);
3449
3450 checks [active - 1] = checks [--checkcnt];
3451 ev_active (checks [active - 1]) = active;
3452 }
3453
3454 ev_stop (EV_A_ (W)w);
3455
3456 EV_FREQUENT_CHECK;
3457}
3458#endif
3459
3460#if EV_EMBED_ENABLE
3461void noinline
3462ev_embed_sweep (EV_P_ ev_embed *w)
3463{
3464 ev_run (w->other, EVRUN_NOWAIT);
3465}
3466
3467static void
3468embed_io_cb (EV_P_ ev_io *io, int revents)
3469{
3470 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3471
3472 if (ev_cb (w))
3473 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3474 else
3475 ev_run (w->other, EVRUN_NOWAIT);
3476}
3477
3478static void
3479embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3480{
3481 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3482
3483 {
3484 EV_P = w->other;
3485
3486 while (fdchangecnt)
3487 {
3488 fd_reify (EV_A);
3489 ev_run (EV_A_ EVRUN_NOWAIT);
3490 }
3491 }
3492}
3493
3494static void
3495embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3496{
3497 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3498
3499 ev_embed_stop (EV_A_ w);
3500
3501 {
3502 EV_P = w->other;
3503
3504 ev_loop_fork (EV_A);
3505 ev_run (EV_A_ EVRUN_NOWAIT);
3506 }
3507
3508 ev_embed_start (EV_A_ w);
3509}
3510
3511#if 0
3512static void
3513embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3514{
3515 ev_idle_stop (EV_A_ idle);
3516}
3517#endif
3518
3519void
3520ev_embed_start (EV_P_ ev_embed *w)
3521{
3522 if (expect_false (ev_is_active (w)))
3523 return;
3524
3525 {
3526 EV_P = w->other;
3527 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3528 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3529 }
3530
3531 EV_FREQUENT_CHECK;
3532
3533 ev_set_priority (&w->io, ev_priority (w));
3534 ev_io_start (EV_A_ &w->io);
3535
3536 ev_prepare_init (&w->prepare, embed_prepare_cb);
3537 ev_set_priority (&w->prepare, EV_MINPRI);
3538 ev_prepare_start (EV_A_ &w->prepare);
3539
3540 ev_fork_init (&w->fork, embed_fork_cb);
3541 ev_fork_start (EV_A_ &w->fork);
3542
3543 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3544
1507 ev_start (EV_A_ (W)w, 1); 3545 ev_start (EV_A_ (W)w, 1);
1508 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1509}
1510 3546
3547 EV_FREQUENT_CHECK;
3548}
3549
1511void 3550void
1512ev_child_stop (EV_P_ struct ev_child *w) 3551ev_embed_stop (EV_P_ ev_embed *w)
1513{ 3552{
1514 ev_clear_pending (EV_A_ (W)w); 3553 clear_pending (EV_A_ (W)w);
1515 if (ev_is_active (w)) 3554 if (expect_false (!ev_is_active (w)))
1516 return; 3555 return;
1517 3556
1518 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3557 EV_FREQUENT_CHECK;
3558
3559 ev_io_stop (EV_A_ &w->io);
3560 ev_prepare_stop (EV_A_ &w->prepare);
3561 ev_fork_stop (EV_A_ &w->fork);
3562
1519 ev_stop (EV_A_ (W)w); 3563 ev_stop (EV_A_ (W)w);
3564
3565 EV_FREQUENT_CHECK;
1520} 3566}
3567#endif
3568
3569#if EV_FORK_ENABLE
3570void
3571ev_fork_start (EV_P_ ev_fork *w)
3572{
3573 if (expect_false (ev_is_active (w)))
3574 return;
3575
3576 EV_FREQUENT_CHECK;
3577
3578 ev_start (EV_A_ (W)w, ++forkcnt);
3579 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3580 forks [forkcnt - 1] = w;
3581
3582 EV_FREQUENT_CHECK;
3583}
3584
3585void
3586ev_fork_stop (EV_P_ ev_fork *w)
3587{
3588 clear_pending (EV_A_ (W)w);
3589 if (expect_false (!ev_is_active (w)))
3590 return;
3591
3592 EV_FREQUENT_CHECK;
3593
3594 {
3595 int active = ev_active (w);
3596
3597 forks [active - 1] = forks [--forkcnt];
3598 ev_active (forks [active - 1]) = active;
3599 }
3600
3601 ev_stop (EV_A_ (W)w);
3602
3603 EV_FREQUENT_CHECK;
3604}
3605#endif
3606
3607#if EV_CLEANUP_ENABLE
3608void
3609ev_cleanup_start (EV_P_ ev_cleanup *w)
3610{
3611 if (expect_false (ev_is_active (w)))
3612 return;
3613
3614 EV_FREQUENT_CHECK;
3615
3616 ev_start (EV_A_ (W)w, ++cleanupcnt);
3617 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3618 cleanups [cleanupcnt - 1] = w;
3619
3620 /* cleanup watchers should never keep a refcount on the loop */
3621 ev_unref (EV_A);
3622 EV_FREQUENT_CHECK;
3623}
3624
3625void
3626ev_cleanup_stop (EV_P_ ev_cleanup *w)
3627{
3628 clear_pending (EV_A_ (W)w);
3629 if (expect_false (!ev_is_active (w)))
3630 return;
3631
3632 EV_FREQUENT_CHECK;
3633 ev_ref (EV_A);
3634
3635 {
3636 int active = ev_active (w);
3637
3638 cleanups [active - 1] = cleanups [--cleanupcnt];
3639 ev_active (cleanups [active - 1]) = active;
3640 }
3641
3642 ev_stop (EV_A_ (W)w);
3643
3644 EV_FREQUENT_CHECK;
3645}
3646#endif
3647
3648#if EV_ASYNC_ENABLE
3649void
3650ev_async_start (EV_P_ ev_async *w)
3651{
3652 if (expect_false (ev_is_active (w)))
3653 return;
3654
3655 w->sent = 0;
3656
3657 evpipe_init (EV_A);
3658
3659 EV_FREQUENT_CHECK;
3660
3661 ev_start (EV_A_ (W)w, ++asynccnt);
3662 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3663 asyncs [asynccnt - 1] = w;
3664
3665 EV_FREQUENT_CHECK;
3666}
3667
3668void
3669ev_async_stop (EV_P_ ev_async *w)
3670{
3671 clear_pending (EV_A_ (W)w);
3672 if (expect_false (!ev_is_active (w)))
3673 return;
3674
3675 EV_FREQUENT_CHECK;
3676
3677 {
3678 int active = ev_active (w);
3679
3680 asyncs [active - 1] = asyncs [--asynccnt];
3681 ev_active (asyncs [active - 1]) = active;
3682 }
3683
3684 ev_stop (EV_A_ (W)w);
3685
3686 EV_FREQUENT_CHECK;
3687}
3688
3689void
3690ev_async_send (EV_P_ ev_async *w)
3691{
3692 w->sent = 1;
3693 evpipe_write (EV_A_ &async_pending);
3694}
3695#endif
1521 3696
1522/*****************************************************************************/ 3697/*****************************************************************************/
1523 3698
1524struct ev_once 3699struct ev_once
1525{ 3700{
1526 struct ev_io io; 3701 ev_io io;
1527 struct ev_timer to; 3702 ev_timer to;
1528 void (*cb)(int revents, void *arg); 3703 void (*cb)(int revents, void *arg);
1529 void *arg; 3704 void *arg;
1530}; 3705};
1531 3706
1532static void 3707static void
1533once_cb (EV_P_ struct ev_once *once, int revents) 3708once_cb (EV_P_ struct ev_once *once, int revents)
1534{ 3709{
1535 void (*cb)(int revents, void *arg) = once->cb; 3710 void (*cb)(int revents, void *arg) = once->cb;
1536 void *arg = once->arg; 3711 void *arg = once->arg;
1537 3712
1538 ev_io_stop (EV_A_ &once->io); 3713 ev_io_stop (EV_A_ &once->io);
1539 ev_timer_stop (EV_A_ &once->to); 3714 ev_timer_stop (EV_A_ &once->to);
1540 ev_free (once); 3715 ev_free (once);
1541 3716
1542 cb (revents, arg); 3717 cb (revents, arg);
1543} 3718}
1544 3719
1545static void 3720static void
1546once_cb_io (EV_P_ struct ev_io *w, int revents) 3721once_cb_io (EV_P_ ev_io *w, int revents)
1547{ 3722{
1548 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3723 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3724
3725 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1549} 3726}
1550 3727
1551static void 3728static void
1552once_cb_to (EV_P_ struct ev_timer *w, int revents) 3729once_cb_to (EV_P_ ev_timer *w, int revents)
1553{ 3730{
1554 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3731 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3732
3733 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1555} 3734}
1556 3735
1557void 3736void
1558ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3737ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1559{ 3738{
1560 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3739 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1561 3740
1562 if (!once) 3741 if (expect_false (!once))
3742 {
1563 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3743 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1564 else 3744 return;
1565 { 3745 }
3746
1566 once->cb = cb; 3747 once->cb = cb;
1567 once->arg = arg; 3748 once->arg = arg;
1568 3749
1569 ev_watcher_init (&once->io, once_cb_io); 3750 ev_init (&once->io, once_cb_io);
1570 if (fd >= 0) 3751 if (fd >= 0)
3752 {
3753 ev_io_set (&once->io, fd, events);
3754 ev_io_start (EV_A_ &once->io);
3755 }
3756
3757 ev_init (&once->to, once_cb_to);
3758 if (timeout >= 0.)
3759 {
3760 ev_timer_set (&once->to, timeout, 0.);
3761 ev_timer_start (EV_A_ &once->to);
3762 }
3763}
3764
3765/*****************************************************************************/
3766
3767#if EV_WALK_ENABLE
3768void
3769ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3770{
3771 int i, j;
3772 ev_watcher_list *wl, *wn;
3773
3774 if (types & (EV_IO | EV_EMBED))
3775 for (i = 0; i < anfdmax; ++i)
3776 for (wl = anfds [i].head; wl; )
1571 { 3777 {
1572 ev_io_set (&once->io, fd, events); 3778 wn = wl->next;
1573 ev_io_start (EV_A_ &once->io); 3779
3780#if EV_EMBED_ENABLE
3781 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3782 {
3783 if (types & EV_EMBED)
3784 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3785 }
3786 else
3787#endif
3788#if EV_USE_INOTIFY
3789 if (ev_cb ((ev_io *)wl) == infy_cb)
3790 ;
3791 else
3792#endif
3793 if ((ev_io *)wl != &pipe_w)
3794 if (types & EV_IO)
3795 cb (EV_A_ EV_IO, wl);
3796
3797 wl = wn;
1574 } 3798 }
1575 3799
1576 ev_watcher_init (&once->to, once_cb_to); 3800 if (types & (EV_TIMER | EV_STAT))
1577 if (timeout >= 0.) 3801 for (i = timercnt + HEAP0; i-- > HEAP0; )
3802#if EV_STAT_ENABLE
3803 /*TODO: timer is not always active*/
3804 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1578 { 3805 {
1579 ev_timer_set (&once->to, timeout, 0.); 3806 if (types & EV_STAT)
1580 ev_timer_start (EV_A_ &once->to); 3807 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1581 } 3808 }
1582 } 3809 else
1583} 3810#endif
3811 if (types & EV_TIMER)
3812 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1584 3813
3814#if EV_PERIODIC_ENABLE
3815 if (types & EV_PERIODIC)
3816 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3817 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3818#endif
3819
3820#if EV_IDLE_ENABLE
3821 if (types & EV_IDLE)
3822 for (j = NUMPRI; i--; )
3823 for (i = idlecnt [j]; i--; )
3824 cb (EV_A_ EV_IDLE, idles [j][i]);
3825#endif
3826
3827#if EV_FORK_ENABLE
3828 if (types & EV_FORK)
3829 for (i = forkcnt; i--; )
3830 if (ev_cb (forks [i]) != embed_fork_cb)
3831 cb (EV_A_ EV_FORK, forks [i]);
3832#endif
3833
3834#if EV_ASYNC_ENABLE
3835 if (types & EV_ASYNC)
3836 for (i = asynccnt; i--; )
3837 cb (EV_A_ EV_ASYNC, asyncs [i]);
3838#endif
3839
3840#if EV_PREPARE_ENABLE
3841 if (types & EV_PREPARE)
3842 for (i = preparecnt; i--; )
3843# if EV_EMBED_ENABLE
3844 if (ev_cb (prepares [i]) != embed_prepare_cb)
3845# endif
3846 cb (EV_A_ EV_PREPARE, prepares [i]);
3847#endif
3848
3849#if EV_CHECK_ENABLE
3850 if (types & EV_CHECK)
3851 for (i = checkcnt; i--; )
3852 cb (EV_A_ EV_CHECK, checks [i]);
3853#endif
3854
3855#if EV_SIGNAL_ENABLE
3856 if (types & EV_SIGNAL)
3857 for (i = 0; i < EV_NSIG - 1; ++i)
3858 for (wl = signals [i].head; wl; )
3859 {
3860 wn = wl->next;
3861 cb (EV_A_ EV_SIGNAL, wl);
3862 wl = wn;
3863 }
3864#endif
3865
3866#if EV_CHILD_ENABLE
3867 if (types & EV_CHILD)
3868 for (i = (EV_PID_HASHSIZE); i--; )
3869 for (wl = childs [i]; wl; )
3870 {
3871 wn = wl->next;
3872 cb (EV_A_ EV_CHILD, wl);
3873 wl = wn;
3874 }
3875#endif
3876/* EV_STAT 0x00001000 /* stat data changed */
3877/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3878}
3879#endif
3880
3881#if EV_MULTIPLICITY
3882 #include "ev_wrap.h"
3883#endif
3884
3885EV_CPP(})
3886

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines