ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.152 by root, Wed Nov 28 11:15:55 2007 UTC vs.
Revision 1.370 by root, Sun Jan 30 19:05:41 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
202#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
205#endif 373#endif
206 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381/* hp-ux has it in sys/time.h, which we unconditionally include above */
382# if !defined(_WIN32) && !defined(__hpux)
383# include <sys/select.h>
384# endif
385#endif
386
387#if EV_USE_INOTIFY
388# include <sys/statfs.h>
389# include <sys/inotify.h>
390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391# ifndef IN_DONT_FOLLOW
392# undef EV_USE_INOTIFY
393# define EV_USE_INOTIFY 0
394# endif
395#endif
396
207#if EV_SELECT_IS_WINSOCKET 397#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 398# include <winsock.h>
209#endif 399#endif
210 400
211#if !EV_STAT_ENABLE 401#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
403# include <stdint.h>
404# ifndef EFD_NONBLOCK
405# define EFD_NONBLOCK O_NONBLOCK
213#endif 406# endif
407# ifndef EFD_CLOEXEC
408# ifdef O_CLOEXEC
409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
214 416
215#if EV_USE_INOTIFY 417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
217#endif 437#endif
218 438
219/**/ 439/**/
440
441#if EV_VERIFY >= 3
442# define EV_FREQUENT_CHECK ev_verify (EV_A)
443#else
444# define EV_FREQUENT_CHECK do { } while (0)
445#endif
446
447/*
448 * This is used to avoid floating point rounding problems.
449 * It is added to ev_rt_now when scheduling periodics
450 * to ensure progress, time-wise, even when rounding
451 * errors are against us.
452 * This value is good at least till the year 4000.
453 * Better solutions welcome.
454 */
455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 456
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 459
460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
462
225#if __GNUC__ >= 3 463#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 465# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 466#else
236# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 468# define noinline
469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
470# define inline
471# endif
240#endif 472#endif
241 473
242#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
476#define inline_size static inline
244 477
478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
481# define inline_speed static noinline
482#endif
483
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
488#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
247 491
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
250 494
251typedef ev_watcher *W; 495typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
254 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
520#endif
256 521
257#ifdef _WIN32 522#ifdef _WIN32
258# include "ev_win32.c" 523# include "ev_win32.c"
259#endif 524#endif
260 525
261/*****************************************************************************/ 526/*****************************************************************************/
262 527
528#ifdef __linux
529# include <sys/utsname.h>
530#endif
531
532static unsigned int noinline
533ev_linux_version (void)
534{
535#ifdef __linux
536 unsigned int v = 0;
537 struct utsname buf;
538 int i;
539 char *p = buf.release;
540
541 if (uname (&buf))
542 return 0;
543
544 for (i = 3+1; --i; )
545 {
546 unsigned int c = 0;
547
548 for (;;)
549 {
550 if (*p >= '0' && *p <= '9')
551 c = c * 10 + *p++ - '0';
552 else
553 {
554 p += *p == '.';
555 break;
556 }
557 }
558
559 v = (v << 8) | c;
560 }
561
562 return v;
563#else
564 return 0;
565#endif
566}
567
568/*****************************************************************************/
569
570#if EV_AVOID_STDIO
571static void noinline
572ev_printerr (const char *msg)
573{
574 write (STDERR_FILENO, msg, strlen (msg));
575}
576#endif
577
263static void (*syserr_cb)(const char *msg); 578static void (*syserr_cb)(const char *msg);
264 579
265void 580void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 581ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 582{
268 syserr_cb = cb; 583 syserr_cb = cb;
269} 584}
270 585
271static void noinline 586static void noinline
272syserr (const char *msg) 587ev_syserr (const char *msg)
273{ 588{
274 if (!msg) 589 if (!msg)
275 msg = "(libev) system error"; 590 msg = "(libev) system error";
276 591
277 if (syserr_cb) 592 if (syserr_cb)
278 syserr_cb (msg); 593 syserr_cb (msg);
279 else 594 else
280 { 595 {
596#if EV_AVOID_STDIO
597 ev_printerr (msg);
598 ev_printerr (": ");
599 ev_printerr (strerror (errno));
600 ev_printerr ("\n");
601#else
281 perror (msg); 602 perror (msg);
603#endif
282 abort (); 604 abort ();
283 } 605 }
284} 606}
285 607
608static void *
609ev_realloc_emul (void *ptr, long size)
610{
611#if __GLIBC__
612 return realloc (ptr, size);
613#else
614 /* some systems, notably openbsd and darwin, fail to properly
615 * implement realloc (x, 0) (as required by both ansi c-89 and
616 * the single unix specification, so work around them here.
617 */
618
619 if (size)
620 return realloc (ptr, size);
621
622 free (ptr);
623 return 0;
624#endif
625}
626
286static void *(*alloc)(void *ptr, size_t size) = realloc; 627static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 628
288void 629void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 630ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 631{
291 alloc = cb; 632 alloc = cb;
292} 633}
293 634
294inline_speed void * 635inline_speed void *
295ev_realloc (void *ptr, size_t size) 636ev_realloc (void *ptr, long size)
296{ 637{
297 ptr = alloc (ptr, size); 638 ptr = alloc (ptr, size);
298 639
299 if (!ptr && size) 640 if (!ptr && size)
300 { 641 {
642#if EV_AVOID_STDIO
643 ev_printerr ("(libev) memory allocation failed, aborting.\n");
644#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 645 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
646#endif
302 abort (); 647 abort ();
303 } 648 }
304 649
305 return ptr; 650 return ptr;
306} 651}
308#define ev_malloc(size) ev_realloc (0, (size)) 653#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 654#define ev_free(ptr) ev_realloc ((ptr), 0)
310 655
311/*****************************************************************************/ 656/*****************************************************************************/
312 657
658/* set in reify when reification needed */
659#define EV_ANFD_REIFY 1
660
661/* file descriptor info structure */
313typedef struct 662typedef struct
314{ 663{
315 WL head; 664 WL head;
316 unsigned char events; 665 unsigned char events; /* the events watched for */
666 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
667 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 668 unsigned char unused;
669#if EV_USE_EPOLL
670 unsigned int egen; /* generation counter to counter epoll bugs */
671#endif
318#if EV_SELECT_IS_WINSOCKET 672#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 673 SOCKET handle;
320#endif 674#endif
675#if EV_USE_IOCP
676 OVERLAPPED or, ow;
677#endif
321} ANFD; 678} ANFD;
322 679
680/* stores the pending event set for a given watcher */
323typedef struct 681typedef struct
324{ 682{
325 W w; 683 W w;
326 int events; 684 int events; /* the pending event set for the given watcher */
327} ANPENDING; 685} ANPENDING;
328 686
687#if EV_USE_INOTIFY
688/* hash table entry per inotify-id */
329typedef struct 689typedef struct
330{ 690{
331#if EV_USE_INOTIFY
332 WL head; 691 WL head;
333#endif
334} ANFS; 692} ANFS;
693#endif
694
695/* Heap Entry */
696#if EV_HEAP_CACHE_AT
697 /* a heap element */
698 typedef struct {
699 ev_tstamp at;
700 WT w;
701 } ANHE;
702
703 #define ANHE_w(he) (he).w /* access watcher, read-write */
704 #define ANHE_at(he) (he).at /* access cached at, read-only */
705 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
706#else
707 /* a heap element */
708 typedef WT ANHE;
709
710 #define ANHE_w(he) (he)
711 #define ANHE_at(he) (he)->at
712 #define ANHE_at_cache(he)
713#endif
335 714
336#if EV_MULTIPLICITY 715#if EV_MULTIPLICITY
337 716
338 struct ev_loop 717 struct ev_loop
339 { 718 {
357 736
358 static int ev_default_loop_ptr; 737 static int ev_default_loop_ptr;
359 738
360#endif 739#endif
361 740
741#if EV_FEATURE_API
742# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
743# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
744# define EV_INVOKE_PENDING invoke_cb (EV_A)
745#else
746# define EV_RELEASE_CB (void)0
747# define EV_ACQUIRE_CB (void)0
748# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
749#endif
750
751#define EVBREAK_RECURSE 0x80
752
362/*****************************************************************************/ 753/*****************************************************************************/
363 754
755#ifndef EV_HAVE_EV_TIME
364ev_tstamp 756ev_tstamp
365ev_time (void) 757ev_time (void)
366{ 758{
367#if EV_USE_REALTIME 759#if EV_USE_REALTIME
760 if (expect_true (have_realtime))
761 {
368 struct timespec ts; 762 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 763 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 764 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 765 }
766#endif
767
372 struct timeval tv; 768 struct timeval tv;
373 gettimeofday (&tv, 0); 769 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 770 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 771}
772#endif
377 773
378ev_tstamp inline_size 774inline_size ev_tstamp
379get_clock (void) 775get_clock (void)
380{ 776{
381#if EV_USE_MONOTONIC 777#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 778 if (expect_true (have_monotonic))
383 { 779 {
396{ 792{
397 return ev_rt_now; 793 return ev_rt_now;
398} 794}
399#endif 795#endif
400 796
401#define array_roundsize(type,n) (((n) | 4) & ~3) 797void
798ev_sleep (ev_tstamp delay)
799{
800 if (delay > 0.)
801 {
802#if EV_USE_NANOSLEEP
803 struct timespec ts;
804
805 EV_TS_SET (ts, delay);
806 nanosleep (&ts, 0);
807#elif defined(_WIN32)
808 Sleep ((unsigned long)(delay * 1e3));
809#else
810 struct timeval tv;
811
812 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
813 /* something not guaranteed by newer posix versions, but guaranteed */
814 /* by older ones */
815 EV_TV_SET (tv, delay);
816 select (0, 0, 0, 0, &tv);
817#endif
818 }
819}
820
821inline_speed int
822ev_timeout_to_ms (ev_tstamp timeout)
823{
824 int ms = timeout * 1000. + .999999;
825
826 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
827}
828
829/*****************************************************************************/
830
831#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
832
833/* find a suitable new size for the given array, */
834/* hopefully by rounding to a nice-to-malloc size */
835inline_size int
836array_nextsize (int elem, int cur, int cnt)
837{
838 int ncur = cur + 1;
839
840 do
841 ncur <<= 1;
842 while (cnt > ncur);
843
844 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
845 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
846 {
847 ncur *= elem;
848 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
849 ncur = ncur - sizeof (void *) * 4;
850 ncur /= elem;
851 }
852
853 return ncur;
854}
855
856static noinline void *
857array_realloc (int elem, void *base, int *cur, int cnt)
858{
859 *cur = array_nextsize (elem, *cur, cnt);
860 return ev_realloc (base, elem * *cur);
861}
862
863#define array_init_zero(base,count) \
864 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 865
403#define array_needsize(type,base,cur,cnt,init) \ 866#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 867 if (expect_false ((cnt) > (cur))) \
405 { \ 868 { \
406 int newcnt = cur; \ 869 int ocur_ = (cur); \
407 do \ 870 (base) = (type *)array_realloc \
408 { \ 871 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 872 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 873 }
417 874
875#if 0
418#define array_slim(type,stem) \ 876#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 877 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 878 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 879 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 880 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 881 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 882 }
883#endif
425 884
426#define array_free(stem, idx) \ 885#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 886 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 887
429/*****************************************************************************/ 888/*****************************************************************************/
889
890/* dummy callback for pending events */
891static void noinline
892pendingcb (EV_P_ ev_prepare *w, int revents)
893{
894}
430 895
431void noinline 896void noinline
432ev_feed_event (EV_P_ void *w, int revents) 897ev_feed_event (EV_P_ void *w, int revents)
433{ 898{
434 W w_ = (W)w; 899 W w_ = (W)w;
900 int pri = ABSPRI (w_);
435 901
436 if (expect_false (w_->pending)) 902 if (expect_false (w_->pending))
903 pendings [pri][w_->pending - 1].events |= revents;
904 else
437 { 905 {
906 w_->pending = ++pendingcnt [pri];
907 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
908 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 909 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 910 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 911}
447 912
448void inline_size 913inline_speed void
914feed_reverse (EV_P_ W w)
915{
916 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
917 rfeeds [rfeedcnt++] = w;
918}
919
920inline_size void
921feed_reverse_done (EV_P_ int revents)
922{
923 do
924 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
925 while (rfeedcnt);
926}
927
928inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 929queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 930{
451 int i; 931 int i;
452 932
453 for (i = 0; i < eventcnt; ++i) 933 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 934 ev_feed_event (EV_A_ events [i], type);
455} 935}
456 936
457/*****************************************************************************/ 937/*****************************************************************************/
458 938
459void inline_size 939inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 940fd_event_nocheck (EV_P_ int fd, int revents)
474{ 941{
475 ANFD *anfd = anfds + fd; 942 ANFD *anfd = anfds + fd;
476 ev_io *w; 943 ev_io *w;
477 944
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 945 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 949 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 950 ev_feed_event (EV_A_ (W)w, ev);
484 } 951 }
485} 952}
486 953
954/* do not submit kernel events for fds that have reify set */
955/* because that means they changed while we were polling for new events */
956inline_speed void
957fd_event (EV_P_ int fd, int revents)
958{
959 ANFD *anfd = anfds + fd;
960
961 if (expect_true (!anfd->reify))
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
487void 965void
488ev_feed_fd_event (EV_P_ int fd, int revents) 966ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 967{
968 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 969 fd_event_nocheck (EV_A_ fd, revents);
491} 970}
492 971
493void inline_size 972/* make sure the external fd watch events are in-sync */
973/* with the kernel/libev internal state */
974inline_size void
494fd_reify (EV_P) 975fd_reify (EV_P)
495{ 976{
496 int i; 977 int i;
497 978
498 for (i = 0; i < fdchangecnt; ++i) 979 for (i = 0; i < fdchangecnt; ++i)
499 { 980 {
500 int fd = fdchanges [i]; 981 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 982 ANFD *anfd = anfds + fd;
502 ev_io *w; 983 ev_io *w;
503 984
504 int events = 0; 985 unsigned char o_events = anfd->events;
986 unsigned char o_reify = anfd->reify;
505 987
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 988 anfd->reify = 0;
507 events |= w->events;
508 989
509#if EV_SELECT_IS_WINSOCKET 990#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
510 if (events) 991 if (o_reify & EV__IOFDSET)
511 { 992 {
512 unsigned long argp; 993 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 994 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 995 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
996 printf ("oi %d %x\n", fd, anfd->handle);//D
515 } 997 }
516#endif 998#endif
517 999
518 anfd->reify = 0; 1000 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1001 {
1002 anfd->events = 0;
519 1003
1004 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1005 anfd->events |= (unsigned char)w->events;
1006
1007 if (o_events != anfd->events)
1008 o_reify = EV__IOFDSET; /* actually |= */
1009 }
1010
1011 if (o_reify & EV__IOFDSET)
520 backend_modify (EV_A_ fd, anfd->events, events); 1012 backend_modify (EV_A_ fd, o_events, anfd->events);
521 anfd->events = events;
522 } 1013 }
523 1014
524 fdchangecnt = 0; 1015 fdchangecnt = 0;
525} 1016}
526 1017
527void inline_size 1018/* something about the given fd changed */
1019inline_size void
528fd_change (EV_P_ int fd) 1020fd_change (EV_P_ int fd, int flags)
529{ 1021{
530 if (expect_false (anfds [fd].reify)) 1022 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 1023 anfds [fd].reify |= flags;
534 1024
1025 if (expect_true (!reify))
1026 {
535 ++fdchangecnt; 1027 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1028 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 1029 fdchanges [fdchangecnt - 1] = fd;
1030 }
538} 1031}
539 1032
540void inline_speed 1033/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1034inline_speed void
541fd_kill (EV_P_ int fd) 1035fd_kill (EV_P_ int fd)
542{ 1036{
543 ev_io *w; 1037 ev_io *w;
544 1038
545 while ((w = (ev_io *)anfds [fd].head)) 1039 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 1041 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1042 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 1043 }
550} 1044}
551 1045
552int inline_size 1046/* check whether the given fd is actually valid, for error recovery */
1047inline_size int
553fd_valid (int fd) 1048fd_valid (int fd)
554{ 1049{
555#ifdef _WIN32 1050#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 1051 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
557#else 1052#else
558 return fcntl (fd, F_GETFD) != -1; 1053 return fcntl (fd, F_GETFD) != -1;
559#endif 1054#endif
560} 1055}
561 1056
565{ 1060{
566 int fd; 1061 int fd;
567 1062
568 for (fd = 0; fd < anfdmax; ++fd) 1063 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 1064 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 1065 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 1066 fd_kill (EV_A_ fd);
572} 1067}
573 1068
574/* called on ENOMEM in select/poll to kill some fds and retry */ 1069/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 1070static void noinline
579 1074
580 for (fd = anfdmax; fd--; ) 1075 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 1076 if (anfds [fd].events)
582 { 1077 {
583 fd_kill (EV_A_ fd); 1078 fd_kill (EV_A_ fd);
584 return; 1079 break;
585 } 1080 }
586} 1081}
587 1082
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1083/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1084static void noinline
590fd_rearm_all (EV_P) 1085fd_rearm_all (EV_P)
591{ 1086{
592 int fd; 1087 int fd;
593 1088
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 1089 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 1090 if (anfds [fd].events)
597 { 1091 {
598 anfds [fd].events = 0; 1092 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 1093 anfds [fd].emask = 0;
1094 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
600 } 1095 }
601} 1096}
602 1097
603/*****************************************************************************/ 1098/* used to prepare libev internal fd's */
604 1099/* this is not fork-safe */
605void inline_speed 1100inline_speed void
606upheap (WT *heap, int k)
607{
608 WT w = heap [k];
609
610 while (k && heap [k >> 1]->at > w->at)
611 {
612 heap [k] = heap [k >> 1];
613 ((W)heap [k])->active = k + 1;
614 k >>= 1;
615 }
616
617 heap [k] = w;
618 ((W)heap [k])->active = k + 1;
619
620}
621
622void inline_speed
623downheap (WT *heap, int N, int k)
624{
625 WT w = heap [k];
626
627 while (k < (N >> 1))
628 {
629 int j = k << 1;
630
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break;
636
637 heap [k] = heap [j];
638 ((W)heap [k])->active = k + 1;
639 k = j;
640 }
641
642 heap [k] = w;
643 ((W)heap [k])->active = k + 1;
644}
645
646void inline_size
647adjustheap (WT *heap, int N, int k)
648{
649 upheap (heap, k);
650 downheap (heap, N, k);
651}
652
653/*****************************************************************************/
654
655typedef struct
656{
657 WL head;
658 sig_atomic_t volatile gotsig;
659} ANSIG;
660
661static ANSIG *signals;
662static int signalmax;
663
664static int sigpipe [2];
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667
668void inline_size
669signals_init (ANSIG *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->gotsig = 0;
675
676 ++base;
677 }
678}
679
680static void
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size
732fd_intern (int fd) 1101fd_intern (int fd)
733{ 1102{
734#ifdef _WIN32 1103#ifdef _WIN32
735 int arg = 1; 1104 unsigned long arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1105 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
737#else 1106#else
738 fcntl (fd, F_SETFD, FD_CLOEXEC); 1107 fcntl (fd, F_SETFD, FD_CLOEXEC);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 1108 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 1109#endif
741} 1110}
742 1111
1112/*****************************************************************************/
1113
1114/*
1115 * the heap functions want a real array index. array index 0 is guaranteed to not
1116 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1117 * the branching factor of the d-tree.
1118 */
1119
1120/*
1121 * at the moment we allow libev the luxury of two heaps,
1122 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1123 * which is more cache-efficient.
1124 * the difference is about 5% with 50000+ watchers.
1125 */
1126#if EV_USE_4HEAP
1127
1128#define DHEAP 4
1129#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1130#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1131#define UPHEAP_DONE(p,k) ((p) == (k))
1132
1133/* away from the root */
1134inline_speed void
1135downheap (ANHE *heap, int N, int k)
1136{
1137 ANHE he = heap [k];
1138 ANHE *E = heap + N + HEAP0;
1139
1140 for (;;)
1141 {
1142 ev_tstamp minat;
1143 ANHE *minpos;
1144 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1145
1146 /* find minimum child */
1147 if (expect_true (pos + DHEAP - 1 < E))
1148 {
1149 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else if (pos < E)
1155 {
1156 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1157 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1158 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1159 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1160 }
1161 else
1162 break;
1163
1164 if (ANHE_at (he) <= minat)
1165 break;
1166
1167 heap [k] = *minpos;
1168 ev_active (ANHE_w (*minpos)) = k;
1169
1170 k = minpos - heap;
1171 }
1172
1173 heap [k] = he;
1174 ev_active (ANHE_w (he)) = k;
1175}
1176
1177#else /* 4HEAP */
1178
1179#define HEAP0 1
1180#define HPARENT(k) ((k) >> 1)
1181#define UPHEAP_DONE(p,k) (!(p))
1182
1183/* away from the root */
1184inline_speed void
1185downheap (ANHE *heap, int N, int k)
1186{
1187 ANHE he = heap [k];
1188
1189 for (;;)
1190 {
1191 int c = k << 1;
1192
1193 if (c >= N + HEAP0)
1194 break;
1195
1196 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1197 ? 1 : 0;
1198
1199 if (ANHE_at (he) <= ANHE_at (heap [c]))
1200 break;
1201
1202 heap [k] = heap [c];
1203 ev_active (ANHE_w (heap [k])) = k;
1204
1205 k = c;
1206 }
1207
1208 heap [k] = he;
1209 ev_active (ANHE_w (he)) = k;
1210}
1211#endif
1212
1213/* towards the root */
1214inline_speed void
1215upheap (ANHE *heap, int k)
1216{
1217 ANHE he = heap [k];
1218
1219 for (;;)
1220 {
1221 int p = HPARENT (k);
1222
1223 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1224 break;
1225
1226 heap [k] = heap [p];
1227 ev_active (ANHE_w (heap [k])) = k;
1228 k = p;
1229 }
1230
1231 heap [k] = he;
1232 ev_active (ANHE_w (he)) = k;
1233}
1234
1235/* move an element suitably so it is in a correct place */
1236inline_size void
1237adjustheap (ANHE *heap, int N, int k)
1238{
1239 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1240 upheap (heap, k);
1241 else
1242 downheap (heap, N, k);
1243}
1244
1245/* rebuild the heap: this function is used only once and executed rarely */
1246inline_size void
1247reheap (ANHE *heap, int N)
1248{
1249 int i;
1250
1251 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1252 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1253 for (i = 0; i < N; ++i)
1254 upheap (heap, i + HEAP0);
1255}
1256
1257/*****************************************************************************/
1258
1259/* associate signal watchers to a signal signal */
1260typedef struct
1261{
1262 EV_ATOMIC_T pending;
1263#if EV_MULTIPLICITY
1264 EV_P;
1265#endif
1266 WL head;
1267} ANSIG;
1268
1269static ANSIG signals [EV_NSIG - 1];
1270
1271/*****************************************************************************/
1272
1273#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1274
743static void noinline 1275static void noinline
744siginit (EV_P) 1276evpipe_init (EV_P)
745{ 1277{
1278 if (!ev_is_active (&pipe_w))
1279 {
1280# if EV_USE_EVENTFD
1281 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1282 if (evfd < 0 && errno == EINVAL)
1283 evfd = eventfd (0, 0);
1284
1285 if (evfd >= 0)
1286 {
1287 evpipe [0] = -1;
1288 fd_intern (evfd); /* doing it twice doesn't hurt */
1289 ev_io_set (&pipe_w, evfd, EV_READ);
1290 }
1291 else
1292# endif
1293 {
1294 while (pipe (evpipe))
1295 ev_syserr ("(libev) error creating signal/async pipe");
1296
746 fd_intern (sigpipe [0]); 1297 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 1298 fd_intern (evpipe [1]);
1299 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1300 }
748 1301
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 1302 ev_io_start (EV_A_ &pipe_w);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1303 ev_unref (EV_A); /* watcher should not keep loop alive */
1304 }
1305}
1306
1307inline_size void
1308evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1309{
1310 if (!*flag)
1311 {
1312 int old_errno = errno; /* save errno because write might clobber it */
1313 char dummy;
1314
1315 *flag = 1;
1316
1317#if EV_USE_EVENTFD
1318 if (evfd >= 0)
1319 {
1320 uint64_t counter = 1;
1321 write (evfd, &counter, sizeof (uint64_t));
1322 }
1323 else
1324#endif
1325 /* win32 people keep sending patches that change this write() to send() */
1326 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1327 /* so when you think this write should be a send instead, please find out */
1328 /* where your send() is from - it's definitely not the microsoft send, and */
1329 /* tell me. thank you. */
1330 write (evpipe [1], &dummy, 1);
1331
1332 errno = old_errno;
1333 }
1334}
1335
1336/* called whenever the libev signal pipe */
1337/* got some events (signal, async) */
1338static void
1339pipecb (EV_P_ ev_io *iow, int revents)
1340{
1341 int i;
1342
1343#if EV_USE_EVENTFD
1344 if (evfd >= 0)
1345 {
1346 uint64_t counter;
1347 read (evfd, &counter, sizeof (uint64_t));
1348 }
1349 else
1350#endif
1351 {
1352 char dummy;
1353 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1354 read (evpipe [0], &dummy, 1);
1355 }
1356
1357#if EV_SIGNAL_ENABLE
1358 if (sig_pending)
1359 {
1360 sig_pending = 0;
1361
1362 for (i = EV_NSIG - 1; i--; )
1363 if (expect_false (signals [i].pending))
1364 ev_feed_signal_event (EV_A_ i + 1);
1365 }
1366#endif
1367
1368#if EV_ASYNC_ENABLE
1369 if (async_pending)
1370 {
1371 async_pending = 0;
1372
1373 for (i = asynccnt; i--; )
1374 if (asyncs [i]->sent)
1375 {
1376 asyncs [i]->sent = 0;
1377 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1378 }
1379 }
1380#endif
752} 1381}
753 1382
754/*****************************************************************************/ 1383/*****************************************************************************/
755 1384
756static ev_child *childs [EV_PID_HASHSIZE]; 1385void
1386ev_feed_signal (int signum)
1387{
1388#if EV_MULTIPLICITY
1389 EV_P = signals [signum - 1].loop;
757 1390
1391 if (!EV_A)
1392 return;
1393#endif
1394
1395 signals [signum - 1].pending = 1;
1396 evpipe_write (EV_A_ &sig_pending);
1397}
1398
1399static void
1400ev_sighandler (int signum)
1401{
758#ifndef _WIN32 1402#ifdef _WIN32
1403 signal (signum, ev_sighandler);
1404#endif
1405
1406 ev_feed_signal (signum);
1407}
1408
1409void noinline
1410ev_feed_signal_event (EV_P_ int signum)
1411{
1412 WL w;
1413
1414 if (expect_false (signum <= 0 || signum > EV_NSIG))
1415 return;
1416
1417 --signum;
1418
1419#if EV_MULTIPLICITY
1420 /* it is permissible to try to feed a signal to the wrong loop */
1421 /* or, likely more useful, feeding a signal nobody is waiting for */
1422
1423 if (expect_false (signals [signum].loop != EV_A))
1424 return;
1425#endif
1426
1427 signals [signum].pending = 0;
1428
1429 for (w = signals [signum].head; w; w = w->next)
1430 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1431}
1432
1433#if EV_USE_SIGNALFD
1434static void
1435sigfdcb (EV_P_ ev_io *iow, int revents)
1436{
1437 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1438
1439 for (;;)
1440 {
1441 ssize_t res = read (sigfd, si, sizeof (si));
1442
1443 /* not ISO-C, as res might be -1, but works with SuS */
1444 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1445 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1446
1447 if (res < (ssize_t)sizeof (si))
1448 break;
1449 }
1450}
1451#endif
1452
1453#endif
1454
1455/*****************************************************************************/
1456
1457#if EV_CHILD_ENABLE
1458static WL childs [EV_PID_HASHSIZE];
759 1459
760static ev_signal childev; 1460static ev_signal childev;
761 1461
762void inline_speed 1462#ifndef WIFCONTINUED
1463# define WIFCONTINUED(status) 0
1464#endif
1465
1466/* handle a single child status event */
1467inline_speed void
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1468child_reap (EV_P_ int chain, int pid, int status)
764{ 1469{
765 ev_child *w; 1470 ev_child *w;
1471 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1472
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1473 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1474 {
768 if (w->pid == pid || !w->pid) 1475 if ((w->pid == pid || !w->pid)
1476 && (!traced || (w->flags & 1)))
769 { 1477 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1478 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1479 w->rpid = pid;
772 w->rstatus = status; 1480 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1481 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1482 }
1483 }
775} 1484}
776 1485
777#ifndef WCONTINUED 1486#ifndef WCONTINUED
778# define WCONTINUED 0 1487# define WCONTINUED 0
779#endif 1488#endif
780 1489
1490/* called on sigchld etc., calls waitpid */
781static void 1491static void
782childcb (EV_P_ ev_signal *sw, int revents) 1492childcb (EV_P_ ev_signal *sw, int revents)
783{ 1493{
784 int pid, status; 1494 int pid, status;
785 1495
788 if (!WCONTINUED 1498 if (!WCONTINUED
789 || errno != EINVAL 1499 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1500 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1501 return;
792 1502
793 /* make sure we are called again until all childs have been reaped */ 1503 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1504 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1505 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1506
797 child_reap (EV_A_ sw, pid, pid, status); 1507 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1508 if ((EV_PID_HASHSIZE) > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1509 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1510}
801 1511
802#endif 1512#endif
803 1513
804/*****************************************************************************/ 1514/*****************************************************************************/
805 1515
1516#if EV_USE_IOCP
1517# include "ev_iocp.c"
1518#endif
806#if EV_USE_PORT 1519#if EV_USE_PORT
807# include "ev_port.c" 1520# include "ev_port.c"
808#endif 1521#endif
809#if EV_USE_KQUEUE 1522#if EV_USE_KQUEUE
810# include "ev_kqueue.c" 1523# include "ev_kqueue.c"
866 /* kqueue is borked on everything but netbsd apparently */ 1579 /* kqueue is borked on everything but netbsd apparently */
867 /* it usually doesn't work correctly on anything but sockets and pipes */ 1580 /* it usually doesn't work correctly on anything but sockets and pipes */
868 flags &= ~EVBACKEND_KQUEUE; 1581 flags &= ~EVBACKEND_KQUEUE;
869#endif 1582#endif
870#ifdef __APPLE__ 1583#ifdef __APPLE__
871 // flags &= ~EVBACKEND_KQUEUE; for documentation 1584 /* only select works correctly on that "unix-certified" platform */
872 flags &= ~EVBACKEND_POLL; 1585 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1586 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1587#endif
1588#ifdef __FreeBSD__
1589 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
873#endif 1590#endif
874 1591
875 return flags; 1592 return flags;
876} 1593}
877 1594
878unsigned int 1595unsigned int
879ev_embeddable_backends (void) 1596ev_embeddable_backends (void)
880{ 1597{
881 return EVBACKEND_EPOLL 1598 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1599
883 | EVBACKEND_PORT; 1600 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1601 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1602 flags &= ~EVBACKEND_EPOLL;
1603
1604 return flags;
884} 1605}
885 1606
886unsigned int 1607unsigned int
887ev_backend (EV_P) 1608ev_backend (EV_P)
888{ 1609{
889 return backend; 1610 return backend;
890} 1611}
891 1612
1613#if EV_FEATURE_API
1614unsigned int
1615ev_iteration (EV_P)
1616{
1617 return loop_count;
1618}
1619
1620unsigned int
1621ev_depth (EV_P)
1622{
1623 return loop_depth;
1624}
1625
1626void
1627ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1628{
1629 io_blocktime = interval;
1630}
1631
1632void
1633ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1634{
1635 timeout_blocktime = interval;
1636}
1637
1638void
1639ev_set_userdata (EV_P_ void *data)
1640{
1641 userdata = data;
1642}
1643
1644void *
1645ev_userdata (EV_P)
1646{
1647 return userdata;
1648}
1649
1650void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1651{
1652 invoke_cb = invoke_pending_cb;
1653}
1654
1655void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1656{
1657 release_cb = release;
1658 acquire_cb = acquire;
1659}
1660#endif
1661
1662/* initialise a loop structure, must be zero-initialised */
892static void noinline 1663static void noinline
893loop_init (EV_P_ unsigned int flags) 1664loop_init (EV_P_ unsigned int flags)
894{ 1665{
895 if (!backend) 1666 if (!backend)
896 { 1667 {
1668 origflags = flags;
1669
1670#if EV_USE_REALTIME
1671 if (!have_realtime)
1672 {
1673 struct timespec ts;
1674
1675 if (!clock_gettime (CLOCK_REALTIME, &ts))
1676 have_realtime = 1;
1677 }
1678#endif
1679
897#if EV_USE_MONOTONIC 1680#if EV_USE_MONOTONIC
1681 if (!have_monotonic)
898 { 1682 {
899 struct timespec ts; 1683 struct timespec ts;
1684
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1685 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1686 have_monotonic = 1;
902 } 1687 }
903#endif 1688#endif
904 1689
905 ev_rt_now = ev_time (); 1690 /* pid check not overridable via env */
906 mn_now = get_clock (); 1691#ifndef _WIN32
907 now_floor = mn_now; 1692 if (flags & EVFLAG_FORKCHECK)
908 rtmn_diff = ev_rt_now - mn_now; 1693 curpid = getpid ();
1694#endif
909 1695
910 if (!(flags & EVFLAG_NOENV) 1696 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1697 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1698 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1699 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1700
915 if (!(flags & 0x0000ffffUL)) 1701 ev_rt_now = ev_time ();
1702 mn_now = get_clock ();
1703 now_floor = mn_now;
1704 rtmn_diff = ev_rt_now - mn_now;
1705#if EV_FEATURE_API
1706 invoke_cb = ev_invoke_pending;
1707#endif
1708
1709 io_blocktime = 0.;
1710 timeout_blocktime = 0.;
1711 backend = 0;
1712 backend_fd = -1;
1713 sig_pending = 0;
1714#if EV_ASYNC_ENABLE
1715 async_pending = 0;
1716#endif
1717#if EV_USE_INOTIFY
1718 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1719#endif
1720#if EV_USE_SIGNALFD
1721 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1722#endif
1723
1724 if (!(flags & EVBACKEND_MASK))
916 flags |= ev_recommended_backends (); 1725 flags |= ev_recommended_backends ();
917 1726
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY 1727#if EV_USE_IOCP
921 fs_fd = -2; 1728 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
922#endif 1729#endif
923
924#if EV_USE_PORT 1730#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1731 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1732#endif
927#if EV_USE_KQUEUE 1733#if EV_USE_KQUEUE
928 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1734 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
935#endif 1741#endif
936#if EV_USE_SELECT 1742#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1743 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1744#endif
939 1745
1746 ev_prepare_init (&pending_w, pendingcb);
1747
1748#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
940 ev_init (&sigev, sigcb); 1749 ev_init (&pipe_w, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1750 ev_set_priority (&pipe_w, EV_MAXPRI);
1751#endif
942 } 1752 }
943} 1753}
944 1754
945static void noinline 1755/* free up a loop structure */
1756void
946loop_destroy (EV_P) 1757ev_loop_destroy (EV_P)
947{ 1758{
948 int i; 1759 int i;
1760
1761#if EV_MULTIPLICITY
1762 /* mimic free (0) */
1763 if (!EV_A)
1764 return;
1765#endif
1766
1767#if EV_CLEANUP_ENABLE
1768 /* queue cleanup watchers (and execute them) */
1769 if (expect_false (cleanupcnt))
1770 {
1771 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1772 EV_INVOKE_PENDING;
1773 }
1774#endif
1775
1776#if EV_CHILD_ENABLE
1777 if (ev_is_active (&childev))
1778 {
1779 ev_ref (EV_A); /* child watcher */
1780 ev_signal_stop (EV_A_ &childev);
1781 }
1782#endif
1783
1784 if (ev_is_active (&pipe_w))
1785 {
1786 /*ev_ref (EV_A);*/
1787 /*ev_io_stop (EV_A_ &pipe_w);*/
1788
1789#if EV_USE_EVENTFD
1790 if (evfd >= 0)
1791 close (evfd);
1792#endif
1793
1794 if (evpipe [0] >= 0)
1795 {
1796 EV_WIN32_CLOSE_FD (evpipe [0]);
1797 EV_WIN32_CLOSE_FD (evpipe [1]);
1798 }
1799 }
1800
1801#if EV_USE_SIGNALFD
1802 if (ev_is_active (&sigfd_w))
1803 close (sigfd);
1804#endif
949 1805
950#if EV_USE_INOTIFY 1806#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1807 if (fs_fd >= 0)
952 close (fs_fd); 1808 close (fs_fd);
953#endif 1809#endif
954 1810
955 if (backend_fd >= 0) 1811 if (backend_fd >= 0)
956 close (backend_fd); 1812 close (backend_fd);
957 1813
1814#if EV_USE_IOCP
1815 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1816#endif
958#if EV_USE_PORT 1817#if EV_USE_PORT
959 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1818 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
960#endif 1819#endif
961#if EV_USE_KQUEUE 1820#if EV_USE_KQUEUE
962 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1821 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
970#if EV_USE_SELECT 1829#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1830 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1831#endif
973 1832
974 for (i = NUMPRI; i--; ) 1833 for (i = NUMPRI; i--; )
1834 {
975 array_free (pending, [i]); 1835 array_free (pending, [i]);
1836#if EV_IDLE_ENABLE
1837 array_free (idle, [i]);
1838#endif
1839 }
1840
1841 ev_free (anfds); anfds = 0; anfdmax = 0;
976 1842
977 /* have to use the microsoft-never-gets-it-right macro */ 1843 /* have to use the microsoft-never-gets-it-right macro */
1844 array_free (rfeed, EMPTY);
978 array_free (fdchange, EMPTY0); 1845 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1846 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1847#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1848 array_free (periodic, EMPTY);
982#endif 1849#endif
1850#if EV_FORK_ENABLE
1851 array_free (fork, EMPTY);
1852#endif
1853#if EV_CLEANUP_ENABLE
983 array_free (idle, EMPTY0); 1854 array_free (cleanup, EMPTY);
1855#endif
984 array_free (prepare, EMPTY0); 1856 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1857 array_free (check, EMPTY);
1858#if EV_ASYNC_ENABLE
1859 array_free (async, EMPTY);
1860#endif
986 1861
987 backend = 0; 1862 backend = 0;
988}
989 1863
990void inline_size 1864#if EV_MULTIPLICITY
1865 if (ev_is_default_loop (EV_A))
1866#endif
1867 ev_default_loop_ptr = 0;
1868#if EV_MULTIPLICITY
1869 else
1870 ev_free (EV_A);
1871#endif
1872}
1873
1874#if EV_USE_INOTIFY
1875inline_size void infy_fork (EV_P);
1876#endif
1877
1878inline_size void
991loop_fork (EV_P) 1879loop_fork (EV_P)
992{ 1880{
993#if EV_USE_PORT 1881#if EV_USE_PORT
994 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1882 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
995#endif 1883#endif
997 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1885 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
998#endif 1886#endif
999#if EV_USE_EPOLL 1887#if EV_USE_EPOLL
1000 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1888 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1001#endif 1889#endif
1890#if EV_USE_INOTIFY
1891 infy_fork (EV_A);
1892#endif
1002 1893
1003 if (ev_is_active (&sigev)) 1894 if (ev_is_active (&pipe_w))
1004 { 1895 {
1005 /* default loop */ 1896 /* this "locks" the handlers against writing to the pipe */
1897 /* while we modify the fd vars */
1898 sig_pending = 1;
1899#if EV_ASYNC_ENABLE
1900 async_pending = 1;
1901#endif
1006 1902
1007 ev_ref (EV_A); 1903 ev_ref (EV_A);
1008 ev_io_stop (EV_A_ &sigev); 1904 ev_io_stop (EV_A_ &pipe_w);
1009 close (sigpipe [0]);
1010 close (sigpipe [1]);
1011 1905
1012 while (pipe (sigpipe)) 1906#if EV_USE_EVENTFD
1013 syserr ("(libev) error creating pipe"); 1907 if (evfd >= 0)
1908 close (evfd);
1909#endif
1014 1910
1911 if (evpipe [0] >= 0)
1912 {
1913 EV_WIN32_CLOSE_FD (evpipe [0]);
1914 EV_WIN32_CLOSE_FD (evpipe [1]);
1915 }
1916
1917#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1015 siginit (EV_A); 1918 evpipe_init (EV_A);
1919 /* now iterate over everything, in case we missed something */
1920 pipecb (EV_A_ &pipe_w, EV_READ);
1921#endif
1016 } 1922 }
1017 1923
1018 postfork = 0; 1924 postfork = 0;
1019} 1925}
1926
1927#if EV_MULTIPLICITY
1928
1929struct ev_loop *
1930ev_loop_new (unsigned int flags)
1931{
1932 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1933
1934 memset (EV_A, 0, sizeof (struct ev_loop));
1935 loop_init (EV_A_ flags);
1936
1937 if (ev_backend (EV_A))
1938 return EV_A;
1939
1940 ev_free (EV_A);
1941 return 0;
1942}
1943
1944#endif /* multiplicity */
1945
1946#if EV_VERIFY
1947static void noinline
1948verify_watcher (EV_P_ W w)
1949{
1950 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1951
1952 if (w->pending)
1953 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1954}
1955
1956static void noinline
1957verify_heap (EV_P_ ANHE *heap, int N)
1958{
1959 int i;
1960
1961 for (i = HEAP0; i < N + HEAP0; ++i)
1962 {
1963 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1964 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1965 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1966
1967 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1968 }
1969}
1970
1971static void noinline
1972array_verify (EV_P_ W *ws, int cnt)
1973{
1974 while (cnt--)
1975 {
1976 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1977 verify_watcher (EV_A_ ws [cnt]);
1978 }
1979}
1980#endif
1981
1982#if EV_FEATURE_API
1983void
1984ev_verify (EV_P)
1985{
1986#if EV_VERIFY
1987 int i;
1988 WL w;
1989
1990 assert (activecnt >= -1);
1991
1992 assert (fdchangemax >= fdchangecnt);
1993 for (i = 0; i < fdchangecnt; ++i)
1994 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1995
1996 assert (anfdmax >= 0);
1997 for (i = 0; i < anfdmax; ++i)
1998 for (w = anfds [i].head; w; w = w->next)
1999 {
2000 verify_watcher (EV_A_ (W)w);
2001 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2002 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2003 }
2004
2005 assert (timermax >= timercnt);
2006 verify_heap (EV_A_ timers, timercnt);
2007
2008#if EV_PERIODIC_ENABLE
2009 assert (periodicmax >= periodiccnt);
2010 verify_heap (EV_A_ periodics, periodiccnt);
2011#endif
2012
2013 for (i = NUMPRI; i--; )
2014 {
2015 assert (pendingmax [i] >= pendingcnt [i]);
2016#if EV_IDLE_ENABLE
2017 assert (idleall >= 0);
2018 assert (idlemax [i] >= idlecnt [i]);
2019 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2020#endif
2021 }
2022
2023#if EV_FORK_ENABLE
2024 assert (forkmax >= forkcnt);
2025 array_verify (EV_A_ (W *)forks, forkcnt);
2026#endif
2027
2028#if EV_CLEANUP_ENABLE
2029 assert (cleanupmax >= cleanupcnt);
2030 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2031#endif
2032
2033#if EV_ASYNC_ENABLE
2034 assert (asyncmax >= asynccnt);
2035 array_verify (EV_A_ (W *)asyncs, asynccnt);
2036#endif
2037
2038#if EV_PREPARE_ENABLE
2039 assert (preparemax >= preparecnt);
2040 array_verify (EV_A_ (W *)prepares, preparecnt);
2041#endif
2042
2043#if EV_CHECK_ENABLE
2044 assert (checkmax >= checkcnt);
2045 array_verify (EV_A_ (W *)checks, checkcnt);
2046#endif
2047
2048# if 0
2049#if EV_CHILD_ENABLE
2050 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2051 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2052#endif
2053# endif
2054#endif
2055}
2056#endif
1020 2057
1021#if EV_MULTIPLICITY 2058#if EV_MULTIPLICITY
1022struct ev_loop * 2059struct ev_loop *
1023ev_loop_new (unsigned int flags)
1024{
1025 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1026
1027 memset (loop, 0, sizeof (struct ev_loop));
1028
1029 loop_init (EV_A_ flags);
1030
1031 if (ev_backend (EV_A))
1032 return loop;
1033
1034 return 0;
1035}
1036
1037void
1038ev_loop_destroy (EV_P)
1039{
1040 loop_destroy (EV_A);
1041 ev_free (loop);
1042}
1043
1044void
1045ev_loop_fork (EV_P)
1046{
1047 postfork = 1;
1048}
1049
1050#endif
1051
1052#if EV_MULTIPLICITY
1053struct ev_loop *
1054ev_default_loop_init (unsigned int flags)
1055#else 2060#else
1056int 2061int
2062#endif
1057ev_default_loop (unsigned int flags) 2063ev_default_loop (unsigned int flags)
1058#endif
1059{ 2064{
1060 if (sigpipe [0] == sigpipe [1])
1061 if (pipe (sigpipe))
1062 return 0;
1063
1064 if (!ev_default_loop_ptr) 2065 if (!ev_default_loop_ptr)
1065 { 2066 {
1066#if EV_MULTIPLICITY 2067#if EV_MULTIPLICITY
1067 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2068 EV_P = ev_default_loop_ptr = &default_loop_struct;
1068#else 2069#else
1069 ev_default_loop_ptr = 1; 2070 ev_default_loop_ptr = 1;
1070#endif 2071#endif
1071 2072
1072 loop_init (EV_A_ flags); 2073 loop_init (EV_A_ flags);
1073 2074
1074 if (ev_backend (EV_A)) 2075 if (ev_backend (EV_A))
1075 { 2076 {
1076 siginit (EV_A); 2077#if EV_CHILD_ENABLE
1077
1078#ifndef _WIN32
1079 ev_signal_init (&childev, childcb, SIGCHLD); 2078 ev_signal_init (&childev, childcb, SIGCHLD);
1080 ev_set_priority (&childev, EV_MAXPRI); 2079 ev_set_priority (&childev, EV_MAXPRI);
1081 ev_signal_start (EV_A_ &childev); 2080 ev_signal_start (EV_A_ &childev);
1082 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2081 ev_unref (EV_A); /* child watcher should not keep loop alive */
1083#endif 2082#endif
1088 2087
1089 return ev_default_loop_ptr; 2088 return ev_default_loop_ptr;
1090} 2089}
1091 2090
1092void 2091void
1093ev_default_destroy (void) 2092ev_loop_fork (EV_P)
1094{ 2093{
1095#if EV_MULTIPLICITY 2094 postfork = 1; /* must be in line with ev_default_fork */
1096 struct ev_loop *loop = ev_default_loop_ptr;
1097#endif
1098
1099#ifndef _WIN32
1100 ev_ref (EV_A); /* child watcher */
1101 ev_signal_stop (EV_A_ &childev);
1102#endif
1103
1104 ev_ref (EV_A); /* signal watcher */
1105 ev_io_stop (EV_A_ &sigev);
1106
1107 close (sigpipe [0]); sigpipe [0] = 0;
1108 close (sigpipe [1]); sigpipe [1] = 0;
1109
1110 loop_destroy (EV_A);
1111}
1112
1113void
1114ev_default_fork (void)
1115{
1116#if EV_MULTIPLICITY
1117 struct ev_loop *loop = ev_default_loop_ptr;
1118#endif
1119
1120 if (backend)
1121 postfork = 1;
1122} 2095}
1123 2096
1124/*****************************************************************************/ 2097/*****************************************************************************/
1125 2098
1126int inline_size 2099void
1127any_pending (EV_P) 2100ev_invoke (EV_P_ void *w, int revents)
2101{
2102 EV_CB_INVOKE ((W)w, revents);
2103}
2104
2105unsigned int
2106ev_pending_count (EV_P)
1128{ 2107{
1129 int pri; 2108 int pri;
2109 unsigned int count = 0;
1130 2110
1131 for (pri = NUMPRI; pri--; ) 2111 for (pri = NUMPRI; pri--; )
1132 if (pendingcnt [pri]) 2112 count += pendingcnt [pri];
1133 return 1;
1134 2113
1135 return 0; 2114 return count;
1136} 2115}
1137 2116
1138void inline_speed 2117void noinline
1139call_pending (EV_P) 2118ev_invoke_pending (EV_P)
1140{ 2119{
1141 int pri; 2120 int pri;
1142 2121
1143 for (pri = NUMPRI; pri--; ) 2122 for (pri = NUMPRI; pri--; )
1144 while (pendingcnt [pri]) 2123 while (pendingcnt [pri])
1145 { 2124 {
1146 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2125 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1147 2126
1148 if (expect_true (p->w))
1149 {
1150 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1151
1152 p->w->pending = 0; 2127 p->w->pending = 0;
1153 EV_CB_INVOKE (p->w, p->events); 2128 EV_CB_INVOKE (p->w, p->events);
1154 } 2129 EV_FREQUENT_CHECK;
1155 } 2130 }
1156} 2131}
1157 2132
1158void inline_size 2133#if EV_IDLE_ENABLE
2134/* make idle watchers pending. this handles the "call-idle */
2135/* only when higher priorities are idle" logic */
2136inline_size void
2137idle_reify (EV_P)
2138{
2139 if (expect_false (idleall))
2140 {
2141 int pri;
2142
2143 for (pri = NUMPRI; pri--; )
2144 {
2145 if (pendingcnt [pri])
2146 break;
2147
2148 if (idlecnt [pri])
2149 {
2150 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2151 break;
2152 }
2153 }
2154 }
2155}
2156#endif
2157
2158/* make timers pending */
2159inline_size void
1159timers_reify (EV_P) 2160timers_reify (EV_P)
1160{ 2161{
2162 EV_FREQUENT_CHECK;
2163
1161 while (timercnt && ((WT)timers [0])->at <= mn_now) 2164 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1162 { 2165 {
1163 ev_timer *w = timers [0]; 2166 do
1164
1165 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1166
1167 /* first reschedule or stop timer */
1168 if (w->repeat)
1169 { 2167 {
2168 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2169
2170 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2171
2172 /* first reschedule or stop timer */
2173 if (w->repeat)
2174 {
2175 ev_at (w) += w->repeat;
2176 if (ev_at (w) < mn_now)
2177 ev_at (w) = mn_now;
2178
1170 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2179 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1171 2180
1172 ((WT)w)->at += w->repeat; 2181 ANHE_at_cache (timers [HEAP0]);
1173 if (((WT)w)->at < mn_now)
1174 ((WT)w)->at = mn_now;
1175
1176 downheap ((WT *)timers, timercnt, 0); 2182 downheap (timers, timercnt, HEAP0);
2183 }
2184 else
2185 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2186
2187 EV_FREQUENT_CHECK;
2188 feed_reverse (EV_A_ (W)w);
1177 } 2189 }
1178 else 2190 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1179 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1180 2191
1181 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2192 feed_reverse_done (EV_A_ EV_TIMER);
1182 } 2193 }
1183} 2194}
1184 2195
1185#if EV_PERIODIC_ENABLE 2196#if EV_PERIODIC_ENABLE
1186void inline_size 2197
2198inline_speed
2199periodic_recalc (EV_P_ ev_periodic *w)
2200{
2201 /* TODO: use slow but potentially more correct incremental algo, */
2202 /* also do not rely on ceil */
2203 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2204}
2205
2206/* make periodics pending */
2207inline_size void
1187periodics_reify (EV_P) 2208periodics_reify (EV_P)
1188{ 2209{
2210 EV_FREQUENT_CHECK;
2211
1189 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2212 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1190 { 2213 {
1191 ev_periodic *w = periodics [0]; 2214 int feed_count = 0;
1192 2215
1193 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2216 do
1194
1195 /* first reschedule or stop timer */
1196 if (w->reschedule_cb)
1197 { 2217 {
2218 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2219
2220 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2221
2222 /* first reschedule or stop timer */
2223 if (w->reschedule_cb)
2224 {
1198 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2225 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2226
1199 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2227 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2228
2229 ANHE_at_cache (periodics [HEAP0]);
1200 downheap ((WT *)periodics, periodiccnt, 0); 2230 downheap (periodics, periodiccnt, HEAP0);
2231 }
2232 else if (w->interval)
2233 {
2234 periodic_recalc (EV_A_ w);
2235
2236 /* if next trigger time is not sufficiently in the future, put it there */
2237 /* this might happen because of floating point inexactness */
2238 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2239 {
2240 ev_at (w) += w->interval;
2241
2242 /* if interval is unreasonably low we might still have a time in the past */
2243 /* so correct this. this will make the periodic very inexact, but the user */
2244 /* has effectively asked to get triggered more often than possible */
2245 if (ev_at (w) < ev_rt_now)
2246 ev_at (w) = ev_rt_now;
2247 }
2248
2249 ANHE_at_cache (periodics [HEAP0]);
2250 downheap (periodics, periodiccnt, HEAP0);
2251 }
2252 else
2253 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2254
2255 EV_FREQUENT_CHECK;
2256 feed_reverse (EV_A_ (W)w);
1201 } 2257 }
1202 else if (w->interval) 2258 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1203 {
1204 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1205 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1206 downheap ((WT *)periodics, periodiccnt, 0);
1207 }
1208 else
1209 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1210 2259
1211 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2260 feed_reverse_done (EV_A_ EV_PERIODIC);
1212 } 2261 }
1213} 2262}
1214 2263
2264/* simply recalculate all periodics */
2265/* TODO: maybe ensure that at least one event happens when jumping forward? */
1215static void noinline 2266static void noinline
1216periodics_reschedule (EV_P) 2267periodics_reschedule (EV_P)
1217{ 2268{
1218 int i; 2269 int i;
1219 2270
1220 /* adjust periodics after time jump */ 2271 /* adjust periodics after time jump */
1221 for (i = 0; i < periodiccnt; ++i) 2272 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1222 { 2273 {
1223 ev_periodic *w = periodics [i]; 2274 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1224 2275
1225 if (w->reschedule_cb) 2276 if (w->reschedule_cb)
1226 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2277 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1227 else if (w->interval) 2278 else if (w->interval)
1228 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2279 periodic_recalc (EV_A_ w);
2280
2281 ANHE_at_cache (periodics [i]);
2282 }
2283
2284 reheap (periodics, periodiccnt);
2285}
2286#endif
2287
2288/* adjust all timers by a given offset */
2289static void noinline
2290timers_reschedule (EV_P_ ev_tstamp adjust)
2291{
2292 int i;
2293
2294 for (i = 0; i < timercnt; ++i)
1229 } 2295 {
1230 2296 ANHE *he = timers + i + HEAP0;
1231 /* now rebuild the heap */ 2297 ANHE_w (*he)->at += adjust;
1232 for (i = periodiccnt >> 1; i--; ) 2298 ANHE_at_cache (*he);
1233 downheap ((WT *)periodics, periodiccnt, i); 2299 }
1234} 2300}
1235#endif
1236 2301
1237int inline_size 2302/* fetch new monotonic and realtime times from the kernel */
1238time_update_monotonic (EV_P) 2303/* also detect if there was a timejump, and act accordingly */
2304inline_speed void
2305time_update (EV_P_ ev_tstamp max_block)
1239{ 2306{
2307#if EV_USE_MONOTONIC
2308 if (expect_true (have_monotonic))
2309 {
2310 int i;
2311 ev_tstamp odiff = rtmn_diff;
2312
1240 mn_now = get_clock (); 2313 mn_now = get_clock ();
1241 2314
2315 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2316 /* interpolate in the meantime */
1242 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2317 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1243 { 2318 {
1244 ev_rt_now = rtmn_diff + mn_now; 2319 ev_rt_now = rtmn_diff + mn_now;
1245 return 0; 2320 return;
1246 } 2321 }
1247 else 2322
1248 {
1249 now_floor = mn_now; 2323 now_floor = mn_now;
1250 ev_rt_now = ev_time (); 2324 ev_rt_now = ev_time ();
1251 return 1;
1252 }
1253}
1254 2325
1255void inline_size 2326 /* loop a few times, before making important decisions.
1256time_update (EV_P) 2327 * on the choice of "4": one iteration isn't enough,
1257{ 2328 * in case we get preempted during the calls to
1258 int i; 2329 * ev_time and get_clock. a second call is almost guaranteed
1259 2330 * to succeed in that case, though. and looping a few more times
1260#if EV_USE_MONOTONIC 2331 * doesn't hurt either as we only do this on time-jumps or
1261 if (expect_true (have_monotonic)) 2332 * in the unlikely event of having been preempted here.
1262 { 2333 */
1263 if (time_update_monotonic (EV_A)) 2334 for (i = 4; --i; )
1264 { 2335 {
1265 ev_tstamp odiff = rtmn_diff;
1266
1267 /* loop a few times, before making important decisions.
1268 * on the choice of "4": one iteration isn't enough,
1269 * in case we get preempted during the calls to
1270 * ev_time and get_clock. a second call is almost guarenteed
1271 * to succeed in that case, though. and looping a few more times
1272 * doesn't hurt either as we only do this on time-jumps or
1273 * in the unlikely event of getting preempted here.
1274 */
1275 for (i = 4; --i; )
1276 {
1277 rtmn_diff = ev_rt_now - mn_now; 2336 rtmn_diff = ev_rt_now - mn_now;
1278 2337
1279 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2338 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1280 return; /* all is well */ 2339 return; /* all is well */
1281 2340
1282 ev_rt_now = ev_time (); 2341 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 2342 mn_now = get_clock ();
1284 now_floor = mn_now; 2343 now_floor = mn_now;
1285 } 2344 }
1286 2345
2346 /* no timer adjustment, as the monotonic clock doesn't jump */
2347 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1287# if EV_PERIODIC_ENABLE 2348# if EV_PERIODIC_ENABLE
1288 periodics_reschedule (EV_A); 2349 periodics_reschedule (EV_A);
1289# endif 2350# endif
1290 /* no timer adjustment, as the monotonic clock doesn't jump */
1291 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1292 }
1293 } 2351 }
1294 else 2352 else
1295#endif 2353#endif
1296 { 2354 {
1297 ev_rt_now = ev_time (); 2355 ev_rt_now = ev_time ();
1298 2356
1299 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2357 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1300 { 2358 {
2359 /* adjust timers. this is easy, as the offset is the same for all of them */
2360 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1301#if EV_PERIODIC_ENABLE 2361#if EV_PERIODIC_ENABLE
1302 periodics_reschedule (EV_A); 2362 periodics_reschedule (EV_A);
1303#endif 2363#endif
1304
1305 /* adjust timers. this is easy, as the offset is the same for all */
1306 for (i = 0; i < timercnt; ++i)
1307 ((WT)timers [i])->at += ev_rt_now - mn_now;
1308 } 2364 }
1309 2365
1310 mn_now = ev_rt_now; 2366 mn_now = ev_rt_now;
1311 } 2367 }
1312} 2368}
1313 2369
1314void 2370void
1315ev_ref (EV_P)
1316{
1317 ++activecnt;
1318}
1319
1320void
1321ev_unref (EV_P)
1322{
1323 --activecnt;
1324}
1325
1326static int loop_done;
1327
1328void
1329ev_loop (EV_P_ int flags) 2371ev_run (EV_P_ int flags)
1330{ 2372{
1331 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2373#if EV_FEATURE_API
1332 ? EVUNLOOP_ONE 2374 ++loop_depth;
1333 : EVUNLOOP_CANCEL; 2375#endif
1334 2376
1335 while (activecnt) 2377 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2378
2379 loop_done = EVBREAK_CANCEL;
2380
2381 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2382
2383 do
1336 { 2384 {
1337 /* we might have forked, so reify kernel state if necessary */ 2385#if EV_VERIFY >= 2
2386 ev_verify (EV_A);
2387#endif
2388
2389#ifndef _WIN32
2390 if (expect_false (curpid)) /* penalise the forking check even more */
2391 if (expect_false (getpid () != curpid))
2392 {
2393 curpid = getpid ();
2394 postfork = 1;
2395 }
2396#endif
2397
1338 #if EV_FORK_ENABLE 2398#if EV_FORK_ENABLE
2399 /* we might have forked, so queue fork handlers */
1339 if (expect_false (postfork)) 2400 if (expect_false (postfork))
1340 if (forkcnt) 2401 if (forkcnt)
1341 { 2402 {
1342 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2403 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1343 call_pending (EV_A); 2404 EV_INVOKE_PENDING;
1344 } 2405 }
1345 #endif 2406#endif
1346 2407
2408#if EV_PREPARE_ENABLE
1347 /* queue check watchers (and execute them) */ 2409 /* queue prepare watchers (and execute them) */
1348 if (expect_false (preparecnt)) 2410 if (expect_false (preparecnt))
1349 { 2411 {
1350 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2412 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1351 call_pending (EV_A); 2413 EV_INVOKE_PENDING;
1352 } 2414 }
2415#endif
2416
2417 if (expect_false (loop_done))
2418 break;
1353 2419
1354 /* we might have forked, so reify kernel state if necessary */ 2420 /* we might have forked, so reify kernel state if necessary */
1355 if (expect_false (postfork)) 2421 if (expect_false (postfork))
1356 loop_fork (EV_A); 2422 loop_fork (EV_A);
1357 2423
1358 /* update fd-related kernel structures */ 2424 /* update fd-related kernel structures */
1359 fd_reify (EV_A); 2425 fd_reify (EV_A);
1360 2426
1361 /* calculate blocking time */ 2427 /* calculate blocking time */
1362 { 2428 {
1363 double block; 2429 ev_tstamp waittime = 0.;
2430 ev_tstamp sleeptime = 0.;
1364 2431
1365 if (flags & EVLOOP_NONBLOCK || idlecnt) 2432 /* remember old timestamp for io_blocktime calculation */
1366 block = 0.; /* do not block at all */ 2433 ev_tstamp prev_mn_now = mn_now;
1367 else 2434
2435 /* update time to cancel out callback processing overhead */
2436 time_update (EV_A_ 1e100);
2437
2438 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1368 { 2439 {
1369 /* update time to cancel out callback processing overhead */
1370#if EV_USE_MONOTONIC
1371 if (expect_true (have_monotonic))
1372 time_update_monotonic (EV_A);
1373 else
1374#endif
1375 {
1376 ev_rt_now = ev_time ();
1377 mn_now = ev_rt_now;
1378 }
1379
1380 block = MAX_BLOCKTIME; 2440 waittime = MAX_BLOCKTIME;
1381 2441
1382 if (timercnt) 2442 if (timercnt)
1383 { 2443 {
1384 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2444 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1385 if (block > to) block = to; 2445 if (waittime > to) waittime = to;
1386 } 2446 }
1387 2447
1388#if EV_PERIODIC_ENABLE 2448#if EV_PERIODIC_ENABLE
1389 if (periodiccnt) 2449 if (periodiccnt)
1390 { 2450 {
1391 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2451 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1392 if (block > to) block = to; 2452 if (waittime > to) waittime = to;
1393 } 2453 }
1394#endif 2454#endif
1395 2455
2456 /* don't let timeouts decrease the waittime below timeout_blocktime */
2457 if (expect_false (waittime < timeout_blocktime))
2458 waittime = timeout_blocktime;
2459
2460 /* extra check because io_blocktime is commonly 0 */
1396 if (expect_false (block < 0.)) block = 0.; 2461 if (expect_false (io_blocktime))
2462 {
2463 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2464
2465 if (sleeptime > waittime - backend_fudge)
2466 sleeptime = waittime - backend_fudge;
2467
2468 if (expect_true (sleeptime > 0.))
2469 {
2470 ev_sleep (sleeptime);
2471 waittime -= sleeptime;
2472 }
2473 }
1397 } 2474 }
1398 2475
2476#if EV_FEATURE_API
2477 ++loop_count;
2478#endif
2479 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1399 backend_poll (EV_A_ block); 2480 backend_poll (EV_A_ waittime);
2481 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2482
2483 /* update ev_rt_now, do magic */
2484 time_update (EV_A_ waittime + sleeptime);
1400 } 2485 }
1401
1402 /* update ev_rt_now, do magic */
1403 time_update (EV_A);
1404 2486
1405 /* queue pending timers and reschedule them */ 2487 /* queue pending timers and reschedule them */
1406 timers_reify (EV_A); /* relative timers called last */ 2488 timers_reify (EV_A); /* relative timers called last */
1407#if EV_PERIODIC_ENABLE 2489#if EV_PERIODIC_ENABLE
1408 periodics_reify (EV_A); /* absolute timers called first */ 2490 periodics_reify (EV_A); /* absolute timers called first */
1409#endif 2491#endif
1410 2492
2493#if EV_IDLE_ENABLE
1411 /* queue idle watchers unless other events are pending */ 2494 /* queue idle watchers unless other events are pending */
1412 if (idlecnt && !any_pending (EV_A)) 2495 idle_reify (EV_A);
1413 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2496#endif
1414 2497
2498#if EV_CHECK_ENABLE
1415 /* queue check watchers, to be executed first */ 2499 /* queue check watchers, to be executed first */
1416 if (expect_false (checkcnt)) 2500 if (expect_false (checkcnt))
1417 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2501 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2502#endif
1418 2503
1419 call_pending (EV_A); 2504 EV_INVOKE_PENDING;
1420
1421 if (expect_false (loop_done))
1422 break;
1423 } 2505 }
2506 while (expect_true (
2507 activecnt
2508 && !loop_done
2509 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2510 ));
1424 2511
1425 if (loop_done == EVUNLOOP_ONE) 2512 if (loop_done == EVBREAK_ONE)
1426 loop_done = EVUNLOOP_CANCEL; 2513 loop_done = EVBREAK_CANCEL;
1427}
1428 2514
2515#if EV_FEATURE_API
2516 --loop_depth;
2517#endif
2518}
2519
1429void 2520void
1430ev_unloop (EV_P_ int how) 2521ev_break (EV_P_ int how)
1431{ 2522{
1432 loop_done = how; 2523 loop_done = how;
1433} 2524}
1434 2525
2526void
2527ev_ref (EV_P)
2528{
2529 ++activecnt;
2530}
2531
2532void
2533ev_unref (EV_P)
2534{
2535 --activecnt;
2536}
2537
2538void
2539ev_now_update (EV_P)
2540{
2541 time_update (EV_A_ 1e100);
2542}
2543
2544void
2545ev_suspend (EV_P)
2546{
2547 ev_now_update (EV_A);
2548}
2549
2550void
2551ev_resume (EV_P)
2552{
2553 ev_tstamp mn_prev = mn_now;
2554
2555 ev_now_update (EV_A);
2556 timers_reschedule (EV_A_ mn_now - mn_prev);
2557#if EV_PERIODIC_ENABLE
2558 /* TODO: really do this? */
2559 periodics_reschedule (EV_A);
2560#endif
2561}
2562
1435/*****************************************************************************/ 2563/*****************************************************************************/
2564/* singly-linked list management, used when the expected list length is short */
1436 2565
1437void inline_size 2566inline_size void
1438wlist_add (WL *head, WL elem) 2567wlist_add (WL *head, WL elem)
1439{ 2568{
1440 elem->next = *head; 2569 elem->next = *head;
1441 *head = elem; 2570 *head = elem;
1442} 2571}
1443 2572
1444void inline_size 2573inline_size void
1445wlist_del (WL *head, WL elem) 2574wlist_del (WL *head, WL elem)
1446{ 2575{
1447 while (*head) 2576 while (*head)
1448 { 2577 {
1449 if (*head == elem) 2578 if (expect_true (*head == elem))
1450 { 2579 {
1451 *head = elem->next; 2580 *head = elem->next;
1452 return; 2581 break;
1453 } 2582 }
1454 2583
1455 head = &(*head)->next; 2584 head = &(*head)->next;
1456 } 2585 }
1457} 2586}
1458 2587
1459void inline_speed 2588/* internal, faster, version of ev_clear_pending */
2589inline_speed void
1460ev_clear_pending (EV_P_ W w) 2590clear_pending (EV_P_ W w)
1461{ 2591{
1462 if (w->pending) 2592 if (w->pending)
1463 { 2593 {
1464 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2594 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1465 w->pending = 0; 2595 w->pending = 0;
1466 } 2596 }
1467} 2597}
1468 2598
1469void inline_speed 2599int
2600ev_clear_pending (EV_P_ void *w)
2601{
2602 W w_ = (W)w;
2603 int pending = w_->pending;
2604
2605 if (expect_true (pending))
2606 {
2607 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2608 p->w = (W)&pending_w;
2609 w_->pending = 0;
2610 return p->events;
2611 }
2612 else
2613 return 0;
2614}
2615
2616inline_size void
2617pri_adjust (EV_P_ W w)
2618{
2619 int pri = ev_priority (w);
2620 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2621 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2622 ev_set_priority (w, pri);
2623}
2624
2625inline_speed void
1470ev_start (EV_P_ W w, int active) 2626ev_start (EV_P_ W w, int active)
1471{ 2627{
1472 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2628 pri_adjust (EV_A_ w);
1473 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1474
1475 w->active = active; 2629 w->active = active;
1476 ev_ref (EV_A); 2630 ev_ref (EV_A);
1477} 2631}
1478 2632
1479void inline_size 2633inline_size void
1480ev_stop (EV_P_ W w) 2634ev_stop (EV_P_ W w)
1481{ 2635{
1482 ev_unref (EV_A); 2636 ev_unref (EV_A);
1483 w->active = 0; 2637 w->active = 0;
1484} 2638}
1485 2639
1486/*****************************************************************************/ 2640/*****************************************************************************/
1487 2641
1488void 2642void noinline
1489ev_io_start (EV_P_ ev_io *w) 2643ev_io_start (EV_P_ ev_io *w)
1490{ 2644{
1491 int fd = w->fd; 2645 int fd = w->fd;
1492 2646
1493 if (expect_false (ev_is_active (w))) 2647 if (expect_false (ev_is_active (w)))
1494 return; 2648 return;
1495 2649
1496 assert (("ev_io_start called with negative fd", fd >= 0)); 2650 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2651 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2652
2653 EV_FREQUENT_CHECK;
1497 2654
1498 ev_start (EV_A_ (W)w, 1); 2655 ev_start (EV_A_ (W)w, 1);
1499 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2656 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1500 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2657 wlist_add (&anfds[fd].head, (WL)w);
1501 2658
1502 fd_change (EV_A_ fd); 2659 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1503} 2660 w->events &= ~EV__IOFDSET;
1504 2661
1505void 2662 EV_FREQUENT_CHECK;
2663}
2664
2665void noinline
1506ev_io_stop (EV_P_ ev_io *w) 2666ev_io_stop (EV_P_ ev_io *w)
1507{ 2667{
1508 ev_clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
1510 return; 2670 return;
1511 2671
1512 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2672 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1513 2673
2674 EV_FREQUENT_CHECK;
2675
1514 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2676 wlist_del (&anfds[w->fd].head, (WL)w);
1515 ev_stop (EV_A_ (W)w); 2677 ev_stop (EV_A_ (W)w);
1516 2678
1517 fd_change (EV_A_ w->fd); 2679 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1518}
1519 2680
1520void 2681 EV_FREQUENT_CHECK;
2682}
2683
2684void noinline
1521ev_timer_start (EV_P_ ev_timer *w) 2685ev_timer_start (EV_P_ ev_timer *w)
1522{ 2686{
1523 if (expect_false (ev_is_active (w))) 2687 if (expect_false (ev_is_active (w)))
1524 return; 2688 return;
1525 2689
1526 ((WT)w)->at += mn_now; 2690 ev_at (w) += mn_now;
1527 2691
1528 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2692 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1529 2693
2694 EV_FREQUENT_CHECK;
2695
2696 ++timercnt;
1530 ev_start (EV_A_ (W)w, ++timercnt); 2697 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1531 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2698 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1532 timers [timercnt - 1] = w; 2699 ANHE_w (timers [ev_active (w)]) = (WT)w;
1533 upheap ((WT *)timers, timercnt - 1); 2700 ANHE_at_cache (timers [ev_active (w)]);
2701 upheap (timers, ev_active (w));
1534 2702
2703 EV_FREQUENT_CHECK;
2704
1535 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2705 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1536} 2706}
1537 2707
1538void 2708void noinline
1539ev_timer_stop (EV_P_ ev_timer *w) 2709ev_timer_stop (EV_P_ ev_timer *w)
1540{ 2710{
1541 ev_clear_pending (EV_A_ (W)w); 2711 clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w))) 2712 if (expect_false (!ev_is_active (w)))
1543 return; 2713 return;
1544 2714
1545 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2715 EV_FREQUENT_CHECK;
1546 2716
1547 { 2717 {
1548 int active = ((W)w)->active; 2718 int active = ev_active (w);
1549 2719
2720 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2721
2722 --timercnt;
2723
1550 if (expect_true (--active < --timercnt)) 2724 if (expect_true (active < timercnt + HEAP0))
1551 { 2725 {
1552 timers [active] = timers [timercnt]; 2726 timers [active] = timers [timercnt + HEAP0];
1553 adjustheap ((WT *)timers, timercnt, active); 2727 adjustheap (timers, timercnt, active);
1554 } 2728 }
1555 } 2729 }
1556 2730
1557 ((WT)w)->at -= mn_now; 2731 ev_at (w) -= mn_now;
1558 2732
1559 ev_stop (EV_A_ (W)w); 2733 ev_stop (EV_A_ (W)w);
1560}
1561 2734
1562void 2735 EV_FREQUENT_CHECK;
2736}
2737
2738void noinline
1563ev_timer_again (EV_P_ ev_timer *w) 2739ev_timer_again (EV_P_ ev_timer *w)
1564{ 2740{
2741 EV_FREQUENT_CHECK;
2742
1565 if (ev_is_active (w)) 2743 if (ev_is_active (w))
1566 { 2744 {
1567 if (w->repeat) 2745 if (w->repeat)
1568 { 2746 {
1569 ((WT)w)->at = mn_now + w->repeat; 2747 ev_at (w) = mn_now + w->repeat;
2748 ANHE_at_cache (timers [ev_active (w)]);
1570 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2749 adjustheap (timers, timercnt, ev_active (w));
1571 } 2750 }
1572 else 2751 else
1573 ev_timer_stop (EV_A_ w); 2752 ev_timer_stop (EV_A_ w);
1574 } 2753 }
1575 else if (w->repeat) 2754 else if (w->repeat)
1576 { 2755 {
1577 w->at = w->repeat; 2756 ev_at (w) = w->repeat;
1578 ev_timer_start (EV_A_ w); 2757 ev_timer_start (EV_A_ w);
1579 } 2758 }
2759
2760 EV_FREQUENT_CHECK;
2761}
2762
2763ev_tstamp
2764ev_timer_remaining (EV_P_ ev_timer *w)
2765{
2766 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1580} 2767}
1581 2768
1582#if EV_PERIODIC_ENABLE 2769#if EV_PERIODIC_ENABLE
1583void 2770void noinline
1584ev_periodic_start (EV_P_ ev_periodic *w) 2771ev_periodic_start (EV_P_ ev_periodic *w)
1585{ 2772{
1586 if (expect_false (ev_is_active (w))) 2773 if (expect_false (ev_is_active (w)))
1587 return; 2774 return;
1588 2775
1589 if (w->reschedule_cb) 2776 if (w->reschedule_cb)
1590 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2777 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1591 else if (w->interval) 2778 else if (w->interval)
1592 { 2779 {
1593 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2780 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1594 /* this formula differs from the one in periodic_reify because we do not always round up */ 2781 periodic_recalc (EV_A_ w);
1595 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1596 } 2782 }
2783 else
2784 ev_at (w) = w->offset;
1597 2785
2786 EV_FREQUENT_CHECK;
2787
2788 ++periodiccnt;
1598 ev_start (EV_A_ (W)w, ++periodiccnt); 2789 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1599 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2790 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1600 periodics [periodiccnt - 1] = w; 2791 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1601 upheap ((WT *)periodics, periodiccnt - 1); 2792 ANHE_at_cache (periodics [ev_active (w)]);
2793 upheap (periodics, ev_active (w));
1602 2794
2795 EV_FREQUENT_CHECK;
2796
1603 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2797 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1604} 2798}
1605 2799
1606void 2800void noinline
1607ev_periodic_stop (EV_P_ ev_periodic *w) 2801ev_periodic_stop (EV_P_ ev_periodic *w)
1608{ 2802{
1609 ev_clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
1610 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
1611 return; 2805 return;
1612 2806
1613 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2807 EV_FREQUENT_CHECK;
1614 2808
1615 { 2809 {
1616 int active = ((W)w)->active; 2810 int active = ev_active (w);
1617 2811
2812 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2813
2814 --periodiccnt;
2815
1618 if (expect_true (--active < --periodiccnt)) 2816 if (expect_true (active < periodiccnt + HEAP0))
1619 { 2817 {
1620 periodics [active] = periodics [periodiccnt]; 2818 periodics [active] = periodics [periodiccnt + HEAP0];
1621 adjustheap ((WT *)periodics, periodiccnt, active); 2819 adjustheap (periodics, periodiccnt, active);
1622 } 2820 }
1623 } 2821 }
1624 2822
1625 ev_stop (EV_A_ (W)w); 2823 ev_stop (EV_A_ (W)w);
1626}
1627 2824
1628void 2825 EV_FREQUENT_CHECK;
2826}
2827
2828void noinline
1629ev_periodic_again (EV_P_ ev_periodic *w) 2829ev_periodic_again (EV_P_ ev_periodic *w)
1630{ 2830{
1631 /* TODO: use adjustheap and recalculation */ 2831 /* TODO: use adjustheap and recalculation */
1632 ev_periodic_stop (EV_A_ w); 2832 ev_periodic_stop (EV_A_ w);
1633 ev_periodic_start (EV_A_ w); 2833 ev_periodic_start (EV_A_ w);
1636 2836
1637#ifndef SA_RESTART 2837#ifndef SA_RESTART
1638# define SA_RESTART 0 2838# define SA_RESTART 0
1639#endif 2839#endif
1640 2840
1641void 2841#if EV_SIGNAL_ENABLE
2842
2843void noinline
1642ev_signal_start (EV_P_ ev_signal *w) 2844ev_signal_start (EV_P_ ev_signal *w)
1643{ 2845{
1644#if EV_MULTIPLICITY
1645 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1646#endif
1647 if (expect_false (ev_is_active (w))) 2846 if (expect_false (ev_is_active (w)))
1648 return; 2847 return;
1649 2848
1650 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2849 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2850
2851#if EV_MULTIPLICITY
2852 assert (("libev: a signal must not be attached to two different loops",
2853 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2854
2855 signals [w->signum - 1].loop = EV_A;
2856#endif
2857
2858 EV_FREQUENT_CHECK;
2859
2860#if EV_USE_SIGNALFD
2861 if (sigfd == -2)
2862 {
2863 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2864 if (sigfd < 0 && errno == EINVAL)
2865 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2866
2867 if (sigfd >= 0)
2868 {
2869 fd_intern (sigfd); /* doing it twice will not hurt */
2870
2871 sigemptyset (&sigfd_set);
2872
2873 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2874 ev_set_priority (&sigfd_w, EV_MAXPRI);
2875 ev_io_start (EV_A_ &sigfd_w);
2876 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2877 }
2878 }
2879
2880 if (sigfd >= 0)
2881 {
2882 /* TODO: check .head */
2883 sigaddset (&sigfd_set, w->signum);
2884 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2885
2886 signalfd (sigfd, &sigfd_set, 0);
2887 }
2888#endif
1651 2889
1652 ev_start (EV_A_ (W)w, 1); 2890 ev_start (EV_A_ (W)w, 1);
1653 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1654 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2891 wlist_add (&signals [w->signum - 1].head, (WL)w);
1655 2892
1656 if (!((WL)w)->next) 2893 if (!((WL)w)->next)
2894# if EV_USE_SIGNALFD
2895 if (sigfd < 0) /*TODO*/
2896# endif
1657 { 2897 {
1658#if _WIN32 2898# ifdef _WIN32
2899 evpipe_init (EV_A);
2900
1659 signal (w->signum, sighandler); 2901 signal (w->signum, ev_sighandler);
1660#else 2902# else
1661 struct sigaction sa; 2903 struct sigaction sa;
2904
2905 evpipe_init (EV_A);
2906
1662 sa.sa_handler = sighandler; 2907 sa.sa_handler = ev_sighandler;
1663 sigfillset (&sa.sa_mask); 2908 sigfillset (&sa.sa_mask);
1664 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2909 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1665 sigaction (w->signum, &sa, 0); 2910 sigaction (w->signum, &sa, 0);
2911
2912 if (origflags & EVFLAG_NOSIGMASK)
2913 {
2914 sigemptyset (&sa.sa_mask);
2915 sigaddset (&sa.sa_mask, w->signum);
2916 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2917 }
1666#endif 2918#endif
1667 } 2919 }
1668}
1669 2920
1670void 2921 EV_FREQUENT_CHECK;
2922}
2923
2924void noinline
1671ev_signal_stop (EV_P_ ev_signal *w) 2925ev_signal_stop (EV_P_ ev_signal *w)
1672{ 2926{
1673 ev_clear_pending (EV_A_ (W)w); 2927 clear_pending (EV_A_ (W)w);
1674 if (expect_false (!ev_is_active (w))) 2928 if (expect_false (!ev_is_active (w)))
1675 return; 2929 return;
1676 2930
2931 EV_FREQUENT_CHECK;
2932
1677 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2933 wlist_del (&signals [w->signum - 1].head, (WL)w);
1678 ev_stop (EV_A_ (W)w); 2934 ev_stop (EV_A_ (W)w);
1679 2935
1680 if (!signals [w->signum - 1].head) 2936 if (!signals [w->signum - 1].head)
2937 {
2938#if EV_MULTIPLICITY
2939 signals [w->signum - 1].loop = 0; /* unattach from signal */
2940#endif
2941#if EV_USE_SIGNALFD
2942 if (sigfd >= 0)
2943 {
2944 sigset_t ss;
2945
2946 sigemptyset (&ss);
2947 sigaddset (&ss, w->signum);
2948 sigdelset (&sigfd_set, w->signum);
2949
2950 signalfd (sigfd, &sigfd_set, 0);
2951 sigprocmask (SIG_UNBLOCK, &ss, 0);
2952 }
2953 else
2954#endif
1681 signal (w->signum, SIG_DFL); 2955 signal (w->signum, SIG_DFL);
2956 }
2957
2958 EV_FREQUENT_CHECK;
1682} 2959}
2960
2961#endif
2962
2963#if EV_CHILD_ENABLE
1683 2964
1684void 2965void
1685ev_child_start (EV_P_ ev_child *w) 2966ev_child_start (EV_P_ ev_child *w)
1686{ 2967{
1687#if EV_MULTIPLICITY 2968#if EV_MULTIPLICITY
1688 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2969 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1689#endif 2970#endif
1690 if (expect_false (ev_is_active (w))) 2971 if (expect_false (ev_is_active (w)))
1691 return; 2972 return;
1692 2973
2974 EV_FREQUENT_CHECK;
2975
1693 ev_start (EV_A_ (W)w, 1); 2976 ev_start (EV_A_ (W)w, 1);
1694 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2977 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2978
2979 EV_FREQUENT_CHECK;
1695} 2980}
1696 2981
1697void 2982void
1698ev_child_stop (EV_P_ ev_child *w) 2983ev_child_stop (EV_P_ ev_child *w)
1699{ 2984{
1700 ev_clear_pending (EV_A_ (W)w); 2985 clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w))) 2986 if (expect_false (!ev_is_active (w)))
1702 return; 2987 return;
1703 2988
2989 EV_FREQUENT_CHECK;
2990
1704 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2991 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1705 ev_stop (EV_A_ (W)w); 2992 ev_stop (EV_A_ (W)w);
2993
2994 EV_FREQUENT_CHECK;
1706} 2995}
2996
2997#endif
1707 2998
1708#if EV_STAT_ENABLE 2999#if EV_STAT_ENABLE
1709 3000
1710# ifdef _WIN32 3001# ifdef _WIN32
1711# undef lstat 3002# undef lstat
1712# define lstat(a,b) _stati64 (a,b) 3003# define lstat(a,b) _stati64 (a,b)
1713# endif 3004# endif
1714 3005
1715#define DEF_STAT_INTERVAL 5.0074891 3006#define DEF_STAT_INTERVAL 5.0074891
3007#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1716#define MIN_STAT_INTERVAL 0.1074891 3008#define MIN_STAT_INTERVAL 0.1074891
1717 3009
1718void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3010static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1719 3011
1720#if EV_USE_INOTIFY 3012#if EV_USE_INOTIFY
3013
3014/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
1721# define EV_INOTIFY_BUFSIZE ((PATH_MAX + sizeof (struct inotify_event)) + 2048) 3015# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1722 3016
1723static void noinline 3017static void noinline
1724infy_add (EV_P_ ev_stat *w) 3018infy_add (EV_P_ ev_stat *w)
1725{ 3019{
1726 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3020 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1727 3021
1728 if (w->wd < 0) 3022 if (w->wd >= 0)
3023 {
3024 struct statfs sfs;
3025
3026 /* now local changes will be tracked by inotify, but remote changes won't */
3027 /* unless the filesystem is known to be local, we therefore still poll */
3028 /* also do poll on <2.6.25, but with normal frequency */
3029
3030 if (!fs_2625)
3031 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3032 else if (!statfs (w->path, &sfs)
3033 && (sfs.f_type == 0x1373 /* devfs */
3034 || sfs.f_type == 0xEF53 /* ext2/3 */
3035 || sfs.f_type == 0x3153464a /* jfs */
3036 || sfs.f_type == 0x52654973 /* reiser3 */
3037 || sfs.f_type == 0x01021994 /* tempfs */
3038 || sfs.f_type == 0x58465342 /* xfs */))
3039 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3040 else
3041 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1729 { 3042 }
1730 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3043 else
3044 {
3045 /* can't use inotify, continue to stat */
3046 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1731 3047
1732 /* monitor some parent directory for speedup hints */ 3048 /* if path is not there, monitor some parent directory for speedup hints */
3049 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3050 /* but an efficiency issue only */
1733 if (errno == ENOENT || errno == EACCES) 3051 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1734 { 3052 {
1735 char path [PATH_MAX]; 3053 char path [4096];
1736 strcpy (path, w->path); 3054 strcpy (path, w->path);
1737 3055
1738 do 3056 do
1739 { 3057 {
1740 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3058 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1741 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3059 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1742 3060
1743 char *pend = strrchr (path, '/'); 3061 char *pend = strrchr (path, '/');
1744 3062
1745 if (!pend) 3063 if (!pend || pend == path)
1746 break; /* whoops, no '/', complain to your admin */ 3064 break;
1747 3065
1748 *pend = 0; 3066 *pend = 0;
1749 w->wd = inotify_add_watch (fs_fd, path, IN_DELETE_SELF | IN_CREATE | IN_MOVED_TO | IN_MASK_ADD); 3067 w->wd = inotify_add_watch (fs_fd, path, mask);
1750 } 3068 }
1751 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3069 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1752 } 3070 }
1753 } 3071 }
1754 else
1755 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1756 3072
1757 if (w->wd >= 0) 3073 if (w->wd >= 0)
1758 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3074 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3075
3076 /* now re-arm timer, if required */
3077 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3078 ev_timer_again (EV_A_ &w->timer);
3079 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1759} 3080}
1760 3081
1761static void noinline 3082static void noinline
1762infy_del (EV_P_ ev_stat *w) 3083infy_del (EV_P_ ev_stat *w)
1763{ 3084{
1764 WL w_;
1765 int slot; 3085 int slot;
1766 int wd = w->wd; 3086 int wd = w->wd;
1767 3087
1768 if (wd < 0) 3088 if (wd < 0)
1769 return; 3089 return;
1770 3090
1771 w->wd = -2; 3091 w->wd = -2;
1772 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3092 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1773 wlist_del (&fs_hash [slot].head, (WL)w); 3093 wlist_del (&fs_hash [slot].head, (WL)w);
1774 3094
1775 /* remove this watcher, if others are watching it, they will rearm */ 3095 /* remove this watcher, if others are watching it, they will rearm */
1776 inotify_rm_watch (fs_fd, wd); 3096 inotify_rm_watch (fs_fd, wd);
1777} 3097}
1778 3098
1779static void noinline 3099static void noinline
1780infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3100infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1781{ 3101{
1782 if (slot < 0) 3102 if (slot < 0)
1783 /* overflow, need to check for all hahs slots */ 3103 /* overflow, need to check for all hash slots */
1784 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3104 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1785 infy_wd (EV_A_ slot, wd, ev); 3105 infy_wd (EV_A_ slot, wd, ev);
1786 else 3106 else
1787 { 3107 {
1788 WL w_; 3108 WL w_;
1789 3109
1790 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3110 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1791 { 3111 {
1792 ev_stat *w = (ev_stat *)w_; 3112 ev_stat *w = (ev_stat *)w_;
1793 w_ = w_->next; /* lets us remove this watcher and all before it */ 3113 w_ = w_->next; /* lets us remove this watcher and all before it */
1794 3114
1795 if (w->wd == wd || wd == -1) 3115 if (w->wd == wd || wd == -1)
1796 { 3116 {
1797 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3117 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1798 { 3118 {
3119 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1799 w->wd = -1; 3120 w->wd = -1;
1800 infy_add (EV_A_ w); /* re-add, no matter what */ 3121 infy_add (EV_A_ w); /* re-add, no matter what */
1801 } 3122 }
1802 3123
1803 stat_timer_cb (EV_P_ &w->timer, 0); 3124 stat_timer_cb (EV_A_ &w->timer, 0);
1804 } 3125 }
1805 } 3126 }
1806 } 3127 }
1807} 3128}
1808 3129
1809static void 3130static void
1810infy_cb (EV_P_ ev_io *w, int revents) 3131infy_cb (EV_P_ ev_io *w, int revents)
1811{ 3132{
1812 char buf [EV_INOTIFY_BUFSIZE]; 3133 char buf [EV_INOTIFY_BUFSIZE];
1813 struct inotify_event *ev = (struct inotify_event *)buf;
1814 int ofs; 3134 int ofs;
1815 int len = read (fs_fd, buf, sizeof (buf)); 3135 int len = read (fs_fd, buf, sizeof (buf));
1816 3136
1817 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3137 for (ofs = 0; ofs < len; )
3138 {
3139 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1818 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3140 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3141 ofs += sizeof (struct inotify_event) + ev->len;
3142 }
1819} 3143}
1820 3144
1821void inline_size 3145inline_size void
3146ev_check_2625 (EV_P)
3147{
3148 /* kernels < 2.6.25 are borked
3149 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3150 */
3151 if (ev_linux_version () < 0x020619)
3152 return;
3153
3154 fs_2625 = 1;
3155}
3156
3157inline_size int
3158infy_newfd (void)
3159{
3160#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3161 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3162 if (fd >= 0)
3163 return fd;
3164#endif
3165 return inotify_init ();
3166}
3167
3168inline_size void
1822infy_init (EV_P) 3169infy_init (EV_P)
1823{ 3170{
1824 if (fs_fd != -2) 3171 if (fs_fd != -2)
1825 return; 3172 return;
1826 3173
3174 fs_fd = -1;
3175
3176 ev_check_2625 (EV_A);
3177
1827 fs_fd = inotify_init (); 3178 fs_fd = infy_newfd ();
1828 3179
1829 if (fs_fd >= 0) 3180 if (fs_fd >= 0)
1830 { 3181 {
3182 fd_intern (fs_fd);
1831 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3183 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1832 ev_set_priority (&fs_w, EV_MAXPRI); 3184 ev_set_priority (&fs_w, EV_MAXPRI);
1833 ev_io_start (EV_A_ &fs_w); 3185 ev_io_start (EV_A_ &fs_w);
3186 ev_unref (EV_A);
3187 }
3188}
3189
3190inline_size void
3191infy_fork (EV_P)
3192{
3193 int slot;
3194
3195 if (fs_fd < 0)
3196 return;
3197
3198 ev_ref (EV_A);
3199 ev_io_stop (EV_A_ &fs_w);
3200 close (fs_fd);
3201 fs_fd = infy_newfd ();
3202
3203 if (fs_fd >= 0)
1834 } 3204 {
1835} 3205 fd_intern (fs_fd);
3206 ev_io_set (&fs_w, fs_fd, EV_READ);
3207 ev_io_start (EV_A_ &fs_w);
3208 ev_unref (EV_A);
3209 }
1836 3210
3211 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3212 {
3213 WL w_ = fs_hash [slot].head;
3214 fs_hash [slot].head = 0;
3215
3216 while (w_)
3217 {
3218 ev_stat *w = (ev_stat *)w_;
3219 w_ = w_->next; /* lets us add this watcher */
3220
3221 w->wd = -1;
3222
3223 if (fs_fd >= 0)
3224 infy_add (EV_A_ w); /* re-add, no matter what */
3225 else
3226 {
3227 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3228 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3229 ev_timer_again (EV_A_ &w->timer);
3230 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3231 }
3232 }
3233 }
3234}
3235
3236#endif
3237
3238#ifdef _WIN32
3239# define EV_LSTAT(p,b) _stati64 (p, b)
3240#else
3241# define EV_LSTAT(p,b) lstat (p, b)
1837#endif 3242#endif
1838 3243
1839void 3244void
1840ev_stat_stat (EV_P_ ev_stat *w) 3245ev_stat_stat (EV_P_ ev_stat *w)
1841{ 3246{
1843 w->attr.st_nlink = 0; 3248 w->attr.st_nlink = 0;
1844 else if (!w->attr.st_nlink) 3249 else if (!w->attr.st_nlink)
1845 w->attr.st_nlink = 1; 3250 w->attr.st_nlink = 1;
1846} 3251}
1847 3252
1848void noinline 3253static void noinline
1849stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3254stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1850{ 3255{
1851 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3256 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1852 3257
1853 /* we copy this here each the time so that */ 3258 ev_statdata prev = w->attr;
1854 /* prev has the old value when the callback gets invoked */
1855 w->prev = w->attr;
1856 ev_stat_stat (EV_A_ w); 3259 ev_stat_stat (EV_A_ w);
1857 3260
1858 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 3261 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3262 if (
3263 prev.st_dev != w->attr.st_dev
3264 || prev.st_ino != w->attr.st_ino
3265 || prev.st_mode != w->attr.st_mode
3266 || prev.st_nlink != w->attr.st_nlink
3267 || prev.st_uid != w->attr.st_uid
3268 || prev.st_gid != w->attr.st_gid
3269 || prev.st_rdev != w->attr.st_rdev
3270 || prev.st_size != w->attr.st_size
3271 || prev.st_atime != w->attr.st_atime
3272 || prev.st_mtime != w->attr.st_mtime
3273 || prev.st_ctime != w->attr.st_ctime
1859 { 3274 ) {
3275 /* we only update w->prev on actual differences */
3276 /* in case we test more often than invoke the callback, */
3277 /* to ensure that prev is always different to attr */
3278 w->prev = prev;
3279
1860 #if EV_USE_INOTIFY 3280 #if EV_USE_INOTIFY
3281 if (fs_fd >= 0)
3282 {
1861 infy_del (EV_A_ w); 3283 infy_del (EV_A_ w);
1862 infy_add (EV_A_ w); 3284 infy_add (EV_A_ w);
1863 ev_stat_stat (EV_A_ w); /* avoid race... */ 3285 ev_stat_stat (EV_A_ w); /* avoid race... */
3286 }
1864 #endif 3287 #endif
1865 3288
1866 ev_feed_event (EV_A_ w, EV_STAT); 3289 ev_feed_event (EV_A_ w, EV_STAT);
1867 } 3290 }
1868} 3291}
1871ev_stat_start (EV_P_ ev_stat *w) 3294ev_stat_start (EV_P_ ev_stat *w)
1872{ 3295{
1873 if (expect_false (ev_is_active (w))) 3296 if (expect_false (ev_is_active (w)))
1874 return; 3297 return;
1875 3298
1876 /* since we use memcmp, we need to clear any padding data etc. */
1877 memset (&w->prev, 0, sizeof (ev_statdata));
1878 memset (&w->attr, 0, sizeof (ev_statdata));
1879
1880 ev_stat_stat (EV_A_ w); 3299 ev_stat_stat (EV_A_ w);
1881 3300
3301 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1882 if (w->interval < MIN_STAT_INTERVAL) 3302 w->interval = MIN_STAT_INTERVAL;
1883 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1884 3303
1885 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3304 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1886 ev_set_priority (&w->timer, ev_priority (w)); 3305 ev_set_priority (&w->timer, ev_priority (w));
1887 3306
1888#if EV_USE_INOTIFY 3307#if EV_USE_INOTIFY
1889 infy_init (EV_A); 3308 infy_init (EV_A);
1890 3309
1891 if (fs_fd >= 0) 3310 if (fs_fd >= 0)
1892 infy_add (EV_A_ w); 3311 infy_add (EV_A_ w);
1893 else 3312 else
1894#endif 3313#endif
3314 {
1895 ev_timer_start (EV_A_ &w->timer); 3315 ev_timer_again (EV_A_ &w->timer);
3316 ev_unref (EV_A);
3317 }
1896 3318
1897 ev_start (EV_A_ (W)w, 1); 3319 ev_start (EV_A_ (W)w, 1);
3320
3321 EV_FREQUENT_CHECK;
1898} 3322}
1899 3323
1900void 3324void
1901ev_stat_stop (EV_P_ ev_stat *w) 3325ev_stat_stop (EV_P_ ev_stat *w)
1902{ 3326{
1903 ev_clear_pending (EV_A_ (W)w); 3327 clear_pending (EV_A_ (W)w);
1904 if (expect_false (!ev_is_active (w))) 3328 if (expect_false (!ev_is_active (w)))
1905 return; 3329 return;
1906 3330
3331 EV_FREQUENT_CHECK;
3332
1907#if EV_USE_INOTIFY 3333#if EV_USE_INOTIFY
1908 infy_del (EV_A_ w); 3334 infy_del (EV_A_ w);
1909#endif 3335#endif
3336
3337 if (ev_is_active (&w->timer))
3338 {
3339 ev_ref (EV_A);
1910 ev_timer_stop (EV_A_ &w->timer); 3340 ev_timer_stop (EV_A_ &w->timer);
3341 }
1911 3342
1912 ev_stop (EV_A_ (W)w); 3343 ev_stop (EV_A_ (W)w);
1913}
1914#endif
1915 3344
3345 EV_FREQUENT_CHECK;
3346}
3347#endif
3348
3349#if EV_IDLE_ENABLE
1916void 3350void
1917ev_idle_start (EV_P_ ev_idle *w) 3351ev_idle_start (EV_P_ ev_idle *w)
1918{ 3352{
1919 if (expect_false (ev_is_active (w))) 3353 if (expect_false (ev_is_active (w)))
1920 return; 3354 return;
1921 3355
3356 pri_adjust (EV_A_ (W)w);
3357
3358 EV_FREQUENT_CHECK;
3359
3360 {
3361 int active = ++idlecnt [ABSPRI (w)];
3362
3363 ++idleall;
1922 ev_start (EV_A_ (W)w, ++idlecnt); 3364 ev_start (EV_A_ (W)w, active);
3365
1923 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3366 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1924 idles [idlecnt - 1] = w; 3367 idles [ABSPRI (w)][active - 1] = w;
3368 }
3369
3370 EV_FREQUENT_CHECK;
1925} 3371}
1926 3372
1927void 3373void
1928ev_idle_stop (EV_P_ ev_idle *w) 3374ev_idle_stop (EV_P_ ev_idle *w)
1929{ 3375{
1930 ev_clear_pending (EV_A_ (W)w); 3376 clear_pending (EV_A_ (W)w);
1931 if (expect_false (!ev_is_active (w))) 3377 if (expect_false (!ev_is_active (w)))
1932 return; 3378 return;
1933 3379
3380 EV_FREQUENT_CHECK;
3381
1934 { 3382 {
1935 int active = ((W)w)->active; 3383 int active = ev_active (w);
1936 idles [active - 1] = idles [--idlecnt]; 3384
1937 ((W)idles [active - 1])->active = active; 3385 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3386 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3387
3388 ev_stop (EV_A_ (W)w);
3389 --idleall;
1938 } 3390 }
1939 3391
1940 ev_stop (EV_A_ (W)w); 3392 EV_FREQUENT_CHECK;
1941} 3393}
3394#endif
1942 3395
3396#if EV_PREPARE_ENABLE
1943void 3397void
1944ev_prepare_start (EV_P_ ev_prepare *w) 3398ev_prepare_start (EV_P_ ev_prepare *w)
1945{ 3399{
1946 if (expect_false (ev_is_active (w))) 3400 if (expect_false (ev_is_active (w)))
1947 return; 3401 return;
3402
3403 EV_FREQUENT_CHECK;
1948 3404
1949 ev_start (EV_A_ (W)w, ++preparecnt); 3405 ev_start (EV_A_ (W)w, ++preparecnt);
1950 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3406 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1951 prepares [preparecnt - 1] = w; 3407 prepares [preparecnt - 1] = w;
3408
3409 EV_FREQUENT_CHECK;
1952} 3410}
1953 3411
1954void 3412void
1955ev_prepare_stop (EV_P_ ev_prepare *w) 3413ev_prepare_stop (EV_P_ ev_prepare *w)
1956{ 3414{
1957 ev_clear_pending (EV_A_ (W)w); 3415 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 3416 if (expect_false (!ev_is_active (w)))
1959 return; 3417 return;
1960 3418
3419 EV_FREQUENT_CHECK;
3420
1961 { 3421 {
1962 int active = ((W)w)->active; 3422 int active = ev_active (w);
3423
1963 prepares [active - 1] = prepares [--preparecnt]; 3424 prepares [active - 1] = prepares [--preparecnt];
1964 ((W)prepares [active - 1])->active = active; 3425 ev_active (prepares [active - 1]) = active;
1965 } 3426 }
1966 3427
1967 ev_stop (EV_A_ (W)w); 3428 ev_stop (EV_A_ (W)w);
1968}
1969 3429
3430 EV_FREQUENT_CHECK;
3431}
3432#endif
3433
3434#if EV_CHECK_ENABLE
1970void 3435void
1971ev_check_start (EV_P_ ev_check *w) 3436ev_check_start (EV_P_ ev_check *w)
1972{ 3437{
1973 if (expect_false (ev_is_active (w))) 3438 if (expect_false (ev_is_active (w)))
1974 return; 3439 return;
3440
3441 EV_FREQUENT_CHECK;
1975 3442
1976 ev_start (EV_A_ (W)w, ++checkcnt); 3443 ev_start (EV_A_ (W)w, ++checkcnt);
1977 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3444 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1978 checks [checkcnt - 1] = w; 3445 checks [checkcnt - 1] = w;
3446
3447 EV_FREQUENT_CHECK;
1979} 3448}
1980 3449
1981void 3450void
1982ev_check_stop (EV_P_ ev_check *w) 3451ev_check_stop (EV_P_ ev_check *w)
1983{ 3452{
1984 ev_clear_pending (EV_A_ (W)w); 3453 clear_pending (EV_A_ (W)w);
1985 if (expect_false (!ev_is_active (w))) 3454 if (expect_false (!ev_is_active (w)))
1986 return; 3455 return;
1987 3456
3457 EV_FREQUENT_CHECK;
3458
1988 { 3459 {
1989 int active = ((W)w)->active; 3460 int active = ev_active (w);
3461
1990 checks [active - 1] = checks [--checkcnt]; 3462 checks [active - 1] = checks [--checkcnt];
1991 ((W)checks [active - 1])->active = active; 3463 ev_active (checks [active - 1]) = active;
1992 } 3464 }
1993 3465
1994 ev_stop (EV_A_ (W)w); 3466 ev_stop (EV_A_ (W)w);
3467
3468 EV_FREQUENT_CHECK;
1995} 3469}
3470#endif
1996 3471
1997#if EV_EMBED_ENABLE 3472#if EV_EMBED_ENABLE
1998void noinline 3473void noinline
1999ev_embed_sweep (EV_P_ ev_embed *w) 3474ev_embed_sweep (EV_P_ ev_embed *w)
2000{ 3475{
2001 ev_loop (w->loop, EVLOOP_NONBLOCK); 3476 ev_run (w->other, EVRUN_NOWAIT);
2002} 3477}
2003 3478
2004static void 3479static void
2005embed_cb (EV_P_ ev_io *io, int revents) 3480embed_io_cb (EV_P_ ev_io *io, int revents)
2006{ 3481{
2007 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3482 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2008 3483
2009 if (ev_cb (w)) 3484 if (ev_cb (w))
2010 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3485 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2011 else 3486 else
2012 ev_embed_sweep (loop, w); 3487 ev_run (w->other, EVRUN_NOWAIT);
2013} 3488}
3489
3490static void
3491embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3492{
3493 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3494
3495 {
3496 EV_P = w->other;
3497
3498 while (fdchangecnt)
3499 {
3500 fd_reify (EV_A);
3501 ev_run (EV_A_ EVRUN_NOWAIT);
3502 }
3503 }
3504}
3505
3506static void
3507embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3508{
3509 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3510
3511 ev_embed_stop (EV_A_ w);
3512
3513 {
3514 EV_P = w->other;
3515
3516 ev_loop_fork (EV_A);
3517 ev_run (EV_A_ EVRUN_NOWAIT);
3518 }
3519
3520 ev_embed_start (EV_A_ w);
3521}
3522
3523#if 0
3524static void
3525embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3526{
3527 ev_idle_stop (EV_A_ idle);
3528}
3529#endif
2014 3530
2015void 3531void
2016ev_embed_start (EV_P_ ev_embed *w) 3532ev_embed_start (EV_P_ ev_embed *w)
2017{ 3533{
2018 if (expect_false (ev_is_active (w))) 3534 if (expect_false (ev_is_active (w)))
2019 return; 3535 return;
2020 3536
2021 { 3537 {
2022 struct ev_loop *loop = w->loop; 3538 EV_P = w->other;
2023 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3539 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2024 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3540 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2025 } 3541 }
3542
3543 EV_FREQUENT_CHECK;
2026 3544
2027 ev_set_priority (&w->io, ev_priority (w)); 3545 ev_set_priority (&w->io, ev_priority (w));
2028 ev_io_start (EV_A_ &w->io); 3546 ev_io_start (EV_A_ &w->io);
2029 3547
3548 ev_prepare_init (&w->prepare, embed_prepare_cb);
3549 ev_set_priority (&w->prepare, EV_MINPRI);
3550 ev_prepare_start (EV_A_ &w->prepare);
3551
3552 ev_fork_init (&w->fork, embed_fork_cb);
3553 ev_fork_start (EV_A_ &w->fork);
3554
3555 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3556
2030 ev_start (EV_A_ (W)w, 1); 3557 ev_start (EV_A_ (W)w, 1);
3558
3559 EV_FREQUENT_CHECK;
2031} 3560}
2032 3561
2033void 3562void
2034ev_embed_stop (EV_P_ ev_embed *w) 3563ev_embed_stop (EV_P_ ev_embed *w)
2035{ 3564{
2036 ev_clear_pending (EV_A_ (W)w); 3565 clear_pending (EV_A_ (W)w);
2037 if (expect_false (!ev_is_active (w))) 3566 if (expect_false (!ev_is_active (w)))
2038 return; 3567 return;
2039 3568
3569 EV_FREQUENT_CHECK;
3570
2040 ev_io_stop (EV_A_ &w->io); 3571 ev_io_stop (EV_A_ &w->io);
3572 ev_prepare_stop (EV_A_ &w->prepare);
3573 ev_fork_stop (EV_A_ &w->fork);
2041 3574
2042 ev_stop (EV_A_ (W)w); 3575 ev_stop (EV_A_ (W)w);
3576
3577 EV_FREQUENT_CHECK;
2043} 3578}
2044#endif 3579#endif
2045 3580
2046#if EV_FORK_ENABLE 3581#if EV_FORK_ENABLE
2047void 3582void
2048ev_fork_start (EV_P_ ev_fork *w) 3583ev_fork_start (EV_P_ ev_fork *w)
2049{ 3584{
2050 if (expect_false (ev_is_active (w))) 3585 if (expect_false (ev_is_active (w)))
2051 return; 3586 return;
3587
3588 EV_FREQUENT_CHECK;
2052 3589
2053 ev_start (EV_A_ (W)w, ++forkcnt); 3590 ev_start (EV_A_ (W)w, ++forkcnt);
2054 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3591 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2055 forks [forkcnt - 1] = w; 3592 forks [forkcnt - 1] = w;
3593
3594 EV_FREQUENT_CHECK;
2056} 3595}
2057 3596
2058void 3597void
2059ev_fork_stop (EV_P_ ev_fork *w) 3598ev_fork_stop (EV_P_ ev_fork *w)
2060{ 3599{
2061 ev_clear_pending (EV_A_ (W)w); 3600 clear_pending (EV_A_ (W)w);
2062 if (expect_false (!ev_is_active (w))) 3601 if (expect_false (!ev_is_active (w)))
2063 return; 3602 return;
2064 3603
3604 EV_FREQUENT_CHECK;
3605
2065 { 3606 {
2066 int active = ((W)w)->active; 3607 int active = ev_active (w);
3608
2067 forks [active - 1] = forks [--forkcnt]; 3609 forks [active - 1] = forks [--forkcnt];
2068 ((W)forks [active - 1])->active = active; 3610 ev_active (forks [active - 1]) = active;
2069 } 3611 }
2070 3612
2071 ev_stop (EV_A_ (W)w); 3613 ev_stop (EV_A_ (W)w);
3614
3615 EV_FREQUENT_CHECK;
3616}
3617#endif
3618
3619#if EV_CLEANUP_ENABLE
3620void
3621ev_cleanup_start (EV_P_ ev_cleanup *w)
3622{
3623 if (expect_false (ev_is_active (w)))
3624 return;
3625
3626 EV_FREQUENT_CHECK;
3627
3628 ev_start (EV_A_ (W)w, ++cleanupcnt);
3629 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3630 cleanups [cleanupcnt - 1] = w;
3631
3632 /* cleanup watchers should never keep a refcount on the loop */
3633 ev_unref (EV_A);
3634 EV_FREQUENT_CHECK;
3635}
3636
3637void
3638ev_cleanup_stop (EV_P_ ev_cleanup *w)
3639{
3640 clear_pending (EV_A_ (W)w);
3641 if (expect_false (!ev_is_active (w)))
3642 return;
3643
3644 EV_FREQUENT_CHECK;
3645 ev_ref (EV_A);
3646
3647 {
3648 int active = ev_active (w);
3649
3650 cleanups [active - 1] = cleanups [--cleanupcnt];
3651 ev_active (cleanups [active - 1]) = active;
3652 }
3653
3654 ev_stop (EV_A_ (W)w);
3655
3656 EV_FREQUENT_CHECK;
3657}
3658#endif
3659
3660#if EV_ASYNC_ENABLE
3661void
3662ev_async_start (EV_P_ ev_async *w)
3663{
3664 if (expect_false (ev_is_active (w)))
3665 return;
3666
3667 w->sent = 0;
3668
3669 evpipe_init (EV_A);
3670
3671 EV_FREQUENT_CHECK;
3672
3673 ev_start (EV_A_ (W)w, ++asynccnt);
3674 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3675 asyncs [asynccnt - 1] = w;
3676
3677 EV_FREQUENT_CHECK;
3678}
3679
3680void
3681ev_async_stop (EV_P_ ev_async *w)
3682{
3683 clear_pending (EV_A_ (W)w);
3684 if (expect_false (!ev_is_active (w)))
3685 return;
3686
3687 EV_FREQUENT_CHECK;
3688
3689 {
3690 int active = ev_active (w);
3691
3692 asyncs [active - 1] = asyncs [--asynccnt];
3693 ev_active (asyncs [active - 1]) = active;
3694 }
3695
3696 ev_stop (EV_A_ (W)w);
3697
3698 EV_FREQUENT_CHECK;
3699}
3700
3701void
3702ev_async_send (EV_P_ ev_async *w)
3703{
3704 w->sent = 1;
3705 evpipe_write (EV_A_ &async_pending);
2072} 3706}
2073#endif 3707#endif
2074 3708
2075/*****************************************************************************/ 3709/*****************************************************************************/
2076 3710
2086once_cb (EV_P_ struct ev_once *once, int revents) 3720once_cb (EV_P_ struct ev_once *once, int revents)
2087{ 3721{
2088 void (*cb)(int revents, void *arg) = once->cb; 3722 void (*cb)(int revents, void *arg) = once->cb;
2089 void *arg = once->arg; 3723 void *arg = once->arg;
2090 3724
2091 ev_io_stop (EV_A_ &once->io); 3725 ev_io_stop (EV_A_ &once->io);
2092 ev_timer_stop (EV_A_ &once->to); 3726 ev_timer_stop (EV_A_ &once->to);
2093 ev_free (once); 3727 ev_free (once);
2094 3728
2095 cb (revents, arg); 3729 cb (revents, arg);
2096} 3730}
2097 3731
2098static void 3732static void
2099once_cb_io (EV_P_ ev_io *w, int revents) 3733once_cb_io (EV_P_ ev_io *w, int revents)
2100{ 3734{
2101 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3735 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3736
3737 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2102} 3738}
2103 3739
2104static void 3740static void
2105once_cb_to (EV_P_ ev_timer *w, int revents) 3741once_cb_to (EV_P_ ev_timer *w, int revents)
2106{ 3742{
2107 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3743 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3744
3745 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2108} 3746}
2109 3747
2110void 3748void
2111ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3749ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2112{ 3750{
2113 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3751 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2114 3752
2115 if (expect_false (!once)) 3753 if (expect_false (!once))
2116 { 3754 {
2117 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3755 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2118 return; 3756 return;
2119 } 3757 }
2120 3758
2121 once->cb = cb; 3759 once->cb = cb;
2122 once->arg = arg; 3760 once->arg = arg;
2134 ev_timer_set (&once->to, timeout, 0.); 3772 ev_timer_set (&once->to, timeout, 0.);
2135 ev_timer_start (EV_A_ &once->to); 3773 ev_timer_start (EV_A_ &once->to);
2136 } 3774 }
2137} 3775}
2138 3776
2139#ifdef __cplusplus 3777/*****************************************************************************/
2140} 3778
3779#if EV_WALK_ENABLE
3780void
3781ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3782{
3783 int i, j;
3784 ev_watcher_list *wl, *wn;
3785
3786 if (types & (EV_IO | EV_EMBED))
3787 for (i = 0; i < anfdmax; ++i)
3788 for (wl = anfds [i].head; wl; )
3789 {
3790 wn = wl->next;
3791
3792#if EV_EMBED_ENABLE
3793 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3794 {
3795 if (types & EV_EMBED)
3796 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3797 }
3798 else
3799#endif
3800#if EV_USE_INOTIFY
3801 if (ev_cb ((ev_io *)wl) == infy_cb)
3802 ;
3803 else
3804#endif
3805 if ((ev_io *)wl != &pipe_w)
3806 if (types & EV_IO)
3807 cb (EV_A_ EV_IO, wl);
3808
3809 wl = wn;
3810 }
3811
3812 if (types & (EV_TIMER | EV_STAT))
3813 for (i = timercnt + HEAP0; i-- > HEAP0; )
3814#if EV_STAT_ENABLE
3815 /*TODO: timer is not always active*/
3816 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3817 {
3818 if (types & EV_STAT)
3819 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3820 }
3821 else
3822#endif
3823 if (types & EV_TIMER)
3824 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3825
3826#if EV_PERIODIC_ENABLE
3827 if (types & EV_PERIODIC)
3828 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3829 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3830#endif
3831
3832#if EV_IDLE_ENABLE
3833 if (types & EV_IDLE)
3834 for (j = NUMPRI; i--; )
3835 for (i = idlecnt [j]; i--; )
3836 cb (EV_A_ EV_IDLE, idles [j][i]);
3837#endif
3838
3839#if EV_FORK_ENABLE
3840 if (types & EV_FORK)
3841 for (i = forkcnt; i--; )
3842 if (ev_cb (forks [i]) != embed_fork_cb)
3843 cb (EV_A_ EV_FORK, forks [i]);
3844#endif
3845
3846#if EV_ASYNC_ENABLE
3847 if (types & EV_ASYNC)
3848 for (i = asynccnt; i--; )
3849 cb (EV_A_ EV_ASYNC, asyncs [i]);
3850#endif
3851
3852#if EV_PREPARE_ENABLE
3853 if (types & EV_PREPARE)
3854 for (i = preparecnt; i--; )
3855# if EV_EMBED_ENABLE
3856 if (ev_cb (prepares [i]) != embed_prepare_cb)
2141#endif 3857# endif
3858 cb (EV_A_ EV_PREPARE, prepares [i]);
3859#endif
2142 3860
3861#if EV_CHECK_ENABLE
3862 if (types & EV_CHECK)
3863 for (i = checkcnt; i--; )
3864 cb (EV_A_ EV_CHECK, checks [i]);
3865#endif
3866
3867#if EV_SIGNAL_ENABLE
3868 if (types & EV_SIGNAL)
3869 for (i = 0; i < EV_NSIG - 1; ++i)
3870 for (wl = signals [i].head; wl; )
3871 {
3872 wn = wl->next;
3873 cb (EV_A_ EV_SIGNAL, wl);
3874 wl = wn;
3875 }
3876#endif
3877
3878#if EV_CHILD_ENABLE
3879 if (types & EV_CHILD)
3880 for (i = (EV_PID_HASHSIZE); i--; )
3881 for (wl = childs [i]; wl; )
3882 {
3883 wn = wl->next;
3884 cb (EV_A_ EV_CHILD, wl);
3885 wl = wn;
3886 }
3887#endif
3888/* EV_STAT 0x00001000 /* stat data changed */
3889/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3890}
3891#endif
3892
3893#if EV_MULTIPLICITY
3894 #include "ev_wrap.h"
3895#endif
3896
3897EV_CPP(})
3898

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines