ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.37 by root, Thu Nov 1 13:33:12 2007 UTC vs.
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
75/**/
76
51#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
53#endif 79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
54 110
55#ifndef CLOCK_MONOTONIC 111#ifndef CLOCK_MONOTONIC
56# undef EV_USE_MONOTONIC 112# undef EV_USE_MONOTONIC
57# define EV_USE_MONOTONIC 0 113# define EV_USE_MONOTONIC 0
58#endif 114#endif
59 115
60#ifndef EV_USE_SELECT
61# define EV_USE_SELECT 1
62#endif
63
64#ifndef EV_USE_EPOLL
65# define EV_USE_EPOLL 0
66#endif
67
68#ifndef CLOCK_REALTIME 116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
69# define EV_USE_REALTIME 0 118# define EV_USE_REALTIME 0
70#endif 119#endif
71#ifndef EV_USE_REALTIME 120
72# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 121/**/
73#endif
74 122
75#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
76#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
77#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
78#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
79 127
80#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
81 143
82typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
83typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
84typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
85 147
86static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
87ev_tstamp ev_now;
88int ev_method;
89 149
90static int have_monotonic; /* runtime */ 150#if WIN32
91 151/* note: the comment below could not be substantiated, but what would I care */
92static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
93static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
94static void (*method_poll)(ev_tstamp timeout); 154#endif
95 155
96/*****************************************************************************/ 156/*****************************************************************************/
97 157
98ev_tstamp 158static void (*syserr_cb)(void);
159
160void ev_set_syserr_cb (void (*cb)(void))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (void)
167{
168 if (syserr_cb)
169 syserr_cb ();
170 else
171 {
172 perror ("libev");
173 abort ();
174 }
175}
176
177static void *(*alloc)(void *ptr, long size);
178
179void ev_set_allocator (void *(*cb)(void *ptr, long size))
180{
181 alloc = cb;
182}
183
184static void *
185ev_realloc (void *ptr, long size)
186{
187 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
188
189 if (!ptr && size)
190 {
191 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
192 abort ();
193 }
194
195 return ptr;
196}
197
198#define ev_malloc(size) ev_realloc (0, (size))
199#define ev_free(ptr) ev_realloc ((ptr), 0)
200
201/*****************************************************************************/
202
203typedef struct
204{
205 WL head;
206 unsigned char events;
207 unsigned char reify;
208} ANFD;
209
210typedef struct
211{
212 W w;
213 int events;
214} ANPENDING;
215
216#if EV_MULTIPLICITY
217
218struct ev_loop
219{
220# define VAR(name,decl) decl;
221# include "ev_vars.h"
222};
223# undef VAR
224# include "ev_wrap.h"
225
226#else
227
228# define VAR(name,decl) static decl;
229# include "ev_vars.h"
230# undef VAR
231
232#endif
233
234/*****************************************************************************/
235
236inline ev_tstamp
99ev_time (void) 237ev_time (void)
100{ 238{
101#if EV_USE_REALTIME 239#if EV_USE_REALTIME
102 struct timespec ts; 240 struct timespec ts;
103 clock_gettime (CLOCK_REALTIME, &ts); 241 clock_gettime (CLOCK_REALTIME, &ts);
107 gettimeofday (&tv, 0); 245 gettimeofday (&tv, 0);
108 return tv.tv_sec + tv.tv_usec * 1e-6; 246 return tv.tv_sec + tv.tv_usec * 1e-6;
109#endif 247#endif
110} 248}
111 249
112static ev_tstamp 250inline ev_tstamp
113get_clock (void) 251get_clock (void)
114{ 252{
115#if EV_USE_MONOTONIC 253#if EV_USE_MONOTONIC
116 if (have_monotonic) 254 if (expect_true (have_monotonic))
117 { 255 {
118 struct timespec ts; 256 struct timespec ts;
119 clock_gettime (CLOCK_MONOTONIC, &ts); 257 clock_gettime (CLOCK_MONOTONIC, &ts);
120 return ts.tv_sec + ts.tv_nsec * 1e-9; 258 return ts.tv_sec + ts.tv_nsec * 1e-9;
121 } 259 }
122#endif 260#endif
123 261
124 return ev_time (); 262 return ev_time ();
125} 263}
126 264
265ev_tstamp
266ev_now (EV_P)
267{
268 return rt_now;
269}
270
127#define array_roundsize(base,n) ((n) | 4 & ~3) 271#define array_roundsize(base,n) ((n) | 4 & ~3)
128 272
129#define array_needsize(base,cur,cnt,init) \ 273#define array_needsize(base,cur,cnt,init) \
130 if ((cnt) > cur) \ 274 if (expect_false ((cnt) > cur)) \
131 { \ 275 { \
132 int newcnt = cur; \ 276 int newcnt = cur; \
133 do \ 277 do \
134 { \ 278 { \
135 newcnt = array_roundsize (base, newcnt << 1); \ 279 newcnt = array_roundsize (base, newcnt << 1); \
136 } \ 280 } \
137 while ((cnt) > newcnt); \ 281 while ((cnt) > newcnt); \
138 \ 282 \
139 base = realloc (base, sizeof (*base) * (newcnt)); \ 283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
140 init (base + cur, newcnt - cur); \ 284 init (base + cur, newcnt - cur); \
141 cur = newcnt; \ 285 cur = newcnt; \
142 } 286 }
287
288#define array_slim(stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 }
295
296#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
143 298
144/*****************************************************************************/ 299/*****************************************************************************/
145
146typedef struct
147{
148 struct ev_io *head;
149 unsigned char events;
150 unsigned char reify;
151} ANFD;
152
153static ANFD *anfds;
154static int anfdmax;
155 300
156static void 301static void
157anfds_init (ANFD *base, int count) 302anfds_init (ANFD *base, int count)
158{ 303{
159 while (count--) 304 while (count--)
164 309
165 ++base; 310 ++base;
166 } 311 }
167} 312}
168 313
169typedef struct
170{
171 W w;
172 int events;
173} ANPENDING;
174
175static ANPENDING *pendings;
176static int pendingmax, pendingcnt;
177
178static void 314static void
179event (W w, int events) 315event (EV_P_ W w, int events)
180{ 316{
181 if (w->pending) 317 if (w->pending)
182 { 318 {
183 pendings [w->pending - 1].events |= events; 319 pendings [ABSPRI (w)][w->pending - 1].events |= events;
184 return; 320 return;
185 } 321 }
186 322
187 w->pending = ++pendingcnt; 323 w->pending = ++pendingcnt [ABSPRI (w)];
188 array_needsize (pendings, pendingmax, pendingcnt, ); 324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
189 pendings [pendingcnt - 1].w = w; 325 pendings [ABSPRI (w)][w->pending - 1].w = w;
190 pendings [pendingcnt - 1].events = events; 326 pendings [ABSPRI (w)][w->pending - 1].events = events;
191} 327}
192 328
193static void 329static void
194queue_events (W *events, int eventcnt, int type) 330queue_events (EV_P_ W *events, int eventcnt, int type)
195{ 331{
196 int i; 332 int i;
197 333
198 for (i = 0; i < eventcnt; ++i) 334 for (i = 0; i < eventcnt; ++i)
199 event (events [i], type); 335 event (EV_A_ events [i], type);
200} 336}
201 337
202static void 338static void
203fd_event (int fd, int events) 339fd_event (EV_P_ int fd, int events)
204{ 340{
205 ANFD *anfd = anfds + fd; 341 ANFD *anfd = anfds + fd;
206 struct ev_io *w; 342 struct ev_io *w;
207 343
208 for (w = anfd->head; w; w = w->next) 344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
209 { 345 {
210 int ev = w->events & events; 346 int ev = w->events & events;
211 347
212 if (ev) 348 if (ev)
213 event ((W)w, ev); 349 event (EV_A_ (W)w, ev);
214 } 350 }
215} 351}
216 352
217/*****************************************************************************/ 353/*****************************************************************************/
218 354
219static int *fdchanges;
220static int fdchangemax, fdchangecnt;
221
222static void 355static void
223fd_reify (void) 356fd_reify (EV_P)
224{ 357{
225 int i; 358 int i;
226 359
227 for (i = 0; i < fdchangecnt; ++i) 360 for (i = 0; i < fdchangecnt; ++i)
228 { 361 {
230 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
231 struct ev_io *w; 364 struct ev_io *w;
232 365
233 int events = 0; 366 int events = 0;
234 367
235 for (w = anfd->head; w; w = w->next) 368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
236 events |= w->events; 369 events |= w->events;
237 370
238 anfd->reify = 0; 371 anfd->reify = 0;
239 372
240 if (anfd->events != events)
241 {
242 method_modify (fd, anfd->events, events); 373 method_modify (EV_A_ fd, anfd->events, events);
243 anfd->events = events; 374 anfd->events = events;
244 }
245 } 375 }
246 376
247 fdchangecnt = 0; 377 fdchangecnt = 0;
248} 378}
249 379
250static void 380static void
251fd_change (int fd) 381fd_change (EV_P_ int fd)
252{ 382{
253 if (anfds [fd].reify || fdchangecnt < 0) 383 if (anfds [fd].reify || fdchangecnt < 0)
254 return; 384 return;
255 385
256 anfds [fd].reify = 1; 386 anfds [fd].reify = 1;
258 ++fdchangecnt; 388 ++fdchangecnt;
259 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 389 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
260 fdchanges [fdchangecnt - 1] = fd; 390 fdchanges [fdchangecnt - 1] = fd;
261} 391}
262 392
393static void
394fd_kill (EV_P_ int fd)
395{
396 struct ev_io *w;
397
398 while ((w = (struct ev_io *)anfds [fd].head))
399 {
400 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 }
403}
404
263/* called on EBADF to verify fds */ 405/* called on EBADF to verify fds */
264static void 406static void
265fd_recheck (void) 407fd_ebadf (EV_P)
266{ 408{
267 int fd; 409 int fd;
268 410
269 for (fd = 0; fd < anfdmax; ++fd) 411 for (fd = 0; fd < anfdmax; ++fd)
270 if (anfds [fd].events) 412 if (anfds [fd].events)
271 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
272 while (anfds [fd].head) 414 fd_kill (EV_A_ fd);
415}
416
417/* called on ENOMEM in select/poll to kill some fds and retry */
418static void
419fd_enomem (EV_P)
420{
421 int fd;
422
423 for (fd = anfdmax; fd--; )
424 if (anfds [fd].events)
273 { 425 {
274 ev_io_stop (anfds [fd].head); 426 fd_kill (EV_A_ fd);
275 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 427 return;
276 } 428 }
429}
430
431/* susually called after fork if method needs to re-arm all fds from scratch */
432static void
433fd_rearm_all (EV_P)
434{
435 int fd;
436
437 /* this should be highly optimised to not do anything but set a flag */
438 for (fd = 0; fd < anfdmax; ++fd)
439 if (anfds [fd].events)
440 {
441 anfds [fd].events = 0;
442 fd_change (EV_A_ fd);
443 }
277} 444}
278 445
279/*****************************************************************************/ 446/*****************************************************************************/
280 447
281static struct ev_timer **timers;
282static int timermax, timercnt;
283
284static struct ev_periodic **periodics;
285static int periodicmax, periodiccnt;
286
287static void 448static void
288upheap (WT *timers, int k) 449upheap (WT *heap, int k)
289{ 450{
290 WT w = timers [k]; 451 WT w = heap [k];
291 452
292 while (k && timers [k >> 1]->at > w->at) 453 while (k && heap [k >> 1]->at > w->at)
293 { 454 {
294 timers [k] = timers [k >> 1]; 455 heap [k] = heap [k >> 1];
295 timers [k]->active = k + 1; 456 ((W)heap [k])->active = k + 1;
296 k >>= 1; 457 k >>= 1;
297 } 458 }
298 459
299 timers [k] = w; 460 heap [k] = w;
300 timers [k]->active = k + 1; 461 ((W)heap [k])->active = k + 1;
301 462
302} 463}
303 464
304static void 465static void
305downheap (WT *timers, int N, int k) 466downheap (WT *heap, int N, int k)
306{ 467{
307 WT w = timers [k]; 468 WT w = heap [k];
308 469
309 while (k < (N >> 1)) 470 while (k < (N >> 1))
310 { 471 {
311 int j = k << 1; 472 int j = k << 1;
312 473
313 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 474 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
314 ++j; 475 ++j;
315 476
316 if (w->at <= timers [j]->at) 477 if (w->at <= heap [j]->at)
317 break; 478 break;
318 479
319 timers [k] = timers [j]; 480 heap [k] = heap [j];
320 timers [k]->active = k + 1; 481 ((W)heap [k])->active = k + 1;
321 k = j; 482 k = j;
322 } 483 }
323 484
324 timers [k] = w; 485 heap [k] = w;
325 timers [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
326} 487}
327 488
328/*****************************************************************************/ 489/*****************************************************************************/
329 490
330typedef struct 491typedef struct
331{ 492{
332 struct ev_signal *head; 493 WL head;
333 sig_atomic_t volatile gotsig; 494 sig_atomic_t volatile gotsig;
334} ANSIG; 495} ANSIG;
335 496
336static ANSIG *signals; 497static ANSIG *signals;
337static int signalmax; 498static int signalmax;
353} 514}
354 515
355static void 516static void
356sighandler (int signum) 517sighandler (int signum)
357{ 518{
519#if WIN32
520 signal (signum, sighandler);
521#endif
522
358 signals [signum - 1].gotsig = 1; 523 signals [signum - 1].gotsig = 1;
359 524
360 if (!gotsig) 525 if (!gotsig)
361 { 526 {
527 int old_errno = errno;
362 gotsig = 1; 528 gotsig = 1;
363 write (sigpipe [1], &signum, 1); 529 write (sigpipe [1], &signum, 1);
530 errno = old_errno;
364 } 531 }
365} 532}
366 533
367static void 534static void
368sigcb (struct ev_io *iow, int revents) 535sigcb (EV_P_ struct ev_io *iow, int revents)
369{ 536{
370 struct ev_signal *w; 537 WL w;
371 int sig; 538 int signum;
372 539
373 read (sigpipe [0], &revents, 1); 540 read (sigpipe [0], &revents, 1);
374 gotsig = 0; 541 gotsig = 0;
375 542
376 for (sig = signalmax; sig--; ) 543 for (signum = signalmax; signum--; )
377 if (signals [sig].gotsig) 544 if (signals [signum].gotsig)
378 { 545 {
379 signals [sig].gotsig = 0; 546 signals [signum].gotsig = 0;
380 547
381 for (w = signals [sig].head; w; w = w->next) 548 for (w = signals [signum].head; w; w = w->next)
382 event ((W)w, EV_SIGNAL); 549 event (EV_A_ (W)w, EV_SIGNAL);
383 } 550 }
384} 551}
385 552
386static void 553static void
387siginit (void) 554siginit (EV_P)
388{ 555{
556#ifndef WIN32
389 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 557 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
390 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 558 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
391 559
392 /* rather than sort out wether we really need nb, set it */ 560 /* rather than sort out wether we really need nb, set it */
393 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
394 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
563#endif
395 564
396 ev_io_set (&sigev, sigpipe [0], EV_READ); 565 ev_io_set (&sigev, sigpipe [0], EV_READ);
397 ev_io_start (&sigev); 566 ev_io_start (EV_A_ &sigev);
567 ev_unref (EV_A); /* child watcher should not keep loop alive */
398} 568}
399 569
400/*****************************************************************************/ 570/*****************************************************************************/
401 571
402static struct ev_idle **idles; 572#ifndef WIN32
403static int idlemax, idlecnt;
404
405static struct ev_prepare **prepares;
406static int preparemax, preparecnt;
407
408static struct ev_check **checks;
409static int checkmax, checkcnt;
410
411/*****************************************************************************/
412 573
413static struct ev_child *childs [PID_HASHSIZE]; 574static struct ev_child *childs [PID_HASHSIZE];
414static struct ev_signal childev; 575static struct ev_signal childev;
415 576
416#ifndef WCONTINUED 577#ifndef WCONTINUED
417# define WCONTINUED 0 578# define WCONTINUED 0
418#endif 579#endif
419 580
420static void 581static void
421childcb (struct ev_signal *sw, int revents) 582child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
422{ 583{
423 struct ev_child *w; 584 struct ev_child *w;
585
586 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
587 if (w->pid == pid || !w->pid)
588 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid;
591 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD);
593 }
594}
595
596static void
597childcb (EV_P_ struct ev_signal *sw, int revents)
598{
424 int pid, status; 599 int pid, status;
425 600
426 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
427 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 602 {
428 if (w->pid == pid || w->pid == -1) 603 /* make sure we are called again until all childs have been reaped */
429 { 604 event (EV_A_ (W)sw, EV_SIGNAL);
430 w->status = status; 605
431 event ((W)w, EV_CHILD); 606 child_reap (EV_A_ sw, pid, pid, status);
432 } 607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 }
433} 609}
610
611#endif
434 612
435/*****************************************************************************/ 613/*****************************************************************************/
436 614
615#if EV_USE_KQUEUE
616# include "ev_kqueue.c"
617#endif
437#if EV_USE_EPOLL 618#if EV_USE_EPOLL
438# include "ev_epoll.c" 619# include "ev_epoll.c"
439#endif 620#endif
621#if EV_USE_POLL
622# include "ev_poll.c"
623#endif
440#if EV_USE_SELECT 624#if EV_USE_SELECT
441# include "ev_select.c" 625# include "ev_select.c"
442#endif 626#endif
443 627
444int 628int
451ev_version_minor (void) 635ev_version_minor (void)
452{ 636{
453 return EV_VERSION_MINOR; 637 return EV_VERSION_MINOR;
454} 638}
455 639
456int ev_init (int flags) 640/* return true if we are running with elevated privileges and should ignore env variables */
641static int
642enable_secure (void)
457{ 643{
644#ifdef WIN32
645 return 0;
646#else
647 return getuid () != geteuid ()
648 || getgid () != getegid ();
649#endif
650}
651
652int
653ev_method (EV_P)
654{
655 return method;
656}
657
658static void
659loop_init (EV_P_ int methods)
660{
458 if (!ev_method) 661 if (!method)
459 { 662 {
460#if EV_USE_MONOTONIC 663#if EV_USE_MONOTONIC
461 { 664 {
462 struct timespec ts; 665 struct timespec ts;
463 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 666 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
464 have_monotonic = 1; 667 have_monotonic = 1;
465 } 668 }
466#endif 669#endif
467 670
468 ev_now = ev_time (); 671 rt_now = ev_time ();
469 now = get_clock (); 672 mn_now = get_clock ();
673 now_floor = mn_now;
470 diff = ev_now - now; 674 rtmn_diff = rt_now - mn_now;
471 675
472 if (pipe (sigpipe)) 676 if (methods == EVMETHOD_AUTO)
473 return 0; 677 if (!enable_secure () && getenv ("LIBEV_METHODS"))
474 678 methods = atoi (getenv ("LIBEV_METHODS"));
679 else
475 ev_method = EVMETHOD_NONE; 680 methods = EVMETHOD_ANY;
681
682 method = 0;
683#if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685#endif
686#if EV_USE_KQUEUE
687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
688#endif
476#if EV_USE_EPOLL 689#if EV_USE_EPOLL
477 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
691#endif
692#if EV_USE_POLL
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
478#endif 694#endif
479#if EV_USE_SELECT 695#if EV_USE_SELECT
480 if (ev_method == EVMETHOD_NONE) select_init (flags); 696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
481#endif 697#endif
698 }
699}
482 700
701void
702loop_destroy (EV_P)
703{
704 int i;
705
706#if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708#endif
709#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711#endif
712#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
714#endif
715#if EV_USE_POLL
716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
717#endif
718#if EV_USE_SELECT
719 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
720#endif
721
722 for (i = NUMPRI; i--; )
723 array_free (pending, [i]);
724
725 array_free (fdchange, );
726 array_free (timer, );
727 array_free (periodic, );
728 array_free (idle, );
729 array_free (prepare, );
730 array_free (check, );
731
732 method = 0;
733 /*TODO*/
734}
735
736void
737loop_fork (EV_P)
738{
739 /*TODO*/
740#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif
743#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif
746}
747
748#if EV_MULTIPLICITY
749struct ev_loop *
750ev_loop_new (int methods)
751{
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753
754 memset (loop, 0, sizeof (struct ev_loop));
755
756 loop_init (EV_A_ methods);
757
758 if (ev_method (EV_A))
759 return loop;
760
761 return 0;
762}
763
764void
765ev_loop_destroy (EV_P)
766{
767 loop_destroy (EV_A);
768 ev_free (loop);
769}
770
771void
772ev_loop_fork (EV_P)
773{
774 loop_fork (EV_A);
775}
776
777#endif
778
779#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop *
784#else
785static int default_loop;
786
787int
788#endif
789ev_default_loop (int methods)
790{
791 if (sigpipe [0] == sigpipe [1])
792 if (pipe (sigpipe))
793 return 0;
794
795 if (!default_loop)
796 {
797#if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct;
799#else
800 default_loop = 1;
801#endif
802
803 loop_init (EV_A_ methods);
804
483 if (ev_method) 805 if (ev_method (EV_A))
484 { 806 {
485 ev_watcher_init (&sigev, sigcb); 807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
486 siginit (); 809 siginit (EV_A);
487 810
811#ifndef WIN32
488 ev_signal_init (&childev, childcb, SIGCHLD); 812 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI);
489 ev_signal_start (&childev); 814 ev_signal_start (EV_A_ &childev);
815 ev_unref (EV_A); /* child watcher should not keep loop alive */
816#endif
490 } 817 }
818 else
819 default_loop = 0;
491 } 820 }
492 821
493 return ev_method; 822 return default_loop;
494} 823}
495 824
496/*****************************************************************************/
497
498void 825void
499ev_fork_prepare (void) 826ev_default_destroy (void)
500{ 827{
501 /* nop */ 828#if EV_MULTIPLICITY
502} 829 struct ev_loop *loop = default_loop;
503
504void
505ev_fork_parent (void)
506{
507 /* nop */
508}
509
510void
511ev_fork_child (void)
512{
513#if EV_USE_EPOLL
514 if (ev_method == EVMETHOD_EPOLL)
515 epoll_postfork_child ();
516#endif 830#endif
517 831
832 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev);
834
835 ev_ref (EV_A); /* signal watcher */
518 ev_io_stop (&sigev); 836 ev_io_stop (EV_A_ &sigev);
837
838 close (sigpipe [0]); sigpipe [0] = 0;
839 close (sigpipe [1]); sigpipe [1] = 0;
840
841 loop_destroy (EV_A);
842}
843
844void
845ev_default_fork (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 loop_fork (EV_A);
852
853 ev_io_stop (EV_A_ &sigev);
519 close (sigpipe [0]); 854 close (sigpipe [0]);
520 close (sigpipe [1]); 855 close (sigpipe [1]);
521 pipe (sigpipe); 856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
522 siginit (); 859 siginit (EV_A);
523} 860}
524 861
525/*****************************************************************************/ 862/*****************************************************************************/
526 863
527static void 864static void
528call_pending (void) 865call_pending (EV_P)
529{ 866{
867 int pri;
868
869 for (pri = NUMPRI; pri--; )
530 while (pendingcnt) 870 while (pendingcnt [pri])
531 { 871 {
532 ANPENDING *p = pendings + --pendingcnt; 872 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
533 873
534 if (p->w) 874 if (p->w)
535 { 875 {
536 p->w->pending = 0; 876 p->w->pending = 0;
537 p->w->cb (p->w, p->events); 877 p->w->cb (EV_A_ p->w, p->events);
538 } 878 }
539 } 879 }
540} 880}
541 881
542static void 882static void
543timers_reify (void) 883timers_reify (EV_P)
544{ 884{
545 while (timercnt && timers [0]->at <= now) 885 while (timercnt && ((WT)timers [0])->at <= mn_now)
546 { 886 {
547 struct ev_timer *w = timers [0]; 887 struct ev_timer *w = timers [0];
888
889 assert (("inactive timer on timer heap detected", ev_is_active (w)));
548 890
549 /* first reschedule or stop timer */ 891 /* first reschedule or stop timer */
550 if (w->repeat) 892 if (w->repeat)
551 { 893 {
552 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
553 w->at = now + w->repeat; 895 ((WT)w)->at = mn_now + w->repeat;
554 downheap ((WT *)timers, timercnt, 0); 896 downheap ((WT *)timers, timercnt, 0);
555 } 897 }
556 else 898 else
557 ev_timer_stop (w); /* nonrepeating: stop timer */ 899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
558 900
559 event ((W)w, EV_TIMEOUT); 901 event (EV_A_ (W)w, EV_TIMEOUT);
560 } 902 }
561} 903}
562 904
563static void 905static void
564periodics_reify (void) 906periodics_reify (EV_P)
565{ 907{
566 while (periodiccnt && periodics [0]->at <= ev_now) 908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
567 { 909 {
568 struct ev_periodic *w = periodics [0]; 910 struct ev_periodic *w = periodics [0];
911
912 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
569 913
570 /* first reschedule or stop timer */ 914 /* first reschedule or stop timer */
571 if (w->interval) 915 if (w->interval)
572 { 916 {
573 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
574 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
575 downheap ((WT *)periodics, periodiccnt, 0); 919 downheap ((WT *)periodics, periodiccnt, 0);
576 } 920 }
577 else 921 else
578 ev_periodic_stop (w); /* nonrepeating: stop timer */ 922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
579 923
580 event ((W)w, EV_PERIODIC); 924 event (EV_A_ (W)w, EV_PERIODIC);
581 } 925 }
582} 926}
583 927
584static void 928static void
585periodics_reschedule (ev_tstamp diff) 929periodics_reschedule (EV_P)
586{ 930{
587 int i; 931 int i;
588 932
589 /* adjust periodics after time jump */ 933 /* adjust periodics after time jump */
590 for (i = 0; i < periodiccnt; ++i) 934 for (i = 0; i < periodiccnt; ++i)
591 { 935 {
592 struct ev_periodic *w = periodics [i]; 936 struct ev_periodic *w = periodics [i];
593 937
594 if (w->interval) 938 if (w->interval)
595 { 939 {
596 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
597 941
598 if (fabs (diff) >= 1e-4) 942 if (fabs (diff) >= 1e-4)
599 { 943 {
600 ev_periodic_stop (w); 944 ev_periodic_stop (EV_A_ w);
601 ev_periodic_start (w); 945 ev_periodic_start (EV_A_ w);
602 946
603 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
604 } 948 }
605 } 949 }
606 } 950 }
607} 951}
608 952
953inline int
954time_update_monotonic (EV_P)
955{
956 mn_now = get_clock ();
957
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 {
960 rt_now = rtmn_diff + mn_now;
961 return 0;
962 }
963 else
964 {
965 now_floor = mn_now;
966 rt_now = ev_time ();
967 return 1;
968 }
969}
970
609static void 971static void
610time_update (void) 972time_update (EV_P)
611{ 973{
612 int i; 974 int i;
613 975
614 ev_now = ev_time (); 976#if EV_USE_MONOTONIC
615
616 if (have_monotonic) 977 if (expect_true (have_monotonic))
617 { 978 {
618 ev_tstamp odiff = diff; 979 if (time_update_monotonic (EV_A))
619
620 for (i = 4; --i; ) /* loop a few times, before making important decisions */
621 { 980 {
622 now = get_clock (); 981 ev_tstamp odiff = rtmn_diff;
982
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 {
623 diff = ev_now - now; 985 rtmn_diff = rt_now - mn_now;
624 986
625 if (fabs (odiff - diff) < MIN_TIMEJUMP) 987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
626 return; /* all is well */ 988 return; /* all is well */
627 989
628 ev_now = ev_time (); 990 rt_now = ev_time ();
991 mn_now = get_clock ();
992 now_floor = mn_now;
993 }
994
995 periodics_reschedule (EV_A);
996 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
629 } 998 }
630
631 periodics_reschedule (diff - odiff);
632 /* no timer adjustment, as the monotonic clock doesn't jump */
633 } 999 }
634 else 1000 else
1001#endif
635 { 1002 {
636 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1003 rt_now = ev_time ();
1004
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
637 { 1006 {
638 periodics_reschedule (ev_now - now); 1007 periodics_reschedule (EV_A);
639 1008
640 /* adjust timers. this is easy, as the offset is the same for all */ 1009 /* adjust timers. this is easy, as the offset is the same for all */
641 for (i = 0; i < timercnt; ++i) 1010 for (i = 0; i < timercnt; ++i)
642 timers [i]->at += diff; 1011 ((WT)timers [i])->at += rt_now - mn_now;
643 } 1012 }
644 1013
645 now = ev_now; 1014 mn_now = rt_now;
646 } 1015 }
647} 1016}
648 1017
649int ev_loop_done; 1018void
1019ev_ref (EV_P)
1020{
1021 ++activecnt;
1022}
650 1023
1024void
1025ev_unref (EV_P)
1026{
1027 --activecnt;
1028}
1029
1030static int loop_done;
1031
1032void
651void ev_loop (int flags) 1033ev_loop (EV_P_ int flags)
652{ 1034{
653 double block; 1035 double block;
654 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1036 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
655 1037
656 do 1038 do
657 { 1039 {
658 /* queue check watchers (and execute them) */ 1040 /* queue check watchers (and execute them) */
659 if (preparecnt) 1041 if (expect_false (preparecnt))
660 { 1042 {
661 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
662 call_pending (); 1044 call_pending (EV_A);
663 } 1045 }
664 1046
665 /* update fd-related kernel structures */ 1047 /* update fd-related kernel structures */
666 fd_reify (); 1048 fd_reify (EV_A);
667 1049
668 /* calculate blocking time */ 1050 /* calculate blocking time */
669 1051
670 /* we only need this for !monotonic clockor timers, but as we basically 1052 /* we only need this for !monotonic clockor timers, but as we basically
671 always have timers, we just calculate it always */ 1053 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A);
1057 else
1058#endif
1059 {
672 ev_now = ev_time (); 1060 rt_now = ev_time ();
1061 mn_now = rt_now;
1062 }
673 1063
674 if (flags & EVLOOP_NONBLOCK || idlecnt) 1064 if (flags & EVLOOP_NONBLOCK || idlecnt)
675 block = 0.; 1065 block = 0.;
676 else 1066 else
677 { 1067 {
678 block = MAX_BLOCKTIME; 1068 block = MAX_BLOCKTIME;
679 1069
680 if (timercnt) 1070 if (timercnt)
681 { 1071 {
682 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
683 if (block > to) block = to; 1073 if (block > to) block = to;
684 } 1074 }
685 1075
686 if (periodiccnt) 1076 if (periodiccnt)
687 { 1077 {
688 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
689 if (block > to) block = to; 1079 if (block > to) block = to;
690 } 1080 }
691 1081
692 if (block < 0.) block = 0.; 1082 if (block < 0.) block = 0.;
693 } 1083 }
694 1084
695 method_poll (block); 1085 method_poll (EV_A_ block);
696 1086
697 /* update ev_now, do magic */ 1087 /* update rt_now, do magic */
698 time_update (); 1088 time_update (EV_A);
699 1089
700 /* queue pending timers and reschedule them */ 1090 /* queue pending timers and reschedule them */
701 timers_reify (); /* relative timers called last */ 1091 timers_reify (EV_A); /* relative timers called last */
702 periodics_reify (); /* absolute timers called first */ 1092 periodics_reify (EV_A); /* absolute timers called first */
703 1093
704 /* queue idle watchers unless io or timers are pending */ 1094 /* queue idle watchers unless io or timers are pending */
705 if (!pendingcnt) 1095 if (!pendingcnt)
706 queue_events ((W *)idles, idlecnt, EV_IDLE); 1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
707 1097
708 /* queue check watchers, to be executed first */ 1098 /* queue check watchers, to be executed first */
709 if (checkcnt) 1099 if (checkcnt)
710 queue_events ((W *)checks, checkcnt, EV_CHECK); 1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
711 1101
712 call_pending (); 1102 call_pending (EV_A);
713 } 1103 }
714 while (!ev_loop_done); 1104 while (activecnt && !loop_done);
715 1105
716 if (ev_loop_done != 2) 1106 if (loop_done != 2)
717 ev_loop_done = 0; 1107 loop_done = 0;
1108}
1109
1110void
1111ev_unloop (EV_P_ int how)
1112{
1113 loop_done = how;
718} 1114}
719 1115
720/*****************************************************************************/ 1116/*****************************************************************************/
721 1117
722static void 1118inline void
723wlist_add (WL *head, WL elem) 1119wlist_add (WL *head, WL elem)
724{ 1120{
725 elem->next = *head; 1121 elem->next = *head;
726 *head = elem; 1122 *head = elem;
727} 1123}
728 1124
729static void 1125inline void
730wlist_del (WL *head, WL elem) 1126wlist_del (WL *head, WL elem)
731{ 1127{
732 while (*head) 1128 while (*head)
733 { 1129 {
734 if (*head == elem) 1130 if (*head == elem)
739 1135
740 head = &(*head)->next; 1136 head = &(*head)->next;
741 } 1137 }
742} 1138}
743 1139
744static void 1140inline void
745ev_clear_pending (W w) 1141ev_clear_pending (EV_P_ W w)
746{ 1142{
747 if (w->pending) 1143 if (w->pending)
748 { 1144 {
749 pendings [w->pending - 1].w = 0; 1145 pendings [ABSPRI (w)][w->pending - 1].w = 0;
750 w->pending = 0; 1146 w->pending = 0;
751 } 1147 }
752} 1148}
753 1149
754static void 1150inline void
755ev_start (W w, int active) 1151ev_start (EV_P_ W w, int active)
756{ 1152{
1153 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1154 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1155
757 w->active = active; 1156 w->active = active;
1157 ev_ref (EV_A);
758} 1158}
759 1159
760static void 1160inline void
761ev_stop (W w) 1161ev_stop (EV_P_ W w)
762{ 1162{
1163 ev_unref (EV_A);
763 w->active = 0; 1164 w->active = 0;
764} 1165}
765 1166
766/*****************************************************************************/ 1167/*****************************************************************************/
767 1168
768void 1169void
769ev_io_start (struct ev_io *w) 1170ev_io_start (EV_P_ struct ev_io *w)
770{ 1171{
771 int fd = w->fd; 1172 int fd = w->fd;
772 1173
773 if (ev_is_active (w)) 1174 if (ev_is_active (w))
774 return; 1175 return;
775 1176
776 assert (("ev_io_start called with negative fd", fd >= 0)); 1177 assert (("ev_io_start called with negative fd", fd >= 0));
777 1178
778 ev_start ((W)w, 1); 1179 ev_start (EV_A_ (W)w, 1);
779 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
780 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1181 wlist_add ((WL *)&anfds[fd].head, (WL)w);
781 1182
782 fd_change (fd); 1183 fd_change (EV_A_ fd);
783} 1184}
784 1185
785void 1186void
786ev_io_stop (struct ev_io *w) 1187ev_io_stop (EV_P_ struct ev_io *w)
787{ 1188{
788 ev_clear_pending ((W)w); 1189 ev_clear_pending (EV_A_ (W)w);
789 if (!ev_is_active (w)) 1190 if (!ev_is_active (w))
790 return; 1191 return;
791 1192
792 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1193 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
793 ev_stop ((W)w); 1194 ev_stop (EV_A_ (W)w);
794 1195
795 fd_change (w->fd); 1196 fd_change (EV_A_ w->fd);
796} 1197}
797 1198
798void 1199void
799ev_timer_start (struct ev_timer *w) 1200ev_timer_start (EV_P_ struct ev_timer *w)
800{ 1201{
801 if (ev_is_active (w)) 1202 if (ev_is_active (w))
802 return; 1203 return;
803 1204
804 w->at += now; 1205 ((WT)w)->at += mn_now;
805 1206
806 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
807 1208
808 ev_start ((W)w, ++timercnt); 1209 ev_start (EV_A_ (W)w, ++timercnt);
809 array_needsize (timers, timermax, timercnt, ); 1210 array_needsize (timers, timermax, timercnt, );
810 timers [timercnt - 1] = w; 1211 timers [timercnt - 1] = w;
811 upheap ((WT *)timers, timercnt - 1); 1212 upheap ((WT *)timers, timercnt - 1);
812}
813 1213
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215}
1216
814void 1217void
815ev_timer_stop (struct ev_timer *w) 1218ev_timer_stop (EV_P_ struct ev_timer *w)
816{ 1219{
817 ev_clear_pending ((W)w); 1220 ev_clear_pending (EV_A_ (W)w);
818 if (!ev_is_active (w)) 1221 if (!ev_is_active (w))
819 return; 1222 return;
820 1223
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225
821 if (w->active < timercnt--) 1226 if (((W)w)->active < timercnt--)
822 { 1227 {
823 timers [w->active - 1] = timers [timercnt]; 1228 timers [((W)w)->active - 1] = timers [timercnt];
824 downheap ((WT *)timers, timercnt, w->active - 1); 1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
825 } 1230 }
826 1231
827 w->at = w->repeat; 1232 ((WT)w)->at = w->repeat;
828 1233
829 ev_stop ((W)w); 1234 ev_stop (EV_A_ (W)w);
830} 1235}
831 1236
832void 1237void
833ev_timer_again (struct ev_timer *w) 1238ev_timer_again (EV_P_ struct ev_timer *w)
834{ 1239{
835 if (ev_is_active (w)) 1240 if (ev_is_active (w))
836 { 1241 {
837 if (w->repeat) 1242 if (w->repeat)
838 { 1243 {
839 w->at = now + w->repeat; 1244 ((WT)w)->at = mn_now + w->repeat;
840 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
841 } 1246 }
842 else 1247 else
843 ev_timer_stop (w); 1248 ev_timer_stop (EV_A_ w);
844 } 1249 }
845 else if (w->repeat) 1250 else if (w->repeat)
846 ev_timer_start (w); 1251 ev_timer_start (EV_A_ w);
847} 1252}
848 1253
849void 1254void
850ev_periodic_start (struct ev_periodic *w) 1255ev_periodic_start (EV_P_ struct ev_periodic *w)
851{ 1256{
852 if (ev_is_active (w)) 1257 if (ev_is_active (w))
853 return; 1258 return;
854 1259
855 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
856 1261
857 /* this formula differs from the one in periodic_reify because we do not always round up */ 1262 /* this formula differs from the one in periodic_reify because we do not always round up */
858 if (w->interval) 1263 if (w->interval)
859 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
860 1265
861 ev_start ((W)w, ++periodiccnt); 1266 ev_start (EV_A_ (W)w, ++periodiccnt);
862 array_needsize (periodics, periodicmax, periodiccnt, ); 1267 array_needsize (periodics, periodicmax, periodiccnt, );
863 periodics [periodiccnt - 1] = w; 1268 periodics [periodiccnt - 1] = w;
864 upheap ((WT *)periodics, periodiccnt - 1); 1269 upheap ((WT *)periodics, periodiccnt - 1);
865}
866 1270
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272}
1273
867void 1274void
868ev_periodic_stop (struct ev_periodic *w) 1275ev_periodic_stop (EV_P_ struct ev_periodic *w)
869{ 1276{
870 ev_clear_pending ((W)w); 1277 ev_clear_pending (EV_A_ (W)w);
871 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
872 return; 1279 return;
873 1280
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282
874 if (w->active < periodiccnt--) 1283 if (((W)w)->active < periodiccnt--)
875 { 1284 {
876 periodics [w->active - 1] = periodics [periodiccnt]; 1285 periodics [((W)w)->active - 1] = periodics [periodiccnt];
877 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
878 } 1287 }
879 1288
880 ev_stop ((W)w); 1289 ev_stop (EV_A_ (W)w);
881} 1290}
882 1291
883void 1292void
884ev_signal_start (struct ev_signal *w) 1293ev_idle_start (EV_P_ struct ev_idle *w)
885{ 1294{
886 if (ev_is_active (w)) 1295 if (ev_is_active (w))
887 return; 1296 return;
888 1297
1298 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, );
1300 idles [idlecnt - 1] = w;
1301}
1302
1303void
1304ev_idle_stop (EV_P_ struct ev_idle *w)
1305{
1306 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w))
1308 return;
1309
1310 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w);
1312}
1313
1314void
1315ev_prepare_start (EV_P_ struct ev_prepare *w)
1316{
1317 if (ev_is_active (w))
1318 return;
1319
1320 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, );
1322 prepares [preparecnt - 1] = w;
1323}
1324
1325void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{
1328 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w))
1330 return;
1331
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w);
1334}
1335
1336void
1337ev_check_start (EV_P_ struct ev_check *w)
1338{
1339 if (ev_is_active (w))
1340 return;
1341
1342 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, );
1344 checks [checkcnt - 1] = w;
1345}
1346
1347void
1348ev_check_stop (EV_P_ struct ev_check *w)
1349{
1350 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w))
1352 return;
1353
1354 checks [((W)w)->active - 1] = checks [--checkcnt];
1355 ev_stop (EV_A_ (W)w);
1356}
1357
1358#ifndef SA_RESTART
1359# define SA_RESTART 0
1360#endif
1361
1362void
1363ev_signal_start (EV_P_ struct ev_signal *w)
1364{
1365#if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1367#endif
1368 if (ev_is_active (w))
1369 return;
1370
889 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
890 1372
891 ev_start ((W)w, 1); 1373 ev_start (EV_A_ (W)w, 1);
892 array_needsize (signals, signalmax, w->signum, signals_init); 1374 array_needsize (signals, signalmax, w->signum, signals_init);
893 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
894 1376
895 if (!w->next) 1377 if (!((WL)w)->next)
896 { 1378 {
1379#if WIN32
1380 signal (w->signum, sighandler);
1381#else
897 struct sigaction sa; 1382 struct sigaction sa;
898 sa.sa_handler = sighandler; 1383 sa.sa_handler = sighandler;
899 sigfillset (&sa.sa_mask); 1384 sigfillset (&sa.sa_mask);
900 sa.sa_flags = 0; 1385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
901 sigaction (w->signum, &sa, 0); 1386 sigaction (w->signum, &sa, 0);
1387#endif
902 } 1388 }
903} 1389}
904 1390
905void 1391void
906ev_signal_stop (struct ev_signal *w) 1392ev_signal_stop (EV_P_ struct ev_signal *w)
907{ 1393{
908 ev_clear_pending ((W)w); 1394 ev_clear_pending (EV_A_ (W)w);
909 if (!ev_is_active (w)) 1395 if (!ev_is_active (w))
910 return; 1396 return;
911 1397
912 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1398 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
913 ev_stop ((W)w); 1399 ev_stop (EV_A_ (W)w);
914 1400
915 if (!signals [w->signum - 1].head) 1401 if (!signals [w->signum - 1].head)
916 signal (w->signum, SIG_DFL); 1402 signal (w->signum, SIG_DFL);
917} 1403}
918 1404
919void 1405void
920ev_idle_start (struct ev_idle *w) 1406ev_child_start (EV_P_ struct ev_child *w)
921{ 1407{
1408#if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop));
1410#endif
922 if (ev_is_active (w)) 1411 if (ev_is_active (w))
923 return; 1412 return;
924 1413
925 ev_start ((W)w, ++idlecnt); 1414 ev_start (EV_A_ (W)w, 1);
926 array_needsize (idles, idlemax, idlecnt, ); 1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
927 idles [idlecnt - 1] = w;
928} 1416}
929 1417
930void 1418void
931ev_idle_stop (struct ev_idle *w) 1419ev_child_stop (EV_P_ struct ev_child *w)
932{ 1420{
933 ev_clear_pending ((W)w); 1421 ev_clear_pending (EV_A_ (W)w);
934 if (ev_is_active (w)) 1422 if (ev_is_active (w))
935 return; 1423 return;
936 1424
937 idles [w->active - 1] = idles [--idlecnt];
938 ev_stop ((W)w);
939}
940
941void
942ev_prepare_start (struct ev_prepare *w)
943{
944 if (ev_is_active (w))
945 return;
946
947 ev_start ((W)w, ++preparecnt);
948 array_needsize (prepares, preparemax, preparecnt, );
949 prepares [preparecnt - 1] = w;
950}
951
952void
953ev_prepare_stop (struct ev_prepare *w)
954{
955 ev_clear_pending ((W)w);
956 if (ev_is_active (w))
957 return;
958
959 prepares [w->active - 1] = prepares [--preparecnt];
960 ev_stop ((W)w);
961}
962
963void
964ev_check_start (struct ev_check *w)
965{
966 if (ev_is_active (w))
967 return;
968
969 ev_start ((W)w, ++checkcnt);
970 array_needsize (checks, checkmax, checkcnt, );
971 checks [checkcnt - 1] = w;
972}
973
974void
975ev_check_stop (struct ev_check *w)
976{
977 ev_clear_pending ((W)w);
978 if (ev_is_active (w))
979 return;
980
981 checks [w->active - 1] = checks [--checkcnt];
982 ev_stop ((W)w);
983}
984
985void
986ev_child_start (struct ev_child *w)
987{
988 if (ev_is_active (w))
989 return;
990
991 ev_start ((W)w, 1);
992 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
993}
994
995void
996ev_child_stop (struct ev_child *w)
997{
998 ev_clear_pending ((W)w);
999 if (ev_is_active (w))
1000 return;
1001
1002 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1425 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1003 ev_stop ((W)w); 1426 ev_stop (EV_A_ (W)w);
1004} 1427}
1005 1428
1006/*****************************************************************************/ 1429/*****************************************************************************/
1007 1430
1008struct ev_once 1431struct ev_once
1012 void (*cb)(int revents, void *arg); 1435 void (*cb)(int revents, void *arg);
1013 void *arg; 1436 void *arg;
1014}; 1437};
1015 1438
1016static void 1439static void
1017once_cb (struct ev_once *once, int revents) 1440once_cb (EV_P_ struct ev_once *once, int revents)
1018{ 1441{
1019 void (*cb)(int revents, void *arg) = once->cb; 1442 void (*cb)(int revents, void *arg) = once->cb;
1020 void *arg = once->arg; 1443 void *arg = once->arg;
1021 1444
1022 ev_io_stop (&once->io); 1445 ev_io_stop (EV_A_ &once->io);
1023 ev_timer_stop (&once->to); 1446 ev_timer_stop (EV_A_ &once->to);
1024 free (once); 1447 ev_free (once);
1025 1448
1026 cb (revents, arg); 1449 cb (revents, arg);
1027} 1450}
1028 1451
1029static void 1452static void
1030once_cb_io (struct ev_io *w, int revents) 1453once_cb_io (EV_P_ struct ev_io *w, int revents)
1031{ 1454{
1032 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1455 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1033} 1456}
1034 1457
1035static void 1458static void
1036once_cb_to (struct ev_timer *w, int revents) 1459once_cb_to (EV_P_ struct ev_timer *w, int revents)
1037{ 1460{
1038 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1461 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1039} 1462}
1040 1463
1041void 1464void
1042ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1043{ 1466{
1044 struct ev_once *once = malloc (sizeof (struct ev_once)); 1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1045 1468
1046 if (!once) 1469 if (!once)
1047 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1048 else 1471 else
1049 { 1472 {
1052 1475
1053 ev_watcher_init (&once->io, once_cb_io); 1476 ev_watcher_init (&once->io, once_cb_io);
1054 if (fd >= 0) 1477 if (fd >= 0)
1055 { 1478 {
1056 ev_io_set (&once->io, fd, events); 1479 ev_io_set (&once->io, fd, events);
1057 ev_io_start (&once->io); 1480 ev_io_start (EV_A_ &once->io);
1058 } 1481 }
1059 1482
1060 ev_watcher_init (&once->to, once_cb_to); 1483 ev_watcher_init (&once->to, once_cb_to);
1061 if (timeout >= 0.) 1484 if (timeout >= 0.)
1062 { 1485 {
1063 ev_timer_set (&once->to, timeout, 0.); 1486 ev_timer_set (&once->to, timeout, 0.);
1064 ev_timer_start (&once->to); 1487 ev_timer_start (EV_A_ &once->to);
1065 } 1488 }
1066 } 1489 }
1067} 1490}
1068 1491
1069/*****************************************************************************/
1070
1071#if 0
1072
1073struct ev_io wio;
1074
1075static void
1076sin_cb (struct ev_io *w, int revents)
1077{
1078 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1079}
1080
1081static void
1082ocb (struct ev_timer *w, int revents)
1083{
1084 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1085 ev_timer_stop (w);
1086 ev_timer_start (w);
1087}
1088
1089static void
1090scb (struct ev_signal *w, int revents)
1091{
1092 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1093 ev_io_stop (&wio);
1094 ev_io_start (&wio);
1095}
1096
1097static void
1098gcb (struct ev_signal *w, int revents)
1099{
1100 fprintf (stderr, "generic %x\n", revents);
1101
1102}
1103
1104int main (void)
1105{
1106 ev_init (0);
1107
1108 ev_io_init (&wio, sin_cb, 0, EV_READ);
1109 ev_io_start (&wio);
1110
1111 struct ev_timer t[10000];
1112
1113#if 0
1114 int i;
1115 for (i = 0; i < 10000; ++i)
1116 {
1117 struct ev_timer *w = t + i;
1118 ev_watcher_init (w, ocb, i);
1119 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1120 ev_timer_start (w);
1121 if (drand48 () < 0.5)
1122 ev_timer_stop (w);
1123 }
1124#endif
1125
1126 struct ev_timer t1;
1127 ev_timer_init (&t1, ocb, 5, 10);
1128 ev_timer_start (&t1);
1129
1130 struct ev_signal sig;
1131 ev_signal_init (&sig, scb, SIGQUIT);
1132 ev_signal_start (&sig);
1133
1134 struct ev_check cw;
1135 ev_check_init (&cw, gcb);
1136 ev_check_start (&cw);
1137
1138 struct ev_idle iw;
1139 ev_idle_init (&iw, gcb);
1140 ev_idle_start (&iw);
1141
1142 ev_loop (0);
1143
1144 return 0;
1145}
1146
1147#endif
1148
1149
1150
1151

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines