ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC vs.
Revision 1.374 by root, Sat Feb 26 15:21:01 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
152#endif 186#endif
187
188EV_CPP(extern "C" {)
153 189
154#ifndef _WIN32 190#ifndef _WIN32
155# include <sys/time.h> 191# include <sys/time.h>
156# include <sys/wait.h> 192# include <sys/wait.h>
157# include <unistd.h> 193# include <unistd.h>
158#else 194#else
195# include <io.h>
159# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 197# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
163# endif 200# endif
201# undef EV_AVOID_STDIO
164#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
165 211
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
167 213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
168#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
169# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
170#endif 260#endif
171 261
172#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 264#endif
175 265
176#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
177# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
178#endif 272#endif
179 273
180#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 276#endif
183 277
184#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
185# ifdef _WIN32 279# ifdef _WIN32
186# define EV_USE_POLL 0 280# define EV_USE_POLL 0
187# else 281# else
188# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 283# endif
190#endif 284#endif
191 285
192#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 289# else
196# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
197# endif 291# endif
198#endif 292#endif
199 293
205# define EV_USE_PORT 0 299# define EV_USE_PORT 0
206#endif 300#endif
207 301
208#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 305# else
212# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
213# endif 307# endif
214#endif 308#endif
215 309
216#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 312#endif
223 313
224#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 316#endif
231 317
232#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 321# else
236# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
237# endif 323# endif
238#endif 324#endif
239 325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
241 373
242#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
245#endif 377#endif
253# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
255#endif 387#endif
256 388
257#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 392# include <sys/select.h>
260# endif 393# endif
261#endif 394#endif
262 395
263#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
264# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
265#endif 404#endif
266 405
267#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 407# include <winsock.h>
269#endif 408#endif
270 409
271#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 412# include <stdint.h>
274# ifdef __cplusplus 413# ifndef EFD_NONBLOCK
275extern "C" { 414# define EFD_NONBLOCK O_NONBLOCK
276# endif 415# endif
277int eventfd (unsigned int initval, int flags); 416# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 417# ifdef O_CLOEXEC
279} 418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
280# endif 422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
281#endif 446#endif
282 447
283/**/ 448/**/
284 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
285/* 456/*
286 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 459 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 462
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
298 468
299#if __GNUC__ >= 4 469#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 471# define noinline __attribute__ ((noinline))
302#else 472#else
309 479
310#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 482#define inline_size static inline
313 483
314#if EV_MINIMAL 484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
315# define inline_speed static noinline 487# define inline_speed static noinline
488#endif
489
490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
316#else 494#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
322 497
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 498#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 499#define EMPTY2(a,b) /* used to suppress some warnings */
325 500
326typedef ev_watcher *W; 501typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
329 504
330#define ev_active(w) ((W)(w))->active 505#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 506#define ev_at(w) ((WT)(w))->at
332 507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
333#if EV_USE_MONOTONIC 514#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 526#endif
338 527
339#ifdef _WIN32 528#ifdef _WIN32
340# include "ev_win32.c" 529# include "ev_win32.c"
341#endif 530#endif
342 531
343/*****************************************************************************/ 532/*****************************************************************************/
344 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
345static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
346 633
347void 634void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 636{
350 syserr_cb = cb; 637 syserr_cb = cb;
351} 638}
352 639
353static void noinline 640static void noinline
354syserr (const char *msg) 641ev_syserr (const char *msg)
355{ 642{
356 if (!msg) 643 if (!msg)
357 msg = "(libev) system error"; 644 msg = "(libev) system error";
358 645
359 if (syserr_cb) 646 if (syserr_cb)
360 syserr_cb (msg); 647 syserr_cb (msg);
361 else 648 else
362 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
363 perror (msg); 656 perror (msg);
657#endif
364 abort (); 658 abort ();
365 } 659 }
366} 660}
367 661
368static void * 662static void *
369ev_realloc_emul (void *ptr, long size) 663ev_realloc_emul (void *ptr, long size)
370{ 664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
371 /* some systems, notably openbsd and darwin, fail to properly 668 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 669 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 670 * the single unix specification, so work around them here.
374 */ 671 */
375 672
376 if (size) 673 if (size)
377 return realloc (ptr, size); 674 return realloc (ptr, size);
378 675
379 free (ptr); 676 free (ptr);
380 return 0; 677 return 0;
678#endif
381} 679}
382 680
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 682
385void 683void
393{ 691{
394 ptr = alloc (ptr, size); 692 ptr = alloc (ptr, size);
395 693
396 if (!ptr && size) 694 if (!ptr && size)
397 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
399 abort (); 701 abort ();
400 } 702 }
401 703
402 return ptr; 704 return ptr;
403} 705}
405#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
407 709
408/*****************************************************************************/ 710/*****************************************************************************/
409 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
410typedef struct 716typedef struct
411{ 717{
412 WL head; 718 WL head;
413 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
415#if EV_SELECT_IS_WINSOCKET 726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 727 SOCKET handle;
417#endif 728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
418} ANFD; 732} ANFD;
419 733
734/* stores the pending event set for a given watcher */
420typedef struct 735typedef struct
421{ 736{
422 W w; 737 W w;
423 int events; 738 int events; /* the pending event set for the given watcher */
424} ANPENDING; 739} ANPENDING;
425 740
426#if EV_USE_INOTIFY 741#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */ 742/* hash table entry per inotify-id */
428typedef struct 743typedef struct
430 WL head; 745 WL head;
431} ANFS; 746} ANFS;
432#endif 747#endif
433 748
434/* Heap Entry */ 749/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT 750#if EV_HEAP_CACHE_AT
751 /* a heap element */
437 typedef struct { 752 typedef struct {
753 ev_tstamp at;
438 WT w; 754 WT w;
439 ev_tstamp at;
440 } ANHE; 755 } ANHE;
441 756
442 #define ANHE_w(he) (he).w /* access watcher, read-write */ 757 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */ 758 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
445#else 760#else
761 /* a heap element */
446 typedef WT ANHE; 762 typedef WT ANHE;
447 763
448 #define ANHE_w(he) (he) 764 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at 765 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he) 766 #define ANHE_at_cache(he)
451#endif 767#endif
452 768
453#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
454 770
455 struct ev_loop 771 struct ev_loop
474 790
475 static int ev_default_loop_ptr; 791 static int ev_default_loop_ptr;
476 792
477#endif 793#endif
478 794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
806
479/*****************************************************************************/ 807/*****************************************************************************/
480 808
809#ifndef EV_HAVE_EV_TIME
481ev_tstamp 810ev_tstamp
482ev_time (void) 811ev_time (void)
483{ 812{
484#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
485 struct timespec ts; 816 struct timespec ts;
486 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
487 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
488#else 819 }
820#endif
821
489 struct timeval tv; 822 struct timeval tv;
490 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
491 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
492#endif
493} 825}
826#endif
494 827
495ev_tstamp inline_size 828inline_size ev_tstamp
496get_clock (void) 829get_clock (void)
497{ 830{
498#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
499 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
500 { 833 {
521 if (delay > 0.) 854 if (delay > 0.)
522 { 855 {
523#if EV_USE_NANOSLEEP 856#if EV_USE_NANOSLEEP
524 struct timespec ts; 857 struct timespec ts;
525 858
526 ts.tv_sec = (time_t)delay; 859 EV_TS_SET (ts, delay);
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0); 860 nanosleep (&ts, 0);
530#elif defined(_WIN32) 861#elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3)); 862 Sleep ((unsigned long)(delay * 1e3));
532#else 863#else
533 struct timeval tv; 864 struct timeval tv;
534 865
535 tv.tv_sec = (time_t)delay; 866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 867 /* something not guaranteed by newer posix versions, but guaranteed */
537 868 /* by older ones */
869 EV_TV_SET (tv, delay);
538 select (0, 0, 0, 0, &tv); 870 select (0, 0, 0, 0, &tv);
539#endif 871#endif
540 } 872 }
541} 873}
542 874
875inline_speed int
876ev_timeout_to_ms (ev_tstamp timeout)
877{
878 int ms = timeout * 1000. + .999999;
879
880 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
881}
882
543/*****************************************************************************/ 883/*****************************************************************************/
544 884
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 885#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546 886
547int inline_size 887/* find a suitable new size for the given array, */
888/* hopefully by rounding to a nice-to-malloc size */
889inline_size int
548array_nextsize (int elem, int cur, int cnt) 890array_nextsize (int elem, int cur, int cnt)
549{ 891{
550 int ncur = cur + 1; 892 int ncur = cur + 1;
551 893
552 do 894 do
569array_realloc (int elem, void *base, int *cur, int cnt) 911array_realloc (int elem, void *base, int *cur, int cnt)
570{ 912{
571 *cur = array_nextsize (elem, *cur, cnt); 913 *cur = array_nextsize (elem, *cur, cnt);
572 return ev_realloc (base, elem * *cur); 914 return ev_realloc (base, elem * *cur);
573} 915}
916
917#define array_init_zero(base,count) \
918 memset ((void *)(base), 0, sizeof (*(base)) * (count))
574 919
575#define array_needsize(type,base,cur,cnt,init) \ 920#define array_needsize(type,base,cur,cnt,init) \
576 if (expect_false ((cnt) > (cur))) \ 921 if (expect_false ((cnt) > (cur))) \
577 { \ 922 { \
578 int ocur_ = (cur); \ 923 int ocur_ = (cur); \
590 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 935 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
591 } 936 }
592#endif 937#endif
593 938
594#define array_free(stem, idx) \ 939#define array_free(stem, idx) \
595 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 940 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
596 941
597/*****************************************************************************/ 942/*****************************************************************************/
943
944/* dummy callback for pending events */
945static void noinline
946pendingcb (EV_P_ ev_prepare *w, int revents)
947{
948}
598 949
599void noinline 950void noinline
600ev_feed_event (EV_P_ void *w, int revents) 951ev_feed_event (EV_P_ void *w, int revents)
601{ 952{
602 W w_ = (W)w; 953 W w_ = (W)w;
611 pendings [pri][w_->pending - 1].w = w_; 962 pendings [pri][w_->pending - 1].w = w_;
612 pendings [pri][w_->pending - 1].events = revents; 963 pendings [pri][w_->pending - 1].events = revents;
613 } 964 }
614} 965}
615 966
616void inline_speed 967inline_speed void
968feed_reverse (EV_P_ W w)
969{
970 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
971 rfeeds [rfeedcnt++] = w;
972}
973
974inline_size void
975feed_reverse_done (EV_P_ int revents)
976{
977 do
978 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
979 while (rfeedcnt);
980}
981
982inline_speed void
617queue_events (EV_P_ W *events, int eventcnt, int type) 983queue_events (EV_P_ W *events, int eventcnt, int type)
618{ 984{
619 int i; 985 int i;
620 986
621 for (i = 0; i < eventcnt; ++i) 987 for (i = 0; i < eventcnt; ++i)
622 ev_feed_event (EV_A_ events [i], type); 988 ev_feed_event (EV_A_ events [i], type);
623} 989}
624 990
625/*****************************************************************************/ 991/*****************************************************************************/
626 992
627void inline_size 993inline_speed void
628anfds_init (ANFD *base, int count)
629{
630 while (count--)
631 {
632 base->head = 0;
633 base->events = EV_NONE;
634 base->reify = 0;
635
636 ++base;
637 }
638}
639
640void inline_speed
641fd_event (EV_P_ int fd, int revents) 994fd_event_nocheck (EV_P_ int fd, int revents)
642{ 995{
643 ANFD *anfd = anfds + fd; 996 ANFD *anfd = anfds + fd;
644 ev_io *w; 997 ev_io *w;
645 998
646 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 999 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
650 if (ev) 1003 if (ev)
651 ev_feed_event (EV_A_ (W)w, ev); 1004 ev_feed_event (EV_A_ (W)w, ev);
652 } 1005 }
653} 1006}
654 1007
1008/* do not submit kernel events for fds that have reify set */
1009/* because that means they changed while we were polling for new events */
1010inline_speed void
1011fd_event (EV_P_ int fd, int revents)
1012{
1013 ANFD *anfd = anfds + fd;
1014
1015 if (expect_true (!anfd->reify))
1016 fd_event_nocheck (EV_A_ fd, revents);
1017}
1018
655void 1019void
656ev_feed_fd_event (EV_P_ int fd, int revents) 1020ev_feed_fd_event (EV_P_ int fd, int revents)
657{ 1021{
658 if (fd >= 0 && fd < anfdmax) 1022 if (fd >= 0 && fd < anfdmax)
659 fd_event (EV_A_ fd, revents); 1023 fd_event_nocheck (EV_A_ fd, revents);
660} 1024}
661 1025
662void inline_size 1026/* make sure the external fd watch events are in-sync */
1027/* with the kernel/libev internal state */
1028inline_size void
663fd_reify (EV_P) 1029fd_reify (EV_P)
664{ 1030{
665 int i; 1031 int i;
1032
1033#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1034 for (i = 0; i < fdchangecnt; ++i)
1035 {
1036 int fd = fdchanges [i];
1037 ANFD *anfd = anfds + fd;
1038
1039 if (anfd->reify & EV__IOFDSET && anfd->head)
1040 {
1041 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1042
1043 if (handle != anfd->handle)
1044 {
1045 unsigned long arg;
1046
1047 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1048
1049 /* handle changed, but fd didn't - we need to do it in two steps */
1050 backend_modify (EV_A_ fd, anfd->events, 0);
1051 anfd->events = 0;
1052 anfd->handle = handle;
1053 }
1054 }
1055 }
1056#endif
666 1057
667 for (i = 0; i < fdchangecnt; ++i) 1058 for (i = 0; i < fdchangecnt; ++i)
668 { 1059 {
669 int fd = fdchanges [i]; 1060 int fd = fdchanges [i];
670 ANFD *anfd = anfds + fd; 1061 ANFD *anfd = anfds + fd;
671 ev_io *w; 1062 ev_io *w;
672 1063
673 unsigned char events = 0; 1064 unsigned char o_events = anfd->events;
1065 unsigned char o_reify = anfd->reify;
674 1066
675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1067 anfd->reify = 0;
676 events |= (unsigned char)w->events;
677 1068
678#if EV_SELECT_IS_WINSOCKET 1069 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
679 if (events)
680 { 1070 {
681 unsigned long argp; 1071 anfd->events = 0;
682 #ifdef EV_FD_TO_WIN32_HANDLE 1072
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1073 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
684 #else 1074 anfd->events |= (unsigned char)w->events;
685 anfd->handle = _get_osfhandle (fd); 1075
686 #endif 1076 if (o_events != anfd->events)
687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1077 o_reify = EV__IOFDSET; /* actually |= */
688 } 1078 }
689#endif
690 1079
691 { 1080 if (o_reify & EV__IOFDSET)
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
695 anfd->reify = 0;
696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events); 1081 backend_modify (EV_A_ fd, o_events, anfd->events);
700 }
701 } 1082 }
702 1083
703 fdchangecnt = 0; 1084 fdchangecnt = 0;
704} 1085}
705 1086
706void inline_size 1087/* something about the given fd changed */
1088inline_size void
707fd_change (EV_P_ int fd, int flags) 1089fd_change (EV_P_ int fd, int flags)
708{ 1090{
709 unsigned char reify = anfds [fd].reify; 1091 unsigned char reify = anfds [fd].reify;
710 anfds [fd].reify |= flags; 1092 anfds [fd].reify |= flags;
711 1093
715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1097 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
716 fdchanges [fdchangecnt - 1] = fd; 1098 fdchanges [fdchangecnt - 1] = fd;
717 } 1099 }
718} 1100}
719 1101
720void inline_speed 1102/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1103inline_speed void
721fd_kill (EV_P_ int fd) 1104fd_kill (EV_P_ int fd)
722{ 1105{
723 ev_io *w; 1106 ev_io *w;
724 1107
725 while ((w = (ev_io *)anfds [fd].head)) 1108 while ((w = (ev_io *)anfds [fd].head))
727 ev_io_stop (EV_A_ w); 1110 ev_io_stop (EV_A_ w);
728 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1111 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
729 } 1112 }
730} 1113}
731 1114
732int inline_size 1115/* check whether the given fd is actually valid, for error recovery */
1116inline_size int
733fd_valid (int fd) 1117fd_valid (int fd)
734{ 1118{
735#ifdef _WIN32 1119#ifdef _WIN32
736 return _get_osfhandle (fd) != -1; 1120 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
737#else 1121#else
738 return fcntl (fd, F_GETFD) != -1; 1122 return fcntl (fd, F_GETFD) != -1;
739#endif 1123#endif
740} 1124}
741 1125
745{ 1129{
746 int fd; 1130 int fd;
747 1131
748 for (fd = 0; fd < anfdmax; ++fd) 1132 for (fd = 0; fd < anfdmax; ++fd)
749 if (anfds [fd].events) 1133 if (anfds [fd].events)
750 if (!fd_valid (fd) == -1 && errno == EBADF) 1134 if (!fd_valid (fd) && errno == EBADF)
751 fd_kill (EV_A_ fd); 1135 fd_kill (EV_A_ fd);
752} 1136}
753 1137
754/* called on ENOMEM in select/poll to kill some fds and retry */ 1138/* called on ENOMEM in select/poll to kill some fds and retry */
755static void noinline 1139static void noinline
759 1143
760 for (fd = anfdmax; fd--; ) 1144 for (fd = anfdmax; fd--; )
761 if (anfds [fd].events) 1145 if (anfds [fd].events)
762 { 1146 {
763 fd_kill (EV_A_ fd); 1147 fd_kill (EV_A_ fd);
764 return; 1148 break;
765 } 1149 }
766} 1150}
767 1151
768/* usually called after fork if backend needs to re-arm all fds from scratch */ 1152/* usually called after fork if backend needs to re-arm all fds from scratch */
769static void noinline 1153static void noinline
773 1157
774 for (fd = 0; fd < anfdmax; ++fd) 1158 for (fd = 0; fd < anfdmax; ++fd)
775 if (anfds [fd].events) 1159 if (anfds [fd].events)
776 { 1160 {
777 anfds [fd].events = 0; 1161 anfds [fd].events = 0;
1162 anfds [fd].emask = 0;
778 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1163 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
779 } 1164 }
780} 1165}
781 1166
1167/* used to prepare libev internal fd's */
1168/* this is not fork-safe */
1169inline_speed void
1170fd_intern (int fd)
1171{
1172#ifdef _WIN32
1173 unsigned long arg = 1;
1174 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1175#else
1176 fcntl (fd, F_SETFD, FD_CLOEXEC);
1177 fcntl (fd, F_SETFL, O_NONBLOCK);
1178#endif
1179}
1180
782/*****************************************************************************/ 1181/*****************************************************************************/
783 1182
784/* 1183/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not 1184 * the heap functions want a real array index. array index 0 is guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 1185 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree. 1186 * the branching factor of the d-tree.
788 */ 1187 */
789 1188
790/* 1189/*
791 * at the moment we allow libev the luxury of two heaps, 1190 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 1191 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient. 1192 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers. 1193 * the difference is about 5% with 50000+ watchers.
795 */ 1194 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP 1195#if EV_USE_4HEAP
798 1196
799#define DHEAP 4 1197#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1198#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801 1199#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
802/* towards the root */ 1200#define UPHEAP_DONE(p,k) ((p) == (k))
803void inline_speed
804upheap (ANHE *heap, int k)
805{
806 ANHE he = heap [k];
807
808 for (;;)
809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
815 heap [k] = heap [p];
816 ev_active (ANHE_w (heap [k])) = k;
817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823 1201
824/* away from the root */ 1202/* away from the root */
825void inline_speed 1203inline_speed void
826downheap (ANHE *heap, int N, int k) 1204downheap (ANHE *heap, int N, int k)
827{ 1205{
828 ANHE he = heap [k]; 1206 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0; 1207 ANHE *E = heap + N + HEAP0;
830 1208
831 for (;;) 1209 for (;;)
832 { 1210 {
833 ev_tstamp minat; 1211 ev_tstamp minat;
834 ANHE *minpos; 1212 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1213 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
836 1214
837 // find minimum child 1215 /* find minimum child */
838 if (expect_true (pos + DHEAP - 1 < E)) 1216 if (expect_true (pos + DHEAP - 1 < E))
839 { 1217 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1218 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1219 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1220 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 1221 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 } 1222 }
845 else if (pos < E) 1223 else if (pos < E)
846 { 1224 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1225 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1226 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 break; 1231 break;
854 1232
855 if (ANHE_at (he) <= minat) 1233 if (ANHE_at (he) <= minat)
856 break; 1234 break;
857 1235
1236 heap [k] = *minpos;
858 ev_active (ANHE_w (*minpos)) = k; 1237 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860 1238
861 k = minpos - heap; 1239 k = minpos - heap;
862 } 1240 }
863 1241
1242 heap [k] = he;
864 ev_active (ANHE_w (he)) = k; 1243 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866} 1244}
867 1245
868#else // 4HEAP 1246#else /* 4HEAP */
869 1247
870#define HEAP0 1 1248#define HEAP0 1
1249#define HPARENT(k) ((k) >> 1)
1250#define UPHEAP_DONE(p,k) (!(p))
871 1251
872/* towards the root */ 1252/* away from the root */
873void inline_speed 1253inline_speed void
874upheap (ANHE *heap, int k) 1254downheap (ANHE *heap, int N, int k)
875{ 1255{
876 ANHE he = heap [k]; 1256 ANHE he = heap [k];
877 1257
878 for (;;) 1258 for (;;)
879 { 1259 {
880 int p = k >> 1; 1260 int c = k << 1;
881 1261
882 /* maybe we could use a dummy element at heap [0]? */ 1262 if (c >= N + HEAP0)
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break; 1263 break;
885 1264
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
889 }
890
891 heap [k] = w;
892 ev_active (ANHE_w (heap [k])) = k;
893}
894
895/* away from the root */
896void inline_speed
897downheap (ANHE *heap, int N, int k)
898{
899 ANHE he = heap [k];
900
901 for (;;)
902 {
903 int c = k << 1;
904
905 if (c > N)
906 break;
907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1265 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0; 1266 ? 1 : 0;
910 1267
911 if (w->at <= ANHE_at (heap [c])) 1268 if (ANHE_at (he) <= ANHE_at (heap [c]))
912 break; 1269 break;
913 1270
914 heap [k] = heap [c]; 1271 heap [k] = heap [c];
915 ev_active (ANHE_w (heap [k])) = k; 1272 ev_active (ANHE_w (heap [k])) = k;
916 1273
920 heap [k] = he; 1277 heap [k] = he;
921 ev_active (ANHE_w (he)) = k; 1278 ev_active (ANHE_w (he)) = k;
922} 1279}
923#endif 1280#endif
924 1281
925void inline_size 1282/* towards the root */
1283inline_speed void
1284upheap (ANHE *heap, int k)
1285{
1286 ANHE he = heap [k];
1287
1288 for (;;)
1289 {
1290 int p = HPARENT (k);
1291
1292 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1293 break;
1294
1295 heap [k] = heap [p];
1296 ev_active (ANHE_w (heap [k])) = k;
1297 k = p;
1298 }
1299
1300 heap [k] = he;
1301 ev_active (ANHE_w (he)) = k;
1302}
1303
1304/* move an element suitably so it is in a correct place */
1305inline_size void
926adjustheap (ANHE *heap, int N, int k) 1306adjustheap (ANHE *heap, int N, int k)
927{ 1307{
1308 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
928 upheap (heap, k); 1309 upheap (heap, k);
1310 else
929 downheap (heap, N, k); 1311 downheap (heap, N, k);
1312}
1313
1314/* rebuild the heap: this function is used only once and executed rarely */
1315inline_size void
1316reheap (ANHE *heap, int N)
1317{
1318 int i;
1319
1320 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1321 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1322 for (i = 0; i < N; ++i)
1323 upheap (heap, i + HEAP0);
930} 1324}
931 1325
932/*****************************************************************************/ 1326/*****************************************************************************/
933 1327
1328/* associate signal watchers to a signal signal */
934typedef struct 1329typedef struct
935{ 1330{
1331 EV_ATOMIC_T pending;
1332#if EV_MULTIPLICITY
1333 EV_P;
1334#endif
936 WL head; 1335 WL head;
937 EV_ATOMIC_T gotsig;
938} ANSIG; 1336} ANSIG;
939 1337
940static ANSIG *signals; 1338static ANSIG signals [EV_NSIG - 1];
941static int signalmax;
942
943static EV_ATOMIC_T gotsig;
944
945void inline_size
946signals_init (ANSIG *base, int count)
947{
948 while (count--)
949 {
950 base->head = 0;
951 base->gotsig = 0;
952
953 ++base;
954 }
955}
956 1339
957/*****************************************************************************/ 1340/*****************************************************************************/
958 1341
959void inline_speed 1342#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
960fd_intern (int fd)
961{
962#ifdef _WIN32
963 int arg = 1;
964 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
965#else
966 fcntl (fd, F_SETFD, FD_CLOEXEC);
967 fcntl (fd, F_SETFL, O_NONBLOCK);
968#endif
969}
970 1343
971static void noinline 1344static void noinline
972evpipe_init (EV_P) 1345evpipe_init (EV_P)
973{ 1346{
974 if (!ev_is_active (&pipeev)) 1347 if (!ev_is_active (&pipe_w))
975 { 1348 {
976#if EV_USE_EVENTFD 1349# if EV_USE_EVENTFD
1350 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1351 if (evfd < 0 && errno == EINVAL)
977 if ((evfd = eventfd (0, 0)) >= 0) 1352 evfd = eventfd (0, 0);
1353
1354 if (evfd >= 0)
978 { 1355 {
979 evpipe [0] = -1; 1356 evpipe [0] = -1;
980 fd_intern (evfd); 1357 fd_intern (evfd); /* doing it twice doesn't hurt */
981 ev_io_set (&pipeev, evfd, EV_READ); 1358 ev_io_set (&pipe_w, evfd, EV_READ);
982 } 1359 }
983 else 1360 else
984#endif 1361# endif
985 { 1362 {
986 while (pipe (evpipe)) 1363 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe"); 1364 ev_syserr ("(libev) error creating signal/async pipe");
988 1365
989 fd_intern (evpipe [0]); 1366 fd_intern (evpipe [0]);
990 fd_intern (evpipe [1]); 1367 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ); 1368 ev_io_set (&pipe_w, evpipe [0], EV_READ);
992 } 1369 }
993 1370
994 ev_io_start (EV_A_ &pipeev); 1371 ev_io_start (EV_A_ &pipe_w);
995 ev_unref (EV_A); /* watcher should not keep loop alive */ 1372 ev_unref (EV_A); /* watcher should not keep loop alive */
996 } 1373 }
997} 1374}
998 1375
999void inline_size 1376inline_size void
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1377evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{ 1378{
1002 if (!*flag) 1379 if (!*flag)
1003 { 1380 {
1004 int old_errno = errno; /* save errno because write might clobber it */ 1381 int old_errno = errno; /* save errno because write might clobber it */
1382 char dummy;
1005 1383
1006 *flag = 1; 1384 *flag = 1;
1007 1385
1008#if EV_USE_EVENTFD 1386#if EV_USE_EVENTFD
1009 if (evfd >= 0) 1387 if (evfd >= 0)
1011 uint64_t counter = 1; 1389 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t)); 1390 write (evfd, &counter, sizeof (uint64_t));
1013 } 1391 }
1014 else 1392 else
1015#endif 1393#endif
1394 /* win32 people keep sending patches that change this write() to send() */
1395 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1396 /* so when you think this write should be a send instead, please find out */
1397 /* where your send() is from - it's definitely not the microsoft send, and */
1398 /* tell me. thank you. */
1016 write (evpipe [1], &old_errno, 1); 1399 write (evpipe [1], &dummy, 1);
1017 1400
1018 errno = old_errno; 1401 errno = old_errno;
1019 } 1402 }
1020} 1403}
1021 1404
1405/* called whenever the libev signal pipe */
1406/* got some events (signal, async) */
1022static void 1407static void
1023pipecb (EV_P_ ev_io *iow, int revents) 1408pipecb (EV_P_ ev_io *iow, int revents)
1024{ 1409{
1410 int i;
1411
1025#if EV_USE_EVENTFD 1412#if EV_USE_EVENTFD
1026 if (evfd >= 0) 1413 if (evfd >= 0)
1027 { 1414 {
1028 uint64_t counter; 1415 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t)); 1416 read (evfd, &counter, sizeof (uint64_t));
1030 } 1417 }
1031 else 1418 else
1032#endif 1419#endif
1033 { 1420 {
1034 char dummy; 1421 char dummy;
1422 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1035 read (evpipe [0], &dummy, 1); 1423 read (evpipe [0], &dummy, 1);
1036 } 1424 }
1037 1425
1038 if (gotsig && ev_is_default_loop (EV_A)) 1426#if EV_SIGNAL_ENABLE
1039 { 1427 if (sig_pending)
1040 int signum; 1428 {
1041 gotsig = 0; 1429 sig_pending = 0;
1042 1430
1043 for (signum = signalmax; signum--; ) 1431 for (i = EV_NSIG - 1; i--; )
1044 if (signals [signum].gotsig) 1432 if (expect_false (signals [i].pending))
1045 ev_feed_signal_event (EV_A_ signum + 1); 1433 ev_feed_signal_event (EV_A_ i + 1);
1046 } 1434 }
1435#endif
1047 1436
1048#if EV_ASYNC_ENABLE 1437#if EV_ASYNC_ENABLE
1049 if (gotasync) 1438 if (async_pending)
1050 { 1439 {
1051 int i; 1440 async_pending = 0;
1052 gotasync = 0;
1053 1441
1054 for (i = asynccnt; i--; ) 1442 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent) 1443 if (asyncs [i]->sent)
1056 { 1444 {
1057 asyncs [i]->sent = 0; 1445 asyncs [i]->sent = 0;
1061#endif 1449#endif
1062} 1450}
1063 1451
1064/*****************************************************************************/ 1452/*****************************************************************************/
1065 1453
1454void
1455ev_feed_signal (int signum)
1456{
1457#if EV_MULTIPLICITY
1458 EV_P = signals [signum - 1].loop;
1459
1460 if (!EV_A)
1461 return;
1462#endif
1463
1464 signals [signum - 1].pending = 1;
1465 evpipe_write (EV_A_ &sig_pending);
1466}
1467
1066static void 1468static void
1067ev_sighandler (int signum) 1469ev_sighandler (int signum)
1068{ 1470{
1069#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct;
1071#endif
1072
1073#if _WIN32 1471#ifdef _WIN32
1074 signal (signum, ev_sighandler); 1472 signal (signum, ev_sighandler);
1075#endif 1473#endif
1076 1474
1077 signals [signum - 1].gotsig = 1; 1475 ev_feed_signal (signum);
1078 evpipe_write (EV_A_ &gotsig);
1079} 1476}
1080 1477
1081void noinline 1478void noinline
1082ev_feed_signal_event (EV_P_ int signum) 1479ev_feed_signal_event (EV_P_ int signum)
1083{ 1480{
1084 WL w; 1481 WL w;
1085 1482
1483 if (expect_false (signum <= 0 || signum > EV_NSIG))
1484 return;
1485
1486 --signum;
1487
1086#if EV_MULTIPLICITY 1488#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1489 /* it is permissible to try to feed a signal to the wrong loop */
1088#endif 1490 /* or, likely more useful, feeding a signal nobody is waiting for */
1089 1491
1090 --signum; 1492 if (expect_false (signals [signum].loop != EV_A))
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return; 1493 return;
1494#endif
1094 1495
1095 signals [signum].gotsig = 0; 1496 signals [signum].pending = 0;
1096 1497
1097 for (w = signals [signum].head; w; w = w->next) 1498 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1499 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099} 1500}
1100 1501
1502#if EV_USE_SIGNALFD
1503static void
1504sigfdcb (EV_P_ ev_io *iow, int revents)
1505{
1506 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1507
1508 for (;;)
1509 {
1510 ssize_t res = read (sigfd, si, sizeof (si));
1511
1512 /* not ISO-C, as res might be -1, but works with SuS */
1513 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1514 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1515
1516 if (res < (ssize_t)sizeof (si))
1517 break;
1518 }
1519}
1520#endif
1521
1522#endif
1523
1101/*****************************************************************************/ 1524/*****************************************************************************/
1102 1525
1526#if EV_CHILD_ENABLE
1103static WL childs [EV_PID_HASHSIZE]; 1527static WL childs [EV_PID_HASHSIZE];
1104
1105#ifndef _WIN32
1106 1528
1107static ev_signal childev; 1529static ev_signal childev;
1108 1530
1109#ifndef WIFCONTINUED 1531#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0 1532# define WIFCONTINUED(status) 0
1111#endif 1533#endif
1112 1534
1113void inline_speed 1535/* handle a single child status event */
1536inline_speed void
1114child_reap (EV_P_ int chain, int pid, int status) 1537child_reap (EV_P_ int chain, int pid, int status)
1115{ 1538{
1116 ev_child *w; 1539 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1540 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1118 1541
1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1542 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 { 1543 {
1121 if ((w->pid == pid || !w->pid) 1544 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1))) 1545 && (!traced || (w->flags & 1)))
1123 { 1546 {
1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1547 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1131 1554
1132#ifndef WCONTINUED 1555#ifndef WCONTINUED
1133# define WCONTINUED 0 1556# define WCONTINUED 0
1134#endif 1557#endif
1135 1558
1559/* called on sigchld etc., calls waitpid */
1136static void 1560static void
1137childcb (EV_P_ ev_signal *sw, int revents) 1561childcb (EV_P_ ev_signal *sw, int revents)
1138{ 1562{
1139 int pid, status; 1563 int pid, status;
1140 1564
1148 /* make sure we are called again until all children have been reaped */ 1572 /* make sure we are called again until all children have been reaped */
1149 /* we need to do it this way so that the callback gets called before we continue */ 1573 /* we need to do it this way so that the callback gets called before we continue */
1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1574 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1151 1575
1152 child_reap (EV_A_ pid, pid, status); 1576 child_reap (EV_A_ pid, pid, status);
1153 if (EV_PID_HASHSIZE > 1) 1577 if ((EV_PID_HASHSIZE) > 1)
1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1578 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1155} 1579}
1156 1580
1157#endif 1581#endif
1158 1582
1159/*****************************************************************************/ 1583/*****************************************************************************/
1160 1584
1585#if EV_USE_IOCP
1586# include "ev_iocp.c"
1587#endif
1161#if EV_USE_PORT 1588#if EV_USE_PORT
1162# include "ev_port.c" 1589# include "ev_port.c"
1163#endif 1590#endif
1164#if EV_USE_KQUEUE 1591#if EV_USE_KQUEUE
1165# include "ev_kqueue.c" 1592# include "ev_kqueue.c"
1221 /* kqueue is borked on everything but netbsd apparently */ 1648 /* kqueue is borked on everything but netbsd apparently */
1222 /* it usually doesn't work correctly on anything but sockets and pipes */ 1649 /* it usually doesn't work correctly on anything but sockets and pipes */
1223 flags &= ~EVBACKEND_KQUEUE; 1650 flags &= ~EVBACKEND_KQUEUE;
1224#endif 1651#endif
1225#ifdef __APPLE__ 1652#ifdef __APPLE__
1226 // flags &= ~EVBACKEND_KQUEUE; for documentation 1653 /* only select works correctly on that "unix-certified" platform */
1227 flags &= ~EVBACKEND_POLL; 1654 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1655 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1656#endif
1657#ifdef __FreeBSD__
1658 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1228#endif 1659#endif
1229 1660
1230 return flags; 1661 return flags;
1231} 1662}
1232 1663
1234ev_embeddable_backends (void) 1665ev_embeddable_backends (void)
1235{ 1666{
1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1667 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1237 1668
1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1669 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */ 1670 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1240 flags &= ~EVBACKEND_EPOLL; 1671 flags &= ~EVBACKEND_EPOLL;
1241 1672
1242 return flags; 1673 return flags;
1243} 1674}
1244 1675
1245unsigned int 1676unsigned int
1246ev_backend (EV_P) 1677ev_backend (EV_P)
1247{ 1678{
1248 return backend; 1679 return backend;
1249} 1680}
1250 1681
1682#if EV_FEATURE_API
1251unsigned int 1683unsigned int
1252ev_loop_count (EV_P) 1684ev_iteration (EV_P)
1253{ 1685{
1254 return loop_count; 1686 return loop_count;
1255} 1687}
1256 1688
1689unsigned int
1690ev_depth (EV_P)
1691{
1692 return loop_depth;
1693}
1694
1257void 1695void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1696ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{ 1697{
1260 io_blocktime = interval; 1698 io_blocktime = interval;
1261} 1699}
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1702ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1703{
1266 timeout_blocktime = interval; 1704 timeout_blocktime = interval;
1267} 1705}
1268 1706
1707void
1708ev_set_userdata (EV_P_ void *data)
1709{
1710 userdata = data;
1711}
1712
1713void *
1714ev_userdata (EV_P)
1715{
1716 return userdata;
1717}
1718
1719void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1720{
1721 invoke_cb = invoke_pending_cb;
1722}
1723
1724void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1725{
1726 release_cb = release;
1727 acquire_cb = acquire;
1728}
1729#endif
1730
1731/* initialise a loop structure, must be zero-initialised */
1269static void noinline 1732static void noinline
1270loop_init (EV_P_ unsigned int flags) 1733loop_init (EV_P_ unsigned int flags)
1271{ 1734{
1272 if (!backend) 1735 if (!backend)
1273 { 1736 {
1737 origflags = flags;
1738
1739#if EV_USE_REALTIME
1740 if (!have_realtime)
1741 {
1742 struct timespec ts;
1743
1744 if (!clock_gettime (CLOCK_REALTIME, &ts))
1745 have_realtime = 1;
1746 }
1747#endif
1748
1274#if EV_USE_MONOTONIC 1749#if EV_USE_MONOTONIC
1750 if (!have_monotonic)
1275 { 1751 {
1276 struct timespec ts; 1752 struct timespec ts;
1753
1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1754 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1278 have_monotonic = 1; 1755 have_monotonic = 1;
1279 } 1756 }
1280#endif 1757#endif
1758
1759 /* pid check not overridable via env */
1760#ifndef _WIN32
1761 if (flags & EVFLAG_FORKCHECK)
1762 curpid = getpid ();
1763#endif
1764
1765 if (!(flags & EVFLAG_NOENV)
1766 && !enable_secure ()
1767 && getenv ("LIBEV_FLAGS"))
1768 flags = atoi (getenv ("LIBEV_FLAGS"));
1281 1769
1282 ev_rt_now = ev_time (); 1770 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 1771 mn_now = get_clock ();
1284 now_floor = mn_now; 1772 now_floor = mn_now;
1285 rtmn_diff = ev_rt_now - mn_now; 1773 rtmn_diff = ev_rt_now - mn_now;
1774#if EV_FEATURE_API
1775 invoke_cb = ev_invoke_pending;
1776#endif
1286 1777
1287 io_blocktime = 0.; 1778 io_blocktime = 0.;
1288 timeout_blocktime = 0.; 1779 timeout_blocktime = 0.;
1289 backend = 0; 1780 backend = 0;
1290 backend_fd = -1; 1781 backend_fd = -1;
1291 gotasync = 0; 1782 sig_pending = 0;
1783#if EV_ASYNC_ENABLE
1784 async_pending = 0;
1785#endif
1292#if EV_USE_INOTIFY 1786#if EV_USE_INOTIFY
1293 fs_fd = -2; 1787 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1294#endif 1788#endif
1295 1789#if EV_USE_SIGNALFD
1296 /* pid check not overridable via env */ 1790 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1297#ifndef _WIN32
1298 if (flags & EVFLAG_FORKCHECK)
1299 curpid = getpid ();
1300#endif 1791#endif
1301 1792
1302 if (!(flags & EVFLAG_NOENV) 1793 if (!(flags & EVBACKEND_MASK))
1303 && !enable_secure ()
1304 && getenv ("LIBEV_FLAGS"))
1305 flags = atoi (getenv ("LIBEV_FLAGS"));
1306
1307 if (!(flags & 0x0000ffffU))
1308 flags |= ev_recommended_backends (); 1794 flags |= ev_recommended_backends ();
1309 1795
1796#if EV_USE_IOCP
1797 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1798#endif
1310#if EV_USE_PORT 1799#if EV_USE_PORT
1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1800 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1312#endif 1801#endif
1313#if EV_USE_KQUEUE 1802#if EV_USE_KQUEUE
1314 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1803 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1321#endif 1810#endif
1322#if EV_USE_SELECT 1811#if EV_USE_SELECT
1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1812 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1324#endif 1813#endif
1325 1814
1815 ev_prepare_init (&pending_w, pendingcb);
1816
1817#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1326 ev_init (&pipeev, pipecb); 1818 ev_init (&pipe_w, pipecb);
1327 ev_set_priority (&pipeev, EV_MAXPRI); 1819 ev_set_priority (&pipe_w, EV_MAXPRI);
1820#endif
1328 } 1821 }
1329} 1822}
1330 1823
1331static void noinline 1824/* free up a loop structure */
1825void
1332loop_destroy (EV_P) 1826ev_loop_destroy (EV_P)
1333{ 1827{
1334 int i; 1828 int i;
1335 1829
1830#if EV_MULTIPLICITY
1831 /* mimic free (0) */
1832 if (!EV_A)
1833 return;
1834#endif
1835
1836#if EV_CLEANUP_ENABLE
1837 /* queue cleanup watchers (and execute them) */
1838 if (expect_false (cleanupcnt))
1839 {
1840 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1841 EV_INVOKE_PENDING;
1842 }
1843#endif
1844
1845#if EV_CHILD_ENABLE
1846 if (ev_is_active (&childev))
1847 {
1848 ev_ref (EV_A); /* child watcher */
1849 ev_signal_stop (EV_A_ &childev);
1850 }
1851#endif
1852
1336 if (ev_is_active (&pipeev)) 1853 if (ev_is_active (&pipe_w))
1337 { 1854 {
1338 ev_ref (EV_A); /* signal watcher */ 1855 /*ev_ref (EV_A);*/
1339 ev_io_stop (EV_A_ &pipeev); 1856 /*ev_io_stop (EV_A_ &pipe_w);*/
1340 1857
1341#if EV_USE_EVENTFD 1858#if EV_USE_EVENTFD
1342 if (evfd >= 0) 1859 if (evfd >= 0)
1343 close (evfd); 1860 close (evfd);
1344#endif 1861#endif
1345 1862
1346 if (evpipe [0] >= 0) 1863 if (evpipe [0] >= 0)
1347 { 1864 {
1348 close (evpipe [0]); 1865 EV_WIN32_CLOSE_FD (evpipe [0]);
1349 close (evpipe [1]); 1866 EV_WIN32_CLOSE_FD (evpipe [1]);
1350 } 1867 }
1351 } 1868 }
1869
1870#if EV_USE_SIGNALFD
1871 if (ev_is_active (&sigfd_w))
1872 close (sigfd);
1873#endif
1352 1874
1353#if EV_USE_INOTIFY 1875#if EV_USE_INOTIFY
1354 if (fs_fd >= 0) 1876 if (fs_fd >= 0)
1355 close (fs_fd); 1877 close (fs_fd);
1356#endif 1878#endif
1357 1879
1358 if (backend_fd >= 0) 1880 if (backend_fd >= 0)
1359 close (backend_fd); 1881 close (backend_fd);
1360 1882
1883#if EV_USE_IOCP
1884 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1885#endif
1361#if EV_USE_PORT 1886#if EV_USE_PORT
1362 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1887 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1363#endif 1888#endif
1364#if EV_USE_KQUEUE 1889#if EV_USE_KQUEUE
1365 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1890 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1380#if EV_IDLE_ENABLE 1905#if EV_IDLE_ENABLE
1381 array_free (idle, [i]); 1906 array_free (idle, [i]);
1382#endif 1907#endif
1383 } 1908 }
1384 1909
1385 ev_free (anfds); anfdmax = 0; 1910 ev_free (anfds); anfds = 0; anfdmax = 0;
1386 1911
1387 /* have to use the microsoft-never-gets-it-right macro */ 1912 /* have to use the microsoft-never-gets-it-right macro */
1913 array_free (rfeed, EMPTY);
1388 array_free (fdchange, EMPTY); 1914 array_free (fdchange, EMPTY);
1389 array_free (timer, EMPTY); 1915 array_free (timer, EMPTY);
1390#if EV_PERIODIC_ENABLE 1916#if EV_PERIODIC_ENABLE
1391 array_free (periodic, EMPTY); 1917 array_free (periodic, EMPTY);
1392#endif 1918#endif
1393#if EV_FORK_ENABLE 1919#if EV_FORK_ENABLE
1394 array_free (fork, EMPTY); 1920 array_free (fork, EMPTY);
1395#endif 1921#endif
1922#if EV_CLEANUP_ENABLE
1923 array_free (cleanup, EMPTY);
1924#endif
1396 array_free (prepare, EMPTY); 1925 array_free (prepare, EMPTY);
1397 array_free (check, EMPTY); 1926 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE 1927#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY); 1928 array_free (async, EMPTY);
1400#endif 1929#endif
1401 1930
1402 backend = 0; 1931 backend = 0;
1932
1933#if EV_MULTIPLICITY
1934 if (ev_is_default_loop (EV_A))
1935#endif
1936 ev_default_loop_ptr = 0;
1937#if EV_MULTIPLICITY
1938 else
1939 ev_free (EV_A);
1940#endif
1403} 1941}
1404 1942
1405#if EV_USE_INOTIFY 1943#if EV_USE_INOTIFY
1406void inline_size infy_fork (EV_P); 1944inline_size void infy_fork (EV_P);
1407#endif 1945#endif
1408 1946
1409void inline_size 1947inline_size void
1410loop_fork (EV_P) 1948loop_fork (EV_P)
1411{ 1949{
1412#if EV_USE_PORT 1950#if EV_USE_PORT
1413 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1951 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1414#endif 1952#endif
1420#endif 1958#endif
1421#if EV_USE_INOTIFY 1959#if EV_USE_INOTIFY
1422 infy_fork (EV_A); 1960 infy_fork (EV_A);
1423#endif 1961#endif
1424 1962
1425 if (ev_is_active (&pipeev)) 1963 if (ev_is_active (&pipe_w))
1426 { 1964 {
1427 /* this "locks" the handlers against writing to the pipe */ 1965 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */ 1966 /* while we modify the fd vars */
1429 gotsig = 1; 1967 sig_pending = 1;
1430#if EV_ASYNC_ENABLE 1968#if EV_ASYNC_ENABLE
1431 gotasync = 1; 1969 async_pending = 1;
1432#endif 1970#endif
1433 1971
1434 ev_ref (EV_A); 1972 ev_ref (EV_A);
1435 ev_io_stop (EV_A_ &pipeev); 1973 ev_io_stop (EV_A_ &pipe_w);
1436 1974
1437#if EV_USE_EVENTFD 1975#if EV_USE_EVENTFD
1438 if (evfd >= 0) 1976 if (evfd >= 0)
1439 close (evfd); 1977 close (evfd);
1440#endif 1978#endif
1441 1979
1442 if (evpipe [0] >= 0) 1980 if (evpipe [0] >= 0)
1443 { 1981 {
1444 close (evpipe [0]); 1982 EV_WIN32_CLOSE_FD (evpipe [0]);
1445 close (evpipe [1]); 1983 EV_WIN32_CLOSE_FD (evpipe [1]);
1446 } 1984 }
1447 1985
1986#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1448 evpipe_init (EV_A); 1987 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */ 1988 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ); 1989 pipecb (EV_A_ &pipe_w, EV_READ);
1990#endif
1451 } 1991 }
1452 1992
1453 postfork = 0; 1993 postfork = 0;
1454} 1994}
1995
1996#if EV_MULTIPLICITY
1997
1998struct ev_loop *
1999ev_loop_new (unsigned int flags)
2000{
2001 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2002
2003 memset (EV_A, 0, sizeof (struct ev_loop));
2004 loop_init (EV_A_ flags);
2005
2006 if (ev_backend (EV_A))
2007 return EV_A;
2008
2009 ev_free (EV_A);
2010 return 0;
2011}
2012
2013#endif /* multiplicity */
2014
2015#if EV_VERIFY
2016static void noinline
2017verify_watcher (EV_P_ W w)
2018{
2019 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2020
2021 if (w->pending)
2022 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2023}
2024
2025static void noinline
2026verify_heap (EV_P_ ANHE *heap, int N)
2027{
2028 int i;
2029
2030 for (i = HEAP0; i < N + HEAP0; ++i)
2031 {
2032 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2033 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2034 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2035
2036 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2037 }
2038}
2039
2040static void noinline
2041array_verify (EV_P_ W *ws, int cnt)
2042{
2043 while (cnt--)
2044 {
2045 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2046 verify_watcher (EV_A_ ws [cnt]);
2047 }
2048}
2049#endif
2050
2051#if EV_FEATURE_API
2052void
2053ev_verify (EV_P)
2054{
2055#if EV_VERIFY
2056 int i;
2057 WL w;
2058
2059 assert (activecnt >= -1);
2060
2061 assert (fdchangemax >= fdchangecnt);
2062 for (i = 0; i < fdchangecnt; ++i)
2063 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2064
2065 assert (anfdmax >= 0);
2066 for (i = 0; i < anfdmax; ++i)
2067 for (w = anfds [i].head; w; w = w->next)
2068 {
2069 verify_watcher (EV_A_ (W)w);
2070 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2071 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2072 }
2073
2074 assert (timermax >= timercnt);
2075 verify_heap (EV_A_ timers, timercnt);
2076
2077#if EV_PERIODIC_ENABLE
2078 assert (periodicmax >= periodiccnt);
2079 verify_heap (EV_A_ periodics, periodiccnt);
2080#endif
2081
2082 for (i = NUMPRI; i--; )
2083 {
2084 assert (pendingmax [i] >= pendingcnt [i]);
2085#if EV_IDLE_ENABLE
2086 assert (idleall >= 0);
2087 assert (idlemax [i] >= idlecnt [i]);
2088 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2089#endif
2090 }
2091
2092#if EV_FORK_ENABLE
2093 assert (forkmax >= forkcnt);
2094 array_verify (EV_A_ (W *)forks, forkcnt);
2095#endif
2096
2097#if EV_CLEANUP_ENABLE
2098 assert (cleanupmax >= cleanupcnt);
2099 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2100#endif
2101
2102#if EV_ASYNC_ENABLE
2103 assert (asyncmax >= asynccnt);
2104 array_verify (EV_A_ (W *)asyncs, asynccnt);
2105#endif
2106
2107#if EV_PREPARE_ENABLE
2108 assert (preparemax >= preparecnt);
2109 array_verify (EV_A_ (W *)prepares, preparecnt);
2110#endif
2111
2112#if EV_CHECK_ENABLE
2113 assert (checkmax >= checkcnt);
2114 array_verify (EV_A_ (W *)checks, checkcnt);
2115#endif
2116
2117# if 0
2118#if EV_CHILD_ENABLE
2119 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2120 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2121#endif
2122# endif
2123#endif
2124}
2125#endif
1455 2126
1456#if EV_MULTIPLICITY 2127#if EV_MULTIPLICITY
1457struct ev_loop * 2128struct ev_loop *
1458ev_loop_new (unsigned int flags)
1459{
1460 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1461
1462 memset (loop, 0, sizeof (struct ev_loop));
1463
1464 loop_init (EV_A_ flags);
1465
1466 if (ev_backend (EV_A))
1467 return loop;
1468
1469 return 0;
1470}
1471
1472void
1473ev_loop_destroy (EV_P)
1474{
1475 loop_destroy (EV_A);
1476 ev_free (loop);
1477}
1478
1479void
1480ev_loop_fork (EV_P)
1481{
1482 postfork = 1; /* must be in line with ev_default_fork */
1483}
1484#endif
1485
1486#if EV_MULTIPLICITY
1487struct ev_loop *
1488ev_default_loop_init (unsigned int flags)
1489#else 2129#else
1490int 2130int
2131#endif
1491ev_default_loop (unsigned int flags) 2132ev_default_loop (unsigned int flags)
1492#endif
1493{ 2133{
1494 if (!ev_default_loop_ptr) 2134 if (!ev_default_loop_ptr)
1495 { 2135 {
1496#if EV_MULTIPLICITY 2136#if EV_MULTIPLICITY
1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2137 EV_P = ev_default_loop_ptr = &default_loop_struct;
1498#else 2138#else
1499 ev_default_loop_ptr = 1; 2139 ev_default_loop_ptr = 1;
1500#endif 2140#endif
1501 2141
1502 loop_init (EV_A_ flags); 2142 loop_init (EV_A_ flags);
1503 2143
1504 if (ev_backend (EV_A)) 2144 if (ev_backend (EV_A))
1505 { 2145 {
1506#ifndef _WIN32 2146#if EV_CHILD_ENABLE
1507 ev_signal_init (&childev, childcb, SIGCHLD); 2147 ev_signal_init (&childev, childcb, SIGCHLD);
1508 ev_set_priority (&childev, EV_MAXPRI); 2148 ev_set_priority (&childev, EV_MAXPRI);
1509 ev_signal_start (EV_A_ &childev); 2149 ev_signal_start (EV_A_ &childev);
1510 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2150 ev_unref (EV_A); /* child watcher should not keep loop alive */
1511#endif 2151#endif
1516 2156
1517 return ev_default_loop_ptr; 2157 return ev_default_loop_ptr;
1518} 2158}
1519 2159
1520void 2160void
1521ev_default_destroy (void) 2161ev_loop_fork (EV_P)
1522{ 2162{
1523#if EV_MULTIPLICITY
1524 struct ev_loop *loop = ev_default_loop_ptr;
1525#endif
1526
1527#ifndef _WIN32
1528 ev_ref (EV_A); /* child watcher */
1529 ev_signal_stop (EV_A_ &childev);
1530#endif
1531
1532 loop_destroy (EV_A);
1533}
1534
1535void
1536ev_default_fork (void)
1537{
1538#if EV_MULTIPLICITY
1539 struct ev_loop *loop = ev_default_loop_ptr;
1540#endif
1541
1542 if (backend)
1543 postfork = 1; /* must be in line with ev_loop_fork */ 2163 postfork = 1; /* must be in line with ev_default_fork */
1544} 2164}
1545 2165
1546/*****************************************************************************/ 2166/*****************************************************************************/
1547 2167
1548void 2168void
1549ev_invoke (EV_P_ void *w, int revents) 2169ev_invoke (EV_P_ void *w, int revents)
1550{ 2170{
1551 EV_CB_INVOKE ((W)w, revents); 2171 EV_CB_INVOKE ((W)w, revents);
1552} 2172}
1553 2173
1554void inline_speed 2174unsigned int
1555call_pending (EV_P) 2175ev_pending_count (EV_P)
2176{
2177 int pri;
2178 unsigned int count = 0;
2179
2180 for (pri = NUMPRI; pri--; )
2181 count += pendingcnt [pri];
2182
2183 return count;
2184}
2185
2186void noinline
2187ev_invoke_pending (EV_P)
1556{ 2188{
1557 int pri; 2189 int pri;
1558 2190
1559 for (pri = NUMPRI; pri--; ) 2191 for (pri = NUMPRI; pri--; )
1560 while (pendingcnt [pri]) 2192 while (pendingcnt [pri])
1561 { 2193 {
1562 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2194 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1563 2195
1564 if (expect_true (p->w))
1565 {
1566 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1567
1568 p->w->pending = 0; 2196 p->w->pending = 0;
1569 EV_CB_INVOKE (p->w, p->events); 2197 EV_CB_INVOKE (p->w, p->events);
1570 } 2198 EV_FREQUENT_CHECK;
1571 } 2199 }
1572} 2200}
1573 2201
1574#if EV_IDLE_ENABLE 2202#if EV_IDLE_ENABLE
1575void inline_size 2203/* make idle watchers pending. this handles the "call-idle */
2204/* only when higher priorities are idle" logic */
2205inline_size void
1576idle_reify (EV_P) 2206idle_reify (EV_P)
1577{ 2207{
1578 if (expect_false (idleall)) 2208 if (expect_false (idleall))
1579 { 2209 {
1580 int pri; 2210 int pri;
1592 } 2222 }
1593 } 2223 }
1594} 2224}
1595#endif 2225#endif
1596 2226
1597void inline_size 2227/* make timers pending */
2228inline_size void
1598timers_reify (EV_P) 2229timers_reify (EV_P)
1599{ 2230{
2231 EV_FREQUENT_CHECK;
2232
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now) 2233 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1601 { 2234 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2235 do
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 { 2236 {
2237 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2238
2239 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2240
2241 /* first reschedule or stop timer */
2242 if (w->repeat)
2243 {
2244 ev_at (w) += w->repeat;
2245 if (ev_at (w) < mn_now)
2246 ev_at (w) = mn_now;
2247
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2248 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610 2249
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]); 2250 ANHE_at_cache (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0); 2251 downheap (timers, timercnt, HEAP0);
2252 }
2253 else
2254 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2255
2256 EV_FREQUENT_CHECK;
2257 feed_reverse (EV_A_ (W)w);
1617 } 2258 }
1618 else 2259 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620 2260
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2261 feed_reverse_done (EV_A_ EV_TIMER);
1622 } 2262 }
1623} 2263}
1624 2264
1625#if EV_PERIODIC_ENABLE 2265#if EV_PERIODIC_ENABLE
1626void inline_size 2266
2267static void noinline
2268periodic_recalc (EV_P_ ev_periodic *w)
2269{
2270 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2271 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2272
2273 /* the above almost always errs on the low side */
2274 while (at <= ev_rt_now)
2275 {
2276 ev_tstamp nat = at + w->interval;
2277
2278 /* when resolution fails us, we use ev_rt_now */
2279 if (expect_false (nat == at))
2280 {
2281 at = ev_rt_now;
2282 break;
2283 }
2284
2285 at = nat;
2286 }
2287
2288 ev_at (w) = at;
2289}
2290
2291/* make periodics pending */
2292inline_size void
1627periodics_reify (EV_P) 2293periodics_reify (EV_P)
1628{ 2294{
2295 EV_FREQUENT_CHECK;
2296
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now) 2297 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1630 { 2298 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2299 int feed_count = 0;
1632 2300
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2301 do
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 { 2302 {
2303 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2304
2305 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2306
2307 /* first reschedule or stop timer */
2308 if (w->reschedule_cb)
2309 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 2310 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2311
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 2312 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2313
1640 ANHE_at_set (periodics [HEAP0]); 2314 ANHE_at_cache (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0); 2315 downheap (periodics, periodiccnt, HEAP0);
2316 }
2317 else if (w->interval)
2318 {
2319 periodic_recalc (EV_A_ w);
2320 ANHE_at_cache (periodics [HEAP0]);
2321 downheap (periodics, periodiccnt, HEAP0);
2322 }
2323 else
2324 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2325
2326 EV_FREQUENT_CHECK;
2327 feed_reverse (EV_A_ (W)w);
1642 } 2328 }
1643 else if (w->interval) 2329 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653 2330
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2331 feed_reverse_done (EV_A_ EV_PERIODIC);
1655 } 2332 }
1656} 2333}
1657 2334
2335/* simply recalculate all periodics */
2336/* TODO: maybe ensure that at least one event happens when jumping forward? */
1658static void noinline 2337static void noinline
1659periodics_reschedule (EV_P) 2338periodics_reschedule (EV_P)
1660{ 2339{
1661 int i; 2340 int i;
1662 2341
1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 2345 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1667 2346
1668 if (w->reschedule_cb) 2347 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2348 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval) 2349 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2350 periodic_recalc (EV_A_ w);
1672 2351
1673 ANHE_at_set (periodics [i]); 2352 ANHE_at_cache (periodics [i]);
2353 }
2354
2355 reheap (periodics, periodiccnt);
2356}
2357#endif
2358
2359/* adjust all timers by a given offset */
2360static void noinline
2361timers_reschedule (EV_P_ ev_tstamp adjust)
2362{
2363 int i;
2364
2365 for (i = 0; i < timercnt; ++i)
1674 } 2366 {
1675 2367 ANHE *he = timers + i + HEAP0;
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */ 2368 ANHE_w (*he)->at += adjust;
1677 for (i = periodiccnt >> 1; --i; ) 2369 ANHE_at_cache (*he);
1678 downheap (periodics, periodiccnt, i + HEAP0); 2370 }
1679} 2371}
1680#endif
1681 2372
1682void inline_speed 2373/* fetch new monotonic and realtime times from the kernel */
2374/* also detect if there was a timejump, and act accordingly */
2375inline_speed void
1683time_update (EV_P_ ev_tstamp max_block) 2376time_update (EV_P_ ev_tstamp max_block)
1684{ 2377{
1685 int i;
1686
1687#if EV_USE_MONOTONIC 2378#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic)) 2379 if (expect_true (have_monotonic))
1689 { 2380 {
2381 int i;
1690 ev_tstamp odiff = rtmn_diff; 2382 ev_tstamp odiff = rtmn_diff;
1691 2383
1692 mn_now = get_clock (); 2384 mn_now = get_clock ();
1693 2385
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2386 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1710 * doesn't hurt either as we only do this on time-jumps or 2402 * doesn't hurt either as we only do this on time-jumps or
1711 * in the unlikely event of having been preempted here. 2403 * in the unlikely event of having been preempted here.
1712 */ 2404 */
1713 for (i = 4; --i; ) 2405 for (i = 4; --i; )
1714 { 2406 {
2407 ev_tstamp diff;
1715 rtmn_diff = ev_rt_now - mn_now; 2408 rtmn_diff = ev_rt_now - mn_now;
1716 2409
2410 diff = odiff - rtmn_diff;
2411
1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 2412 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1718 return; /* all is well */ 2413 return; /* all is well */
1719 2414
1720 ev_rt_now = ev_time (); 2415 ev_rt_now = ev_time ();
1721 mn_now = get_clock (); 2416 mn_now = get_clock ();
1722 now_floor = mn_now; 2417 now_floor = mn_now;
1723 } 2418 }
1724 2419
2420 /* no timer adjustment, as the monotonic clock doesn't jump */
2421 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1725# if EV_PERIODIC_ENABLE 2422# if EV_PERIODIC_ENABLE
1726 periodics_reschedule (EV_A); 2423 periodics_reschedule (EV_A);
1727# endif 2424# endif
1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1730 } 2425 }
1731 else 2426 else
1732#endif 2427#endif
1733 { 2428 {
1734 ev_rt_now = ev_time (); 2429 ev_rt_now = ev_time ();
1735 2430
1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2431 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1737 { 2432 {
2433 /* adjust timers. this is easy, as the offset is the same for all of them */
2434 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1738#if EV_PERIODIC_ENABLE 2435#if EV_PERIODIC_ENABLE
1739 periodics_reschedule (EV_A); 2436 periodics_reschedule (EV_A);
1740#endif 2437#endif
1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1748 } 2438 }
1749 2439
1750 mn_now = ev_rt_now; 2440 mn_now = ev_rt_now;
1751 } 2441 }
1752} 2442}
1753 2443
1754void 2444void
1755ev_ref (EV_P)
1756{
1757 ++activecnt;
1758}
1759
1760void
1761ev_unref (EV_P)
1762{
1763 --activecnt;
1764}
1765
1766static int loop_done;
1767
1768void
1769ev_loop (EV_P_ int flags) 2445ev_run (EV_P_ int flags)
1770{ 2446{
2447#if EV_FEATURE_API
2448 ++loop_depth;
2449#endif
2450
2451 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2452
1771 loop_done = EVUNLOOP_CANCEL; 2453 loop_done = EVBREAK_CANCEL;
1772 2454
1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2455 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1774 2456
1775 do 2457 do
1776 { 2458 {
2459#if EV_VERIFY >= 2
2460 ev_verify (EV_A);
2461#endif
2462
1777#ifndef _WIN32 2463#ifndef _WIN32
1778 if (expect_false (curpid)) /* penalise the forking check even more */ 2464 if (expect_false (curpid)) /* penalise the forking check even more */
1779 if (expect_false (getpid () != curpid)) 2465 if (expect_false (getpid () != curpid))
1780 { 2466 {
1781 curpid = getpid (); 2467 curpid = getpid ();
1787 /* we might have forked, so queue fork handlers */ 2473 /* we might have forked, so queue fork handlers */
1788 if (expect_false (postfork)) 2474 if (expect_false (postfork))
1789 if (forkcnt) 2475 if (forkcnt)
1790 { 2476 {
1791 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2477 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1792 call_pending (EV_A); 2478 EV_INVOKE_PENDING;
1793 } 2479 }
1794#endif 2480#endif
1795 2481
2482#if EV_PREPARE_ENABLE
1796 /* queue prepare watchers (and execute them) */ 2483 /* queue prepare watchers (and execute them) */
1797 if (expect_false (preparecnt)) 2484 if (expect_false (preparecnt))
1798 { 2485 {
1799 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2486 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1800 call_pending (EV_A); 2487 EV_INVOKE_PENDING;
1801 } 2488 }
2489#endif
1802 2490
1803 if (expect_false (!activecnt)) 2491 if (expect_false (loop_done))
1804 break; 2492 break;
1805 2493
1806 /* we might have forked, so reify kernel state if necessary */ 2494 /* we might have forked, so reify kernel state if necessary */
1807 if (expect_false (postfork)) 2495 if (expect_false (postfork))
1808 loop_fork (EV_A); 2496 loop_fork (EV_A);
1813 /* calculate blocking time */ 2501 /* calculate blocking time */
1814 { 2502 {
1815 ev_tstamp waittime = 0.; 2503 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.; 2504 ev_tstamp sleeptime = 0.;
1817 2505
2506 /* remember old timestamp for io_blocktime calculation */
2507 ev_tstamp prev_mn_now = mn_now;
2508
2509 /* update time to cancel out callback processing overhead */
2510 time_update (EV_A_ 1e100);
2511
1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2512 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1819 { 2513 {
1820 /* update time to cancel out callback processing overhead */
1821 time_update (EV_A_ 1e100);
1822
1823 waittime = MAX_BLOCKTIME; 2514 waittime = MAX_BLOCKTIME;
1824 2515
1825 if (timercnt) 2516 if (timercnt)
1826 { 2517 {
1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 2518 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2525 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1835 if (waittime > to) waittime = to; 2526 if (waittime > to) waittime = to;
1836 } 2527 }
1837#endif 2528#endif
1838 2529
2530 /* don't let timeouts decrease the waittime below timeout_blocktime */
1839 if (expect_false (waittime < timeout_blocktime)) 2531 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime; 2532 waittime = timeout_blocktime;
1841 2533
1842 sleeptime = waittime - backend_fudge; 2534 /* extra check because io_blocktime is commonly 0 */
1843
1844 if (expect_true (sleeptime > io_blocktime)) 2535 if (expect_false (io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 { 2536 {
2537 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2538
2539 if (sleeptime > waittime - backend_fudge)
2540 sleeptime = waittime - backend_fudge;
2541
2542 if (expect_true (sleeptime > 0.))
2543 {
1849 ev_sleep (sleeptime); 2544 ev_sleep (sleeptime);
1850 waittime -= sleeptime; 2545 waittime -= sleeptime;
2546 }
1851 } 2547 }
1852 } 2548 }
1853 2549
2550#if EV_FEATURE_API
1854 ++loop_count; 2551 ++loop_count;
2552#endif
2553 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1855 backend_poll (EV_A_ waittime); 2554 backend_poll (EV_A_ waittime);
2555 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1856 2556
1857 /* update ev_rt_now, do magic */ 2557 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime); 2558 time_update (EV_A_ waittime + sleeptime);
1859 } 2559 }
1860 2560
1867#if EV_IDLE_ENABLE 2567#if EV_IDLE_ENABLE
1868 /* queue idle watchers unless other events are pending */ 2568 /* queue idle watchers unless other events are pending */
1869 idle_reify (EV_A); 2569 idle_reify (EV_A);
1870#endif 2570#endif
1871 2571
2572#if EV_CHECK_ENABLE
1872 /* queue check watchers, to be executed first */ 2573 /* queue check watchers, to be executed first */
1873 if (expect_false (checkcnt)) 2574 if (expect_false (checkcnt))
1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2575 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2576#endif
1875 2577
1876 call_pending (EV_A); 2578 EV_INVOKE_PENDING;
1877 } 2579 }
1878 while (expect_true ( 2580 while (expect_true (
1879 activecnt 2581 activecnt
1880 && !loop_done 2582 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2583 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1882 )); 2584 ));
1883 2585
1884 if (loop_done == EVUNLOOP_ONE) 2586 if (loop_done == EVBREAK_ONE)
1885 loop_done = EVUNLOOP_CANCEL; 2587 loop_done = EVBREAK_CANCEL;
1886}
1887 2588
2589#if EV_FEATURE_API
2590 --loop_depth;
2591#endif
2592}
2593
1888void 2594void
1889ev_unloop (EV_P_ int how) 2595ev_break (EV_P_ int how)
1890{ 2596{
1891 loop_done = how; 2597 loop_done = how;
1892} 2598}
1893 2599
2600void
2601ev_ref (EV_P)
2602{
2603 ++activecnt;
2604}
2605
2606void
2607ev_unref (EV_P)
2608{
2609 --activecnt;
2610}
2611
2612void
2613ev_now_update (EV_P)
2614{
2615 time_update (EV_A_ 1e100);
2616}
2617
2618void
2619ev_suspend (EV_P)
2620{
2621 ev_now_update (EV_A);
2622}
2623
2624void
2625ev_resume (EV_P)
2626{
2627 ev_tstamp mn_prev = mn_now;
2628
2629 ev_now_update (EV_A);
2630 timers_reschedule (EV_A_ mn_now - mn_prev);
2631#if EV_PERIODIC_ENABLE
2632 /* TODO: really do this? */
2633 periodics_reschedule (EV_A);
2634#endif
2635}
2636
1894/*****************************************************************************/ 2637/*****************************************************************************/
2638/* singly-linked list management, used when the expected list length is short */
1895 2639
1896void inline_size 2640inline_size void
1897wlist_add (WL *head, WL elem) 2641wlist_add (WL *head, WL elem)
1898{ 2642{
1899 elem->next = *head; 2643 elem->next = *head;
1900 *head = elem; 2644 *head = elem;
1901} 2645}
1902 2646
1903void inline_size 2647inline_size void
1904wlist_del (WL *head, WL elem) 2648wlist_del (WL *head, WL elem)
1905{ 2649{
1906 while (*head) 2650 while (*head)
1907 { 2651 {
1908 if (*head == elem) 2652 if (expect_true (*head == elem))
1909 { 2653 {
1910 *head = elem->next; 2654 *head = elem->next;
1911 return; 2655 break;
1912 } 2656 }
1913 2657
1914 head = &(*head)->next; 2658 head = &(*head)->next;
1915 } 2659 }
1916} 2660}
1917 2661
1918void inline_speed 2662/* internal, faster, version of ev_clear_pending */
2663inline_speed void
1919clear_pending (EV_P_ W w) 2664clear_pending (EV_P_ W w)
1920{ 2665{
1921 if (w->pending) 2666 if (w->pending)
1922 { 2667 {
1923 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2668 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1924 w->pending = 0; 2669 w->pending = 0;
1925 } 2670 }
1926} 2671}
1927 2672
1928int 2673int
1932 int pending = w_->pending; 2677 int pending = w_->pending;
1933 2678
1934 if (expect_true (pending)) 2679 if (expect_true (pending))
1935 { 2680 {
1936 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2681 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2682 p->w = (W)&pending_w;
1937 w_->pending = 0; 2683 w_->pending = 0;
1938 p->w = 0;
1939 return p->events; 2684 return p->events;
1940 } 2685 }
1941 else 2686 else
1942 return 0; 2687 return 0;
1943} 2688}
1944 2689
1945void inline_size 2690inline_size void
1946pri_adjust (EV_P_ W w) 2691pri_adjust (EV_P_ W w)
1947{ 2692{
1948 int pri = w->priority; 2693 int pri = ev_priority (w);
1949 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2694 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1950 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2695 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1951 w->priority = pri; 2696 ev_set_priority (w, pri);
1952} 2697}
1953 2698
1954void inline_speed 2699inline_speed void
1955ev_start (EV_P_ W w, int active) 2700ev_start (EV_P_ W w, int active)
1956{ 2701{
1957 pri_adjust (EV_A_ w); 2702 pri_adjust (EV_A_ w);
1958 w->active = active; 2703 w->active = active;
1959 ev_ref (EV_A); 2704 ev_ref (EV_A);
1960} 2705}
1961 2706
1962void inline_size 2707inline_size void
1963ev_stop (EV_P_ W w) 2708ev_stop (EV_P_ W w)
1964{ 2709{
1965 ev_unref (EV_A); 2710 ev_unref (EV_A);
1966 w->active = 0; 2711 w->active = 0;
1967} 2712}
1974 int fd = w->fd; 2719 int fd = w->fd;
1975 2720
1976 if (expect_false (ev_is_active (w))) 2721 if (expect_false (ev_is_active (w)))
1977 return; 2722 return;
1978 2723
1979 assert (("ev_io_start called with negative fd", fd >= 0)); 2724 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2725 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2726
2727 EV_FREQUENT_CHECK;
1980 2728
1981 ev_start (EV_A_ (W)w, 1); 2729 ev_start (EV_A_ (W)w, 1);
1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2730 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1983 wlist_add (&anfds[fd].head, (WL)w); 2731 wlist_add (&anfds[fd].head, (WL)w);
1984 2732
1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2733 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1986 w->events &= ~EV_IOFDSET; 2734 w->events &= ~EV__IOFDSET;
2735
2736 EV_FREQUENT_CHECK;
1987} 2737}
1988 2738
1989void noinline 2739void noinline
1990ev_io_stop (EV_P_ ev_io *w) 2740ev_io_stop (EV_P_ ev_io *w)
1991{ 2741{
1992 clear_pending (EV_A_ (W)w); 2742 clear_pending (EV_A_ (W)w);
1993 if (expect_false (!ev_is_active (w))) 2743 if (expect_false (!ev_is_active (w)))
1994 return; 2744 return;
1995 2745
1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2746 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2747
2748 EV_FREQUENT_CHECK;
1997 2749
1998 wlist_del (&anfds[w->fd].head, (WL)w); 2750 wlist_del (&anfds[w->fd].head, (WL)w);
1999 ev_stop (EV_A_ (W)w); 2751 ev_stop (EV_A_ (W)w);
2000 2752
2001 fd_change (EV_A_ w->fd, 1); 2753 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2754
2755 EV_FREQUENT_CHECK;
2002} 2756}
2003 2757
2004void noinline 2758void noinline
2005ev_timer_start (EV_P_ ev_timer *w) 2759ev_timer_start (EV_P_ ev_timer *w)
2006{ 2760{
2007 if (expect_false (ev_is_active (w))) 2761 if (expect_false (ev_is_active (w)))
2008 return; 2762 return;
2009 2763
2010 ev_at (w) += mn_now; 2764 ev_at (w) += mn_now;
2011 2765
2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2766 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2013 2767
2768 EV_FREQUENT_CHECK;
2769
2770 ++timercnt;
2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2771 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2772 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2016 ANHE_w (timers [ev_active (w)]) = (WT)w; 2773 ANHE_w (timers [ev_active (w)]) = (WT)w;
2017 ANHE_at_set (timers [ev_active (w)]); 2774 ANHE_at_cache (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w)); 2775 upheap (timers, ev_active (w));
2019 2776
2777 EV_FREQUENT_CHECK;
2778
2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2779 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2021} 2780}
2022 2781
2023void noinline 2782void noinline
2024ev_timer_stop (EV_P_ ev_timer *w) 2783ev_timer_stop (EV_P_ ev_timer *w)
2025{ 2784{
2026 clear_pending (EV_A_ (W)w); 2785 clear_pending (EV_A_ (W)w);
2027 if (expect_false (!ev_is_active (w))) 2786 if (expect_false (!ev_is_active (w)))
2028 return; 2787 return;
2029 2788
2789 EV_FREQUENT_CHECK;
2790
2030 { 2791 {
2031 int active = ev_active (w); 2792 int active = ev_active (w);
2032 2793
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2794 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034 2795
2796 --timercnt;
2797
2035 if (expect_true (active < timercnt + HEAP0 - 1)) 2798 if (expect_true (active < timercnt + HEAP0))
2036 { 2799 {
2037 timers [active] = timers [timercnt + HEAP0 - 1]; 2800 timers [active] = timers [timercnt + HEAP0];
2038 adjustheap (timers, timercnt, active); 2801 adjustheap (timers, timercnt, active);
2039 } 2802 }
2040
2041 --timercnt;
2042 } 2803 }
2043 2804
2044 ev_at (w) -= mn_now; 2805 ev_at (w) -= mn_now;
2045 2806
2046 ev_stop (EV_A_ (W)w); 2807 ev_stop (EV_A_ (W)w);
2808
2809 EV_FREQUENT_CHECK;
2047} 2810}
2048 2811
2049void noinline 2812void noinline
2050ev_timer_again (EV_P_ ev_timer *w) 2813ev_timer_again (EV_P_ ev_timer *w)
2051{ 2814{
2815 EV_FREQUENT_CHECK;
2816
2052 if (ev_is_active (w)) 2817 if (ev_is_active (w))
2053 { 2818 {
2054 if (w->repeat) 2819 if (w->repeat)
2055 { 2820 {
2056 ev_at (w) = mn_now + w->repeat; 2821 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]); 2822 ANHE_at_cache (timers [ev_active (w)]);
2058 adjustheap (timers, timercnt, ev_active (w)); 2823 adjustheap (timers, timercnt, ev_active (w));
2059 } 2824 }
2060 else 2825 else
2061 ev_timer_stop (EV_A_ w); 2826 ev_timer_stop (EV_A_ w);
2062 } 2827 }
2063 else if (w->repeat) 2828 else if (w->repeat)
2064 { 2829 {
2065 ev_at (w) = w->repeat; 2830 ev_at (w) = w->repeat;
2066 ev_timer_start (EV_A_ w); 2831 ev_timer_start (EV_A_ w);
2067 } 2832 }
2833
2834 EV_FREQUENT_CHECK;
2835}
2836
2837ev_tstamp
2838ev_timer_remaining (EV_P_ ev_timer *w)
2839{
2840 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2068} 2841}
2069 2842
2070#if EV_PERIODIC_ENABLE 2843#if EV_PERIODIC_ENABLE
2071void noinline 2844void noinline
2072ev_periodic_start (EV_P_ ev_periodic *w) 2845ev_periodic_start (EV_P_ ev_periodic *w)
2076 2849
2077 if (w->reschedule_cb) 2850 if (w->reschedule_cb)
2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2851 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2079 else if (w->interval) 2852 else if (w->interval)
2080 { 2853 {
2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2854 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2082 /* this formula differs from the one in periodic_reify because we do not always round up */ 2855 periodic_recalc (EV_A_ w);
2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2084 } 2856 }
2085 else 2857 else
2086 ev_at (w) = w->offset; 2858 ev_at (w) = w->offset;
2087 2859
2860 EV_FREQUENT_CHECK;
2861
2862 ++periodiccnt;
2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2863 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2864 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2090 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2865 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2866 ANHE_at_cache (periodics [ev_active (w)]);
2091 upheap (periodics, ev_active (w)); 2867 upheap (periodics, ev_active (w));
2092 2868
2869 EV_FREQUENT_CHECK;
2870
2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2871 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2094} 2872}
2095 2873
2096void noinline 2874void noinline
2097ev_periodic_stop (EV_P_ ev_periodic *w) 2875ev_periodic_stop (EV_P_ ev_periodic *w)
2098{ 2876{
2099 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
2101 return; 2879 return;
2102 2880
2881 EV_FREQUENT_CHECK;
2882
2103 { 2883 {
2104 int active = ev_active (w); 2884 int active = ev_active (w);
2105 2885
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2886 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107 2887
2888 --periodiccnt;
2889
2108 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2890 if (expect_true (active < periodiccnt + HEAP0))
2109 { 2891 {
2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2892 periodics [active] = periodics [periodiccnt + HEAP0];
2111 adjustheap (periodics, periodiccnt, active); 2893 adjustheap (periodics, periodiccnt, active);
2112 } 2894 }
2113
2114 --periodiccnt;
2115 } 2895 }
2116 2896
2117 ev_stop (EV_A_ (W)w); 2897 ev_stop (EV_A_ (W)w);
2898
2899 EV_FREQUENT_CHECK;
2118} 2900}
2119 2901
2120void noinline 2902void noinline
2121ev_periodic_again (EV_P_ ev_periodic *w) 2903ev_periodic_again (EV_P_ ev_periodic *w)
2122{ 2904{
2128 2910
2129#ifndef SA_RESTART 2911#ifndef SA_RESTART
2130# define SA_RESTART 0 2912# define SA_RESTART 0
2131#endif 2913#endif
2132 2914
2915#if EV_SIGNAL_ENABLE
2916
2133void noinline 2917void noinline
2134ev_signal_start (EV_P_ ev_signal *w) 2918ev_signal_start (EV_P_ ev_signal *w)
2135{ 2919{
2136#if EV_MULTIPLICITY
2137 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2138#endif
2139 if (expect_false (ev_is_active (w))) 2920 if (expect_false (ev_is_active (w)))
2140 return; 2921 return;
2141 2922
2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2923 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2143 2924
2144 evpipe_init (EV_A); 2925#if EV_MULTIPLICITY
2926 assert (("libev: a signal must not be attached to two different loops",
2927 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2145 2928
2929 signals [w->signum - 1].loop = EV_A;
2930#endif
2931
2932 EV_FREQUENT_CHECK;
2933
2934#if EV_USE_SIGNALFD
2935 if (sigfd == -2)
2146 { 2936 {
2147#ifndef _WIN32 2937 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2148 sigset_t full, prev; 2938 if (sigfd < 0 && errno == EINVAL)
2149 sigfillset (&full); 2939 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152 2940
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2941 if (sigfd >= 0)
2942 {
2943 fd_intern (sigfd); /* doing it twice will not hurt */
2154 2944
2155#ifndef _WIN32 2945 sigemptyset (&sigfd_set);
2156 sigprocmask (SIG_SETMASK, &prev, 0); 2946
2157#endif 2947 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2948 ev_set_priority (&sigfd_w, EV_MAXPRI);
2949 ev_io_start (EV_A_ &sigfd_w);
2950 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2951 }
2158 } 2952 }
2953
2954 if (sigfd >= 0)
2955 {
2956 /* TODO: check .head */
2957 sigaddset (&sigfd_set, w->signum);
2958 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2959
2960 signalfd (sigfd, &sigfd_set, 0);
2961 }
2962#endif
2159 2963
2160 ev_start (EV_A_ (W)w, 1); 2964 ev_start (EV_A_ (W)w, 1);
2161 wlist_add (&signals [w->signum - 1].head, (WL)w); 2965 wlist_add (&signals [w->signum - 1].head, (WL)w);
2162 2966
2163 if (!((WL)w)->next) 2967 if (!((WL)w)->next)
2968# if EV_USE_SIGNALFD
2969 if (sigfd < 0) /*TODO*/
2970# endif
2164 { 2971 {
2165#if _WIN32 2972# ifdef _WIN32
2973 evpipe_init (EV_A);
2974
2166 signal (w->signum, ev_sighandler); 2975 signal (w->signum, ev_sighandler);
2167#else 2976# else
2168 struct sigaction sa; 2977 struct sigaction sa;
2978
2979 evpipe_init (EV_A);
2980
2169 sa.sa_handler = ev_sighandler; 2981 sa.sa_handler = ev_sighandler;
2170 sigfillset (&sa.sa_mask); 2982 sigfillset (&sa.sa_mask);
2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2983 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2172 sigaction (w->signum, &sa, 0); 2984 sigaction (w->signum, &sa, 0);
2985
2986 if (origflags & EVFLAG_NOSIGMASK)
2987 {
2988 sigemptyset (&sa.sa_mask);
2989 sigaddset (&sa.sa_mask, w->signum);
2990 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2991 }
2173#endif 2992#endif
2174 } 2993 }
2994
2995 EV_FREQUENT_CHECK;
2175} 2996}
2176 2997
2177void noinline 2998void noinline
2178ev_signal_stop (EV_P_ ev_signal *w) 2999ev_signal_stop (EV_P_ ev_signal *w)
2179{ 3000{
2180 clear_pending (EV_A_ (W)w); 3001 clear_pending (EV_A_ (W)w);
2181 if (expect_false (!ev_is_active (w))) 3002 if (expect_false (!ev_is_active (w)))
2182 return; 3003 return;
2183 3004
3005 EV_FREQUENT_CHECK;
3006
2184 wlist_del (&signals [w->signum - 1].head, (WL)w); 3007 wlist_del (&signals [w->signum - 1].head, (WL)w);
2185 ev_stop (EV_A_ (W)w); 3008 ev_stop (EV_A_ (W)w);
2186 3009
2187 if (!signals [w->signum - 1].head) 3010 if (!signals [w->signum - 1].head)
3011 {
3012#if EV_MULTIPLICITY
3013 signals [w->signum - 1].loop = 0; /* unattach from signal */
3014#endif
3015#if EV_USE_SIGNALFD
3016 if (sigfd >= 0)
3017 {
3018 sigset_t ss;
3019
3020 sigemptyset (&ss);
3021 sigaddset (&ss, w->signum);
3022 sigdelset (&sigfd_set, w->signum);
3023
3024 signalfd (sigfd, &sigfd_set, 0);
3025 sigprocmask (SIG_UNBLOCK, &ss, 0);
3026 }
3027 else
3028#endif
2188 signal (w->signum, SIG_DFL); 3029 signal (w->signum, SIG_DFL);
3030 }
3031
3032 EV_FREQUENT_CHECK;
2189} 3033}
3034
3035#endif
3036
3037#if EV_CHILD_ENABLE
2190 3038
2191void 3039void
2192ev_child_start (EV_P_ ev_child *w) 3040ev_child_start (EV_P_ ev_child *w)
2193{ 3041{
2194#if EV_MULTIPLICITY 3042#if EV_MULTIPLICITY
2195 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3043 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2196#endif 3044#endif
2197 if (expect_false (ev_is_active (w))) 3045 if (expect_false (ev_is_active (w)))
2198 return; 3046 return;
2199 3047
3048 EV_FREQUENT_CHECK;
3049
2200 ev_start (EV_A_ (W)w, 1); 3050 ev_start (EV_A_ (W)w, 1);
2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3051 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3052
3053 EV_FREQUENT_CHECK;
2202} 3054}
2203 3055
2204void 3056void
2205ev_child_stop (EV_P_ ev_child *w) 3057ev_child_stop (EV_P_ ev_child *w)
2206{ 3058{
2207 clear_pending (EV_A_ (W)w); 3059 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 3060 if (expect_false (!ev_is_active (w)))
2209 return; 3061 return;
2210 3062
3063 EV_FREQUENT_CHECK;
3064
2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3065 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2212 ev_stop (EV_A_ (W)w); 3066 ev_stop (EV_A_ (W)w);
3067
3068 EV_FREQUENT_CHECK;
2213} 3069}
3070
3071#endif
2214 3072
2215#if EV_STAT_ENABLE 3073#if EV_STAT_ENABLE
2216 3074
2217# ifdef _WIN32 3075# ifdef _WIN32
2218# undef lstat 3076# undef lstat
2219# define lstat(a,b) _stati64 (a,b) 3077# define lstat(a,b) _stati64 (a,b)
2220# endif 3078# endif
2221 3079
2222#define DEF_STAT_INTERVAL 5.0074891 3080#define DEF_STAT_INTERVAL 5.0074891
3081#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2223#define MIN_STAT_INTERVAL 0.1074891 3082#define MIN_STAT_INTERVAL 0.1074891
2224 3083
2225static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3084static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2226 3085
2227#if EV_USE_INOTIFY 3086#if EV_USE_INOTIFY
2228# define EV_INOTIFY_BUFSIZE 8192 3087
3088/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3089# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2229 3090
2230static void noinline 3091static void noinline
2231infy_add (EV_P_ ev_stat *w) 3092infy_add (EV_P_ ev_stat *w)
2232{ 3093{
2233 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3094 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2234 3095
2235 if (w->wd < 0) 3096 if (w->wd >= 0)
3097 {
3098 struct statfs sfs;
3099
3100 /* now local changes will be tracked by inotify, but remote changes won't */
3101 /* unless the filesystem is known to be local, we therefore still poll */
3102 /* also do poll on <2.6.25, but with normal frequency */
3103
3104 if (!fs_2625)
3105 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3106 else if (!statfs (w->path, &sfs)
3107 && (sfs.f_type == 0x1373 /* devfs */
3108 || sfs.f_type == 0xEF53 /* ext2/3 */
3109 || sfs.f_type == 0x3153464a /* jfs */
3110 || sfs.f_type == 0x52654973 /* reiser3 */
3111 || sfs.f_type == 0x01021994 /* tempfs */
3112 || sfs.f_type == 0x58465342 /* xfs */))
3113 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3114 else
3115 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2236 { 3116 }
2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3117 else
3118 {
3119 /* can't use inotify, continue to stat */
3120 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2238 3121
2239 /* monitor some parent directory for speedup hints */ 3122 /* if path is not there, monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */ 3123 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2241 /* but an efficiency issue only */ 3124 /* but an efficiency issue only */
2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3125 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2243 { 3126 {
2244 char path [4096]; 3127 char path [4096];
2245 strcpy (path, w->path); 3128 strcpy (path, w->path);
2249 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3132 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2250 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3133 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2251 3134
2252 char *pend = strrchr (path, '/'); 3135 char *pend = strrchr (path, '/');
2253 3136
2254 if (!pend) 3137 if (!pend || pend == path)
2255 break; /* whoops, no '/', complain to your admin */ 3138 break;
2256 3139
2257 *pend = 0; 3140 *pend = 0;
2258 w->wd = inotify_add_watch (fs_fd, path, mask); 3141 w->wd = inotify_add_watch (fs_fd, path, mask);
2259 } 3142 }
2260 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3143 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2261 } 3144 }
2262 } 3145 }
2263 else
2264 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2265 3146
2266 if (w->wd >= 0) 3147 if (w->wd >= 0)
2267 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3148 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3149
3150 /* now re-arm timer, if required */
3151 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3152 ev_timer_again (EV_A_ &w->timer);
3153 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2268} 3154}
2269 3155
2270static void noinline 3156static void noinline
2271infy_del (EV_P_ ev_stat *w) 3157infy_del (EV_P_ ev_stat *w)
2272{ 3158{
2275 3161
2276 if (wd < 0) 3162 if (wd < 0)
2277 return; 3163 return;
2278 3164
2279 w->wd = -2; 3165 w->wd = -2;
2280 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3166 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2281 wlist_del (&fs_hash [slot].head, (WL)w); 3167 wlist_del (&fs_hash [slot].head, (WL)w);
2282 3168
2283 /* remove this watcher, if others are watching it, they will rearm */ 3169 /* remove this watcher, if others are watching it, they will rearm */
2284 inotify_rm_watch (fs_fd, wd); 3170 inotify_rm_watch (fs_fd, wd);
2285} 3171}
2286 3172
2287static void noinline 3173static void noinline
2288infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3174infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2289{ 3175{
2290 if (slot < 0) 3176 if (slot < 0)
2291 /* overflow, need to check for all hahs slots */ 3177 /* overflow, need to check for all hash slots */
2292 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3178 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2293 infy_wd (EV_A_ slot, wd, ev); 3179 infy_wd (EV_A_ slot, wd, ev);
2294 else 3180 else
2295 { 3181 {
2296 WL w_; 3182 WL w_;
2297 3183
2298 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3184 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2299 { 3185 {
2300 ev_stat *w = (ev_stat *)w_; 3186 ev_stat *w = (ev_stat *)w_;
2301 w_ = w_->next; /* lets us remove this watcher and all before it */ 3187 w_ = w_->next; /* lets us remove this watcher and all before it */
2302 3188
2303 if (w->wd == wd || wd == -1) 3189 if (w->wd == wd || wd == -1)
2304 { 3190 {
2305 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3191 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2306 { 3192 {
3193 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2307 w->wd = -1; 3194 w->wd = -1;
2308 infy_add (EV_A_ w); /* re-add, no matter what */ 3195 infy_add (EV_A_ w); /* re-add, no matter what */
2309 } 3196 }
2310 3197
2311 stat_timer_cb (EV_A_ &w->timer, 0); 3198 stat_timer_cb (EV_A_ &w->timer, 0);
2316 3203
2317static void 3204static void
2318infy_cb (EV_P_ ev_io *w, int revents) 3205infy_cb (EV_P_ ev_io *w, int revents)
2319{ 3206{
2320 char buf [EV_INOTIFY_BUFSIZE]; 3207 char buf [EV_INOTIFY_BUFSIZE];
2321 struct inotify_event *ev = (struct inotify_event *)buf;
2322 int ofs; 3208 int ofs;
2323 int len = read (fs_fd, buf, sizeof (buf)); 3209 int len = read (fs_fd, buf, sizeof (buf));
2324 3210
2325 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3211 for (ofs = 0; ofs < len; )
3212 {
3213 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2326 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3214 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3215 ofs += sizeof (struct inotify_event) + ev->len;
3216 }
2327} 3217}
2328 3218
2329void inline_size 3219inline_size void
3220ev_check_2625 (EV_P)
3221{
3222 /* kernels < 2.6.25 are borked
3223 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3224 */
3225 if (ev_linux_version () < 0x020619)
3226 return;
3227
3228 fs_2625 = 1;
3229}
3230
3231inline_size int
3232infy_newfd (void)
3233{
3234#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3235 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3236 if (fd >= 0)
3237 return fd;
3238#endif
3239 return inotify_init ();
3240}
3241
3242inline_size void
2330infy_init (EV_P) 3243infy_init (EV_P)
2331{ 3244{
2332 if (fs_fd != -2) 3245 if (fs_fd != -2)
2333 return; 3246 return;
2334 3247
3248 fs_fd = -1;
3249
3250 ev_check_2625 (EV_A);
3251
2335 fs_fd = inotify_init (); 3252 fs_fd = infy_newfd ();
2336 3253
2337 if (fs_fd >= 0) 3254 if (fs_fd >= 0)
2338 { 3255 {
3256 fd_intern (fs_fd);
2339 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3257 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2340 ev_set_priority (&fs_w, EV_MAXPRI); 3258 ev_set_priority (&fs_w, EV_MAXPRI);
2341 ev_io_start (EV_A_ &fs_w); 3259 ev_io_start (EV_A_ &fs_w);
3260 ev_unref (EV_A);
2342 } 3261 }
2343} 3262}
2344 3263
2345void inline_size 3264inline_size void
2346infy_fork (EV_P) 3265infy_fork (EV_P)
2347{ 3266{
2348 int slot; 3267 int slot;
2349 3268
2350 if (fs_fd < 0) 3269 if (fs_fd < 0)
2351 return; 3270 return;
2352 3271
3272 ev_ref (EV_A);
3273 ev_io_stop (EV_A_ &fs_w);
2353 close (fs_fd); 3274 close (fs_fd);
2354 fs_fd = inotify_init (); 3275 fs_fd = infy_newfd ();
2355 3276
3277 if (fs_fd >= 0)
3278 {
3279 fd_intern (fs_fd);
3280 ev_io_set (&fs_w, fs_fd, EV_READ);
3281 ev_io_start (EV_A_ &fs_w);
3282 ev_unref (EV_A);
3283 }
3284
2356 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3285 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2357 { 3286 {
2358 WL w_ = fs_hash [slot].head; 3287 WL w_ = fs_hash [slot].head;
2359 fs_hash [slot].head = 0; 3288 fs_hash [slot].head = 0;
2360 3289
2361 while (w_) 3290 while (w_)
2366 w->wd = -1; 3295 w->wd = -1;
2367 3296
2368 if (fs_fd >= 0) 3297 if (fs_fd >= 0)
2369 infy_add (EV_A_ w); /* re-add, no matter what */ 3298 infy_add (EV_A_ w); /* re-add, no matter what */
2370 else 3299 else
3300 {
3301 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3302 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2371 ev_timer_start (EV_A_ &w->timer); 3303 ev_timer_again (EV_A_ &w->timer);
3304 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3305 }
2372 } 3306 }
2373
2374 } 3307 }
2375} 3308}
2376 3309
3310#endif
3311
3312#ifdef _WIN32
3313# define EV_LSTAT(p,b) _stati64 (p, b)
3314#else
3315# define EV_LSTAT(p,b) lstat (p, b)
2377#endif 3316#endif
2378 3317
2379void 3318void
2380ev_stat_stat (EV_P_ ev_stat *w) 3319ev_stat_stat (EV_P_ ev_stat *w)
2381{ 3320{
2388static void noinline 3327static void noinline
2389stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3328stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2390{ 3329{
2391 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3330 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2392 3331
2393 /* we copy this here each the time so that */ 3332 ev_statdata prev = w->attr;
2394 /* prev has the old value when the callback gets invoked */
2395 w->prev = w->attr;
2396 ev_stat_stat (EV_A_ w); 3333 ev_stat_stat (EV_A_ w);
2397 3334
2398 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3335 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2399 if ( 3336 if (
2400 w->prev.st_dev != w->attr.st_dev 3337 prev.st_dev != w->attr.st_dev
2401 || w->prev.st_ino != w->attr.st_ino 3338 || prev.st_ino != w->attr.st_ino
2402 || w->prev.st_mode != w->attr.st_mode 3339 || prev.st_mode != w->attr.st_mode
2403 || w->prev.st_nlink != w->attr.st_nlink 3340 || prev.st_nlink != w->attr.st_nlink
2404 || w->prev.st_uid != w->attr.st_uid 3341 || prev.st_uid != w->attr.st_uid
2405 || w->prev.st_gid != w->attr.st_gid 3342 || prev.st_gid != w->attr.st_gid
2406 || w->prev.st_rdev != w->attr.st_rdev 3343 || prev.st_rdev != w->attr.st_rdev
2407 || w->prev.st_size != w->attr.st_size 3344 || prev.st_size != w->attr.st_size
2408 || w->prev.st_atime != w->attr.st_atime 3345 || prev.st_atime != w->attr.st_atime
2409 || w->prev.st_mtime != w->attr.st_mtime 3346 || prev.st_mtime != w->attr.st_mtime
2410 || w->prev.st_ctime != w->attr.st_ctime 3347 || prev.st_ctime != w->attr.st_ctime
2411 ) { 3348 ) {
3349 /* we only update w->prev on actual differences */
3350 /* in case we test more often than invoke the callback, */
3351 /* to ensure that prev is always different to attr */
3352 w->prev = prev;
3353
2412 #if EV_USE_INOTIFY 3354 #if EV_USE_INOTIFY
3355 if (fs_fd >= 0)
3356 {
2413 infy_del (EV_A_ w); 3357 infy_del (EV_A_ w);
2414 infy_add (EV_A_ w); 3358 infy_add (EV_A_ w);
2415 ev_stat_stat (EV_A_ w); /* avoid race... */ 3359 ev_stat_stat (EV_A_ w); /* avoid race... */
3360 }
2416 #endif 3361 #endif
2417 3362
2418 ev_feed_event (EV_A_ w, EV_STAT); 3363 ev_feed_event (EV_A_ w, EV_STAT);
2419 } 3364 }
2420} 3365}
2423ev_stat_start (EV_P_ ev_stat *w) 3368ev_stat_start (EV_P_ ev_stat *w)
2424{ 3369{
2425 if (expect_false (ev_is_active (w))) 3370 if (expect_false (ev_is_active (w)))
2426 return; 3371 return;
2427 3372
2428 /* since we use memcmp, we need to clear any padding data etc. */
2429 memset (&w->prev, 0, sizeof (ev_statdata));
2430 memset (&w->attr, 0, sizeof (ev_statdata));
2431
2432 ev_stat_stat (EV_A_ w); 3373 ev_stat_stat (EV_A_ w);
2433 3374
3375 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2434 if (w->interval < MIN_STAT_INTERVAL) 3376 w->interval = MIN_STAT_INTERVAL;
2435 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2436 3377
2437 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3378 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2438 ev_set_priority (&w->timer, ev_priority (w)); 3379 ev_set_priority (&w->timer, ev_priority (w));
2439 3380
2440#if EV_USE_INOTIFY 3381#if EV_USE_INOTIFY
2441 infy_init (EV_A); 3382 infy_init (EV_A);
2442 3383
2443 if (fs_fd >= 0) 3384 if (fs_fd >= 0)
2444 infy_add (EV_A_ w); 3385 infy_add (EV_A_ w);
2445 else 3386 else
2446#endif 3387#endif
3388 {
2447 ev_timer_start (EV_A_ &w->timer); 3389 ev_timer_again (EV_A_ &w->timer);
3390 ev_unref (EV_A);
3391 }
2448 3392
2449 ev_start (EV_A_ (W)w, 1); 3393 ev_start (EV_A_ (W)w, 1);
3394
3395 EV_FREQUENT_CHECK;
2450} 3396}
2451 3397
2452void 3398void
2453ev_stat_stop (EV_P_ ev_stat *w) 3399ev_stat_stop (EV_P_ ev_stat *w)
2454{ 3400{
2455 clear_pending (EV_A_ (W)w); 3401 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w))) 3402 if (expect_false (!ev_is_active (w)))
2457 return; 3403 return;
2458 3404
3405 EV_FREQUENT_CHECK;
3406
2459#if EV_USE_INOTIFY 3407#if EV_USE_INOTIFY
2460 infy_del (EV_A_ w); 3408 infy_del (EV_A_ w);
2461#endif 3409#endif
3410
3411 if (ev_is_active (&w->timer))
3412 {
3413 ev_ref (EV_A);
2462 ev_timer_stop (EV_A_ &w->timer); 3414 ev_timer_stop (EV_A_ &w->timer);
3415 }
2463 3416
2464 ev_stop (EV_A_ (W)w); 3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
2465} 3420}
2466#endif 3421#endif
2467 3422
2468#if EV_IDLE_ENABLE 3423#if EV_IDLE_ENABLE
2469void 3424void
2471{ 3426{
2472 if (expect_false (ev_is_active (w))) 3427 if (expect_false (ev_is_active (w)))
2473 return; 3428 return;
2474 3429
2475 pri_adjust (EV_A_ (W)w); 3430 pri_adjust (EV_A_ (W)w);
3431
3432 EV_FREQUENT_CHECK;
2476 3433
2477 { 3434 {
2478 int active = ++idlecnt [ABSPRI (w)]; 3435 int active = ++idlecnt [ABSPRI (w)];
2479 3436
2480 ++idleall; 3437 ++idleall;
2481 ev_start (EV_A_ (W)w, active); 3438 ev_start (EV_A_ (W)w, active);
2482 3439
2483 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3440 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2484 idles [ABSPRI (w)][active - 1] = w; 3441 idles [ABSPRI (w)][active - 1] = w;
2485 } 3442 }
3443
3444 EV_FREQUENT_CHECK;
2486} 3445}
2487 3446
2488void 3447void
2489ev_idle_stop (EV_P_ ev_idle *w) 3448ev_idle_stop (EV_P_ ev_idle *w)
2490{ 3449{
2491 clear_pending (EV_A_ (W)w); 3450 clear_pending (EV_A_ (W)w);
2492 if (expect_false (!ev_is_active (w))) 3451 if (expect_false (!ev_is_active (w)))
2493 return; 3452 return;
2494 3453
3454 EV_FREQUENT_CHECK;
3455
2495 { 3456 {
2496 int active = ev_active (w); 3457 int active = ev_active (w);
2497 3458
2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3459 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2499 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3460 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2500 3461
2501 ev_stop (EV_A_ (W)w); 3462 ev_stop (EV_A_ (W)w);
2502 --idleall; 3463 --idleall;
2503 } 3464 }
2504}
2505#endif
2506 3465
3466 EV_FREQUENT_CHECK;
3467}
3468#endif
3469
3470#if EV_PREPARE_ENABLE
2507void 3471void
2508ev_prepare_start (EV_P_ ev_prepare *w) 3472ev_prepare_start (EV_P_ ev_prepare *w)
2509{ 3473{
2510 if (expect_false (ev_is_active (w))) 3474 if (expect_false (ev_is_active (w)))
2511 return; 3475 return;
3476
3477 EV_FREQUENT_CHECK;
2512 3478
2513 ev_start (EV_A_ (W)w, ++preparecnt); 3479 ev_start (EV_A_ (W)w, ++preparecnt);
2514 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3480 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2515 prepares [preparecnt - 1] = w; 3481 prepares [preparecnt - 1] = w;
3482
3483 EV_FREQUENT_CHECK;
2516} 3484}
2517 3485
2518void 3486void
2519ev_prepare_stop (EV_P_ ev_prepare *w) 3487ev_prepare_stop (EV_P_ ev_prepare *w)
2520{ 3488{
2521 clear_pending (EV_A_ (W)w); 3489 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 3490 if (expect_false (!ev_is_active (w)))
2523 return; 3491 return;
2524 3492
3493 EV_FREQUENT_CHECK;
3494
2525 { 3495 {
2526 int active = ev_active (w); 3496 int active = ev_active (w);
2527 3497
2528 prepares [active - 1] = prepares [--preparecnt]; 3498 prepares [active - 1] = prepares [--preparecnt];
2529 ev_active (prepares [active - 1]) = active; 3499 ev_active (prepares [active - 1]) = active;
2530 } 3500 }
2531 3501
2532 ev_stop (EV_A_ (W)w); 3502 ev_stop (EV_A_ (W)w);
2533}
2534 3503
3504 EV_FREQUENT_CHECK;
3505}
3506#endif
3507
3508#if EV_CHECK_ENABLE
2535void 3509void
2536ev_check_start (EV_P_ ev_check *w) 3510ev_check_start (EV_P_ ev_check *w)
2537{ 3511{
2538 if (expect_false (ev_is_active (w))) 3512 if (expect_false (ev_is_active (w)))
2539 return; 3513 return;
3514
3515 EV_FREQUENT_CHECK;
2540 3516
2541 ev_start (EV_A_ (W)w, ++checkcnt); 3517 ev_start (EV_A_ (W)w, ++checkcnt);
2542 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3518 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2543 checks [checkcnt - 1] = w; 3519 checks [checkcnt - 1] = w;
3520
3521 EV_FREQUENT_CHECK;
2544} 3522}
2545 3523
2546void 3524void
2547ev_check_stop (EV_P_ ev_check *w) 3525ev_check_stop (EV_P_ ev_check *w)
2548{ 3526{
2549 clear_pending (EV_A_ (W)w); 3527 clear_pending (EV_A_ (W)w);
2550 if (expect_false (!ev_is_active (w))) 3528 if (expect_false (!ev_is_active (w)))
2551 return; 3529 return;
2552 3530
3531 EV_FREQUENT_CHECK;
3532
2553 { 3533 {
2554 int active = ev_active (w); 3534 int active = ev_active (w);
2555 3535
2556 checks [active - 1] = checks [--checkcnt]; 3536 checks [active - 1] = checks [--checkcnt];
2557 ev_active (checks [active - 1]) = active; 3537 ev_active (checks [active - 1]) = active;
2558 } 3538 }
2559 3539
2560 ev_stop (EV_A_ (W)w); 3540 ev_stop (EV_A_ (W)w);
3541
3542 EV_FREQUENT_CHECK;
2561} 3543}
3544#endif
2562 3545
2563#if EV_EMBED_ENABLE 3546#if EV_EMBED_ENABLE
2564void noinline 3547void noinline
2565ev_embed_sweep (EV_P_ ev_embed *w) 3548ev_embed_sweep (EV_P_ ev_embed *w)
2566{ 3549{
2567 ev_loop (w->other, EVLOOP_NONBLOCK); 3550 ev_run (w->other, EVRUN_NOWAIT);
2568} 3551}
2569 3552
2570static void 3553static void
2571embed_io_cb (EV_P_ ev_io *io, int revents) 3554embed_io_cb (EV_P_ ev_io *io, int revents)
2572{ 3555{
2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3556 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2574 3557
2575 if (ev_cb (w)) 3558 if (ev_cb (w))
2576 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3559 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2577 else 3560 else
2578 ev_loop (w->other, EVLOOP_NONBLOCK); 3561 ev_run (w->other, EVRUN_NOWAIT);
2579} 3562}
2580 3563
2581static void 3564static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3565embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{ 3566{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3567 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585 3568
2586 { 3569 {
2587 struct ev_loop *loop = w->other; 3570 EV_P = w->other;
2588 3571
2589 while (fdchangecnt) 3572 while (fdchangecnt)
2590 { 3573 {
2591 fd_reify (EV_A); 3574 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3575 ev_run (EV_A_ EVRUN_NOWAIT);
2593 } 3576 }
2594 } 3577 }
3578}
3579
3580static void
3581embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3582{
3583 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3584
3585 ev_embed_stop (EV_A_ w);
3586
3587 {
3588 EV_P = w->other;
3589
3590 ev_loop_fork (EV_A);
3591 ev_run (EV_A_ EVRUN_NOWAIT);
3592 }
3593
3594 ev_embed_start (EV_A_ w);
2595} 3595}
2596 3596
2597#if 0 3597#if 0
2598static void 3598static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3599embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2607{ 3607{
2608 if (expect_false (ev_is_active (w))) 3608 if (expect_false (ev_is_active (w)))
2609 return; 3609 return;
2610 3610
2611 { 3611 {
2612 struct ev_loop *loop = w->other; 3612 EV_P = w->other;
2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3613 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2615 } 3615 }
3616
3617 EV_FREQUENT_CHECK;
2616 3618
2617 ev_set_priority (&w->io, ev_priority (w)); 3619 ev_set_priority (&w->io, ev_priority (w));
2618 ev_io_start (EV_A_ &w->io); 3620 ev_io_start (EV_A_ &w->io);
2619 3621
2620 ev_prepare_init (&w->prepare, embed_prepare_cb); 3622 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI); 3623 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare); 3624 ev_prepare_start (EV_A_ &w->prepare);
2623 3625
3626 ev_fork_init (&w->fork, embed_fork_cb);
3627 ev_fork_start (EV_A_ &w->fork);
3628
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3629 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2625 3630
2626 ev_start (EV_A_ (W)w, 1); 3631 ev_start (EV_A_ (W)w, 1);
3632
3633 EV_FREQUENT_CHECK;
2627} 3634}
2628 3635
2629void 3636void
2630ev_embed_stop (EV_P_ ev_embed *w) 3637ev_embed_stop (EV_P_ ev_embed *w)
2631{ 3638{
2632 clear_pending (EV_A_ (W)w); 3639 clear_pending (EV_A_ (W)w);
2633 if (expect_false (!ev_is_active (w))) 3640 if (expect_false (!ev_is_active (w)))
2634 return; 3641 return;
2635 3642
3643 EV_FREQUENT_CHECK;
3644
2636 ev_io_stop (EV_A_ &w->io); 3645 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare); 3646 ev_prepare_stop (EV_A_ &w->prepare);
3647 ev_fork_stop (EV_A_ &w->fork);
2638 3648
2639 ev_stop (EV_A_ (W)w); 3649 ev_stop (EV_A_ (W)w);
3650
3651 EV_FREQUENT_CHECK;
2640} 3652}
2641#endif 3653#endif
2642 3654
2643#if EV_FORK_ENABLE 3655#if EV_FORK_ENABLE
2644void 3656void
2645ev_fork_start (EV_P_ ev_fork *w) 3657ev_fork_start (EV_P_ ev_fork *w)
2646{ 3658{
2647 if (expect_false (ev_is_active (w))) 3659 if (expect_false (ev_is_active (w)))
2648 return; 3660 return;
3661
3662 EV_FREQUENT_CHECK;
2649 3663
2650 ev_start (EV_A_ (W)w, ++forkcnt); 3664 ev_start (EV_A_ (W)w, ++forkcnt);
2651 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3665 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2652 forks [forkcnt - 1] = w; 3666 forks [forkcnt - 1] = w;
3667
3668 EV_FREQUENT_CHECK;
2653} 3669}
2654 3670
2655void 3671void
2656ev_fork_stop (EV_P_ ev_fork *w) 3672ev_fork_stop (EV_P_ ev_fork *w)
2657{ 3673{
2658 clear_pending (EV_A_ (W)w); 3674 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w))) 3675 if (expect_false (!ev_is_active (w)))
2660 return; 3676 return;
2661 3677
3678 EV_FREQUENT_CHECK;
3679
2662 { 3680 {
2663 int active = ev_active (w); 3681 int active = ev_active (w);
2664 3682
2665 forks [active - 1] = forks [--forkcnt]; 3683 forks [active - 1] = forks [--forkcnt];
2666 ev_active (forks [active - 1]) = active; 3684 ev_active (forks [active - 1]) = active;
2667 } 3685 }
2668 3686
2669 ev_stop (EV_A_ (W)w); 3687 ev_stop (EV_A_ (W)w);
2670}
2671#endif
2672 3688
3689 EV_FREQUENT_CHECK;
3690}
3691#endif
3692
2673#if EV_ASYNC_ENABLE 3693#if EV_CLEANUP_ENABLE
2674void 3694void
2675ev_async_start (EV_P_ ev_async *w) 3695ev_cleanup_start (EV_P_ ev_cleanup *w)
2676{ 3696{
2677 if (expect_false (ev_is_active (w))) 3697 if (expect_false (ev_is_active (w)))
2678 return; 3698 return;
2679 3699
3700 EV_FREQUENT_CHECK;
3701
3702 ev_start (EV_A_ (W)w, ++cleanupcnt);
3703 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3704 cleanups [cleanupcnt - 1] = w;
3705
3706 /* cleanup watchers should never keep a refcount on the loop */
3707 ev_unref (EV_A);
3708 EV_FREQUENT_CHECK;
3709}
3710
3711void
3712ev_cleanup_stop (EV_P_ ev_cleanup *w)
3713{
3714 clear_pending (EV_A_ (W)w);
3715 if (expect_false (!ev_is_active (w)))
3716 return;
3717
3718 EV_FREQUENT_CHECK;
3719 ev_ref (EV_A);
3720
3721 {
3722 int active = ev_active (w);
3723
3724 cleanups [active - 1] = cleanups [--cleanupcnt];
3725 ev_active (cleanups [active - 1]) = active;
3726 }
3727
3728 ev_stop (EV_A_ (W)w);
3729
3730 EV_FREQUENT_CHECK;
3731}
3732#endif
3733
3734#if EV_ASYNC_ENABLE
3735void
3736ev_async_start (EV_P_ ev_async *w)
3737{
3738 if (expect_false (ev_is_active (w)))
3739 return;
3740
3741 w->sent = 0;
3742
2680 evpipe_init (EV_A); 3743 evpipe_init (EV_A);
3744
3745 EV_FREQUENT_CHECK;
2681 3746
2682 ev_start (EV_A_ (W)w, ++asynccnt); 3747 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3748 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w; 3749 asyncs [asynccnt - 1] = w;
3750
3751 EV_FREQUENT_CHECK;
2685} 3752}
2686 3753
2687void 3754void
2688ev_async_stop (EV_P_ ev_async *w) 3755ev_async_stop (EV_P_ ev_async *w)
2689{ 3756{
2690 clear_pending (EV_A_ (W)w); 3757 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w))) 3758 if (expect_false (!ev_is_active (w)))
2692 return; 3759 return;
2693 3760
3761 EV_FREQUENT_CHECK;
3762
2694 { 3763 {
2695 int active = ev_active (w); 3764 int active = ev_active (w);
2696 3765
2697 asyncs [active - 1] = asyncs [--asynccnt]; 3766 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active; 3767 ev_active (asyncs [active - 1]) = active;
2699 } 3768 }
2700 3769
2701 ev_stop (EV_A_ (W)w); 3770 ev_stop (EV_A_ (W)w);
3771
3772 EV_FREQUENT_CHECK;
2702} 3773}
2703 3774
2704void 3775void
2705ev_async_send (EV_P_ ev_async *w) 3776ev_async_send (EV_P_ ev_async *w)
2706{ 3777{
2707 w->sent = 1; 3778 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync); 3779 evpipe_write (EV_A_ &async_pending);
2709} 3780}
2710#endif 3781#endif
2711 3782
2712/*****************************************************************************/ 3783/*****************************************************************************/
2713 3784
2723once_cb (EV_P_ struct ev_once *once, int revents) 3794once_cb (EV_P_ struct ev_once *once, int revents)
2724{ 3795{
2725 void (*cb)(int revents, void *arg) = once->cb; 3796 void (*cb)(int revents, void *arg) = once->cb;
2726 void *arg = once->arg; 3797 void *arg = once->arg;
2727 3798
2728 ev_io_stop (EV_A_ &once->io); 3799 ev_io_stop (EV_A_ &once->io);
2729 ev_timer_stop (EV_A_ &once->to); 3800 ev_timer_stop (EV_A_ &once->to);
2730 ev_free (once); 3801 ev_free (once);
2731 3802
2732 cb (revents, arg); 3803 cb (revents, arg);
2733} 3804}
2734 3805
2735static void 3806static void
2736once_cb_io (EV_P_ ev_io *w, int revents) 3807once_cb_io (EV_P_ ev_io *w, int revents)
2737{ 3808{
2738 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3809 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3810
3811 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2739} 3812}
2740 3813
2741static void 3814static void
2742once_cb_to (EV_P_ ev_timer *w, int revents) 3815once_cb_to (EV_P_ ev_timer *w, int revents)
2743{ 3816{
2744 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3817 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3818
3819 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2745} 3820}
2746 3821
2747void 3822void
2748ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3823ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2749{ 3824{
2750 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3825 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2751 3826
2752 if (expect_false (!once)) 3827 if (expect_false (!once))
2753 { 3828 {
2754 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3829 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2755 return; 3830 return;
2756 } 3831 }
2757 3832
2758 once->cb = cb; 3833 once->cb = cb;
2759 once->arg = arg; 3834 once->arg = arg;
2771 ev_timer_set (&once->to, timeout, 0.); 3846 ev_timer_set (&once->to, timeout, 0.);
2772 ev_timer_start (EV_A_ &once->to); 3847 ev_timer_start (EV_A_ &once->to);
2773 } 3848 }
2774} 3849}
2775 3850
3851/*****************************************************************************/
3852
3853#if EV_WALK_ENABLE
3854void
3855ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3856{
3857 int i, j;
3858 ev_watcher_list *wl, *wn;
3859
3860 if (types & (EV_IO | EV_EMBED))
3861 for (i = 0; i < anfdmax; ++i)
3862 for (wl = anfds [i].head; wl; )
3863 {
3864 wn = wl->next;
3865
3866#if EV_EMBED_ENABLE
3867 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3868 {
3869 if (types & EV_EMBED)
3870 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3871 }
3872 else
3873#endif
3874#if EV_USE_INOTIFY
3875 if (ev_cb ((ev_io *)wl) == infy_cb)
3876 ;
3877 else
3878#endif
3879 if ((ev_io *)wl != &pipe_w)
3880 if (types & EV_IO)
3881 cb (EV_A_ EV_IO, wl);
3882
3883 wl = wn;
3884 }
3885
3886 if (types & (EV_TIMER | EV_STAT))
3887 for (i = timercnt + HEAP0; i-- > HEAP0; )
3888#if EV_STAT_ENABLE
3889 /*TODO: timer is not always active*/
3890 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3891 {
3892 if (types & EV_STAT)
3893 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3894 }
3895 else
3896#endif
3897 if (types & EV_TIMER)
3898 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3899
3900#if EV_PERIODIC_ENABLE
3901 if (types & EV_PERIODIC)
3902 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3903 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3904#endif
3905
3906#if EV_IDLE_ENABLE
3907 if (types & EV_IDLE)
3908 for (j = NUMPRI; i--; )
3909 for (i = idlecnt [j]; i--; )
3910 cb (EV_A_ EV_IDLE, idles [j][i]);
3911#endif
3912
3913#if EV_FORK_ENABLE
3914 if (types & EV_FORK)
3915 for (i = forkcnt; i--; )
3916 if (ev_cb (forks [i]) != embed_fork_cb)
3917 cb (EV_A_ EV_FORK, forks [i]);
3918#endif
3919
3920#if EV_ASYNC_ENABLE
3921 if (types & EV_ASYNC)
3922 for (i = asynccnt; i--; )
3923 cb (EV_A_ EV_ASYNC, asyncs [i]);
3924#endif
3925
3926#if EV_PREPARE_ENABLE
3927 if (types & EV_PREPARE)
3928 for (i = preparecnt; i--; )
3929# if EV_EMBED_ENABLE
3930 if (ev_cb (prepares [i]) != embed_prepare_cb)
3931# endif
3932 cb (EV_A_ EV_PREPARE, prepares [i]);
3933#endif
3934
3935#if EV_CHECK_ENABLE
3936 if (types & EV_CHECK)
3937 for (i = checkcnt; i--; )
3938 cb (EV_A_ EV_CHECK, checks [i]);
3939#endif
3940
3941#if EV_SIGNAL_ENABLE
3942 if (types & EV_SIGNAL)
3943 for (i = 0; i < EV_NSIG - 1; ++i)
3944 for (wl = signals [i].head; wl; )
3945 {
3946 wn = wl->next;
3947 cb (EV_A_ EV_SIGNAL, wl);
3948 wl = wn;
3949 }
3950#endif
3951
3952#if EV_CHILD_ENABLE
3953 if (types & EV_CHILD)
3954 for (i = (EV_PID_HASHSIZE); i--; )
3955 for (wl = childs [i]; wl; )
3956 {
3957 wn = wl->next;
3958 cb (EV_A_ EV_CHILD, wl);
3959 wl = wn;
3960 }
3961#endif
3962/* EV_STAT 0x00001000 /* stat data changed */
3963/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3964}
3965#endif
3966
2776#if EV_MULTIPLICITY 3967#if EV_MULTIPLICITY
2777 #include "ev_wrap.h" 3968 #include "ev_wrap.h"
2778#endif 3969#endif
2779 3970
2780#ifdef __cplusplus 3971EV_CPP(})
2781}
2782#endif
2783 3972

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines