ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC vs.
Revision 1.374 by root, Sat Feb 26 15:21:01 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_NANOSLEEP
61# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
62# else 88# else
89# undef EV_USE_NANOSLEEP
63# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
64# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
65# endif 100# endif
66 101
102# if HAVE_POLL && HAVE_POLL_H
67# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
68# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
69# define EV_USE_SELECT 1
70# else
71# define EV_USE_SELECT 0
72# endif 105# endif
73# endif
74
75# ifndef EV_USE_POLL
76# if HAVE_POLL && HAVE_POLL_H
77# define EV_USE_POLL 1
78# else 106# else
107# undef EV_USE_POLL
79# define EV_USE_POLL 0 108# define EV_USE_POLL 0
80# endif
81# endif 109# endif
82 110
83# ifndef EV_USE_EPOLL
84# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
85# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
86# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
87# define EV_USE_EPOLL 0
88# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
89# endif 118# endif
90 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
91# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
92# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
93# define EV_USE_KQUEUE 1
94# else
95# define EV_USE_KQUEUE 0
96# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
97# endif 127# endif
98 128
99# ifndef EV_USE_PORT
100# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
101# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
102# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
103# define EV_USE_PORT 0
104# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
105# endif 136# endif
106 137
107# ifndef EV_USE_INOTIFY
108# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
109# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
110# else
111# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
112# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
113# endif 145# endif
114 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
115#endif 154# endif
116 155
117#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
118#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
119#include <fcntl.h> 169#include <fcntl.h>
120#include <stddef.h> 170#include <stddef.h>
121 171
122#include <stdio.h> 172#include <stdio.h>
123 173
124#include <assert.h> 174#include <assert.h>
125#include <errno.h> 175#include <errno.h>
126#include <sys/types.h> 176#include <sys/types.h>
127#include <time.h> 177#include <time.h>
178#include <limits.h>
128 179
129#include <signal.h> 180#include <signal.h>
130 181
131#ifdef EV_H 182#ifdef EV_H
132# include EV_H 183# include EV_H
133#else 184#else
134# include "ev.h" 185# include "ev.h"
135#endif 186#endif
187
188EV_CPP(extern "C" {)
136 189
137#ifndef _WIN32 190#ifndef _WIN32
138# include <sys/time.h> 191# include <sys/time.h>
139# include <sys/wait.h> 192# include <sys/wait.h>
140# include <unistd.h> 193# include <unistd.h>
141#else 194#else
195# include <io.h>
142# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 197# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
146# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
147#endif 251# endif
148 252#endif
149/**/
150 253
151#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
152# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
153#endif 260#endif
154 261
155#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 264#endif
158 265
159#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
160# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
161#endif 272#endif
162 273
163#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
165#endif 276#endif
166 277
167#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
168# ifdef _WIN32 279# ifdef _WIN32
169# define EV_USE_POLL 0 280# define EV_USE_POLL 0
170# else 281# else
171# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
172# endif 283# endif
173#endif 284#endif
174 285
175#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
176# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
177#endif 292#endif
178 293
179#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
181#endif 296#endif
183#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 299# define EV_USE_PORT 0
185#endif 300#endif
186 301
187#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
188# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
307# endif
189#endif 308#endif
190 309
191#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
193# define EV_PID_HASHSIZE 1 312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
194# else 321# else
195# define EV_PID_HASHSIZE 16 322# define EV_USE_EVENTFD 0
196# endif 323# endif
197#endif 324#endif
198 325
199#ifndef EV_INOTIFY_HASHSIZE 326#ifndef EV_USE_SIGNALFD
200# if EV_MINIMAL 327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
201# define EV_INOTIFY_HASHSIZE 1 328# define EV_USE_SIGNALFD EV_FEATURE_OS
202# else 329# else
203# define EV_INOTIFY_HASHSIZE 16 330# define EV_USE_SIGNALFD 0
204# endif 331# endif
205#endif 332#endif
206 333
207/**/ 334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
208 373
209#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
212#endif 377#endif
220# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
221# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
222#endif 387#endif
223 388
224#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
225# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
226# include <sys/select.h> 392# include <sys/select.h>
227# endif 393# endif
228#endif 394#endif
229 395
230#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
231# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
232#endif 404#endif
233 405
234#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 407# include <winsock.h>
236#endif 408#endif
237 409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
238/**/ 448/**/
239 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
240/* 456/*
241 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding
244 * errors are against us.
245 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
246 * Better solutions welcome.
247 */ 459 */
248#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
249 462
250#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
251#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
252/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
253 468
254#if __GNUC__ >= 4 469#if __GNUC__ >= 4
255# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 471# define noinline __attribute__ ((noinline))
257#else 472#else
258# define expect(expr,value) (expr) 473# define expect(expr,value) (expr)
259# define noinline 474# define noinline
260# if __STDC_VERSION__ < 199901L 475# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 476# define inline
262# endif 477# endif
263#endif 478#endif
264 479
265#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
266#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
267#define inline_size static inline 482#define inline_size static inline
268 483
269#if EV_MINIMAL 484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
270# define inline_speed static noinline 487# define inline_speed static noinline
488#endif
489
490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
271#else 494#else
272# define inline_speed static inline
273#endif
274
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
277 497
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 498#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 499#define EMPTY2(a,b) /* used to suppress some warnings */
280 500
281typedef ev_watcher *W; 501typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
284 504
505#define ev_active(w) ((W)(w))->active
506#define ev_at(w) ((WT)(w))->at
507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
514#if EV_USE_MONOTONIC
285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
526#endif
286 527
287#ifdef _WIN32 528#ifdef _WIN32
288# include "ev_win32.c" 529# include "ev_win32.c"
289#endif 530#endif
290 531
291/*****************************************************************************/ 532/*****************************************************************************/
292 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
293static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
294 633
295void 634void
296ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
297{ 636{
298 syserr_cb = cb; 637 syserr_cb = cb;
299} 638}
300 639
301static void noinline 640static void noinline
302syserr (const char *msg) 641ev_syserr (const char *msg)
303{ 642{
304 if (!msg) 643 if (!msg)
305 msg = "(libev) system error"; 644 msg = "(libev) system error";
306 645
307 if (syserr_cb) 646 if (syserr_cb)
308 syserr_cb (msg); 647 syserr_cb (msg);
309 else 648 else
310 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
311 perror (msg); 656 perror (msg);
657#endif
312 abort (); 658 abort ();
313 } 659 }
314} 660}
315 661
662static void *
663ev_realloc_emul (void *ptr, long size)
664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
668 /* some systems, notably openbsd and darwin, fail to properly
669 * implement realloc (x, 0) (as required by both ansi c-89 and
670 * the single unix specification, so work around them here.
671 */
672
673 if (size)
674 return realloc (ptr, size);
675
676 free (ptr);
677 return 0;
678#endif
679}
680
316static void *(*alloc)(void *ptr, long size); 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
317 682
318void 683void
319ev_set_allocator (void *(*cb)(void *ptr, long size)) 684ev_set_allocator (void *(*cb)(void *ptr, long size))
320{ 685{
321 alloc = cb; 686 alloc = cb;
322} 687}
323 688
324inline_speed void * 689inline_speed void *
325ev_realloc (void *ptr, long size) 690ev_realloc (void *ptr, long size)
326{ 691{
327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 692 ptr = alloc (ptr, size);
328 693
329 if (!ptr && size) 694 if (!ptr && size)
330 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
332 abort (); 701 abort ();
333 } 702 }
334 703
335 return ptr; 704 return ptr;
336} 705}
338#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
339#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
340 709
341/*****************************************************************************/ 710/*****************************************************************************/
342 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
343typedef struct 716typedef struct
344{ 717{
345 WL head; 718 WL head;
346 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
347 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
348#if EV_SELECT_IS_WINSOCKET 726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
349 SOCKET handle; 727 SOCKET handle;
350#endif 728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
351} ANFD; 732} ANFD;
352 733
734/* stores the pending event set for a given watcher */
353typedef struct 735typedef struct
354{ 736{
355 W w; 737 W w;
356 int events; 738 int events; /* the pending event set for the given watcher */
357} ANPENDING; 739} ANPENDING;
358 740
359#if EV_USE_INOTIFY 741#if EV_USE_INOTIFY
742/* hash table entry per inotify-id */
360typedef struct 743typedef struct
361{ 744{
362 WL head; 745 WL head;
363} ANFS; 746} ANFS;
747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
364#endif 767#endif
365 768
366#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
367 770
368 struct ev_loop 771 struct ev_loop
387 790
388 static int ev_default_loop_ptr; 791 static int ev_default_loop_ptr;
389 792
390#endif 793#endif
391 794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
806
392/*****************************************************************************/ 807/*****************************************************************************/
393 808
809#ifndef EV_HAVE_EV_TIME
394ev_tstamp 810ev_tstamp
395ev_time (void) 811ev_time (void)
396{ 812{
397#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
398 struct timespec ts; 816 struct timespec ts;
399 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
400 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
401#else 819 }
820#endif
821
402 struct timeval tv; 822 struct timeval tv;
403 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
404 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
405#endif
406} 825}
826#endif
407 827
408ev_tstamp inline_size 828inline_size ev_tstamp
409get_clock (void) 829get_clock (void)
410{ 830{
411#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
412 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
413 { 833 {
434 if (delay > 0.) 854 if (delay > 0.)
435 { 855 {
436#if EV_USE_NANOSLEEP 856#if EV_USE_NANOSLEEP
437 struct timespec ts; 857 struct timespec ts;
438 858
439 ts.tv_sec = (time_t)delay; 859 EV_TS_SET (ts, delay);
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441
442 nanosleep (&ts, 0); 860 nanosleep (&ts, 0);
443#elif defined(_WIN32) 861#elif defined(_WIN32)
444 Sleep (delay * 1e3); 862 Sleep ((unsigned long)(delay * 1e3));
445#else 863#else
446 struct timeval tv; 864 struct timeval tv;
447 865
448 tv.tv_sec = (time_t)delay; 866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 867 /* something not guaranteed by newer posix versions, but guaranteed */
450 868 /* by older ones */
869 EV_TV_SET (tv, delay);
451 select (0, 0, 0, 0, &tv); 870 select (0, 0, 0, 0, &tv);
452#endif 871#endif
453 } 872 }
454} 873}
455 874
875inline_speed int
876ev_timeout_to_ms (ev_tstamp timeout)
877{
878 int ms = timeout * 1000. + .999999;
879
880 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
881}
882
456/*****************************************************************************/ 883/*****************************************************************************/
457 884
458int inline_size 885#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
886
887/* find a suitable new size for the given array, */
888/* hopefully by rounding to a nice-to-malloc size */
889inline_size int
459array_nextsize (int elem, int cur, int cnt) 890array_nextsize (int elem, int cur, int cnt)
460{ 891{
461 int ncur = cur + 1; 892 int ncur = cur + 1;
462 893
463 do 894 do
464 ncur <<= 1; 895 ncur <<= 1;
465 while (cnt > ncur); 896 while (cnt > ncur);
466 897
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 898 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
468 if (elem * ncur > 4096) 899 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
469 { 900 {
470 ncur *= elem; 901 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 902 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
472 ncur = ncur - sizeof (void *) * 4; 903 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem; 904 ncur /= elem;
474 } 905 }
475 906
476 return ncur; 907 return ncur;
480array_realloc (int elem, void *base, int *cur, int cnt) 911array_realloc (int elem, void *base, int *cur, int cnt)
481{ 912{
482 *cur = array_nextsize (elem, *cur, cnt); 913 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur); 914 return ev_realloc (base, elem * *cur);
484} 915}
916
917#define array_init_zero(base,count) \
918 memset ((void *)(base), 0, sizeof (*(base)) * (count))
485 919
486#define array_needsize(type,base,cur,cnt,init) \ 920#define array_needsize(type,base,cur,cnt,init) \
487 if (expect_false ((cnt) > (cur))) \ 921 if (expect_false ((cnt) > (cur))) \
488 { \ 922 { \
489 int ocur_ = (cur); \ 923 int ocur_ = (cur); \
501 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 935 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
502 } 936 }
503#endif 937#endif
504 938
505#define array_free(stem, idx) \ 939#define array_free(stem, idx) \
506 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 940 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
507 941
508/*****************************************************************************/ 942/*****************************************************************************/
943
944/* dummy callback for pending events */
945static void noinline
946pendingcb (EV_P_ ev_prepare *w, int revents)
947{
948}
509 949
510void noinline 950void noinline
511ev_feed_event (EV_P_ void *w, int revents) 951ev_feed_event (EV_P_ void *w, int revents)
512{ 952{
513 W w_ = (W)w; 953 W w_ = (W)w;
522 pendings [pri][w_->pending - 1].w = w_; 962 pendings [pri][w_->pending - 1].w = w_;
523 pendings [pri][w_->pending - 1].events = revents; 963 pendings [pri][w_->pending - 1].events = revents;
524 } 964 }
525} 965}
526 966
527void inline_speed 967inline_speed void
968feed_reverse (EV_P_ W w)
969{
970 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
971 rfeeds [rfeedcnt++] = w;
972}
973
974inline_size void
975feed_reverse_done (EV_P_ int revents)
976{
977 do
978 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
979 while (rfeedcnt);
980}
981
982inline_speed void
528queue_events (EV_P_ W *events, int eventcnt, int type) 983queue_events (EV_P_ W *events, int eventcnt, int type)
529{ 984{
530 int i; 985 int i;
531 986
532 for (i = 0; i < eventcnt; ++i) 987 for (i = 0; i < eventcnt; ++i)
533 ev_feed_event (EV_A_ events [i], type); 988 ev_feed_event (EV_A_ events [i], type);
534} 989}
535 990
536/*****************************************************************************/ 991/*****************************************************************************/
537 992
538void inline_size 993inline_speed void
539anfds_init (ANFD *base, int count)
540{
541 while (count--)
542 {
543 base->head = 0;
544 base->events = EV_NONE;
545 base->reify = 0;
546
547 ++base;
548 }
549}
550
551void inline_speed
552fd_event (EV_P_ int fd, int revents) 994fd_event_nocheck (EV_P_ int fd, int revents)
553{ 995{
554 ANFD *anfd = anfds + fd; 996 ANFD *anfd = anfds + fd;
555 ev_io *w; 997 ev_io *w;
556 998
557 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 999 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
561 if (ev) 1003 if (ev)
562 ev_feed_event (EV_A_ (W)w, ev); 1004 ev_feed_event (EV_A_ (W)w, ev);
563 } 1005 }
564} 1006}
565 1007
1008/* do not submit kernel events for fds that have reify set */
1009/* because that means they changed while we were polling for new events */
1010inline_speed void
1011fd_event (EV_P_ int fd, int revents)
1012{
1013 ANFD *anfd = anfds + fd;
1014
1015 if (expect_true (!anfd->reify))
1016 fd_event_nocheck (EV_A_ fd, revents);
1017}
1018
566void 1019void
567ev_feed_fd_event (EV_P_ int fd, int revents) 1020ev_feed_fd_event (EV_P_ int fd, int revents)
568{ 1021{
569 if (fd >= 0 && fd < anfdmax) 1022 if (fd >= 0 && fd < anfdmax)
570 fd_event (EV_A_ fd, revents); 1023 fd_event_nocheck (EV_A_ fd, revents);
571} 1024}
572 1025
573void inline_size 1026/* make sure the external fd watch events are in-sync */
1027/* with the kernel/libev internal state */
1028inline_size void
574fd_reify (EV_P) 1029fd_reify (EV_P)
575{ 1030{
576 int i; 1031 int i;
1032
1033#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1034 for (i = 0; i < fdchangecnt; ++i)
1035 {
1036 int fd = fdchanges [i];
1037 ANFD *anfd = anfds + fd;
1038
1039 if (anfd->reify & EV__IOFDSET && anfd->head)
1040 {
1041 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1042
1043 if (handle != anfd->handle)
1044 {
1045 unsigned long arg;
1046
1047 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1048
1049 /* handle changed, but fd didn't - we need to do it in two steps */
1050 backend_modify (EV_A_ fd, anfd->events, 0);
1051 anfd->events = 0;
1052 anfd->handle = handle;
1053 }
1054 }
1055 }
1056#endif
577 1057
578 for (i = 0; i < fdchangecnt; ++i) 1058 for (i = 0; i < fdchangecnt; ++i)
579 { 1059 {
580 int fd = fdchanges [i]; 1060 int fd = fdchanges [i];
581 ANFD *anfd = anfds + fd; 1061 ANFD *anfd = anfds + fd;
582 ev_io *w; 1062 ev_io *w;
583 1063
584 unsigned char events = 0; 1064 unsigned char o_events = anfd->events;
1065 unsigned char o_reify = anfd->reify;
585 1066
586 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1067 anfd->reify = 0;
587 events |= (unsigned char)w->events;
588 1068
589#if EV_SELECT_IS_WINSOCKET 1069 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
590 if (events)
591 { 1070 {
592 unsigned long argp; 1071 anfd->events = 0;
593 anfd->handle = _get_osfhandle (fd); 1072
594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1073 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1074 anfd->events |= (unsigned char)w->events;
1075
1076 if (o_events != anfd->events)
1077 o_reify = EV__IOFDSET; /* actually |= */
595 } 1078 }
596#endif
597 1079
598 { 1080 if (o_reify & EV__IOFDSET)
599 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify;
601
602 anfd->reify = 0;
603 anfd->events = events;
604
605 if (o_events != events || o_reify & EV_IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events); 1081 backend_modify (EV_A_ fd, o_events, anfd->events);
607 }
608 } 1082 }
609 1083
610 fdchangecnt = 0; 1084 fdchangecnt = 0;
611} 1085}
612 1086
613void inline_size 1087/* something about the given fd changed */
1088inline_size void
614fd_change (EV_P_ int fd, int flags) 1089fd_change (EV_P_ int fd, int flags)
615{ 1090{
616 unsigned char reify = anfds [fd].reify; 1091 unsigned char reify = anfds [fd].reify;
617 anfds [fd].reify |= flags; 1092 anfds [fd].reify |= flags;
618 1093
622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1097 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
623 fdchanges [fdchangecnt - 1] = fd; 1098 fdchanges [fdchangecnt - 1] = fd;
624 } 1099 }
625} 1100}
626 1101
627void inline_speed 1102/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1103inline_speed void
628fd_kill (EV_P_ int fd) 1104fd_kill (EV_P_ int fd)
629{ 1105{
630 ev_io *w; 1106 ev_io *w;
631 1107
632 while ((w = (ev_io *)anfds [fd].head)) 1108 while ((w = (ev_io *)anfds [fd].head))
634 ev_io_stop (EV_A_ w); 1110 ev_io_stop (EV_A_ w);
635 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1111 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
636 } 1112 }
637} 1113}
638 1114
639int inline_size 1115/* check whether the given fd is actually valid, for error recovery */
1116inline_size int
640fd_valid (int fd) 1117fd_valid (int fd)
641{ 1118{
642#ifdef _WIN32 1119#ifdef _WIN32
643 return _get_osfhandle (fd) != -1; 1120 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
644#else 1121#else
645 return fcntl (fd, F_GETFD) != -1; 1122 return fcntl (fd, F_GETFD) != -1;
646#endif 1123#endif
647} 1124}
648 1125
652{ 1129{
653 int fd; 1130 int fd;
654 1131
655 for (fd = 0; fd < anfdmax; ++fd) 1132 for (fd = 0; fd < anfdmax; ++fd)
656 if (anfds [fd].events) 1133 if (anfds [fd].events)
657 if (!fd_valid (fd) == -1 && errno == EBADF) 1134 if (!fd_valid (fd) && errno == EBADF)
658 fd_kill (EV_A_ fd); 1135 fd_kill (EV_A_ fd);
659} 1136}
660 1137
661/* called on ENOMEM in select/poll to kill some fds and retry */ 1138/* called on ENOMEM in select/poll to kill some fds and retry */
662static void noinline 1139static void noinline
666 1143
667 for (fd = anfdmax; fd--; ) 1144 for (fd = anfdmax; fd--; )
668 if (anfds [fd].events) 1145 if (anfds [fd].events)
669 { 1146 {
670 fd_kill (EV_A_ fd); 1147 fd_kill (EV_A_ fd);
671 return; 1148 break;
672 } 1149 }
673} 1150}
674 1151
675/* usually called after fork if backend needs to re-arm all fds from scratch */ 1152/* usually called after fork if backend needs to re-arm all fds from scratch */
676static void noinline 1153static void noinline
680 1157
681 for (fd = 0; fd < anfdmax; ++fd) 1158 for (fd = 0; fd < anfdmax; ++fd)
682 if (anfds [fd].events) 1159 if (anfds [fd].events)
683 { 1160 {
684 anfds [fd].events = 0; 1161 anfds [fd].events = 0;
1162 anfds [fd].emask = 0;
685 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1163 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
686 } 1164 }
687} 1165}
688 1166
689/*****************************************************************************/ 1167/* used to prepare libev internal fd's */
690 1168/* this is not fork-safe */
691void inline_speed 1169inline_speed void
692upheap (WT *heap, int k)
693{
694 WT w = heap [k];
695
696 while (k)
697 {
698 int p = (k - 1) >> 1;
699
700 if (heap [p]->at <= w->at)
701 break;
702
703 heap [k] = heap [p];
704 ((W)heap [k])->active = k + 1;
705 k = p;
706 }
707
708 heap [k] = w;
709 ((W)heap [k])->active = k + 1;
710}
711
712void inline_speed
713downheap (WT *heap, int N, int k)
714{
715 WT w = heap [k];
716
717 for (;;)
718 {
719 int c = (k << 1) + 1;
720
721 if (c >= N)
722 break;
723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
730 heap [k] = heap [c];
731 ((W)heap [k])->active = k + 1;
732
733 k = c;
734 }
735
736 heap [k] = w;
737 ((W)heap [k])->active = k + 1;
738}
739
740void inline_size
741adjustheap (WT *heap, int N, int k)
742{
743 upheap (heap, k);
744 downheap (heap, N, k);
745}
746
747/*****************************************************************************/
748
749typedef struct
750{
751 WL head;
752 sig_atomic_t volatile gotsig;
753} ANSIG;
754
755static ANSIG *signals;
756static int signalmax;
757
758static int sigpipe [2];
759static sig_atomic_t volatile gotsig;
760static ev_io sigev;
761
762void inline_size
763signals_init (ANSIG *base, int count)
764{
765 while (count--)
766 {
767 base->head = 0;
768 base->gotsig = 0;
769
770 ++base;
771 }
772}
773
774static void
775sighandler (int signum)
776{
777#if _WIN32
778 signal (signum, sighandler);
779#endif
780
781 signals [signum - 1].gotsig = 1;
782
783 if (!gotsig)
784 {
785 int old_errno = errno;
786 gotsig = 1;
787 write (sigpipe [1], &signum, 1);
788 errno = old_errno;
789 }
790}
791
792void noinline
793ev_feed_signal_event (EV_P_ int signum)
794{
795 WL w;
796
797#if EV_MULTIPLICITY
798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
799#endif
800
801 --signum;
802
803 if (signum < 0 || signum >= signalmax)
804 return;
805
806 signals [signum].gotsig = 0;
807
808 for (w = signals [signum].head; w; w = w->next)
809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
810}
811
812static void
813sigcb (EV_P_ ev_io *iow, int revents)
814{
815 int signum;
816
817 read (sigpipe [0], &revents, 1);
818 gotsig = 0;
819
820 for (signum = signalmax; signum--; )
821 if (signals [signum].gotsig)
822 ev_feed_signal_event (EV_A_ signum + 1);
823}
824
825void inline_speed
826fd_intern (int fd) 1170fd_intern (int fd)
827{ 1171{
828#ifdef _WIN32 1172#ifdef _WIN32
829 int arg = 1; 1173 unsigned long arg = 1;
830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1174 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
831#else 1175#else
832 fcntl (fd, F_SETFD, FD_CLOEXEC); 1176 fcntl (fd, F_SETFD, FD_CLOEXEC);
833 fcntl (fd, F_SETFL, O_NONBLOCK); 1177 fcntl (fd, F_SETFL, O_NONBLOCK);
834#endif 1178#endif
835} 1179}
836 1180
1181/*****************************************************************************/
1182
1183/*
1184 * the heap functions want a real array index. array index 0 is guaranteed to not
1185 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1186 * the branching factor of the d-tree.
1187 */
1188
1189/*
1190 * at the moment we allow libev the luxury of two heaps,
1191 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1192 * which is more cache-efficient.
1193 * the difference is about 5% with 50000+ watchers.
1194 */
1195#if EV_USE_4HEAP
1196
1197#define DHEAP 4
1198#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1199#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1200#define UPHEAP_DONE(p,k) ((p) == (k))
1201
1202/* away from the root */
1203inline_speed void
1204downheap (ANHE *heap, int N, int k)
1205{
1206 ANHE he = heap [k];
1207 ANHE *E = heap + N + HEAP0;
1208
1209 for (;;)
1210 {
1211 ev_tstamp minat;
1212 ANHE *minpos;
1213 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1214
1215 /* find minimum child */
1216 if (expect_true (pos + DHEAP - 1 < E))
1217 {
1218 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1219 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1220 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1221 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1222 }
1223 else if (pos < E)
1224 {
1225 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1226 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1227 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1228 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1229 }
1230 else
1231 break;
1232
1233 if (ANHE_at (he) <= minat)
1234 break;
1235
1236 heap [k] = *minpos;
1237 ev_active (ANHE_w (*minpos)) = k;
1238
1239 k = minpos - heap;
1240 }
1241
1242 heap [k] = he;
1243 ev_active (ANHE_w (he)) = k;
1244}
1245
1246#else /* 4HEAP */
1247
1248#define HEAP0 1
1249#define HPARENT(k) ((k) >> 1)
1250#define UPHEAP_DONE(p,k) (!(p))
1251
1252/* away from the root */
1253inline_speed void
1254downheap (ANHE *heap, int N, int k)
1255{
1256 ANHE he = heap [k];
1257
1258 for (;;)
1259 {
1260 int c = k << 1;
1261
1262 if (c >= N + HEAP0)
1263 break;
1264
1265 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1266 ? 1 : 0;
1267
1268 if (ANHE_at (he) <= ANHE_at (heap [c]))
1269 break;
1270
1271 heap [k] = heap [c];
1272 ev_active (ANHE_w (heap [k])) = k;
1273
1274 k = c;
1275 }
1276
1277 heap [k] = he;
1278 ev_active (ANHE_w (he)) = k;
1279}
1280#endif
1281
1282/* towards the root */
1283inline_speed void
1284upheap (ANHE *heap, int k)
1285{
1286 ANHE he = heap [k];
1287
1288 for (;;)
1289 {
1290 int p = HPARENT (k);
1291
1292 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1293 break;
1294
1295 heap [k] = heap [p];
1296 ev_active (ANHE_w (heap [k])) = k;
1297 k = p;
1298 }
1299
1300 heap [k] = he;
1301 ev_active (ANHE_w (he)) = k;
1302}
1303
1304/* move an element suitably so it is in a correct place */
1305inline_size void
1306adjustheap (ANHE *heap, int N, int k)
1307{
1308 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1309 upheap (heap, k);
1310 else
1311 downheap (heap, N, k);
1312}
1313
1314/* rebuild the heap: this function is used only once and executed rarely */
1315inline_size void
1316reheap (ANHE *heap, int N)
1317{
1318 int i;
1319
1320 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1321 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1322 for (i = 0; i < N; ++i)
1323 upheap (heap, i + HEAP0);
1324}
1325
1326/*****************************************************************************/
1327
1328/* associate signal watchers to a signal signal */
1329typedef struct
1330{
1331 EV_ATOMIC_T pending;
1332#if EV_MULTIPLICITY
1333 EV_P;
1334#endif
1335 WL head;
1336} ANSIG;
1337
1338static ANSIG signals [EV_NSIG - 1];
1339
1340/*****************************************************************************/
1341
1342#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1343
837static void noinline 1344static void noinline
838siginit (EV_P) 1345evpipe_init (EV_P)
839{ 1346{
1347 if (!ev_is_active (&pipe_w))
1348 {
1349# if EV_USE_EVENTFD
1350 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1351 if (evfd < 0 && errno == EINVAL)
1352 evfd = eventfd (0, 0);
1353
1354 if (evfd >= 0)
1355 {
1356 evpipe [0] = -1;
1357 fd_intern (evfd); /* doing it twice doesn't hurt */
1358 ev_io_set (&pipe_w, evfd, EV_READ);
1359 }
1360 else
1361# endif
1362 {
1363 while (pipe (evpipe))
1364 ev_syserr ("(libev) error creating signal/async pipe");
1365
840 fd_intern (sigpipe [0]); 1366 fd_intern (evpipe [0]);
841 fd_intern (sigpipe [1]); 1367 fd_intern (evpipe [1]);
1368 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1369 }
842 1370
843 ev_io_set (&sigev, sigpipe [0], EV_READ);
844 ev_io_start (EV_A_ &sigev); 1371 ev_io_start (EV_A_ &pipe_w);
845 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1372 ev_unref (EV_A); /* watcher should not keep loop alive */
1373 }
1374}
1375
1376inline_size void
1377evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1378{
1379 if (!*flag)
1380 {
1381 int old_errno = errno; /* save errno because write might clobber it */
1382 char dummy;
1383
1384 *flag = 1;
1385
1386#if EV_USE_EVENTFD
1387 if (evfd >= 0)
1388 {
1389 uint64_t counter = 1;
1390 write (evfd, &counter, sizeof (uint64_t));
1391 }
1392 else
1393#endif
1394 /* win32 people keep sending patches that change this write() to send() */
1395 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1396 /* so when you think this write should be a send instead, please find out */
1397 /* where your send() is from - it's definitely not the microsoft send, and */
1398 /* tell me. thank you. */
1399 write (evpipe [1], &dummy, 1);
1400
1401 errno = old_errno;
1402 }
1403}
1404
1405/* called whenever the libev signal pipe */
1406/* got some events (signal, async) */
1407static void
1408pipecb (EV_P_ ev_io *iow, int revents)
1409{
1410 int i;
1411
1412#if EV_USE_EVENTFD
1413 if (evfd >= 0)
1414 {
1415 uint64_t counter;
1416 read (evfd, &counter, sizeof (uint64_t));
1417 }
1418 else
1419#endif
1420 {
1421 char dummy;
1422 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1423 read (evpipe [0], &dummy, 1);
1424 }
1425
1426#if EV_SIGNAL_ENABLE
1427 if (sig_pending)
1428 {
1429 sig_pending = 0;
1430
1431 for (i = EV_NSIG - 1; i--; )
1432 if (expect_false (signals [i].pending))
1433 ev_feed_signal_event (EV_A_ i + 1);
1434 }
1435#endif
1436
1437#if EV_ASYNC_ENABLE
1438 if (async_pending)
1439 {
1440 async_pending = 0;
1441
1442 for (i = asynccnt; i--; )
1443 if (asyncs [i]->sent)
1444 {
1445 asyncs [i]->sent = 0;
1446 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1447 }
1448 }
1449#endif
846} 1450}
847 1451
848/*****************************************************************************/ 1452/*****************************************************************************/
849 1453
1454void
1455ev_feed_signal (int signum)
1456{
1457#if EV_MULTIPLICITY
1458 EV_P = signals [signum - 1].loop;
1459
1460 if (!EV_A)
1461 return;
1462#endif
1463
1464 signals [signum - 1].pending = 1;
1465 evpipe_write (EV_A_ &sig_pending);
1466}
1467
1468static void
1469ev_sighandler (int signum)
1470{
1471#ifdef _WIN32
1472 signal (signum, ev_sighandler);
1473#endif
1474
1475 ev_feed_signal (signum);
1476}
1477
1478void noinline
1479ev_feed_signal_event (EV_P_ int signum)
1480{
1481 WL w;
1482
1483 if (expect_false (signum <= 0 || signum > EV_NSIG))
1484 return;
1485
1486 --signum;
1487
1488#if EV_MULTIPLICITY
1489 /* it is permissible to try to feed a signal to the wrong loop */
1490 /* or, likely more useful, feeding a signal nobody is waiting for */
1491
1492 if (expect_false (signals [signum].loop != EV_A))
1493 return;
1494#endif
1495
1496 signals [signum].pending = 0;
1497
1498 for (w = signals [signum].head; w; w = w->next)
1499 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1500}
1501
1502#if EV_USE_SIGNALFD
1503static void
1504sigfdcb (EV_P_ ev_io *iow, int revents)
1505{
1506 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1507
1508 for (;;)
1509 {
1510 ssize_t res = read (sigfd, si, sizeof (si));
1511
1512 /* not ISO-C, as res might be -1, but works with SuS */
1513 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1514 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1515
1516 if (res < (ssize_t)sizeof (si))
1517 break;
1518 }
1519}
1520#endif
1521
1522#endif
1523
1524/*****************************************************************************/
1525
1526#if EV_CHILD_ENABLE
850static WL childs [EV_PID_HASHSIZE]; 1527static WL childs [EV_PID_HASHSIZE];
851 1528
852#ifndef _WIN32
853
854static ev_signal childev; 1529static ev_signal childev;
855 1530
856void inline_speed 1531#ifndef WIFCONTINUED
1532# define WIFCONTINUED(status) 0
1533#endif
1534
1535/* handle a single child status event */
1536inline_speed void
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1537child_reap (EV_P_ int chain, int pid, int status)
858{ 1538{
859 ev_child *w; 1539 ev_child *w;
1540 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
860 1541
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1542 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1543 {
862 if (w->pid == pid || !w->pid) 1544 if ((w->pid == pid || !w->pid)
1545 && (!traced || (w->flags & 1)))
863 { 1546 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1547 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
865 w->rpid = pid; 1548 w->rpid = pid;
866 w->rstatus = status; 1549 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1550 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 } 1551 }
1552 }
869} 1553}
870 1554
871#ifndef WCONTINUED 1555#ifndef WCONTINUED
872# define WCONTINUED 0 1556# define WCONTINUED 0
873#endif 1557#endif
874 1558
1559/* called on sigchld etc., calls waitpid */
875static void 1560static void
876childcb (EV_P_ ev_signal *sw, int revents) 1561childcb (EV_P_ ev_signal *sw, int revents)
877{ 1562{
878 int pid, status; 1563 int pid, status;
879 1564
882 if (!WCONTINUED 1567 if (!WCONTINUED
883 || errno != EINVAL 1568 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1569 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return; 1570 return;
886 1571
887 /* make sure we are called again until all childs have been reaped */ 1572 /* make sure we are called again until all children have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */ 1573 /* we need to do it this way so that the callback gets called before we continue */
889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1574 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
890 1575
891 child_reap (EV_A_ sw, pid, pid, status); 1576 child_reap (EV_A_ pid, pid, status);
892 if (EV_PID_HASHSIZE > 1) 1577 if ((EV_PID_HASHSIZE) > 1)
893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1578 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
894} 1579}
895 1580
896#endif 1581#endif
897 1582
898/*****************************************************************************/ 1583/*****************************************************************************/
899 1584
1585#if EV_USE_IOCP
1586# include "ev_iocp.c"
1587#endif
900#if EV_USE_PORT 1588#if EV_USE_PORT
901# include "ev_port.c" 1589# include "ev_port.c"
902#endif 1590#endif
903#if EV_USE_KQUEUE 1591#if EV_USE_KQUEUE
904# include "ev_kqueue.c" 1592# include "ev_kqueue.c"
960 /* kqueue is borked on everything but netbsd apparently */ 1648 /* kqueue is borked on everything but netbsd apparently */
961 /* it usually doesn't work correctly on anything but sockets and pipes */ 1649 /* it usually doesn't work correctly on anything but sockets and pipes */
962 flags &= ~EVBACKEND_KQUEUE; 1650 flags &= ~EVBACKEND_KQUEUE;
963#endif 1651#endif
964#ifdef __APPLE__ 1652#ifdef __APPLE__
965 // flags &= ~EVBACKEND_KQUEUE; for documentation 1653 /* only select works correctly on that "unix-certified" platform */
966 flags &= ~EVBACKEND_POLL; 1654 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1655 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1656#endif
1657#ifdef __FreeBSD__
1658 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
967#endif 1659#endif
968 1660
969 return flags; 1661 return flags;
970} 1662}
971 1663
972unsigned int 1664unsigned int
973ev_embeddable_backends (void) 1665ev_embeddable_backends (void)
974{ 1666{
1667 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1668
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1669 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
976 return EVBACKEND_KQUEUE 1670 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
977 | EVBACKEND_PORT; 1671 flags &= ~EVBACKEND_EPOLL;
1672
1673 return flags;
978} 1674}
979 1675
980unsigned int 1676unsigned int
981ev_backend (EV_P) 1677ev_backend (EV_P)
982{ 1678{
983 return backend; 1679 return backend;
984} 1680}
985 1681
1682#if EV_FEATURE_API
986unsigned int 1683unsigned int
987ev_loop_count (EV_P) 1684ev_iteration (EV_P)
988{ 1685{
989 return loop_count; 1686 return loop_count;
990} 1687}
991 1688
1689unsigned int
1690ev_depth (EV_P)
1691{
1692 return loop_depth;
1693}
1694
992void 1695void
993ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1696ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
994{ 1697{
995 io_blocktime = interval; 1698 io_blocktime = interval;
996} 1699}
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1702ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1000{ 1703{
1001 timeout_blocktime = interval; 1704 timeout_blocktime = interval;
1002} 1705}
1003 1706
1707void
1708ev_set_userdata (EV_P_ void *data)
1709{
1710 userdata = data;
1711}
1712
1713void *
1714ev_userdata (EV_P)
1715{
1716 return userdata;
1717}
1718
1719void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1720{
1721 invoke_cb = invoke_pending_cb;
1722}
1723
1724void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1725{
1726 release_cb = release;
1727 acquire_cb = acquire;
1728}
1729#endif
1730
1731/* initialise a loop structure, must be zero-initialised */
1004static void noinline 1732static void noinline
1005loop_init (EV_P_ unsigned int flags) 1733loop_init (EV_P_ unsigned int flags)
1006{ 1734{
1007 if (!backend) 1735 if (!backend)
1008 { 1736 {
1737 origflags = flags;
1738
1739#if EV_USE_REALTIME
1740 if (!have_realtime)
1741 {
1742 struct timespec ts;
1743
1744 if (!clock_gettime (CLOCK_REALTIME, &ts))
1745 have_realtime = 1;
1746 }
1747#endif
1748
1009#if EV_USE_MONOTONIC 1749#if EV_USE_MONOTONIC
1750 if (!have_monotonic)
1010 { 1751 {
1011 struct timespec ts; 1752 struct timespec ts;
1753
1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1754 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1013 have_monotonic = 1; 1755 have_monotonic = 1;
1014 } 1756 }
1015#endif 1757#endif
1016
1017 ev_rt_now = ev_time ();
1018 mn_now = get_clock ();
1019 now_floor = mn_now;
1020 rtmn_diff = ev_rt_now - mn_now;
1021
1022 io_blocktime = 0.;
1023 timeout_blocktime = 0.;
1024 1758
1025 /* pid check not overridable via env */ 1759 /* pid check not overridable via env */
1026#ifndef _WIN32 1760#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK) 1761 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid (); 1762 curpid = getpid ();
1031 if (!(flags & EVFLAG_NOENV) 1765 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure () 1766 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS")) 1767 && getenv ("LIBEV_FLAGS"))
1034 flags = atoi (getenv ("LIBEV_FLAGS")); 1768 flags = atoi (getenv ("LIBEV_FLAGS"));
1035 1769
1036 if (!(flags & 0x0000ffffUL)) 1770 ev_rt_now = ev_time ();
1771 mn_now = get_clock ();
1772 now_floor = mn_now;
1773 rtmn_diff = ev_rt_now - mn_now;
1774#if EV_FEATURE_API
1775 invoke_cb = ev_invoke_pending;
1776#endif
1777
1778 io_blocktime = 0.;
1779 timeout_blocktime = 0.;
1780 backend = 0;
1781 backend_fd = -1;
1782 sig_pending = 0;
1783#if EV_ASYNC_ENABLE
1784 async_pending = 0;
1785#endif
1786#if EV_USE_INOTIFY
1787 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1788#endif
1789#if EV_USE_SIGNALFD
1790 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1791#endif
1792
1793 if (!(flags & EVBACKEND_MASK))
1037 flags |= ev_recommended_backends (); 1794 flags |= ev_recommended_backends ();
1038 1795
1039 backend = 0;
1040 backend_fd = -1;
1041#if EV_USE_INOTIFY 1796#if EV_USE_IOCP
1042 fs_fd = -2; 1797 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1043#endif 1798#endif
1044
1045#if EV_USE_PORT 1799#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1800 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1047#endif 1801#endif
1048#if EV_USE_KQUEUE 1802#if EV_USE_KQUEUE
1049 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1803 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1056#endif 1810#endif
1057#if EV_USE_SELECT 1811#if EV_USE_SELECT
1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1812 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1059#endif 1813#endif
1060 1814
1815 ev_prepare_init (&pending_w, pendingcb);
1816
1817#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1061 ev_init (&sigev, sigcb); 1818 ev_init (&pipe_w, pipecb);
1062 ev_set_priority (&sigev, EV_MAXPRI); 1819 ev_set_priority (&pipe_w, EV_MAXPRI);
1820#endif
1063 } 1821 }
1064} 1822}
1065 1823
1066static void noinline 1824/* free up a loop structure */
1825void
1067loop_destroy (EV_P) 1826ev_loop_destroy (EV_P)
1068{ 1827{
1069 int i; 1828 int i;
1829
1830#if EV_MULTIPLICITY
1831 /* mimic free (0) */
1832 if (!EV_A)
1833 return;
1834#endif
1835
1836#if EV_CLEANUP_ENABLE
1837 /* queue cleanup watchers (and execute them) */
1838 if (expect_false (cleanupcnt))
1839 {
1840 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1841 EV_INVOKE_PENDING;
1842 }
1843#endif
1844
1845#if EV_CHILD_ENABLE
1846 if (ev_is_active (&childev))
1847 {
1848 ev_ref (EV_A); /* child watcher */
1849 ev_signal_stop (EV_A_ &childev);
1850 }
1851#endif
1852
1853 if (ev_is_active (&pipe_w))
1854 {
1855 /*ev_ref (EV_A);*/
1856 /*ev_io_stop (EV_A_ &pipe_w);*/
1857
1858#if EV_USE_EVENTFD
1859 if (evfd >= 0)
1860 close (evfd);
1861#endif
1862
1863 if (evpipe [0] >= 0)
1864 {
1865 EV_WIN32_CLOSE_FD (evpipe [0]);
1866 EV_WIN32_CLOSE_FD (evpipe [1]);
1867 }
1868 }
1869
1870#if EV_USE_SIGNALFD
1871 if (ev_is_active (&sigfd_w))
1872 close (sigfd);
1873#endif
1070 1874
1071#if EV_USE_INOTIFY 1875#if EV_USE_INOTIFY
1072 if (fs_fd >= 0) 1876 if (fs_fd >= 0)
1073 close (fs_fd); 1877 close (fs_fd);
1074#endif 1878#endif
1075 1879
1076 if (backend_fd >= 0) 1880 if (backend_fd >= 0)
1077 close (backend_fd); 1881 close (backend_fd);
1078 1882
1883#if EV_USE_IOCP
1884 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1885#endif
1079#if EV_USE_PORT 1886#if EV_USE_PORT
1080 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1887 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1081#endif 1888#endif
1082#if EV_USE_KQUEUE 1889#if EV_USE_KQUEUE
1083 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1890 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1098#if EV_IDLE_ENABLE 1905#if EV_IDLE_ENABLE
1099 array_free (idle, [i]); 1906 array_free (idle, [i]);
1100#endif 1907#endif
1101 } 1908 }
1102 1909
1103 ev_free (anfds); anfdmax = 0; 1910 ev_free (anfds); anfds = 0; anfdmax = 0;
1104 1911
1105 /* have to use the microsoft-never-gets-it-right macro */ 1912 /* have to use the microsoft-never-gets-it-right macro */
1913 array_free (rfeed, EMPTY);
1106 array_free (fdchange, EMPTY); 1914 array_free (fdchange, EMPTY);
1107 array_free (timer, EMPTY); 1915 array_free (timer, EMPTY);
1108#if EV_PERIODIC_ENABLE 1916#if EV_PERIODIC_ENABLE
1109 array_free (periodic, EMPTY); 1917 array_free (periodic, EMPTY);
1110#endif 1918#endif
1111#if EV_FORK_ENABLE 1919#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY); 1920 array_free (fork, EMPTY);
1113#endif 1921#endif
1922#if EV_CLEANUP_ENABLE
1923 array_free (cleanup, EMPTY);
1924#endif
1114 array_free (prepare, EMPTY); 1925 array_free (prepare, EMPTY);
1115 array_free (check, EMPTY); 1926 array_free (check, EMPTY);
1927#if EV_ASYNC_ENABLE
1928 array_free (async, EMPTY);
1929#endif
1116 1930
1117 backend = 0; 1931 backend = 0;
1118}
1119 1932
1933#if EV_MULTIPLICITY
1934 if (ev_is_default_loop (EV_A))
1935#endif
1936 ev_default_loop_ptr = 0;
1937#if EV_MULTIPLICITY
1938 else
1939 ev_free (EV_A);
1940#endif
1941}
1942
1943#if EV_USE_INOTIFY
1120void inline_size infy_fork (EV_P); 1944inline_size void infy_fork (EV_P);
1945#endif
1121 1946
1122void inline_size 1947inline_size void
1123loop_fork (EV_P) 1948loop_fork (EV_P)
1124{ 1949{
1125#if EV_USE_PORT 1950#if EV_USE_PORT
1126 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1951 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1127#endif 1952#endif
1133#endif 1958#endif
1134#if EV_USE_INOTIFY 1959#if EV_USE_INOTIFY
1135 infy_fork (EV_A); 1960 infy_fork (EV_A);
1136#endif 1961#endif
1137 1962
1138 if (ev_is_active (&sigev)) 1963 if (ev_is_active (&pipe_w))
1139 { 1964 {
1140 /* default loop */ 1965 /* this "locks" the handlers against writing to the pipe */
1966 /* while we modify the fd vars */
1967 sig_pending = 1;
1968#if EV_ASYNC_ENABLE
1969 async_pending = 1;
1970#endif
1141 1971
1142 ev_ref (EV_A); 1972 ev_ref (EV_A);
1143 ev_io_stop (EV_A_ &sigev); 1973 ev_io_stop (EV_A_ &pipe_w);
1144 close (sigpipe [0]);
1145 close (sigpipe [1]);
1146 1974
1147 while (pipe (sigpipe)) 1975#if EV_USE_EVENTFD
1148 syserr ("(libev) error creating pipe"); 1976 if (evfd >= 0)
1977 close (evfd);
1978#endif
1149 1979
1980 if (evpipe [0] >= 0)
1981 {
1982 EV_WIN32_CLOSE_FD (evpipe [0]);
1983 EV_WIN32_CLOSE_FD (evpipe [1]);
1984 }
1985
1986#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1150 siginit (EV_A); 1987 evpipe_init (EV_A);
1988 /* now iterate over everything, in case we missed something */
1989 pipecb (EV_A_ &pipe_w, EV_READ);
1990#endif
1151 } 1991 }
1152 1992
1153 postfork = 0; 1993 postfork = 0;
1154} 1994}
1995
1996#if EV_MULTIPLICITY
1997
1998struct ev_loop *
1999ev_loop_new (unsigned int flags)
2000{
2001 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2002
2003 memset (EV_A, 0, sizeof (struct ev_loop));
2004 loop_init (EV_A_ flags);
2005
2006 if (ev_backend (EV_A))
2007 return EV_A;
2008
2009 ev_free (EV_A);
2010 return 0;
2011}
2012
2013#endif /* multiplicity */
2014
2015#if EV_VERIFY
2016static void noinline
2017verify_watcher (EV_P_ W w)
2018{
2019 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2020
2021 if (w->pending)
2022 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2023}
2024
2025static void noinline
2026verify_heap (EV_P_ ANHE *heap, int N)
2027{
2028 int i;
2029
2030 for (i = HEAP0; i < N + HEAP0; ++i)
2031 {
2032 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2033 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2034 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2035
2036 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2037 }
2038}
2039
2040static void noinline
2041array_verify (EV_P_ W *ws, int cnt)
2042{
2043 while (cnt--)
2044 {
2045 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2046 verify_watcher (EV_A_ ws [cnt]);
2047 }
2048}
2049#endif
2050
2051#if EV_FEATURE_API
2052void
2053ev_verify (EV_P)
2054{
2055#if EV_VERIFY
2056 int i;
2057 WL w;
2058
2059 assert (activecnt >= -1);
2060
2061 assert (fdchangemax >= fdchangecnt);
2062 for (i = 0; i < fdchangecnt; ++i)
2063 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2064
2065 assert (anfdmax >= 0);
2066 for (i = 0; i < anfdmax; ++i)
2067 for (w = anfds [i].head; w; w = w->next)
2068 {
2069 verify_watcher (EV_A_ (W)w);
2070 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2071 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2072 }
2073
2074 assert (timermax >= timercnt);
2075 verify_heap (EV_A_ timers, timercnt);
2076
2077#if EV_PERIODIC_ENABLE
2078 assert (periodicmax >= periodiccnt);
2079 verify_heap (EV_A_ periodics, periodiccnt);
2080#endif
2081
2082 for (i = NUMPRI; i--; )
2083 {
2084 assert (pendingmax [i] >= pendingcnt [i]);
2085#if EV_IDLE_ENABLE
2086 assert (idleall >= 0);
2087 assert (idlemax [i] >= idlecnt [i]);
2088 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2089#endif
2090 }
2091
2092#if EV_FORK_ENABLE
2093 assert (forkmax >= forkcnt);
2094 array_verify (EV_A_ (W *)forks, forkcnt);
2095#endif
2096
2097#if EV_CLEANUP_ENABLE
2098 assert (cleanupmax >= cleanupcnt);
2099 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2100#endif
2101
2102#if EV_ASYNC_ENABLE
2103 assert (asyncmax >= asynccnt);
2104 array_verify (EV_A_ (W *)asyncs, asynccnt);
2105#endif
2106
2107#if EV_PREPARE_ENABLE
2108 assert (preparemax >= preparecnt);
2109 array_verify (EV_A_ (W *)prepares, preparecnt);
2110#endif
2111
2112#if EV_CHECK_ENABLE
2113 assert (checkmax >= checkcnt);
2114 array_verify (EV_A_ (W *)checks, checkcnt);
2115#endif
2116
2117# if 0
2118#if EV_CHILD_ENABLE
2119 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2120 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2121#endif
2122# endif
2123#endif
2124}
2125#endif
1155 2126
1156#if EV_MULTIPLICITY 2127#if EV_MULTIPLICITY
1157struct ev_loop * 2128struct ev_loop *
1158ev_loop_new (unsigned int flags)
1159{
1160 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1161
1162 memset (loop, 0, sizeof (struct ev_loop));
1163
1164 loop_init (EV_A_ flags);
1165
1166 if (ev_backend (EV_A))
1167 return loop;
1168
1169 return 0;
1170}
1171
1172void
1173ev_loop_destroy (EV_P)
1174{
1175 loop_destroy (EV_A);
1176 ev_free (loop);
1177}
1178
1179void
1180ev_loop_fork (EV_P)
1181{
1182 postfork = 1;
1183}
1184
1185#endif
1186
1187#if EV_MULTIPLICITY
1188struct ev_loop *
1189ev_default_loop_init (unsigned int flags)
1190#else 2129#else
1191int 2130int
2131#endif
1192ev_default_loop (unsigned int flags) 2132ev_default_loop (unsigned int flags)
1193#endif
1194{ 2133{
1195 if (sigpipe [0] == sigpipe [1])
1196 if (pipe (sigpipe))
1197 return 0;
1198
1199 if (!ev_default_loop_ptr) 2134 if (!ev_default_loop_ptr)
1200 { 2135 {
1201#if EV_MULTIPLICITY 2136#if EV_MULTIPLICITY
1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2137 EV_P = ev_default_loop_ptr = &default_loop_struct;
1203#else 2138#else
1204 ev_default_loop_ptr = 1; 2139 ev_default_loop_ptr = 1;
1205#endif 2140#endif
1206 2141
1207 loop_init (EV_A_ flags); 2142 loop_init (EV_A_ flags);
1208 2143
1209 if (ev_backend (EV_A)) 2144 if (ev_backend (EV_A))
1210 { 2145 {
1211 siginit (EV_A); 2146#if EV_CHILD_ENABLE
1212
1213#ifndef _WIN32
1214 ev_signal_init (&childev, childcb, SIGCHLD); 2147 ev_signal_init (&childev, childcb, SIGCHLD);
1215 ev_set_priority (&childev, EV_MAXPRI); 2148 ev_set_priority (&childev, EV_MAXPRI);
1216 ev_signal_start (EV_A_ &childev); 2149 ev_signal_start (EV_A_ &childev);
1217 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2150 ev_unref (EV_A); /* child watcher should not keep loop alive */
1218#endif 2151#endif
1223 2156
1224 return ev_default_loop_ptr; 2157 return ev_default_loop_ptr;
1225} 2158}
1226 2159
1227void 2160void
1228ev_default_destroy (void) 2161ev_loop_fork (EV_P)
1229{ 2162{
1230#if EV_MULTIPLICITY 2163 postfork = 1; /* must be in line with ev_default_fork */
1231 struct ev_loop *loop = ev_default_loop_ptr;
1232#endif
1233
1234#ifndef _WIN32
1235 ev_ref (EV_A); /* child watcher */
1236 ev_signal_stop (EV_A_ &childev);
1237#endif
1238
1239 ev_ref (EV_A); /* signal watcher */
1240 ev_io_stop (EV_A_ &sigev);
1241
1242 close (sigpipe [0]); sigpipe [0] = 0;
1243 close (sigpipe [1]); sigpipe [1] = 0;
1244
1245 loop_destroy (EV_A);
1246}
1247
1248void
1249ev_default_fork (void)
1250{
1251#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr;
1253#endif
1254
1255 if (backend)
1256 postfork = 1;
1257} 2164}
1258 2165
1259/*****************************************************************************/ 2166/*****************************************************************************/
1260 2167
1261void 2168void
1262ev_invoke (EV_P_ void *w, int revents) 2169ev_invoke (EV_P_ void *w, int revents)
1263{ 2170{
1264 EV_CB_INVOKE ((W)w, revents); 2171 EV_CB_INVOKE ((W)w, revents);
1265} 2172}
1266 2173
1267void inline_speed 2174unsigned int
1268call_pending (EV_P) 2175ev_pending_count (EV_P)
2176{
2177 int pri;
2178 unsigned int count = 0;
2179
2180 for (pri = NUMPRI; pri--; )
2181 count += pendingcnt [pri];
2182
2183 return count;
2184}
2185
2186void noinline
2187ev_invoke_pending (EV_P)
1269{ 2188{
1270 int pri; 2189 int pri;
1271 2190
1272 for (pri = NUMPRI; pri--; ) 2191 for (pri = NUMPRI; pri--; )
1273 while (pendingcnt [pri]) 2192 while (pendingcnt [pri])
1274 { 2193 {
1275 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2194 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1276 2195
1277 if (expect_true (p->w))
1278 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1280
1281 p->w->pending = 0; 2196 p->w->pending = 0;
1282 EV_CB_INVOKE (p->w, p->events); 2197 EV_CB_INVOKE (p->w, p->events);
1283 } 2198 EV_FREQUENT_CHECK;
1284 } 2199 }
1285} 2200}
1286 2201
1287void inline_size
1288timers_reify (EV_P)
1289{
1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1291 {
1292 ev_timer *w = (ev_timer *)timers [0];
1293
1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1295
1296 /* first reschedule or stop timer */
1297 if (w->repeat)
1298 {
1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1300
1301 ((WT)w)->at += w->repeat;
1302 if (((WT)w)->at < mn_now)
1303 ((WT)w)->at = mn_now;
1304
1305 downheap (timers, timercnt, 0);
1306 }
1307 else
1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1309
1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1311 }
1312}
1313
1314#if EV_PERIODIC_ENABLE
1315void inline_size
1316periodics_reify (EV_P)
1317{
1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1319 {
1320 ev_periodic *w = (ev_periodic *)periodics [0];
1321
1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1323
1324 /* first reschedule or stop timer */
1325 if (w->reschedule_cb)
1326 {
1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1329 downheap (periodics, periodiccnt, 0);
1330 }
1331 else if (w->interval)
1332 {
1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1336 downheap (periodics, periodiccnt, 0);
1337 }
1338 else
1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1340
1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1342 }
1343}
1344
1345static void noinline
1346periodics_reschedule (EV_P)
1347{
1348 int i;
1349
1350 /* adjust periodics after time jump */
1351 for (i = 0; i < periodiccnt; ++i)
1352 {
1353 ev_periodic *w = (ev_periodic *)periodics [i];
1354
1355 if (w->reschedule_cb)
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1357 else if (w->interval)
1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 }
1360
1361 /* now rebuild the heap */
1362 for (i = periodiccnt >> 1; i--; )
1363 downheap (periodics, periodiccnt, i);
1364}
1365#endif
1366
1367#if EV_IDLE_ENABLE 2202#if EV_IDLE_ENABLE
1368void inline_size 2203/* make idle watchers pending. this handles the "call-idle */
2204/* only when higher priorities are idle" logic */
2205inline_size void
1369idle_reify (EV_P) 2206idle_reify (EV_P)
1370{ 2207{
1371 if (expect_false (idleall)) 2208 if (expect_false (idleall))
1372 { 2209 {
1373 int pri; 2210 int pri;
1385 } 2222 }
1386 } 2223 }
1387} 2224}
1388#endif 2225#endif
1389 2226
1390void inline_speed 2227/* make timers pending */
2228inline_size void
2229timers_reify (EV_P)
2230{
2231 EV_FREQUENT_CHECK;
2232
2233 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2234 {
2235 do
2236 {
2237 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2238
2239 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2240
2241 /* first reschedule or stop timer */
2242 if (w->repeat)
2243 {
2244 ev_at (w) += w->repeat;
2245 if (ev_at (w) < mn_now)
2246 ev_at (w) = mn_now;
2247
2248 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2249
2250 ANHE_at_cache (timers [HEAP0]);
2251 downheap (timers, timercnt, HEAP0);
2252 }
2253 else
2254 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2255
2256 EV_FREQUENT_CHECK;
2257 feed_reverse (EV_A_ (W)w);
2258 }
2259 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2260
2261 feed_reverse_done (EV_A_ EV_TIMER);
2262 }
2263}
2264
2265#if EV_PERIODIC_ENABLE
2266
2267static void noinline
2268periodic_recalc (EV_P_ ev_periodic *w)
2269{
2270 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2271 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2272
2273 /* the above almost always errs on the low side */
2274 while (at <= ev_rt_now)
2275 {
2276 ev_tstamp nat = at + w->interval;
2277
2278 /* when resolution fails us, we use ev_rt_now */
2279 if (expect_false (nat == at))
2280 {
2281 at = ev_rt_now;
2282 break;
2283 }
2284
2285 at = nat;
2286 }
2287
2288 ev_at (w) = at;
2289}
2290
2291/* make periodics pending */
2292inline_size void
2293periodics_reify (EV_P)
2294{
2295 EV_FREQUENT_CHECK;
2296
2297 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2298 {
2299 int feed_count = 0;
2300
2301 do
2302 {
2303 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2304
2305 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2306
2307 /* first reschedule or stop timer */
2308 if (w->reschedule_cb)
2309 {
2310 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2311
2312 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2313
2314 ANHE_at_cache (periodics [HEAP0]);
2315 downheap (periodics, periodiccnt, HEAP0);
2316 }
2317 else if (w->interval)
2318 {
2319 periodic_recalc (EV_A_ w);
2320 ANHE_at_cache (periodics [HEAP0]);
2321 downheap (periodics, periodiccnt, HEAP0);
2322 }
2323 else
2324 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2325
2326 EV_FREQUENT_CHECK;
2327 feed_reverse (EV_A_ (W)w);
2328 }
2329 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2330
2331 feed_reverse_done (EV_A_ EV_PERIODIC);
2332 }
2333}
2334
2335/* simply recalculate all periodics */
2336/* TODO: maybe ensure that at least one event happens when jumping forward? */
2337static void noinline
2338periodics_reschedule (EV_P)
2339{
2340 int i;
2341
2342 /* adjust periodics after time jump */
2343 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2344 {
2345 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2346
2347 if (w->reschedule_cb)
2348 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2349 else if (w->interval)
2350 periodic_recalc (EV_A_ w);
2351
2352 ANHE_at_cache (periodics [i]);
2353 }
2354
2355 reheap (periodics, periodiccnt);
2356}
2357#endif
2358
2359/* adjust all timers by a given offset */
2360static void noinline
2361timers_reschedule (EV_P_ ev_tstamp adjust)
2362{
2363 int i;
2364
2365 for (i = 0; i < timercnt; ++i)
2366 {
2367 ANHE *he = timers + i + HEAP0;
2368 ANHE_w (*he)->at += adjust;
2369 ANHE_at_cache (*he);
2370 }
2371}
2372
2373/* fetch new monotonic and realtime times from the kernel */
2374/* also detect if there was a timejump, and act accordingly */
2375inline_speed void
1391time_update (EV_P_ ev_tstamp max_block) 2376time_update (EV_P_ ev_tstamp max_block)
1392{ 2377{
1393 int i;
1394
1395#if EV_USE_MONOTONIC 2378#if EV_USE_MONOTONIC
1396 if (expect_true (have_monotonic)) 2379 if (expect_true (have_monotonic))
1397 { 2380 {
2381 int i;
1398 ev_tstamp odiff = rtmn_diff; 2382 ev_tstamp odiff = rtmn_diff;
1399 2383
1400 mn_now = get_clock (); 2384 mn_now = get_clock ();
1401 2385
1402 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2386 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1418 * doesn't hurt either as we only do this on time-jumps or 2402 * doesn't hurt either as we only do this on time-jumps or
1419 * in the unlikely event of having been preempted here. 2403 * in the unlikely event of having been preempted here.
1420 */ 2404 */
1421 for (i = 4; --i; ) 2405 for (i = 4; --i; )
1422 { 2406 {
2407 ev_tstamp diff;
1423 rtmn_diff = ev_rt_now - mn_now; 2408 rtmn_diff = ev_rt_now - mn_now;
1424 2409
1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2410 diff = odiff - rtmn_diff;
2411
2412 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1426 return; /* all is well */ 2413 return; /* all is well */
1427 2414
1428 ev_rt_now = ev_time (); 2415 ev_rt_now = ev_time ();
1429 mn_now = get_clock (); 2416 mn_now = get_clock ();
1430 now_floor = mn_now; 2417 now_floor = mn_now;
1431 } 2418 }
1432 2419
2420 /* no timer adjustment, as the monotonic clock doesn't jump */
2421 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1433# if EV_PERIODIC_ENABLE 2422# if EV_PERIODIC_ENABLE
1434 periodics_reschedule (EV_A); 2423 periodics_reschedule (EV_A);
1435# endif 2424# endif
1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1438 } 2425 }
1439 else 2426 else
1440#endif 2427#endif
1441 { 2428 {
1442 ev_rt_now = ev_time (); 2429 ev_rt_now = ev_time ();
1443 2430
1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2431 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1445 { 2432 {
2433 /* adjust timers. this is easy, as the offset is the same for all of them */
2434 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1446#if EV_PERIODIC_ENABLE 2435#if EV_PERIODIC_ENABLE
1447 periodics_reschedule (EV_A); 2436 periodics_reschedule (EV_A);
1448#endif 2437#endif
1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1450 for (i = 0; i < timercnt; ++i)
1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1452 } 2438 }
1453 2439
1454 mn_now = ev_rt_now; 2440 mn_now = ev_rt_now;
1455 } 2441 }
1456} 2442}
1457 2443
1458void 2444void
1459ev_ref (EV_P)
1460{
1461 ++activecnt;
1462}
1463
1464void
1465ev_unref (EV_P)
1466{
1467 --activecnt;
1468}
1469
1470static int loop_done;
1471
1472void
1473ev_loop (EV_P_ int flags) 2445ev_run (EV_P_ int flags)
1474{ 2446{
1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2447#if EV_FEATURE_API
1476 ? EVUNLOOP_ONE 2448 ++loop_depth;
1477 : EVUNLOOP_CANCEL; 2449#endif
1478 2450
2451 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2452
2453 loop_done = EVBREAK_CANCEL;
2454
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2455 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1480 2456
1481 do 2457 do
1482 { 2458 {
2459#if EV_VERIFY >= 2
2460 ev_verify (EV_A);
2461#endif
2462
1483#ifndef _WIN32 2463#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */ 2464 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid)) 2465 if (expect_false (getpid () != curpid))
1486 { 2466 {
1487 curpid = getpid (); 2467 curpid = getpid ();
1493 /* we might have forked, so queue fork handlers */ 2473 /* we might have forked, so queue fork handlers */
1494 if (expect_false (postfork)) 2474 if (expect_false (postfork))
1495 if (forkcnt) 2475 if (forkcnt)
1496 { 2476 {
1497 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2477 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1498 call_pending (EV_A); 2478 EV_INVOKE_PENDING;
1499 } 2479 }
1500#endif 2480#endif
1501 2481
2482#if EV_PREPARE_ENABLE
1502 /* queue prepare watchers (and execute them) */ 2483 /* queue prepare watchers (and execute them) */
1503 if (expect_false (preparecnt)) 2484 if (expect_false (preparecnt))
1504 { 2485 {
1505 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2486 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1506 call_pending (EV_A); 2487 EV_INVOKE_PENDING;
1507 } 2488 }
2489#endif
1508 2490
1509 if (expect_false (!activecnt)) 2491 if (expect_false (loop_done))
1510 break; 2492 break;
1511 2493
1512 /* we might have forked, so reify kernel state if necessary */ 2494 /* we might have forked, so reify kernel state if necessary */
1513 if (expect_false (postfork)) 2495 if (expect_false (postfork))
1514 loop_fork (EV_A); 2496 loop_fork (EV_A);
1519 /* calculate blocking time */ 2501 /* calculate blocking time */
1520 { 2502 {
1521 ev_tstamp waittime = 0.; 2503 ev_tstamp waittime = 0.;
1522 ev_tstamp sleeptime = 0.; 2504 ev_tstamp sleeptime = 0.;
1523 2505
2506 /* remember old timestamp for io_blocktime calculation */
2507 ev_tstamp prev_mn_now = mn_now;
2508
2509 /* update time to cancel out callback processing overhead */
2510 time_update (EV_A_ 1e100);
2511
1524 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2512 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1525 { 2513 {
1526 /* update time to cancel out callback processing overhead */
1527 time_update (EV_A_ 1e100);
1528
1529 waittime = MAX_BLOCKTIME; 2514 waittime = MAX_BLOCKTIME;
1530 2515
1531 if (timercnt) 2516 if (timercnt)
1532 { 2517 {
1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2518 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1534 if (waittime > to) waittime = to; 2519 if (waittime > to) waittime = to;
1535 } 2520 }
1536 2521
1537#if EV_PERIODIC_ENABLE 2522#if EV_PERIODIC_ENABLE
1538 if (periodiccnt) 2523 if (periodiccnt)
1539 { 2524 {
1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2525 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1541 if (waittime > to) waittime = to; 2526 if (waittime > to) waittime = to;
1542 } 2527 }
1543#endif 2528#endif
1544 2529
2530 /* don't let timeouts decrease the waittime below timeout_blocktime */
1545 if (expect_false (waittime < timeout_blocktime)) 2531 if (expect_false (waittime < timeout_blocktime))
1546 waittime = timeout_blocktime; 2532 waittime = timeout_blocktime;
1547 2533
1548 sleeptime = waittime - backend_fudge; 2534 /* extra check because io_blocktime is commonly 0 */
1549
1550 if (expect_true (sleeptime > io_blocktime)) 2535 if (expect_false (io_blocktime))
1551 sleeptime = io_blocktime;
1552
1553 if (sleeptime)
1554 { 2536 {
2537 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2538
2539 if (sleeptime > waittime - backend_fudge)
2540 sleeptime = waittime - backend_fudge;
2541
2542 if (expect_true (sleeptime > 0.))
2543 {
1555 ev_sleep (sleeptime); 2544 ev_sleep (sleeptime);
1556 waittime -= sleeptime; 2545 waittime -= sleeptime;
2546 }
1557 } 2547 }
1558 } 2548 }
1559 2549
2550#if EV_FEATURE_API
1560 ++loop_count; 2551 ++loop_count;
2552#endif
2553 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1561 backend_poll (EV_A_ waittime); 2554 backend_poll (EV_A_ waittime);
2555 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1562 2556
1563 /* update ev_rt_now, do magic */ 2557 /* update ev_rt_now, do magic */
1564 time_update (EV_A_ waittime + sleeptime); 2558 time_update (EV_A_ waittime + sleeptime);
1565 } 2559 }
1566 2560
1573#if EV_IDLE_ENABLE 2567#if EV_IDLE_ENABLE
1574 /* queue idle watchers unless other events are pending */ 2568 /* queue idle watchers unless other events are pending */
1575 idle_reify (EV_A); 2569 idle_reify (EV_A);
1576#endif 2570#endif
1577 2571
2572#if EV_CHECK_ENABLE
1578 /* queue check watchers, to be executed first */ 2573 /* queue check watchers, to be executed first */
1579 if (expect_false (checkcnt)) 2574 if (expect_false (checkcnt))
1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2575 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2576#endif
1581 2577
1582 call_pending (EV_A); 2578 EV_INVOKE_PENDING;
1583
1584 } 2579 }
1585 while (expect_true (activecnt && !loop_done)); 2580 while (expect_true (
2581 activecnt
2582 && !loop_done
2583 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2584 ));
1586 2585
1587 if (loop_done == EVUNLOOP_ONE) 2586 if (loop_done == EVBREAK_ONE)
1588 loop_done = EVUNLOOP_CANCEL; 2587 loop_done = EVBREAK_CANCEL;
1589}
1590 2588
2589#if EV_FEATURE_API
2590 --loop_depth;
2591#endif
2592}
2593
1591void 2594void
1592ev_unloop (EV_P_ int how) 2595ev_break (EV_P_ int how)
1593{ 2596{
1594 loop_done = how; 2597 loop_done = how;
1595} 2598}
1596 2599
2600void
2601ev_ref (EV_P)
2602{
2603 ++activecnt;
2604}
2605
2606void
2607ev_unref (EV_P)
2608{
2609 --activecnt;
2610}
2611
2612void
2613ev_now_update (EV_P)
2614{
2615 time_update (EV_A_ 1e100);
2616}
2617
2618void
2619ev_suspend (EV_P)
2620{
2621 ev_now_update (EV_A);
2622}
2623
2624void
2625ev_resume (EV_P)
2626{
2627 ev_tstamp mn_prev = mn_now;
2628
2629 ev_now_update (EV_A);
2630 timers_reschedule (EV_A_ mn_now - mn_prev);
2631#if EV_PERIODIC_ENABLE
2632 /* TODO: really do this? */
2633 periodics_reschedule (EV_A);
2634#endif
2635}
2636
1597/*****************************************************************************/ 2637/*****************************************************************************/
2638/* singly-linked list management, used when the expected list length is short */
1598 2639
1599void inline_size 2640inline_size void
1600wlist_add (WL *head, WL elem) 2641wlist_add (WL *head, WL elem)
1601{ 2642{
1602 elem->next = *head; 2643 elem->next = *head;
1603 *head = elem; 2644 *head = elem;
1604} 2645}
1605 2646
1606void inline_size 2647inline_size void
1607wlist_del (WL *head, WL elem) 2648wlist_del (WL *head, WL elem)
1608{ 2649{
1609 while (*head) 2650 while (*head)
1610 { 2651 {
1611 if (*head == elem) 2652 if (expect_true (*head == elem))
1612 { 2653 {
1613 *head = elem->next; 2654 *head = elem->next;
1614 return; 2655 break;
1615 } 2656 }
1616 2657
1617 head = &(*head)->next; 2658 head = &(*head)->next;
1618 } 2659 }
1619} 2660}
1620 2661
1621void inline_speed 2662/* internal, faster, version of ev_clear_pending */
2663inline_speed void
1622clear_pending (EV_P_ W w) 2664clear_pending (EV_P_ W w)
1623{ 2665{
1624 if (w->pending) 2666 if (w->pending)
1625 { 2667 {
1626 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2668 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1627 w->pending = 0; 2669 w->pending = 0;
1628 } 2670 }
1629} 2671}
1630 2672
1631int 2673int
1635 int pending = w_->pending; 2677 int pending = w_->pending;
1636 2678
1637 if (expect_true (pending)) 2679 if (expect_true (pending))
1638 { 2680 {
1639 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2681 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2682 p->w = (W)&pending_w;
1640 w_->pending = 0; 2683 w_->pending = 0;
1641 p->w = 0;
1642 return p->events; 2684 return p->events;
1643 } 2685 }
1644 else 2686 else
1645 return 0; 2687 return 0;
1646} 2688}
1647 2689
1648void inline_size 2690inline_size void
1649pri_adjust (EV_P_ W w) 2691pri_adjust (EV_P_ W w)
1650{ 2692{
1651 int pri = w->priority; 2693 int pri = ev_priority (w);
1652 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2694 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1653 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2695 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1654 w->priority = pri; 2696 ev_set_priority (w, pri);
1655} 2697}
1656 2698
1657void inline_speed 2699inline_speed void
1658ev_start (EV_P_ W w, int active) 2700ev_start (EV_P_ W w, int active)
1659{ 2701{
1660 pri_adjust (EV_A_ w); 2702 pri_adjust (EV_A_ w);
1661 w->active = active; 2703 w->active = active;
1662 ev_ref (EV_A); 2704 ev_ref (EV_A);
1663} 2705}
1664 2706
1665void inline_size 2707inline_size void
1666ev_stop (EV_P_ W w) 2708ev_stop (EV_P_ W w)
1667{ 2709{
1668 ev_unref (EV_A); 2710 ev_unref (EV_A);
1669 w->active = 0; 2711 w->active = 0;
1670} 2712}
1677 int fd = w->fd; 2719 int fd = w->fd;
1678 2720
1679 if (expect_false (ev_is_active (w))) 2721 if (expect_false (ev_is_active (w)))
1680 return; 2722 return;
1681 2723
1682 assert (("ev_io_start called with negative fd", fd >= 0)); 2724 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2725 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2726
2727 EV_FREQUENT_CHECK;
1683 2728
1684 ev_start (EV_A_ (W)w, 1); 2729 ev_start (EV_A_ (W)w, 1);
1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2730 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1686 wlist_add (&anfds[fd].head, (WL)w); 2731 wlist_add (&anfds[fd].head, (WL)w);
1687 2732
1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2733 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1689 w->events &= ~EV_IOFDSET; 2734 w->events &= ~EV__IOFDSET;
2735
2736 EV_FREQUENT_CHECK;
1690} 2737}
1691 2738
1692void noinline 2739void noinline
1693ev_io_stop (EV_P_ ev_io *w) 2740ev_io_stop (EV_P_ ev_io *w)
1694{ 2741{
1695 clear_pending (EV_A_ (W)w); 2742 clear_pending (EV_A_ (W)w);
1696 if (expect_false (!ev_is_active (w))) 2743 if (expect_false (!ev_is_active (w)))
1697 return; 2744 return;
1698 2745
1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2746 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2747
2748 EV_FREQUENT_CHECK;
1700 2749
1701 wlist_del (&anfds[w->fd].head, (WL)w); 2750 wlist_del (&anfds[w->fd].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2751 ev_stop (EV_A_ (W)w);
1703 2752
1704 fd_change (EV_A_ w->fd, 1); 2753 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2754
2755 EV_FREQUENT_CHECK;
1705} 2756}
1706 2757
1707void noinline 2758void noinline
1708ev_timer_start (EV_P_ ev_timer *w) 2759ev_timer_start (EV_P_ ev_timer *w)
1709{ 2760{
1710 if (expect_false (ev_is_active (w))) 2761 if (expect_false (ev_is_active (w)))
1711 return; 2762 return;
1712 2763
1713 ((WT)w)->at += mn_now; 2764 ev_at (w) += mn_now;
1714 2765
1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2766 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1716 2767
2768 EV_FREQUENT_CHECK;
2769
2770 ++timercnt;
1717 ev_start (EV_A_ (W)w, ++timercnt); 2771 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2772 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1719 timers [timercnt - 1] = (WT)w; 2773 ANHE_w (timers [ev_active (w)]) = (WT)w;
1720 upheap (timers, timercnt - 1); 2774 ANHE_at_cache (timers [ev_active (w)]);
2775 upheap (timers, ev_active (w));
1721 2776
2777 EV_FREQUENT_CHECK;
2778
1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2779 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1723} 2780}
1724 2781
1725void noinline 2782void noinline
1726ev_timer_stop (EV_P_ ev_timer *w) 2783ev_timer_stop (EV_P_ ev_timer *w)
1727{ 2784{
1728 clear_pending (EV_A_ (W)w); 2785 clear_pending (EV_A_ (W)w);
1729 if (expect_false (!ev_is_active (w))) 2786 if (expect_false (!ev_is_active (w)))
1730 return; 2787 return;
1731 2788
1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2789 EV_FREQUENT_CHECK;
1733 2790
1734 { 2791 {
1735 int active = ((W)w)->active; 2792 int active = ev_active (w);
1736 2793
2794 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2795
2796 --timercnt;
2797
1737 if (expect_true (--active < --timercnt)) 2798 if (expect_true (active < timercnt + HEAP0))
1738 { 2799 {
1739 timers [active] = timers [timercnt]; 2800 timers [active] = timers [timercnt + HEAP0];
1740 adjustheap (timers, timercnt, active); 2801 adjustheap (timers, timercnt, active);
1741 } 2802 }
1742 } 2803 }
1743 2804
1744 ((WT)w)->at -= mn_now; 2805 ev_at (w) -= mn_now;
1745 2806
1746 ev_stop (EV_A_ (W)w); 2807 ev_stop (EV_A_ (W)w);
2808
2809 EV_FREQUENT_CHECK;
1747} 2810}
1748 2811
1749void noinline 2812void noinline
1750ev_timer_again (EV_P_ ev_timer *w) 2813ev_timer_again (EV_P_ ev_timer *w)
1751{ 2814{
2815 EV_FREQUENT_CHECK;
2816
1752 if (ev_is_active (w)) 2817 if (ev_is_active (w))
1753 { 2818 {
1754 if (w->repeat) 2819 if (w->repeat)
1755 { 2820 {
1756 ((WT)w)->at = mn_now + w->repeat; 2821 ev_at (w) = mn_now + w->repeat;
2822 ANHE_at_cache (timers [ev_active (w)]);
1757 adjustheap (timers, timercnt, ((W)w)->active - 1); 2823 adjustheap (timers, timercnt, ev_active (w));
1758 } 2824 }
1759 else 2825 else
1760 ev_timer_stop (EV_A_ w); 2826 ev_timer_stop (EV_A_ w);
1761 } 2827 }
1762 else if (w->repeat) 2828 else if (w->repeat)
1763 { 2829 {
1764 w->at = w->repeat; 2830 ev_at (w) = w->repeat;
1765 ev_timer_start (EV_A_ w); 2831 ev_timer_start (EV_A_ w);
1766 } 2832 }
2833
2834 EV_FREQUENT_CHECK;
2835}
2836
2837ev_tstamp
2838ev_timer_remaining (EV_P_ ev_timer *w)
2839{
2840 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1767} 2841}
1768 2842
1769#if EV_PERIODIC_ENABLE 2843#if EV_PERIODIC_ENABLE
1770void noinline 2844void noinline
1771ev_periodic_start (EV_P_ ev_periodic *w) 2845ev_periodic_start (EV_P_ ev_periodic *w)
1772{ 2846{
1773 if (expect_false (ev_is_active (w))) 2847 if (expect_false (ev_is_active (w)))
1774 return; 2848 return;
1775 2849
1776 if (w->reschedule_cb) 2850 if (w->reschedule_cb)
1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2851 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1778 else if (w->interval) 2852 else if (w->interval)
1779 { 2853 {
1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2854 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1781 /* this formula differs from the one in periodic_reify because we do not always round up */ 2855 periodic_recalc (EV_A_ w);
1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1783 } 2856 }
1784 else 2857 else
1785 ((WT)w)->at = w->offset; 2858 ev_at (w) = w->offset;
1786 2859
2860 EV_FREQUENT_CHECK;
2861
2862 ++periodiccnt;
1787 ev_start (EV_A_ (W)w, ++periodiccnt); 2863 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2864 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1789 periodics [periodiccnt - 1] = (WT)w; 2865 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1790 upheap (periodics, periodiccnt - 1); 2866 ANHE_at_cache (periodics [ev_active (w)]);
2867 upheap (periodics, ev_active (w));
1791 2868
2869 EV_FREQUENT_CHECK;
2870
1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2871 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1793} 2872}
1794 2873
1795void noinline 2874void noinline
1796ev_periodic_stop (EV_P_ ev_periodic *w) 2875ev_periodic_stop (EV_P_ ev_periodic *w)
1797{ 2876{
1798 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
1800 return; 2879 return;
1801 2880
1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2881 EV_FREQUENT_CHECK;
1803 2882
1804 { 2883 {
1805 int active = ((W)w)->active; 2884 int active = ev_active (w);
1806 2885
2886 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2887
2888 --periodiccnt;
2889
1807 if (expect_true (--active < --periodiccnt)) 2890 if (expect_true (active < periodiccnt + HEAP0))
1808 { 2891 {
1809 periodics [active] = periodics [periodiccnt]; 2892 periodics [active] = periodics [periodiccnt + HEAP0];
1810 adjustheap (periodics, periodiccnt, active); 2893 adjustheap (periodics, periodiccnt, active);
1811 } 2894 }
1812 } 2895 }
1813 2896
1814 ev_stop (EV_A_ (W)w); 2897 ev_stop (EV_A_ (W)w);
2898
2899 EV_FREQUENT_CHECK;
1815} 2900}
1816 2901
1817void noinline 2902void noinline
1818ev_periodic_again (EV_P_ ev_periodic *w) 2903ev_periodic_again (EV_P_ ev_periodic *w)
1819{ 2904{
1825 2910
1826#ifndef SA_RESTART 2911#ifndef SA_RESTART
1827# define SA_RESTART 0 2912# define SA_RESTART 0
1828#endif 2913#endif
1829 2914
2915#if EV_SIGNAL_ENABLE
2916
1830void noinline 2917void noinline
1831ev_signal_start (EV_P_ ev_signal *w) 2918ev_signal_start (EV_P_ ev_signal *w)
1832{ 2919{
1833#if EV_MULTIPLICITY
1834 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1835#endif
1836 if (expect_false (ev_is_active (w))) 2920 if (expect_false (ev_is_active (w)))
1837 return; 2921 return;
1838 2922
1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2923 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1840 2924
2925#if EV_MULTIPLICITY
2926 assert (("libev: a signal must not be attached to two different loops",
2927 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2928
2929 signals [w->signum - 1].loop = EV_A;
2930#endif
2931
2932 EV_FREQUENT_CHECK;
2933
2934#if EV_USE_SIGNALFD
2935 if (sigfd == -2)
1841 { 2936 {
1842#ifndef _WIN32 2937 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1843 sigset_t full, prev; 2938 if (sigfd < 0 && errno == EINVAL)
1844 sigfillset (&full); 2939 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1845 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif
1847 2940
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2941 if (sigfd >= 0)
2942 {
2943 fd_intern (sigfd); /* doing it twice will not hurt */
1849 2944
1850#ifndef _WIN32 2945 sigemptyset (&sigfd_set);
1851 sigprocmask (SIG_SETMASK, &prev, 0); 2946
1852#endif 2947 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2948 ev_set_priority (&sigfd_w, EV_MAXPRI);
2949 ev_io_start (EV_A_ &sigfd_w);
2950 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2951 }
1853 } 2952 }
2953
2954 if (sigfd >= 0)
2955 {
2956 /* TODO: check .head */
2957 sigaddset (&sigfd_set, w->signum);
2958 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2959
2960 signalfd (sigfd, &sigfd_set, 0);
2961 }
2962#endif
1854 2963
1855 ev_start (EV_A_ (W)w, 1); 2964 ev_start (EV_A_ (W)w, 1);
1856 wlist_add (&signals [w->signum - 1].head, (WL)w); 2965 wlist_add (&signals [w->signum - 1].head, (WL)w);
1857 2966
1858 if (!((WL)w)->next) 2967 if (!((WL)w)->next)
2968# if EV_USE_SIGNALFD
2969 if (sigfd < 0) /*TODO*/
2970# endif
1859 { 2971 {
1860#if _WIN32 2972# ifdef _WIN32
2973 evpipe_init (EV_A);
2974
1861 signal (w->signum, sighandler); 2975 signal (w->signum, ev_sighandler);
1862#else 2976# else
1863 struct sigaction sa; 2977 struct sigaction sa;
2978
2979 evpipe_init (EV_A);
2980
1864 sa.sa_handler = sighandler; 2981 sa.sa_handler = ev_sighandler;
1865 sigfillset (&sa.sa_mask); 2982 sigfillset (&sa.sa_mask);
1866 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2983 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1867 sigaction (w->signum, &sa, 0); 2984 sigaction (w->signum, &sa, 0);
2985
2986 if (origflags & EVFLAG_NOSIGMASK)
2987 {
2988 sigemptyset (&sa.sa_mask);
2989 sigaddset (&sa.sa_mask, w->signum);
2990 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2991 }
1868#endif 2992#endif
1869 } 2993 }
2994
2995 EV_FREQUENT_CHECK;
1870} 2996}
1871 2997
1872void noinline 2998void noinline
1873ev_signal_stop (EV_P_ ev_signal *w) 2999ev_signal_stop (EV_P_ ev_signal *w)
1874{ 3000{
1875 clear_pending (EV_A_ (W)w); 3001 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 3002 if (expect_false (!ev_is_active (w)))
1877 return; 3003 return;
1878 3004
3005 EV_FREQUENT_CHECK;
3006
1879 wlist_del (&signals [w->signum - 1].head, (WL)w); 3007 wlist_del (&signals [w->signum - 1].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 3008 ev_stop (EV_A_ (W)w);
1881 3009
1882 if (!signals [w->signum - 1].head) 3010 if (!signals [w->signum - 1].head)
3011 {
3012#if EV_MULTIPLICITY
3013 signals [w->signum - 1].loop = 0; /* unattach from signal */
3014#endif
3015#if EV_USE_SIGNALFD
3016 if (sigfd >= 0)
3017 {
3018 sigset_t ss;
3019
3020 sigemptyset (&ss);
3021 sigaddset (&ss, w->signum);
3022 sigdelset (&sigfd_set, w->signum);
3023
3024 signalfd (sigfd, &sigfd_set, 0);
3025 sigprocmask (SIG_UNBLOCK, &ss, 0);
3026 }
3027 else
3028#endif
1883 signal (w->signum, SIG_DFL); 3029 signal (w->signum, SIG_DFL);
3030 }
3031
3032 EV_FREQUENT_CHECK;
1884} 3033}
3034
3035#endif
3036
3037#if EV_CHILD_ENABLE
1885 3038
1886void 3039void
1887ev_child_start (EV_P_ ev_child *w) 3040ev_child_start (EV_P_ ev_child *w)
1888{ 3041{
1889#if EV_MULTIPLICITY 3042#if EV_MULTIPLICITY
1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3043 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1891#endif 3044#endif
1892 if (expect_false (ev_is_active (w))) 3045 if (expect_false (ev_is_active (w)))
1893 return; 3046 return;
1894 3047
3048 EV_FREQUENT_CHECK;
3049
1895 ev_start (EV_A_ (W)w, 1); 3050 ev_start (EV_A_ (W)w, 1);
1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3051 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3052
3053 EV_FREQUENT_CHECK;
1897} 3054}
1898 3055
1899void 3056void
1900ev_child_stop (EV_P_ ev_child *w) 3057ev_child_stop (EV_P_ ev_child *w)
1901{ 3058{
1902 clear_pending (EV_A_ (W)w); 3059 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 3060 if (expect_false (!ev_is_active (w)))
1904 return; 3061 return;
1905 3062
3063 EV_FREQUENT_CHECK;
3064
1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3065 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1907 ev_stop (EV_A_ (W)w); 3066 ev_stop (EV_A_ (W)w);
3067
3068 EV_FREQUENT_CHECK;
1908} 3069}
3070
3071#endif
1909 3072
1910#if EV_STAT_ENABLE 3073#if EV_STAT_ENABLE
1911 3074
1912# ifdef _WIN32 3075# ifdef _WIN32
1913# undef lstat 3076# undef lstat
1914# define lstat(a,b) _stati64 (a,b) 3077# define lstat(a,b) _stati64 (a,b)
1915# endif 3078# endif
1916 3079
1917#define DEF_STAT_INTERVAL 5.0074891 3080#define DEF_STAT_INTERVAL 5.0074891
3081#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1918#define MIN_STAT_INTERVAL 0.1074891 3082#define MIN_STAT_INTERVAL 0.1074891
1919 3083
1920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3084static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1921 3085
1922#if EV_USE_INOTIFY 3086#if EV_USE_INOTIFY
1923# define EV_INOTIFY_BUFSIZE 8192 3087
3088/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3089# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1924 3090
1925static void noinline 3091static void noinline
1926infy_add (EV_P_ ev_stat *w) 3092infy_add (EV_P_ ev_stat *w)
1927{ 3093{
1928 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3094 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1929 3095
1930 if (w->wd < 0) 3096 if (w->wd >= 0)
3097 {
3098 struct statfs sfs;
3099
3100 /* now local changes will be tracked by inotify, but remote changes won't */
3101 /* unless the filesystem is known to be local, we therefore still poll */
3102 /* also do poll on <2.6.25, but with normal frequency */
3103
3104 if (!fs_2625)
3105 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3106 else if (!statfs (w->path, &sfs)
3107 && (sfs.f_type == 0x1373 /* devfs */
3108 || sfs.f_type == 0xEF53 /* ext2/3 */
3109 || sfs.f_type == 0x3153464a /* jfs */
3110 || sfs.f_type == 0x52654973 /* reiser3 */
3111 || sfs.f_type == 0x01021994 /* tempfs */
3112 || sfs.f_type == 0x58465342 /* xfs */))
3113 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3114 else
3115 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1931 { 3116 }
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3117 else
3118 {
3119 /* can't use inotify, continue to stat */
3120 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1933 3121
1934 /* monitor some parent directory for speedup hints */ 3122 /* if path is not there, monitor some parent directory for speedup hints */
3123 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3124 /* but an efficiency issue only */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3125 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 { 3126 {
1937 char path [4096]; 3127 char path [4096];
1938 strcpy (path, w->path); 3128 strcpy (path, w->path);
1939 3129
1942 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3132 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1943 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3133 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1944 3134
1945 char *pend = strrchr (path, '/'); 3135 char *pend = strrchr (path, '/');
1946 3136
1947 if (!pend) 3137 if (!pend || pend == path)
1948 break; /* whoops, no '/', complain to your admin */ 3138 break;
1949 3139
1950 *pend = 0; 3140 *pend = 0;
1951 w->wd = inotify_add_watch (fs_fd, path, mask); 3141 w->wd = inotify_add_watch (fs_fd, path, mask);
1952 } 3142 }
1953 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3143 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1954 } 3144 }
1955 } 3145 }
1956 else
1957 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1958 3146
1959 if (w->wd >= 0) 3147 if (w->wd >= 0)
1960 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3148 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3149
3150 /* now re-arm timer, if required */
3151 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3152 ev_timer_again (EV_A_ &w->timer);
3153 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1961} 3154}
1962 3155
1963static void noinline 3156static void noinline
1964infy_del (EV_P_ ev_stat *w) 3157infy_del (EV_P_ ev_stat *w)
1965{ 3158{
1968 3161
1969 if (wd < 0) 3162 if (wd < 0)
1970 return; 3163 return;
1971 3164
1972 w->wd = -2; 3165 w->wd = -2;
1973 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3166 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1974 wlist_del (&fs_hash [slot].head, (WL)w); 3167 wlist_del (&fs_hash [slot].head, (WL)w);
1975 3168
1976 /* remove this watcher, if others are watching it, they will rearm */ 3169 /* remove this watcher, if others are watching it, they will rearm */
1977 inotify_rm_watch (fs_fd, wd); 3170 inotify_rm_watch (fs_fd, wd);
1978} 3171}
1979 3172
1980static void noinline 3173static void noinline
1981infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3174infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1982{ 3175{
1983 if (slot < 0) 3176 if (slot < 0)
1984 /* overflow, need to check for all hahs slots */ 3177 /* overflow, need to check for all hash slots */
1985 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3178 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1986 infy_wd (EV_A_ slot, wd, ev); 3179 infy_wd (EV_A_ slot, wd, ev);
1987 else 3180 else
1988 { 3181 {
1989 WL w_; 3182 WL w_;
1990 3183
1991 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3184 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1992 { 3185 {
1993 ev_stat *w = (ev_stat *)w_; 3186 ev_stat *w = (ev_stat *)w_;
1994 w_ = w_->next; /* lets us remove this watcher and all before it */ 3187 w_ = w_->next; /* lets us remove this watcher and all before it */
1995 3188
1996 if (w->wd == wd || wd == -1) 3189 if (w->wd == wd || wd == -1)
1997 { 3190 {
1998 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3191 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1999 { 3192 {
3193 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2000 w->wd = -1; 3194 w->wd = -1;
2001 infy_add (EV_A_ w); /* re-add, no matter what */ 3195 infy_add (EV_A_ w); /* re-add, no matter what */
2002 } 3196 }
2003 3197
2004 stat_timer_cb (EV_A_ &w->timer, 0); 3198 stat_timer_cb (EV_A_ &w->timer, 0);
2009 3203
2010static void 3204static void
2011infy_cb (EV_P_ ev_io *w, int revents) 3205infy_cb (EV_P_ ev_io *w, int revents)
2012{ 3206{
2013 char buf [EV_INOTIFY_BUFSIZE]; 3207 char buf [EV_INOTIFY_BUFSIZE];
2014 struct inotify_event *ev = (struct inotify_event *)buf;
2015 int ofs; 3208 int ofs;
2016 int len = read (fs_fd, buf, sizeof (buf)); 3209 int len = read (fs_fd, buf, sizeof (buf));
2017 3210
2018 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3211 for (ofs = 0; ofs < len; )
3212 {
3213 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2019 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3214 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3215 ofs += sizeof (struct inotify_event) + ev->len;
3216 }
2020} 3217}
2021 3218
2022void inline_size 3219inline_size void
3220ev_check_2625 (EV_P)
3221{
3222 /* kernels < 2.6.25 are borked
3223 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3224 */
3225 if (ev_linux_version () < 0x020619)
3226 return;
3227
3228 fs_2625 = 1;
3229}
3230
3231inline_size int
3232infy_newfd (void)
3233{
3234#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3235 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3236 if (fd >= 0)
3237 return fd;
3238#endif
3239 return inotify_init ();
3240}
3241
3242inline_size void
2023infy_init (EV_P) 3243infy_init (EV_P)
2024{ 3244{
2025 if (fs_fd != -2) 3245 if (fs_fd != -2)
2026 return; 3246 return;
2027 3247
3248 fs_fd = -1;
3249
3250 ev_check_2625 (EV_A);
3251
2028 fs_fd = inotify_init (); 3252 fs_fd = infy_newfd ();
2029 3253
2030 if (fs_fd >= 0) 3254 if (fs_fd >= 0)
2031 { 3255 {
3256 fd_intern (fs_fd);
2032 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3257 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2033 ev_set_priority (&fs_w, EV_MAXPRI); 3258 ev_set_priority (&fs_w, EV_MAXPRI);
2034 ev_io_start (EV_A_ &fs_w); 3259 ev_io_start (EV_A_ &fs_w);
3260 ev_unref (EV_A);
2035 } 3261 }
2036} 3262}
2037 3263
2038void inline_size 3264inline_size void
2039infy_fork (EV_P) 3265infy_fork (EV_P)
2040{ 3266{
2041 int slot; 3267 int slot;
2042 3268
2043 if (fs_fd < 0) 3269 if (fs_fd < 0)
2044 return; 3270 return;
2045 3271
3272 ev_ref (EV_A);
3273 ev_io_stop (EV_A_ &fs_w);
2046 close (fs_fd); 3274 close (fs_fd);
2047 fs_fd = inotify_init (); 3275 fs_fd = infy_newfd ();
2048 3276
3277 if (fs_fd >= 0)
3278 {
3279 fd_intern (fs_fd);
3280 ev_io_set (&fs_w, fs_fd, EV_READ);
3281 ev_io_start (EV_A_ &fs_w);
3282 ev_unref (EV_A);
3283 }
3284
2049 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3285 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2050 { 3286 {
2051 WL w_ = fs_hash [slot].head; 3287 WL w_ = fs_hash [slot].head;
2052 fs_hash [slot].head = 0; 3288 fs_hash [slot].head = 0;
2053 3289
2054 while (w_) 3290 while (w_)
2059 w->wd = -1; 3295 w->wd = -1;
2060 3296
2061 if (fs_fd >= 0) 3297 if (fs_fd >= 0)
2062 infy_add (EV_A_ w); /* re-add, no matter what */ 3298 infy_add (EV_A_ w); /* re-add, no matter what */
2063 else 3299 else
3300 {
3301 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3302 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2064 ev_timer_start (EV_A_ &w->timer); 3303 ev_timer_again (EV_A_ &w->timer);
3304 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3305 }
2065 } 3306 }
2066
2067 } 3307 }
2068} 3308}
2069 3309
3310#endif
3311
3312#ifdef _WIN32
3313# define EV_LSTAT(p,b) _stati64 (p, b)
3314#else
3315# define EV_LSTAT(p,b) lstat (p, b)
2070#endif 3316#endif
2071 3317
2072void 3318void
2073ev_stat_stat (EV_P_ ev_stat *w) 3319ev_stat_stat (EV_P_ ev_stat *w)
2074{ 3320{
2081static void noinline 3327static void noinline
2082stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3328stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2083{ 3329{
2084 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3330 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2085 3331
2086 /* we copy this here each the time so that */ 3332 ev_statdata prev = w->attr;
2087 /* prev has the old value when the callback gets invoked */
2088 w->prev = w->attr;
2089 ev_stat_stat (EV_A_ w); 3333 ev_stat_stat (EV_A_ w);
2090 3334
2091 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3335 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2092 if ( 3336 if (
2093 w->prev.st_dev != w->attr.st_dev 3337 prev.st_dev != w->attr.st_dev
2094 || w->prev.st_ino != w->attr.st_ino 3338 || prev.st_ino != w->attr.st_ino
2095 || w->prev.st_mode != w->attr.st_mode 3339 || prev.st_mode != w->attr.st_mode
2096 || w->prev.st_nlink != w->attr.st_nlink 3340 || prev.st_nlink != w->attr.st_nlink
2097 || w->prev.st_uid != w->attr.st_uid 3341 || prev.st_uid != w->attr.st_uid
2098 || w->prev.st_gid != w->attr.st_gid 3342 || prev.st_gid != w->attr.st_gid
2099 || w->prev.st_rdev != w->attr.st_rdev 3343 || prev.st_rdev != w->attr.st_rdev
2100 || w->prev.st_size != w->attr.st_size 3344 || prev.st_size != w->attr.st_size
2101 || w->prev.st_atime != w->attr.st_atime 3345 || prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime 3346 || prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime 3347 || prev.st_ctime != w->attr.st_ctime
2104 ) { 3348 ) {
3349 /* we only update w->prev on actual differences */
3350 /* in case we test more often than invoke the callback, */
3351 /* to ensure that prev is always different to attr */
3352 w->prev = prev;
3353
2105 #if EV_USE_INOTIFY 3354 #if EV_USE_INOTIFY
3355 if (fs_fd >= 0)
3356 {
2106 infy_del (EV_A_ w); 3357 infy_del (EV_A_ w);
2107 infy_add (EV_A_ w); 3358 infy_add (EV_A_ w);
2108 ev_stat_stat (EV_A_ w); /* avoid race... */ 3359 ev_stat_stat (EV_A_ w); /* avoid race... */
3360 }
2109 #endif 3361 #endif
2110 3362
2111 ev_feed_event (EV_A_ w, EV_STAT); 3363 ev_feed_event (EV_A_ w, EV_STAT);
2112 } 3364 }
2113} 3365}
2116ev_stat_start (EV_P_ ev_stat *w) 3368ev_stat_start (EV_P_ ev_stat *w)
2117{ 3369{
2118 if (expect_false (ev_is_active (w))) 3370 if (expect_false (ev_is_active (w)))
2119 return; 3371 return;
2120 3372
2121 /* since we use memcmp, we need to clear any padding data etc. */
2122 memset (&w->prev, 0, sizeof (ev_statdata));
2123 memset (&w->attr, 0, sizeof (ev_statdata));
2124
2125 ev_stat_stat (EV_A_ w); 3373 ev_stat_stat (EV_A_ w);
2126 3374
3375 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2127 if (w->interval < MIN_STAT_INTERVAL) 3376 w->interval = MIN_STAT_INTERVAL;
2128 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2129 3377
2130 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3378 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2131 ev_set_priority (&w->timer, ev_priority (w)); 3379 ev_set_priority (&w->timer, ev_priority (w));
2132 3380
2133#if EV_USE_INOTIFY 3381#if EV_USE_INOTIFY
2134 infy_init (EV_A); 3382 infy_init (EV_A);
2135 3383
2136 if (fs_fd >= 0) 3384 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); 3385 infy_add (EV_A_ w);
2138 else 3386 else
2139#endif 3387#endif
3388 {
2140 ev_timer_start (EV_A_ &w->timer); 3389 ev_timer_again (EV_A_ &w->timer);
3390 ev_unref (EV_A);
3391 }
2141 3392
2142 ev_start (EV_A_ (W)w, 1); 3393 ev_start (EV_A_ (W)w, 1);
3394
3395 EV_FREQUENT_CHECK;
2143} 3396}
2144 3397
2145void 3398void
2146ev_stat_stop (EV_P_ ev_stat *w) 3399ev_stat_stop (EV_P_ ev_stat *w)
2147{ 3400{
2148 clear_pending (EV_A_ (W)w); 3401 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 3402 if (expect_false (!ev_is_active (w)))
2150 return; 3403 return;
2151 3404
3405 EV_FREQUENT_CHECK;
3406
2152#if EV_USE_INOTIFY 3407#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w); 3408 infy_del (EV_A_ w);
2154#endif 3409#endif
3410
3411 if (ev_is_active (&w->timer))
3412 {
3413 ev_ref (EV_A);
2155 ev_timer_stop (EV_A_ &w->timer); 3414 ev_timer_stop (EV_A_ &w->timer);
3415 }
2156 3416
2157 ev_stop (EV_A_ (W)w); 3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
2158} 3420}
2159#endif 3421#endif
2160 3422
2161#if EV_IDLE_ENABLE 3423#if EV_IDLE_ENABLE
2162void 3424void
2164{ 3426{
2165 if (expect_false (ev_is_active (w))) 3427 if (expect_false (ev_is_active (w)))
2166 return; 3428 return;
2167 3429
2168 pri_adjust (EV_A_ (W)w); 3430 pri_adjust (EV_A_ (W)w);
3431
3432 EV_FREQUENT_CHECK;
2169 3433
2170 { 3434 {
2171 int active = ++idlecnt [ABSPRI (w)]; 3435 int active = ++idlecnt [ABSPRI (w)];
2172 3436
2173 ++idleall; 3437 ++idleall;
2174 ev_start (EV_A_ (W)w, active); 3438 ev_start (EV_A_ (W)w, active);
2175 3439
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3440 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w; 3441 idles [ABSPRI (w)][active - 1] = w;
2178 } 3442 }
3443
3444 EV_FREQUENT_CHECK;
2179} 3445}
2180 3446
2181void 3447void
2182ev_idle_stop (EV_P_ ev_idle *w) 3448ev_idle_stop (EV_P_ ev_idle *w)
2183{ 3449{
2184 clear_pending (EV_A_ (W)w); 3450 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 3451 if (expect_false (!ev_is_active (w)))
2186 return; 3452 return;
2187 3453
3454 EV_FREQUENT_CHECK;
3455
2188 { 3456 {
2189 int active = ((W)w)->active; 3457 int active = ev_active (w);
2190 3458
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3459 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3460 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2193 3461
2194 ev_stop (EV_A_ (W)w); 3462 ev_stop (EV_A_ (W)w);
2195 --idleall; 3463 --idleall;
2196 } 3464 }
2197}
2198#endif
2199 3465
3466 EV_FREQUENT_CHECK;
3467}
3468#endif
3469
3470#if EV_PREPARE_ENABLE
2200void 3471void
2201ev_prepare_start (EV_P_ ev_prepare *w) 3472ev_prepare_start (EV_P_ ev_prepare *w)
2202{ 3473{
2203 if (expect_false (ev_is_active (w))) 3474 if (expect_false (ev_is_active (w)))
2204 return; 3475 return;
3476
3477 EV_FREQUENT_CHECK;
2205 3478
2206 ev_start (EV_A_ (W)w, ++preparecnt); 3479 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3480 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w; 3481 prepares [preparecnt - 1] = w;
3482
3483 EV_FREQUENT_CHECK;
2209} 3484}
2210 3485
2211void 3486void
2212ev_prepare_stop (EV_P_ ev_prepare *w) 3487ev_prepare_stop (EV_P_ ev_prepare *w)
2213{ 3488{
2214 clear_pending (EV_A_ (W)w); 3489 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 3490 if (expect_false (!ev_is_active (w)))
2216 return; 3491 return;
2217 3492
3493 EV_FREQUENT_CHECK;
3494
2218 { 3495 {
2219 int active = ((W)w)->active; 3496 int active = ev_active (w);
3497
2220 prepares [active - 1] = prepares [--preparecnt]; 3498 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active; 3499 ev_active (prepares [active - 1]) = active;
2222 } 3500 }
2223 3501
2224 ev_stop (EV_A_ (W)w); 3502 ev_stop (EV_A_ (W)w);
2225}
2226 3503
3504 EV_FREQUENT_CHECK;
3505}
3506#endif
3507
3508#if EV_CHECK_ENABLE
2227void 3509void
2228ev_check_start (EV_P_ ev_check *w) 3510ev_check_start (EV_P_ ev_check *w)
2229{ 3511{
2230 if (expect_false (ev_is_active (w))) 3512 if (expect_false (ev_is_active (w)))
2231 return; 3513 return;
3514
3515 EV_FREQUENT_CHECK;
2232 3516
2233 ev_start (EV_A_ (W)w, ++checkcnt); 3517 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3518 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w; 3519 checks [checkcnt - 1] = w;
3520
3521 EV_FREQUENT_CHECK;
2236} 3522}
2237 3523
2238void 3524void
2239ev_check_stop (EV_P_ ev_check *w) 3525ev_check_stop (EV_P_ ev_check *w)
2240{ 3526{
2241 clear_pending (EV_A_ (W)w); 3527 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 3528 if (expect_false (!ev_is_active (w)))
2243 return; 3529 return;
2244 3530
3531 EV_FREQUENT_CHECK;
3532
2245 { 3533 {
2246 int active = ((W)w)->active; 3534 int active = ev_active (w);
3535
2247 checks [active - 1] = checks [--checkcnt]; 3536 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active; 3537 ev_active (checks [active - 1]) = active;
2249 } 3538 }
2250 3539
2251 ev_stop (EV_A_ (W)w); 3540 ev_stop (EV_A_ (W)w);
3541
3542 EV_FREQUENT_CHECK;
2252} 3543}
3544#endif
2253 3545
2254#if EV_EMBED_ENABLE 3546#if EV_EMBED_ENABLE
2255void noinline 3547void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w) 3548ev_embed_sweep (EV_P_ ev_embed *w)
2257{ 3549{
2258 ev_loop (w->other, EVLOOP_NONBLOCK); 3550 ev_run (w->other, EVRUN_NOWAIT);
2259} 3551}
2260 3552
2261static void 3553static void
2262embed_io_cb (EV_P_ ev_io *io, int revents) 3554embed_io_cb (EV_P_ ev_io *io, int revents)
2263{ 3555{
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3556 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265 3557
2266 if (ev_cb (w)) 3558 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3559 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else 3560 else
2269 ev_embed_sweep (loop, w); 3561 ev_run (w->other, EVRUN_NOWAIT);
2270} 3562}
2271 3563
2272static void 3564static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3565embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{ 3566{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3567 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276 3568
2277 fd_reify (w->other); 3569 {
3570 EV_P = w->other;
3571
3572 while (fdchangecnt)
3573 {
3574 fd_reify (EV_A);
3575 ev_run (EV_A_ EVRUN_NOWAIT);
3576 }
3577 }
2278} 3578}
3579
3580static void
3581embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3582{
3583 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3584
3585 ev_embed_stop (EV_A_ w);
3586
3587 {
3588 EV_P = w->other;
3589
3590 ev_loop_fork (EV_A);
3591 ev_run (EV_A_ EVRUN_NOWAIT);
3592 }
3593
3594 ev_embed_start (EV_A_ w);
3595}
3596
3597#if 0
3598static void
3599embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3600{
3601 ev_idle_stop (EV_A_ idle);
3602}
3603#endif
2279 3604
2280void 3605void
2281ev_embed_start (EV_P_ ev_embed *w) 3606ev_embed_start (EV_P_ ev_embed *w)
2282{ 3607{
2283 if (expect_false (ev_is_active (w))) 3608 if (expect_false (ev_is_active (w)))
2284 return; 3609 return;
2285 3610
2286 { 3611 {
2287 struct ev_loop *loop = w->other; 3612 EV_P = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3613 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 } 3615 }
3616
3617 EV_FREQUENT_CHECK;
2291 3618
2292 ev_set_priority (&w->io, ev_priority (w)); 3619 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io); 3620 ev_io_start (EV_A_ &w->io);
2294 3621
2295 ev_prepare_init (&w->prepare, embed_prepare_cb); 3622 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI); 3623 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare); 3624 ev_prepare_start (EV_A_ &w->prepare);
2298 3625
3626 ev_fork_init (&w->fork, embed_fork_cb);
3627 ev_fork_start (EV_A_ &w->fork);
3628
3629 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3630
2299 ev_start (EV_A_ (W)w, 1); 3631 ev_start (EV_A_ (W)w, 1);
3632
3633 EV_FREQUENT_CHECK;
2300} 3634}
2301 3635
2302void 3636void
2303ev_embed_stop (EV_P_ ev_embed *w) 3637ev_embed_stop (EV_P_ ev_embed *w)
2304{ 3638{
2305 clear_pending (EV_A_ (W)w); 3639 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 3640 if (expect_false (!ev_is_active (w)))
2307 return; 3641 return;
2308 3642
3643 EV_FREQUENT_CHECK;
3644
2309 ev_io_stop (EV_A_ &w->io); 3645 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare); 3646 ev_prepare_stop (EV_A_ &w->prepare);
3647 ev_fork_stop (EV_A_ &w->fork);
2311 3648
2312 ev_stop (EV_A_ (W)w); 3649 ev_stop (EV_A_ (W)w);
3650
3651 EV_FREQUENT_CHECK;
2313} 3652}
2314#endif 3653#endif
2315 3654
2316#if EV_FORK_ENABLE 3655#if EV_FORK_ENABLE
2317void 3656void
2318ev_fork_start (EV_P_ ev_fork *w) 3657ev_fork_start (EV_P_ ev_fork *w)
2319{ 3658{
2320 if (expect_false (ev_is_active (w))) 3659 if (expect_false (ev_is_active (w)))
2321 return; 3660 return;
3661
3662 EV_FREQUENT_CHECK;
2322 3663
2323 ev_start (EV_A_ (W)w, ++forkcnt); 3664 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3665 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w; 3666 forks [forkcnt - 1] = w;
3667
3668 EV_FREQUENT_CHECK;
2326} 3669}
2327 3670
2328void 3671void
2329ev_fork_stop (EV_P_ ev_fork *w) 3672ev_fork_stop (EV_P_ ev_fork *w)
2330{ 3673{
2331 clear_pending (EV_A_ (W)w); 3674 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3675 if (expect_false (!ev_is_active (w)))
2333 return; 3676 return;
2334 3677
3678 EV_FREQUENT_CHECK;
3679
2335 { 3680 {
2336 int active = ((W)w)->active; 3681 int active = ev_active (w);
3682
2337 forks [active - 1] = forks [--forkcnt]; 3683 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active; 3684 ev_active (forks [active - 1]) = active;
2339 } 3685 }
2340 3686
2341 ev_stop (EV_A_ (W)w); 3687 ev_stop (EV_A_ (W)w);
3688
3689 EV_FREQUENT_CHECK;
3690}
3691#endif
3692
3693#if EV_CLEANUP_ENABLE
3694void
3695ev_cleanup_start (EV_P_ ev_cleanup *w)
3696{
3697 if (expect_false (ev_is_active (w)))
3698 return;
3699
3700 EV_FREQUENT_CHECK;
3701
3702 ev_start (EV_A_ (W)w, ++cleanupcnt);
3703 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3704 cleanups [cleanupcnt - 1] = w;
3705
3706 /* cleanup watchers should never keep a refcount on the loop */
3707 ev_unref (EV_A);
3708 EV_FREQUENT_CHECK;
3709}
3710
3711void
3712ev_cleanup_stop (EV_P_ ev_cleanup *w)
3713{
3714 clear_pending (EV_A_ (W)w);
3715 if (expect_false (!ev_is_active (w)))
3716 return;
3717
3718 EV_FREQUENT_CHECK;
3719 ev_ref (EV_A);
3720
3721 {
3722 int active = ev_active (w);
3723
3724 cleanups [active - 1] = cleanups [--cleanupcnt];
3725 ev_active (cleanups [active - 1]) = active;
3726 }
3727
3728 ev_stop (EV_A_ (W)w);
3729
3730 EV_FREQUENT_CHECK;
3731}
3732#endif
3733
3734#if EV_ASYNC_ENABLE
3735void
3736ev_async_start (EV_P_ ev_async *w)
3737{
3738 if (expect_false (ev_is_active (w)))
3739 return;
3740
3741 w->sent = 0;
3742
3743 evpipe_init (EV_A);
3744
3745 EV_FREQUENT_CHECK;
3746
3747 ev_start (EV_A_ (W)w, ++asynccnt);
3748 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3749 asyncs [asynccnt - 1] = w;
3750
3751 EV_FREQUENT_CHECK;
3752}
3753
3754void
3755ev_async_stop (EV_P_ ev_async *w)
3756{
3757 clear_pending (EV_A_ (W)w);
3758 if (expect_false (!ev_is_active (w)))
3759 return;
3760
3761 EV_FREQUENT_CHECK;
3762
3763 {
3764 int active = ev_active (w);
3765
3766 asyncs [active - 1] = asyncs [--asynccnt];
3767 ev_active (asyncs [active - 1]) = active;
3768 }
3769
3770 ev_stop (EV_A_ (W)w);
3771
3772 EV_FREQUENT_CHECK;
3773}
3774
3775void
3776ev_async_send (EV_P_ ev_async *w)
3777{
3778 w->sent = 1;
3779 evpipe_write (EV_A_ &async_pending);
2342} 3780}
2343#endif 3781#endif
2344 3782
2345/*****************************************************************************/ 3783/*****************************************************************************/
2346 3784
2356once_cb (EV_P_ struct ev_once *once, int revents) 3794once_cb (EV_P_ struct ev_once *once, int revents)
2357{ 3795{
2358 void (*cb)(int revents, void *arg) = once->cb; 3796 void (*cb)(int revents, void *arg) = once->cb;
2359 void *arg = once->arg; 3797 void *arg = once->arg;
2360 3798
2361 ev_io_stop (EV_A_ &once->io); 3799 ev_io_stop (EV_A_ &once->io);
2362 ev_timer_stop (EV_A_ &once->to); 3800 ev_timer_stop (EV_A_ &once->to);
2363 ev_free (once); 3801 ev_free (once);
2364 3802
2365 cb (revents, arg); 3803 cb (revents, arg);
2366} 3804}
2367 3805
2368static void 3806static void
2369once_cb_io (EV_P_ ev_io *w, int revents) 3807once_cb_io (EV_P_ ev_io *w, int revents)
2370{ 3808{
2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3809 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3810
3811 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2372} 3812}
2373 3813
2374static void 3814static void
2375once_cb_to (EV_P_ ev_timer *w, int revents) 3815once_cb_to (EV_P_ ev_timer *w, int revents)
2376{ 3816{
2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3817 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3818
3819 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2378} 3820}
2379 3821
2380void 3822void
2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3823ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2382{ 3824{
2383 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3825 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2384 3826
2385 if (expect_false (!once)) 3827 if (expect_false (!once))
2386 { 3828 {
2387 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3829 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2388 return; 3830 return;
2389 } 3831 }
2390 3832
2391 once->cb = cb; 3833 once->cb = cb;
2392 once->arg = arg; 3834 once->arg = arg;
2404 ev_timer_set (&once->to, timeout, 0.); 3846 ev_timer_set (&once->to, timeout, 0.);
2405 ev_timer_start (EV_A_ &once->to); 3847 ev_timer_start (EV_A_ &once->to);
2406 } 3848 }
2407} 3849}
2408 3850
3851/*****************************************************************************/
3852
3853#if EV_WALK_ENABLE
3854void
3855ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3856{
3857 int i, j;
3858 ev_watcher_list *wl, *wn;
3859
3860 if (types & (EV_IO | EV_EMBED))
3861 for (i = 0; i < anfdmax; ++i)
3862 for (wl = anfds [i].head; wl; )
3863 {
3864 wn = wl->next;
3865
3866#if EV_EMBED_ENABLE
3867 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3868 {
3869 if (types & EV_EMBED)
3870 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3871 }
3872 else
3873#endif
3874#if EV_USE_INOTIFY
3875 if (ev_cb ((ev_io *)wl) == infy_cb)
3876 ;
3877 else
3878#endif
3879 if ((ev_io *)wl != &pipe_w)
3880 if (types & EV_IO)
3881 cb (EV_A_ EV_IO, wl);
3882
3883 wl = wn;
3884 }
3885
3886 if (types & (EV_TIMER | EV_STAT))
3887 for (i = timercnt + HEAP0; i-- > HEAP0; )
3888#if EV_STAT_ENABLE
3889 /*TODO: timer is not always active*/
3890 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3891 {
3892 if (types & EV_STAT)
3893 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3894 }
3895 else
3896#endif
3897 if (types & EV_TIMER)
3898 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3899
3900#if EV_PERIODIC_ENABLE
3901 if (types & EV_PERIODIC)
3902 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3903 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3904#endif
3905
3906#if EV_IDLE_ENABLE
3907 if (types & EV_IDLE)
3908 for (j = NUMPRI; i--; )
3909 for (i = idlecnt [j]; i--; )
3910 cb (EV_A_ EV_IDLE, idles [j][i]);
3911#endif
3912
3913#if EV_FORK_ENABLE
3914 if (types & EV_FORK)
3915 for (i = forkcnt; i--; )
3916 if (ev_cb (forks [i]) != embed_fork_cb)
3917 cb (EV_A_ EV_FORK, forks [i]);
3918#endif
3919
3920#if EV_ASYNC_ENABLE
3921 if (types & EV_ASYNC)
3922 for (i = asynccnt; i--; )
3923 cb (EV_A_ EV_ASYNC, asyncs [i]);
3924#endif
3925
3926#if EV_PREPARE_ENABLE
3927 if (types & EV_PREPARE)
3928 for (i = preparecnt; i--; )
3929# if EV_EMBED_ENABLE
3930 if (ev_cb (prepares [i]) != embed_prepare_cb)
3931# endif
3932 cb (EV_A_ EV_PREPARE, prepares [i]);
3933#endif
3934
3935#if EV_CHECK_ENABLE
3936 if (types & EV_CHECK)
3937 for (i = checkcnt; i--; )
3938 cb (EV_A_ EV_CHECK, checks [i]);
3939#endif
3940
3941#if EV_SIGNAL_ENABLE
3942 if (types & EV_SIGNAL)
3943 for (i = 0; i < EV_NSIG - 1; ++i)
3944 for (wl = signals [i].head; wl; )
3945 {
3946 wn = wl->next;
3947 cb (EV_A_ EV_SIGNAL, wl);
3948 wl = wn;
3949 }
3950#endif
3951
3952#if EV_CHILD_ENABLE
3953 if (types & EV_CHILD)
3954 for (i = (EV_PID_HASHSIZE); i--; )
3955 for (wl = childs [i]; wl; )
3956 {
3957 wn = wl->next;
3958 cb (EV_A_ EV_CHILD, wl);
3959 wl = wn;
3960 }
3961#endif
3962/* EV_STAT 0x00001000 /* stat data changed */
3963/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3964}
3965#endif
3966
2409#if EV_MULTIPLICITY 3967#if EV_MULTIPLICITY
2410 #include "ev_wrap.h" 3968 #include "ev_wrap.h"
2411#endif 3969#endif
2412 3970
2413#ifdef __cplusplus 3971EV_CPP(})
2414}
2415#endif
2416 3972

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines