ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.128 by root, Thu Nov 22 12:28:27 2007 UTC vs.
Revision 1.372 by root, Wed Feb 16 08:02:50 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
38 61
39# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
42# endif 65# endif
43# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
45# endif 68# endif
46# else 69# else
47# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
49# endif 72# endif
50# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
52# endif 75# endif
53# endif 76# endif
54 77
78# if HAVE_NANOSLEEP
55# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
61# endif 85# endif
62 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
63# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
64# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
69# endif 103# endif
70 104
71# ifndef EV_USE_EPOLL
72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
73# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
74# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
75# define EV_USE_EPOLL 0
76# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
77# endif 112# endif
78 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
79# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
85# endif 121# endif
86 122
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
90# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
91# define EV_USE_PORT 0
92# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
93# endif 130# endif
94 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
95#endif 159#endif
96 160
97#include <math.h> 161#include <math.h>
98#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
99#include <fcntl.h> 164#include <fcntl.h>
100#include <stddef.h> 165#include <stddef.h>
101 166
102#include <stdio.h> 167#include <stdio.h>
103 168
104#include <assert.h> 169#include <assert.h>
105#include <errno.h> 170#include <errno.h>
106#include <sys/types.h> 171#include <sys/types.h>
107#include <time.h> 172#include <time.h>
173#include <limits.h>
108 174
109#include <signal.h> 175#include <signal.h>
110 176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
111#ifndef _WIN32 185#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 186# include <sys/time.h>
114# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
115#else 189#else
190# include <io.h>
116# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 192# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
120# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
121#endif 242# endif
122 243#endif
123/**/
124 244
125#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
126# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
127#endif 251#endif
128 252
129#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
131#endif 263#endif
132 264
133#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
135#endif 267#endif
136 268
137#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
138# ifdef _WIN32 270# ifdef _WIN32
139# define EV_USE_POLL 0 271# define EV_USE_POLL 0
140# else 272# else
141# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
142# endif 274# endif
143#endif 275#endif
144 276
145#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
146# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
147#endif 283#endif
148 284
149#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
151#endif 287#endif
152 288
153#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 290# define EV_USE_PORT 0
155#endif 291#endif
156 292
157/**/ 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
158 300
159/* darwin simply cannot be helped */ 301#ifndef EV_PID_HASHSIZE
160#ifdef __APPLE__ 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
161# undef EV_USE_POLL 361# undef EV_USE_POLL
162# undef EV_USE_KQUEUE 362# define EV_USE_POLL 0
163#endif 363#endif
164 364
165#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
170#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
173#endif 373#endif
174 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381/* hp-ux has it in sys/time.h, which we unconditionally include above */
382# if !defined(_WIN32) && !defined(__hpux)
383# include <sys/select.h>
384# endif
385#endif
386
387#if EV_USE_INOTIFY
388# include <sys/statfs.h>
389# include <sys/inotify.h>
390/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
391# ifndef IN_DONT_FOLLOW
392# undef EV_USE_INOTIFY
393# define EV_USE_INOTIFY 0
394# endif
395#endif
396
175#if EV_SELECT_IS_WINSOCKET 397#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 398# include <winsock.h>
177#endif 399#endif
178 400
401#if EV_USE_EVENTFD
402/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
403# include <stdint.h>
404# ifndef EFD_NONBLOCK
405# define EFD_NONBLOCK O_NONBLOCK
406# endif
407# ifndef EFD_CLOEXEC
408# ifdef O_CLOEXEC
409# define EFD_CLOEXEC O_CLOEXEC
410# else
411# define EFD_CLOEXEC 02000000
412# endif
413# endif
414EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
415#endif
416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
431
432struct signalfd_siginfo
433{
434 uint32_t ssi_signo;
435 char pad[128 - sizeof (uint32_t)];
436};
437#endif
438
179/**/ 439/**/
440
441#if EV_VERIFY >= 3
442# define EV_FREQUENT_CHECK ev_verify (EV_A)
443#else
444# define EV_FREQUENT_CHECK do { } while (0)
445#endif
446
447/*
448 * This is used to avoid floating point rounding problems.
449 * It is added to ev_rt_now when scheduling periodics
450 * to ensure progress, time-wise, even when rounding
451 * errors are against us.
452 * This value is good at least till the year 4000.
453 * Better solutions welcome.
454 */
455#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 456
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 457#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 458#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
185 459
186#ifdef EV_H 460#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
187# include EV_H 461#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
188#else
189# include "ev.h"
190#endif
191 462
192#if __GNUC__ >= 3 463#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 464# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 465# define noinline __attribute__ ((noinline))
195#else 466#else
196# define expect(expr,value) (expr) 467# define expect(expr,value) (expr)
197# define inline static 468# define noinline
469# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
470# define inline
471# endif
198#endif 472#endif
199 473
200#define expect_false(expr) expect ((expr) != 0, 0) 474#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 475#define expect_true(expr) expect ((expr) != 0, 1)
476#define inline_size static inline
202 477
478#if EV_FEATURE_CODE
479# define inline_speed static inline
480#else
481# define inline_speed static noinline
482#endif
483
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 484#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
485
486#if EV_MINPRI == EV_MAXPRI
487# define ABSPRI(w) (((W)w), 0)
488#else
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 489# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
490#endif
205 491
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 492#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 493#define EMPTY2(a,b) /* used to suppress some warnings */
208 494
209typedef struct ev_watcher *W; 495typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 496typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 497typedef ev_watcher_time *WT;
212 498
499#define ev_active(w) ((W)(w))->active
500#define ev_at(w) ((WT)(w))->at
501
502#if EV_USE_REALTIME
503/* sig_atomic_t is used to avoid per-thread variables or locking but still */
504/* giving it a reasonably high chance of working on typical architectures */
505static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
506#endif
507
508#if EV_USE_MONOTONIC
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 509static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
510#endif
511
512#ifndef EV_FD_TO_WIN32_HANDLE
513# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
514#endif
515#ifndef EV_WIN32_HANDLE_TO_FD
516# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
517#endif
518#ifndef EV_WIN32_CLOSE_FD
519# define EV_WIN32_CLOSE_FD(fd) close (fd)
520#endif
214 521
215#ifdef _WIN32 522#ifdef _WIN32
216# include "ev_win32.c" 523# include "ev_win32.c"
217#endif 524#endif
218 525
219/*****************************************************************************/ 526/*****************************************************************************/
220 527
528#ifdef __linux
529# include <sys/utsname.h>
530#endif
531
532static unsigned int noinline
533ev_linux_version (void)
534{
535#ifdef __linux
536 unsigned int v = 0;
537 struct utsname buf;
538 int i;
539 char *p = buf.release;
540
541 if (uname (&buf))
542 return 0;
543
544 for (i = 3+1; --i; )
545 {
546 unsigned int c = 0;
547
548 for (;;)
549 {
550 if (*p >= '0' && *p <= '9')
551 c = c * 10 + *p++ - '0';
552 else
553 {
554 p += *p == '.';
555 break;
556 }
557 }
558
559 v = (v << 8) | c;
560 }
561
562 return v;
563#else
564 return 0;
565#endif
566}
567
568/*****************************************************************************/
569
570#if EV_AVOID_STDIO
571static void noinline
572ev_printerr (const char *msg)
573{
574 write (STDERR_FILENO, msg, strlen (msg));
575}
576#endif
577
221static void (*syserr_cb)(const char *msg); 578static void (*syserr_cb)(const char *msg);
222 579
580void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 581ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 582{
225 syserr_cb = cb; 583 syserr_cb = cb;
226} 584}
227 585
228static void 586static void noinline
229syserr (const char *msg) 587ev_syserr (const char *msg)
230{ 588{
231 if (!msg) 589 if (!msg)
232 msg = "(libev) system error"; 590 msg = "(libev) system error";
233 591
234 if (syserr_cb) 592 if (syserr_cb)
235 syserr_cb (msg); 593 syserr_cb (msg);
236 else 594 else
237 { 595 {
596#if EV_AVOID_STDIO
597 ev_printerr (msg);
598 ev_printerr (": ");
599 ev_printerr (strerror (errno));
600 ev_printerr ("\n");
601#else
238 perror (msg); 602 perror (msg);
603#endif
239 abort (); 604 abort ();
240 } 605 }
241} 606}
242 607
608static void *
609ev_realloc_emul (void *ptr, long size)
610{
611#if __GLIBC__
612 return realloc (ptr, size);
613#else
614 /* some systems, notably openbsd and darwin, fail to properly
615 * implement realloc (x, 0) (as required by both ansi c-89 and
616 * the single unix specification, so work around them here.
617 */
618
619 if (size)
620 return realloc (ptr, size);
621
622 free (ptr);
623 return 0;
624#endif
625}
626
243static void *(*alloc)(void *ptr, long size); 627static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 628
629void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 630ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 631{
247 alloc = cb; 632 alloc = cb;
248} 633}
249 634
250static void * 635inline_speed void *
251ev_realloc (void *ptr, long size) 636ev_realloc (void *ptr, long size)
252{ 637{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 638 ptr = alloc (ptr, size);
254 639
255 if (!ptr && size) 640 if (!ptr && size)
256 { 641 {
642#if EV_AVOID_STDIO
643 ev_printerr ("(libev) memory allocation failed, aborting.\n");
644#else
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 645 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
646#endif
258 abort (); 647 abort ();
259 } 648 }
260 649
261 return ptr; 650 return ptr;
262} 651}
264#define ev_malloc(size) ev_realloc (0, (size)) 653#define ev_malloc(size) ev_realloc (0, (size))
265#define ev_free(ptr) ev_realloc ((ptr), 0) 654#define ev_free(ptr) ev_realloc ((ptr), 0)
266 655
267/*****************************************************************************/ 656/*****************************************************************************/
268 657
658/* set in reify when reification needed */
659#define EV_ANFD_REIFY 1
660
661/* file descriptor info structure */
269typedef struct 662typedef struct
270{ 663{
271 WL head; 664 WL head;
272 unsigned char events; 665 unsigned char events; /* the events watched for */
666 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
667 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
273 unsigned char reify; 668 unsigned char unused;
669#if EV_USE_EPOLL
670 unsigned int egen; /* generation counter to counter epoll bugs */
671#endif
274#if EV_SELECT_IS_WINSOCKET 672#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
275 SOCKET handle; 673 SOCKET handle;
276#endif 674#endif
675#if EV_USE_IOCP
676 OVERLAPPED or, ow;
677#endif
277} ANFD; 678} ANFD;
278 679
680/* stores the pending event set for a given watcher */
279typedef struct 681typedef struct
280{ 682{
281 W w; 683 W w;
282 int events; 684 int events; /* the pending event set for the given watcher */
283} ANPENDING; 685} ANPENDING;
686
687#if EV_USE_INOTIFY
688/* hash table entry per inotify-id */
689typedef struct
690{
691 WL head;
692} ANFS;
693#endif
694
695/* Heap Entry */
696#if EV_HEAP_CACHE_AT
697 /* a heap element */
698 typedef struct {
699 ev_tstamp at;
700 WT w;
701 } ANHE;
702
703 #define ANHE_w(he) (he).w /* access watcher, read-write */
704 #define ANHE_at(he) (he).at /* access cached at, read-only */
705 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
706#else
707 /* a heap element */
708 typedef WT ANHE;
709
710 #define ANHE_w(he) (he)
711 #define ANHE_at(he) (he)->at
712 #define ANHE_at_cache(he)
713#endif
284 714
285#if EV_MULTIPLICITY 715#if EV_MULTIPLICITY
286 716
287 struct ev_loop 717 struct ev_loop
288 { 718 {
306 736
307 static int ev_default_loop_ptr; 737 static int ev_default_loop_ptr;
308 738
309#endif 739#endif
310 740
741#if EV_FEATURE_API
742# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
743# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
744# define EV_INVOKE_PENDING invoke_cb (EV_A)
745#else
746# define EV_RELEASE_CB (void)0
747# define EV_ACQUIRE_CB (void)0
748# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
749#endif
750
751#define EVBREAK_RECURSE 0x80
752
311/*****************************************************************************/ 753/*****************************************************************************/
312 754
755#ifndef EV_HAVE_EV_TIME
313ev_tstamp 756ev_tstamp
314ev_time (void) 757ev_time (void)
315{ 758{
316#if EV_USE_REALTIME 759#if EV_USE_REALTIME
760 if (expect_true (have_realtime))
761 {
317 struct timespec ts; 762 struct timespec ts;
318 clock_gettime (CLOCK_REALTIME, &ts); 763 clock_gettime (CLOCK_REALTIME, &ts);
319 return ts.tv_sec + ts.tv_nsec * 1e-9; 764 return ts.tv_sec + ts.tv_nsec * 1e-9;
320#else 765 }
766#endif
767
321 struct timeval tv; 768 struct timeval tv;
322 gettimeofday (&tv, 0); 769 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 770 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif
325} 771}
772#endif
326 773
327inline ev_tstamp 774inline_size ev_tstamp
328get_clock (void) 775get_clock (void)
329{ 776{
330#if EV_USE_MONOTONIC 777#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 778 if (expect_true (have_monotonic))
332 { 779 {
345{ 792{
346 return ev_rt_now; 793 return ev_rt_now;
347} 794}
348#endif 795#endif
349 796
350#define array_roundsize(type,n) (((n) | 4) & ~3) 797void
798ev_sleep (ev_tstamp delay)
799{
800 if (delay > 0.)
801 {
802#if EV_USE_NANOSLEEP
803 struct timespec ts;
804
805 EV_TS_SET (ts, delay);
806 nanosleep (&ts, 0);
807#elif defined(_WIN32)
808 Sleep ((unsigned long)(delay * 1e3));
809#else
810 struct timeval tv;
811
812 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
813 /* something not guaranteed by newer posix versions, but guaranteed */
814 /* by older ones */
815 EV_TV_SET (tv, delay);
816 select (0, 0, 0, 0, &tv);
817#endif
818 }
819}
820
821inline_speed int
822ev_timeout_to_ms (ev_tstamp timeout)
823{
824 int ms = timeout * 1000. + .999999;
825
826 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
827}
828
829/*****************************************************************************/
830
831#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
832
833/* find a suitable new size for the given array, */
834/* hopefully by rounding to a nice-to-malloc size */
835inline_size int
836array_nextsize (int elem, int cur, int cnt)
837{
838 int ncur = cur + 1;
839
840 do
841 ncur <<= 1;
842 while (cnt > ncur);
843
844 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
845 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
846 {
847 ncur *= elem;
848 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
849 ncur = ncur - sizeof (void *) * 4;
850 ncur /= elem;
851 }
852
853 return ncur;
854}
855
856static noinline void *
857array_realloc (int elem, void *base, int *cur, int cnt)
858{
859 *cur = array_nextsize (elem, *cur, cnt);
860 return ev_realloc (base, elem * *cur);
861}
862
863#define array_init_zero(base,count) \
864 memset ((void *)(base), 0, sizeof (*(base)) * (count))
351 865
352#define array_needsize(type,base,cur,cnt,init) \ 866#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 867 if (expect_false ((cnt) > (cur))) \
354 { \ 868 { \
355 int newcnt = cur; \ 869 int ocur_ = (cur); \
356 do \ 870 (base) = (type *)array_realloc \
357 { \ 871 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 872 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 873 }
366 874
875#if 0
367#define array_slim(type,stem) \ 876#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 877 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 878 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 879 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 880 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 881 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 882 }
883#endif
374 884
375#define array_free(stem, idx) \ 885#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 886 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
377 887
378/*****************************************************************************/ 888/*****************************************************************************/
379 889
380static void 890/* dummy callback for pending events */
381anfds_init (ANFD *base, int count) 891static void noinline
892pendingcb (EV_P_ ev_prepare *w, int revents)
382{ 893{
383 while (count--)
384 {
385 base->head = 0;
386 base->events = EV_NONE;
387 base->reify = 0;
388
389 ++base;
390 }
391} 894}
392 895
393void 896void noinline
394ev_feed_event (EV_P_ void *w, int revents) 897ev_feed_event (EV_P_ void *w, int revents)
395{ 898{
396 W w_ = (W)w; 899 W w_ = (W)w;
900 int pri = ABSPRI (w_);
397 901
398 if (expect_false (w_->pending)) 902 if (expect_false (w_->pending))
903 pendings [pri][w_->pending - 1].events |= revents;
904 else
399 { 905 {
906 w_->pending = ++pendingcnt [pri];
907 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
908 pendings [pri][w_->pending - 1].w = w_;
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 909 pendings [pri][w_->pending - 1].events = revents;
401 return;
402 } 910 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408} 911}
409 912
410static void 913inline_speed void
914feed_reverse (EV_P_ W w)
915{
916 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
917 rfeeds [rfeedcnt++] = w;
918}
919
920inline_size void
921feed_reverse_done (EV_P_ int revents)
922{
923 do
924 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
925 while (rfeedcnt);
926}
927
928inline_speed void
411queue_events (EV_P_ W *events, int eventcnt, int type) 929queue_events (EV_P_ W *events, int eventcnt, int type)
412{ 930{
413 int i; 931 int i;
414 932
415 for (i = 0; i < eventcnt; ++i) 933 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type); 934 ev_feed_event (EV_A_ events [i], type);
417} 935}
418 936
937/*****************************************************************************/
938
419inline void 939inline_speed void
420fd_event (EV_P_ int fd, int revents) 940fd_event_nocheck (EV_P_ int fd, int revents)
421{ 941{
422 ANFD *anfd = anfds + fd; 942 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 943 ev_io *w;
424 944
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 945 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 946 {
427 int ev = w->events & revents; 947 int ev = w->events & revents;
428 948
429 if (ev) 949 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 950 ev_feed_event (EV_A_ (W)w, ev);
431 } 951 }
432} 952}
433 953
954/* do not submit kernel events for fds that have reify set */
955/* because that means they changed while we were polling for new events */
956inline_speed void
957fd_event (EV_P_ int fd, int revents)
958{
959 ANFD *anfd = anfds + fd;
960
961 if (expect_true (!anfd->reify))
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
434void 965void
435ev_feed_fd_event (EV_P_ int fd, int revents) 966ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 967{
968 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 969 fd_event_nocheck (EV_A_ fd, revents);
438} 970}
439 971
440/*****************************************************************************/ 972/* make sure the external fd watch events are in-sync */
441 973/* with the kernel/libev internal state */
442inline void 974inline_size void
443fd_reify (EV_P) 975fd_reify (EV_P)
444{ 976{
445 int i; 977 int i;
446 978
979#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
447 for (i = 0; i < fdchangecnt; ++i) 980 for (i = 0; i < fdchangecnt; ++i)
448 { 981 {
449 int fd = fdchanges [i]; 982 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 983 ANFD *anfd = anfds + fd;
451 struct ev_io *w;
452 984
453 int events = 0; 985 if (anfd->reify & EV__IOFDSET)
454
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
456 events |= w->events;
457
458#if EV_SELECT_IS_WINSOCKET
459 if (events)
460 { 986 {
987 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
988
989 if (handle != anfd->handle)
990 {
461 unsigned long argp; 991 unsigned long arg;
462 anfd->handle = _get_osfhandle (fd); 992
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 993 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
994
995 /* handle changed, but fd didn't - we need to do it in two steps */
996 backend_modify (EV_A_ fd, anfd->events, 0);
997 anfd->events = 0;
998 anfd->handle = handle;
999 }
464 } 1000 }
1001 }
465#endif 1002#endif
466 1003
1004 for (i = 0; i < fdchangecnt; ++i)
1005 {
1006 int fd = fdchanges [i];
1007 ANFD *anfd = anfds + fd;
1008 ev_io *w;
1009
1010 unsigned char o_events = anfd->events;
1011 unsigned char o_reify = anfd->reify;
1012
467 anfd->reify = 0; 1013 anfd->reify = 0;
468 1014
469 method_modify (EV_A_ fd, anfd->events, events); 1015 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1016 {
470 anfd->events = events; 1017 anfd->events = 0;
1018
1019 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1020 anfd->events |= (unsigned char)w->events;
1021
1022 if (o_events != anfd->events)
1023 o_reify = EV__IOFDSET; /* actually |= */
1024 }
1025
1026 if (o_reify & EV__IOFDSET)
1027 backend_modify (EV_A_ fd, o_events, anfd->events);
471 } 1028 }
472 1029
473 fdchangecnt = 0; 1030 fdchangecnt = 0;
474} 1031}
475 1032
476static void 1033/* something about the given fd changed */
1034inline_size void
477fd_change (EV_P_ int fd) 1035fd_change (EV_P_ int fd, int flags)
478{ 1036{
479 if (expect_false (anfds [fd].reify)) 1037 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 1038 anfds [fd].reify |= flags;
483 1039
1040 if (expect_true (!reify))
1041 {
484 ++fdchangecnt; 1042 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1043 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 1044 fdchanges [fdchangecnt - 1] = fd;
1045 }
487} 1046}
488 1047
489static void 1048/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1049inline_speed void
490fd_kill (EV_P_ int fd) 1050fd_kill (EV_P_ int fd)
491{ 1051{
492 struct ev_io *w; 1052 ev_io *w;
493 1053
494 while ((w = (struct ev_io *)anfds [fd].head)) 1054 while ((w = (ev_io *)anfds [fd].head))
495 { 1055 {
496 ev_io_stop (EV_A_ w); 1056 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1057 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 1058 }
499} 1059}
500 1060
1061/* check whether the given fd is actually valid, for error recovery */
501inline int 1062inline_size int
502fd_valid (int fd) 1063fd_valid (int fd)
503{ 1064{
504#ifdef _WIN32 1065#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 1066 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
506#else 1067#else
507 return fcntl (fd, F_GETFD) != -1; 1068 return fcntl (fd, F_GETFD) != -1;
508#endif 1069#endif
509} 1070}
510 1071
511/* called on EBADF to verify fds */ 1072/* called on EBADF to verify fds */
512static void 1073static void noinline
513fd_ebadf (EV_P) 1074fd_ebadf (EV_P)
514{ 1075{
515 int fd; 1076 int fd;
516 1077
517 for (fd = 0; fd < anfdmax; ++fd) 1078 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 1079 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 1080 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 1081 fd_kill (EV_A_ fd);
521} 1082}
522 1083
523/* called on ENOMEM in select/poll to kill some fds and retry */ 1084/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 1085static void noinline
525fd_enomem (EV_P) 1086fd_enomem (EV_P)
526{ 1087{
527 int fd; 1088 int fd;
528 1089
529 for (fd = anfdmax; fd--; ) 1090 for (fd = anfdmax; fd--; )
530 if (anfds [fd].events) 1091 if (anfds [fd].events)
531 { 1092 {
532 fd_kill (EV_A_ fd); 1093 fd_kill (EV_A_ fd);
533 return; 1094 break;
534 } 1095 }
535} 1096}
536 1097
537/* usually called after fork if method needs to re-arm all fds from scratch */ 1098/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 1099static void noinline
539fd_rearm_all (EV_P) 1100fd_rearm_all (EV_P)
540{ 1101{
541 int fd; 1102 int fd;
542 1103
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 1104 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 1105 if (anfds [fd].events)
546 { 1106 {
547 anfds [fd].events = 0; 1107 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 1108 anfds [fd].emask = 0;
1109 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
549 } 1110 }
550} 1111}
551 1112
552/*****************************************************************************/ 1113/* used to prepare libev internal fd's */
553 1114/* this is not fork-safe */
554static void
555upheap (WT *heap, int k)
556{
557 WT w = heap [k];
558
559 while (k && heap [k >> 1]->at > w->at)
560 {
561 heap [k] = heap [k >> 1];
562 ((W)heap [k])->active = k + 1;
563 k >>= 1;
564 }
565
566 heap [k] = w;
567 ((W)heap [k])->active = k + 1;
568
569}
570
571static void
572downheap (WT *heap, int N, int k)
573{
574 WT w = heap [k];
575
576 while (k < (N >> 1))
577 {
578 int j = k << 1;
579
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
581 ++j;
582
583 if (w->at <= heap [j]->at)
584 break;
585
586 heap [k] = heap [j];
587 ((W)heap [k])->active = k + 1;
588 k = j;
589 }
590
591 heap [k] = w;
592 ((W)heap [k])->active = k + 1;
593}
594
595inline void 1115inline_speed void
596adjustheap (WT *heap, int N, int k)
597{
598 upheap (heap, k);
599 downheap (heap, N, k);
600}
601
602/*****************************************************************************/
603
604typedef struct
605{
606 WL head;
607 sig_atomic_t volatile gotsig;
608} ANSIG;
609
610static ANSIG *signals;
611static int signalmax;
612
613static int sigpipe [2];
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616
617static void
618signals_init (ANSIG *base, int count)
619{
620 while (count--)
621 {
622 base->head = 0;
623 base->gotsig = 0;
624
625 ++base;
626 }
627}
628
629static void
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
636 signals [signum - 1].gotsig = 1;
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 1116fd_intern (int fd)
682{ 1117{
683#ifdef _WIN32 1118#ifdef _WIN32
684 int arg = 1; 1119 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1120 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
686#else 1121#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1122 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1123 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1124#endif
690} 1125}
691 1126
1127/*****************************************************************************/
1128
1129/*
1130 * the heap functions want a real array index. array index 0 is guaranteed to not
1131 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1132 * the branching factor of the d-tree.
1133 */
1134
1135/*
1136 * at the moment we allow libev the luxury of two heaps,
1137 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1138 * which is more cache-efficient.
1139 * the difference is about 5% with 50000+ watchers.
1140 */
1141#if EV_USE_4HEAP
1142
1143#define DHEAP 4
1144#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1145#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1146#define UPHEAP_DONE(p,k) ((p) == (k))
1147
1148/* away from the root */
1149inline_speed void
1150downheap (ANHE *heap, int N, int k)
1151{
1152 ANHE he = heap [k];
1153 ANHE *E = heap + N + HEAP0;
1154
1155 for (;;)
1156 {
1157 ev_tstamp minat;
1158 ANHE *minpos;
1159 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1160
1161 /* find minimum child */
1162 if (expect_true (pos + DHEAP - 1 < E))
1163 {
1164 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1165 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1166 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1167 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1168 }
1169 else if (pos < E)
1170 {
1171 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1172 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1173 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1174 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1175 }
1176 else
1177 break;
1178
1179 if (ANHE_at (he) <= minat)
1180 break;
1181
1182 heap [k] = *minpos;
1183 ev_active (ANHE_w (*minpos)) = k;
1184
1185 k = minpos - heap;
1186 }
1187
1188 heap [k] = he;
1189 ev_active (ANHE_w (he)) = k;
1190}
1191
1192#else /* 4HEAP */
1193
1194#define HEAP0 1
1195#define HPARENT(k) ((k) >> 1)
1196#define UPHEAP_DONE(p,k) (!(p))
1197
1198/* away from the root */
1199inline_speed void
1200downheap (ANHE *heap, int N, int k)
1201{
1202 ANHE he = heap [k];
1203
1204 for (;;)
1205 {
1206 int c = k << 1;
1207
1208 if (c >= N + HEAP0)
1209 break;
1210
1211 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1212 ? 1 : 0;
1213
1214 if (ANHE_at (he) <= ANHE_at (heap [c]))
1215 break;
1216
1217 heap [k] = heap [c];
1218 ev_active (ANHE_w (heap [k])) = k;
1219
1220 k = c;
1221 }
1222
1223 heap [k] = he;
1224 ev_active (ANHE_w (he)) = k;
1225}
1226#endif
1227
1228/* towards the root */
1229inline_speed void
1230upheap (ANHE *heap, int k)
1231{
1232 ANHE he = heap [k];
1233
1234 for (;;)
1235 {
1236 int p = HPARENT (k);
1237
1238 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1239 break;
1240
1241 heap [k] = heap [p];
1242 ev_active (ANHE_w (heap [k])) = k;
1243 k = p;
1244 }
1245
1246 heap [k] = he;
1247 ev_active (ANHE_w (he)) = k;
1248}
1249
1250/* move an element suitably so it is in a correct place */
1251inline_size void
1252adjustheap (ANHE *heap, int N, int k)
1253{
1254 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1255 upheap (heap, k);
1256 else
1257 downheap (heap, N, k);
1258}
1259
1260/* rebuild the heap: this function is used only once and executed rarely */
1261inline_size void
1262reheap (ANHE *heap, int N)
1263{
1264 int i;
1265
1266 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1267 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1268 for (i = 0; i < N; ++i)
1269 upheap (heap, i + HEAP0);
1270}
1271
1272/*****************************************************************************/
1273
1274/* associate signal watchers to a signal signal */
1275typedef struct
1276{
1277 EV_ATOMIC_T pending;
1278#if EV_MULTIPLICITY
1279 EV_P;
1280#endif
1281 WL head;
1282} ANSIG;
1283
1284static ANSIG signals [EV_NSIG - 1];
1285
1286/*****************************************************************************/
1287
1288#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1289
1290static void noinline
1291evpipe_init (EV_P)
1292{
1293 if (!ev_is_active (&pipe_w))
1294 {
1295# if EV_USE_EVENTFD
1296 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1297 if (evfd < 0 && errno == EINVAL)
1298 evfd = eventfd (0, 0);
1299
1300 if (evfd >= 0)
1301 {
1302 evpipe [0] = -1;
1303 fd_intern (evfd); /* doing it twice doesn't hurt */
1304 ev_io_set (&pipe_w, evfd, EV_READ);
1305 }
1306 else
1307# endif
1308 {
1309 while (pipe (evpipe))
1310 ev_syserr ("(libev) error creating signal/async pipe");
1311
1312 fd_intern (evpipe [0]);
1313 fd_intern (evpipe [1]);
1314 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1315 }
1316
1317 ev_io_start (EV_A_ &pipe_w);
1318 ev_unref (EV_A); /* watcher should not keep loop alive */
1319 }
1320}
1321
1322inline_size void
1323evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1324{
1325 if (!*flag)
1326 {
1327 int old_errno = errno; /* save errno because write might clobber it */
1328 char dummy;
1329
1330 *flag = 1;
1331
1332#if EV_USE_EVENTFD
1333 if (evfd >= 0)
1334 {
1335 uint64_t counter = 1;
1336 write (evfd, &counter, sizeof (uint64_t));
1337 }
1338 else
1339#endif
1340 /* win32 people keep sending patches that change this write() to send() */
1341 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1342 /* so when you think this write should be a send instead, please find out */
1343 /* where your send() is from - it's definitely not the microsoft send, and */
1344 /* tell me. thank you. */
1345 write (evpipe [1], &dummy, 1);
1346
1347 errno = old_errno;
1348 }
1349}
1350
1351/* called whenever the libev signal pipe */
1352/* got some events (signal, async) */
692static void 1353static void
693siginit (EV_P) 1354pipecb (EV_P_ ev_io *iow, int revents)
694{ 1355{
695 fd_intern (sigpipe [0]); 1356 int i;
696 fd_intern (sigpipe [1]);
697 1357
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1358#if EV_USE_EVENTFD
699 ev_io_start (EV_A_ &sigev); 1359 if (evfd >= 0)
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1360 {
1361 uint64_t counter;
1362 read (evfd, &counter, sizeof (uint64_t));
1363 }
1364 else
1365#endif
1366 {
1367 char dummy;
1368 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1369 read (evpipe [0], &dummy, 1);
1370 }
1371
1372#if EV_SIGNAL_ENABLE
1373 if (sig_pending)
1374 {
1375 sig_pending = 0;
1376
1377 for (i = EV_NSIG - 1; i--; )
1378 if (expect_false (signals [i].pending))
1379 ev_feed_signal_event (EV_A_ i + 1);
1380 }
1381#endif
1382
1383#if EV_ASYNC_ENABLE
1384 if (async_pending)
1385 {
1386 async_pending = 0;
1387
1388 for (i = asynccnt; i--; )
1389 if (asyncs [i]->sent)
1390 {
1391 asyncs [i]->sent = 0;
1392 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1393 }
1394 }
1395#endif
701} 1396}
702 1397
703/*****************************************************************************/ 1398/*****************************************************************************/
704 1399
705static struct ev_child *childs [PID_HASHSIZE]; 1400void
1401ev_feed_signal (int signum)
1402{
1403#if EV_MULTIPLICITY
1404 EV_P = signals [signum - 1].loop;
706 1405
1406 if (!EV_A)
1407 return;
1408#endif
1409
1410 signals [signum - 1].pending = 1;
1411 evpipe_write (EV_A_ &sig_pending);
1412}
1413
1414static void
1415ev_sighandler (int signum)
1416{
707#ifndef _WIN32 1417#ifdef _WIN32
1418 signal (signum, ev_sighandler);
1419#endif
708 1420
1421 ev_feed_signal (signum);
1422}
1423
1424void noinline
1425ev_feed_signal_event (EV_P_ int signum)
1426{
1427 WL w;
1428
1429 if (expect_false (signum <= 0 || signum > EV_NSIG))
1430 return;
1431
1432 --signum;
1433
1434#if EV_MULTIPLICITY
1435 /* it is permissible to try to feed a signal to the wrong loop */
1436 /* or, likely more useful, feeding a signal nobody is waiting for */
1437
1438 if (expect_false (signals [signum].loop != EV_A))
1439 return;
1440#endif
1441
1442 signals [signum].pending = 0;
1443
1444 for (w = signals [signum].head; w; w = w->next)
1445 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1446}
1447
1448#if EV_USE_SIGNALFD
1449static void
1450sigfdcb (EV_P_ ev_io *iow, int revents)
1451{
1452 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1453
1454 for (;;)
1455 {
1456 ssize_t res = read (sigfd, si, sizeof (si));
1457
1458 /* not ISO-C, as res might be -1, but works with SuS */
1459 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1460 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1461
1462 if (res < (ssize_t)sizeof (si))
1463 break;
1464 }
1465}
1466#endif
1467
1468#endif
1469
1470/*****************************************************************************/
1471
1472#if EV_CHILD_ENABLE
1473static WL childs [EV_PID_HASHSIZE];
1474
709static struct ev_signal childev; 1475static ev_signal childev;
1476
1477#ifndef WIFCONTINUED
1478# define WIFCONTINUED(status) 0
1479#endif
1480
1481/* handle a single child status event */
1482inline_speed void
1483child_reap (EV_P_ int chain, int pid, int status)
1484{
1485 ev_child *w;
1486 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1487
1488 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1489 {
1490 if ((w->pid == pid || !w->pid)
1491 && (!traced || (w->flags & 1)))
1492 {
1493 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1494 w->rpid = pid;
1495 w->rstatus = status;
1496 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1497 }
1498 }
1499}
710 1500
711#ifndef WCONTINUED 1501#ifndef WCONTINUED
712# define WCONTINUED 0 1502# define WCONTINUED 0
713#endif 1503#endif
714 1504
1505/* called on sigchld etc., calls waitpid */
715static void 1506static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1507childcb (EV_P_ ev_signal *sw, int revents)
732{ 1508{
733 int pid, status; 1509 int pid, status;
734 1510
1511 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1512 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1513 if (!WCONTINUED
1514 || errno != EINVAL
1515 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1516 return;
1517
737 /* make sure we are called again until all childs have been reaped */ 1518 /* make sure we are called again until all children have been reaped */
1519 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1520 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1521
740 child_reap (EV_A_ sw, pid, pid, status); 1522 child_reap (EV_A_ pid, pid, status);
1523 if ((EV_PID_HASHSIZE) > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1524 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1525}
744 1526
745#endif 1527#endif
746 1528
747/*****************************************************************************/ 1529/*****************************************************************************/
748 1530
1531#if EV_USE_IOCP
1532# include "ev_iocp.c"
1533#endif
749#if EV_USE_PORT 1534#if EV_USE_PORT
750# include "ev_port.c" 1535# include "ev_port.c"
751#endif 1536#endif
752#if EV_USE_KQUEUE 1537#if EV_USE_KQUEUE
753# include "ev_kqueue.c" 1538# include "ev_kqueue.c"
773{ 1558{
774 return EV_VERSION_MINOR; 1559 return EV_VERSION_MINOR;
775} 1560}
776 1561
777/* return true if we are running with elevated privileges and should ignore env variables */ 1562/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1563int inline_size
779enable_secure (void) 1564enable_secure (void)
780{ 1565{
781#ifdef _WIN32 1566#ifdef _WIN32
782 return 0; 1567 return 0;
783#else 1568#else
785 || getgid () != getegid (); 1570 || getgid () != getegid ();
786#endif 1571#endif
787} 1572}
788 1573
789unsigned int 1574unsigned int
1575ev_supported_backends (void)
1576{
1577 unsigned int flags = 0;
1578
1579 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1580 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1581 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1582 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1583 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1584
1585 return flags;
1586}
1587
1588unsigned int
1589ev_recommended_backends (void)
1590{
1591 unsigned int flags = ev_supported_backends ();
1592
1593#ifndef __NetBSD__
1594 /* kqueue is borked on everything but netbsd apparently */
1595 /* it usually doesn't work correctly on anything but sockets and pipes */
1596 flags &= ~EVBACKEND_KQUEUE;
1597#endif
1598#ifdef __APPLE__
1599 /* only select works correctly on that "unix-certified" platform */
1600 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1601 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1602#endif
1603#ifdef __FreeBSD__
1604 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1605#endif
1606
1607 return flags;
1608}
1609
1610unsigned int
1611ev_embeddable_backends (void)
1612{
1613 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1614
1615 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1616 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1617 flags &= ~EVBACKEND_EPOLL;
1618
1619 return flags;
1620}
1621
1622unsigned int
1623ev_backend (EV_P)
1624{
1625 return backend;
1626}
1627
1628#if EV_FEATURE_API
1629unsigned int
1630ev_iteration (EV_P)
1631{
1632 return loop_count;
1633}
1634
1635unsigned int
790ev_method (EV_P) 1636ev_depth (EV_P)
791{ 1637{
792 return method; 1638 return loop_depth;
793} 1639}
794 1640
795static void 1641void
1642ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1643{
1644 io_blocktime = interval;
1645}
1646
1647void
1648ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1649{
1650 timeout_blocktime = interval;
1651}
1652
1653void
1654ev_set_userdata (EV_P_ void *data)
1655{
1656 userdata = data;
1657}
1658
1659void *
1660ev_userdata (EV_P)
1661{
1662 return userdata;
1663}
1664
1665void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1666{
1667 invoke_cb = invoke_pending_cb;
1668}
1669
1670void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1671{
1672 release_cb = release;
1673 acquire_cb = acquire;
1674}
1675#endif
1676
1677/* initialise a loop structure, must be zero-initialised */
1678static void noinline
796loop_init (EV_P_ unsigned int flags) 1679loop_init (EV_P_ unsigned int flags)
797{ 1680{
798 if (!method) 1681 if (!backend)
799 { 1682 {
1683 origflags = flags;
1684
1685#if EV_USE_REALTIME
1686 if (!have_realtime)
1687 {
1688 struct timespec ts;
1689
1690 if (!clock_gettime (CLOCK_REALTIME, &ts))
1691 have_realtime = 1;
1692 }
1693#endif
1694
800#if EV_USE_MONOTONIC 1695#if EV_USE_MONOTONIC
1696 if (!have_monotonic)
801 { 1697 {
802 struct timespec ts; 1698 struct timespec ts;
1699
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1700 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1701 have_monotonic = 1;
805 } 1702 }
806#endif 1703#endif
807 1704
808 ev_rt_now = ev_time (); 1705 /* pid check not overridable via env */
809 mn_now = get_clock (); 1706#ifndef _WIN32
810 now_floor = mn_now; 1707 if (flags & EVFLAG_FORKCHECK)
811 rtmn_diff = ev_rt_now - mn_now; 1708 curpid = getpid ();
1709#endif
812 1710
813 if (!(flags & EVFLAG_NOENV) 1711 if (!(flags & EVFLAG_NOENV)
814 && !enable_secure () 1712 && !enable_secure ()
815 && getenv ("LIBEV_FLAGS")) 1713 && getenv ("LIBEV_FLAGS"))
816 flags = atoi (getenv ("LIBEV_FLAGS")); 1714 flags = atoi (getenv ("LIBEV_FLAGS"));
817 1715
1716 ev_rt_now = ev_time ();
1717 mn_now = get_clock ();
1718 now_floor = mn_now;
1719 rtmn_diff = ev_rt_now - mn_now;
1720#if EV_FEATURE_API
1721 invoke_cb = ev_invoke_pending;
1722#endif
1723
1724 io_blocktime = 0.;
1725 timeout_blocktime = 0.;
1726 backend = 0;
1727 backend_fd = -1;
1728 sig_pending = 0;
1729#if EV_ASYNC_ENABLE
1730 async_pending = 0;
1731#endif
1732#if EV_USE_INOTIFY
1733 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1734#endif
1735#if EV_USE_SIGNALFD
1736 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1737#endif
1738
818 if (!(flags & EVMETHOD_ALL)) 1739 if (!(flags & EVBACKEND_MASK))
1740 flags |= ev_recommended_backends ();
1741
1742#if EV_USE_IOCP
1743 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1744#endif
1745#if EV_USE_PORT
1746 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1747#endif
1748#if EV_USE_KQUEUE
1749 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1750#endif
1751#if EV_USE_EPOLL
1752 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1753#endif
1754#if EV_USE_POLL
1755 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1756#endif
1757#if EV_USE_SELECT
1758 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1759#endif
1760
1761 ev_prepare_init (&pending_w, pendingcb);
1762
1763#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1764 ev_init (&pipe_w, pipecb);
1765 ev_set_priority (&pipe_w, EV_MAXPRI);
1766#endif
1767 }
1768}
1769
1770/* free up a loop structure */
1771void
1772ev_loop_destroy (EV_P)
1773{
1774 int i;
1775
1776#if EV_MULTIPLICITY
1777 /* mimic free (0) */
1778 if (!EV_A)
1779 return;
1780#endif
1781
1782#if EV_CLEANUP_ENABLE
1783 /* queue cleanup watchers (and execute them) */
1784 if (expect_false (cleanupcnt))
1785 {
1786 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1787 EV_INVOKE_PENDING;
1788 }
1789#endif
1790
1791#if EV_CHILD_ENABLE
1792 if (ev_is_active (&childev))
1793 {
1794 ev_ref (EV_A); /* child watcher */
1795 ev_signal_stop (EV_A_ &childev);
1796 }
1797#endif
1798
1799 if (ev_is_active (&pipe_w))
1800 {
1801 /*ev_ref (EV_A);*/
1802 /*ev_io_stop (EV_A_ &pipe_w);*/
1803
1804#if EV_USE_EVENTFD
1805 if (evfd >= 0)
1806 close (evfd);
1807#endif
1808
1809 if (evpipe [0] >= 0)
819 { 1810 {
820 flags |= EVMETHOD_ALL; 1811 EV_WIN32_CLOSE_FD (evpipe [0]);
821#if EV_USE_KQUEUE && !defined (__NetBSD__) 1812 EV_WIN32_CLOSE_FD (evpipe [1]);
822 /* kqueue is borked on everything but netbsd apparently */
823 /* it usually doesn't work correctly on anything but sockets and pipes */
824 flags &= ~EVMETHOD_KQUEUE;
825#endif
826 } 1813 }
1814 }
827 1815
828 method = 0; 1816#if EV_USE_SIGNALFD
1817 if (ev_is_active (&sigfd_w))
1818 close (sigfd);
1819#endif
1820
1821#if EV_USE_INOTIFY
1822 if (fs_fd >= 0)
1823 close (fs_fd);
1824#endif
1825
1826 if (backend_fd >= 0)
1827 close (backend_fd);
1828
1829#if EV_USE_IOCP
1830 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1831#endif
829#if EV_USE_PORT 1832#if EV_USE_PORT
830 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1833 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
831#endif 1834#endif
832#if EV_USE_KQUEUE 1835#if EV_USE_KQUEUE
833 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1836 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
834#endif 1837#endif
835#if EV_USE_EPOLL 1838#if EV_USE_EPOLL
836 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1839 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
837#endif 1840#endif
838#if EV_USE_POLL 1841#if EV_USE_POLL
839 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1842 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
840#endif 1843#endif
841#if EV_USE_SELECT 1844#if EV_USE_SELECT
842 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1845 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
843#endif 1846#endif
844 1847
845 ev_init (&sigev, sigcb); 1848 for (i = NUMPRI; i--; )
846 ev_set_priority (&sigev, EV_MAXPRI);
847 } 1849 {
848} 1850 array_free (pending, [i]);
1851#if EV_IDLE_ENABLE
1852 array_free (idle, [i]);
1853#endif
1854 }
849 1855
850static void 1856 ev_free (anfds); anfds = 0; anfdmax = 0;
851loop_destroy (EV_P) 1857
1858 /* have to use the microsoft-never-gets-it-right macro */
1859 array_free (rfeed, EMPTY);
1860 array_free (fdchange, EMPTY);
1861 array_free (timer, EMPTY);
1862#if EV_PERIODIC_ENABLE
1863 array_free (periodic, EMPTY);
1864#endif
1865#if EV_FORK_ENABLE
1866 array_free (fork, EMPTY);
1867#endif
1868#if EV_CLEANUP_ENABLE
1869 array_free (cleanup, EMPTY);
1870#endif
1871 array_free (prepare, EMPTY);
1872 array_free (check, EMPTY);
1873#if EV_ASYNC_ENABLE
1874 array_free (async, EMPTY);
1875#endif
1876
1877 backend = 0;
1878
1879#if EV_MULTIPLICITY
1880 if (ev_is_default_loop (EV_A))
1881#endif
1882 ev_default_loop_ptr = 0;
1883#if EV_MULTIPLICITY
1884 else
1885 ev_free (EV_A);
1886#endif
1887}
1888
1889#if EV_USE_INOTIFY
1890inline_size void infy_fork (EV_P);
1891#endif
1892
1893inline_size void
1894loop_fork (EV_P)
1895{
1896#if EV_USE_PORT
1897 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1898#endif
1899#if EV_USE_KQUEUE
1900 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1901#endif
1902#if EV_USE_EPOLL
1903 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1904#endif
1905#if EV_USE_INOTIFY
1906 infy_fork (EV_A);
1907#endif
1908
1909 if (ev_is_active (&pipe_w))
1910 {
1911 /* this "locks" the handlers against writing to the pipe */
1912 /* while we modify the fd vars */
1913 sig_pending = 1;
1914#if EV_ASYNC_ENABLE
1915 async_pending = 1;
1916#endif
1917
1918 ev_ref (EV_A);
1919 ev_io_stop (EV_A_ &pipe_w);
1920
1921#if EV_USE_EVENTFD
1922 if (evfd >= 0)
1923 close (evfd);
1924#endif
1925
1926 if (evpipe [0] >= 0)
1927 {
1928 EV_WIN32_CLOSE_FD (evpipe [0]);
1929 EV_WIN32_CLOSE_FD (evpipe [1]);
1930 }
1931
1932#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1933 evpipe_init (EV_A);
1934 /* now iterate over everything, in case we missed something */
1935 pipecb (EV_A_ &pipe_w, EV_READ);
1936#endif
1937 }
1938
1939 postfork = 0;
1940}
1941
1942#if EV_MULTIPLICITY
1943
1944struct ev_loop *
1945ev_loop_new (unsigned int flags)
1946{
1947 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1948
1949 memset (EV_A, 0, sizeof (struct ev_loop));
1950 loop_init (EV_A_ flags);
1951
1952 if (ev_backend (EV_A))
1953 return EV_A;
1954
1955 ev_free (EV_A);
1956 return 0;
1957}
1958
1959#endif /* multiplicity */
1960
1961#if EV_VERIFY
1962static void noinline
1963verify_watcher (EV_P_ W w)
1964{
1965 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1966
1967 if (w->pending)
1968 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1969}
1970
1971static void noinline
1972verify_heap (EV_P_ ANHE *heap, int N)
852{ 1973{
853 int i; 1974 int i;
854 1975
855#if EV_USE_PORT 1976 for (i = HEAP0; i < N + HEAP0; ++i)
856 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1977 {
1978 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1979 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1980 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1981
1982 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1983 }
1984}
1985
1986static void noinline
1987array_verify (EV_P_ W *ws, int cnt)
1988{
1989 while (cnt--)
1990 {
1991 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1992 verify_watcher (EV_A_ ws [cnt]);
1993 }
1994}
857#endif 1995#endif
858#if EV_USE_KQUEUE 1996
859 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1997#if EV_FEATURE_API
860#endif 1998void
861#if EV_USE_EPOLL 1999ev_verify (EV_P)
862 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 2000{
863#endif 2001#if EV_VERIFY
864#if EV_USE_POLL 2002 int i;
865 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 2003 WL w;
866#endif 2004
867#if EV_USE_SELECT 2005 assert (activecnt >= -1);
868 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 2006
2007 assert (fdchangemax >= fdchangecnt);
2008 for (i = 0; i < fdchangecnt; ++i)
2009 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2010
2011 assert (anfdmax >= 0);
2012 for (i = 0; i < anfdmax; ++i)
2013 for (w = anfds [i].head; w; w = w->next)
2014 {
2015 verify_watcher (EV_A_ (W)w);
2016 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2017 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2018 }
2019
2020 assert (timermax >= timercnt);
2021 verify_heap (EV_A_ timers, timercnt);
2022
2023#if EV_PERIODIC_ENABLE
2024 assert (periodicmax >= periodiccnt);
2025 verify_heap (EV_A_ periodics, periodiccnt);
869#endif 2026#endif
870 2027
871 for (i = NUMPRI; i--; ) 2028 for (i = NUMPRI; i--; )
872 array_free (pending, [i]); 2029 {
2030 assert (pendingmax [i] >= pendingcnt [i]);
2031#if EV_IDLE_ENABLE
2032 assert (idleall >= 0);
2033 assert (idlemax [i] >= idlecnt [i]);
2034 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2035#endif
2036 }
873 2037
874 /* have to use the microsoft-never-gets-it-right macro */ 2038#if EV_FORK_ENABLE
875 array_free (fdchange, EMPTY0); 2039 assert (forkmax >= forkcnt);
876 array_free (timer, EMPTY0); 2040 array_verify (EV_A_ (W *)forks, forkcnt);
877#if EV_PERIODICS 2041#endif
878 array_free (periodic, EMPTY0); 2042
2043#if EV_CLEANUP_ENABLE
2044 assert (cleanupmax >= cleanupcnt);
2045 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2046#endif
2047
2048#if EV_ASYNC_ENABLE
2049 assert (asyncmax >= asynccnt);
2050 array_verify (EV_A_ (W *)asyncs, asynccnt);
2051#endif
2052
2053#if EV_PREPARE_ENABLE
2054 assert (preparemax >= preparecnt);
2055 array_verify (EV_A_ (W *)prepares, preparecnt);
2056#endif
2057
2058#if EV_CHECK_ENABLE
2059 assert (checkmax >= checkcnt);
2060 array_verify (EV_A_ (W *)checks, checkcnt);
2061#endif
2062
2063# if 0
2064#if EV_CHILD_ENABLE
2065 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2066 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2067#endif
879#endif 2068# endif
880 array_free (idle, EMPTY0);
881 array_free (prepare, EMPTY0);
882 array_free (check, EMPTY0);
883
884 method = 0;
885}
886
887static void
888loop_fork (EV_P)
889{
890#if EV_USE_PORT
891 if (method == EVMETHOD_PORT ) port_fork (EV_A);
892#endif 2069#endif
893#if EV_USE_KQUEUE
894 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
895#endif
896#if EV_USE_EPOLL
897 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
898#endif
899
900 if (ev_is_active (&sigev))
901 {
902 /* default loop */
903
904 ev_ref (EV_A);
905 ev_io_stop (EV_A_ &sigev);
906 close (sigpipe [0]);
907 close (sigpipe [1]);
908
909 while (pipe (sigpipe))
910 syserr ("(libev) error creating pipe");
911
912 siginit (EV_A);
913 }
914
915 postfork = 0;
916} 2070}
2071#endif
917 2072
918#if EV_MULTIPLICITY 2073#if EV_MULTIPLICITY
919struct ev_loop * 2074struct ev_loop *
920ev_loop_new (unsigned int flags)
921{
922 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
923
924 memset (loop, 0, sizeof (struct ev_loop));
925
926 loop_init (EV_A_ flags);
927
928 if (ev_method (EV_A))
929 return loop;
930
931 return 0;
932}
933
934void
935ev_loop_destroy (EV_P)
936{
937 loop_destroy (EV_A);
938 ev_free (loop);
939}
940
941void
942ev_loop_fork (EV_P)
943{
944 postfork = 1;
945}
946
947#endif
948
949#if EV_MULTIPLICITY
950struct ev_loop *
951ev_default_loop_init (unsigned int flags)
952#else 2075#else
953int 2076int
2077#endif
954ev_default_loop (unsigned int flags) 2078ev_default_loop (unsigned int flags)
955#endif
956{ 2079{
957 if (sigpipe [0] == sigpipe [1])
958 if (pipe (sigpipe))
959 return 0;
960
961 if (!ev_default_loop_ptr) 2080 if (!ev_default_loop_ptr)
962 { 2081 {
963#if EV_MULTIPLICITY 2082#if EV_MULTIPLICITY
964 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2083 EV_P = ev_default_loop_ptr = &default_loop_struct;
965#else 2084#else
966 ev_default_loop_ptr = 1; 2085 ev_default_loop_ptr = 1;
967#endif 2086#endif
968 2087
969 loop_init (EV_A_ flags); 2088 loop_init (EV_A_ flags);
970 2089
971 if (ev_method (EV_A)) 2090 if (ev_backend (EV_A))
972 { 2091 {
973 siginit (EV_A); 2092#if EV_CHILD_ENABLE
974
975#ifndef _WIN32
976 ev_signal_init (&childev, childcb, SIGCHLD); 2093 ev_signal_init (&childev, childcb, SIGCHLD);
977 ev_set_priority (&childev, EV_MAXPRI); 2094 ev_set_priority (&childev, EV_MAXPRI);
978 ev_signal_start (EV_A_ &childev); 2095 ev_signal_start (EV_A_ &childev);
979 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2096 ev_unref (EV_A); /* child watcher should not keep loop alive */
980#endif 2097#endif
985 2102
986 return ev_default_loop_ptr; 2103 return ev_default_loop_ptr;
987} 2104}
988 2105
989void 2106void
990ev_default_destroy (void) 2107ev_loop_fork (EV_P)
991{ 2108{
992#if EV_MULTIPLICITY 2109 postfork = 1; /* must be in line with ev_default_fork */
993 struct ev_loop *loop = ev_default_loop_ptr;
994#endif
995
996#ifndef _WIN32
997 ev_ref (EV_A); /* child watcher */
998 ev_signal_stop (EV_A_ &childev);
999#endif
1000
1001 ev_ref (EV_A); /* signal watcher */
1002 ev_io_stop (EV_A_ &sigev);
1003
1004 close (sigpipe [0]); sigpipe [0] = 0;
1005 close (sigpipe [1]); sigpipe [1] = 0;
1006
1007 loop_destroy (EV_A);
1008}
1009
1010void
1011ev_default_fork (void)
1012{
1013#if EV_MULTIPLICITY
1014 struct ev_loop *loop = ev_default_loop_ptr;
1015#endif
1016
1017 if (method)
1018 postfork = 1;
1019} 2110}
1020 2111
1021/*****************************************************************************/ 2112/*****************************************************************************/
1022 2113
1023static int 2114void
1024any_pending (EV_P) 2115ev_invoke (EV_P_ void *w, int revents)
2116{
2117 EV_CB_INVOKE ((W)w, revents);
2118}
2119
2120unsigned int
2121ev_pending_count (EV_P)
1025{ 2122{
1026 int pri; 2123 int pri;
2124 unsigned int count = 0;
1027 2125
1028 for (pri = NUMPRI; pri--; ) 2126 for (pri = NUMPRI; pri--; )
1029 if (pendingcnt [pri]) 2127 count += pendingcnt [pri];
1030 return 1;
1031 2128
1032 return 0; 2129 return count;
1033} 2130}
1034 2131
1035inline void 2132void noinline
1036call_pending (EV_P) 2133ev_invoke_pending (EV_P)
1037{ 2134{
1038 int pri; 2135 int pri;
1039 2136
1040 for (pri = NUMPRI; pri--; ) 2137 for (pri = NUMPRI; pri--; )
1041 while (pendingcnt [pri]) 2138 while (pendingcnt [pri])
1042 { 2139 {
1043 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2140 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1044 2141
1045 if (expect_true (p->w))
1046 {
1047 p->w->pending = 0; 2142 p->w->pending = 0;
1048 EV_CB_INVOKE (p->w, p->events); 2143 EV_CB_INVOKE (p->w, p->events);
1049 } 2144 EV_FREQUENT_CHECK;
1050 } 2145 }
1051} 2146}
1052 2147
2148#if EV_IDLE_ENABLE
2149/* make idle watchers pending. this handles the "call-idle */
2150/* only when higher priorities are idle" logic */
1053inline void 2151inline_size void
2152idle_reify (EV_P)
2153{
2154 if (expect_false (idleall))
2155 {
2156 int pri;
2157
2158 for (pri = NUMPRI; pri--; )
2159 {
2160 if (pendingcnt [pri])
2161 break;
2162
2163 if (idlecnt [pri])
2164 {
2165 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2166 break;
2167 }
2168 }
2169 }
2170}
2171#endif
2172
2173/* make timers pending */
2174inline_size void
1054timers_reify (EV_P) 2175timers_reify (EV_P)
1055{ 2176{
2177 EV_FREQUENT_CHECK;
2178
1056 while (timercnt && ((WT)timers [0])->at <= mn_now) 2179 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1057 { 2180 {
1058 struct ev_timer *w = timers [0]; 2181 do
1059
1060 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1061
1062 /* first reschedule or stop timer */
1063 if (w->repeat)
1064 { 2182 {
2183 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2184
2185 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2186
2187 /* first reschedule or stop timer */
2188 if (w->repeat)
2189 {
2190 ev_at (w) += w->repeat;
2191 if (ev_at (w) < mn_now)
2192 ev_at (w) = mn_now;
2193
1065 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2194 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1066 2195
1067 ((WT)w)->at += w->repeat; 2196 ANHE_at_cache (timers [HEAP0]);
1068 if (((WT)w)->at < mn_now)
1069 ((WT)w)->at = mn_now;
1070
1071 downheap ((WT *)timers, timercnt, 0); 2197 downheap (timers, timercnt, HEAP0);
2198 }
2199 else
2200 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2201
2202 EV_FREQUENT_CHECK;
2203 feed_reverse (EV_A_ (W)w);
1072 } 2204 }
1073 else 2205 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1074 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1075 2206
1076 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2207 feed_reverse_done (EV_A_ EV_TIMER);
1077 } 2208 }
1078} 2209}
1079 2210
1080#if EV_PERIODICS 2211#if EV_PERIODIC_ENABLE
2212
2213inline_speed void
2214periodic_recalc (EV_P_ ev_periodic *w)
2215{
2216 /* TODO: use slow but potentially more correct incremental algo, */
2217 /* also do not rely on ceil */
2218 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2219}
2220
2221/* make periodics pending */
1081inline void 2222inline_size void
1082periodics_reify (EV_P) 2223periodics_reify (EV_P)
1083{ 2224{
2225 EV_FREQUENT_CHECK;
2226
1084 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2227 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1085 { 2228 {
1086 struct ev_periodic *w = periodics [0]; 2229 int feed_count = 0;
1087 2230
2231 do
2232 {
2233 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2234
1088 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2235 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1089 2236
1090 /* first reschedule or stop timer */ 2237 /* first reschedule or stop timer */
2238 if (w->reschedule_cb)
2239 {
2240 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2241
2242 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2243
2244 ANHE_at_cache (periodics [HEAP0]);
2245 downheap (periodics, periodiccnt, HEAP0);
2246 }
2247 else if (w->interval)
2248 {
2249 periodic_recalc (EV_A_ w);
2250
2251 /* if next trigger time is not sufficiently in the future, put it there */
2252 /* this might happen because of floating point inexactness */
2253 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2254 {
2255 ev_at (w) += w->interval;
2256
2257 /* if interval is unreasonably low we might still have a time in the past */
2258 /* so correct this. this will make the periodic very inexact, but the user */
2259 /* has effectively asked to get triggered more often than possible */
2260 if (ev_at (w) < ev_rt_now)
2261 ev_at (w) = ev_rt_now;
2262 }
2263
2264 ANHE_at_cache (periodics [HEAP0]);
2265 downheap (periodics, periodiccnt, HEAP0);
2266 }
2267 else
2268 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2269
2270 EV_FREQUENT_CHECK;
2271 feed_reverse (EV_A_ (W)w);
2272 }
2273 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2274
2275 feed_reverse_done (EV_A_ EV_PERIODIC);
2276 }
2277}
2278
2279/* simply recalculate all periodics */
2280/* TODO: maybe ensure that at least one event happens when jumping forward? */
2281static void noinline
2282periodics_reschedule (EV_P)
2283{
2284 int i;
2285
2286 /* adjust periodics after time jump */
2287 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2288 {
2289 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2290
1091 if (w->reschedule_cb) 2291 if (w->reschedule_cb)
2292 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2293 else if (w->interval)
2294 periodic_recalc (EV_A_ w);
2295
2296 ANHE_at_cache (periodics [i]);
2297 }
2298
2299 reheap (periodics, periodiccnt);
2300}
2301#endif
2302
2303/* adjust all timers by a given offset */
2304static void noinline
2305timers_reschedule (EV_P_ ev_tstamp adjust)
2306{
2307 int i;
2308
2309 for (i = 0; i < timercnt; ++i)
2310 {
2311 ANHE *he = timers + i + HEAP0;
2312 ANHE_w (*he)->at += adjust;
2313 ANHE_at_cache (*he);
2314 }
2315}
2316
2317/* fetch new monotonic and realtime times from the kernel */
2318/* also detect if there was a timejump, and act accordingly */
2319inline_speed void
2320time_update (EV_P_ ev_tstamp max_block)
2321{
2322#if EV_USE_MONOTONIC
2323 if (expect_true (have_monotonic))
2324 {
2325 int i;
2326 ev_tstamp odiff = rtmn_diff;
2327
2328 mn_now = get_clock ();
2329
2330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2331 /* interpolate in the meantime */
2332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1092 { 2333 {
1093 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2334 ev_rt_now = rtmn_diff + mn_now;
1094 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2335 return;
1095 downheap ((WT *)periodics, periodiccnt, 0);
1096 } 2336 }
1097 else if (w->interval)
1098 {
1099 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1100 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1101 downheap ((WT *)periodics, periodiccnt, 0);
1102 }
1103 else
1104 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1105 2337
1106 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1107 }
1108}
1109
1110static void
1111periodics_reschedule (EV_P)
1112{
1113 int i;
1114
1115 /* adjust periodics after time jump */
1116 for (i = 0; i < periodiccnt; ++i)
1117 {
1118 struct ev_periodic *w = periodics [i];
1119
1120 if (w->reschedule_cb)
1121 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1122 else if (w->interval)
1123 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1124 }
1125
1126 /* now rebuild the heap */
1127 for (i = periodiccnt >> 1; i--; )
1128 downheap ((WT *)periodics, periodiccnt, i);
1129}
1130#endif
1131
1132inline int
1133time_update_monotonic (EV_P)
1134{
1135 mn_now = get_clock ();
1136
1137 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1138 {
1139 ev_rt_now = rtmn_diff + mn_now;
1140 return 0;
1141 }
1142 else
1143 {
1144 now_floor = mn_now; 2338 now_floor = mn_now;
1145 ev_rt_now = ev_time (); 2339 ev_rt_now = ev_time ();
1146 return 1;
1147 }
1148}
1149 2340
1150inline void 2341 /* loop a few times, before making important decisions.
1151time_update (EV_P) 2342 * on the choice of "4": one iteration isn't enough,
1152{ 2343 * in case we get preempted during the calls to
1153 int i; 2344 * ev_time and get_clock. a second call is almost guaranteed
1154 2345 * to succeed in that case, though. and looping a few more times
1155#if EV_USE_MONOTONIC 2346 * doesn't hurt either as we only do this on time-jumps or
1156 if (expect_true (have_monotonic)) 2347 * in the unlikely event of having been preempted here.
1157 { 2348 */
1158 if (time_update_monotonic (EV_A)) 2349 for (i = 4; --i; )
1159 { 2350 {
1160 ev_tstamp odiff = rtmn_diff;
1161
1162 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1163 {
1164 rtmn_diff = ev_rt_now - mn_now; 2351 rtmn_diff = ev_rt_now - mn_now;
1165 2352
1166 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2353 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1167 return; /* all is well */ 2354 return; /* all is well */
1168 2355
1169 ev_rt_now = ev_time (); 2356 ev_rt_now = ev_time ();
1170 mn_now = get_clock (); 2357 mn_now = get_clock ();
1171 now_floor = mn_now; 2358 now_floor = mn_now;
1172 } 2359 }
1173 2360
2361 /* no timer adjustment, as the monotonic clock doesn't jump */
2362 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1174# if EV_PERIODICS 2363# if EV_PERIODIC_ENABLE
2364 periodics_reschedule (EV_A);
2365# endif
2366 }
2367 else
2368#endif
2369 {
2370 ev_rt_now = ev_time ();
2371
2372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2373 {
2374 /* adjust timers. this is easy, as the offset is the same for all of them */
2375 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2376#if EV_PERIODIC_ENABLE
1175 periodics_reschedule (EV_A); 2377 periodics_reschedule (EV_A);
1176# endif 2378#endif
1177 /* no timer adjustment, as the monotonic clock doesn't jump */
1178 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1179 } 2379 }
1180 }
1181 else
1182#endif
1183 {
1184 ev_rt_now = ev_time ();
1185
1186 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1187 {
1188#if EV_PERIODICS
1189 periodics_reschedule (EV_A);
1190#endif
1191
1192 /* adjust timers. this is easy, as the offset is the same for all */
1193 for (i = 0; i < timercnt; ++i)
1194 ((WT)timers [i])->at += ev_rt_now - mn_now;
1195 }
1196 2380
1197 mn_now = ev_rt_now; 2381 mn_now = ev_rt_now;
1198 } 2382 }
1199} 2383}
1200 2384
1201void 2385void
1202ev_ref (EV_P)
1203{
1204 ++activecnt;
1205}
1206
1207void
1208ev_unref (EV_P)
1209{
1210 --activecnt;
1211}
1212
1213static int loop_done;
1214
1215void
1216ev_loop (EV_P_ int flags) 2386ev_run (EV_P_ int flags)
1217{ 2387{
1218 double block; 2388#if EV_FEATURE_API
1219 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2389 ++loop_depth;
2390#endif
1220 2391
1221 while (activecnt) 2392 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2393
2394 loop_done = EVBREAK_CANCEL;
2395
2396 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2397
2398 do
1222 { 2399 {
2400#if EV_VERIFY >= 2
2401 ev_verify (EV_A);
2402#endif
2403
2404#ifndef _WIN32
2405 if (expect_false (curpid)) /* penalise the forking check even more */
2406 if (expect_false (getpid () != curpid))
2407 {
2408 curpid = getpid ();
2409 postfork = 1;
2410 }
2411#endif
2412
2413#if EV_FORK_ENABLE
2414 /* we might have forked, so queue fork handlers */
2415 if (expect_false (postfork))
2416 if (forkcnt)
2417 {
2418 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2419 EV_INVOKE_PENDING;
2420 }
2421#endif
2422
2423#if EV_PREPARE_ENABLE
1223 /* queue check watchers (and execute them) */ 2424 /* queue prepare watchers (and execute them) */
1224 if (expect_false (preparecnt)) 2425 if (expect_false (preparecnt))
1225 { 2426 {
1226 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2427 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1227 call_pending (EV_A); 2428 EV_INVOKE_PENDING;
1228 } 2429 }
2430#endif
2431
2432 if (expect_false (loop_done))
2433 break;
1229 2434
1230 /* we might have forked, so reify kernel state if necessary */ 2435 /* we might have forked, so reify kernel state if necessary */
1231 if (expect_false (postfork)) 2436 if (expect_false (postfork))
1232 loop_fork (EV_A); 2437 loop_fork (EV_A);
1233 2438
1234 /* update fd-related kernel structures */ 2439 /* update fd-related kernel structures */
1235 fd_reify (EV_A); 2440 fd_reify (EV_A);
1236 2441
1237 /* calculate blocking time */ 2442 /* calculate blocking time */
2443 {
2444 ev_tstamp waittime = 0.;
2445 ev_tstamp sleeptime = 0.;
1238 2446
1239 /* we only need this for !monotonic clock or timers, but as we basically 2447 /* remember old timestamp for io_blocktime calculation */
1240 always have timers, we just calculate it always */ 2448 ev_tstamp prev_mn_now = mn_now;
1241#if EV_USE_MONOTONIC 2449
1242 if (expect_true (have_monotonic)) 2450 /* update time to cancel out callback processing overhead */
1243 time_update_monotonic (EV_A); 2451 time_update (EV_A_ 1e100);
1244 else 2452
1245#endif 2453 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1246 { 2454 {
1247 ev_rt_now = ev_time ();
1248 mn_now = ev_rt_now;
1249 }
1250
1251 if (flags & EVLOOP_NONBLOCK || idlecnt)
1252 block = 0.;
1253 else
1254 {
1255 block = MAX_BLOCKTIME; 2455 waittime = MAX_BLOCKTIME;
1256 2456
1257 if (timercnt) 2457 if (timercnt)
1258 { 2458 {
1259 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2459 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1260 if (block > to) block = to; 2460 if (waittime > to) waittime = to;
1261 } 2461 }
1262 2462
1263#if EV_PERIODICS 2463#if EV_PERIODIC_ENABLE
1264 if (periodiccnt) 2464 if (periodiccnt)
1265 { 2465 {
1266 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2466 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1267 if (block > to) block = to; 2467 if (waittime > to) waittime = to;
1268 } 2468 }
1269#endif 2469#endif
1270 2470
1271 if (expect_false (block < 0.)) block = 0.; 2471 /* don't let timeouts decrease the waittime below timeout_blocktime */
2472 if (expect_false (waittime < timeout_blocktime))
2473 waittime = timeout_blocktime;
2474
2475 /* extra check because io_blocktime is commonly 0 */
2476 if (expect_false (io_blocktime))
2477 {
2478 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2479
2480 if (sleeptime > waittime - backend_fudge)
2481 sleeptime = waittime - backend_fudge;
2482
2483 if (expect_true (sleeptime > 0.))
2484 {
2485 ev_sleep (sleeptime);
2486 waittime -= sleeptime;
2487 }
2488 }
1272 } 2489 }
1273 2490
1274 method_poll (EV_A_ block); 2491#if EV_FEATURE_API
2492 ++loop_count;
2493#endif
2494 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2495 backend_poll (EV_A_ waittime);
2496 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1275 2497
1276 /* update ev_rt_now, do magic */ 2498 /* update ev_rt_now, do magic */
1277 time_update (EV_A); 2499 time_update (EV_A_ waittime + sleeptime);
2500 }
1278 2501
1279 /* queue pending timers and reschedule them */ 2502 /* queue pending timers and reschedule them */
1280 timers_reify (EV_A); /* relative timers called last */ 2503 timers_reify (EV_A); /* relative timers called last */
1281#if EV_PERIODICS 2504#if EV_PERIODIC_ENABLE
1282 periodics_reify (EV_A); /* absolute timers called first */ 2505 periodics_reify (EV_A); /* absolute timers called first */
1283#endif 2506#endif
1284 2507
2508#if EV_IDLE_ENABLE
1285 /* queue idle watchers unless io or timers are pending */ 2509 /* queue idle watchers unless other events are pending */
1286 if (idlecnt && !any_pending (EV_A)) 2510 idle_reify (EV_A);
1287 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2511#endif
1288 2512
2513#if EV_CHECK_ENABLE
1289 /* queue check watchers, to be executed first */ 2514 /* queue check watchers, to be executed first */
1290 if (expect_false (checkcnt)) 2515 if (expect_false (checkcnt))
1291 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2516 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2517#endif
1292 2518
1293 call_pending (EV_A); 2519 EV_INVOKE_PENDING;
1294
1295 if (expect_false (loop_done))
1296 break;
1297 } 2520 }
2521 while (expect_true (
2522 activecnt
2523 && !loop_done
2524 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2525 ));
1298 2526
1299 if (loop_done != 2) 2527 if (loop_done == EVBREAK_ONE)
1300 loop_done = 0; 2528 loop_done = EVBREAK_CANCEL;
1301}
1302 2529
2530#if EV_FEATURE_API
2531 --loop_depth;
2532#endif
2533}
2534
1303void 2535void
1304ev_unloop (EV_P_ int how) 2536ev_break (EV_P_ int how)
1305{ 2537{
1306 loop_done = how; 2538 loop_done = how;
1307} 2539}
1308 2540
2541void
2542ev_ref (EV_P)
2543{
2544 ++activecnt;
2545}
2546
2547void
2548ev_unref (EV_P)
2549{
2550 --activecnt;
2551}
2552
2553void
2554ev_now_update (EV_P)
2555{
2556 time_update (EV_A_ 1e100);
2557}
2558
2559void
2560ev_suspend (EV_P)
2561{
2562 ev_now_update (EV_A);
2563}
2564
2565void
2566ev_resume (EV_P)
2567{
2568 ev_tstamp mn_prev = mn_now;
2569
2570 ev_now_update (EV_A);
2571 timers_reschedule (EV_A_ mn_now - mn_prev);
2572#if EV_PERIODIC_ENABLE
2573 /* TODO: really do this? */
2574 periodics_reschedule (EV_A);
2575#endif
2576}
2577
1309/*****************************************************************************/ 2578/*****************************************************************************/
2579/* singly-linked list management, used when the expected list length is short */
1310 2580
1311inline void 2581inline_size void
1312wlist_add (WL *head, WL elem) 2582wlist_add (WL *head, WL elem)
1313{ 2583{
1314 elem->next = *head; 2584 elem->next = *head;
1315 *head = elem; 2585 *head = elem;
1316} 2586}
1317 2587
1318inline void 2588inline_size void
1319wlist_del (WL *head, WL elem) 2589wlist_del (WL *head, WL elem)
1320{ 2590{
1321 while (*head) 2591 while (*head)
1322 { 2592 {
1323 if (*head == elem) 2593 if (expect_true (*head == elem))
1324 { 2594 {
1325 *head = elem->next; 2595 *head = elem->next;
1326 return; 2596 break;
1327 } 2597 }
1328 2598
1329 head = &(*head)->next; 2599 head = &(*head)->next;
1330 } 2600 }
1331} 2601}
1332 2602
2603/* internal, faster, version of ev_clear_pending */
1333inline void 2604inline_speed void
1334ev_clear_pending (EV_P_ W w) 2605clear_pending (EV_P_ W w)
1335{ 2606{
1336 if (w->pending) 2607 if (w->pending)
1337 { 2608 {
1338 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2609 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1339 w->pending = 0; 2610 w->pending = 0;
1340 } 2611 }
1341} 2612}
1342 2613
2614int
2615ev_clear_pending (EV_P_ void *w)
2616{
2617 W w_ = (W)w;
2618 int pending = w_->pending;
2619
2620 if (expect_true (pending))
2621 {
2622 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2623 p->w = (W)&pending_w;
2624 w_->pending = 0;
2625 return p->events;
2626 }
2627 else
2628 return 0;
2629}
2630
1343inline void 2631inline_size void
2632pri_adjust (EV_P_ W w)
2633{
2634 int pri = ev_priority (w);
2635 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2636 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2637 ev_set_priority (w, pri);
2638}
2639
2640inline_speed void
1344ev_start (EV_P_ W w, int active) 2641ev_start (EV_P_ W w, int active)
1345{ 2642{
1346 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2643 pri_adjust (EV_A_ w);
1347 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1348
1349 w->active = active; 2644 w->active = active;
1350 ev_ref (EV_A); 2645 ev_ref (EV_A);
1351} 2646}
1352 2647
1353inline void 2648inline_size void
1354ev_stop (EV_P_ W w) 2649ev_stop (EV_P_ W w)
1355{ 2650{
1356 ev_unref (EV_A); 2651 ev_unref (EV_A);
1357 w->active = 0; 2652 w->active = 0;
1358} 2653}
1359 2654
1360/*****************************************************************************/ 2655/*****************************************************************************/
1361 2656
1362void 2657void noinline
1363ev_io_start (EV_P_ struct ev_io *w) 2658ev_io_start (EV_P_ ev_io *w)
1364{ 2659{
1365 int fd = w->fd; 2660 int fd = w->fd;
1366 2661
1367 if (expect_false (ev_is_active (w))) 2662 if (expect_false (ev_is_active (w)))
1368 return; 2663 return;
1369 2664
1370 assert (("ev_io_start called with negative fd", fd >= 0)); 2665 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2666 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2667
2668 EV_FREQUENT_CHECK;
1371 2669
1372 ev_start (EV_A_ (W)w, 1); 2670 ev_start (EV_A_ (W)w, 1);
1373 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2671 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1374 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2672 wlist_add (&anfds[fd].head, (WL)w);
1375 2673
1376 fd_change (EV_A_ fd); 2674 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1377} 2675 w->events &= ~EV__IOFDSET;
1378 2676
1379void 2677 EV_FREQUENT_CHECK;
2678}
2679
2680void noinline
1380ev_io_stop (EV_P_ struct ev_io *w) 2681ev_io_stop (EV_P_ ev_io *w)
1381{ 2682{
1382 ev_clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
1383 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
1384 return; 2685 return;
1385 2686
1386 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2687 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1387 2688
2689 EV_FREQUENT_CHECK;
2690
1388 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2691 wlist_del (&anfds[w->fd].head, (WL)w);
1389 ev_stop (EV_A_ (W)w); 2692 ev_stop (EV_A_ (W)w);
1390 2693
1391 fd_change (EV_A_ w->fd); 2694 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1392}
1393 2695
1394void 2696 EV_FREQUENT_CHECK;
2697}
2698
2699void noinline
1395ev_timer_start (EV_P_ struct ev_timer *w) 2700ev_timer_start (EV_P_ ev_timer *w)
1396{ 2701{
1397 if (expect_false (ev_is_active (w))) 2702 if (expect_false (ev_is_active (w)))
1398 return; 2703 return;
1399 2704
1400 ((WT)w)->at += mn_now; 2705 ev_at (w) += mn_now;
1401 2706
1402 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2707 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1403 2708
2709 EV_FREQUENT_CHECK;
2710
2711 ++timercnt;
1404 ev_start (EV_A_ (W)w, ++timercnt); 2712 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1405 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2713 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1406 timers [timercnt - 1] = w; 2714 ANHE_w (timers [ev_active (w)]) = (WT)w;
1407 upheap ((WT *)timers, timercnt - 1); 2715 ANHE_at_cache (timers [ev_active (w)]);
2716 upheap (timers, ev_active (w));
1408 2717
2718 EV_FREQUENT_CHECK;
2719
1409 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2720 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1410} 2721}
1411 2722
1412void 2723void noinline
1413ev_timer_stop (EV_P_ struct ev_timer *w) 2724ev_timer_stop (EV_P_ ev_timer *w)
1414{ 2725{
1415 ev_clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
1416 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
1417 return; 2728 return;
1418 2729
2730 EV_FREQUENT_CHECK;
2731
2732 {
2733 int active = ev_active (w);
2734
1419 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2735 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1420 2736
2737 --timercnt;
2738
1421 if (expect_true (((W)w)->active < timercnt--)) 2739 if (expect_true (active < timercnt + HEAP0))
1422 { 2740 {
1423 timers [((W)w)->active - 1] = timers [timercnt]; 2741 timers [active] = timers [timercnt + HEAP0];
1424 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2742 adjustheap (timers, timercnt, active);
1425 } 2743 }
2744 }
1426 2745
1427 ((WT)w)->at -= mn_now; 2746 ev_at (w) -= mn_now;
1428 2747
1429 ev_stop (EV_A_ (W)w); 2748 ev_stop (EV_A_ (W)w);
1430}
1431 2749
1432void 2750 EV_FREQUENT_CHECK;
2751}
2752
2753void noinline
1433ev_timer_again (EV_P_ struct ev_timer *w) 2754ev_timer_again (EV_P_ ev_timer *w)
1434{ 2755{
2756 EV_FREQUENT_CHECK;
2757
1435 if (ev_is_active (w)) 2758 if (ev_is_active (w))
1436 { 2759 {
1437 if (w->repeat) 2760 if (w->repeat)
1438 { 2761 {
1439 ((WT)w)->at = mn_now + w->repeat; 2762 ev_at (w) = mn_now + w->repeat;
2763 ANHE_at_cache (timers [ev_active (w)]);
1440 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2764 adjustheap (timers, timercnt, ev_active (w));
1441 } 2765 }
1442 else 2766 else
1443 ev_timer_stop (EV_A_ w); 2767 ev_timer_stop (EV_A_ w);
1444 } 2768 }
1445 else if (w->repeat) 2769 else if (w->repeat)
1446 { 2770 {
1447 w->at = w->repeat; 2771 ev_at (w) = w->repeat;
1448 ev_timer_start (EV_A_ w); 2772 ev_timer_start (EV_A_ w);
1449 } 2773 }
1450}
1451 2774
2775 EV_FREQUENT_CHECK;
2776}
2777
2778ev_tstamp
2779ev_timer_remaining (EV_P_ ev_timer *w)
2780{
2781 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2782}
2783
1452#if EV_PERIODICS 2784#if EV_PERIODIC_ENABLE
1453void 2785void noinline
1454ev_periodic_start (EV_P_ struct ev_periodic *w) 2786ev_periodic_start (EV_P_ ev_periodic *w)
1455{ 2787{
1456 if (expect_false (ev_is_active (w))) 2788 if (expect_false (ev_is_active (w)))
1457 return; 2789 return;
1458 2790
1459 if (w->reschedule_cb) 2791 if (w->reschedule_cb)
1460 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2792 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1461 else if (w->interval) 2793 else if (w->interval)
1462 { 2794 {
1463 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2795 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1464 /* this formula differs from the one in periodic_reify because we do not always round up */ 2796 periodic_recalc (EV_A_ w);
1465 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1466 } 2797 }
2798 else
2799 ev_at (w) = w->offset;
1467 2800
2801 EV_FREQUENT_CHECK;
2802
2803 ++periodiccnt;
1468 ev_start (EV_A_ (W)w, ++periodiccnt); 2804 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1469 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2805 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1470 periodics [periodiccnt - 1] = w; 2806 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1471 upheap ((WT *)periodics, periodiccnt - 1); 2807 ANHE_at_cache (periodics [ev_active (w)]);
2808 upheap (periodics, ev_active (w));
1472 2809
2810 EV_FREQUENT_CHECK;
2811
1473 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2812 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1474} 2813}
1475 2814
1476void 2815void noinline
1477ev_periodic_stop (EV_P_ struct ev_periodic *w) 2816ev_periodic_stop (EV_P_ ev_periodic *w)
1478{ 2817{
1479 ev_clear_pending (EV_A_ (W)w); 2818 clear_pending (EV_A_ (W)w);
1480 if (expect_false (!ev_is_active (w))) 2819 if (expect_false (!ev_is_active (w)))
1481 return; 2820 return;
1482 2821
2822 EV_FREQUENT_CHECK;
2823
2824 {
2825 int active = ev_active (w);
2826
1483 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2827 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1484 2828
2829 --periodiccnt;
2830
1485 if (expect_true (((W)w)->active < periodiccnt--)) 2831 if (expect_true (active < periodiccnt + HEAP0))
1486 { 2832 {
1487 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2833 periodics [active] = periodics [periodiccnt + HEAP0];
1488 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2834 adjustheap (periodics, periodiccnt, active);
1489 } 2835 }
2836 }
1490 2837
1491 ev_stop (EV_A_ (W)w); 2838 ev_stop (EV_A_ (W)w);
1492}
1493 2839
1494void 2840 EV_FREQUENT_CHECK;
2841}
2842
2843void noinline
1495ev_periodic_again (EV_P_ struct ev_periodic *w) 2844ev_periodic_again (EV_P_ ev_periodic *w)
1496{ 2845{
1497 /* TODO: use adjustheap and recalculation */ 2846 /* TODO: use adjustheap and recalculation */
1498 ev_periodic_stop (EV_A_ w); 2847 ev_periodic_stop (EV_A_ w);
1499 ev_periodic_start (EV_A_ w); 2848 ev_periodic_start (EV_A_ w);
1500} 2849}
1501#endif 2850#endif
1502 2851
1503void 2852#ifndef SA_RESTART
1504ev_idle_start (EV_P_ struct ev_idle *w) 2853# define SA_RESTART 0
2854#endif
2855
2856#if EV_SIGNAL_ENABLE
2857
2858void noinline
2859ev_signal_start (EV_P_ ev_signal *w)
1505{ 2860{
1506 if (expect_false (ev_is_active (w))) 2861 if (expect_false (ev_is_active (w)))
1507 return; 2862 return;
1508 2863
2864 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2865
2866#if EV_MULTIPLICITY
2867 assert (("libev: a signal must not be attached to two different loops",
2868 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2869
2870 signals [w->signum - 1].loop = EV_A;
2871#endif
2872
2873 EV_FREQUENT_CHECK;
2874
2875#if EV_USE_SIGNALFD
2876 if (sigfd == -2)
2877 {
2878 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2879 if (sigfd < 0 && errno == EINVAL)
2880 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2881
2882 if (sigfd >= 0)
2883 {
2884 fd_intern (sigfd); /* doing it twice will not hurt */
2885
2886 sigemptyset (&sigfd_set);
2887
2888 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2889 ev_set_priority (&sigfd_w, EV_MAXPRI);
2890 ev_io_start (EV_A_ &sigfd_w);
2891 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2892 }
2893 }
2894
2895 if (sigfd >= 0)
2896 {
2897 /* TODO: check .head */
2898 sigaddset (&sigfd_set, w->signum);
2899 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2900
2901 signalfd (sigfd, &sigfd_set, 0);
2902 }
2903#endif
2904
1509 ev_start (EV_A_ (W)w, ++idlecnt); 2905 ev_start (EV_A_ (W)w, 1);
1510 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2906 wlist_add (&signals [w->signum - 1].head, (WL)w);
1511 idles [idlecnt - 1] = w;
1512}
1513 2907
1514void 2908 if (!((WL)w)->next)
1515ev_idle_stop (EV_P_ struct ev_idle *w) 2909# if EV_USE_SIGNALFD
2910 if (sigfd < 0) /*TODO*/
2911# endif
2912 {
2913# ifdef _WIN32
2914 evpipe_init (EV_A);
2915
2916 signal (w->signum, ev_sighandler);
2917# else
2918 struct sigaction sa;
2919
2920 evpipe_init (EV_A);
2921
2922 sa.sa_handler = ev_sighandler;
2923 sigfillset (&sa.sa_mask);
2924 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2925 sigaction (w->signum, &sa, 0);
2926
2927 if (origflags & EVFLAG_NOSIGMASK)
2928 {
2929 sigemptyset (&sa.sa_mask);
2930 sigaddset (&sa.sa_mask, w->signum);
2931 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2932 }
2933#endif
2934 }
2935
2936 EV_FREQUENT_CHECK;
2937}
2938
2939void noinline
2940ev_signal_stop (EV_P_ ev_signal *w)
1516{ 2941{
1517 ev_clear_pending (EV_A_ (W)w); 2942 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 2943 if (expect_false (!ev_is_active (w)))
1519 return; 2944 return;
1520 2945
1521 idles [((W)w)->active - 1] = idles [--idlecnt]; 2946 EV_FREQUENT_CHECK;
2947
2948 wlist_del (&signals [w->signum - 1].head, (WL)w);
1522 ev_stop (EV_A_ (W)w); 2949 ev_stop (EV_A_ (W)w);
1523}
1524 2950
2951 if (!signals [w->signum - 1].head)
2952 {
2953#if EV_MULTIPLICITY
2954 signals [w->signum - 1].loop = 0; /* unattach from signal */
2955#endif
2956#if EV_USE_SIGNALFD
2957 if (sigfd >= 0)
2958 {
2959 sigset_t ss;
2960
2961 sigemptyset (&ss);
2962 sigaddset (&ss, w->signum);
2963 sigdelset (&sigfd_set, w->signum);
2964
2965 signalfd (sigfd, &sigfd_set, 0);
2966 sigprocmask (SIG_UNBLOCK, &ss, 0);
2967 }
2968 else
2969#endif
2970 signal (w->signum, SIG_DFL);
2971 }
2972
2973 EV_FREQUENT_CHECK;
2974}
2975
2976#endif
2977
2978#if EV_CHILD_ENABLE
2979
1525void 2980void
1526ev_prepare_start (EV_P_ struct ev_prepare *w) 2981ev_child_start (EV_P_ ev_child *w)
1527{ 2982{
2983#if EV_MULTIPLICITY
2984 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2985#endif
1528 if (expect_false (ev_is_active (w))) 2986 if (expect_false (ev_is_active (w)))
1529 return; 2987 return;
1530 2988
2989 EV_FREQUENT_CHECK;
2990
1531 ev_start (EV_A_ (W)w, ++preparecnt); 2991 ev_start (EV_A_ (W)w, 1);
1532 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2992 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1533 prepares [preparecnt - 1] = w;
1534}
1535 2993
2994 EV_FREQUENT_CHECK;
2995}
2996
1536void 2997void
1537ev_prepare_stop (EV_P_ struct ev_prepare *w) 2998ev_child_stop (EV_P_ ev_child *w)
1538{ 2999{
1539 ev_clear_pending (EV_A_ (W)w); 3000 clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w))) 3001 if (expect_false (!ev_is_active (w)))
1541 return; 3002 return;
1542 3003
1543 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 3004 EV_FREQUENT_CHECK;
3005
3006 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1544 ev_stop (EV_A_ (W)w); 3007 ev_stop (EV_A_ (W)w);
1545}
1546 3008
3009 EV_FREQUENT_CHECK;
3010}
3011
3012#endif
3013
3014#if EV_STAT_ENABLE
3015
3016# ifdef _WIN32
3017# undef lstat
3018# define lstat(a,b) _stati64 (a,b)
3019# endif
3020
3021#define DEF_STAT_INTERVAL 5.0074891
3022#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3023#define MIN_STAT_INTERVAL 0.1074891
3024
3025static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3026
3027#if EV_USE_INOTIFY
3028
3029/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3030# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3031
3032static void noinline
3033infy_add (EV_P_ ev_stat *w)
3034{
3035 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3036
3037 if (w->wd >= 0)
3038 {
3039 struct statfs sfs;
3040
3041 /* now local changes will be tracked by inotify, but remote changes won't */
3042 /* unless the filesystem is known to be local, we therefore still poll */
3043 /* also do poll on <2.6.25, but with normal frequency */
3044
3045 if (!fs_2625)
3046 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3047 else if (!statfs (w->path, &sfs)
3048 && (sfs.f_type == 0x1373 /* devfs */
3049 || sfs.f_type == 0xEF53 /* ext2/3 */
3050 || sfs.f_type == 0x3153464a /* jfs */
3051 || sfs.f_type == 0x52654973 /* reiser3 */
3052 || sfs.f_type == 0x01021994 /* tempfs */
3053 || sfs.f_type == 0x58465342 /* xfs */))
3054 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3055 else
3056 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3057 }
3058 else
3059 {
3060 /* can't use inotify, continue to stat */
3061 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3062
3063 /* if path is not there, monitor some parent directory for speedup hints */
3064 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3065 /* but an efficiency issue only */
3066 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3067 {
3068 char path [4096];
3069 strcpy (path, w->path);
3070
3071 do
3072 {
3073 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3074 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3075
3076 char *pend = strrchr (path, '/');
3077
3078 if (!pend || pend == path)
3079 break;
3080
3081 *pend = 0;
3082 w->wd = inotify_add_watch (fs_fd, path, mask);
3083 }
3084 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3085 }
3086 }
3087
3088 if (w->wd >= 0)
3089 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3090
3091 /* now re-arm timer, if required */
3092 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3093 ev_timer_again (EV_A_ &w->timer);
3094 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3095}
3096
3097static void noinline
3098infy_del (EV_P_ ev_stat *w)
3099{
3100 int slot;
3101 int wd = w->wd;
3102
3103 if (wd < 0)
3104 return;
3105
3106 w->wd = -2;
3107 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3108 wlist_del (&fs_hash [slot].head, (WL)w);
3109
3110 /* remove this watcher, if others are watching it, they will rearm */
3111 inotify_rm_watch (fs_fd, wd);
3112}
3113
3114static void noinline
3115infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3116{
3117 if (slot < 0)
3118 /* overflow, need to check for all hash slots */
3119 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3120 infy_wd (EV_A_ slot, wd, ev);
3121 else
3122 {
3123 WL w_;
3124
3125 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3126 {
3127 ev_stat *w = (ev_stat *)w_;
3128 w_ = w_->next; /* lets us remove this watcher and all before it */
3129
3130 if (w->wd == wd || wd == -1)
3131 {
3132 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3133 {
3134 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3135 w->wd = -1;
3136 infy_add (EV_A_ w); /* re-add, no matter what */
3137 }
3138
3139 stat_timer_cb (EV_A_ &w->timer, 0);
3140 }
3141 }
3142 }
3143}
3144
3145static void
3146infy_cb (EV_P_ ev_io *w, int revents)
3147{
3148 char buf [EV_INOTIFY_BUFSIZE];
3149 int ofs;
3150 int len = read (fs_fd, buf, sizeof (buf));
3151
3152 for (ofs = 0; ofs < len; )
3153 {
3154 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3155 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3156 ofs += sizeof (struct inotify_event) + ev->len;
3157 }
3158}
3159
3160inline_size void
3161ev_check_2625 (EV_P)
3162{
3163 /* kernels < 2.6.25 are borked
3164 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3165 */
3166 if (ev_linux_version () < 0x020619)
3167 return;
3168
3169 fs_2625 = 1;
3170}
3171
3172inline_size int
3173infy_newfd (void)
3174{
3175#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3176 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3177 if (fd >= 0)
3178 return fd;
3179#endif
3180 return inotify_init ();
3181}
3182
3183inline_size void
3184infy_init (EV_P)
3185{
3186 if (fs_fd != -2)
3187 return;
3188
3189 fs_fd = -1;
3190
3191 ev_check_2625 (EV_A);
3192
3193 fs_fd = infy_newfd ();
3194
3195 if (fs_fd >= 0)
3196 {
3197 fd_intern (fs_fd);
3198 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3199 ev_set_priority (&fs_w, EV_MAXPRI);
3200 ev_io_start (EV_A_ &fs_w);
3201 ev_unref (EV_A);
3202 }
3203}
3204
3205inline_size void
3206infy_fork (EV_P)
3207{
3208 int slot;
3209
3210 if (fs_fd < 0)
3211 return;
3212
3213 ev_ref (EV_A);
3214 ev_io_stop (EV_A_ &fs_w);
3215 close (fs_fd);
3216 fs_fd = infy_newfd ();
3217
3218 if (fs_fd >= 0)
3219 {
3220 fd_intern (fs_fd);
3221 ev_io_set (&fs_w, fs_fd, EV_READ);
3222 ev_io_start (EV_A_ &fs_w);
3223 ev_unref (EV_A);
3224 }
3225
3226 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3227 {
3228 WL w_ = fs_hash [slot].head;
3229 fs_hash [slot].head = 0;
3230
3231 while (w_)
3232 {
3233 ev_stat *w = (ev_stat *)w_;
3234 w_ = w_->next; /* lets us add this watcher */
3235
3236 w->wd = -1;
3237
3238 if (fs_fd >= 0)
3239 infy_add (EV_A_ w); /* re-add, no matter what */
3240 else
3241 {
3242 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3243 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3244 ev_timer_again (EV_A_ &w->timer);
3245 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3246 }
3247 }
3248 }
3249}
3250
3251#endif
3252
3253#ifdef _WIN32
3254# define EV_LSTAT(p,b) _stati64 (p, b)
3255#else
3256# define EV_LSTAT(p,b) lstat (p, b)
3257#endif
3258
1547void 3259void
1548ev_check_start (EV_P_ struct ev_check *w) 3260ev_stat_stat (EV_P_ ev_stat *w)
3261{
3262 if (lstat (w->path, &w->attr) < 0)
3263 w->attr.st_nlink = 0;
3264 else if (!w->attr.st_nlink)
3265 w->attr.st_nlink = 1;
3266}
3267
3268static void noinline
3269stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3270{
3271 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3272
3273 ev_statdata prev = w->attr;
3274 ev_stat_stat (EV_A_ w);
3275
3276 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3277 if (
3278 prev.st_dev != w->attr.st_dev
3279 || prev.st_ino != w->attr.st_ino
3280 || prev.st_mode != w->attr.st_mode
3281 || prev.st_nlink != w->attr.st_nlink
3282 || prev.st_uid != w->attr.st_uid
3283 || prev.st_gid != w->attr.st_gid
3284 || prev.st_rdev != w->attr.st_rdev
3285 || prev.st_size != w->attr.st_size
3286 || prev.st_atime != w->attr.st_atime
3287 || prev.st_mtime != w->attr.st_mtime
3288 || prev.st_ctime != w->attr.st_ctime
3289 ) {
3290 /* we only update w->prev on actual differences */
3291 /* in case we test more often than invoke the callback, */
3292 /* to ensure that prev is always different to attr */
3293 w->prev = prev;
3294
3295 #if EV_USE_INOTIFY
3296 if (fs_fd >= 0)
3297 {
3298 infy_del (EV_A_ w);
3299 infy_add (EV_A_ w);
3300 ev_stat_stat (EV_A_ w); /* avoid race... */
3301 }
3302 #endif
3303
3304 ev_feed_event (EV_A_ w, EV_STAT);
3305 }
3306}
3307
3308void
3309ev_stat_start (EV_P_ ev_stat *w)
1549{ 3310{
1550 if (expect_false (ev_is_active (w))) 3311 if (expect_false (ev_is_active (w)))
1551 return; 3312 return;
1552 3313
3314 ev_stat_stat (EV_A_ w);
3315
3316 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3317 w->interval = MIN_STAT_INTERVAL;
3318
3319 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3320 ev_set_priority (&w->timer, ev_priority (w));
3321
3322#if EV_USE_INOTIFY
3323 infy_init (EV_A);
3324
3325 if (fs_fd >= 0)
3326 infy_add (EV_A_ w);
3327 else
3328#endif
3329 {
3330 ev_timer_again (EV_A_ &w->timer);
3331 ev_unref (EV_A);
3332 }
3333
1553 ev_start (EV_A_ (W)w, ++checkcnt); 3334 ev_start (EV_A_ (W)w, 1);
1554 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1555 checks [checkcnt - 1] = w;
1556}
1557 3335
3336 EV_FREQUENT_CHECK;
3337}
3338
1558void 3339void
1559ev_check_stop (EV_P_ struct ev_check *w) 3340ev_stat_stop (EV_P_ ev_stat *w)
1560{ 3341{
1561 ev_clear_pending (EV_A_ (W)w); 3342 clear_pending (EV_A_ (W)w);
1562 if (expect_false (!ev_is_active (w))) 3343 if (expect_false (!ev_is_active (w)))
1563 return; 3344 return;
1564 3345
1565 checks [((W)w)->active - 1] = checks [--checkcnt]; 3346 EV_FREQUENT_CHECK;
3347
3348#if EV_USE_INOTIFY
3349 infy_del (EV_A_ w);
3350#endif
3351
3352 if (ev_is_active (&w->timer))
3353 {
3354 ev_ref (EV_A);
3355 ev_timer_stop (EV_A_ &w->timer);
3356 }
3357
1566 ev_stop (EV_A_ (W)w); 3358 ev_stop (EV_A_ (W)w);
1567}
1568 3359
1569#ifndef SA_RESTART 3360 EV_FREQUENT_CHECK;
1570# define SA_RESTART 0 3361}
1571#endif 3362#endif
1572 3363
3364#if EV_IDLE_ENABLE
1573void 3365void
1574ev_signal_start (EV_P_ struct ev_signal *w) 3366ev_idle_start (EV_P_ ev_idle *w)
1575{ 3367{
1576#if EV_MULTIPLICITY
1577 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1578#endif
1579 if (expect_false (ev_is_active (w))) 3368 if (expect_false (ev_is_active (w)))
1580 return; 3369 return;
1581 3370
1582 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3371 pri_adjust (EV_A_ (W)w);
1583 3372
3373 EV_FREQUENT_CHECK;
3374
3375 {
3376 int active = ++idlecnt [ABSPRI (w)];
3377
3378 ++idleall;
1584 ev_start (EV_A_ (W)w, 1); 3379 ev_start (EV_A_ (W)w, active);
1585 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1586 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1587 3380
1588 if (!((WL)w)->next) 3381 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1589 { 3382 idles [ABSPRI (w)][active - 1] = w;
1590#if _WIN32
1591 signal (w->signum, sighandler);
1592#else
1593 struct sigaction sa;
1594 sa.sa_handler = sighandler;
1595 sigfillset (&sa.sa_mask);
1596 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1597 sigaction (w->signum, &sa, 0);
1598#endif
1599 } 3383 }
1600}
1601 3384
3385 EV_FREQUENT_CHECK;
3386}
3387
1602void 3388void
1603ev_signal_stop (EV_P_ struct ev_signal *w) 3389ev_idle_stop (EV_P_ ev_idle *w)
1604{ 3390{
1605 ev_clear_pending (EV_A_ (W)w); 3391 clear_pending (EV_A_ (W)w);
1606 if (expect_false (!ev_is_active (w))) 3392 if (expect_false (!ev_is_active (w)))
1607 return; 3393 return;
1608 3394
1609 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3395 EV_FREQUENT_CHECK;
3396
3397 {
3398 int active = ev_active (w);
3399
3400 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3401 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3402
1610 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
3404 --idleall;
3405 }
1611 3406
1612 if (!signals [w->signum - 1].head) 3407 EV_FREQUENT_CHECK;
1613 signal (w->signum, SIG_DFL);
1614} 3408}
1615
1616void
1617ev_child_start (EV_P_ struct ev_child *w)
1618{
1619#if EV_MULTIPLICITY
1620 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1621#endif 3409#endif
3410
3411#if EV_PREPARE_ENABLE
3412void
3413ev_prepare_start (EV_P_ ev_prepare *w)
3414{
1622 if (expect_false (ev_is_active (w))) 3415 if (expect_false (ev_is_active (w)))
1623 return; 3416 return;
1624 3417
3418 EV_FREQUENT_CHECK;
3419
1625 ev_start (EV_A_ (W)w, 1); 3420 ev_start (EV_A_ (W)w, ++preparecnt);
1626 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3421 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1627} 3422 prepares [preparecnt - 1] = w;
1628 3423
3424 EV_FREQUENT_CHECK;
3425}
3426
1629void 3427void
1630ev_child_stop (EV_P_ struct ev_child *w) 3428ev_prepare_stop (EV_P_ ev_prepare *w)
1631{ 3429{
1632 ev_clear_pending (EV_A_ (W)w); 3430 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 3431 if (expect_false (!ev_is_active (w)))
1634 return; 3432 return;
1635 3433
1636 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3434 EV_FREQUENT_CHECK;
3435
3436 {
3437 int active = ev_active (w);
3438
3439 prepares [active - 1] = prepares [--preparecnt];
3440 ev_active (prepares [active - 1]) = active;
3441 }
3442
1637 ev_stop (EV_A_ (W)w); 3443 ev_stop (EV_A_ (W)w);
3444
3445 EV_FREQUENT_CHECK;
1638} 3446}
3447#endif
3448
3449#if EV_CHECK_ENABLE
3450void
3451ev_check_start (EV_P_ ev_check *w)
3452{
3453 if (expect_false (ev_is_active (w)))
3454 return;
3455
3456 EV_FREQUENT_CHECK;
3457
3458 ev_start (EV_A_ (W)w, ++checkcnt);
3459 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3460 checks [checkcnt - 1] = w;
3461
3462 EV_FREQUENT_CHECK;
3463}
3464
3465void
3466ev_check_stop (EV_P_ ev_check *w)
3467{
3468 clear_pending (EV_A_ (W)w);
3469 if (expect_false (!ev_is_active (w)))
3470 return;
3471
3472 EV_FREQUENT_CHECK;
3473
3474 {
3475 int active = ev_active (w);
3476
3477 checks [active - 1] = checks [--checkcnt];
3478 ev_active (checks [active - 1]) = active;
3479 }
3480
3481 ev_stop (EV_A_ (W)w);
3482
3483 EV_FREQUENT_CHECK;
3484}
3485#endif
3486
3487#if EV_EMBED_ENABLE
3488void noinline
3489ev_embed_sweep (EV_P_ ev_embed *w)
3490{
3491 ev_run (w->other, EVRUN_NOWAIT);
3492}
3493
3494static void
3495embed_io_cb (EV_P_ ev_io *io, int revents)
3496{
3497 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3498
3499 if (ev_cb (w))
3500 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3501 else
3502 ev_run (w->other, EVRUN_NOWAIT);
3503}
3504
3505static void
3506embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3507{
3508 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3509
3510 {
3511 EV_P = w->other;
3512
3513 while (fdchangecnt)
3514 {
3515 fd_reify (EV_A);
3516 ev_run (EV_A_ EVRUN_NOWAIT);
3517 }
3518 }
3519}
3520
3521static void
3522embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3523{
3524 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3525
3526 ev_embed_stop (EV_A_ w);
3527
3528 {
3529 EV_P = w->other;
3530
3531 ev_loop_fork (EV_A);
3532 ev_run (EV_A_ EVRUN_NOWAIT);
3533 }
3534
3535 ev_embed_start (EV_A_ w);
3536}
3537
3538#if 0
3539static void
3540embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3541{
3542 ev_idle_stop (EV_A_ idle);
3543}
3544#endif
3545
3546void
3547ev_embed_start (EV_P_ ev_embed *w)
3548{
3549 if (expect_false (ev_is_active (w)))
3550 return;
3551
3552 {
3553 EV_P = w->other;
3554 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3555 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3556 }
3557
3558 EV_FREQUENT_CHECK;
3559
3560 ev_set_priority (&w->io, ev_priority (w));
3561 ev_io_start (EV_A_ &w->io);
3562
3563 ev_prepare_init (&w->prepare, embed_prepare_cb);
3564 ev_set_priority (&w->prepare, EV_MINPRI);
3565 ev_prepare_start (EV_A_ &w->prepare);
3566
3567 ev_fork_init (&w->fork, embed_fork_cb);
3568 ev_fork_start (EV_A_ &w->fork);
3569
3570 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3571
3572 ev_start (EV_A_ (W)w, 1);
3573
3574 EV_FREQUENT_CHECK;
3575}
3576
3577void
3578ev_embed_stop (EV_P_ ev_embed *w)
3579{
3580 clear_pending (EV_A_ (W)w);
3581 if (expect_false (!ev_is_active (w)))
3582 return;
3583
3584 EV_FREQUENT_CHECK;
3585
3586 ev_io_stop (EV_A_ &w->io);
3587 ev_prepare_stop (EV_A_ &w->prepare);
3588 ev_fork_stop (EV_A_ &w->fork);
3589
3590 ev_stop (EV_A_ (W)w);
3591
3592 EV_FREQUENT_CHECK;
3593}
3594#endif
3595
3596#if EV_FORK_ENABLE
3597void
3598ev_fork_start (EV_P_ ev_fork *w)
3599{
3600 if (expect_false (ev_is_active (w)))
3601 return;
3602
3603 EV_FREQUENT_CHECK;
3604
3605 ev_start (EV_A_ (W)w, ++forkcnt);
3606 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3607 forks [forkcnt - 1] = w;
3608
3609 EV_FREQUENT_CHECK;
3610}
3611
3612void
3613ev_fork_stop (EV_P_ ev_fork *w)
3614{
3615 clear_pending (EV_A_ (W)w);
3616 if (expect_false (!ev_is_active (w)))
3617 return;
3618
3619 EV_FREQUENT_CHECK;
3620
3621 {
3622 int active = ev_active (w);
3623
3624 forks [active - 1] = forks [--forkcnt];
3625 ev_active (forks [active - 1]) = active;
3626 }
3627
3628 ev_stop (EV_A_ (W)w);
3629
3630 EV_FREQUENT_CHECK;
3631}
3632#endif
3633
3634#if EV_CLEANUP_ENABLE
3635void
3636ev_cleanup_start (EV_P_ ev_cleanup *w)
3637{
3638 if (expect_false (ev_is_active (w)))
3639 return;
3640
3641 EV_FREQUENT_CHECK;
3642
3643 ev_start (EV_A_ (W)w, ++cleanupcnt);
3644 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3645 cleanups [cleanupcnt - 1] = w;
3646
3647 /* cleanup watchers should never keep a refcount on the loop */
3648 ev_unref (EV_A);
3649 EV_FREQUENT_CHECK;
3650}
3651
3652void
3653ev_cleanup_stop (EV_P_ ev_cleanup *w)
3654{
3655 clear_pending (EV_A_ (W)w);
3656 if (expect_false (!ev_is_active (w)))
3657 return;
3658
3659 EV_FREQUENT_CHECK;
3660 ev_ref (EV_A);
3661
3662 {
3663 int active = ev_active (w);
3664
3665 cleanups [active - 1] = cleanups [--cleanupcnt];
3666 ev_active (cleanups [active - 1]) = active;
3667 }
3668
3669 ev_stop (EV_A_ (W)w);
3670
3671 EV_FREQUENT_CHECK;
3672}
3673#endif
3674
3675#if EV_ASYNC_ENABLE
3676void
3677ev_async_start (EV_P_ ev_async *w)
3678{
3679 if (expect_false (ev_is_active (w)))
3680 return;
3681
3682 w->sent = 0;
3683
3684 evpipe_init (EV_A);
3685
3686 EV_FREQUENT_CHECK;
3687
3688 ev_start (EV_A_ (W)w, ++asynccnt);
3689 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3690 asyncs [asynccnt - 1] = w;
3691
3692 EV_FREQUENT_CHECK;
3693}
3694
3695void
3696ev_async_stop (EV_P_ ev_async *w)
3697{
3698 clear_pending (EV_A_ (W)w);
3699 if (expect_false (!ev_is_active (w)))
3700 return;
3701
3702 EV_FREQUENT_CHECK;
3703
3704 {
3705 int active = ev_active (w);
3706
3707 asyncs [active - 1] = asyncs [--asynccnt];
3708 ev_active (asyncs [active - 1]) = active;
3709 }
3710
3711 ev_stop (EV_A_ (W)w);
3712
3713 EV_FREQUENT_CHECK;
3714}
3715
3716void
3717ev_async_send (EV_P_ ev_async *w)
3718{
3719 w->sent = 1;
3720 evpipe_write (EV_A_ &async_pending);
3721}
3722#endif
1639 3723
1640/*****************************************************************************/ 3724/*****************************************************************************/
1641 3725
1642struct ev_once 3726struct ev_once
1643{ 3727{
1644 struct ev_io io; 3728 ev_io io;
1645 struct ev_timer to; 3729 ev_timer to;
1646 void (*cb)(int revents, void *arg); 3730 void (*cb)(int revents, void *arg);
1647 void *arg; 3731 void *arg;
1648}; 3732};
1649 3733
1650static void 3734static void
1651once_cb (EV_P_ struct ev_once *once, int revents) 3735once_cb (EV_P_ struct ev_once *once, int revents)
1652{ 3736{
1653 void (*cb)(int revents, void *arg) = once->cb; 3737 void (*cb)(int revents, void *arg) = once->cb;
1654 void *arg = once->arg; 3738 void *arg = once->arg;
1655 3739
1656 ev_io_stop (EV_A_ &once->io); 3740 ev_io_stop (EV_A_ &once->io);
1657 ev_timer_stop (EV_A_ &once->to); 3741 ev_timer_stop (EV_A_ &once->to);
1658 ev_free (once); 3742 ev_free (once);
1659 3743
1660 cb (revents, arg); 3744 cb (revents, arg);
1661} 3745}
1662 3746
1663static void 3747static void
1664once_cb_io (EV_P_ struct ev_io *w, int revents) 3748once_cb_io (EV_P_ ev_io *w, int revents)
1665{ 3749{
1666 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3750 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3751
3752 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1667} 3753}
1668 3754
1669static void 3755static void
1670once_cb_to (EV_P_ struct ev_timer *w, int revents) 3756once_cb_to (EV_P_ ev_timer *w, int revents)
1671{ 3757{
1672 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3758 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3759
3760 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1673} 3761}
1674 3762
1675void 3763void
1676ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3764ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1677{ 3765{
1678 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3766 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1679 3767
1680 if (expect_false (!once)) 3768 if (expect_false (!once))
1681 { 3769 {
1682 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3770 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1683 return; 3771 return;
1684 } 3772 }
1685 3773
1686 once->cb = cb; 3774 once->cb = cb;
1687 once->arg = arg; 3775 once->arg = arg;
1699 ev_timer_set (&once->to, timeout, 0.); 3787 ev_timer_set (&once->to, timeout, 0.);
1700 ev_timer_start (EV_A_ &once->to); 3788 ev_timer_start (EV_A_ &once->to);
1701 } 3789 }
1702} 3790}
1703 3791
1704#ifdef __cplusplus 3792/*****************************************************************************/
1705} 3793
3794#if EV_WALK_ENABLE
3795void
3796ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3797{
3798 int i, j;
3799 ev_watcher_list *wl, *wn;
3800
3801 if (types & (EV_IO | EV_EMBED))
3802 for (i = 0; i < anfdmax; ++i)
3803 for (wl = anfds [i].head; wl; )
3804 {
3805 wn = wl->next;
3806
3807#if EV_EMBED_ENABLE
3808 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3809 {
3810 if (types & EV_EMBED)
3811 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3812 }
3813 else
3814#endif
3815#if EV_USE_INOTIFY
3816 if (ev_cb ((ev_io *)wl) == infy_cb)
3817 ;
3818 else
3819#endif
3820 if ((ev_io *)wl != &pipe_w)
3821 if (types & EV_IO)
3822 cb (EV_A_ EV_IO, wl);
3823
3824 wl = wn;
3825 }
3826
3827 if (types & (EV_TIMER | EV_STAT))
3828 for (i = timercnt + HEAP0; i-- > HEAP0; )
3829#if EV_STAT_ENABLE
3830 /*TODO: timer is not always active*/
3831 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3832 {
3833 if (types & EV_STAT)
3834 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3835 }
3836 else
3837#endif
3838 if (types & EV_TIMER)
3839 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3840
3841#if EV_PERIODIC_ENABLE
3842 if (types & EV_PERIODIC)
3843 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3844 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3845#endif
3846
3847#if EV_IDLE_ENABLE
3848 if (types & EV_IDLE)
3849 for (j = NUMPRI; i--; )
3850 for (i = idlecnt [j]; i--; )
3851 cb (EV_A_ EV_IDLE, idles [j][i]);
3852#endif
3853
3854#if EV_FORK_ENABLE
3855 if (types & EV_FORK)
3856 for (i = forkcnt; i--; )
3857 if (ev_cb (forks [i]) != embed_fork_cb)
3858 cb (EV_A_ EV_FORK, forks [i]);
3859#endif
3860
3861#if EV_ASYNC_ENABLE
3862 if (types & EV_ASYNC)
3863 for (i = asynccnt; i--; )
3864 cb (EV_A_ EV_ASYNC, asyncs [i]);
3865#endif
3866
3867#if EV_PREPARE_ENABLE
3868 if (types & EV_PREPARE)
3869 for (i = preparecnt; i--; )
3870# if EV_EMBED_ENABLE
3871 if (ev_cb (prepares [i]) != embed_prepare_cb)
1706#endif 3872# endif
3873 cb (EV_A_ EV_PREPARE, prepares [i]);
3874#endif
1707 3875
3876#if EV_CHECK_ENABLE
3877 if (types & EV_CHECK)
3878 for (i = checkcnt; i--; )
3879 cb (EV_A_ EV_CHECK, checks [i]);
3880#endif
3881
3882#if EV_SIGNAL_ENABLE
3883 if (types & EV_SIGNAL)
3884 for (i = 0; i < EV_NSIG - 1; ++i)
3885 for (wl = signals [i].head; wl; )
3886 {
3887 wn = wl->next;
3888 cb (EV_A_ EV_SIGNAL, wl);
3889 wl = wn;
3890 }
3891#endif
3892
3893#if EV_CHILD_ENABLE
3894 if (types & EV_CHILD)
3895 for (i = (EV_PID_HASHSIZE); i--; )
3896 for (wl = childs [i]; wl; )
3897 {
3898 wn = wl->next;
3899 cb (EV_A_ EV_CHILD, wl);
3900 wl = wn;
3901 }
3902#endif
3903/* EV_STAT 0x00001000 /* stat data changed */
3904/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3905}
3906#endif
3907
3908#if EV_MULTIPLICITY
3909 #include "ev_wrap.h"
3910#endif
3911
3912EV_CPP(})
3913

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines