ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC vs.
Revision 1.374 by root, Sat Feb 26 15:21:01 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
53# endif 127# endif
54 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
55#endif 136# endif
56 137
57#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
58#include <stdlib.h> 167#include <stdlib.h>
59#include <unistd.h> 168#include <string.h>
60#include <fcntl.h> 169#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 170#include <stddef.h>
63 171
64#include <stdio.h> 172#include <stdio.h>
65 173
66#include <assert.h> 174#include <assert.h>
67#include <errno.h> 175#include <errno.h>
68#include <sys/types.h> 176#include <sys/types.h>
177#include <time.h>
178#include <limits.h>
179
180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
69#ifndef WIN32 190#ifndef _WIN32
191# include <sys/time.h>
70# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
194#else
195# include <io.h>
196# define WIN32_LEAN_AND_MEAN
197# include <windows.h>
198# ifndef EV_SELECT_IS_WINSOCKET
199# define EV_SELECT_IS_WINSOCKET 1
71#endif 200# endif
72#include <sys/time.h> 201# undef EV_AVOID_STDIO
73#include <time.h> 202#endif
74 203
75/**/ 204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
76 253
77#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
78# define EV_USE_MONOTONIC 1 258# define EV_USE_MONOTONIC 0
259# endif
260#endif
261
262#ifndef EV_USE_REALTIME
263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
79#endif 272#endif
80 273
81#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
83#endif 276#endif
84 277
85#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 279# ifdef _WIN32
280# define EV_USE_POLL 0
281# else
282# define EV_USE_POLL EV_FEATURE_BACKENDS
283# endif
87#endif 284#endif
88 285
89#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
90# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
91#endif 292#endif
92 293
93#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
95#endif 296#endif
96 297
298#ifndef EV_USE_PORT
299# define EV_USE_PORT 0
300#endif
301
97#ifndef EV_USE_WIN32 302#ifndef EV_USE_INOTIFY
98# ifdef WIN32 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
100# else 305# else
101# define EV_USE_WIN32 0 306# define EV_USE_INOTIFY 0
102# endif 307# endif
103#endif 308#endif
104 309
310#ifndef EV_PID_HASHSIZE
311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
105#ifndef EV_USE_REALTIME 318#ifndef EV_USE_EVENTFD
106# define EV_USE_REALTIME 1 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
107#endif 323# endif
324#endif
108 325
109/**/ 326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
110 373
111#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
114#endif 377#endif
116#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
119#endif 382#endif
120 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
406#if EV_SELECT_IS_WINSOCKET
407# include <winsock.h>
408#endif
409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
121/**/ 448/**/
122 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 465
128#include "ev.h" 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
129 468
130#if __GNUC__ >= 3 469#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 471# define noinline __attribute__ ((noinline))
133#else 472#else
134# define expect(expr,value) (expr) 473# define expect(expr,value) (expr)
135# define inline static 474# define noinline
475# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
476# define inline
477# endif
136#endif 478#endif
137 479
138#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
482#define inline_size static inline
140 483
484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
487# define inline_speed static noinline
488#endif
489
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
494#else
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
143 497
498#define EMPTY /* required for microsofts broken pseudo-c compiler */
499#define EMPTY2(a,b) /* used to suppress some warnings */
500
144typedef struct ev_watcher *W; 501typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
147 504
505#define ev_active(w) ((W)(w))->active
506#define ev_at(w) ((WT)(w))->at
507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
514#if EV_USE_MONOTONIC
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
526#endif
527
528#ifdef _WIN32
529# include "ev_win32.c"
530#endif
149 531
150/*****************************************************************************/ 532/*****************************************************************************/
151 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
632static void (*syserr_cb)(const char *msg);
633
634void
635ev_set_syserr_cb (void (*cb)(const char *msg))
636{
637 syserr_cb = cb;
638}
639
640static void noinline
641ev_syserr (const char *msg)
642{
643 if (!msg)
644 msg = "(libev) system error";
645
646 if (syserr_cb)
647 syserr_cb (msg);
648 else
649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
656 perror (msg);
657#endif
658 abort ();
659 }
660}
661
662static void *
663ev_realloc_emul (void *ptr, long size)
664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
668 /* some systems, notably openbsd and darwin, fail to properly
669 * implement realloc (x, 0) (as required by both ansi c-89 and
670 * the single unix specification, so work around them here.
671 */
672
673 if (size)
674 return realloc (ptr, size);
675
676 free (ptr);
677 return 0;
678#endif
679}
680
681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
682
683void
684ev_set_allocator (void *(*cb)(void *ptr, long size))
685{
686 alloc = cb;
687}
688
689inline_speed void *
690ev_realloc (void *ptr, long size)
691{
692 ptr = alloc (ptr, size);
693
694 if (!ptr && size)
695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
701 abort ();
702 }
703
704 return ptr;
705}
706
707#define ev_malloc(size) ev_realloc (0, (size))
708#define ev_free(ptr) ev_realloc ((ptr), 0)
709
710/*****************************************************************************/
711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
152typedef struct 716typedef struct
153{ 717{
154 struct ev_watcher_list *head; 718 WL head;
155 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
156 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
727 SOCKET handle;
728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
157} ANFD; 732} ANFD;
158 733
734/* stores the pending event set for a given watcher */
159typedef struct 735typedef struct
160{ 736{
161 W w; 737 W w;
162 int events; 738 int events; /* the pending event set for the given watcher */
163} ANPENDING; 739} ANPENDING;
164 740
741#if EV_USE_INOTIFY
742/* hash table entry per inotify-id */
743typedef struct
744{
745 WL head;
746} ANFS;
747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
767#endif
768
165#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
166 770
167struct ev_loop 771 struct ev_loop
168{ 772 {
773 ev_tstamp ev_rt_now;
774 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 775 #define VAR(name,decl) decl;
170# include "ev_vars.h" 776 #include "ev_vars.h"
171};
172# undef VAR 777 #undef VAR
778 };
173# include "ev_wrap.h" 779 #include "ev_wrap.h"
780
781 static struct ev_loop default_loop_struct;
782 struct ev_loop *ev_default_loop_ptr;
174 783
175#else 784#else
176 785
786 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 787 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 788 #include "ev_vars.h"
179# undef VAR 789 #undef VAR
180 790
791 static int ev_default_loop_ptr;
792
181#endif 793#endif
794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
182 806
183/*****************************************************************************/ 807/*****************************************************************************/
184 808
185inline ev_tstamp 809#ifndef EV_HAVE_EV_TIME
810ev_tstamp
186ev_time (void) 811ev_time (void)
187{ 812{
188#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
189 struct timespec ts; 816 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
191 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
192#else 819 }
820#endif
821
193 struct timeval tv; 822 struct timeval tv;
194 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif
197} 825}
826#endif
198 827
199inline ev_tstamp 828inline_size ev_tstamp
200get_clock (void) 829get_clock (void)
201{ 830{
202#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
204 { 833 {
209#endif 838#endif
210 839
211 return ev_time (); 840 return ev_time ();
212} 841}
213 842
843#if EV_MULTIPLICITY
214ev_tstamp 844ev_tstamp
215ev_now (EV_P) 845ev_now (EV_P)
216{ 846{
217 return rt_now; 847 return ev_rt_now;
218} 848}
849#endif
219 850
220#define array_roundsize(base,n) ((n) | 4 & ~3) 851void
852ev_sleep (ev_tstamp delay)
853{
854 if (delay > 0.)
855 {
856#if EV_USE_NANOSLEEP
857 struct timespec ts;
221 858
859 EV_TS_SET (ts, delay);
860 nanosleep (&ts, 0);
861#elif defined(_WIN32)
862 Sleep ((unsigned long)(delay * 1e3));
863#else
864 struct timeval tv;
865
866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
867 /* something not guaranteed by newer posix versions, but guaranteed */
868 /* by older ones */
869 EV_TV_SET (tv, delay);
870 select (0, 0, 0, 0, &tv);
871#endif
872 }
873}
874
875inline_speed int
876ev_timeout_to_ms (ev_tstamp timeout)
877{
878 int ms = timeout * 1000. + .999999;
879
880 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
881}
882
883/*****************************************************************************/
884
885#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
886
887/* find a suitable new size for the given array, */
888/* hopefully by rounding to a nice-to-malloc size */
889inline_size int
890array_nextsize (int elem, int cur, int cnt)
891{
892 int ncur = cur + 1;
893
894 do
895 ncur <<= 1;
896 while (cnt > ncur);
897
898 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
899 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
900 {
901 ncur *= elem;
902 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
903 ncur = ncur - sizeof (void *) * 4;
904 ncur /= elem;
905 }
906
907 return ncur;
908}
909
910static noinline void *
911array_realloc (int elem, void *base, int *cur, int cnt)
912{
913 *cur = array_nextsize (elem, *cur, cnt);
914 return ev_realloc (base, elem * *cur);
915}
916
917#define array_init_zero(base,count) \
918 memset ((void *)(base), 0, sizeof (*(base)) * (count))
919
222#define array_needsize(base,cur,cnt,init) \ 920#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 921 if (expect_false ((cnt) > (cur))) \
224 { \ 922 { \
225 int newcnt = cur; \ 923 int ocur_ = (cur); \
226 do \ 924 (base) = (type *)array_realloc \
227 { \ 925 (sizeof (type), (base), &(cur), (cnt)); \
228 newcnt = array_roundsize (base, newcnt << 1); \ 926 init ((base) + (ocur_), (cur) - ocur_); \
229 } \ 927 }
230 while ((cnt) > newcnt); \ 928
929#if 0
930#define array_slim(type,stem) \
931 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
231 \ 932 { \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 933 stem ## max = array_roundsize (stem ## cnt >> 1); \
233 init (base + cur, newcnt - cur); \ 934 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
234 cur = newcnt; \ 935 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
235 } 936 }
937#endif
236 938
237#define array_free(stem, idx) \ 939#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 940 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
239 941
240/*****************************************************************************/ 942/*****************************************************************************/
241 943
242static void 944/* dummy callback for pending events */
243anfds_init (ANFD *base, int count) 945static void noinline
946pendingcb (EV_P_ ev_prepare *w, int revents)
244{ 947{
245 while (count--) 948}
246 {
247 base->head = 0;
248 base->events = EV_NONE;
249 base->reify = 0;
250 949
251 ++base; 950void noinline
951ev_feed_event (EV_P_ void *w, int revents)
952{
953 W w_ = (W)w;
954 int pri = ABSPRI (w_);
955
956 if (expect_false (w_->pending))
957 pendings [pri][w_->pending - 1].events |= revents;
958 else
252 } 959 {
253} 960 w_->pending = ++pendingcnt [pri];
254 961 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
255static void 962 pendings [pri][w_->pending - 1].w = w_;
256event (EV_P_ W w, int events)
257{
258 if (w->pending)
259 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events; 963 pendings [pri][w_->pending - 1].events = revents;
261 return;
262 } 964 }
263
264 w->pending = ++pendingcnt [ABSPRI (w)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
266 pendings [ABSPRI (w)][w->pending - 1].w = w;
267 pendings [ABSPRI (w)][w->pending - 1].events = events;
268} 965}
269 966
270static void 967inline_speed void
968feed_reverse (EV_P_ W w)
969{
970 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
971 rfeeds [rfeedcnt++] = w;
972}
973
974inline_size void
975feed_reverse_done (EV_P_ int revents)
976{
977 do
978 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
979 while (rfeedcnt);
980}
981
982inline_speed void
271queue_events (EV_P_ W *events, int eventcnt, int type) 983queue_events (EV_P_ W *events, int eventcnt, int type)
272{ 984{
273 int i; 985 int i;
274 986
275 for (i = 0; i < eventcnt; ++i) 987 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type); 988 ev_feed_event (EV_A_ events [i], type);
277} 989}
278 990
279static void 991/*****************************************************************************/
992
993inline_speed void
280fd_event (EV_P_ int fd, int events) 994fd_event_nocheck (EV_P_ int fd, int revents)
281{ 995{
282 ANFD *anfd = anfds + fd; 996 ANFD *anfd = anfds + fd;
283 struct ev_io *w; 997 ev_io *w;
284 998
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 999 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
286 { 1000 {
287 int ev = w->events & events; 1001 int ev = w->events & revents;
288 1002
289 if (ev) 1003 if (ev)
290 event (EV_A_ (W)w, ev); 1004 ev_feed_event (EV_A_ (W)w, ev);
291 } 1005 }
292} 1006}
293 1007
294/*****************************************************************************/ 1008/* do not submit kernel events for fds that have reify set */
1009/* because that means they changed while we were polling for new events */
1010inline_speed void
1011fd_event (EV_P_ int fd, int revents)
1012{
1013 ANFD *anfd = anfds + fd;
295 1014
296static void 1015 if (expect_true (!anfd->reify))
1016 fd_event_nocheck (EV_A_ fd, revents);
1017}
1018
1019void
1020ev_feed_fd_event (EV_P_ int fd, int revents)
1021{
1022 if (fd >= 0 && fd < anfdmax)
1023 fd_event_nocheck (EV_A_ fd, revents);
1024}
1025
1026/* make sure the external fd watch events are in-sync */
1027/* with the kernel/libev internal state */
1028inline_size void
297fd_reify (EV_P) 1029fd_reify (EV_P)
298{ 1030{
299 int i; 1031 int i;
300 1032
1033#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
301 for (i = 0; i < fdchangecnt; ++i) 1034 for (i = 0; i < fdchangecnt; ++i)
302 { 1035 {
303 int fd = fdchanges [i]; 1036 int fd = fdchanges [i];
304 ANFD *anfd = anfds + fd; 1037 ANFD *anfd = anfds + fd;
1038
1039 if (anfd->reify & EV__IOFDSET && anfd->head)
1040 {
1041 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1042
1043 if (handle != anfd->handle)
1044 {
1045 unsigned long arg;
1046
1047 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1048
1049 /* handle changed, but fd didn't - we need to do it in two steps */
1050 backend_modify (EV_A_ fd, anfd->events, 0);
1051 anfd->events = 0;
1052 anfd->handle = handle;
1053 }
1054 }
1055 }
1056#endif
1057
1058 for (i = 0; i < fdchangecnt; ++i)
1059 {
1060 int fd = fdchanges [i];
1061 ANFD *anfd = anfds + fd;
305 struct ev_io *w; 1062 ev_io *w;
306 1063
307 int events = 0; 1064 unsigned char o_events = anfd->events;
1065 unsigned char o_reify = anfd->reify;
308 1066
309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
310 events |= w->events;
311
312 anfd->reify = 0; 1067 anfd->reify = 0;
313 1068
314 method_modify (EV_A_ fd, anfd->events, events); 1069 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1070 {
315 anfd->events = events; 1071 anfd->events = 0;
1072
1073 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1074 anfd->events |= (unsigned char)w->events;
1075
1076 if (o_events != anfd->events)
1077 o_reify = EV__IOFDSET; /* actually |= */
1078 }
1079
1080 if (o_reify & EV__IOFDSET)
1081 backend_modify (EV_A_ fd, o_events, anfd->events);
316 } 1082 }
317 1083
318 fdchangecnt = 0; 1084 fdchangecnt = 0;
319} 1085}
320 1086
321static void 1087/* something about the given fd changed */
1088inline_size void
322fd_change (EV_P_ int fd) 1089fd_change (EV_P_ int fd, int flags)
323{ 1090{
324 if (anfds [fd].reify || fdchangecnt < 0) 1091 unsigned char reify = anfds [fd].reify;
325 return;
326
327 anfds [fd].reify = 1; 1092 anfds [fd].reify |= flags;
328 1093
1094 if (expect_true (!reify))
1095 {
329 ++fdchangecnt; 1096 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1097 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 1098 fdchanges [fdchangecnt - 1] = fd;
1099 }
332} 1100}
333 1101
334static void 1102/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1103inline_speed void
335fd_kill (EV_P_ int fd) 1104fd_kill (EV_P_ int fd)
336{ 1105{
337 struct ev_io *w; 1106 ev_io *w;
338 1107
339 while ((w = (struct ev_io *)anfds [fd].head)) 1108 while ((w = (ev_io *)anfds [fd].head))
340 { 1109 {
341 ev_io_stop (EV_A_ w); 1110 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1111 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 1112 }
1113}
1114
1115/* check whether the given fd is actually valid, for error recovery */
1116inline_size int
1117fd_valid (int fd)
1118{
1119#ifdef _WIN32
1120 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1121#else
1122 return fcntl (fd, F_GETFD) != -1;
1123#endif
344} 1124}
345 1125
346/* called on EBADF to verify fds */ 1126/* called on EBADF to verify fds */
347static void 1127static void noinline
348fd_ebadf (EV_P) 1128fd_ebadf (EV_P)
349{ 1129{
350 int fd; 1130 int fd;
351 1131
352 for (fd = 0; fd < anfdmax; ++fd) 1132 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 1133 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1134 if (!fd_valid (fd) && errno == EBADF)
355 fd_kill (EV_A_ fd); 1135 fd_kill (EV_A_ fd);
356} 1136}
357 1137
358/* called on ENOMEM in select/poll to kill some fds and retry */ 1138/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 1139static void noinline
360fd_enomem (EV_P) 1140fd_enomem (EV_P)
361{ 1141{
362 int fd; 1142 int fd;
363 1143
364 for (fd = anfdmax; fd--; ) 1144 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 1145 if (anfds [fd].events)
366 { 1146 {
367 close (fd);
368 fd_kill (EV_A_ fd); 1147 fd_kill (EV_A_ fd);
369 return; 1148 break;
370 } 1149 }
371} 1150}
372 1151
373/* susually called after fork if method needs to re-arm all fds from scratch */ 1152/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 1153static void noinline
375fd_rearm_all (EV_P) 1154fd_rearm_all (EV_P)
376{ 1155{
377 int fd; 1156 int fd;
378 1157
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd) 1158 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events) 1159 if (anfds [fd].events)
382 { 1160 {
383 anfds [fd].events = 0; 1161 anfds [fd].events = 0;
384 fd_change (EV_A_ fd); 1162 anfds [fd].emask = 0;
1163 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
385 } 1164 }
386} 1165}
387 1166
1167/* used to prepare libev internal fd's */
1168/* this is not fork-safe */
1169inline_speed void
1170fd_intern (int fd)
1171{
1172#ifdef _WIN32
1173 unsigned long arg = 1;
1174 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1175#else
1176 fcntl (fd, F_SETFD, FD_CLOEXEC);
1177 fcntl (fd, F_SETFL, O_NONBLOCK);
1178#endif
1179}
1180
388/*****************************************************************************/ 1181/*****************************************************************************/
389 1182
1183/*
1184 * the heap functions want a real array index. array index 0 is guaranteed to not
1185 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1186 * the branching factor of the d-tree.
1187 */
1188
1189/*
1190 * at the moment we allow libev the luxury of two heaps,
1191 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1192 * which is more cache-efficient.
1193 * the difference is about 5% with 50000+ watchers.
1194 */
1195#if EV_USE_4HEAP
1196
1197#define DHEAP 4
1198#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1199#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1200#define UPHEAP_DONE(p,k) ((p) == (k))
1201
1202/* away from the root */
1203inline_speed void
1204downheap (ANHE *heap, int N, int k)
1205{
1206 ANHE he = heap [k];
1207 ANHE *E = heap + N + HEAP0;
1208
1209 for (;;)
1210 {
1211 ev_tstamp minat;
1212 ANHE *minpos;
1213 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1214
1215 /* find minimum child */
1216 if (expect_true (pos + DHEAP - 1 < E))
1217 {
1218 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1219 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1220 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1221 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1222 }
1223 else if (pos < E)
1224 {
1225 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1226 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1227 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1228 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1229 }
1230 else
1231 break;
1232
1233 if (ANHE_at (he) <= minat)
1234 break;
1235
1236 heap [k] = *minpos;
1237 ev_active (ANHE_w (*minpos)) = k;
1238
1239 k = minpos - heap;
1240 }
1241
1242 heap [k] = he;
1243 ev_active (ANHE_w (he)) = k;
1244}
1245
1246#else /* 4HEAP */
1247
1248#define HEAP0 1
1249#define HPARENT(k) ((k) >> 1)
1250#define UPHEAP_DONE(p,k) (!(p))
1251
1252/* away from the root */
1253inline_speed void
1254downheap (ANHE *heap, int N, int k)
1255{
1256 ANHE he = heap [k];
1257
1258 for (;;)
1259 {
1260 int c = k << 1;
1261
1262 if (c >= N + HEAP0)
1263 break;
1264
1265 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1266 ? 1 : 0;
1267
1268 if (ANHE_at (he) <= ANHE_at (heap [c]))
1269 break;
1270
1271 heap [k] = heap [c];
1272 ev_active (ANHE_w (heap [k])) = k;
1273
1274 k = c;
1275 }
1276
1277 heap [k] = he;
1278 ev_active (ANHE_w (he)) = k;
1279}
1280#endif
1281
1282/* towards the root */
1283inline_speed void
1284upheap (ANHE *heap, int k)
1285{
1286 ANHE he = heap [k];
1287
1288 for (;;)
1289 {
1290 int p = HPARENT (k);
1291
1292 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1293 break;
1294
1295 heap [k] = heap [p];
1296 ev_active (ANHE_w (heap [k])) = k;
1297 k = p;
1298 }
1299
1300 heap [k] = he;
1301 ev_active (ANHE_w (he)) = k;
1302}
1303
1304/* move an element suitably so it is in a correct place */
1305inline_size void
1306adjustheap (ANHE *heap, int N, int k)
1307{
1308 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1309 upheap (heap, k);
1310 else
1311 downheap (heap, N, k);
1312}
1313
1314/* rebuild the heap: this function is used only once and executed rarely */
1315inline_size void
1316reheap (ANHE *heap, int N)
1317{
1318 int i;
1319
1320 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1321 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1322 for (i = 0; i < N; ++i)
1323 upheap (heap, i + HEAP0);
1324}
1325
1326/*****************************************************************************/
1327
1328/* associate signal watchers to a signal signal */
1329typedef struct
1330{
1331 EV_ATOMIC_T pending;
1332#if EV_MULTIPLICITY
1333 EV_P;
1334#endif
1335 WL head;
1336} ANSIG;
1337
1338static ANSIG signals [EV_NSIG - 1];
1339
1340/*****************************************************************************/
1341
1342#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1343
1344static void noinline
1345evpipe_init (EV_P)
1346{
1347 if (!ev_is_active (&pipe_w))
1348 {
1349# if EV_USE_EVENTFD
1350 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1351 if (evfd < 0 && errno == EINVAL)
1352 evfd = eventfd (0, 0);
1353
1354 if (evfd >= 0)
1355 {
1356 evpipe [0] = -1;
1357 fd_intern (evfd); /* doing it twice doesn't hurt */
1358 ev_io_set (&pipe_w, evfd, EV_READ);
1359 }
1360 else
1361# endif
1362 {
1363 while (pipe (evpipe))
1364 ev_syserr ("(libev) error creating signal/async pipe");
1365
1366 fd_intern (evpipe [0]);
1367 fd_intern (evpipe [1]);
1368 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1369 }
1370
1371 ev_io_start (EV_A_ &pipe_w);
1372 ev_unref (EV_A); /* watcher should not keep loop alive */
1373 }
1374}
1375
1376inline_size void
1377evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1378{
1379 if (!*flag)
1380 {
1381 int old_errno = errno; /* save errno because write might clobber it */
1382 char dummy;
1383
1384 *flag = 1;
1385
1386#if EV_USE_EVENTFD
1387 if (evfd >= 0)
1388 {
1389 uint64_t counter = 1;
1390 write (evfd, &counter, sizeof (uint64_t));
1391 }
1392 else
1393#endif
1394 /* win32 people keep sending patches that change this write() to send() */
1395 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1396 /* so when you think this write should be a send instead, please find out */
1397 /* where your send() is from - it's definitely not the microsoft send, and */
1398 /* tell me. thank you. */
1399 write (evpipe [1], &dummy, 1);
1400
1401 errno = old_errno;
1402 }
1403}
1404
1405/* called whenever the libev signal pipe */
1406/* got some events (signal, async) */
390static void 1407static void
391upheap (WT *heap, int k) 1408pipecb (EV_P_ ev_io *iow, int revents)
392{ 1409{
393 WT w = heap [k]; 1410 int i;
394 1411
395 while (k && heap [k >> 1]->at > w->at) 1412#if EV_USE_EVENTFD
396 { 1413 if (evfd >= 0)
397 heap [k] = heap [k >> 1];
398 ((W)heap [k])->active = k + 1;
399 k >>= 1;
400 } 1414 {
1415 uint64_t counter;
1416 read (evfd, &counter, sizeof (uint64_t));
1417 }
1418 else
1419#endif
1420 {
1421 char dummy;
1422 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1423 read (evpipe [0], &dummy, 1);
1424 }
401 1425
402 heap [k] = w; 1426#if EV_SIGNAL_ENABLE
403 ((W)heap [k])->active = k + 1; 1427 if (sig_pending)
1428 {
1429 sig_pending = 0;
404 1430
1431 for (i = EV_NSIG - 1; i--; )
1432 if (expect_false (signals [i].pending))
1433 ev_feed_signal_event (EV_A_ i + 1);
1434 }
1435#endif
1436
1437#if EV_ASYNC_ENABLE
1438 if (async_pending)
1439 {
1440 async_pending = 0;
1441
1442 for (i = asynccnt; i--; )
1443 if (asyncs [i]->sent)
1444 {
1445 asyncs [i]->sent = 0;
1446 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1447 }
1448 }
1449#endif
1450}
1451
1452/*****************************************************************************/
1453
1454void
1455ev_feed_signal (int signum)
1456{
1457#if EV_MULTIPLICITY
1458 EV_P = signals [signum - 1].loop;
1459
1460 if (!EV_A)
1461 return;
1462#endif
1463
1464 signals [signum - 1].pending = 1;
1465 evpipe_write (EV_A_ &sig_pending);
405} 1466}
406 1467
407static void 1468static void
408downheap (WT *heap, int N, int k) 1469ev_sighandler (int signum)
409{ 1470{
410 WT w = heap [k]; 1471#ifdef _WIN32
1472 signal (signum, ev_sighandler);
1473#endif
411 1474
412 while (k < (N >> 1)) 1475 ev_feed_signal (signum);
413 { 1476}
414 int j = k << 1;
415 1477
416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1478void noinline
417 ++j; 1479ev_feed_signal_event (EV_P_ int signum)
1480{
1481 WL w;
418 1482
419 if (w->at <= heap [j]->at) 1483 if (expect_false (signum <= 0 || signum > EV_NSIG))
1484 return;
1485
1486 --signum;
1487
1488#if EV_MULTIPLICITY
1489 /* it is permissible to try to feed a signal to the wrong loop */
1490 /* or, likely more useful, feeding a signal nobody is waiting for */
1491
1492 if (expect_false (signals [signum].loop != EV_A))
1493 return;
1494#endif
1495
1496 signals [signum].pending = 0;
1497
1498 for (w = signals [signum].head; w; w = w->next)
1499 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1500}
1501
1502#if EV_USE_SIGNALFD
1503static void
1504sigfdcb (EV_P_ ev_io *iow, int revents)
1505{
1506 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1507
1508 for (;;)
1509 {
1510 ssize_t res = read (sigfd, si, sizeof (si));
1511
1512 /* not ISO-C, as res might be -1, but works with SuS */
1513 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1514 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1515
1516 if (res < (ssize_t)sizeof (si))
420 break; 1517 break;
421
422 heap [k] = heap [j];
423 ((W)heap [k])->active = k + 1;
424 k = j;
425 } 1518 }
426
427 heap [k] = w;
428 ((W)heap [k])->active = k + 1;
429} 1519}
1520#endif
1521
1522#endif
430 1523
431/*****************************************************************************/ 1524/*****************************************************************************/
432 1525
433typedef struct 1526#if EV_CHILD_ENABLE
434{ 1527static WL childs [EV_PID_HASHSIZE];
435 struct ev_watcher_list *head;
436 sig_atomic_t volatile gotsig;
437} ANSIG;
438 1528
439static ANSIG *signals;
440static int signalmax;
441
442static int sigpipe [2];
443static sig_atomic_t volatile gotsig;
444static struct ev_io sigev;
445
446static void
447signals_init (ANSIG *base, int count)
448{
449 while (count--)
450 {
451 base->head = 0;
452 base->gotsig = 0;
453
454 ++base;
455 }
456}
457
458static void
459sighandler (int signum)
460{
461 signals [signum - 1].gotsig = 1;
462
463 if (!gotsig)
464 {
465 int old_errno = errno;
466 gotsig = 1;
467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
469 }
470}
471
472static void
473sigcb (EV_P_ struct ev_io *iow, int revents)
474{
475 struct ev_watcher_list *w;
476 int signum;
477
478 read (sigpipe [0], &revents, 1);
479 gotsig = 0;
480
481 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig)
483 {
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489}
490
491static void
492siginit (EV_P)
493{
494#ifndef WIN32
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502
503 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
506}
507
508/*****************************************************************************/
509
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 1529static ev_signal childev;
1530
1531#ifndef WIFCONTINUED
1532# define WIFCONTINUED(status) 0
1533#endif
1534
1535/* handle a single child status event */
1536inline_speed void
1537child_reap (EV_P_ int chain, int pid, int status)
1538{
1539 ev_child *w;
1540 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1541
1542 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1543 {
1544 if ((w->pid == pid || !w->pid)
1545 && (!traced || (w->flags & 1)))
1546 {
1547 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1548 w->rpid = pid;
1549 w->rstatus = status;
1550 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1551 }
1552 }
1553}
514 1554
515#ifndef WCONTINUED 1555#ifndef WCONTINUED
516# define WCONTINUED 0 1556# define WCONTINUED 0
517#endif 1557#endif
518 1558
1559/* called on sigchld etc., calls waitpid */
519static void 1560static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 1561childcb (EV_P_ ev_signal *sw, int revents)
536{ 1562{
537 int pid, status; 1563 int pid, status;
538 1564
1565 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1566 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 1567 if (!WCONTINUED
1568 || errno != EINVAL
1569 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1570 return;
1571
541 /* make sure we are called again until all childs have been reaped */ 1572 /* make sure we are called again until all children have been reaped */
1573 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 1574 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 1575
544 child_reap (EV_A_ sw, pid, pid, status); 1576 child_reap (EV_A_ pid, pid, status);
1577 if ((EV_PID_HASHSIZE) > 1)
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1578 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 }
547} 1579}
548 1580
549#endif 1581#endif
550 1582
551/*****************************************************************************/ 1583/*****************************************************************************/
552 1584
1585#if EV_USE_IOCP
1586# include "ev_iocp.c"
1587#endif
1588#if EV_USE_PORT
1589# include "ev_port.c"
1590#endif
553#if EV_USE_KQUEUE 1591#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 1592# include "ev_kqueue.c"
555#endif 1593#endif
556#if EV_USE_EPOLL 1594#if EV_USE_EPOLL
557# include "ev_epoll.c" 1595# include "ev_epoll.c"
574{ 1612{
575 return EV_VERSION_MINOR; 1613 return EV_VERSION_MINOR;
576} 1614}
577 1615
578/* return true if we are running with elevated privileges and should ignore env variables */ 1616/* return true if we are running with elevated privileges and should ignore env variables */
579static int 1617int inline_size
580enable_secure (void) 1618enable_secure (void)
581{ 1619{
582#ifdef WIN32 1620#ifdef _WIN32
583 return 0; 1621 return 0;
584#else 1622#else
585 return getuid () != geteuid () 1623 return getuid () != geteuid ()
586 || getgid () != getegid (); 1624 || getgid () != getegid ();
587#endif 1625#endif
588} 1626}
589 1627
590int 1628unsigned int
1629ev_supported_backends (void)
1630{
1631 unsigned int flags = 0;
1632
1633 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1634 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1635 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1636 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1637 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1638
1639 return flags;
1640}
1641
1642unsigned int
1643ev_recommended_backends (void)
1644{
1645 unsigned int flags = ev_supported_backends ();
1646
1647#ifndef __NetBSD__
1648 /* kqueue is borked on everything but netbsd apparently */
1649 /* it usually doesn't work correctly on anything but sockets and pipes */
1650 flags &= ~EVBACKEND_KQUEUE;
1651#endif
1652#ifdef __APPLE__
1653 /* only select works correctly on that "unix-certified" platform */
1654 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1655 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1656#endif
1657#ifdef __FreeBSD__
1658 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1659#endif
1660
1661 return flags;
1662}
1663
1664unsigned int
1665ev_embeddable_backends (void)
1666{
1667 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1668
1669 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1670 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1671 flags &= ~EVBACKEND_EPOLL;
1672
1673 return flags;
1674}
1675
1676unsigned int
1677ev_backend (EV_P)
1678{
1679 return backend;
1680}
1681
1682#if EV_FEATURE_API
1683unsigned int
1684ev_iteration (EV_P)
1685{
1686 return loop_count;
1687}
1688
1689unsigned int
591ev_method (EV_P) 1690ev_depth (EV_P)
592{ 1691{
593 return method; 1692 return loop_depth;
594} 1693}
595 1694
596static void 1695void
597loop_init (EV_P_ int methods) 1696ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
598{ 1697{
599 if (!method) 1698 io_blocktime = interval;
1699}
1700
1701void
1702ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1703{
1704 timeout_blocktime = interval;
1705}
1706
1707void
1708ev_set_userdata (EV_P_ void *data)
1709{
1710 userdata = data;
1711}
1712
1713void *
1714ev_userdata (EV_P)
1715{
1716 return userdata;
1717}
1718
1719void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1720{
1721 invoke_cb = invoke_pending_cb;
1722}
1723
1724void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1725{
1726 release_cb = release;
1727 acquire_cb = acquire;
1728}
1729#endif
1730
1731/* initialise a loop structure, must be zero-initialised */
1732static void noinline
1733loop_init (EV_P_ unsigned int flags)
1734{
1735 if (!backend)
600 { 1736 {
1737 origflags = flags;
1738
1739#if EV_USE_REALTIME
1740 if (!have_realtime)
1741 {
1742 struct timespec ts;
1743
1744 if (!clock_gettime (CLOCK_REALTIME, &ts))
1745 have_realtime = 1;
1746 }
1747#endif
1748
601#if EV_USE_MONOTONIC 1749#if EV_USE_MONOTONIC
1750 if (!have_monotonic)
1751 {
1752 struct timespec ts;
1753
1754 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1755 have_monotonic = 1;
1756 }
1757#endif
1758
1759 /* pid check not overridable via env */
1760#ifndef _WIN32
1761 if (flags & EVFLAG_FORKCHECK)
1762 curpid = getpid ();
1763#endif
1764
1765 if (!(flags & EVFLAG_NOENV)
1766 && !enable_secure ()
1767 && getenv ("LIBEV_FLAGS"))
1768 flags = atoi (getenv ("LIBEV_FLAGS"));
1769
1770 ev_rt_now = ev_time ();
1771 mn_now = get_clock ();
1772 now_floor = mn_now;
1773 rtmn_diff = ev_rt_now - mn_now;
1774#if EV_FEATURE_API
1775 invoke_cb = ev_invoke_pending;
1776#endif
1777
1778 io_blocktime = 0.;
1779 timeout_blocktime = 0.;
1780 backend = 0;
1781 backend_fd = -1;
1782 sig_pending = 0;
1783#if EV_ASYNC_ENABLE
1784 async_pending = 0;
1785#endif
1786#if EV_USE_INOTIFY
1787 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1788#endif
1789#if EV_USE_SIGNALFD
1790 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1791#endif
1792
1793 if (!(flags & EVBACKEND_MASK))
1794 flags |= ev_recommended_backends ();
1795
1796#if EV_USE_IOCP
1797 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1798#endif
1799#if EV_USE_PORT
1800 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1801#endif
1802#if EV_USE_KQUEUE
1803 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1804#endif
1805#if EV_USE_EPOLL
1806 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1807#endif
1808#if EV_USE_POLL
1809 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1810#endif
1811#if EV_USE_SELECT
1812 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1813#endif
1814
1815 ev_prepare_init (&pending_w, pendingcb);
1816
1817#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1818 ev_init (&pipe_w, pipecb);
1819 ev_set_priority (&pipe_w, EV_MAXPRI);
1820#endif
1821 }
1822}
1823
1824/* free up a loop structure */
1825void
1826ev_loop_destroy (EV_P)
1827{
1828 int i;
1829
1830#if EV_MULTIPLICITY
1831 /* mimic free (0) */
1832 if (!EV_A)
1833 return;
1834#endif
1835
1836#if EV_CLEANUP_ENABLE
1837 /* queue cleanup watchers (and execute them) */
1838 if (expect_false (cleanupcnt))
1839 {
1840 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1841 EV_INVOKE_PENDING;
1842 }
1843#endif
1844
1845#if EV_CHILD_ENABLE
1846 if (ev_is_active (&childev))
1847 {
1848 ev_ref (EV_A); /* child watcher */
1849 ev_signal_stop (EV_A_ &childev);
1850 }
1851#endif
1852
1853 if (ev_is_active (&pipe_w))
1854 {
1855 /*ev_ref (EV_A);*/
1856 /*ev_io_stop (EV_A_ &pipe_w);*/
1857
1858#if EV_USE_EVENTFD
1859 if (evfd >= 0)
1860 close (evfd);
1861#endif
1862
1863 if (evpipe [0] >= 0)
1864 {
1865 EV_WIN32_CLOSE_FD (evpipe [0]);
1866 EV_WIN32_CLOSE_FD (evpipe [1]);
1867 }
1868 }
1869
1870#if EV_USE_SIGNALFD
1871 if (ev_is_active (&sigfd_w))
1872 close (sigfd);
1873#endif
1874
1875#if EV_USE_INOTIFY
1876 if (fs_fd >= 0)
1877 close (fs_fd);
1878#endif
1879
1880 if (backend_fd >= 0)
1881 close (backend_fd);
1882
1883#if EV_USE_IOCP
1884 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1885#endif
1886#if EV_USE_PORT
1887 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1888#endif
1889#if EV_USE_KQUEUE
1890 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1891#endif
1892#if EV_USE_EPOLL
1893 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1894#endif
1895#if EV_USE_POLL
1896 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1897#endif
1898#if EV_USE_SELECT
1899 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1900#endif
1901
1902 for (i = NUMPRI; i--; )
1903 {
1904 array_free (pending, [i]);
1905#if EV_IDLE_ENABLE
1906 array_free (idle, [i]);
1907#endif
1908 }
1909
1910 ev_free (anfds); anfds = 0; anfdmax = 0;
1911
1912 /* have to use the microsoft-never-gets-it-right macro */
1913 array_free (rfeed, EMPTY);
1914 array_free (fdchange, EMPTY);
1915 array_free (timer, EMPTY);
1916#if EV_PERIODIC_ENABLE
1917 array_free (periodic, EMPTY);
1918#endif
1919#if EV_FORK_ENABLE
1920 array_free (fork, EMPTY);
1921#endif
1922#if EV_CLEANUP_ENABLE
1923 array_free (cleanup, EMPTY);
1924#endif
1925 array_free (prepare, EMPTY);
1926 array_free (check, EMPTY);
1927#if EV_ASYNC_ENABLE
1928 array_free (async, EMPTY);
1929#endif
1930
1931 backend = 0;
1932
1933#if EV_MULTIPLICITY
1934 if (ev_is_default_loop (EV_A))
1935#endif
1936 ev_default_loop_ptr = 0;
1937#if EV_MULTIPLICITY
1938 else
1939 ev_free (EV_A);
1940#endif
1941}
1942
1943#if EV_USE_INOTIFY
1944inline_size void infy_fork (EV_P);
1945#endif
1946
1947inline_size void
1948loop_fork (EV_P)
1949{
1950#if EV_USE_PORT
1951 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1952#endif
1953#if EV_USE_KQUEUE
1954 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1955#endif
1956#if EV_USE_EPOLL
1957 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1958#endif
1959#if EV_USE_INOTIFY
1960 infy_fork (EV_A);
1961#endif
1962
1963 if (ev_is_active (&pipe_w))
1964 {
1965 /* this "locks" the handlers against writing to the pipe */
1966 /* while we modify the fd vars */
1967 sig_pending = 1;
1968#if EV_ASYNC_ENABLE
1969 async_pending = 1;
1970#endif
1971
1972 ev_ref (EV_A);
1973 ev_io_stop (EV_A_ &pipe_w);
1974
1975#if EV_USE_EVENTFD
1976 if (evfd >= 0)
1977 close (evfd);
1978#endif
1979
1980 if (evpipe [0] >= 0)
1981 {
1982 EV_WIN32_CLOSE_FD (evpipe [0]);
1983 EV_WIN32_CLOSE_FD (evpipe [1]);
1984 }
1985
1986#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1987 evpipe_init (EV_A);
1988 /* now iterate over everything, in case we missed something */
1989 pipecb (EV_A_ &pipe_w, EV_READ);
1990#endif
1991 }
1992
1993 postfork = 0;
1994}
1995
1996#if EV_MULTIPLICITY
1997
1998struct ev_loop *
1999ev_loop_new (unsigned int flags)
2000{
2001 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2002
2003 memset (EV_A, 0, sizeof (struct ev_loop));
2004 loop_init (EV_A_ flags);
2005
2006 if (ev_backend (EV_A))
2007 return EV_A;
2008
2009 ev_free (EV_A);
2010 return 0;
2011}
2012
2013#endif /* multiplicity */
2014
2015#if EV_VERIFY
2016static void noinline
2017verify_watcher (EV_P_ W w)
2018{
2019 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2020
2021 if (w->pending)
2022 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2023}
2024
2025static void noinline
2026verify_heap (EV_P_ ANHE *heap, int N)
2027{
2028 int i;
2029
2030 for (i = HEAP0; i < N + HEAP0; ++i)
2031 {
2032 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2033 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2034 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2035
2036 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2037 }
2038}
2039
2040static void noinline
2041array_verify (EV_P_ W *ws, int cnt)
2042{
2043 while (cnt--)
2044 {
2045 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2046 verify_watcher (EV_A_ ws [cnt]);
2047 }
2048}
2049#endif
2050
2051#if EV_FEATURE_API
2052void
2053ev_verify (EV_P)
2054{
2055#if EV_VERIFY
2056 int i;
2057 WL w;
2058
2059 assert (activecnt >= -1);
2060
2061 assert (fdchangemax >= fdchangecnt);
2062 for (i = 0; i < fdchangecnt; ++i)
2063 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2064
2065 assert (anfdmax >= 0);
2066 for (i = 0; i < anfdmax; ++i)
2067 for (w = anfds [i].head; w; w = w->next)
602 { 2068 {
603 struct timespec ts; 2069 verify_watcher (EV_A_ (W)w);
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2070 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
605 have_monotonic = 1; 2071 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
606 } 2072 }
607#endif
608 2073
609 rt_now = ev_time (); 2074 assert (timermax >= timercnt);
610 mn_now = get_clock (); 2075 verify_heap (EV_A_ timers, timercnt);
611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
613 2076
614 if (methods == EVMETHOD_AUTO) 2077#if EV_PERIODIC_ENABLE
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2078 assert (periodicmax >= periodiccnt);
616 methods = atoi (getenv ("LIBEV_METHODS")); 2079 verify_heap (EV_A_ periodics, periodiccnt);
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif 2080#endif
659 2081
660 for (i = NUMPRI; i--; ) 2082 for (i = NUMPRI; i--; )
661 array_free (pending, [i]); 2083 {
2084 assert (pendingmax [i] >= pendingcnt [i]);
2085#if EV_IDLE_ENABLE
2086 assert (idleall >= 0);
2087 assert (idlemax [i] >= idlecnt [i]);
2088 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2089#endif
2090 }
662 2091
663 array_free (fdchange, ); 2092#if EV_FORK_ENABLE
664 array_free (timer, ); 2093 assert (forkmax >= forkcnt);
665 array_free (periodic, ); 2094 array_verify (EV_A_ (W *)forks, forkcnt);
666 array_free (idle, ); 2095#endif
667 array_free (prepare, );
668 array_free (check, );
669 2096
670 method = 0; 2097#if EV_CLEANUP_ENABLE
671 /*TODO*/ 2098 assert (cleanupmax >= cleanupcnt);
672} 2099 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2100#endif
673 2101
674void 2102#if EV_ASYNC_ENABLE
675loop_fork (EV_P) 2103 assert (asyncmax >= asynccnt);
676{ 2104 array_verify (EV_A_ (W *)asyncs, asynccnt);
677 /*TODO*/ 2105#endif
678#if EV_USE_EPOLL 2106
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2107#if EV_PREPARE_ENABLE
2108 assert (preparemax >= preparecnt);
2109 array_verify (EV_A_ (W *)prepares, preparecnt);
2110#endif
2111
2112#if EV_CHECK_ENABLE
2113 assert (checkmax >= checkcnt);
2114 array_verify (EV_A_ (W *)checks, checkcnt);
2115#endif
2116
2117# if 0
2118#if EV_CHILD_ENABLE
2119 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2120 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2121#endif
680#endif 2122# endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif 2123#endif
684} 2124}
2125#endif
685 2126
686#if EV_MULTIPLICITY 2127#if EV_MULTIPLICITY
687struct ev_loop * 2128struct ev_loop *
688ev_loop_new (int methods) 2129#else
689{ 2130int
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif 2131#endif
714 2132ev_default_loop (unsigned int flags)
2133{
2134 if (!ev_default_loop_ptr)
2135 {
715#if EV_MULTIPLICITY 2136#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct; 2137 EV_P = ev_default_loop_ptr = &default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else 2138#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe))
729 return 0;
730
731 if (!default_loop)
732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1; 2139 ev_default_loop_ptr = 1;
737#endif 2140#endif
738 2141
739 loop_init (EV_A_ methods); 2142 loop_init (EV_A_ flags);
740 2143
741 if (ev_method (EV_A)) 2144 if (ev_backend (EV_A))
742 { 2145 {
743 ev_watcher_init (&sigev, sigcb); 2146#if EV_CHILD_ENABLE
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A);
746
747#ifndef WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD); 2147 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI); 2148 ev_set_priority (&childev, EV_MAXPRI);
750 ev_signal_start (EV_A_ &childev); 2149 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2150 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif 2151#endif
753 } 2152 }
754 else 2153 else
755 default_loop = 0; 2154 ev_default_loop_ptr = 0;
756 } 2155 }
757 2156
758 return default_loop; 2157 return ev_default_loop_ptr;
759} 2158}
760 2159
761void 2160void
762ev_default_destroy (void)
763{
764#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop;
766#endif
767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A); 2161ev_loop_fork (EV_P)
788 2162{
789 ev_io_stop (EV_A_ &sigev); 2163 postfork = 1; /* must be in line with ev_default_fork */
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796} 2164}
797 2165
798/*****************************************************************************/ 2166/*****************************************************************************/
799 2167
800static void 2168void
801call_pending (EV_P) 2169ev_invoke (EV_P_ void *w, int revents)
2170{
2171 EV_CB_INVOKE ((W)w, revents);
2172}
2173
2174unsigned int
2175ev_pending_count (EV_P)
2176{
2177 int pri;
2178 unsigned int count = 0;
2179
2180 for (pri = NUMPRI; pri--; )
2181 count += pendingcnt [pri];
2182
2183 return count;
2184}
2185
2186void noinline
2187ev_invoke_pending (EV_P)
802{ 2188{
803 int pri; 2189 int pri;
804 2190
805 for (pri = NUMPRI; pri--; ) 2191 for (pri = NUMPRI; pri--; )
806 while (pendingcnt [pri]) 2192 while (pendingcnt [pri])
807 { 2193 {
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2194 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809 2195
810 if (p->w)
811 {
812 p->w->pending = 0; 2196 p->w->pending = 0;
813 2197 EV_CB_INVOKE (p->w, p->events);
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events); 2198 EV_FREQUENT_CHECK;
815 }
816 } 2199 }
817} 2200}
818 2201
819static void 2202#if EV_IDLE_ENABLE
2203/* make idle watchers pending. this handles the "call-idle */
2204/* only when higher priorities are idle" logic */
2205inline_size void
820timers_reify (EV_P) 2206idle_reify (EV_P)
821{ 2207{
822 while (timercnt && ((WT)timers [0])->at <= mn_now) 2208 if (expect_false (idleall))
823 { 2209 {
824 struct ev_timer *w = timers [0]; 2210 int pri;
825 2211
826 assert (("inactive timer on timer heap detected", ev_is_active (w))); 2212 for (pri = NUMPRI; pri--; )
827
828 /* first reschedule or stop timer */
829 if (w->repeat)
830 { 2213 {
831 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2214 if (pendingcnt [pri])
832 ((WT)w)->at = mn_now + w->repeat; 2215 break;
833 downheap ((WT *)timers, timercnt, 0);
834 }
835 else
836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
837 2216
838 event (EV_A_ (W)w, EV_TIMEOUT); 2217 if (idlecnt [pri])
839 }
840}
841
842static void
843periodics_reify (EV_P)
844{
845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
846 {
847 struct ev_periodic *w = periodics [0];
848
849 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
850
851 /* first reschedule or stop timer */
852 if (w->interval)
853 {
854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
856 downheap ((WT *)periodics, periodiccnt, 0);
857 }
858 else
859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
860
861 event (EV_A_ (W)w, EV_PERIODIC);
862 }
863}
864
865static void
866periodics_reschedule (EV_P)
867{
868 int i;
869
870 /* adjust periodics after time jump */
871 for (i = 0; i < periodiccnt; ++i)
872 {
873 struct ev_periodic *w = periodics [i];
874
875 if (w->interval)
876 {
877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
878
879 if (fabs (diff) >= 1e-4)
880 { 2218 {
881 ev_periodic_stop (EV_A_ w); 2219 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
882 ev_periodic_start (EV_A_ w); 2220 break;
883
884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
885 } 2221 }
886 } 2222 }
887 } 2223 }
888} 2224}
2225#endif
889 2226
890inline int 2227/* make timers pending */
891time_update_monotonic (EV_P) 2228inline_size void
2229timers_reify (EV_P)
892{ 2230{
893 mn_now = get_clock (); 2231 EV_FREQUENT_CHECK;
894 2232
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2233 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
896 {
897 rt_now = rtmn_diff + mn_now;
898 return 0;
899 } 2234 {
900 else 2235 do
2236 {
2237 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2238
2239 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2240
2241 /* first reschedule or stop timer */
2242 if (w->repeat)
2243 {
2244 ev_at (w) += w->repeat;
2245 if (ev_at (w) < mn_now)
2246 ev_at (w) = mn_now;
2247
2248 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2249
2250 ANHE_at_cache (timers [HEAP0]);
2251 downheap (timers, timercnt, HEAP0);
2252 }
2253 else
2254 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2255
2256 EV_FREQUENT_CHECK;
2257 feed_reverse (EV_A_ (W)w);
2258 }
2259 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2260
2261 feed_reverse_done (EV_A_ EV_TIMER);
901 { 2262 }
902 now_floor = mn_now; 2263}
903 rt_now = ev_time (); 2264
904 return 1; 2265#if EV_PERIODIC_ENABLE
2266
2267static void noinline
2268periodic_recalc (EV_P_ ev_periodic *w)
2269{
2270 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2271 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2272
2273 /* the above almost always errs on the low side */
2274 while (at <= ev_rt_now)
905 } 2275 {
906} 2276 ev_tstamp nat = at + w->interval;
907 2277
908static void 2278 /* when resolution fails us, we use ev_rt_now */
909time_update (EV_P) 2279 if (expect_false (nat == at))
2280 {
2281 at = ev_rt_now;
2282 break;
2283 }
2284
2285 at = nat;
2286 }
2287
2288 ev_at (w) = at;
2289}
2290
2291/* make periodics pending */
2292inline_size void
2293periodics_reify (EV_P)
2294{
2295 EV_FREQUENT_CHECK;
2296
2297 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2298 {
2299 int feed_count = 0;
2300
2301 do
2302 {
2303 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2304
2305 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2306
2307 /* first reschedule or stop timer */
2308 if (w->reschedule_cb)
2309 {
2310 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2311
2312 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2313
2314 ANHE_at_cache (periodics [HEAP0]);
2315 downheap (periodics, periodiccnt, HEAP0);
2316 }
2317 else if (w->interval)
2318 {
2319 periodic_recalc (EV_A_ w);
2320 ANHE_at_cache (periodics [HEAP0]);
2321 downheap (periodics, periodiccnt, HEAP0);
2322 }
2323 else
2324 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2325
2326 EV_FREQUENT_CHECK;
2327 feed_reverse (EV_A_ (W)w);
2328 }
2329 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2330
2331 feed_reverse_done (EV_A_ EV_PERIODIC);
2332 }
2333}
2334
2335/* simply recalculate all periodics */
2336/* TODO: maybe ensure that at least one event happens when jumping forward? */
2337static void noinline
2338periodics_reschedule (EV_P)
910{ 2339{
911 int i; 2340 int i;
912 2341
2342 /* adjust periodics after time jump */
2343 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2344 {
2345 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2346
2347 if (w->reschedule_cb)
2348 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2349 else if (w->interval)
2350 periodic_recalc (EV_A_ w);
2351
2352 ANHE_at_cache (periodics [i]);
2353 }
2354
2355 reheap (periodics, periodiccnt);
2356}
2357#endif
2358
2359/* adjust all timers by a given offset */
2360static void noinline
2361timers_reschedule (EV_P_ ev_tstamp adjust)
2362{
2363 int i;
2364
2365 for (i = 0; i < timercnt; ++i)
2366 {
2367 ANHE *he = timers + i + HEAP0;
2368 ANHE_w (*he)->at += adjust;
2369 ANHE_at_cache (*he);
2370 }
2371}
2372
2373/* fetch new monotonic and realtime times from the kernel */
2374/* also detect if there was a timejump, and act accordingly */
2375inline_speed void
2376time_update (EV_P_ ev_tstamp max_block)
2377{
913#if EV_USE_MONOTONIC 2378#if EV_USE_MONOTONIC
914 if (expect_true (have_monotonic)) 2379 if (expect_true (have_monotonic))
915 { 2380 {
916 if (time_update_monotonic (EV_A)) 2381 int i;
2382 ev_tstamp odiff = rtmn_diff;
2383
2384 mn_now = get_clock ();
2385
2386 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2387 /* interpolate in the meantime */
2388 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
917 { 2389 {
918 ev_tstamp odiff = rtmn_diff; 2390 ev_rt_now = rtmn_diff + mn_now;
2391 return;
2392 }
919 2393
2394 now_floor = mn_now;
2395 ev_rt_now = ev_time ();
2396
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2397 /* loop a few times, before making important decisions.
2398 * on the choice of "4": one iteration isn't enough,
2399 * in case we get preempted during the calls to
2400 * ev_time and get_clock. a second call is almost guaranteed
2401 * to succeed in that case, though. and looping a few more times
2402 * doesn't hurt either as we only do this on time-jumps or
2403 * in the unlikely event of having been preempted here.
2404 */
2405 for (i = 4; --i; )
921 { 2406 {
2407 ev_tstamp diff;
922 rtmn_diff = rt_now - mn_now; 2408 rtmn_diff = ev_rt_now - mn_now;
923 2409
924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2410 diff = odiff - rtmn_diff;
2411
2412 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
925 return; /* all is well */ 2413 return; /* all is well */
926 2414
927 rt_now = ev_time (); 2415 ev_rt_now = ev_time ();
928 mn_now = get_clock (); 2416 mn_now = get_clock ();
929 now_floor = mn_now; 2417 now_floor = mn_now;
930 } 2418 }
931 2419
2420 /* no timer adjustment, as the monotonic clock doesn't jump */
2421 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2422# if EV_PERIODIC_ENABLE
2423 periodics_reschedule (EV_A);
2424# endif
2425 }
2426 else
2427#endif
2428 {
2429 ev_rt_now = ev_time ();
2430
2431 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2432 {
2433 /* adjust timers. this is easy, as the offset is the same for all of them */
2434 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2435#if EV_PERIODIC_ENABLE
932 periodics_reschedule (EV_A); 2436 periodics_reschedule (EV_A);
933 /* no timer adjustment, as the monotonic clock doesn't jump */ 2437#endif
934 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
935 } 2438 }
936 }
937 else
938#endif
939 {
940 rt_now = ev_time ();
941 2439
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
943 {
944 periodics_reschedule (EV_A);
945
946 /* adjust timers. this is easy, as the offset is the same for all */
947 for (i = 0; i < timercnt; ++i)
948 ((WT)timers [i])->at += rt_now - mn_now;
949 }
950
951 mn_now = rt_now; 2440 mn_now = ev_rt_now;
952 } 2441 }
953} 2442}
954 2443
955void 2444void
956ev_ref (EV_P)
957{
958 ++activecnt;
959}
960
961void
962ev_unref (EV_P)
963{
964 --activecnt;
965}
966
967static int loop_done;
968
969void
970ev_loop (EV_P_ int flags) 2445ev_run (EV_P_ int flags)
971{ 2446{
972 double block; 2447#if EV_FEATURE_API
973 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2448 ++loop_depth;
2449#endif
2450
2451 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2452
2453 loop_done = EVBREAK_CANCEL;
2454
2455 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
974 2456
975 do 2457 do
976 { 2458 {
2459#if EV_VERIFY >= 2
2460 ev_verify (EV_A);
2461#endif
2462
2463#ifndef _WIN32
2464 if (expect_false (curpid)) /* penalise the forking check even more */
2465 if (expect_false (getpid () != curpid))
2466 {
2467 curpid = getpid ();
2468 postfork = 1;
2469 }
2470#endif
2471
2472#if EV_FORK_ENABLE
2473 /* we might have forked, so queue fork handlers */
2474 if (expect_false (postfork))
2475 if (forkcnt)
2476 {
2477 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2478 EV_INVOKE_PENDING;
2479 }
2480#endif
2481
2482#if EV_PREPARE_ENABLE
977 /* queue check watchers (and execute them) */ 2483 /* queue prepare watchers (and execute them) */
978 if (expect_false (preparecnt)) 2484 if (expect_false (preparecnt))
979 { 2485 {
980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2486 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
981 call_pending (EV_A); 2487 EV_INVOKE_PENDING;
982 } 2488 }
2489#endif
2490
2491 if (expect_false (loop_done))
2492 break;
2493
2494 /* we might have forked, so reify kernel state if necessary */
2495 if (expect_false (postfork))
2496 loop_fork (EV_A);
983 2497
984 /* update fd-related kernel structures */ 2498 /* update fd-related kernel structures */
985 fd_reify (EV_A); 2499 fd_reify (EV_A);
986 2500
987 /* calculate blocking time */ 2501 /* calculate blocking time */
2502 {
2503 ev_tstamp waittime = 0.;
2504 ev_tstamp sleeptime = 0.;
988 2505
989 /* we only need this for !monotonic clockor timers, but as we basically 2506 /* remember old timestamp for io_blocktime calculation */
990 always have timers, we just calculate it always */ 2507 ev_tstamp prev_mn_now = mn_now;
991#if EV_USE_MONOTONIC 2508
992 if (expect_true (have_monotonic)) 2509 /* update time to cancel out callback processing overhead */
993 time_update_monotonic (EV_A); 2510 time_update (EV_A_ 1e100);
994 else 2511
995#endif 2512 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
996 { 2513 {
997 rt_now = ev_time ();
998 mn_now = rt_now;
999 }
1000
1001 if (flags & EVLOOP_NONBLOCK || idlecnt)
1002 block = 0.;
1003 else
1004 {
1005 block = MAX_BLOCKTIME; 2514 waittime = MAX_BLOCKTIME;
1006 2515
1007 if (timercnt) 2516 if (timercnt)
1008 { 2517 {
1009 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2518 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1010 if (block > to) block = to; 2519 if (waittime > to) waittime = to;
1011 } 2520 }
1012 2521
2522#if EV_PERIODIC_ENABLE
1013 if (periodiccnt) 2523 if (periodiccnt)
1014 { 2524 {
1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2525 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1016 if (block > to) block = to; 2526 if (waittime > to) waittime = to;
1017 } 2527 }
2528#endif
1018 2529
1019 if (block < 0.) block = 0.; 2530 /* don't let timeouts decrease the waittime below timeout_blocktime */
2531 if (expect_false (waittime < timeout_blocktime))
2532 waittime = timeout_blocktime;
2533
2534 /* extra check because io_blocktime is commonly 0 */
2535 if (expect_false (io_blocktime))
2536 {
2537 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2538
2539 if (sleeptime > waittime - backend_fudge)
2540 sleeptime = waittime - backend_fudge;
2541
2542 if (expect_true (sleeptime > 0.))
2543 {
2544 ev_sleep (sleeptime);
2545 waittime -= sleeptime;
2546 }
2547 }
1020 } 2548 }
1021 2549
1022 method_poll (EV_A_ block); 2550#if EV_FEATURE_API
2551 ++loop_count;
2552#endif
2553 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2554 backend_poll (EV_A_ waittime);
2555 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1023 2556
1024 /* update rt_now, do magic */ 2557 /* update ev_rt_now, do magic */
1025 time_update (EV_A); 2558 time_update (EV_A_ waittime + sleeptime);
2559 }
1026 2560
1027 /* queue pending timers and reschedule them */ 2561 /* queue pending timers and reschedule them */
1028 timers_reify (EV_A); /* relative timers called last */ 2562 timers_reify (EV_A); /* relative timers called last */
2563#if EV_PERIODIC_ENABLE
1029 periodics_reify (EV_A); /* absolute timers called first */ 2564 periodics_reify (EV_A); /* absolute timers called first */
2565#endif
1030 2566
2567#if EV_IDLE_ENABLE
1031 /* queue idle watchers unless io or timers are pending */ 2568 /* queue idle watchers unless other events are pending */
1032 if (!pendingcnt) 2569 idle_reify (EV_A);
1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2570#endif
1034 2571
2572#if EV_CHECK_ENABLE
1035 /* queue check watchers, to be executed first */ 2573 /* queue check watchers, to be executed first */
1036 if (checkcnt) 2574 if (expect_false (checkcnt))
1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2575 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2576#endif
1038 2577
1039 call_pending (EV_A); 2578 EV_INVOKE_PENDING;
1040 } 2579 }
1041 while (activecnt && !loop_done); 2580 while (expect_true (
2581 activecnt
2582 && !loop_done
2583 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2584 ));
1042 2585
1043 if (loop_done != 2) 2586 if (loop_done == EVBREAK_ONE)
1044 loop_done = 0; 2587 loop_done = EVBREAK_CANCEL;
1045}
1046 2588
2589#if EV_FEATURE_API
2590 --loop_depth;
2591#endif
2592}
2593
1047void 2594void
1048ev_unloop (EV_P_ int how) 2595ev_break (EV_P_ int how)
1049{ 2596{
1050 loop_done = how; 2597 loop_done = how;
1051} 2598}
1052 2599
2600void
2601ev_ref (EV_P)
2602{
2603 ++activecnt;
2604}
2605
2606void
2607ev_unref (EV_P)
2608{
2609 --activecnt;
2610}
2611
2612void
2613ev_now_update (EV_P)
2614{
2615 time_update (EV_A_ 1e100);
2616}
2617
2618void
2619ev_suspend (EV_P)
2620{
2621 ev_now_update (EV_A);
2622}
2623
2624void
2625ev_resume (EV_P)
2626{
2627 ev_tstamp mn_prev = mn_now;
2628
2629 ev_now_update (EV_A);
2630 timers_reschedule (EV_A_ mn_now - mn_prev);
2631#if EV_PERIODIC_ENABLE
2632 /* TODO: really do this? */
2633 periodics_reschedule (EV_A);
2634#endif
2635}
2636
1053/*****************************************************************************/ 2637/*****************************************************************************/
2638/* singly-linked list management, used when the expected list length is short */
1054 2639
1055inline void 2640inline_size void
1056wlist_add (WL *head, WL elem) 2641wlist_add (WL *head, WL elem)
1057{ 2642{
1058 elem->next = *head; 2643 elem->next = *head;
1059 *head = elem; 2644 *head = elem;
1060} 2645}
1061 2646
1062inline void 2647inline_size void
1063wlist_del (WL *head, WL elem) 2648wlist_del (WL *head, WL elem)
1064{ 2649{
1065 while (*head) 2650 while (*head)
1066 { 2651 {
1067 if (*head == elem) 2652 if (expect_true (*head == elem))
1068 { 2653 {
1069 *head = elem->next; 2654 *head = elem->next;
1070 return; 2655 break;
1071 } 2656 }
1072 2657
1073 head = &(*head)->next; 2658 head = &(*head)->next;
1074 } 2659 }
1075} 2660}
1076 2661
2662/* internal, faster, version of ev_clear_pending */
1077inline void 2663inline_speed void
1078ev_clear_pending (EV_P_ W w) 2664clear_pending (EV_P_ W w)
1079{ 2665{
1080 if (w->pending) 2666 if (w->pending)
1081 { 2667 {
1082 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2668 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1083 w->pending = 0; 2669 w->pending = 0;
1084 } 2670 }
1085} 2671}
1086 2672
2673int
2674ev_clear_pending (EV_P_ void *w)
2675{
2676 W w_ = (W)w;
2677 int pending = w_->pending;
2678
2679 if (expect_true (pending))
2680 {
2681 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2682 p->w = (W)&pending_w;
2683 w_->pending = 0;
2684 return p->events;
2685 }
2686 else
2687 return 0;
2688}
2689
1087inline void 2690inline_size void
2691pri_adjust (EV_P_ W w)
2692{
2693 int pri = ev_priority (w);
2694 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2695 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2696 ev_set_priority (w, pri);
2697}
2698
2699inline_speed void
1088ev_start (EV_P_ W w, int active) 2700ev_start (EV_P_ W w, int active)
1089{ 2701{
1090 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2702 pri_adjust (EV_A_ w);
1091 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1092
1093 w->active = active; 2703 w->active = active;
1094 ev_ref (EV_A); 2704 ev_ref (EV_A);
1095} 2705}
1096 2706
1097inline void 2707inline_size void
1098ev_stop (EV_P_ W w) 2708ev_stop (EV_P_ W w)
1099{ 2709{
1100 ev_unref (EV_A); 2710 ev_unref (EV_A);
1101 w->active = 0; 2711 w->active = 0;
1102} 2712}
1103 2713
1104/*****************************************************************************/ 2714/*****************************************************************************/
1105 2715
1106void 2716void noinline
1107ev_io_start (EV_P_ struct ev_io *w) 2717ev_io_start (EV_P_ ev_io *w)
1108{ 2718{
1109 int fd = w->fd; 2719 int fd = w->fd;
1110 2720
1111 if (ev_is_active (w)) 2721 if (expect_false (ev_is_active (w)))
1112 return; 2722 return;
1113 2723
1114 assert (("ev_io_start called with negative fd", fd >= 0)); 2724 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2725 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2726
2727 EV_FREQUENT_CHECK;
1115 2728
1116 ev_start (EV_A_ (W)w, 1); 2729 ev_start (EV_A_ (W)w, 1);
1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2730 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1118 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2731 wlist_add (&anfds[fd].head, (WL)w);
1119 2732
1120 fd_change (EV_A_ fd); 2733 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1121} 2734 w->events &= ~EV__IOFDSET;
1122 2735
1123void 2736 EV_FREQUENT_CHECK;
2737}
2738
2739void noinline
1124ev_io_stop (EV_P_ struct ev_io *w) 2740ev_io_stop (EV_P_ ev_io *w)
1125{ 2741{
1126 ev_clear_pending (EV_A_ (W)w); 2742 clear_pending (EV_A_ (W)w);
1127 if (!ev_is_active (w)) 2743 if (expect_false (!ev_is_active (w)))
1128 return; 2744 return;
1129 2745
2746 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2747
2748 EV_FREQUENT_CHECK;
2749
1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2750 wlist_del (&anfds[w->fd].head, (WL)w);
1131 ev_stop (EV_A_ (W)w); 2751 ev_stop (EV_A_ (W)w);
1132 2752
1133 fd_change (EV_A_ w->fd); 2753 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1134}
1135 2754
1136void 2755 EV_FREQUENT_CHECK;
2756}
2757
2758void noinline
1137ev_timer_start (EV_P_ struct ev_timer *w) 2759ev_timer_start (EV_P_ ev_timer *w)
1138{ 2760{
1139 if (ev_is_active (w)) 2761 if (expect_false (ev_is_active (w)))
1140 return; 2762 return;
1141 2763
1142 ((WT)w)->at += mn_now; 2764 ev_at (w) += mn_now;
1143 2765
1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2766 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1145 2767
2768 EV_FREQUENT_CHECK;
2769
2770 ++timercnt;
1146 ev_start (EV_A_ (W)w, ++timercnt); 2771 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1147 array_needsize (timers, timermax, timercnt, ); 2772 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1148 timers [timercnt - 1] = w; 2773 ANHE_w (timers [ev_active (w)]) = (WT)w;
1149 upheap ((WT *)timers, timercnt - 1); 2774 ANHE_at_cache (timers [ev_active (w)]);
2775 upheap (timers, ev_active (w));
1150 2776
2777 EV_FREQUENT_CHECK;
2778
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2779 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1152} 2780}
1153 2781
1154void 2782void noinline
1155ev_timer_stop (EV_P_ struct ev_timer *w) 2783ev_timer_stop (EV_P_ ev_timer *w)
1156{ 2784{
1157 ev_clear_pending (EV_A_ (W)w); 2785 clear_pending (EV_A_ (W)w);
1158 if (!ev_is_active (w)) 2786 if (expect_false (!ev_is_active (w)))
1159 return; 2787 return;
1160 2788
2789 EV_FREQUENT_CHECK;
2790
2791 {
2792 int active = ev_active (w);
2793
1161 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2794 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1162 2795
1163 if (((W)w)->active < timercnt--) 2796 --timercnt;
2797
2798 if (expect_true (active < timercnt + HEAP0))
1164 { 2799 {
1165 timers [((W)w)->active - 1] = timers [timercnt]; 2800 timers [active] = timers [timercnt + HEAP0];
1166 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2801 adjustheap (timers, timercnt, active);
1167 } 2802 }
2803 }
1168 2804
1169 ((WT)w)->at = w->repeat; 2805 ev_at (w) -= mn_now;
1170 2806
1171 ev_stop (EV_A_ (W)w); 2807 ev_stop (EV_A_ (W)w);
1172}
1173 2808
1174void 2809 EV_FREQUENT_CHECK;
2810}
2811
2812void noinline
1175ev_timer_again (EV_P_ struct ev_timer *w) 2813ev_timer_again (EV_P_ ev_timer *w)
1176{ 2814{
2815 EV_FREQUENT_CHECK;
2816
1177 if (ev_is_active (w)) 2817 if (ev_is_active (w))
1178 { 2818 {
1179 if (w->repeat) 2819 if (w->repeat)
1180 { 2820 {
1181 ((WT)w)->at = mn_now + w->repeat; 2821 ev_at (w) = mn_now + w->repeat;
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2822 ANHE_at_cache (timers [ev_active (w)]);
2823 adjustheap (timers, timercnt, ev_active (w));
1183 } 2824 }
1184 else 2825 else
1185 ev_timer_stop (EV_A_ w); 2826 ev_timer_stop (EV_A_ w);
1186 } 2827 }
1187 else if (w->repeat) 2828 else if (w->repeat)
2829 {
2830 ev_at (w) = w->repeat;
1188 ev_timer_start (EV_A_ w); 2831 ev_timer_start (EV_A_ w);
1189} 2832 }
1190 2833
1191void 2834 EV_FREQUENT_CHECK;
2835}
2836
2837ev_tstamp
2838ev_timer_remaining (EV_P_ ev_timer *w)
2839{
2840 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2841}
2842
2843#if EV_PERIODIC_ENABLE
2844void noinline
1192ev_periodic_start (EV_P_ struct ev_periodic *w) 2845ev_periodic_start (EV_P_ ev_periodic *w)
1193{ 2846{
1194 if (ev_is_active (w)) 2847 if (expect_false (ev_is_active (w)))
1195 return; 2848 return;
1196 2849
2850 if (w->reschedule_cb)
2851 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2852 else if (w->interval)
2853 {
1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2854 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2855 periodic_recalc (EV_A_ w);
2856 }
2857 else
2858 ev_at (w) = w->offset;
1198 2859
1199 /* this formula differs from the one in periodic_reify because we do not always round up */ 2860 EV_FREQUENT_CHECK;
1200 if (w->interval)
1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1202 2861
2862 ++periodiccnt;
1203 ev_start (EV_A_ (W)w, ++periodiccnt); 2863 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1204 array_needsize (periodics, periodicmax, periodiccnt, ); 2864 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1205 periodics [periodiccnt - 1] = w; 2865 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1206 upheap ((WT *)periodics, periodiccnt - 1); 2866 ANHE_at_cache (periodics [ev_active (w)]);
2867 upheap (periodics, ev_active (w));
1207 2868
2869 EV_FREQUENT_CHECK;
2870
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2871 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1209} 2872}
1210 2873
1211void 2874void noinline
1212ev_periodic_stop (EV_P_ struct ev_periodic *w) 2875ev_periodic_stop (EV_P_ ev_periodic *w)
1213{ 2876{
1214 ev_clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
1215 if (!ev_is_active (w)) 2878 if (expect_false (!ev_is_active (w)))
1216 return; 2879 return;
1217 2880
2881 EV_FREQUENT_CHECK;
2882
2883 {
2884 int active = ev_active (w);
2885
1218 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2886 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1219 2887
1220 if (((W)w)->active < periodiccnt--) 2888 --periodiccnt;
2889
2890 if (expect_true (active < periodiccnt + HEAP0))
1221 { 2891 {
1222 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2892 periodics [active] = periodics [periodiccnt + HEAP0];
1223 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2893 adjustheap (periodics, periodiccnt, active);
1224 } 2894 }
2895 }
1225 2896
1226 ev_stop (EV_A_ (W)w); 2897 ev_stop (EV_A_ (W)w);
1227}
1228 2898
1229void 2899 EV_FREQUENT_CHECK;
1230ev_idle_start (EV_P_ struct ev_idle *w)
1231{
1232 if (ev_is_active (w))
1233 return;
1234
1235 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, );
1237 idles [idlecnt - 1] = w;
1238} 2900}
1239 2901
1240void 2902void noinline
1241ev_idle_stop (EV_P_ struct ev_idle *w) 2903ev_periodic_again (EV_P_ ev_periodic *w)
1242{ 2904{
1243 ev_clear_pending (EV_A_ (W)w); 2905 /* TODO: use adjustheap and recalculation */
1244 if (ev_is_active (w))
1245 return;
1246
1247 idles [((W)w)->active - 1] = idles [--idlecnt];
1248 ev_stop (EV_A_ (W)w); 2906 ev_periodic_stop (EV_A_ w);
2907 ev_periodic_start (EV_A_ w);
1249} 2908}
1250 2909#endif
1251void
1252ev_prepare_start (EV_P_ struct ev_prepare *w)
1253{
1254 if (ev_is_active (w))
1255 return;
1256
1257 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, );
1259 prepares [preparecnt - 1] = w;
1260}
1261
1262void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w)
1264{
1265 ev_clear_pending (EV_A_ (W)w);
1266 if (ev_is_active (w))
1267 return;
1268
1269 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1270 ev_stop (EV_A_ (W)w);
1271}
1272
1273void
1274ev_check_start (EV_P_ struct ev_check *w)
1275{
1276 if (ev_is_active (w))
1277 return;
1278
1279 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, );
1281 checks [checkcnt - 1] = w;
1282}
1283
1284void
1285ev_check_stop (EV_P_ struct ev_check *w)
1286{
1287 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w))
1289 return;
1290
1291 checks [((W)w)->active - 1] = checks [--checkcnt];
1292 ev_stop (EV_A_ (W)w);
1293}
1294 2910
1295#ifndef SA_RESTART 2911#ifndef SA_RESTART
1296# define SA_RESTART 0 2912# define SA_RESTART 0
1297#endif 2913#endif
1298 2914
1299void 2915#if EV_SIGNAL_ENABLE
2916
2917void noinline
1300ev_signal_start (EV_P_ struct ev_signal *w) 2918ev_signal_start (EV_P_ ev_signal *w)
1301{ 2919{
2920 if (expect_false (ev_is_active (w)))
2921 return;
2922
2923 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2924
1302#if EV_MULTIPLICITY 2925#if EV_MULTIPLICITY
1303 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2926 assert (("libev: a signal must not be attached to two different loops",
2927 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2928
2929 signals [w->signum - 1].loop = EV_A;
2930#endif
2931
2932 EV_FREQUENT_CHECK;
2933
2934#if EV_USE_SIGNALFD
2935 if (sigfd == -2)
2936 {
2937 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2938 if (sigfd < 0 && errno == EINVAL)
2939 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2940
2941 if (sigfd >= 0)
2942 {
2943 fd_intern (sigfd); /* doing it twice will not hurt */
2944
2945 sigemptyset (&sigfd_set);
2946
2947 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2948 ev_set_priority (&sigfd_w, EV_MAXPRI);
2949 ev_io_start (EV_A_ &sigfd_w);
2950 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2951 }
2952 }
2953
2954 if (sigfd >= 0)
2955 {
2956 /* TODO: check .head */
2957 sigaddset (&sigfd_set, w->signum);
2958 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2959
2960 signalfd (sigfd, &sigfd_set, 0);
2961 }
2962#endif
2963
2964 ev_start (EV_A_ (W)w, 1);
2965 wlist_add (&signals [w->signum - 1].head, (WL)w);
2966
2967 if (!((WL)w)->next)
2968# if EV_USE_SIGNALFD
2969 if (sigfd < 0) /*TODO*/
1304#endif 2970# endif
1305 if (ev_is_active (w)) 2971 {
2972# ifdef _WIN32
2973 evpipe_init (EV_A);
2974
2975 signal (w->signum, ev_sighandler);
2976# else
2977 struct sigaction sa;
2978
2979 evpipe_init (EV_A);
2980
2981 sa.sa_handler = ev_sighandler;
2982 sigfillset (&sa.sa_mask);
2983 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2984 sigaction (w->signum, &sa, 0);
2985
2986 if (origflags & EVFLAG_NOSIGMASK)
2987 {
2988 sigemptyset (&sa.sa_mask);
2989 sigaddset (&sa.sa_mask, w->signum);
2990 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2991 }
2992#endif
2993 }
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void noinline
2999ev_signal_stop (EV_P_ ev_signal *w)
3000{
3001 clear_pending (EV_A_ (W)w);
3002 if (expect_false (!ev_is_active (w)))
1306 return; 3003 return;
1307 3004
1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3005 EV_FREQUENT_CHECK;
3006
3007 wlist_del (&signals [w->signum - 1].head, (WL)w);
3008 ev_stop (EV_A_ (W)w);
3009
3010 if (!signals [w->signum - 1].head)
3011 {
3012#if EV_MULTIPLICITY
3013 signals [w->signum - 1].loop = 0; /* unattach from signal */
3014#endif
3015#if EV_USE_SIGNALFD
3016 if (sigfd >= 0)
3017 {
3018 sigset_t ss;
3019
3020 sigemptyset (&ss);
3021 sigaddset (&ss, w->signum);
3022 sigdelset (&sigfd_set, w->signum);
3023
3024 signalfd (sigfd, &sigfd_set, 0);
3025 sigprocmask (SIG_UNBLOCK, &ss, 0);
3026 }
3027 else
3028#endif
3029 signal (w->signum, SIG_DFL);
3030 }
3031
3032 EV_FREQUENT_CHECK;
3033}
3034
3035#endif
3036
3037#if EV_CHILD_ENABLE
3038
3039void
3040ev_child_start (EV_P_ ev_child *w)
3041{
3042#if EV_MULTIPLICITY
3043 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3044#endif
3045 if (expect_false (ev_is_active (w)))
3046 return;
3047
3048 EV_FREQUENT_CHECK;
1309 3049
1310 ev_start (EV_A_ (W)w, 1); 3050 ev_start (EV_A_ (W)w, 1);
1311 array_needsize (signals, signalmax, w->signum, signals_init); 3051 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1313 3052
1314 if (!((WL)w)->next) 3053 EV_FREQUENT_CHECK;
1315 {
1316 struct sigaction sa;
1317 sa.sa_handler = sighandler;
1318 sigfillset (&sa.sa_mask);
1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1320 sigaction (w->signum, &sa, 0);
1321 }
1322} 3054}
1323 3055
1324void 3056void
1325ev_signal_stop (EV_P_ struct ev_signal *w) 3057ev_child_stop (EV_P_ ev_child *w)
1326{ 3058{
1327 ev_clear_pending (EV_A_ (W)w); 3059 clear_pending (EV_A_ (W)w);
1328 if (!ev_is_active (w)) 3060 if (expect_false (!ev_is_active (w)))
1329 return; 3061 return;
1330 3062
1331 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3063 EV_FREQUENT_CHECK;
3064
3065 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1332 ev_stop (EV_A_ (W)w); 3066 ev_stop (EV_A_ (W)w);
1333 3067
1334 if (!signals [w->signum - 1].head) 3068 EV_FREQUENT_CHECK;
1335 signal (w->signum, SIG_DFL);
1336} 3069}
1337 3070
1338void 3071#endif
1339ev_child_start (EV_P_ struct ev_child *w) 3072
1340{ 3073#if EV_STAT_ENABLE
1341#if EV_MULTIPLICITY 3074
1342 assert (("child watchers are only supported in the default loop", loop == default_loop)); 3075# ifdef _WIN32
3076# undef lstat
3077# define lstat(a,b) _stati64 (a,b)
1343#endif 3078# endif
1344 if (ev_is_active (w)) 3079
3080#define DEF_STAT_INTERVAL 5.0074891
3081#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3082#define MIN_STAT_INTERVAL 0.1074891
3083
3084static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3085
3086#if EV_USE_INOTIFY
3087
3088/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3089# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3090
3091static void noinline
3092infy_add (EV_P_ ev_stat *w)
3093{
3094 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3095
3096 if (w->wd >= 0)
3097 {
3098 struct statfs sfs;
3099
3100 /* now local changes will be tracked by inotify, but remote changes won't */
3101 /* unless the filesystem is known to be local, we therefore still poll */
3102 /* also do poll on <2.6.25, but with normal frequency */
3103
3104 if (!fs_2625)
3105 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3106 else if (!statfs (w->path, &sfs)
3107 && (sfs.f_type == 0x1373 /* devfs */
3108 || sfs.f_type == 0xEF53 /* ext2/3 */
3109 || sfs.f_type == 0x3153464a /* jfs */
3110 || sfs.f_type == 0x52654973 /* reiser3 */
3111 || sfs.f_type == 0x01021994 /* tempfs */
3112 || sfs.f_type == 0x58465342 /* xfs */))
3113 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3114 else
3115 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3116 }
3117 else
3118 {
3119 /* can't use inotify, continue to stat */
3120 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3121
3122 /* if path is not there, monitor some parent directory for speedup hints */
3123 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3124 /* but an efficiency issue only */
3125 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3126 {
3127 char path [4096];
3128 strcpy (path, w->path);
3129
3130 do
3131 {
3132 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3133 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3134
3135 char *pend = strrchr (path, '/');
3136
3137 if (!pend || pend == path)
3138 break;
3139
3140 *pend = 0;
3141 w->wd = inotify_add_watch (fs_fd, path, mask);
3142 }
3143 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3144 }
3145 }
3146
3147 if (w->wd >= 0)
3148 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3149
3150 /* now re-arm timer, if required */
3151 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3152 ev_timer_again (EV_A_ &w->timer);
3153 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3154}
3155
3156static void noinline
3157infy_del (EV_P_ ev_stat *w)
3158{
3159 int slot;
3160 int wd = w->wd;
3161
3162 if (wd < 0)
1345 return; 3163 return;
1346 3164
3165 w->wd = -2;
3166 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3167 wlist_del (&fs_hash [slot].head, (WL)w);
3168
3169 /* remove this watcher, if others are watching it, they will rearm */
3170 inotify_rm_watch (fs_fd, wd);
3171}
3172
3173static void noinline
3174infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3175{
3176 if (slot < 0)
3177 /* overflow, need to check for all hash slots */
3178 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3179 infy_wd (EV_A_ slot, wd, ev);
3180 else
3181 {
3182 WL w_;
3183
3184 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3185 {
3186 ev_stat *w = (ev_stat *)w_;
3187 w_ = w_->next; /* lets us remove this watcher and all before it */
3188
3189 if (w->wd == wd || wd == -1)
3190 {
3191 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3192 {
3193 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3194 w->wd = -1;
3195 infy_add (EV_A_ w); /* re-add, no matter what */
3196 }
3197
3198 stat_timer_cb (EV_A_ &w->timer, 0);
3199 }
3200 }
3201 }
3202}
3203
3204static void
3205infy_cb (EV_P_ ev_io *w, int revents)
3206{
3207 char buf [EV_INOTIFY_BUFSIZE];
3208 int ofs;
3209 int len = read (fs_fd, buf, sizeof (buf));
3210
3211 for (ofs = 0; ofs < len; )
3212 {
3213 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3214 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3215 ofs += sizeof (struct inotify_event) + ev->len;
3216 }
3217}
3218
3219inline_size void
3220ev_check_2625 (EV_P)
3221{
3222 /* kernels < 2.6.25 are borked
3223 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3224 */
3225 if (ev_linux_version () < 0x020619)
3226 return;
3227
3228 fs_2625 = 1;
3229}
3230
3231inline_size int
3232infy_newfd (void)
3233{
3234#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3235 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3236 if (fd >= 0)
3237 return fd;
3238#endif
3239 return inotify_init ();
3240}
3241
3242inline_size void
3243infy_init (EV_P)
3244{
3245 if (fs_fd != -2)
3246 return;
3247
3248 fs_fd = -1;
3249
3250 ev_check_2625 (EV_A);
3251
3252 fs_fd = infy_newfd ();
3253
3254 if (fs_fd >= 0)
3255 {
3256 fd_intern (fs_fd);
3257 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3258 ev_set_priority (&fs_w, EV_MAXPRI);
3259 ev_io_start (EV_A_ &fs_w);
3260 ev_unref (EV_A);
3261 }
3262}
3263
3264inline_size void
3265infy_fork (EV_P)
3266{
3267 int slot;
3268
3269 if (fs_fd < 0)
3270 return;
3271
3272 ev_ref (EV_A);
3273 ev_io_stop (EV_A_ &fs_w);
3274 close (fs_fd);
3275 fs_fd = infy_newfd ();
3276
3277 if (fs_fd >= 0)
3278 {
3279 fd_intern (fs_fd);
3280 ev_io_set (&fs_w, fs_fd, EV_READ);
3281 ev_io_start (EV_A_ &fs_w);
3282 ev_unref (EV_A);
3283 }
3284
3285 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3286 {
3287 WL w_ = fs_hash [slot].head;
3288 fs_hash [slot].head = 0;
3289
3290 while (w_)
3291 {
3292 ev_stat *w = (ev_stat *)w_;
3293 w_ = w_->next; /* lets us add this watcher */
3294
3295 w->wd = -1;
3296
3297 if (fs_fd >= 0)
3298 infy_add (EV_A_ w); /* re-add, no matter what */
3299 else
3300 {
3301 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3302 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3303 ev_timer_again (EV_A_ &w->timer);
3304 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3305 }
3306 }
3307 }
3308}
3309
3310#endif
3311
3312#ifdef _WIN32
3313# define EV_LSTAT(p,b) _stati64 (p, b)
3314#else
3315# define EV_LSTAT(p,b) lstat (p, b)
3316#endif
3317
3318void
3319ev_stat_stat (EV_P_ ev_stat *w)
3320{
3321 if (lstat (w->path, &w->attr) < 0)
3322 w->attr.st_nlink = 0;
3323 else if (!w->attr.st_nlink)
3324 w->attr.st_nlink = 1;
3325}
3326
3327static void noinline
3328stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3329{
3330 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3331
3332 ev_statdata prev = w->attr;
3333 ev_stat_stat (EV_A_ w);
3334
3335 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3336 if (
3337 prev.st_dev != w->attr.st_dev
3338 || prev.st_ino != w->attr.st_ino
3339 || prev.st_mode != w->attr.st_mode
3340 || prev.st_nlink != w->attr.st_nlink
3341 || prev.st_uid != w->attr.st_uid
3342 || prev.st_gid != w->attr.st_gid
3343 || prev.st_rdev != w->attr.st_rdev
3344 || prev.st_size != w->attr.st_size
3345 || prev.st_atime != w->attr.st_atime
3346 || prev.st_mtime != w->attr.st_mtime
3347 || prev.st_ctime != w->attr.st_ctime
3348 ) {
3349 /* we only update w->prev on actual differences */
3350 /* in case we test more often than invoke the callback, */
3351 /* to ensure that prev is always different to attr */
3352 w->prev = prev;
3353
3354 #if EV_USE_INOTIFY
3355 if (fs_fd >= 0)
3356 {
3357 infy_del (EV_A_ w);
3358 infy_add (EV_A_ w);
3359 ev_stat_stat (EV_A_ w); /* avoid race... */
3360 }
3361 #endif
3362
3363 ev_feed_event (EV_A_ w, EV_STAT);
3364 }
3365}
3366
3367void
3368ev_stat_start (EV_P_ ev_stat *w)
3369{
3370 if (expect_false (ev_is_active (w)))
3371 return;
3372
3373 ev_stat_stat (EV_A_ w);
3374
3375 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3376 w->interval = MIN_STAT_INTERVAL;
3377
3378 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3379 ev_set_priority (&w->timer, ev_priority (w));
3380
3381#if EV_USE_INOTIFY
3382 infy_init (EV_A);
3383
3384 if (fs_fd >= 0)
3385 infy_add (EV_A_ w);
3386 else
3387#endif
3388 {
3389 ev_timer_again (EV_A_ &w->timer);
3390 ev_unref (EV_A);
3391 }
3392
1347 ev_start (EV_A_ (W)w, 1); 3393 ev_start (EV_A_ (W)w, 1);
1348 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1349}
1350 3394
3395 EV_FREQUENT_CHECK;
3396}
3397
1351void 3398void
1352ev_child_stop (EV_P_ struct ev_child *w) 3399ev_stat_stop (EV_P_ ev_stat *w)
1353{ 3400{
1354 ev_clear_pending (EV_A_ (W)w); 3401 clear_pending (EV_A_ (W)w);
1355 if (ev_is_active (w)) 3402 if (expect_false (!ev_is_active (w)))
1356 return; 3403 return;
1357 3404
1358 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3405 EV_FREQUENT_CHECK;
3406
3407#if EV_USE_INOTIFY
3408 infy_del (EV_A_ w);
3409#endif
3410
3411 if (ev_is_active (&w->timer))
3412 {
3413 ev_ref (EV_A);
3414 ev_timer_stop (EV_A_ &w->timer);
3415 }
3416
1359 ev_stop (EV_A_ (W)w); 3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
1360} 3420}
3421#endif
3422
3423#if EV_IDLE_ENABLE
3424void
3425ev_idle_start (EV_P_ ev_idle *w)
3426{
3427 if (expect_false (ev_is_active (w)))
3428 return;
3429
3430 pri_adjust (EV_A_ (W)w);
3431
3432 EV_FREQUENT_CHECK;
3433
3434 {
3435 int active = ++idlecnt [ABSPRI (w)];
3436
3437 ++idleall;
3438 ev_start (EV_A_ (W)w, active);
3439
3440 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3441 idles [ABSPRI (w)][active - 1] = w;
3442 }
3443
3444 EV_FREQUENT_CHECK;
3445}
3446
3447void
3448ev_idle_stop (EV_P_ ev_idle *w)
3449{
3450 clear_pending (EV_A_ (W)w);
3451 if (expect_false (!ev_is_active (w)))
3452 return;
3453
3454 EV_FREQUENT_CHECK;
3455
3456 {
3457 int active = ev_active (w);
3458
3459 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3460 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3461
3462 ev_stop (EV_A_ (W)w);
3463 --idleall;
3464 }
3465
3466 EV_FREQUENT_CHECK;
3467}
3468#endif
3469
3470#if EV_PREPARE_ENABLE
3471void
3472ev_prepare_start (EV_P_ ev_prepare *w)
3473{
3474 if (expect_false (ev_is_active (w)))
3475 return;
3476
3477 EV_FREQUENT_CHECK;
3478
3479 ev_start (EV_A_ (W)w, ++preparecnt);
3480 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3481 prepares [preparecnt - 1] = w;
3482
3483 EV_FREQUENT_CHECK;
3484}
3485
3486void
3487ev_prepare_stop (EV_P_ ev_prepare *w)
3488{
3489 clear_pending (EV_A_ (W)w);
3490 if (expect_false (!ev_is_active (w)))
3491 return;
3492
3493 EV_FREQUENT_CHECK;
3494
3495 {
3496 int active = ev_active (w);
3497
3498 prepares [active - 1] = prepares [--preparecnt];
3499 ev_active (prepares [active - 1]) = active;
3500 }
3501
3502 ev_stop (EV_A_ (W)w);
3503
3504 EV_FREQUENT_CHECK;
3505}
3506#endif
3507
3508#if EV_CHECK_ENABLE
3509void
3510ev_check_start (EV_P_ ev_check *w)
3511{
3512 if (expect_false (ev_is_active (w)))
3513 return;
3514
3515 EV_FREQUENT_CHECK;
3516
3517 ev_start (EV_A_ (W)w, ++checkcnt);
3518 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3519 checks [checkcnt - 1] = w;
3520
3521 EV_FREQUENT_CHECK;
3522}
3523
3524void
3525ev_check_stop (EV_P_ ev_check *w)
3526{
3527 clear_pending (EV_A_ (W)w);
3528 if (expect_false (!ev_is_active (w)))
3529 return;
3530
3531 EV_FREQUENT_CHECK;
3532
3533 {
3534 int active = ev_active (w);
3535
3536 checks [active - 1] = checks [--checkcnt];
3537 ev_active (checks [active - 1]) = active;
3538 }
3539
3540 ev_stop (EV_A_ (W)w);
3541
3542 EV_FREQUENT_CHECK;
3543}
3544#endif
3545
3546#if EV_EMBED_ENABLE
3547void noinline
3548ev_embed_sweep (EV_P_ ev_embed *w)
3549{
3550 ev_run (w->other, EVRUN_NOWAIT);
3551}
3552
3553static void
3554embed_io_cb (EV_P_ ev_io *io, int revents)
3555{
3556 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3557
3558 if (ev_cb (w))
3559 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3560 else
3561 ev_run (w->other, EVRUN_NOWAIT);
3562}
3563
3564static void
3565embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3566{
3567 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3568
3569 {
3570 EV_P = w->other;
3571
3572 while (fdchangecnt)
3573 {
3574 fd_reify (EV_A);
3575 ev_run (EV_A_ EVRUN_NOWAIT);
3576 }
3577 }
3578}
3579
3580static void
3581embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3582{
3583 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3584
3585 ev_embed_stop (EV_A_ w);
3586
3587 {
3588 EV_P = w->other;
3589
3590 ev_loop_fork (EV_A);
3591 ev_run (EV_A_ EVRUN_NOWAIT);
3592 }
3593
3594 ev_embed_start (EV_A_ w);
3595}
3596
3597#if 0
3598static void
3599embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3600{
3601 ev_idle_stop (EV_A_ idle);
3602}
3603#endif
3604
3605void
3606ev_embed_start (EV_P_ ev_embed *w)
3607{
3608 if (expect_false (ev_is_active (w)))
3609 return;
3610
3611 {
3612 EV_P = w->other;
3613 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3615 }
3616
3617 EV_FREQUENT_CHECK;
3618
3619 ev_set_priority (&w->io, ev_priority (w));
3620 ev_io_start (EV_A_ &w->io);
3621
3622 ev_prepare_init (&w->prepare, embed_prepare_cb);
3623 ev_set_priority (&w->prepare, EV_MINPRI);
3624 ev_prepare_start (EV_A_ &w->prepare);
3625
3626 ev_fork_init (&w->fork, embed_fork_cb);
3627 ev_fork_start (EV_A_ &w->fork);
3628
3629 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3630
3631 ev_start (EV_A_ (W)w, 1);
3632
3633 EV_FREQUENT_CHECK;
3634}
3635
3636void
3637ev_embed_stop (EV_P_ ev_embed *w)
3638{
3639 clear_pending (EV_A_ (W)w);
3640 if (expect_false (!ev_is_active (w)))
3641 return;
3642
3643 EV_FREQUENT_CHECK;
3644
3645 ev_io_stop (EV_A_ &w->io);
3646 ev_prepare_stop (EV_A_ &w->prepare);
3647 ev_fork_stop (EV_A_ &w->fork);
3648
3649 ev_stop (EV_A_ (W)w);
3650
3651 EV_FREQUENT_CHECK;
3652}
3653#endif
3654
3655#if EV_FORK_ENABLE
3656void
3657ev_fork_start (EV_P_ ev_fork *w)
3658{
3659 if (expect_false (ev_is_active (w)))
3660 return;
3661
3662 EV_FREQUENT_CHECK;
3663
3664 ev_start (EV_A_ (W)w, ++forkcnt);
3665 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3666 forks [forkcnt - 1] = w;
3667
3668 EV_FREQUENT_CHECK;
3669}
3670
3671void
3672ev_fork_stop (EV_P_ ev_fork *w)
3673{
3674 clear_pending (EV_A_ (W)w);
3675 if (expect_false (!ev_is_active (w)))
3676 return;
3677
3678 EV_FREQUENT_CHECK;
3679
3680 {
3681 int active = ev_active (w);
3682
3683 forks [active - 1] = forks [--forkcnt];
3684 ev_active (forks [active - 1]) = active;
3685 }
3686
3687 ev_stop (EV_A_ (W)w);
3688
3689 EV_FREQUENT_CHECK;
3690}
3691#endif
3692
3693#if EV_CLEANUP_ENABLE
3694void
3695ev_cleanup_start (EV_P_ ev_cleanup *w)
3696{
3697 if (expect_false (ev_is_active (w)))
3698 return;
3699
3700 EV_FREQUENT_CHECK;
3701
3702 ev_start (EV_A_ (W)w, ++cleanupcnt);
3703 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3704 cleanups [cleanupcnt - 1] = w;
3705
3706 /* cleanup watchers should never keep a refcount on the loop */
3707 ev_unref (EV_A);
3708 EV_FREQUENT_CHECK;
3709}
3710
3711void
3712ev_cleanup_stop (EV_P_ ev_cleanup *w)
3713{
3714 clear_pending (EV_A_ (W)w);
3715 if (expect_false (!ev_is_active (w)))
3716 return;
3717
3718 EV_FREQUENT_CHECK;
3719 ev_ref (EV_A);
3720
3721 {
3722 int active = ev_active (w);
3723
3724 cleanups [active - 1] = cleanups [--cleanupcnt];
3725 ev_active (cleanups [active - 1]) = active;
3726 }
3727
3728 ev_stop (EV_A_ (W)w);
3729
3730 EV_FREQUENT_CHECK;
3731}
3732#endif
3733
3734#if EV_ASYNC_ENABLE
3735void
3736ev_async_start (EV_P_ ev_async *w)
3737{
3738 if (expect_false (ev_is_active (w)))
3739 return;
3740
3741 w->sent = 0;
3742
3743 evpipe_init (EV_A);
3744
3745 EV_FREQUENT_CHECK;
3746
3747 ev_start (EV_A_ (W)w, ++asynccnt);
3748 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3749 asyncs [asynccnt - 1] = w;
3750
3751 EV_FREQUENT_CHECK;
3752}
3753
3754void
3755ev_async_stop (EV_P_ ev_async *w)
3756{
3757 clear_pending (EV_A_ (W)w);
3758 if (expect_false (!ev_is_active (w)))
3759 return;
3760
3761 EV_FREQUENT_CHECK;
3762
3763 {
3764 int active = ev_active (w);
3765
3766 asyncs [active - 1] = asyncs [--asynccnt];
3767 ev_active (asyncs [active - 1]) = active;
3768 }
3769
3770 ev_stop (EV_A_ (W)w);
3771
3772 EV_FREQUENT_CHECK;
3773}
3774
3775void
3776ev_async_send (EV_P_ ev_async *w)
3777{
3778 w->sent = 1;
3779 evpipe_write (EV_A_ &async_pending);
3780}
3781#endif
1361 3782
1362/*****************************************************************************/ 3783/*****************************************************************************/
1363 3784
1364struct ev_once 3785struct ev_once
1365{ 3786{
1366 struct ev_io io; 3787 ev_io io;
1367 struct ev_timer to; 3788 ev_timer to;
1368 void (*cb)(int revents, void *arg); 3789 void (*cb)(int revents, void *arg);
1369 void *arg; 3790 void *arg;
1370}; 3791};
1371 3792
1372static void 3793static void
1373once_cb (EV_P_ struct ev_once *once, int revents) 3794once_cb (EV_P_ struct ev_once *once, int revents)
1374{ 3795{
1375 void (*cb)(int revents, void *arg) = once->cb; 3796 void (*cb)(int revents, void *arg) = once->cb;
1376 void *arg = once->arg; 3797 void *arg = once->arg;
1377 3798
1378 ev_io_stop (EV_A_ &once->io); 3799 ev_io_stop (EV_A_ &once->io);
1379 ev_timer_stop (EV_A_ &once->to); 3800 ev_timer_stop (EV_A_ &once->to);
1380 free (once); 3801 ev_free (once);
1381 3802
1382 cb (revents, arg); 3803 cb (revents, arg);
1383} 3804}
1384 3805
1385static void 3806static void
1386once_cb_io (EV_P_ struct ev_io *w, int revents) 3807once_cb_io (EV_P_ ev_io *w, int revents)
1387{ 3808{
1388 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3809 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3810
3811 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1389} 3812}
1390 3813
1391static void 3814static void
1392once_cb_to (EV_P_ struct ev_timer *w, int revents) 3815once_cb_to (EV_P_ ev_timer *w, int revents)
1393{ 3816{
1394 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3817 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3818
3819 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1395} 3820}
1396 3821
1397void 3822void
1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3823ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1399{ 3824{
1400 struct ev_once *once = malloc (sizeof (struct ev_once)); 3825 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1401 3826
1402 if (!once) 3827 if (expect_false (!once))
3828 {
1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3829 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1404 else 3830 return;
1405 { 3831 }
3832
1406 once->cb = cb; 3833 once->cb = cb;
1407 once->arg = arg; 3834 once->arg = arg;
1408 3835
1409 ev_watcher_init (&once->io, once_cb_io); 3836 ev_init (&once->io, once_cb_io);
1410 if (fd >= 0) 3837 if (fd >= 0)
3838 {
3839 ev_io_set (&once->io, fd, events);
3840 ev_io_start (EV_A_ &once->io);
3841 }
3842
3843 ev_init (&once->to, once_cb_to);
3844 if (timeout >= 0.)
3845 {
3846 ev_timer_set (&once->to, timeout, 0.);
3847 ev_timer_start (EV_A_ &once->to);
3848 }
3849}
3850
3851/*****************************************************************************/
3852
3853#if EV_WALK_ENABLE
3854void
3855ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3856{
3857 int i, j;
3858 ev_watcher_list *wl, *wn;
3859
3860 if (types & (EV_IO | EV_EMBED))
3861 for (i = 0; i < anfdmax; ++i)
3862 for (wl = anfds [i].head; wl; )
1411 { 3863 {
1412 ev_io_set (&once->io, fd, events); 3864 wn = wl->next;
1413 ev_io_start (EV_A_ &once->io); 3865
3866#if EV_EMBED_ENABLE
3867 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3868 {
3869 if (types & EV_EMBED)
3870 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3871 }
3872 else
3873#endif
3874#if EV_USE_INOTIFY
3875 if (ev_cb ((ev_io *)wl) == infy_cb)
3876 ;
3877 else
3878#endif
3879 if ((ev_io *)wl != &pipe_w)
3880 if (types & EV_IO)
3881 cb (EV_A_ EV_IO, wl);
3882
3883 wl = wn;
1414 } 3884 }
1415 3885
1416 ev_watcher_init (&once->to, once_cb_to); 3886 if (types & (EV_TIMER | EV_STAT))
1417 if (timeout >= 0.) 3887 for (i = timercnt + HEAP0; i-- > HEAP0; )
3888#if EV_STAT_ENABLE
3889 /*TODO: timer is not always active*/
3890 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1418 { 3891 {
1419 ev_timer_set (&once->to, timeout, 0.); 3892 if (types & EV_STAT)
1420 ev_timer_start (EV_A_ &once->to); 3893 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1421 } 3894 }
1422 } 3895 else
1423} 3896#endif
3897 if (types & EV_TIMER)
3898 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1424 3899
3900#if EV_PERIODIC_ENABLE
3901 if (types & EV_PERIODIC)
3902 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3903 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3904#endif
3905
3906#if EV_IDLE_ENABLE
3907 if (types & EV_IDLE)
3908 for (j = NUMPRI; i--; )
3909 for (i = idlecnt [j]; i--; )
3910 cb (EV_A_ EV_IDLE, idles [j][i]);
3911#endif
3912
3913#if EV_FORK_ENABLE
3914 if (types & EV_FORK)
3915 for (i = forkcnt; i--; )
3916 if (ev_cb (forks [i]) != embed_fork_cb)
3917 cb (EV_A_ EV_FORK, forks [i]);
3918#endif
3919
3920#if EV_ASYNC_ENABLE
3921 if (types & EV_ASYNC)
3922 for (i = asynccnt; i--; )
3923 cb (EV_A_ EV_ASYNC, asyncs [i]);
3924#endif
3925
3926#if EV_PREPARE_ENABLE
3927 if (types & EV_PREPARE)
3928 for (i = preparecnt; i--; )
3929# if EV_EMBED_ENABLE
3930 if (ev_cb (prepares [i]) != embed_prepare_cb)
3931# endif
3932 cb (EV_A_ EV_PREPARE, prepares [i]);
3933#endif
3934
3935#if EV_CHECK_ENABLE
3936 if (types & EV_CHECK)
3937 for (i = checkcnt; i--; )
3938 cb (EV_A_ EV_CHECK, checks [i]);
3939#endif
3940
3941#if EV_SIGNAL_ENABLE
3942 if (types & EV_SIGNAL)
3943 for (i = 0; i < EV_NSIG - 1; ++i)
3944 for (wl = signals [i].head; wl; )
3945 {
3946 wn = wl->next;
3947 cb (EV_A_ EV_SIGNAL, wl);
3948 wl = wn;
3949 }
3950#endif
3951
3952#if EV_CHILD_ENABLE
3953 if (types & EV_CHILD)
3954 for (i = (EV_PID_HASHSIZE); i--; )
3955 for (wl = childs [i]; wl; )
3956 {
3957 wn = wl->next;
3958 cb (EV_A_ EV_CHILD, wl);
3959 wl = wn;
3960 }
3961#endif
3962/* EV_STAT 0x00001000 /* stat data changed */
3963/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3964}
3965#endif
3966
3967#if EV_MULTIPLICITY
3968 #include "ev_wrap.h"
3969#endif
3970
3971EV_CPP(})
3972

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines