ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.279 by root, Fri Feb 6 20:17:43 2009 UTC vs.
Revision 1.369 by root, Sun Jan 23 18:53:06 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
57# endif 53# endif
58# ifndef EV_USE_MONOTONIC 54# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 55# define EV_USE_MONOTONIC 1
60# endif 56# endif
61# endif 57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
62# endif 60# endif
63 61
64# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
77# endif 75# endif
78# endif 76# endif
79 77
78# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 79# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
83# else 82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
86# endif 94# endif
87 95
96# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 97# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 98# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 99# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 100# else
101# undef EV_USE_POLL
100# define EV_USE_POLL 0 102# define EV_USE_POLL 0
101# endif
102# endif 103# endif
103 104
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
107# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
110# endif 112# endif
111 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
112# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
118# endif 121# endif
119 122
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
123# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
124# define EV_USE_PORT 0
125# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
126# endif 130# endif
127 131
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
131# else
132# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
133# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
134# endif 139# endif
135 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
136# ifndef EV_USE_EVENTFD 142# ifndef EV_USE_SIGNALFD
137# if HAVE_EVENTFD 143# define EV_USE_SIGNALFD EV_FEATURE_OS
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif 144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
142# endif 157# endif
143 158
144#endif 159#endif
145 160
146#include <math.h> 161#include <math.h>
147#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
148#include <fcntl.h> 164#include <fcntl.h>
149#include <stddef.h> 165#include <stddef.h>
150 166
151#include <stdio.h> 167#include <stdio.h>
152 168
153#include <assert.h> 169#include <assert.h>
154#include <errno.h> 170#include <errno.h>
155#include <sys/types.h> 171#include <sys/types.h>
156#include <time.h> 172#include <time.h>
173#include <limits.h>
157 174
158#include <signal.h> 175#include <signal.h>
159 176
160#ifdef EV_H 177#ifdef EV_H
161# include EV_H 178# include EV_H
162#else 179#else
163# include "ev.h" 180# include "ev.h"
164#endif 181#endif
182
183EV_CPP(extern "C" {)
165 184
166#ifndef _WIN32 185#ifndef _WIN32
167# include <sys/time.h> 186# include <sys/time.h>
168# include <sys/wait.h> 187# include <sys/wait.h>
169# include <unistd.h> 188# include <unistd.h>
172# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
173# include <windows.h> 192# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
176# endif 195# endif
196# undef EV_AVOID_STDIO
177#endif 197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
178 206
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
180 236
181#ifndef EV_USE_CLOCK_SYSCALL 237#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 238# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1 239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 240# else
185# define EV_USE_CLOCK_SYSCALL 0 241# define EV_USE_CLOCK_SYSCALL 0
186# endif 242# endif
187#endif 243#endif
188 244
189#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 247# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 248# else
193# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
194# endif 250# endif
195#endif 251#endif
196 252
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 255#endif
200 256
201#ifndef EV_USE_NANOSLEEP 257#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 258# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 259# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 260# else
205# define EV_USE_NANOSLEEP 0 261# define EV_USE_NANOSLEEP 0
206# endif 262# endif
207#endif 263#endif
208 264
209#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 267#endif
212 268
213#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
214# ifdef _WIN32 270# ifdef _WIN32
215# define EV_USE_POLL 0 271# define EV_USE_POLL 0
216# else 272# else
217# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 274# endif
219#endif 275#endif
220 276
221#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 280# else
225# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
226# endif 282# endif
227#endif 283#endif
228 284
234# define EV_USE_PORT 0 290# define EV_USE_PORT 0
235#endif 291#endif
236 292
237#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 295# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 296# else
241# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
242# endif 298# endif
243#endif 299#endif
244 300
245#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 303#endif
252 304
253#ifndef EV_INOTIFY_HASHSIZE 305#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 307#endif
260 308
261#ifndef EV_USE_EVENTFD 309#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 311# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 312# else
265# define EV_USE_EVENTFD 0 313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
266# endif 322# endif
267#endif 323#endif
268 324
269#if 0 /* debugging */ 325#if 0 /* debugging */
270# define EV_VERIFY 3 326# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 327# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 328# define EV_HEAP_CACHE_AT 1
273#endif 329#endif
274 330
275#ifndef EV_VERIFY 331#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 333#endif
278 334
279#ifndef EV_USE_4HEAP 335#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 336# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 337#endif
282 338
283#ifndef EV_HEAP_CACHE_AT 339#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
285#endif 355#endif
286 356
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
288 364
289#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
292#endif 368#endif
306# include <sys/select.h> 382# include <sys/select.h>
307# endif 383# endif
308#endif 384#endif
309 385
310#if EV_USE_INOTIFY 386#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 387# include <sys/statfs.h>
313# include <sys/inotify.h> 388# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 390# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 391# undef EV_USE_INOTIFY
320 395
321#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 397# include <winsock.h>
323#endif 398#endif
324 399
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 400#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 402# include <stdint.h>
337# ifdef __cplusplus 403# ifndef EFD_NONBLOCK
338extern "C" { 404# define EFD_NONBLOCK O_NONBLOCK
339# endif 405# endif
340int eventfd (unsigned int initval, int flags); 406# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 407# ifdef O_CLOEXEC
342} 408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
343# endif 412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
344#endif 436#endif
345 437
346/**/ 438/**/
347 439
348#if EV_VERIFY >= 3 440#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 441# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 442#else
351# define EV_FREQUENT_CHECK do { } while (0) 443# define EV_FREQUENT_CHECK do { } while (0)
352#endif 444#endif
353 445
354/* 446/*
361 */ 453 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363 455
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
367 461
368#if __GNUC__ >= 4 462#if __GNUC__ >= 4
369# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
370# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
371#else 465#else
378 472
379#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
380#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline 475#define inline_size static inline
382 476
383#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
384# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
385#else 487#else
386# define inline_speed static inline
387#endif
388
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
391 490
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
394 493
395typedef ev_watcher *W; 494typedef ev_watcher *W;
399#define ev_active(w) ((W)(w))->active 498#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 499#define ev_at(w) ((WT)(w))->at
401 500
402#if EV_USE_REALTIME 501#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 503/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 505#endif
407 506
408#if EV_USE_MONOTONIC 507#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 509#endif
411 510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
520
412#ifdef _WIN32 521#ifdef _WIN32
413# include "ev_win32.c" 522# include "ev_win32.c"
414#endif 523#endif
415 524
416/*****************************************************************************/ 525/*****************************************************************************/
526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
417 576
418static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
419 578
420void 579void
421ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
431 590
432 if (syserr_cb) 591 if (syserr_cb)
433 syserr_cb (msg); 592 syserr_cb (msg);
434 else 593 else
435 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
436 perror (msg); 601 perror (msg);
602#endif
437 abort (); 603 abort ();
438 } 604 }
439} 605}
440 606
441static void * 607static void *
442ev_realloc_emul (void *ptr, long size) 608ev_realloc_emul (void *ptr, long size)
443{ 609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
444 /* some systems, notably openbsd and darwin, fail to properly 613 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 614 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 615 * the single unix specification, so work around them here.
447 */ 616 */
448 617
449 if (size) 618 if (size)
450 return realloc (ptr, size); 619 return realloc (ptr, size);
451 620
452 free (ptr); 621 free (ptr);
453 return 0; 622 return 0;
623#endif
454} 624}
455 625
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457 627
458void 628void
466{ 636{
467 ptr = alloc (ptr, size); 637 ptr = alloc (ptr, size);
468 638
469 if (!ptr && size) 639 if (!ptr && size)
470 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
472 abort (); 646 abort ();
473 } 647 }
474 648
475 return ptr; 649 return ptr;
476} 650}
478#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
480 654
481/*****************************************************************************/ 655/*****************************************************************************/
482 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
483typedef struct 661typedef struct
484{ 662{
485 WL head; 663 WL head;
486 unsigned char events; 664 unsigned char events; /* the events watched for */
487 unsigned char reify; 665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 667 unsigned char unused;
490#if EV_USE_EPOLL 668#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 669 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 670#endif
493#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
494 SOCKET handle; 672 SOCKET handle;
495#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
496} ANFD; 677} ANFD;
497 678
679/* stores the pending event set for a given watcher */
498typedef struct 680typedef struct
499{ 681{
500 W w; 682 W w;
501 int events; 683 int events; /* the pending event set for the given watcher */
502} ANPENDING; 684} ANPENDING;
503 685
504#if EV_USE_INOTIFY 686#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 687/* hash table entry per inotify-id */
506typedef struct 688typedef struct
509} ANFS; 691} ANFS;
510#endif 692#endif
511 693
512/* Heap Entry */ 694/* Heap Entry */
513#if EV_HEAP_CACHE_AT 695#if EV_HEAP_CACHE_AT
696 /* a heap element */
514 typedef struct { 697 typedef struct {
515 ev_tstamp at; 698 ev_tstamp at;
516 WT w; 699 WT w;
517 } ANHE; 700 } ANHE;
518 701
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 702 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 703 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 705#else
706 /* a heap element */
523 typedef WT ANHE; 707 typedef WT ANHE;
524 708
525 #define ANHE_w(he) (he) 709 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 710 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 711 #define ANHE_at_cache(he)
551 735
552 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
553 737
554#endif 738#endif
555 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
556/*****************************************************************************/ 752/*****************************************************************************/
557 753
754#ifndef EV_HAVE_EV_TIME
558ev_tstamp 755ev_tstamp
559ev_time (void) 756ev_time (void)
560{ 757{
561#if EV_USE_REALTIME 758#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 759 if (expect_true (have_realtime))
569 766
570 struct timeval tv; 767 struct timeval tv;
571 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 770}
771#endif
574 772
575ev_tstamp inline_size 773inline_size ev_tstamp
576get_clock (void) 774get_clock (void)
577{ 775{
578#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
580 { 778 {
601 if (delay > 0.) 799 if (delay > 0.)
602 { 800 {
603#if EV_USE_NANOSLEEP 801#if EV_USE_NANOSLEEP
604 struct timespec ts; 802 struct timespec ts;
605 803
606 ts.tv_sec = (time_t)delay; 804 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 805 nanosleep (&ts, 0);
610#elif defined(_WIN32) 806#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3)); 807 Sleep ((unsigned long)(delay * 1e3));
612#else 808#else
613 struct timeval tv; 809 struct timeval tv;
614 810
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 812 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 813 /* by older ones */
814 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 815 select (0, 0, 0, 0, &tv);
622#endif 816#endif
623 } 817 }
624} 818}
625 819
820inline_speed int
821ev_timeout_to_ms (ev_tstamp timeout)
822{
823 int ms = timeout * 1000. + .999999;
824
825 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
826}
827
626/*****************************************************************************/ 828/*****************************************************************************/
627 829
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 830#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 831
630int inline_size 832/* find a suitable new size for the given array, */
833/* hopefully by rounding to a nice-to-malloc size */
834inline_size int
631array_nextsize (int elem, int cur, int cnt) 835array_nextsize (int elem, int cur, int cnt)
632{ 836{
633 int ncur = cur + 1; 837 int ncur = cur + 1;
634 838
635 do 839 do
676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 880 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
677 } 881 }
678#endif 882#endif
679 883
680#define array_free(stem, idx) \ 884#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 885 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 886
683/*****************************************************************************/ 887/*****************************************************************************/
888
889/* dummy callback for pending events */
890static void noinline
891pendingcb (EV_P_ ev_prepare *w, int revents)
892{
893}
684 894
685void noinline 895void noinline
686ev_feed_event (EV_P_ void *w, int revents) 896ev_feed_event (EV_P_ void *w, int revents)
687{ 897{
688 W w_ = (W)w; 898 W w_ = (W)w;
697 pendings [pri][w_->pending - 1].w = w_; 907 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 908 pendings [pri][w_->pending - 1].events = revents;
699 } 909 }
700} 910}
701 911
702void inline_speed 912inline_speed void
913feed_reverse (EV_P_ W w)
914{
915 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
916 rfeeds [rfeedcnt++] = w;
917}
918
919inline_size void
920feed_reverse_done (EV_P_ int revents)
921{
922 do
923 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
924 while (rfeedcnt);
925}
926
927inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 928queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 929{
705 int i; 930 int i;
706 931
707 for (i = 0; i < eventcnt; ++i) 932 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 933 ev_feed_event (EV_A_ events [i], type);
709} 934}
710 935
711/*****************************************************************************/ 936/*****************************************************************************/
712 937
713void inline_speed 938inline_speed void
714fd_event (EV_P_ int fd, int revents) 939fd_event_nocheck (EV_P_ int fd, int revents)
715{ 940{
716 ANFD *anfd = anfds + fd; 941 ANFD *anfd = anfds + fd;
717 ev_io *w; 942 ev_io *w;
718 943
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 944 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 948 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 949 ev_feed_event (EV_A_ (W)w, ev);
725 } 950 }
726} 951}
727 952
953/* do not submit kernel events for fds that have reify set */
954/* because that means they changed while we were polling for new events */
955inline_speed void
956fd_event (EV_P_ int fd, int revents)
957{
958 ANFD *anfd = anfds + fd;
959
960 if (expect_true (!anfd->reify))
961 fd_event_nocheck (EV_A_ fd, revents);
962}
963
728void 964void
729ev_feed_fd_event (EV_P_ int fd, int revents) 965ev_feed_fd_event (EV_P_ int fd, int revents)
730{ 966{
731 if (fd >= 0 && fd < anfdmax) 967 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 968 fd_event_nocheck (EV_A_ fd, revents);
733} 969}
734 970
735void inline_size 971/* make sure the external fd watch events are in-sync */
972/* with the kernel/libev internal state */
973inline_size void
736fd_reify (EV_P) 974fd_reify (EV_P)
737{ 975{
738 int i; 976 int i;
739 977
740 for (i = 0; i < fdchangecnt; ++i) 978 for (i = 0; i < fdchangecnt; ++i)
741 { 979 {
742 int fd = fdchanges [i]; 980 int fd = fdchanges [i];
743 ANFD *anfd = anfds + fd; 981 ANFD *anfd = anfds + fd;
744 ev_io *w; 982 ev_io *w;
745 983
746 unsigned char events = 0; 984 unsigned char o_events = anfd->events;
985 unsigned char o_reify = anfd->reify;
747 986
748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 987 anfd->reify = 0;
749 events |= (unsigned char)w->events;
750 988
751#if EV_SELECT_IS_WINSOCKET 989#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
752 if (events) 990 if (o_reify & EV__IOFDSET)
753 { 991 {
754 unsigned long arg; 992 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 993 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
758 anfd->handle = _get_osfhandle (fd);
759 #endif
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 994 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
995 printf ("oi %d %x\n", fd, anfd->handle);//D
761 } 996 }
762#endif 997#endif
763 998
999 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
764 { 1000 {
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events; 1001 anfd->events = 0;
770 1002
771 if (o_events != events || o_reify & EV_IOFDSET) 1003 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1004 anfd->events |= (unsigned char)w->events;
1005
1006 if (o_events != anfd->events)
1007 o_reify = EV__IOFDSET; /* actually |= */
1008 }
1009
1010 if (o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 1011 backend_modify (EV_A_ fd, o_events, anfd->events);
773 }
774 } 1012 }
775 1013
776 fdchangecnt = 0; 1014 fdchangecnt = 0;
777} 1015}
778 1016
779void inline_size 1017/* something about the given fd changed */
1018inline_size void
780fd_change (EV_P_ int fd, int flags) 1019fd_change (EV_P_ int fd, int flags)
781{ 1020{
782 unsigned char reify = anfds [fd].reify; 1021 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 1022 anfds [fd].reify |= flags;
784 1023
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1027 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 1028 fdchanges [fdchangecnt - 1] = fd;
790 } 1029 }
791} 1030}
792 1031
793void inline_speed 1032/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1033inline_speed void
794fd_kill (EV_P_ int fd) 1034fd_kill (EV_P_ int fd)
795{ 1035{
796 ev_io *w; 1036 ev_io *w;
797 1037
798 while ((w = (ev_io *)anfds [fd].head)) 1038 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 1040 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1041 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 1042 }
803} 1043}
804 1044
805int inline_size 1045/* check whether the given fd is actually valid, for error recovery */
1046inline_size int
806fd_valid (int fd) 1047fd_valid (int fd)
807{ 1048{
808#ifdef _WIN32 1049#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 1050 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 1051#else
811 return fcntl (fd, F_GETFD) != -1; 1052 return fcntl (fd, F_GETFD) != -1;
812#endif 1053#endif
813} 1054}
814 1055
832 1073
833 for (fd = anfdmax; fd--; ) 1074 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 1075 if (anfds [fd].events)
835 { 1076 {
836 fd_kill (EV_A_ fd); 1077 fd_kill (EV_A_ fd);
837 return; 1078 break;
838 } 1079 }
839} 1080}
840 1081
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 1082/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 1083static void noinline
847 for (fd = 0; fd < anfdmax; ++fd) 1088 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 1089 if (anfds [fd].events)
849 { 1090 {
850 anfds [fd].events = 0; 1091 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 1092 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1093 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 1094 }
854} 1095}
855 1096
1097/* used to prepare libev internal fd's */
1098/* this is not fork-safe */
1099inline_speed void
1100fd_intern (int fd)
1101{
1102#ifdef _WIN32
1103 unsigned long arg = 1;
1104 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1105#else
1106 fcntl (fd, F_SETFD, FD_CLOEXEC);
1107 fcntl (fd, F_SETFL, O_NONBLOCK);
1108#endif
1109}
1110
856/*****************************************************************************/ 1111/*****************************************************************************/
857 1112
858/* 1113/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not 1114 * the heap functions want a real array index. array index 0 is guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1115 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree. 1116 * the branching factor of the d-tree.
862 */ 1117 */
863 1118
864/* 1119/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1128#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1129#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 1130#define UPHEAP_DONE(p,k) ((p) == (k))
876 1131
877/* away from the root */ 1132/* away from the root */
878void inline_speed 1133inline_speed void
879downheap (ANHE *heap, int N, int k) 1134downheap (ANHE *heap, int N, int k)
880{ 1135{
881 ANHE he = heap [k]; 1136 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 1137 ANHE *E = heap + N + HEAP0;
883 1138
923#define HEAP0 1 1178#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 1179#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 1180#define UPHEAP_DONE(p,k) (!(p))
926 1181
927/* away from the root */ 1182/* away from the root */
928void inline_speed 1183inline_speed void
929downheap (ANHE *heap, int N, int k) 1184downheap (ANHE *heap, int N, int k)
930{ 1185{
931 ANHE he = heap [k]; 1186 ANHE he = heap [k];
932 1187
933 for (;;) 1188 for (;;)
934 { 1189 {
935 int c = k << 1; 1190 int c = k << 1;
936 1191
937 if (c > N + HEAP0 - 1) 1192 if (c >= N + HEAP0)
938 break; 1193 break;
939 1194
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1195 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 1196 ? 1 : 0;
942 1197
953 ev_active (ANHE_w (he)) = k; 1208 ev_active (ANHE_w (he)) = k;
954} 1209}
955#endif 1210#endif
956 1211
957/* towards the root */ 1212/* towards the root */
958void inline_speed 1213inline_speed void
959upheap (ANHE *heap, int k) 1214upheap (ANHE *heap, int k)
960{ 1215{
961 ANHE he = heap [k]; 1216 ANHE he = heap [k];
962 1217
963 for (;;) 1218 for (;;)
974 1229
975 heap [k] = he; 1230 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1231 ev_active (ANHE_w (he)) = k;
977} 1232}
978 1233
979void inline_size 1234/* move an element suitably so it is in a correct place */
1235inline_size void
980adjustheap (ANHE *heap, int N, int k) 1236adjustheap (ANHE *heap, int N, int k)
981{ 1237{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1238 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 1239 upheap (heap, k);
984 else 1240 else
985 downheap (heap, N, k); 1241 downheap (heap, N, k);
986} 1242}
987 1243
988/* rebuild the heap: this function is used only once and executed rarely */ 1244/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1245inline_size void
990reheap (ANHE *heap, int N) 1246reheap (ANHE *heap, int N)
991{ 1247{
992 int i; 1248 int i;
993 1249
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1250 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1253 upheap (heap, i + HEAP0);
998} 1254}
999 1255
1000/*****************************************************************************/ 1256/*****************************************************************************/
1001 1257
1258/* associate signal watchers to a signal signal */
1002typedef struct 1259typedef struct
1003{ 1260{
1261 EV_ATOMIC_T pending;
1262#if EV_MULTIPLICITY
1263 EV_P;
1264#endif
1004 WL head; 1265 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 1266} ANSIG;
1007 1267
1008static ANSIG *signals; 1268static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 1269
1013/*****************************************************************************/ 1270/*****************************************************************************/
1014 1271
1015void inline_speed 1272#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 1273
1027static void noinline 1274static void noinline
1028evpipe_init (EV_P) 1275evpipe_init (EV_P)
1029{ 1276{
1030 if (!ev_is_active (&pipeev)) 1277 if (!ev_is_active (&pipe_w))
1031 { 1278 {
1032#if EV_USE_EVENTFD 1279# if EV_USE_EVENTFD
1280 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1281 if (evfd < 0 && errno == EINVAL)
1033 if ((evfd = eventfd (0, 0)) >= 0) 1282 evfd = eventfd (0, 0);
1283
1284 if (evfd >= 0)
1034 { 1285 {
1035 evpipe [0] = -1; 1286 evpipe [0] = -1;
1036 fd_intern (evfd); 1287 fd_intern (evfd); /* doing it twice doesn't hurt */
1037 ev_io_set (&pipeev, evfd, EV_READ); 1288 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1289 }
1039 else 1290 else
1040#endif 1291# endif
1041 { 1292 {
1042 while (pipe (evpipe)) 1293 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1294 ev_syserr ("(libev) error creating signal/async pipe");
1044 1295
1045 fd_intern (evpipe [0]); 1296 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1297 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1298 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1299 }
1049 1300
1050 ev_io_start (EV_A_ &pipeev); 1301 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1302 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1303 }
1053} 1304}
1054 1305
1055void inline_size 1306inline_size void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1307evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1308{
1058 if (!*flag) 1309 if (!*flag)
1059 { 1310 {
1060 int old_errno = errno; /* save errno because write might clobber it */ 1311 int old_errno = errno; /* save errno because write might clobber it */
1312 char dummy;
1061 1313
1062 *flag = 1; 1314 *flag = 1;
1063 1315
1064#if EV_USE_EVENTFD 1316#if EV_USE_EVENTFD
1065 if (evfd >= 0) 1317 if (evfd >= 0)
1067 uint64_t counter = 1; 1319 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t)); 1320 write (evfd, &counter, sizeof (uint64_t));
1069 } 1321 }
1070 else 1322 else
1071#endif 1323#endif
1324 /* win32 people keep sending patches that change this write() to send() */
1325 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1326 /* so when you think this write should be a send instead, please find out */
1327 /* where your send() is from - it's definitely not the microsoft send, and */
1328 /* tell me. thank you. */
1072 write (evpipe [1], &old_errno, 1); 1329 write (evpipe [1], &dummy, 1);
1073 1330
1074 errno = old_errno; 1331 errno = old_errno;
1075 } 1332 }
1076} 1333}
1077 1334
1335/* called whenever the libev signal pipe */
1336/* got some events (signal, async) */
1078static void 1337static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1338pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1339{
1340 int i;
1341
1081#if EV_USE_EVENTFD 1342#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1343 if (evfd >= 0)
1083 { 1344 {
1084 uint64_t counter; 1345 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t)); 1346 read (evfd, &counter, sizeof (uint64_t));
1086 } 1347 }
1087 else 1348 else
1088#endif 1349#endif
1089 { 1350 {
1090 char dummy; 1351 char dummy;
1352 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1091 read (evpipe [0], &dummy, 1); 1353 read (evpipe [0], &dummy, 1);
1092 } 1354 }
1093 1355
1094 if (gotsig && ev_is_default_loop (EV_A)) 1356#if EV_SIGNAL_ENABLE
1357 if (sig_pending)
1095 { 1358 {
1096 int signum; 1359 sig_pending = 0;
1097 gotsig = 0;
1098 1360
1099 for (signum = signalmax; signum--; ) 1361 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 1362 if (expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 1363 ev_feed_signal_event (EV_A_ i + 1);
1102 } 1364 }
1365#endif
1103 1366
1104#if EV_ASYNC_ENABLE 1367#if EV_ASYNC_ENABLE
1105 if (gotasync) 1368 if (async_pending)
1106 { 1369 {
1107 int i; 1370 async_pending = 0;
1108 gotasync = 0;
1109 1371
1110 for (i = asynccnt; i--; ) 1372 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 1373 if (asyncs [i]->sent)
1112 { 1374 {
1113 asyncs [i]->sent = 0; 1375 asyncs [i]->sent = 0;
1117#endif 1379#endif
1118} 1380}
1119 1381
1120/*****************************************************************************/ 1382/*****************************************************************************/
1121 1383
1384void
1385ev_feed_signal (int signum)
1386{
1387#if EV_MULTIPLICITY
1388 EV_P = signals [signum - 1].loop;
1389
1390 if (!EV_A)
1391 return;
1392#endif
1393
1394 signals [signum - 1].pending = 1;
1395 evpipe_write (EV_A_ &sig_pending);
1396}
1397
1122static void 1398static void
1123ev_sighandler (int signum) 1399ev_sighandler (int signum)
1124{ 1400{
1125#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct;
1127#endif
1128
1129#if _WIN32 1401#ifdef _WIN32
1130 signal (signum, ev_sighandler); 1402 signal (signum, ev_sighandler);
1131#endif 1403#endif
1132 1404
1133 signals [signum - 1].gotsig = 1; 1405 ev_feed_signal (signum);
1134 evpipe_write (EV_A_ &gotsig);
1135} 1406}
1136 1407
1137void noinline 1408void noinline
1138ev_feed_signal_event (EV_P_ int signum) 1409ev_feed_signal_event (EV_P_ int signum)
1139{ 1410{
1140 WL w; 1411 WL w;
1141 1412
1413 if (expect_false (signum <= 0 || signum > EV_NSIG))
1414 return;
1415
1416 --signum;
1417
1142#if EV_MULTIPLICITY 1418#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1419 /* it is permissible to try to feed a signal to the wrong loop */
1144#endif 1420 /* or, likely more useful, feeding a signal nobody is waiting for */
1145 1421
1146 --signum; 1422 if (expect_false (signals [signum].loop != EV_A))
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 1423 return;
1424#endif
1150 1425
1151 signals [signum].gotsig = 0; 1426 signals [signum].pending = 0;
1152 1427
1153 for (w = signals [signum].head; w; w = w->next) 1428 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1429 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 1430}
1156 1431
1432#if EV_USE_SIGNALFD
1433static void
1434sigfdcb (EV_P_ ev_io *iow, int revents)
1435{
1436 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1437
1438 for (;;)
1439 {
1440 ssize_t res = read (sigfd, si, sizeof (si));
1441
1442 /* not ISO-C, as res might be -1, but works with SuS */
1443 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1444 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1445
1446 if (res < (ssize_t)sizeof (si))
1447 break;
1448 }
1449}
1450#endif
1451
1452#endif
1453
1157/*****************************************************************************/ 1454/*****************************************************************************/
1158 1455
1456#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 1457static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 1458
1163static ev_signal childev; 1459static ev_signal childev;
1164 1460
1165#ifndef WIFCONTINUED 1461#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 1462# define WIFCONTINUED(status) 0
1167#endif 1463#endif
1168 1464
1169void inline_speed 1465/* handle a single child status event */
1466inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 1467child_reap (EV_P_ int chain, int pid, int status)
1171{ 1468{
1172 ev_child *w; 1469 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1470 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 1471
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1472 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 1473 {
1177 if ((w->pid == pid || !w->pid) 1474 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 1475 && (!traced || (w->flags & 1)))
1179 { 1476 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1477 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 1484
1188#ifndef WCONTINUED 1485#ifndef WCONTINUED
1189# define WCONTINUED 0 1486# define WCONTINUED 0
1190#endif 1487#endif
1191 1488
1489/* called on sigchld etc., calls waitpid */
1192static void 1490static void
1193childcb (EV_P_ ev_signal *sw, int revents) 1491childcb (EV_P_ ev_signal *sw, int revents)
1194{ 1492{
1195 int pid, status; 1493 int pid, status;
1196 1494
1204 /* make sure we are called again until all children have been reaped */ 1502 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 1503 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1504 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 1505
1208 child_reap (EV_A_ pid, pid, status); 1506 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 1507 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1508 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 1509}
1212 1510
1213#endif 1511#endif
1214 1512
1215/*****************************************************************************/ 1513/*****************************************************************************/
1216 1514
1515#if EV_USE_IOCP
1516# include "ev_iocp.c"
1517#endif
1217#if EV_USE_PORT 1518#if EV_USE_PORT
1218# include "ev_port.c" 1519# include "ev_port.c"
1219#endif 1520#endif
1220#if EV_USE_KQUEUE 1521#if EV_USE_KQUEUE
1221# include "ev_kqueue.c" 1522# include "ev_kqueue.c"
1281#ifdef __APPLE__ 1582#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 1583 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 1584 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 1585 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 1586#endif
1587#ifdef __FreeBSD__
1588 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1589#endif
1286 1590
1287 return flags; 1591 return flags;
1288} 1592}
1289 1593
1290unsigned int 1594unsigned int
1291ev_embeddable_backends (void) 1595ev_embeddable_backends (void)
1292{ 1596{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1597 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1294 1598
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1599 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */ 1600 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1297 flags &= ~EVBACKEND_EPOLL; 1601 flags &= ~EVBACKEND_EPOLL;
1298 1602
1299 return flags; 1603 return flags;
1300} 1604}
1301 1605
1302unsigned int 1606unsigned int
1303ev_backend (EV_P) 1607ev_backend (EV_P)
1304{ 1608{
1305 return backend; 1609 return backend;
1306} 1610}
1307 1611
1612#if EV_FEATURE_API
1308unsigned int 1613unsigned int
1309ev_loop_count (EV_P) 1614ev_iteration (EV_P)
1310{ 1615{
1311 return loop_count; 1616 return loop_count;
1312} 1617}
1313 1618
1619unsigned int
1620ev_depth (EV_P)
1621{
1622 return loop_depth;
1623}
1624
1314void 1625void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1626ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{ 1627{
1317 io_blocktime = interval; 1628 io_blocktime = interval;
1318} 1629}
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1632ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{ 1633{
1323 timeout_blocktime = interval; 1634 timeout_blocktime = interval;
1324} 1635}
1325 1636
1637void
1638ev_set_userdata (EV_P_ void *data)
1639{
1640 userdata = data;
1641}
1642
1643void *
1644ev_userdata (EV_P)
1645{
1646 return userdata;
1647}
1648
1649void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1650{
1651 invoke_cb = invoke_pending_cb;
1652}
1653
1654void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1655{
1656 release_cb = release;
1657 acquire_cb = acquire;
1658}
1659#endif
1660
1661/* initialise a loop structure, must be zero-initialised */
1326static void noinline 1662static void noinline
1327loop_init (EV_P_ unsigned int flags) 1663loop_init (EV_P_ unsigned int flags)
1328{ 1664{
1329 if (!backend) 1665 if (!backend)
1330 { 1666 {
1667 origflags = flags;
1668
1331#if EV_USE_REALTIME 1669#if EV_USE_REALTIME
1332 if (!have_realtime) 1670 if (!have_realtime)
1333 { 1671 {
1334 struct timespec ts; 1672 struct timespec ts;
1335 1673
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1684 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 1685 have_monotonic = 1;
1348 } 1686 }
1349#endif 1687#endif
1350 1688
1689 /* pid check not overridable via env */
1690#ifndef _WIN32
1691 if (flags & EVFLAG_FORKCHECK)
1692 curpid = getpid ();
1693#endif
1694
1695 if (!(flags & EVFLAG_NOENV)
1696 && !enable_secure ()
1697 && getenv ("LIBEV_FLAGS"))
1698 flags = atoi (getenv ("LIBEV_FLAGS"));
1699
1351 ev_rt_now = ev_time (); 1700 ev_rt_now = ev_time ();
1352 mn_now = get_clock (); 1701 mn_now = get_clock ();
1353 now_floor = mn_now; 1702 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now; 1703 rtmn_diff = ev_rt_now - mn_now;
1704#if EV_FEATURE_API
1705 invoke_cb = ev_invoke_pending;
1706#endif
1355 1707
1356 io_blocktime = 0.; 1708 io_blocktime = 0.;
1357 timeout_blocktime = 0.; 1709 timeout_blocktime = 0.;
1358 backend = 0; 1710 backend = 0;
1359 backend_fd = -1; 1711 backend_fd = -1;
1360 gotasync = 0; 1712 sig_pending = 0;
1713#if EV_ASYNC_ENABLE
1714 async_pending = 0;
1715#endif
1361#if EV_USE_INOTIFY 1716#if EV_USE_INOTIFY
1362 fs_fd = -2; 1717 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1363#endif 1718#endif
1364 1719#if EV_USE_SIGNALFD
1365 /* pid check not overridable via env */ 1720 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif 1721#endif
1370 1722
1371 if (!(flags & EVFLAG_NOENV) 1723 if (!(flags & EVBACKEND_MASK))
1372 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1375
1376 if (!(flags & 0x0000ffffU))
1377 flags |= ev_recommended_backends (); 1724 flags |= ev_recommended_backends ();
1378 1725
1726#if EV_USE_IOCP
1727 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1728#endif
1379#if EV_USE_PORT 1729#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1730 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif 1731#endif
1382#if EV_USE_KQUEUE 1732#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1733 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1390#endif 1740#endif
1391#if EV_USE_SELECT 1741#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1742 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 1743#endif
1394 1744
1745 ev_prepare_init (&pending_w, pendingcb);
1746
1747#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 1748 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 1749 ev_set_priority (&pipe_w, EV_MAXPRI);
1750#endif
1397 } 1751 }
1398} 1752}
1399 1753
1400static void noinline 1754/* free up a loop structure */
1755void
1401loop_destroy (EV_P) 1756ev_loop_destroy (EV_P)
1402{ 1757{
1403 int i; 1758 int i;
1404 1759
1760#if EV_MULTIPLICITY
1761 /* mimic free (0) */
1762 if (!EV_A)
1763 return;
1764#endif
1765
1766#if EV_CLEANUP_ENABLE
1767 /* queue cleanup watchers (and execute them) */
1768 if (expect_false (cleanupcnt))
1769 {
1770 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1771 EV_INVOKE_PENDING;
1772 }
1773#endif
1774
1775#if EV_CHILD_ENABLE
1776 if (ev_is_active (&childev))
1777 {
1778 ev_ref (EV_A); /* child watcher */
1779 ev_signal_stop (EV_A_ &childev);
1780 }
1781#endif
1782
1405 if (ev_is_active (&pipeev)) 1783 if (ev_is_active (&pipe_w))
1406 { 1784 {
1407 ev_ref (EV_A); /* signal watcher */ 1785 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 1786 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 1787
1410#if EV_USE_EVENTFD 1788#if EV_USE_EVENTFD
1411 if (evfd >= 0) 1789 if (evfd >= 0)
1412 close (evfd); 1790 close (evfd);
1413#endif 1791#endif
1414 1792
1415 if (evpipe [0] >= 0) 1793 if (evpipe [0] >= 0)
1416 { 1794 {
1417 close (evpipe [0]); 1795 EV_WIN32_CLOSE_FD (evpipe [0]);
1418 close (evpipe [1]); 1796 EV_WIN32_CLOSE_FD (evpipe [1]);
1419 } 1797 }
1420 } 1798 }
1799
1800#if EV_USE_SIGNALFD
1801 if (ev_is_active (&sigfd_w))
1802 close (sigfd);
1803#endif
1421 1804
1422#if EV_USE_INOTIFY 1805#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 1806 if (fs_fd >= 0)
1424 close (fs_fd); 1807 close (fs_fd);
1425#endif 1808#endif
1426 1809
1427 if (backend_fd >= 0) 1810 if (backend_fd >= 0)
1428 close (backend_fd); 1811 close (backend_fd);
1429 1812
1813#if EV_USE_IOCP
1814 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1815#endif
1430#if EV_USE_PORT 1816#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1817 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif 1818#endif
1433#if EV_USE_KQUEUE 1819#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1820 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1449#if EV_IDLE_ENABLE 1835#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 1836 array_free (idle, [i]);
1451#endif 1837#endif
1452 } 1838 }
1453 1839
1454 ev_free (anfds); anfdmax = 0; 1840 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 1841
1456 /* have to use the microsoft-never-gets-it-right macro */ 1842 /* have to use the microsoft-never-gets-it-right macro */
1843 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 1844 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 1845 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 1846#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 1847 array_free (periodic, EMPTY);
1461#endif 1848#endif
1462#if EV_FORK_ENABLE 1849#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY); 1850 array_free (fork, EMPTY);
1464#endif 1851#endif
1852#if EV_CLEANUP_ENABLE
1853 array_free (cleanup, EMPTY);
1854#endif
1465 array_free (prepare, EMPTY); 1855 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY); 1856 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE 1857#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY); 1858 array_free (async, EMPTY);
1469#endif 1859#endif
1470 1860
1471 backend = 0; 1861 backend = 0;
1862
1863#if EV_MULTIPLICITY
1864 if (ev_is_default_loop (EV_A))
1865#endif
1866 ev_default_loop_ptr = 0;
1867#if EV_MULTIPLICITY
1868 else
1869 ev_free (EV_A);
1870#endif
1472} 1871}
1473 1872
1474#if EV_USE_INOTIFY 1873#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 1874inline_size void infy_fork (EV_P);
1476#endif 1875#endif
1477 1876
1478void inline_size 1877inline_size void
1479loop_fork (EV_P) 1878loop_fork (EV_P)
1480{ 1879{
1481#if EV_USE_PORT 1880#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1881 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 1882#endif
1489#endif 1888#endif
1490#if EV_USE_INOTIFY 1889#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 1890 infy_fork (EV_A);
1492#endif 1891#endif
1493 1892
1494 if (ev_is_active (&pipeev)) 1893 if (ev_is_active (&pipe_w))
1495 { 1894 {
1496 /* this "locks" the handlers against writing to the pipe */ 1895 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */ 1896 /* while we modify the fd vars */
1498 gotsig = 1; 1897 sig_pending = 1;
1499#if EV_ASYNC_ENABLE 1898#if EV_ASYNC_ENABLE
1500 gotasync = 1; 1899 async_pending = 1;
1501#endif 1900#endif
1502 1901
1503 ev_ref (EV_A); 1902 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 1903 ev_io_stop (EV_A_ &pipe_w);
1505 1904
1506#if EV_USE_EVENTFD 1905#if EV_USE_EVENTFD
1507 if (evfd >= 0) 1906 if (evfd >= 0)
1508 close (evfd); 1907 close (evfd);
1509#endif 1908#endif
1510 1909
1511 if (evpipe [0] >= 0) 1910 if (evpipe [0] >= 0)
1512 { 1911 {
1513 close (evpipe [0]); 1912 EV_WIN32_CLOSE_FD (evpipe [0]);
1514 close (evpipe [1]); 1913 EV_WIN32_CLOSE_FD (evpipe [1]);
1515 } 1914 }
1516 1915
1916#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1517 evpipe_init (EV_A); 1917 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 1918 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 1919 pipecb (EV_A_ &pipe_w, EV_READ);
1920#endif
1520 } 1921 }
1521 1922
1522 postfork = 0; 1923 postfork = 0;
1523} 1924}
1524 1925
1525#if EV_MULTIPLICITY 1926#if EV_MULTIPLICITY
1526 1927
1527struct ev_loop * 1928struct ev_loop *
1528ev_loop_new (unsigned int flags) 1929ev_loop_new (unsigned int flags)
1529{ 1930{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1931 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 1932
1532 memset (loop, 0, sizeof (struct ev_loop)); 1933 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 1934 loop_init (EV_A_ flags);
1535 1935
1536 if (ev_backend (EV_A)) 1936 if (ev_backend (EV_A))
1537 return loop; 1937 return EV_A;
1538 1938
1939 ev_free (EV_A);
1539 return 0; 1940 return 0;
1540} 1941}
1541 1942
1542void 1943#endif /* multiplicity */
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554 1944
1555#if EV_VERIFY 1945#if EV_VERIFY
1556static void noinline 1946static void noinline
1557verify_watcher (EV_P_ W w) 1947verify_watcher (EV_P_ W w)
1558{ 1948{
1586 verify_watcher (EV_A_ ws [cnt]); 1976 verify_watcher (EV_A_ ws [cnt]);
1587 } 1977 }
1588} 1978}
1589#endif 1979#endif
1590 1980
1981#if EV_FEATURE_API
1591void 1982void
1592ev_loop_verify (EV_P) 1983ev_verify (EV_P)
1593{ 1984{
1594#if EV_VERIFY 1985#if EV_VERIFY
1595 int i; 1986 int i;
1596 WL w; 1987 WL w;
1597 1988
1631#if EV_FORK_ENABLE 2022#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt); 2023 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt); 2024 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif 2025#endif
1635 2026
2027#if EV_CLEANUP_ENABLE
2028 assert (cleanupmax >= cleanupcnt);
2029 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2030#endif
2031
1636#if EV_ASYNC_ENABLE 2032#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 2033 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 2034 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 2035#endif
1640 2036
2037#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 2038 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 2039 array_verify (EV_A_ (W *)prepares, preparecnt);
2040#endif
1643 2041
2042#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 2043 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 2044 array_verify (EV_A_ (W *)checks, checkcnt);
2045#endif
1646 2046
1647# if 0 2047# if 0
2048#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2049 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 2050 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2051#endif
1650# endif 2052# endif
1651#endif 2053#endif
1652} 2054}
1653 2055#endif
1654#endif /* multiplicity */
1655 2056
1656#if EV_MULTIPLICITY 2057#if EV_MULTIPLICITY
1657struct ev_loop * 2058struct ev_loop *
1658ev_default_loop_init (unsigned int flags)
1659#else 2059#else
1660int 2060int
2061#endif
1661ev_default_loop (unsigned int flags) 2062ev_default_loop (unsigned int flags)
1662#endif
1663{ 2063{
1664 if (!ev_default_loop_ptr) 2064 if (!ev_default_loop_ptr)
1665 { 2065 {
1666#if EV_MULTIPLICITY 2066#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2067 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 2068#else
1669 ev_default_loop_ptr = 1; 2069 ev_default_loop_ptr = 1;
1670#endif 2070#endif
1671 2071
1672 loop_init (EV_A_ flags); 2072 loop_init (EV_A_ flags);
1673 2073
1674 if (ev_backend (EV_A)) 2074 if (ev_backend (EV_A))
1675 { 2075 {
1676#ifndef _WIN32 2076#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 2077 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 2078 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 2079 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2080 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 2081#endif
1686 2086
1687 return ev_default_loop_ptr; 2087 return ev_default_loop_ptr;
1688} 2088}
1689 2089
1690void 2090void
1691ev_default_destroy (void) 2091ev_loop_fork (EV_P)
1692{ 2092{
1693#if EV_MULTIPLICITY
1694 struct ev_loop *loop = ev_default_loop_ptr;
1695#endif
1696
1697 ev_default_loop_ptr = 0;
1698
1699#ifndef _WIN32
1700 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev);
1702#endif
1703
1704 loop_destroy (EV_A);
1705}
1706
1707void
1708ev_default_fork (void)
1709{
1710#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr;
1712#endif
1713
1714 postfork = 1; /* must be in line with ev_loop_fork */ 2093 postfork = 1; /* must be in line with ev_default_fork */
1715} 2094}
1716 2095
1717/*****************************************************************************/ 2096/*****************************************************************************/
1718 2097
1719void 2098void
1720ev_invoke (EV_P_ void *w, int revents) 2099ev_invoke (EV_P_ void *w, int revents)
1721{ 2100{
1722 EV_CB_INVOKE ((W)w, revents); 2101 EV_CB_INVOKE ((W)w, revents);
1723} 2102}
1724 2103
1725void inline_speed 2104unsigned int
1726call_pending (EV_P) 2105ev_pending_count (EV_P)
2106{
2107 int pri;
2108 unsigned int count = 0;
2109
2110 for (pri = NUMPRI; pri--; )
2111 count += pendingcnt [pri];
2112
2113 return count;
2114}
2115
2116void noinline
2117ev_invoke_pending (EV_P)
1727{ 2118{
1728 int pri; 2119 int pri;
1729 2120
1730 for (pri = NUMPRI; pri--; ) 2121 for (pri = NUMPRI; pri--; )
1731 while (pendingcnt [pri]) 2122 while (pendingcnt [pri])
1732 { 2123 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2124 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734 2125
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1738
1739 p->w->pending = 0; 2126 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 2127 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 2128 EV_FREQUENT_CHECK;
1742 }
1743 } 2129 }
1744} 2130}
1745 2131
1746#if EV_IDLE_ENABLE 2132#if EV_IDLE_ENABLE
1747void inline_size 2133/* make idle watchers pending. this handles the "call-idle */
2134/* only when higher priorities are idle" logic */
2135inline_size void
1748idle_reify (EV_P) 2136idle_reify (EV_P)
1749{ 2137{
1750 if (expect_false (idleall)) 2138 if (expect_false (idleall))
1751 { 2139 {
1752 int pri; 2140 int pri;
1764 } 2152 }
1765 } 2153 }
1766} 2154}
1767#endif 2155#endif
1768 2156
1769void inline_size 2157/* make timers pending */
2158inline_size void
1770timers_reify (EV_P) 2159timers_reify (EV_P)
1771{ 2160{
1772 EV_FREQUENT_CHECK; 2161 EV_FREQUENT_CHECK;
1773 2162
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2163 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 2164 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2165 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 2166 {
2167 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2168
2169 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2170
2171 /* first reschedule or stop timer */
2172 if (w->repeat)
2173 {
1783 ev_at (w) += w->repeat; 2174 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 2175 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 2176 ev_at (w) = mn_now;
1786 2177
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2178 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 2179
1789 ANHE_at_cache (timers [HEAP0]); 2180 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 2181 downheap (timers, timercnt, HEAP0);
2182 }
2183 else
2184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2185
2186 EV_FREQUENT_CHECK;
2187 feed_reverse (EV_A_ (W)w);
1791 } 2188 }
1792 else 2189 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 2190
1795 EV_FREQUENT_CHECK; 2191 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 2192 }
1798} 2193}
1799 2194
1800#if EV_PERIODIC_ENABLE 2195#if EV_PERIODIC_ENABLE
1801void inline_size 2196/* make periodics pending */
2197inline_size void
1802periodics_reify (EV_P) 2198periodics_reify (EV_P)
1803{ 2199{
1804 EV_FREQUENT_CHECK; 2200 EV_FREQUENT_CHECK;
1805 2201
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2202 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 2203 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2204 int feed_count = 0;
1809 2205
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2206 do
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 2207 {
2208 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2209
2210 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2211
2212 /* first reschedule or stop timer */
2213 if (w->reschedule_cb)
2214 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2215 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 2216
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2217 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 2218
1819 ANHE_at_cache (periodics [HEAP0]); 2219 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 2220 downheap (periodics, periodiccnt, HEAP0);
2221 }
2222 else if (w->interval)
2223 {
2224 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2225 /* if next trigger time is not sufficiently in the future, put it there */
2226 /* this might happen because of floating point inexactness */
2227 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2228 {
2229 ev_at (w) += w->interval;
2230
2231 /* if interval is unreasonably low we might still have a time in the past */
2232 /* so correct this. this will make the periodic very inexact, but the user */
2233 /* has effectively asked to get triggered more often than possible */
2234 if (ev_at (w) < ev_rt_now)
2235 ev_at (w) = ev_rt_now;
2236 }
2237
2238 ANHE_at_cache (periodics [HEAP0]);
2239 downheap (periodics, periodiccnt, HEAP0);
2240 }
2241 else
2242 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2243
2244 EV_FREQUENT_CHECK;
2245 feed_reverse (EV_A_ (W)w);
1821 } 2246 }
1822 else if (w->interval) 2247 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 2248
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2249 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 2250 }
1847} 2251}
1848 2252
2253/* simply recalculate all periodics */
2254/* TODO: maybe ensure that at least one event happens when jumping forward? */
1849static void noinline 2255static void noinline
1850periodics_reschedule (EV_P) 2256periodics_reschedule (EV_P)
1851{ 2257{
1852 int i; 2258 int i;
1853 2259
1866 2272
1867 reheap (periodics, periodiccnt); 2273 reheap (periodics, periodiccnt);
1868} 2274}
1869#endif 2275#endif
1870 2276
1871void inline_speed 2277/* adjust all timers by a given offset */
2278static void noinline
2279timers_reschedule (EV_P_ ev_tstamp adjust)
2280{
2281 int i;
2282
2283 for (i = 0; i < timercnt; ++i)
2284 {
2285 ANHE *he = timers + i + HEAP0;
2286 ANHE_w (*he)->at += adjust;
2287 ANHE_at_cache (*he);
2288 }
2289}
2290
2291/* fetch new monotonic and realtime times from the kernel */
2292/* also detect if there was a timejump, and act accordingly */
2293inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 2294time_update (EV_P_ ev_tstamp max_block)
1873{ 2295{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 2296#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 2297 if (expect_true (have_monotonic))
1878 { 2298 {
2299 int i;
1879 ev_tstamp odiff = rtmn_diff; 2300 ev_tstamp odiff = rtmn_diff;
1880 2301
1881 mn_now = get_clock (); 2302 mn_now = get_clock ();
1882 2303
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2304 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1909 ev_rt_now = ev_time (); 2330 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2331 mn_now = get_clock ();
1911 now_floor = mn_now; 2332 now_floor = mn_now;
1912 } 2333 }
1913 2334
2335 /* no timer adjustment, as the monotonic clock doesn't jump */
2336 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2337# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2338 periodics_reschedule (EV_A);
1916# endif 2339# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2340 }
1920 else 2341 else
1921#endif 2342#endif
1922 { 2343 {
1923 ev_rt_now = ev_time (); 2344 ev_rt_now = ev_time ();
1924 2345
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2346 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 2347 {
2348 /* adjust timers. this is easy, as the offset is the same for all of them */
2349 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 2350#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 2351 periodics_reschedule (EV_A);
1929#endif 2352#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 2353 }
1938 2354
1939 mn_now = ev_rt_now; 2355 mn_now = ev_rt_now;
1940 } 2356 }
1941} 2357}
1942 2358
1943void 2359void
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 2360ev_run (EV_P_ int flags)
1965{ 2361{
2362#if EV_FEATURE_API
2363 ++loop_depth;
2364#endif
2365
2366 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2367
1966 loop_done = EVUNLOOP_CANCEL; 2368 loop_done = EVBREAK_CANCEL;
1967 2369
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2370 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 2371
1970 do 2372 do
1971 { 2373 {
1972#if EV_VERIFY >= 2 2374#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 2375 ev_verify (EV_A);
1974#endif 2376#endif
1975 2377
1976#ifndef _WIN32 2378#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 2379 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 2380 if (expect_false (getpid () != curpid))
1986 /* we might have forked, so queue fork handlers */ 2388 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 2389 if (expect_false (postfork))
1988 if (forkcnt) 2390 if (forkcnt)
1989 { 2391 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2392 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 2393 EV_INVOKE_PENDING;
1992 } 2394 }
1993#endif 2395#endif
1994 2396
2397#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 2398 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 2399 if (expect_false (preparecnt))
1997 { 2400 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2401 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 2402 EV_INVOKE_PENDING;
2000 } 2403 }
2404#endif
2001 2405
2002 if (expect_false (!activecnt)) 2406 if (expect_false (loop_done))
2003 break; 2407 break;
2004 2408
2005 /* we might have forked, so reify kernel state if necessary */ 2409 /* we might have forked, so reify kernel state if necessary */
2006 if (expect_false (postfork)) 2410 if (expect_false (postfork))
2007 loop_fork (EV_A); 2411 loop_fork (EV_A);
2012 /* calculate blocking time */ 2416 /* calculate blocking time */
2013 { 2417 {
2014 ev_tstamp waittime = 0.; 2418 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.; 2419 ev_tstamp sleeptime = 0.;
2016 2420
2421 /* remember old timestamp for io_blocktime calculation */
2422 ev_tstamp prev_mn_now = mn_now;
2423
2424 /* update time to cancel out callback processing overhead */
2425 time_update (EV_A_ 1e100);
2426
2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2427 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
2018 { 2428 {
2019 /* update time to cancel out callback processing overhead */
2020 time_update (EV_A_ 1e100);
2021
2022 waittime = MAX_BLOCKTIME; 2429 waittime = MAX_BLOCKTIME;
2023 2430
2024 if (timercnt) 2431 if (timercnt)
2025 { 2432 {
2026 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2433 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2440 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2034 if (waittime > to) waittime = to; 2441 if (waittime > to) waittime = to;
2035 } 2442 }
2036#endif 2443#endif
2037 2444
2445 /* don't let timeouts decrease the waittime below timeout_blocktime */
2038 if (expect_false (waittime < timeout_blocktime)) 2446 if (expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime; 2447 waittime = timeout_blocktime;
2040 2448
2041 sleeptime = waittime - backend_fudge; 2449 /* extra check because io_blocktime is commonly 0 */
2042
2043 if (expect_true (sleeptime > io_blocktime)) 2450 if (expect_false (io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 { 2451 {
2452 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2453
2454 if (sleeptime > waittime - backend_fudge)
2455 sleeptime = waittime - backend_fudge;
2456
2457 if (expect_true (sleeptime > 0.))
2458 {
2048 ev_sleep (sleeptime); 2459 ev_sleep (sleeptime);
2049 waittime -= sleeptime; 2460 waittime -= sleeptime;
2461 }
2050 } 2462 }
2051 } 2463 }
2052 2464
2465#if EV_FEATURE_API
2053 ++loop_count; 2466 ++loop_count;
2467#endif
2468 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2054 backend_poll (EV_A_ waittime); 2469 backend_poll (EV_A_ waittime);
2470 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2055 2471
2056 /* update ev_rt_now, do magic */ 2472 /* update ev_rt_now, do magic */
2057 time_update (EV_A_ waittime + sleeptime); 2473 time_update (EV_A_ waittime + sleeptime);
2058 } 2474 }
2059 2475
2066#if EV_IDLE_ENABLE 2482#if EV_IDLE_ENABLE
2067 /* queue idle watchers unless other events are pending */ 2483 /* queue idle watchers unless other events are pending */
2068 idle_reify (EV_A); 2484 idle_reify (EV_A);
2069#endif 2485#endif
2070 2486
2487#if EV_CHECK_ENABLE
2071 /* queue check watchers, to be executed first */ 2488 /* queue check watchers, to be executed first */
2072 if (expect_false (checkcnt)) 2489 if (expect_false (checkcnt))
2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2490 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2491#endif
2074 2492
2075 call_pending (EV_A); 2493 EV_INVOKE_PENDING;
2076 } 2494 }
2077 while (expect_true ( 2495 while (expect_true (
2078 activecnt 2496 activecnt
2079 && !loop_done 2497 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2498 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2081 )); 2499 ));
2082 2500
2083 if (loop_done == EVUNLOOP_ONE) 2501 if (loop_done == EVBREAK_ONE)
2084 loop_done = EVUNLOOP_CANCEL; 2502 loop_done = EVBREAK_CANCEL;
2085}
2086 2503
2504#if EV_FEATURE_API
2505 --loop_depth;
2506#endif
2507}
2508
2087void 2509void
2088ev_unloop (EV_P_ int how) 2510ev_break (EV_P_ int how)
2089{ 2511{
2090 loop_done = how; 2512 loop_done = how;
2091} 2513}
2092 2514
2515void
2516ev_ref (EV_P)
2517{
2518 ++activecnt;
2519}
2520
2521void
2522ev_unref (EV_P)
2523{
2524 --activecnt;
2525}
2526
2527void
2528ev_now_update (EV_P)
2529{
2530 time_update (EV_A_ 1e100);
2531}
2532
2533void
2534ev_suspend (EV_P)
2535{
2536 ev_now_update (EV_A);
2537}
2538
2539void
2540ev_resume (EV_P)
2541{
2542 ev_tstamp mn_prev = mn_now;
2543
2544 ev_now_update (EV_A);
2545 timers_reschedule (EV_A_ mn_now - mn_prev);
2546#if EV_PERIODIC_ENABLE
2547 /* TODO: really do this? */
2548 periodics_reschedule (EV_A);
2549#endif
2550}
2551
2093/*****************************************************************************/ 2552/*****************************************************************************/
2553/* singly-linked list management, used when the expected list length is short */
2094 2554
2095void inline_size 2555inline_size void
2096wlist_add (WL *head, WL elem) 2556wlist_add (WL *head, WL elem)
2097{ 2557{
2098 elem->next = *head; 2558 elem->next = *head;
2099 *head = elem; 2559 *head = elem;
2100} 2560}
2101 2561
2102void inline_size 2562inline_size void
2103wlist_del (WL *head, WL elem) 2563wlist_del (WL *head, WL elem)
2104{ 2564{
2105 while (*head) 2565 while (*head)
2106 { 2566 {
2107 if (*head == elem) 2567 if (expect_true (*head == elem))
2108 { 2568 {
2109 *head = elem->next; 2569 *head = elem->next;
2110 return; 2570 break;
2111 } 2571 }
2112 2572
2113 head = &(*head)->next; 2573 head = &(*head)->next;
2114 } 2574 }
2115} 2575}
2116 2576
2117void inline_speed 2577/* internal, faster, version of ev_clear_pending */
2578inline_speed void
2118clear_pending (EV_P_ W w) 2579clear_pending (EV_P_ W w)
2119{ 2580{
2120 if (w->pending) 2581 if (w->pending)
2121 { 2582 {
2122 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2583 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2123 w->pending = 0; 2584 w->pending = 0;
2124 } 2585 }
2125} 2586}
2126 2587
2127int 2588int
2131 int pending = w_->pending; 2592 int pending = w_->pending;
2132 2593
2133 if (expect_true (pending)) 2594 if (expect_true (pending))
2134 { 2595 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2596 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2597 p->w = (W)&pending_w;
2136 w_->pending = 0; 2598 w_->pending = 0;
2137 p->w = 0;
2138 return p->events; 2599 return p->events;
2139 } 2600 }
2140 else 2601 else
2141 return 0; 2602 return 0;
2142} 2603}
2143 2604
2144void inline_size 2605inline_size void
2145pri_adjust (EV_P_ W w) 2606pri_adjust (EV_P_ W w)
2146{ 2607{
2147 int pri = w->priority; 2608 int pri = ev_priority (w);
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2609 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2610 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri; 2611 ev_set_priority (w, pri);
2151} 2612}
2152 2613
2153void inline_speed 2614inline_speed void
2154ev_start (EV_P_ W w, int active) 2615ev_start (EV_P_ W w, int active)
2155{ 2616{
2156 pri_adjust (EV_A_ w); 2617 pri_adjust (EV_A_ w);
2157 w->active = active; 2618 w->active = active;
2158 ev_ref (EV_A); 2619 ev_ref (EV_A);
2159} 2620}
2160 2621
2161void inline_size 2622inline_size void
2162ev_stop (EV_P_ W w) 2623ev_stop (EV_P_ W w)
2163{ 2624{
2164 ev_unref (EV_A); 2625 ev_unref (EV_A);
2165 w->active = 0; 2626 w->active = 0;
2166} 2627}
2174 2635
2175 if (expect_false (ev_is_active (w))) 2636 if (expect_false (ev_is_active (w)))
2176 return; 2637 return;
2177 2638
2178 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2639 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2640 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2180 2641
2181 EV_FREQUENT_CHECK; 2642 EV_FREQUENT_CHECK;
2182 2643
2183 ev_start (EV_A_ (W)w, 1); 2644 ev_start (EV_A_ (W)w, 1);
2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2645 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2185 wlist_add (&anfds[fd].head, (WL)w); 2646 wlist_add (&anfds[fd].head, (WL)w);
2186 2647
2187 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2648 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2188 w->events &= ~EV_IOFDSET; 2649 w->events &= ~EV__IOFDSET;
2189 2650
2190 EV_FREQUENT_CHECK; 2651 EV_FREQUENT_CHECK;
2191} 2652}
2192 2653
2193void noinline 2654void noinline
2202 EV_FREQUENT_CHECK; 2663 EV_FREQUENT_CHECK;
2203 2664
2204 wlist_del (&anfds[w->fd].head, (WL)w); 2665 wlist_del (&anfds[w->fd].head, (WL)w);
2205 ev_stop (EV_A_ (W)w); 2666 ev_stop (EV_A_ (W)w);
2206 2667
2207 fd_change (EV_A_ w->fd, 1); 2668 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2208 2669
2209 EV_FREQUENT_CHECK; 2670 EV_FREQUENT_CHECK;
2210} 2671}
2211 2672
2212void noinline 2673void noinline
2254 timers [active] = timers [timercnt + HEAP0]; 2715 timers [active] = timers [timercnt + HEAP0];
2255 adjustheap (timers, timercnt, active); 2716 adjustheap (timers, timercnt, active);
2256 } 2717 }
2257 } 2718 }
2258 2719
2259 EV_FREQUENT_CHECK;
2260
2261 ev_at (w) -= mn_now; 2720 ev_at (w) -= mn_now;
2262 2721
2263 ev_stop (EV_A_ (W)w); 2722 ev_stop (EV_A_ (W)w);
2723
2724 EV_FREQUENT_CHECK;
2264} 2725}
2265 2726
2266void noinline 2727void noinline
2267ev_timer_again (EV_P_ ev_timer *w) 2728ev_timer_again (EV_P_ ev_timer *w)
2268{ 2729{
2286 } 2747 }
2287 2748
2288 EV_FREQUENT_CHECK; 2749 EV_FREQUENT_CHECK;
2289} 2750}
2290 2751
2752ev_tstamp
2753ev_timer_remaining (EV_P_ ev_timer *w)
2754{
2755 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2756}
2757
2291#if EV_PERIODIC_ENABLE 2758#if EV_PERIODIC_ENABLE
2292void noinline 2759void noinline
2293ev_periodic_start (EV_P_ ev_periodic *w) 2760ev_periodic_start (EV_P_ ev_periodic *w)
2294{ 2761{
2295 if (expect_false (ev_is_active (w))) 2762 if (expect_false (ev_is_active (w)))
2341 periodics [active] = periodics [periodiccnt + HEAP0]; 2808 periodics [active] = periodics [periodiccnt + HEAP0];
2342 adjustheap (periodics, periodiccnt, active); 2809 adjustheap (periodics, periodiccnt, active);
2343 } 2810 }
2344 } 2811 }
2345 2812
2346 EV_FREQUENT_CHECK;
2347
2348 ev_stop (EV_A_ (W)w); 2813 ev_stop (EV_A_ (W)w);
2814
2815 EV_FREQUENT_CHECK;
2349} 2816}
2350 2817
2351void noinline 2818void noinline
2352ev_periodic_again (EV_P_ ev_periodic *w) 2819ev_periodic_again (EV_P_ ev_periodic *w)
2353{ 2820{
2359 2826
2360#ifndef SA_RESTART 2827#ifndef SA_RESTART
2361# define SA_RESTART 0 2828# define SA_RESTART 0
2362#endif 2829#endif
2363 2830
2831#if EV_SIGNAL_ENABLE
2832
2364void noinline 2833void noinline
2365ev_signal_start (EV_P_ ev_signal *w) 2834ev_signal_start (EV_P_ ev_signal *w)
2366{ 2835{
2367#if EV_MULTIPLICITY
2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2369#endif
2370 if (expect_false (ev_is_active (w))) 2836 if (expect_false (ev_is_active (w)))
2371 return; 2837 return;
2372 2838
2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 2839 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2374 2840
2375 evpipe_init (EV_A); 2841#if EV_MULTIPLICITY
2842 assert (("libev: a signal must not be attached to two different loops",
2843 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2376 2844
2377 EV_FREQUENT_CHECK; 2845 signals [w->signum - 1].loop = EV_A;
2846#endif
2378 2847
2848 EV_FREQUENT_CHECK;
2849
2850#if EV_USE_SIGNALFD
2851 if (sigfd == -2)
2379 { 2852 {
2380#ifndef _WIN32 2853 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2381 sigset_t full, prev; 2854 if (sigfd < 0 && errno == EINVAL)
2382 sigfillset (&full); 2855 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2383 sigprocmask (SIG_SETMASK, &full, &prev);
2384#endif
2385 2856
2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2857 if (sigfd >= 0)
2858 {
2859 fd_intern (sigfd); /* doing it twice will not hurt */
2387 2860
2388#ifndef _WIN32 2861 sigemptyset (&sigfd_set);
2389 sigprocmask (SIG_SETMASK, &prev, 0); 2862
2390#endif 2863 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2864 ev_set_priority (&sigfd_w, EV_MAXPRI);
2865 ev_io_start (EV_A_ &sigfd_w);
2866 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2867 }
2391 } 2868 }
2869
2870 if (sigfd >= 0)
2871 {
2872 /* TODO: check .head */
2873 sigaddset (&sigfd_set, w->signum);
2874 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2875
2876 signalfd (sigfd, &sigfd_set, 0);
2877 }
2878#endif
2392 2879
2393 ev_start (EV_A_ (W)w, 1); 2880 ev_start (EV_A_ (W)w, 1);
2394 wlist_add (&signals [w->signum - 1].head, (WL)w); 2881 wlist_add (&signals [w->signum - 1].head, (WL)w);
2395 2882
2396 if (!((WL)w)->next) 2883 if (!((WL)w)->next)
2884# if EV_USE_SIGNALFD
2885 if (sigfd < 0) /*TODO*/
2886# endif
2397 { 2887 {
2398#if _WIN32 2888# ifdef _WIN32
2889 evpipe_init (EV_A);
2890
2399 signal (w->signum, ev_sighandler); 2891 signal (w->signum, ev_sighandler);
2400#else 2892# else
2401 struct sigaction sa; 2893 struct sigaction sa;
2894
2895 evpipe_init (EV_A);
2896
2402 sa.sa_handler = ev_sighandler; 2897 sa.sa_handler = ev_sighandler;
2403 sigfillset (&sa.sa_mask); 2898 sigfillset (&sa.sa_mask);
2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2899 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2405 sigaction (w->signum, &sa, 0); 2900 sigaction (w->signum, &sa, 0);
2901
2902 if (origflags & EVFLAG_NOSIGMASK)
2903 {
2904 sigemptyset (&sa.sa_mask);
2905 sigaddset (&sa.sa_mask, w->signum);
2906 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2907 }
2406#endif 2908#endif
2407 } 2909 }
2408 2910
2409 EV_FREQUENT_CHECK; 2911 EV_FREQUENT_CHECK;
2410} 2912}
2411 2913
2412void noinline 2914void noinline
2420 2922
2421 wlist_del (&signals [w->signum - 1].head, (WL)w); 2923 wlist_del (&signals [w->signum - 1].head, (WL)w);
2422 ev_stop (EV_A_ (W)w); 2924 ev_stop (EV_A_ (W)w);
2423 2925
2424 if (!signals [w->signum - 1].head) 2926 if (!signals [w->signum - 1].head)
2927 {
2928#if EV_MULTIPLICITY
2929 signals [w->signum - 1].loop = 0; /* unattach from signal */
2930#endif
2931#if EV_USE_SIGNALFD
2932 if (sigfd >= 0)
2933 {
2934 sigset_t ss;
2935
2936 sigemptyset (&ss);
2937 sigaddset (&ss, w->signum);
2938 sigdelset (&sigfd_set, w->signum);
2939
2940 signalfd (sigfd, &sigfd_set, 0);
2941 sigprocmask (SIG_UNBLOCK, &ss, 0);
2942 }
2943 else
2944#endif
2425 signal (w->signum, SIG_DFL); 2945 signal (w->signum, SIG_DFL);
2946 }
2426 2947
2427 EV_FREQUENT_CHECK; 2948 EV_FREQUENT_CHECK;
2428} 2949}
2950
2951#endif
2952
2953#if EV_CHILD_ENABLE
2429 2954
2430void 2955void
2431ev_child_start (EV_P_ ev_child *w) 2956ev_child_start (EV_P_ ev_child *w)
2432{ 2957{
2433#if EV_MULTIPLICITY 2958#if EV_MULTIPLICITY
2437 return; 2962 return;
2438 2963
2439 EV_FREQUENT_CHECK; 2964 EV_FREQUENT_CHECK;
2440 2965
2441 ev_start (EV_A_ (W)w, 1); 2966 ev_start (EV_A_ (W)w, 1);
2442 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2967 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2443 2968
2444 EV_FREQUENT_CHECK; 2969 EV_FREQUENT_CHECK;
2445} 2970}
2446 2971
2447void 2972void
2451 if (expect_false (!ev_is_active (w))) 2976 if (expect_false (!ev_is_active (w)))
2452 return; 2977 return;
2453 2978
2454 EV_FREQUENT_CHECK; 2979 EV_FREQUENT_CHECK;
2455 2980
2456 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2981 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2457 ev_stop (EV_A_ (W)w); 2982 ev_stop (EV_A_ (W)w);
2458 2983
2459 EV_FREQUENT_CHECK; 2984 EV_FREQUENT_CHECK;
2460} 2985}
2986
2987#endif
2461 2988
2462#if EV_STAT_ENABLE 2989#if EV_STAT_ENABLE
2463 2990
2464# ifdef _WIN32 2991# ifdef _WIN32
2465# undef lstat 2992# undef lstat
2471#define MIN_STAT_INTERVAL 0.1074891 2998#define MIN_STAT_INTERVAL 0.1074891
2472 2999
2473static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3000static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2474 3001
2475#if EV_USE_INOTIFY 3002#if EV_USE_INOTIFY
2476# define EV_INOTIFY_BUFSIZE 8192 3003
3004/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3005# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2477 3006
2478static void noinline 3007static void noinline
2479infy_add (EV_P_ ev_stat *w) 3008infy_add (EV_P_ ev_stat *w)
2480{ 3009{
2481 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3010 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2482 3011
2483 if (w->wd < 0) 3012 if (w->wd >= 0)
3013 {
3014 struct statfs sfs;
3015
3016 /* now local changes will be tracked by inotify, but remote changes won't */
3017 /* unless the filesystem is known to be local, we therefore still poll */
3018 /* also do poll on <2.6.25, but with normal frequency */
3019
3020 if (!fs_2625)
3021 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3022 else if (!statfs (w->path, &sfs)
3023 && (sfs.f_type == 0x1373 /* devfs */
3024 || sfs.f_type == 0xEF53 /* ext2/3 */
3025 || sfs.f_type == 0x3153464a /* jfs */
3026 || sfs.f_type == 0x52654973 /* reiser3 */
3027 || sfs.f_type == 0x01021994 /* tempfs */
3028 || sfs.f_type == 0x58465342 /* xfs */))
3029 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3030 else
3031 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2484 { 3032 }
3033 else
3034 {
3035 /* can't use inotify, continue to stat */
2485 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 3036 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2486 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2487 3037
2488 /* monitor some parent directory for speedup hints */ 3038 /* if path is not there, monitor some parent directory for speedup hints */
2489 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 3039 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2490 /* but an efficiency issue only */ 3040 /* but an efficiency issue only */
2491 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3041 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2492 { 3042 {
2493 char path [4096]; 3043 char path [4096];
2509 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3059 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2510 } 3060 }
2511 } 3061 }
2512 3062
2513 if (w->wd >= 0) 3063 if (w->wd >= 0)
2514 {
2515 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3064 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2516 3065
2517 /* now local changes will be tracked by inotify, but remote changes won't */ 3066 /* now re-arm timer, if required */
2518 /* unless the filesystem it known to be local, we therefore still poll */ 3067 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2519 /* also do poll on <2.6.25, but with normal frequency */
2520 struct statfs sfs;
2521
2522 if (fs_2625 && !statfs (w->path, &sfs))
2523 if (sfs.f_type == 0x1373 /* devfs */
2524 || sfs.f_type == 0xEF53 /* ext2/3 */
2525 || sfs.f_type == 0x3153464a /* jfs */
2526 || sfs.f_type == 0x52654973 /* reiser3 */
2527 || sfs.f_type == 0x01021994 /* tempfs */
2528 || sfs.f_type == 0x58465342 /* xfs */)
2529 return;
2530
2531 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2532 ev_timer_again (EV_A_ &w->timer); 3068 ev_timer_again (EV_A_ &w->timer);
2533 } 3069 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2534} 3070}
2535 3071
2536static void noinline 3072static void noinline
2537infy_del (EV_P_ ev_stat *w) 3073infy_del (EV_P_ ev_stat *w)
2538{ 3074{
2541 3077
2542 if (wd < 0) 3078 if (wd < 0)
2543 return; 3079 return;
2544 3080
2545 w->wd = -2; 3081 w->wd = -2;
2546 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3082 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2547 wlist_del (&fs_hash [slot].head, (WL)w); 3083 wlist_del (&fs_hash [slot].head, (WL)w);
2548 3084
2549 /* remove this watcher, if others are watching it, they will rearm */ 3085 /* remove this watcher, if others are watching it, they will rearm */
2550 inotify_rm_watch (fs_fd, wd); 3086 inotify_rm_watch (fs_fd, wd);
2551} 3087}
2553static void noinline 3089static void noinline
2554infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3090infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2555{ 3091{
2556 if (slot < 0) 3092 if (slot < 0)
2557 /* overflow, need to check for all hash slots */ 3093 /* overflow, need to check for all hash slots */
2558 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3094 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2559 infy_wd (EV_A_ slot, wd, ev); 3095 infy_wd (EV_A_ slot, wd, ev);
2560 else 3096 else
2561 { 3097 {
2562 WL w_; 3098 WL w_;
2563 3099
2564 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3100 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2565 { 3101 {
2566 ev_stat *w = (ev_stat *)w_; 3102 ev_stat *w = (ev_stat *)w_;
2567 w_ = w_->next; /* lets us remove this watcher and all before it */ 3103 w_ = w_->next; /* lets us remove this watcher and all before it */
2568 3104
2569 if (w->wd == wd || wd == -1) 3105 if (w->wd == wd || wd == -1)
2570 { 3106 {
2571 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3107 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2572 { 3108 {
2573 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3109 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2574 w->wd = -1; 3110 w->wd = -1;
2575 infy_add (EV_A_ w); /* re-add, no matter what */ 3111 infy_add (EV_A_ w); /* re-add, no matter what */
2576 } 3112 }
2577 3113
2578 stat_timer_cb (EV_A_ &w->timer, 0); 3114 stat_timer_cb (EV_A_ &w->timer, 0);
2583 3119
2584static void 3120static void
2585infy_cb (EV_P_ ev_io *w, int revents) 3121infy_cb (EV_P_ ev_io *w, int revents)
2586{ 3122{
2587 char buf [EV_INOTIFY_BUFSIZE]; 3123 char buf [EV_INOTIFY_BUFSIZE];
2588 struct inotify_event *ev = (struct inotify_event *)buf;
2589 int ofs; 3124 int ofs;
2590 int len = read (fs_fd, buf, sizeof (buf)); 3125 int len = read (fs_fd, buf, sizeof (buf));
2591 3126
2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3127 for (ofs = 0; ofs < len; )
3128 {
3129 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2593 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3130 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3131 ofs += sizeof (struct inotify_event) + ev->len;
3132 }
2594} 3133}
2595 3134
2596void inline_size 3135inline_size void
2597check_2625 (EV_P) 3136ev_check_2625 (EV_P)
2598{ 3137{
2599 /* kernels < 2.6.25 are borked 3138 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 3139 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */ 3140 */
2602 struct utsname buf; 3141 if (ev_linux_version () < 0x020619)
2603 int major, minor, micro;
2604
2605 if (uname (&buf))
2606 return; 3142 return;
2607 3143
2608 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2609 return;
2610
2611 if (major < 2
2612 || (major == 2 && minor < 6)
2613 || (major == 2 && minor == 6 && micro < 25))
2614 return;
2615
2616 fs_2625 = 1; 3144 fs_2625 = 1;
2617} 3145}
2618 3146
2619void inline_size 3147inline_size int
3148infy_newfd (void)
3149{
3150#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3151 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3152 if (fd >= 0)
3153 return fd;
3154#endif
3155 return inotify_init ();
3156}
3157
3158inline_size void
2620infy_init (EV_P) 3159infy_init (EV_P)
2621{ 3160{
2622 if (fs_fd != -2) 3161 if (fs_fd != -2)
2623 return; 3162 return;
2624 3163
2625 fs_fd = -1; 3164 fs_fd = -1;
2626 3165
2627 check_2625 (EV_A); 3166 ev_check_2625 (EV_A);
2628 3167
2629 fs_fd = inotify_init (); 3168 fs_fd = infy_newfd ();
2630 3169
2631 if (fs_fd >= 0) 3170 if (fs_fd >= 0)
2632 { 3171 {
3172 fd_intern (fs_fd);
2633 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3173 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2634 ev_set_priority (&fs_w, EV_MAXPRI); 3174 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w); 3175 ev_io_start (EV_A_ &fs_w);
3176 ev_unref (EV_A);
2636 } 3177 }
2637} 3178}
2638 3179
2639void inline_size 3180inline_size void
2640infy_fork (EV_P) 3181infy_fork (EV_P)
2641{ 3182{
2642 int slot; 3183 int slot;
2643 3184
2644 if (fs_fd < 0) 3185 if (fs_fd < 0)
2645 return; 3186 return;
2646 3187
3188 ev_ref (EV_A);
3189 ev_io_stop (EV_A_ &fs_w);
2647 close (fs_fd); 3190 close (fs_fd);
2648 fs_fd = inotify_init (); 3191 fs_fd = infy_newfd ();
2649 3192
3193 if (fs_fd >= 0)
3194 {
3195 fd_intern (fs_fd);
3196 ev_io_set (&fs_w, fs_fd, EV_READ);
3197 ev_io_start (EV_A_ &fs_w);
3198 ev_unref (EV_A);
3199 }
3200
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3201 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2651 { 3202 {
2652 WL w_ = fs_hash [slot].head; 3203 WL w_ = fs_hash [slot].head;
2653 fs_hash [slot].head = 0; 3204 fs_hash [slot].head = 0;
2654 3205
2655 while (w_) 3206 while (w_)
2660 w->wd = -1; 3211 w->wd = -1;
2661 3212
2662 if (fs_fd >= 0) 3213 if (fs_fd >= 0)
2663 infy_add (EV_A_ w); /* re-add, no matter what */ 3214 infy_add (EV_A_ w); /* re-add, no matter what */
2664 else 3215 else
3216 {
3217 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3218 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2665 ev_timer_again (EV_A_ &w->timer); 3219 ev_timer_again (EV_A_ &w->timer);
3220 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3221 }
2666 } 3222 }
2667 } 3223 }
2668} 3224}
2669 3225
2670#endif 3226#endif
2687static void noinline 3243static void noinline
2688stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3244stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2689{ 3245{
2690 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3246 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2691 3247
2692 /* we copy this here each the time so that */ 3248 ev_statdata prev = w->attr;
2693 /* prev has the old value when the callback gets invoked */
2694 w->prev = w->attr;
2695 ev_stat_stat (EV_A_ w); 3249 ev_stat_stat (EV_A_ w);
2696 3250
2697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3251 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2698 if ( 3252 if (
2699 w->prev.st_dev != w->attr.st_dev 3253 prev.st_dev != w->attr.st_dev
2700 || w->prev.st_ino != w->attr.st_ino 3254 || prev.st_ino != w->attr.st_ino
2701 || w->prev.st_mode != w->attr.st_mode 3255 || prev.st_mode != w->attr.st_mode
2702 || w->prev.st_nlink != w->attr.st_nlink 3256 || prev.st_nlink != w->attr.st_nlink
2703 || w->prev.st_uid != w->attr.st_uid 3257 || prev.st_uid != w->attr.st_uid
2704 || w->prev.st_gid != w->attr.st_gid 3258 || prev.st_gid != w->attr.st_gid
2705 || w->prev.st_rdev != w->attr.st_rdev 3259 || prev.st_rdev != w->attr.st_rdev
2706 || w->prev.st_size != w->attr.st_size 3260 || prev.st_size != w->attr.st_size
2707 || w->prev.st_atime != w->attr.st_atime 3261 || prev.st_atime != w->attr.st_atime
2708 || w->prev.st_mtime != w->attr.st_mtime 3262 || prev.st_mtime != w->attr.st_mtime
2709 || w->prev.st_ctime != w->attr.st_ctime 3263 || prev.st_ctime != w->attr.st_ctime
2710 ) { 3264 ) {
3265 /* we only update w->prev on actual differences */
3266 /* in case we test more often than invoke the callback, */
3267 /* to ensure that prev is always different to attr */
3268 w->prev = prev;
3269
2711 #if EV_USE_INOTIFY 3270 #if EV_USE_INOTIFY
2712 if (fs_fd >= 0) 3271 if (fs_fd >= 0)
2713 { 3272 {
2714 infy_del (EV_A_ w); 3273 infy_del (EV_A_ w);
2715 infy_add (EV_A_ w); 3274 infy_add (EV_A_ w);
2740 3299
2741 if (fs_fd >= 0) 3300 if (fs_fd >= 0)
2742 infy_add (EV_A_ w); 3301 infy_add (EV_A_ w);
2743 else 3302 else
2744#endif 3303#endif
3304 {
2745 ev_timer_again (EV_A_ &w->timer); 3305 ev_timer_again (EV_A_ &w->timer);
3306 ev_unref (EV_A);
3307 }
2746 3308
2747 ev_start (EV_A_ (W)w, 1); 3309 ev_start (EV_A_ (W)w, 1);
2748 3310
2749 EV_FREQUENT_CHECK; 3311 EV_FREQUENT_CHECK;
2750} 3312}
2759 EV_FREQUENT_CHECK; 3321 EV_FREQUENT_CHECK;
2760 3322
2761#if EV_USE_INOTIFY 3323#if EV_USE_INOTIFY
2762 infy_del (EV_A_ w); 3324 infy_del (EV_A_ w);
2763#endif 3325#endif
3326
3327 if (ev_is_active (&w->timer))
3328 {
3329 ev_ref (EV_A);
2764 ev_timer_stop (EV_A_ &w->timer); 3330 ev_timer_stop (EV_A_ &w->timer);
3331 }
2765 3332
2766 ev_stop (EV_A_ (W)w); 3333 ev_stop (EV_A_ (W)w);
2767 3334
2768 EV_FREQUENT_CHECK; 3335 EV_FREQUENT_CHECK;
2769} 3336}
2814 3381
2815 EV_FREQUENT_CHECK; 3382 EV_FREQUENT_CHECK;
2816} 3383}
2817#endif 3384#endif
2818 3385
3386#if EV_PREPARE_ENABLE
2819void 3387void
2820ev_prepare_start (EV_P_ ev_prepare *w) 3388ev_prepare_start (EV_P_ ev_prepare *w)
2821{ 3389{
2822 if (expect_false (ev_is_active (w))) 3390 if (expect_false (ev_is_active (w)))
2823 return; 3391 return;
2849 3417
2850 ev_stop (EV_A_ (W)w); 3418 ev_stop (EV_A_ (W)w);
2851 3419
2852 EV_FREQUENT_CHECK; 3420 EV_FREQUENT_CHECK;
2853} 3421}
3422#endif
2854 3423
3424#if EV_CHECK_ENABLE
2855void 3425void
2856ev_check_start (EV_P_ ev_check *w) 3426ev_check_start (EV_P_ ev_check *w)
2857{ 3427{
2858 if (expect_false (ev_is_active (w))) 3428 if (expect_false (ev_is_active (w)))
2859 return; 3429 return;
2885 3455
2886 ev_stop (EV_A_ (W)w); 3456 ev_stop (EV_A_ (W)w);
2887 3457
2888 EV_FREQUENT_CHECK; 3458 EV_FREQUENT_CHECK;
2889} 3459}
3460#endif
2890 3461
2891#if EV_EMBED_ENABLE 3462#if EV_EMBED_ENABLE
2892void noinline 3463void noinline
2893ev_embed_sweep (EV_P_ ev_embed *w) 3464ev_embed_sweep (EV_P_ ev_embed *w)
2894{ 3465{
2895 ev_loop (w->other, EVLOOP_NONBLOCK); 3466 ev_run (w->other, EVRUN_NOWAIT);
2896} 3467}
2897 3468
2898static void 3469static void
2899embed_io_cb (EV_P_ ev_io *io, int revents) 3470embed_io_cb (EV_P_ ev_io *io, int revents)
2900{ 3471{
2901 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3472 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2902 3473
2903 if (ev_cb (w)) 3474 if (ev_cb (w))
2904 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3475 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2905 else 3476 else
2906 ev_loop (w->other, EVLOOP_NONBLOCK); 3477 ev_run (w->other, EVRUN_NOWAIT);
2907} 3478}
2908 3479
2909static void 3480static void
2910embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3481embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2911{ 3482{
2912 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3483 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2913 3484
2914 { 3485 {
2915 struct ev_loop *loop = w->other; 3486 EV_P = w->other;
2916 3487
2917 while (fdchangecnt) 3488 while (fdchangecnt)
2918 { 3489 {
2919 fd_reify (EV_A); 3490 fd_reify (EV_A);
2920 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3491 ev_run (EV_A_ EVRUN_NOWAIT);
2921 } 3492 }
2922 } 3493 }
2923} 3494}
2924 3495
2925static void 3496static void
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 3499 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929 3500
2930 ev_embed_stop (EV_A_ w); 3501 ev_embed_stop (EV_A_ w);
2931 3502
2932 { 3503 {
2933 struct ev_loop *loop = w->other; 3504 EV_P = w->other;
2934 3505
2935 ev_loop_fork (EV_A); 3506 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3507 ev_run (EV_A_ EVRUN_NOWAIT);
2937 } 3508 }
2938 3509
2939 ev_embed_start (EV_A_ w); 3510 ev_embed_start (EV_A_ w);
2940} 3511}
2941 3512
2952{ 3523{
2953 if (expect_false (ev_is_active (w))) 3524 if (expect_false (ev_is_active (w)))
2954 return; 3525 return;
2955 3526
2956 { 3527 {
2957 struct ev_loop *loop = w->other; 3528 EV_P = w->other;
2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3529 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3530 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2960 } 3531 }
2961 3532
2962 EV_FREQUENT_CHECK; 3533 EV_FREQUENT_CHECK;
2989 3560
2990 ev_io_stop (EV_A_ &w->io); 3561 ev_io_stop (EV_A_ &w->io);
2991 ev_prepare_stop (EV_A_ &w->prepare); 3562 ev_prepare_stop (EV_A_ &w->prepare);
2992 ev_fork_stop (EV_A_ &w->fork); 3563 ev_fork_stop (EV_A_ &w->fork);
2993 3564
3565 ev_stop (EV_A_ (W)w);
3566
2994 EV_FREQUENT_CHECK; 3567 EV_FREQUENT_CHECK;
2995} 3568}
2996#endif 3569#endif
2997 3570
2998#if EV_FORK_ENABLE 3571#if EV_FORK_ENABLE
3031 3604
3032 EV_FREQUENT_CHECK; 3605 EV_FREQUENT_CHECK;
3033} 3606}
3034#endif 3607#endif
3035 3608
3036#if EV_ASYNC_ENABLE 3609#if EV_CLEANUP_ENABLE
3037void 3610void
3038ev_async_start (EV_P_ ev_async *w) 3611ev_cleanup_start (EV_P_ ev_cleanup *w)
3039{ 3612{
3040 if (expect_false (ev_is_active (w))) 3613 if (expect_false (ev_is_active (w)))
3041 return; 3614 return;
3615
3616 EV_FREQUENT_CHECK;
3617
3618 ev_start (EV_A_ (W)w, ++cleanupcnt);
3619 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3620 cleanups [cleanupcnt - 1] = w;
3621
3622 /* cleanup watchers should never keep a refcount on the loop */
3623 ev_unref (EV_A);
3624 EV_FREQUENT_CHECK;
3625}
3626
3627void
3628ev_cleanup_stop (EV_P_ ev_cleanup *w)
3629{
3630 clear_pending (EV_A_ (W)w);
3631 if (expect_false (!ev_is_active (w)))
3632 return;
3633
3634 EV_FREQUENT_CHECK;
3635 ev_ref (EV_A);
3636
3637 {
3638 int active = ev_active (w);
3639
3640 cleanups [active - 1] = cleanups [--cleanupcnt];
3641 ev_active (cleanups [active - 1]) = active;
3642 }
3643
3644 ev_stop (EV_A_ (W)w);
3645
3646 EV_FREQUENT_CHECK;
3647}
3648#endif
3649
3650#if EV_ASYNC_ENABLE
3651void
3652ev_async_start (EV_P_ ev_async *w)
3653{
3654 if (expect_false (ev_is_active (w)))
3655 return;
3656
3657 w->sent = 0;
3042 3658
3043 evpipe_init (EV_A); 3659 evpipe_init (EV_A);
3044 3660
3045 EV_FREQUENT_CHECK; 3661 EV_FREQUENT_CHECK;
3046 3662
3074 3690
3075void 3691void
3076ev_async_send (EV_P_ ev_async *w) 3692ev_async_send (EV_P_ ev_async *w)
3077{ 3693{
3078 w->sent = 1; 3694 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync); 3695 evpipe_write (EV_A_ &async_pending);
3080} 3696}
3081#endif 3697#endif
3082 3698
3083/*****************************************************************************/ 3699/*****************************************************************************/
3084 3700
3124{ 3740{
3125 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3741 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3126 3742
3127 if (expect_false (!once)) 3743 if (expect_false (!once))
3128 { 3744 {
3129 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3745 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3130 return; 3746 return;
3131 } 3747 }
3132 3748
3133 once->cb = cb; 3749 once->cb = cb;
3134 once->arg = arg; 3750 once->arg = arg;
3146 ev_timer_set (&once->to, timeout, 0.); 3762 ev_timer_set (&once->to, timeout, 0.);
3147 ev_timer_start (EV_A_ &once->to); 3763 ev_timer_start (EV_A_ &once->to);
3148 } 3764 }
3149} 3765}
3150 3766
3767/*****************************************************************************/
3768
3769#if EV_WALK_ENABLE
3770void
3771ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3772{
3773 int i, j;
3774 ev_watcher_list *wl, *wn;
3775
3776 if (types & (EV_IO | EV_EMBED))
3777 for (i = 0; i < anfdmax; ++i)
3778 for (wl = anfds [i].head; wl; )
3779 {
3780 wn = wl->next;
3781
3782#if EV_EMBED_ENABLE
3783 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3784 {
3785 if (types & EV_EMBED)
3786 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3787 }
3788 else
3789#endif
3790#if EV_USE_INOTIFY
3791 if (ev_cb ((ev_io *)wl) == infy_cb)
3792 ;
3793 else
3794#endif
3795 if ((ev_io *)wl != &pipe_w)
3796 if (types & EV_IO)
3797 cb (EV_A_ EV_IO, wl);
3798
3799 wl = wn;
3800 }
3801
3802 if (types & (EV_TIMER | EV_STAT))
3803 for (i = timercnt + HEAP0; i-- > HEAP0; )
3804#if EV_STAT_ENABLE
3805 /*TODO: timer is not always active*/
3806 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3807 {
3808 if (types & EV_STAT)
3809 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3810 }
3811 else
3812#endif
3813 if (types & EV_TIMER)
3814 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3815
3816#if EV_PERIODIC_ENABLE
3817 if (types & EV_PERIODIC)
3818 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3819 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3820#endif
3821
3822#if EV_IDLE_ENABLE
3823 if (types & EV_IDLE)
3824 for (j = NUMPRI; i--; )
3825 for (i = idlecnt [j]; i--; )
3826 cb (EV_A_ EV_IDLE, idles [j][i]);
3827#endif
3828
3829#if EV_FORK_ENABLE
3830 if (types & EV_FORK)
3831 for (i = forkcnt; i--; )
3832 if (ev_cb (forks [i]) != embed_fork_cb)
3833 cb (EV_A_ EV_FORK, forks [i]);
3834#endif
3835
3836#if EV_ASYNC_ENABLE
3837 if (types & EV_ASYNC)
3838 for (i = asynccnt; i--; )
3839 cb (EV_A_ EV_ASYNC, asyncs [i]);
3840#endif
3841
3842#if EV_PREPARE_ENABLE
3843 if (types & EV_PREPARE)
3844 for (i = preparecnt; i--; )
3845# if EV_EMBED_ENABLE
3846 if (ev_cb (prepares [i]) != embed_prepare_cb)
3847# endif
3848 cb (EV_A_ EV_PREPARE, prepares [i]);
3849#endif
3850
3851#if EV_CHECK_ENABLE
3852 if (types & EV_CHECK)
3853 for (i = checkcnt; i--; )
3854 cb (EV_A_ EV_CHECK, checks [i]);
3855#endif
3856
3857#if EV_SIGNAL_ENABLE
3858 if (types & EV_SIGNAL)
3859 for (i = 0; i < EV_NSIG - 1; ++i)
3860 for (wl = signals [i].head; wl; )
3861 {
3862 wn = wl->next;
3863 cb (EV_A_ EV_SIGNAL, wl);
3864 wl = wn;
3865 }
3866#endif
3867
3868#if EV_CHILD_ENABLE
3869 if (types & EV_CHILD)
3870 for (i = (EV_PID_HASHSIZE); i--; )
3871 for (wl = childs [i]; wl; )
3872 {
3873 wn = wl->next;
3874 cb (EV_A_ EV_CHILD, wl);
3875 wl = wn;
3876 }
3877#endif
3878/* EV_STAT 0x00001000 /* stat data changed */
3879/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3880}
3881#endif
3882
3151#if EV_MULTIPLICITY 3883#if EV_MULTIPLICITY
3152 #include "ev_wrap.h" 3884 #include "ev_wrap.h"
3153#endif 3885#endif
3154 3886
3155#ifdef __cplusplus 3887EV_CPP(})
3156}
3157#endif
3158 3888

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines