ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.227 by root, Fri May 2 07:20:01 2008 UTC vs.
Revision 1.376 by root, Sat Jun 4 05:33:29 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
152#endif 186#endif
187
188EV_CPP(extern "C" {)
153 189
154#ifndef _WIN32 190#ifndef _WIN32
155# include <sys/time.h> 191# include <sys/time.h>
156# include <sys/wait.h> 192# include <sys/wait.h>
157# include <unistd.h> 193# include <unistd.h>
158#else 194#else
195# include <io.h>
159# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 197# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
163# endif 200# endif
201# undef EV_AVOID_STDIO
164#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
165 211
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
167 213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
168#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
169# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
170#endif 260#endif
171 261
172#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 264#endif
175 265
176#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
177# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
178#endif 272#endif
179 273
180#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 276#endif
183 277
184#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
185# ifdef _WIN32 279# ifdef _WIN32
186# define EV_USE_POLL 0 280# define EV_USE_POLL 0
187# else 281# else
188# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 283# endif
190#endif 284#endif
191 285
192#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 289# else
196# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
197# endif 291# endif
198#endif 292#endif
199 293
205# define EV_USE_PORT 0 299# define EV_USE_PORT 0
206#endif 300#endif
207 301
208#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 305# else
212# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
213# endif 307# endif
214#endif 308#endif
215 309
216#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 312#endif
223 313
224#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 316#endif
231 317
232#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 321# else
236# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
237# endif 323# endif
238#endif 324#endif
239 325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
241 373
242#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
245#endif 377#endif
253# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
255#endif 387#endif
256 388
257#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 392# include <sys/select.h>
260# endif 393# endif
261#endif 394#endif
262 395
263#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
264# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
265#endif 404#endif
266 405
267#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 407# include <winsock.h>
269#endif 408#endif
270 409
271#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 412# include <stdint.h>
274# ifdef __cplusplus 413# ifndef EFD_NONBLOCK
275extern "C" { 414# define EFD_NONBLOCK O_NONBLOCK
276# endif 415# endif
277int eventfd (unsigned int initval, int flags); 416# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 417# ifdef O_CLOEXEC
279} 418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
280# endif 422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
281#endif 446#endif
282 447
283/**/ 448/**/
284 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
285/* 456/*
286 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 459 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 462
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
298 468
299#if __GNUC__ >= 4 469#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 471# define noinline __attribute__ ((noinline))
302#else 472#else
309 479
310#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 482#define inline_size static inline
313 483
314#if EV_MINIMAL 484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
315# define inline_speed static noinline 487# define inline_speed static noinline
488#endif
489
490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
316#else 494#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
322 497
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 498#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 499#define EMPTY2(a,b) /* used to suppress some warnings */
325 500
326typedef ev_watcher *W; 501typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
329 504
505#define ev_active(w) ((W)(w))->active
506#define ev_at(w) ((WT)(w))->at
507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
330#if EV_USE_MONOTONIC 514#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
334#endif 526#endif
335 527
336#ifdef _WIN32 528#ifdef _WIN32
337# include "ev_win32.c" 529# include "ev_win32.c"
338#endif 530#endif
339 531
340/*****************************************************************************/ 532/*****************************************************************************/
341 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
342static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
343 633
344void 634void
345ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
346{ 636{
347 syserr_cb = cb; 637 syserr_cb = cb;
348} 638}
349 639
350static void noinline 640static void noinline
351syserr (const char *msg) 641ev_syserr (const char *msg)
352{ 642{
353 if (!msg) 643 if (!msg)
354 msg = "(libev) system error"; 644 msg = "(libev) system error";
355 645
356 if (syserr_cb) 646 if (syserr_cb)
357 syserr_cb (msg); 647 syserr_cb (msg);
358 else 648 else
359 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
360 perror (msg); 656 perror (msg);
657#endif
361 abort (); 658 abort ();
362 } 659 }
363} 660}
364 661
365static void * 662static void *
366ev_realloc_emul (void *ptr, long size) 663ev_realloc_emul (void *ptr, long size)
367{ 664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
368 /* some systems, notably openbsd and darwin, fail to properly 668 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and 669 * implement realloc (x, 0) (as required by both ansi c-89 and
370 * the single unix specification, so work around them here. 670 * the single unix specification, so work around them here.
371 */ 671 */
372 672
373 if (size) 673 if (size)
374 return realloc (ptr, size); 674 return realloc (ptr, size);
375 675
376 free (ptr); 676 free (ptr);
377 return 0; 677 return 0;
678#endif
378} 679}
379 680
380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
381 682
382void 683void
390{ 691{
391 ptr = alloc (ptr, size); 692 ptr = alloc (ptr, size);
392 693
393 if (!ptr && size) 694 if (!ptr && size)
394 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
396 abort (); 701 abort ();
397 } 702 }
398 703
399 return ptr; 704 return ptr;
400} 705}
402#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
403#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
404 709
405/*****************************************************************************/ 710/*****************************************************************************/
406 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
407typedef struct 716typedef struct
408{ 717{
409 WL head; 718 WL head;
410 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
411 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
412#if EV_SELECT_IS_WINSOCKET 726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
413 SOCKET handle; 727 SOCKET handle;
414#endif 728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
415} ANFD; 732} ANFD;
416 733
734/* stores the pending event set for a given watcher */
417typedef struct 735typedef struct
418{ 736{
419 W w; 737 W w;
420 int events; 738 int events; /* the pending event set for the given watcher */
421} ANPENDING; 739} ANPENDING;
422 740
423#if EV_USE_INOTIFY 741#if EV_USE_INOTIFY
742/* hash table entry per inotify-id */
424typedef struct 743typedef struct
425{ 744{
426 WL head; 745 WL head;
427} ANFS; 746} ANFS;
747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
428#endif 767#endif
429 768
430#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
431 770
432 struct ev_loop 771 struct ev_loop
451 790
452 static int ev_default_loop_ptr; 791 static int ev_default_loop_ptr;
453 792
454#endif 793#endif
455 794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
806
456/*****************************************************************************/ 807/*****************************************************************************/
457 808
809#ifndef EV_HAVE_EV_TIME
458ev_tstamp 810ev_tstamp
459ev_time (void) 811ev_time (void)
460{ 812{
461#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
462 struct timespec ts; 816 struct timespec ts;
463 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
464 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
465#else 819 }
820#endif
821
466 struct timeval tv; 822 struct timeval tv;
467 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
468 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
469#endif
470} 825}
826#endif
471 827
472ev_tstamp inline_size 828inline_size ev_tstamp
473get_clock (void) 829get_clock (void)
474{ 830{
475#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
476 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
477 { 833 {
498 if (delay > 0.) 854 if (delay > 0.)
499 { 855 {
500#if EV_USE_NANOSLEEP 856#if EV_USE_NANOSLEEP
501 struct timespec ts; 857 struct timespec ts;
502 858
503 ts.tv_sec = (time_t)delay; 859 EV_TS_SET (ts, delay);
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0); 860 nanosleep (&ts, 0);
507#elif defined(_WIN32) 861#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3)); 862 Sleep ((unsigned long)(delay * 1e3));
509#else 863#else
510 struct timeval tv; 864 struct timeval tv;
511 865
512 tv.tv_sec = (time_t)delay; 866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 867 /* something not guaranteed by newer posix versions, but guaranteed */
514 868 /* by older ones */
869 EV_TV_SET (tv, delay);
515 select (0, 0, 0, 0, &tv); 870 select (0, 0, 0, 0, &tv);
516#endif 871#endif
517 } 872 }
518} 873}
519 874
520/*****************************************************************************/ 875/*****************************************************************************/
521 876
522int inline_size 877#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
878
879/* find a suitable new size for the given array, */
880/* hopefully by rounding to a nice-to-malloc size */
881inline_size int
523array_nextsize (int elem, int cur, int cnt) 882array_nextsize (int elem, int cur, int cnt)
524{ 883{
525 int ncur = cur + 1; 884 int ncur = cur + 1;
526 885
527 do 886 do
528 ncur <<= 1; 887 ncur <<= 1;
529 while (cnt > ncur); 888 while (cnt > ncur);
530 889
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 890 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 891 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 892 {
534 ncur *= elem; 893 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 894 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 895 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 896 ncur /= elem;
538 } 897 }
539 898
540 return ncur; 899 return ncur;
544array_realloc (int elem, void *base, int *cur, int cnt) 903array_realloc (int elem, void *base, int *cur, int cnt)
545{ 904{
546 *cur = array_nextsize (elem, *cur, cnt); 905 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 906 return ev_realloc (base, elem * *cur);
548} 907}
908
909#define array_init_zero(base,count) \
910 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 911
550#define array_needsize(type,base,cur,cnt,init) \ 912#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 913 if (expect_false ((cnt) > (cur))) \
552 { \ 914 { \
553 int ocur_ = (cur); \ 915 int ocur_ = (cur); \
565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 927 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
566 } 928 }
567#endif 929#endif
568 930
569#define array_free(stem, idx) \ 931#define array_free(stem, idx) \
570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 932 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
571 933
572/*****************************************************************************/ 934/*****************************************************************************/
935
936/* dummy callback for pending events */
937static void noinline
938pendingcb (EV_P_ ev_prepare *w, int revents)
939{
940}
573 941
574void noinline 942void noinline
575ev_feed_event (EV_P_ void *w, int revents) 943ev_feed_event (EV_P_ void *w, int revents)
576{ 944{
577 W w_ = (W)w; 945 W w_ = (W)w;
586 pendings [pri][w_->pending - 1].w = w_; 954 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents; 955 pendings [pri][w_->pending - 1].events = revents;
588 } 956 }
589} 957}
590 958
591void inline_speed 959inline_speed void
960feed_reverse (EV_P_ W w)
961{
962 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963 rfeeds [rfeedcnt++] = w;
964}
965
966inline_size void
967feed_reverse_done (EV_P_ int revents)
968{
969 do
970 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971 while (rfeedcnt);
972}
973
974inline_speed void
592queue_events (EV_P_ W *events, int eventcnt, int type) 975queue_events (EV_P_ W *events, int eventcnt, int type)
593{ 976{
594 int i; 977 int i;
595 978
596 for (i = 0; i < eventcnt; ++i) 979 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type); 980 ev_feed_event (EV_A_ events [i], type);
598} 981}
599 982
600/*****************************************************************************/ 983/*****************************************************************************/
601 984
602void inline_size 985inline_speed void
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed
616fd_event (EV_P_ int fd, int revents) 986fd_event_nocheck (EV_P_ int fd, int revents)
617{ 987{
618 ANFD *anfd = anfds + fd; 988 ANFD *anfd = anfds + fd;
619 ev_io *w; 989 ev_io *w;
620 990
621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 991 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
625 if (ev) 995 if (ev)
626 ev_feed_event (EV_A_ (W)w, ev); 996 ev_feed_event (EV_A_ (W)w, ev);
627 } 997 }
628} 998}
629 999
1000/* do not submit kernel events for fds that have reify set */
1001/* because that means they changed while we were polling for new events */
1002inline_speed void
1003fd_event (EV_P_ int fd, int revents)
1004{
1005 ANFD *anfd = anfds + fd;
1006
1007 if (expect_true (!anfd->reify))
1008 fd_event_nocheck (EV_A_ fd, revents);
1009}
1010
630void 1011void
631ev_feed_fd_event (EV_P_ int fd, int revents) 1012ev_feed_fd_event (EV_P_ int fd, int revents)
632{ 1013{
633 if (fd >= 0 && fd < anfdmax) 1014 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents); 1015 fd_event_nocheck (EV_A_ fd, revents);
635} 1016}
636 1017
637void inline_size 1018/* make sure the external fd watch events are in-sync */
1019/* with the kernel/libev internal state */
1020inline_size void
638fd_reify (EV_P) 1021fd_reify (EV_P)
639{ 1022{
640 int i; 1023 int i;
1024
1025#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1026 for (i = 0; i < fdchangecnt; ++i)
1027 {
1028 int fd = fdchanges [i];
1029 ANFD *anfd = anfds + fd;
1030
1031 if (anfd->reify & EV__IOFDSET && anfd->head)
1032 {
1033 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034
1035 if (handle != anfd->handle)
1036 {
1037 unsigned long arg;
1038
1039 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040
1041 /* handle changed, but fd didn't - we need to do it in two steps */
1042 backend_modify (EV_A_ fd, anfd->events, 0);
1043 anfd->events = 0;
1044 anfd->handle = handle;
1045 }
1046 }
1047 }
1048#endif
641 1049
642 for (i = 0; i < fdchangecnt; ++i) 1050 for (i = 0; i < fdchangecnt; ++i)
643 { 1051 {
644 int fd = fdchanges [i]; 1052 int fd = fdchanges [i];
645 ANFD *anfd = anfds + fd; 1053 ANFD *anfd = anfds + fd;
646 ev_io *w; 1054 ev_io *w;
647 1055
648 unsigned char events = 0; 1056 unsigned char o_events = anfd->events;
1057 unsigned char o_reify = anfd->reify;
649 1058
650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1059 anfd->reify = 0;
651 events |= (unsigned char)w->events;
652 1060
653#if EV_SELECT_IS_WINSOCKET 1061 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
654 if (events)
655 { 1062 {
656 unsigned long argp; 1063 anfd->events = 0;
657 #ifdef EV_FD_TO_WIN32_HANDLE 1064
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1065 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
659 #else 1066 anfd->events |= (unsigned char)w->events;
660 anfd->handle = _get_osfhandle (fd); 1067
661 #endif 1068 if (o_events != anfd->events)
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1069 o_reify = EV__IOFDSET; /* actually |= */
663 } 1070 }
664#endif
665 1071
666 { 1072 if (o_reify & EV__IOFDSET)
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
670 anfd->reify = 0;
671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events); 1073 backend_modify (EV_A_ fd, o_events, anfd->events);
675 }
676 } 1074 }
677 1075
678 fdchangecnt = 0; 1076 fdchangecnt = 0;
679} 1077}
680 1078
681void inline_size 1079/* something about the given fd changed */
1080inline_size void
682fd_change (EV_P_ int fd, int flags) 1081fd_change (EV_P_ int fd, int flags)
683{ 1082{
684 unsigned char reify = anfds [fd].reify; 1083 unsigned char reify = anfds [fd].reify;
685 anfds [fd].reify |= flags; 1084 anfds [fd].reify |= flags;
686 1085
690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1089 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
691 fdchanges [fdchangecnt - 1] = fd; 1090 fdchanges [fdchangecnt - 1] = fd;
692 } 1091 }
693} 1092}
694 1093
695void inline_speed 1094/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095inline_speed void
696fd_kill (EV_P_ int fd) 1096fd_kill (EV_P_ int fd)
697{ 1097{
698 ev_io *w; 1098 ev_io *w;
699 1099
700 while ((w = (ev_io *)anfds [fd].head)) 1100 while ((w = (ev_io *)anfds [fd].head))
702 ev_io_stop (EV_A_ w); 1102 ev_io_stop (EV_A_ w);
703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1103 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
704 } 1104 }
705} 1105}
706 1106
707int inline_size 1107/* check whether the given fd is actually valid, for error recovery */
1108inline_size int
708fd_valid (int fd) 1109fd_valid (int fd)
709{ 1110{
710#ifdef _WIN32 1111#ifdef _WIN32
711 return _get_osfhandle (fd) != -1; 1112 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
712#else 1113#else
713 return fcntl (fd, F_GETFD) != -1; 1114 return fcntl (fd, F_GETFD) != -1;
714#endif 1115#endif
715} 1116}
716 1117
720{ 1121{
721 int fd; 1122 int fd;
722 1123
723 for (fd = 0; fd < anfdmax; ++fd) 1124 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 1125 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 1126 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 1127 fd_kill (EV_A_ fd);
727} 1128}
728 1129
729/* called on ENOMEM in select/poll to kill some fds and retry */ 1130/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 1131static void noinline
734 1135
735 for (fd = anfdmax; fd--; ) 1136 for (fd = anfdmax; fd--; )
736 if (anfds [fd].events) 1137 if (anfds [fd].events)
737 { 1138 {
738 fd_kill (EV_A_ fd); 1139 fd_kill (EV_A_ fd);
739 return; 1140 break;
740 } 1141 }
741} 1142}
742 1143
743/* usually called after fork if backend needs to re-arm all fds from scratch */ 1144/* usually called after fork if backend needs to re-arm all fds from scratch */
744static void noinline 1145static void noinline
748 1149
749 for (fd = 0; fd < anfdmax; ++fd) 1150 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 1151 if (anfds [fd].events)
751 { 1152 {
752 anfds [fd].events = 0; 1153 anfds [fd].events = 0;
1154 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1155 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
754 } 1156 }
755} 1157}
756 1158
757/*****************************************************************************/ 1159/* used to prepare libev internal fd's */
758 1160/* this is not fork-safe */
759/* towards the root */ 1161inline_speed void
760void inline_speed
761upheap (WT *heap, int k)
762{
763 WT w = heap [k];
764
765 while (k)
766 {
767 int p = (k - 1) >> 1;
768
769 if (heap [p]->at <= w->at)
770 break;
771
772 heap [k] = heap [p];
773 ((W)heap [k])->active = k + 1;
774 k = p;
775 }
776
777 heap [k] = w;
778 ((W)heap [k])->active = k + 1;
779}
780
781/* away from the root */
782void inline_speed
783downheap (WT *heap, int N, int k)
784{
785 WT w = heap [k];
786
787 for (;;)
788 {
789 int c = (k << 1) + 1;
790
791 if (c >= N)
792 break;
793
794 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
795 ? 1 : 0;
796
797 if (w->at <= heap [c]->at)
798 break;
799
800 heap [k] = heap [c];
801 ((W)heap [k])->active = k + 1;
802
803 k = c;
804 }
805
806 heap [k] = w;
807 ((W)heap [k])->active = k + 1;
808}
809
810void inline_size
811adjustheap (WT *heap, int N, int k)
812{
813 upheap (heap, k);
814 downheap (heap, N, k);
815}
816
817/*****************************************************************************/
818
819typedef struct
820{
821 WL head;
822 EV_ATOMIC_T gotsig;
823} ANSIG;
824
825static ANSIG *signals;
826static int signalmax;
827
828static EV_ATOMIC_T gotsig;
829
830void inline_size
831signals_init (ANSIG *base, int count)
832{
833 while (count--)
834 {
835 base->head = 0;
836 base->gotsig = 0;
837
838 ++base;
839 }
840}
841
842/*****************************************************************************/
843
844void inline_speed
845fd_intern (int fd) 1162fd_intern (int fd)
846{ 1163{
847#ifdef _WIN32 1164#ifdef _WIN32
848 int arg = 1; 1165 unsigned long arg = 1;
849 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1166 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
850#else 1167#else
851 fcntl (fd, F_SETFD, FD_CLOEXEC); 1168 fcntl (fd, F_SETFD, FD_CLOEXEC);
852 fcntl (fd, F_SETFL, O_NONBLOCK); 1169 fcntl (fd, F_SETFL, O_NONBLOCK);
853#endif 1170#endif
854} 1171}
855 1172
1173/*****************************************************************************/
1174
1175/*
1176 * the heap functions want a real array index. array index 0 is guaranteed to not
1177 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1178 * the branching factor of the d-tree.
1179 */
1180
1181/*
1182 * at the moment we allow libev the luxury of two heaps,
1183 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1184 * which is more cache-efficient.
1185 * the difference is about 5% with 50000+ watchers.
1186 */
1187#if EV_USE_4HEAP
1188
1189#define DHEAP 4
1190#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1191#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1192#define UPHEAP_DONE(p,k) ((p) == (k))
1193
1194/* away from the root */
1195inline_speed void
1196downheap (ANHE *heap, int N, int k)
1197{
1198 ANHE he = heap [k];
1199 ANHE *E = heap + N + HEAP0;
1200
1201 for (;;)
1202 {
1203 ev_tstamp minat;
1204 ANHE *minpos;
1205 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1206
1207 /* find minimum child */
1208 if (expect_true (pos + DHEAP - 1 < E))
1209 {
1210 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1211 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1212 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1213 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1214 }
1215 else if (pos < E)
1216 {
1217 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1218 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1219 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1220 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1221 }
1222 else
1223 break;
1224
1225 if (ANHE_at (he) <= minat)
1226 break;
1227
1228 heap [k] = *minpos;
1229 ev_active (ANHE_w (*minpos)) = k;
1230
1231 k = minpos - heap;
1232 }
1233
1234 heap [k] = he;
1235 ev_active (ANHE_w (he)) = k;
1236}
1237
1238#else /* 4HEAP */
1239
1240#define HEAP0 1
1241#define HPARENT(k) ((k) >> 1)
1242#define UPHEAP_DONE(p,k) (!(p))
1243
1244/* away from the root */
1245inline_speed void
1246downheap (ANHE *heap, int N, int k)
1247{
1248 ANHE he = heap [k];
1249
1250 for (;;)
1251 {
1252 int c = k << 1;
1253
1254 if (c >= N + HEAP0)
1255 break;
1256
1257 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1258 ? 1 : 0;
1259
1260 if (ANHE_at (he) <= ANHE_at (heap [c]))
1261 break;
1262
1263 heap [k] = heap [c];
1264 ev_active (ANHE_w (heap [k])) = k;
1265
1266 k = c;
1267 }
1268
1269 heap [k] = he;
1270 ev_active (ANHE_w (he)) = k;
1271}
1272#endif
1273
1274/* towards the root */
1275inline_speed void
1276upheap (ANHE *heap, int k)
1277{
1278 ANHE he = heap [k];
1279
1280 for (;;)
1281 {
1282 int p = HPARENT (k);
1283
1284 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1285 break;
1286
1287 heap [k] = heap [p];
1288 ev_active (ANHE_w (heap [k])) = k;
1289 k = p;
1290 }
1291
1292 heap [k] = he;
1293 ev_active (ANHE_w (he)) = k;
1294}
1295
1296/* move an element suitably so it is in a correct place */
1297inline_size void
1298adjustheap (ANHE *heap, int N, int k)
1299{
1300 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1301 upheap (heap, k);
1302 else
1303 downheap (heap, N, k);
1304}
1305
1306/* rebuild the heap: this function is used only once and executed rarely */
1307inline_size void
1308reheap (ANHE *heap, int N)
1309{
1310 int i;
1311
1312 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1313 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1314 for (i = 0; i < N; ++i)
1315 upheap (heap, i + HEAP0);
1316}
1317
1318/*****************************************************************************/
1319
1320/* associate signal watchers to a signal signal */
1321typedef struct
1322{
1323 EV_ATOMIC_T pending;
1324#if EV_MULTIPLICITY
1325 EV_P;
1326#endif
1327 WL head;
1328} ANSIG;
1329
1330static ANSIG signals [EV_NSIG - 1];
1331
1332/*****************************************************************************/
1333
1334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1335
856static void noinline 1336static void noinline
857evpipe_init (EV_P) 1337evpipe_init (EV_P)
858{ 1338{
859 if (!ev_is_active (&pipeev)) 1339 if (!ev_is_active (&pipe_w))
860 { 1340 {
861#if EV_USE_EVENTFD 1341# if EV_USE_EVENTFD
1342 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343 if (evfd < 0 && errno == EINVAL)
862 if ((evfd = eventfd (0, 0)) >= 0) 1344 evfd = eventfd (0, 0);
1345
1346 if (evfd >= 0)
863 { 1347 {
864 evpipe [0] = -1; 1348 evpipe [0] = -1;
865 fd_intern (evfd); 1349 fd_intern (evfd); /* doing it twice doesn't hurt */
866 ev_io_set (&pipeev, evfd, EV_READ); 1350 ev_io_set (&pipe_w, evfd, EV_READ);
867 } 1351 }
868 else 1352 else
869#endif 1353# endif
870 { 1354 {
871 while (pipe (evpipe)) 1355 while (pipe (evpipe))
872 syserr ("(libev) error creating signal/async pipe"); 1356 ev_syserr ("(libev) error creating signal/async pipe");
873 1357
874 fd_intern (evpipe [0]); 1358 fd_intern (evpipe [0]);
875 fd_intern (evpipe [1]); 1359 fd_intern (evpipe [1]);
876 ev_io_set (&pipeev, evpipe [0], EV_READ); 1360 ev_io_set (&pipe_w, evpipe [0], EV_READ);
877 } 1361 }
878 1362
879 ev_io_start (EV_A_ &pipeev); 1363 ev_io_start (EV_A_ &pipe_w);
880 ev_unref (EV_A); /* watcher should not keep loop alive */ 1364 ev_unref (EV_A); /* watcher should not keep loop alive */
881 } 1365 }
882} 1366}
883 1367
884void inline_size 1368inline_size void
885evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1369evpipe_write (EV_P_ EV_ATOMIC_T *flag)
886{ 1370{
887 if (!*flag) 1371 if (!*flag)
888 { 1372 {
889 int old_errno = errno; /* save errno because write might clobber it */ 1373 int old_errno = errno; /* save errno because write might clobber it */
1374 char dummy;
890 1375
891 *flag = 1; 1376 *flag = 1;
892 1377
893#if EV_USE_EVENTFD 1378#if EV_USE_EVENTFD
894 if (evfd >= 0) 1379 if (evfd >= 0)
896 uint64_t counter = 1; 1381 uint64_t counter = 1;
897 write (evfd, &counter, sizeof (uint64_t)); 1382 write (evfd, &counter, sizeof (uint64_t));
898 } 1383 }
899 else 1384 else
900#endif 1385#endif
1386 /* win32 people keep sending patches that change this write() to send() */
1387 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1388 /* so when you think this write should be a send instead, please find out */
1389 /* where your send() is from - it's definitely not the microsoft send, and */
1390 /* tell me. thank you. */
901 write (evpipe [1], &old_errno, 1); 1391 write (evpipe [1], &dummy, 1);
902 1392
903 errno = old_errno; 1393 errno = old_errno;
904 } 1394 }
905} 1395}
906 1396
1397/* called whenever the libev signal pipe */
1398/* got some events (signal, async) */
907static void 1399static void
908pipecb (EV_P_ ev_io *iow, int revents) 1400pipecb (EV_P_ ev_io *iow, int revents)
909{ 1401{
1402 int i;
1403
910#if EV_USE_EVENTFD 1404#if EV_USE_EVENTFD
911 if (evfd >= 0) 1405 if (evfd >= 0)
912 { 1406 {
913 uint64_t counter = 1; 1407 uint64_t counter;
914 read (evfd, &counter, sizeof (uint64_t)); 1408 read (evfd, &counter, sizeof (uint64_t));
915 } 1409 }
916 else 1410 else
917#endif 1411#endif
918 { 1412 {
919 char dummy; 1413 char dummy;
1414 /* see discussion in evpipe_write when you think this read should be recv in win32 */
920 read (evpipe [0], &dummy, 1); 1415 read (evpipe [0], &dummy, 1);
921 } 1416 }
922 1417
923 if (gotsig && ev_is_default_loop (EV_A)) 1418#if EV_SIGNAL_ENABLE
924 { 1419 if (sig_pending)
925 int signum; 1420 {
926 gotsig = 0; 1421 sig_pending = 0;
927 1422
928 for (signum = signalmax; signum--; ) 1423 for (i = EV_NSIG - 1; i--; )
929 if (signals [signum].gotsig) 1424 if (expect_false (signals [i].pending))
930 ev_feed_signal_event (EV_A_ signum + 1); 1425 ev_feed_signal_event (EV_A_ i + 1);
931 } 1426 }
1427#endif
932 1428
933#if EV_ASYNC_ENABLE 1429#if EV_ASYNC_ENABLE
934 if (gotasync) 1430 if (async_pending)
935 { 1431 {
936 int i; 1432 async_pending = 0;
937 gotasync = 0;
938 1433
939 for (i = asynccnt; i--; ) 1434 for (i = asynccnt; i--; )
940 if (asyncs [i]->sent) 1435 if (asyncs [i]->sent)
941 { 1436 {
942 asyncs [i]->sent = 0; 1437 asyncs [i]->sent = 0;
946#endif 1441#endif
947} 1442}
948 1443
949/*****************************************************************************/ 1444/*****************************************************************************/
950 1445
1446void
1447ev_feed_signal (int signum)
1448{
1449#if EV_MULTIPLICITY
1450 EV_P = signals [signum - 1].loop;
1451
1452 if (!EV_A)
1453 return;
1454#endif
1455
1456 signals [signum - 1].pending = 1;
1457 evpipe_write (EV_A_ &sig_pending);
1458}
1459
951static void 1460static void
952ev_sighandler (int signum) 1461ev_sighandler (int signum)
953{ 1462{
954#if EV_MULTIPLICITY
955 struct ev_loop *loop = &default_loop_struct;
956#endif
957
958#if _WIN32 1463#ifdef _WIN32
959 signal (signum, ev_sighandler); 1464 signal (signum, ev_sighandler);
960#endif 1465#endif
961 1466
962 signals [signum - 1].gotsig = 1; 1467 ev_feed_signal (signum);
963 evpipe_write (EV_A_ &gotsig);
964} 1468}
965 1469
966void noinline 1470void noinline
967ev_feed_signal_event (EV_P_ int signum) 1471ev_feed_signal_event (EV_P_ int signum)
968{ 1472{
969 WL w; 1473 WL w;
970 1474
1475 if (expect_false (signum <= 0 || signum > EV_NSIG))
1476 return;
1477
1478 --signum;
1479
971#if EV_MULTIPLICITY 1480#if EV_MULTIPLICITY
972 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1481 /* it is permissible to try to feed a signal to the wrong loop */
973#endif 1482 /* or, likely more useful, feeding a signal nobody is waiting for */
974 1483
975 --signum; 1484 if (expect_false (signals [signum].loop != EV_A))
976
977 if (signum < 0 || signum >= signalmax)
978 return; 1485 return;
1486#endif
979 1487
980 signals [signum].gotsig = 0; 1488 signals [signum].pending = 0;
981 1489
982 for (w = signals [signum].head; w; w = w->next) 1490 for (w = signals [signum].head; w; w = w->next)
983 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1491 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
984} 1492}
985 1493
1494#if EV_USE_SIGNALFD
1495static void
1496sigfdcb (EV_P_ ev_io *iow, int revents)
1497{
1498 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1499
1500 for (;;)
1501 {
1502 ssize_t res = read (sigfd, si, sizeof (si));
1503
1504 /* not ISO-C, as res might be -1, but works with SuS */
1505 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1506 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1507
1508 if (res < (ssize_t)sizeof (si))
1509 break;
1510 }
1511}
1512#endif
1513
1514#endif
1515
986/*****************************************************************************/ 1516/*****************************************************************************/
987 1517
1518#if EV_CHILD_ENABLE
988static WL childs [EV_PID_HASHSIZE]; 1519static WL childs [EV_PID_HASHSIZE];
989
990#ifndef _WIN32
991 1520
992static ev_signal childev; 1521static ev_signal childev;
993 1522
994#ifndef WIFCONTINUED 1523#ifndef WIFCONTINUED
995# define WIFCONTINUED(status) 0 1524# define WIFCONTINUED(status) 0
996#endif 1525#endif
997 1526
998void inline_speed 1527/* handle a single child status event */
1528inline_speed void
999child_reap (EV_P_ int chain, int pid, int status) 1529child_reap (EV_P_ int chain, int pid, int status)
1000{ 1530{
1001 ev_child *w; 1531 ev_child *w;
1002 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1532 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1003 1533
1004 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1534 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1005 { 1535 {
1006 if ((w->pid == pid || !w->pid) 1536 if ((w->pid == pid || !w->pid)
1007 && (!traced || (w->flags & 1))) 1537 && (!traced || (w->flags & 1)))
1008 { 1538 {
1009 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1539 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1016 1546
1017#ifndef WCONTINUED 1547#ifndef WCONTINUED
1018# define WCONTINUED 0 1548# define WCONTINUED 0
1019#endif 1549#endif
1020 1550
1551/* called on sigchld etc., calls waitpid */
1021static void 1552static void
1022childcb (EV_P_ ev_signal *sw, int revents) 1553childcb (EV_P_ ev_signal *sw, int revents)
1023{ 1554{
1024 int pid, status; 1555 int pid, status;
1025 1556
1033 /* make sure we are called again until all children have been reaped */ 1564 /* make sure we are called again until all children have been reaped */
1034 /* we need to do it this way so that the callback gets called before we continue */ 1565 /* we need to do it this way so that the callback gets called before we continue */
1035 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1566 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1036 1567
1037 child_reap (EV_A_ pid, pid, status); 1568 child_reap (EV_A_ pid, pid, status);
1038 if (EV_PID_HASHSIZE > 1) 1569 if ((EV_PID_HASHSIZE) > 1)
1039 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1570 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1040} 1571}
1041 1572
1042#endif 1573#endif
1043 1574
1044/*****************************************************************************/ 1575/*****************************************************************************/
1045 1576
1577#if EV_USE_IOCP
1578# include "ev_iocp.c"
1579#endif
1046#if EV_USE_PORT 1580#if EV_USE_PORT
1047# include "ev_port.c" 1581# include "ev_port.c"
1048#endif 1582#endif
1049#if EV_USE_KQUEUE 1583#if EV_USE_KQUEUE
1050# include "ev_kqueue.c" 1584# include "ev_kqueue.c"
1106 /* kqueue is borked on everything but netbsd apparently */ 1640 /* kqueue is borked on everything but netbsd apparently */
1107 /* it usually doesn't work correctly on anything but sockets and pipes */ 1641 /* it usually doesn't work correctly on anything but sockets and pipes */
1108 flags &= ~EVBACKEND_KQUEUE; 1642 flags &= ~EVBACKEND_KQUEUE;
1109#endif 1643#endif
1110#ifdef __APPLE__ 1644#ifdef __APPLE__
1111 // flags &= ~EVBACKEND_KQUEUE; for documentation 1645 /* only select works correctly on that "unix-certified" platform */
1112 flags &= ~EVBACKEND_POLL; 1646 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1647 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1648#endif
1649#ifdef __FreeBSD__
1650 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1113#endif 1651#endif
1114 1652
1115 return flags; 1653 return flags;
1116} 1654}
1117 1655
1119ev_embeddable_backends (void) 1657ev_embeddable_backends (void)
1120{ 1658{
1121 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 1659 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1122 1660
1123 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1661 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1124 /* please fix it and tell me how to detect the fix */ 1662 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1125 flags &= ~EVBACKEND_EPOLL; 1663 flags &= ~EVBACKEND_EPOLL;
1126 1664
1127 return flags; 1665 return flags;
1128} 1666}
1129 1667
1130unsigned int 1668unsigned int
1131ev_backend (EV_P) 1669ev_backend (EV_P)
1132{ 1670{
1133 return backend; 1671 return backend;
1134} 1672}
1135 1673
1674#if EV_FEATURE_API
1136unsigned int 1675unsigned int
1137ev_loop_count (EV_P) 1676ev_iteration (EV_P)
1138{ 1677{
1139 return loop_count; 1678 return loop_count;
1140} 1679}
1141 1680
1681unsigned int
1682ev_depth (EV_P)
1683{
1684 return loop_depth;
1685}
1686
1142void 1687void
1143ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1688ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1144{ 1689{
1145 io_blocktime = interval; 1690 io_blocktime = interval;
1146} 1691}
1149ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1694ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1150{ 1695{
1151 timeout_blocktime = interval; 1696 timeout_blocktime = interval;
1152} 1697}
1153 1698
1699void
1700ev_set_userdata (EV_P_ void *data)
1701{
1702 userdata = data;
1703}
1704
1705void *
1706ev_userdata (EV_P)
1707{
1708 return userdata;
1709}
1710
1711void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1712{
1713 invoke_cb = invoke_pending_cb;
1714}
1715
1716void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1717{
1718 release_cb = release;
1719 acquire_cb = acquire;
1720}
1721#endif
1722
1723/* initialise a loop structure, must be zero-initialised */
1154static void noinline 1724static void noinline
1155loop_init (EV_P_ unsigned int flags) 1725loop_init (EV_P_ unsigned int flags)
1156{ 1726{
1157 if (!backend) 1727 if (!backend)
1158 { 1728 {
1729 origflags = flags;
1730
1731#if EV_USE_REALTIME
1732 if (!have_realtime)
1733 {
1734 struct timespec ts;
1735
1736 if (!clock_gettime (CLOCK_REALTIME, &ts))
1737 have_realtime = 1;
1738 }
1739#endif
1740
1159#if EV_USE_MONOTONIC 1741#if EV_USE_MONOTONIC
1742 if (!have_monotonic)
1160 { 1743 {
1161 struct timespec ts; 1744 struct timespec ts;
1745
1162 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1163 have_monotonic = 1; 1747 have_monotonic = 1;
1164 } 1748 }
1165#endif 1749#endif
1750
1751 /* pid check not overridable via env */
1752#ifndef _WIN32
1753 if (flags & EVFLAG_FORKCHECK)
1754 curpid = getpid ();
1755#endif
1756
1757 if (!(flags & EVFLAG_NOENV)
1758 && !enable_secure ()
1759 && getenv ("LIBEV_FLAGS"))
1760 flags = atoi (getenv ("LIBEV_FLAGS"));
1166 1761
1167 ev_rt_now = ev_time (); 1762 ev_rt_now = ev_time ();
1168 mn_now = get_clock (); 1763 mn_now = get_clock ();
1169 now_floor = mn_now; 1764 now_floor = mn_now;
1170 rtmn_diff = ev_rt_now - mn_now; 1765 rtmn_diff = ev_rt_now - mn_now;
1766#if EV_FEATURE_API
1767 invoke_cb = ev_invoke_pending;
1768#endif
1171 1769
1172 io_blocktime = 0.; 1770 io_blocktime = 0.;
1173 timeout_blocktime = 0.; 1771 timeout_blocktime = 0.;
1174 backend = 0; 1772 backend = 0;
1175 backend_fd = -1; 1773 backend_fd = -1;
1176 gotasync = 0; 1774 sig_pending = 0;
1775#if EV_ASYNC_ENABLE
1776 async_pending = 0;
1777#endif
1177#if EV_USE_INOTIFY 1778#if EV_USE_INOTIFY
1178 fs_fd = -2; 1779 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1179#endif 1780#endif
1180 1781#if EV_USE_SIGNALFD
1181 /* pid check not overridable via env */ 1782 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1182#ifndef _WIN32
1183 if (flags & EVFLAG_FORKCHECK)
1184 curpid = getpid ();
1185#endif 1783#endif
1186 1784
1187 if (!(flags & EVFLAG_NOENV) 1785 if (!(flags & EVBACKEND_MASK))
1188 && !enable_secure ()
1189 && getenv ("LIBEV_FLAGS"))
1190 flags = atoi (getenv ("LIBEV_FLAGS"));
1191
1192 if (!(flags & 0x0000ffffU))
1193 flags |= ev_recommended_backends (); 1786 flags |= ev_recommended_backends ();
1194 1787
1788#if EV_USE_IOCP
1789 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1790#endif
1195#if EV_USE_PORT 1791#if EV_USE_PORT
1196 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1792 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1197#endif 1793#endif
1198#if EV_USE_KQUEUE 1794#if EV_USE_KQUEUE
1199 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1795 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1206#endif 1802#endif
1207#if EV_USE_SELECT 1803#if EV_USE_SELECT
1208 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1804 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1209#endif 1805#endif
1210 1806
1807 ev_prepare_init (&pending_w, pendingcb);
1808
1809#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1211 ev_init (&pipeev, pipecb); 1810 ev_init (&pipe_w, pipecb);
1212 ev_set_priority (&pipeev, EV_MAXPRI); 1811 ev_set_priority (&pipe_w, EV_MAXPRI);
1812#endif
1213 } 1813 }
1214} 1814}
1215 1815
1216static void noinline 1816/* free up a loop structure */
1817void
1217loop_destroy (EV_P) 1818ev_loop_destroy (EV_P)
1218{ 1819{
1219 int i; 1820 int i;
1220 1821
1822#if EV_MULTIPLICITY
1823 /* mimic free (0) */
1824 if (!EV_A)
1825 return;
1826#endif
1827
1828#if EV_CLEANUP_ENABLE
1829 /* queue cleanup watchers (and execute them) */
1830 if (expect_false (cleanupcnt))
1831 {
1832 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1833 EV_INVOKE_PENDING;
1834 }
1835#endif
1836
1837#if EV_CHILD_ENABLE
1838 if (ev_is_active (&childev))
1839 {
1840 ev_ref (EV_A); /* child watcher */
1841 ev_signal_stop (EV_A_ &childev);
1842 }
1843#endif
1844
1221 if (ev_is_active (&pipeev)) 1845 if (ev_is_active (&pipe_w))
1222 { 1846 {
1223 ev_ref (EV_A); /* signal watcher */ 1847 /*ev_ref (EV_A);*/
1224 ev_io_stop (EV_A_ &pipeev); 1848 /*ev_io_stop (EV_A_ &pipe_w);*/
1225 1849
1226#if EV_USE_EVENTFD 1850#if EV_USE_EVENTFD
1227 if (evfd >= 0) 1851 if (evfd >= 0)
1228 close (evfd); 1852 close (evfd);
1229#endif 1853#endif
1230 1854
1231 if (evpipe [0] >= 0) 1855 if (evpipe [0] >= 0)
1232 { 1856 {
1233 close (evpipe [0]); 1857 EV_WIN32_CLOSE_FD (evpipe [0]);
1234 close (evpipe [1]); 1858 EV_WIN32_CLOSE_FD (evpipe [1]);
1235 } 1859 }
1236 } 1860 }
1861
1862#if EV_USE_SIGNALFD
1863 if (ev_is_active (&sigfd_w))
1864 close (sigfd);
1865#endif
1237 1866
1238#if EV_USE_INOTIFY 1867#if EV_USE_INOTIFY
1239 if (fs_fd >= 0) 1868 if (fs_fd >= 0)
1240 close (fs_fd); 1869 close (fs_fd);
1241#endif 1870#endif
1242 1871
1243 if (backend_fd >= 0) 1872 if (backend_fd >= 0)
1244 close (backend_fd); 1873 close (backend_fd);
1245 1874
1875#if EV_USE_IOCP
1876 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1877#endif
1246#if EV_USE_PORT 1878#if EV_USE_PORT
1247 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1879 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1248#endif 1880#endif
1249#if EV_USE_KQUEUE 1881#if EV_USE_KQUEUE
1250 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1882 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1265#if EV_IDLE_ENABLE 1897#if EV_IDLE_ENABLE
1266 array_free (idle, [i]); 1898 array_free (idle, [i]);
1267#endif 1899#endif
1268 } 1900 }
1269 1901
1270 ev_free (anfds); anfdmax = 0; 1902 ev_free (anfds); anfds = 0; anfdmax = 0;
1271 1903
1272 /* have to use the microsoft-never-gets-it-right macro */ 1904 /* have to use the microsoft-never-gets-it-right macro */
1905 array_free (rfeed, EMPTY);
1273 array_free (fdchange, EMPTY); 1906 array_free (fdchange, EMPTY);
1274 array_free (timer, EMPTY); 1907 array_free (timer, EMPTY);
1275#if EV_PERIODIC_ENABLE 1908#if EV_PERIODIC_ENABLE
1276 array_free (periodic, EMPTY); 1909 array_free (periodic, EMPTY);
1277#endif 1910#endif
1278#if EV_FORK_ENABLE 1911#if EV_FORK_ENABLE
1279 array_free (fork, EMPTY); 1912 array_free (fork, EMPTY);
1280#endif 1913#endif
1914#if EV_CLEANUP_ENABLE
1915 array_free (cleanup, EMPTY);
1916#endif
1281 array_free (prepare, EMPTY); 1917 array_free (prepare, EMPTY);
1282 array_free (check, EMPTY); 1918 array_free (check, EMPTY);
1283#if EV_ASYNC_ENABLE 1919#if EV_ASYNC_ENABLE
1284 array_free (async, EMPTY); 1920 array_free (async, EMPTY);
1285#endif 1921#endif
1286 1922
1287 backend = 0; 1923 backend = 0;
1924
1925#if EV_MULTIPLICITY
1926 if (ev_is_default_loop (EV_A))
1927#endif
1928 ev_default_loop_ptr = 0;
1929#if EV_MULTIPLICITY
1930 else
1931 ev_free (EV_A);
1932#endif
1288} 1933}
1289 1934
1290#if EV_USE_INOTIFY 1935#if EV_USE_INOTIFY
1291void inline_size infy_fork (EV_P); 1936inline_size void infy_fork (EV_P);
1292#endif 1937#endif
1293 1938
1294void inline_size 1939inline_size void
1295loop_fork (EV_P) 1940loop_fork (EV_P)
1296{ 1941{
1297#if EV_USE_PORT 1942#if EV_USE_PORT
1298 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1943 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1299#endif 1944#endif
1305#endif 1950#endif
1306#if EV_USE_INOTIFY 1951#if EV_USE_INOTIFY
1307 infy_fork (EV_A); 1952 infy_fork (EV_A);
1308#endif 1953#endif
1309 1954
1310 if (ev_is_active (&pipeev)) 1955 if (ev_is_active (&pipe_w))
1311 { 1956 {
1312 /* this "locks" the handlers against writing to the pipe */ 1957 /* this "locks" the handlers against writing to the pipe */
1313 /* while we modify the fd vars */ 1958 /* while we modify the fd vars */
1314 gotsig = 1; 1959 sig_pending = 1;
1315#if EV_ASYNC_ENABLE 1960#if EV_ASYNC_ENABLE
1316 gotasync = 1; 1961 async_pending = 1;
1317#endif 1962#endif
1318 1963
1319 ev_ref (EV_A); 1964 ev_ref (EV_A);
1320 ev_io_stop (EV_A_ &pipeev); 1965 ev_io_stop (EV_A_ &pipe_w);
1321 1966
1322#if EV_USE_EVENTFD 1967#if EV_USE_EVENTFD
1323 if (evfd >= 0) 1968 if (evfd >= 0)
1324 close (evfd); 1969 close (evfd);
1325#endif 1970#endif
1326 1971
1327 if (evpipe [0] >= 0) 1972 if (evpipe [0] >= 0)
1328 { 1973 {
1329 close (evpipe [0]); 1974 EV_WIN32_CLOSE_FD (evpipe [0]);
1330 close (evpipe [1]); 1975 EV_WIN32_CLOSE_FD (evpipe [1]);
1331 } 1976 }
1332 1977
1978#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1333 evpipe_init (EV_A); 1979 evpipe_init (EV_A);
1334 /* now iterate over everything, in case we missed something */ 1980 /* now iterate over everything, in case we missed something */
1335 pipecb (EV_A_ &pipeev, EV_READ); 1981 pipecb (EV_A_ &pipe_w, EV_READ);
1982#endif
1336 } 1983 }
1337 1984
1338 postfork = 0; 1985 postfork = 0;
1339} 1986}
1987
1988#if EV_MULTIPLICITY
1989
1990struct ev_loop *
1991ev_loop_new (unsigned int flags)
1992{
1993 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1994
1995 memset (EV_A, 0, sizeof (struct ev_loop));
1996 loop_init (EV_A_ flags);
1997
1998 if (ev_backend (EV_A))
1999 return EV_A;
2000
2001 ev_free (EV_A);
2002 return 0;
2003}
2004
2005#endif /* multiplicity */
2006
2007#if EV_VERIFY
2008static void noinline
2009verify_watcher (EV_P_ W w)
2010{
2011 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2012
2013 if (w->pending)
2014 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2015}
2016
2017static void noinline
2018verify_heap (EV_P_ ANHE *heap, int N)
2019{
2020 int i;
2021
2022 for (i = HEAP0; i < N + HEAP0; ++i)
2023 {
2024 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2025 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2026 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2027
2028 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2029 }
2030}
2031
2032static void noinline
2033array_verify (EV_P_ W *ws, int cnt)
2034{
2035 while (cnt--)
2036 {
2037 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2038 verify_watcher (EV_A_ ws [cnt]);
2039 }
2040}
2041#endif
2042
2043#if EV_FEATURE_API
2044void
2045ev_verify (EV_P)
2046{
2047#if EV_VERIFY
2048 int i;
2049 WL w;
2050
2051 assert (activecnt >= -1);
2052
2053 assert (fdchangemax >= fdchangecnt);
2054 for (i = 0; i < fdchangecnt; ++i)
2055 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2056
2057 assert (anfdmax >= 0);
2058 for (i = 0; i < anfdmax; ++i)
2059 for (w = anfds [i].head; w; w = w->next)
2060 {
2061 verify_watcher (EV_A_ (W)w);
2062 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2063 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2064 }
2065
2066 assert (timermax >= timercnt);
2067 verify_heap (EV_A_ timers, timercnt);
2068
2069#if EV_PERIODIC_ENABLE
2070 assert (periodicmax >= periodiccnt);
2071 verify_heap (EV_A_ periodics, periodiccnt);
2072#endif
2073
2074 for (i = NUMPRI; i--; )
2075 {
2076 assert (pendingmax [i] >= pendingcnt [i]);
2077#if EV_IDLE_ENABLE
2078 assert (idleall >= 0);
2079 assert (idlemax [i] >= idlecnt [i]);
2080 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2081#endif
2082 }
2083
2084#if EV_FORK_ENABLE
2085 assert (forkmax >= forkcnt);
2086 array_verify (EV_A_ (W *)forks, forkcnt);
2087#endif
2088
2089#if EV_CLEANUP_ENABLE
2090 assert (cleanupmax >= cleanupcnt);
2091 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2092#endif
2093
2094#if EV_ASYNC_ENABLE
2095 assert (asyncmax >= asynccnt);
2096 array_verify (EV_A_ (W *)asyncs, asynccnt);
2097#endif
2098
2099#if EV_PREPARE_ENABLE
2100 assert (preparemax >= preparecnt);
2101 array_verify (EV_A_ (W *)prepares, preparecnt);
2102#endif
2103
2104#if EV_CHECK_ENABLE
2105 assert (checkmax >= checkcnt);
2106 array_verify (EV_A_ (W *)checks, checkcnt);
2107#endif
2108
2109# if 0
2110#if EV_CHILD_ENABLE
2111 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2112 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2113#endif
2114# endif
2115#endif
2116}
2117#endif
1340 2118
1341#if EV_MULTIPLICITY 2119#if EV_MULTIPLICITY
1342struct ev_loop * 2120struct ev_loop *
1343ev_loop_new (unsigned int flags)
1344{
1345 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1346
1347 memset (loop, 0, sizeof (struct ev_loop));
1348
1349 loop_init (EV_A_ flags);
1350
1351 if (ev_backend (EV_A))
1352 return loop;
1353
1354 return 0;
1355}
1356
1357void
1358ev_loop_destroy (EV_P)
1359{
1360 loop_destroy (EV_A);
1361 ev_free (loop);
1362}
1363
1364void
1365ev_loop_fork (EV_P)
1366{
1367 postfork = 1; /* must be in line with ev_default_fork */
1368}
1369
1370#endif
1371
1372#if EV_MULTIPLICITY
1373struct ev_loop *
1374ev_default_loop_init (unsigned int flags)
1375#else 2121#else
1376int 2122int
2123#endif
1377ev_default_loop (unsigned int flags) 2124ev_default_loop (unsigned int flags)
1378#endif
1379{ 2125{
1380 if (!ev_default_loop_ptr) 2126 if (!ev_default_loop_ptr)
1381 { 2127 {
1382#if EV_MULTIPLICITY 2128#if EV_MULTIPLICITY
1383 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2129 EV_P = ev_default_loop_ptr = &default_loop_struct;
1384#else 2130#else
1385 ev_default_loop_ptr = 1; 2131 ev_default_loop_ptr = 1;
1386#endif 2132#endif
1387 2133
1388 loop_init (EV_A_ flags); 2134 loop_init (EV_A_ flags);
1389 2135
1390 if (ev_backend (EV_A)) 2136 if (ev_backend (EV_A))
1391 { 2137 {
1392#ifndef _WIN32 2138#if EV_CHILD_ENABLE
1393 ev_signal_init (&childev, childcb, SIGCHLD); 2139 ev_signal_init (&childev, childcb, SIGCHLD);
1394 ev_set_priority (&childev, EV_MAXPRI); 2140 ev_set_priority (&childev, EV_MAXPRI);
1395 ev_signal_start (EV_A_ &childev); 2141 ev_signal_start (EV_A_ &childev);
1396 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2142 ev_unref (EV_A); /* child watcher should not keep loop alive */
1397#endif 2143#endif
1402 2148
1403 return ev_default_loop_ptr; 2149 return ev_default_loop_ptr;
1404} 2150}
1405 2151
1406void 2152void
1407ev_default_destroy (void) 2153ev_loop_fork (EV_P)
1408{ 2154{
1409#if EV_MULTIPLICITY
1410 struct ev_loop *loop = ev_default_loop_ptr;
1411#endif
1412
1413#ifndef _WIN32
1414 ev_ref (EV_A); /* child watcher */
1415 ev_signal_stop (EV_A_ &childev);
1416#endif
1417
1418 loop_destroy (EV_A);
1419}
1420
1421void
1422ev_default_fork (void)
1423{
1424#if EV_MULTIPLICITY
1425 struct ev_loop *loop = ev_default_loop_ptr;
1426#endif
1427
1428 if (backend)
1429 postfork = 1; /* must be in line with ev_loop_fork */ 2155 postfork = 1; /* must be in line with ev_default_fork */
1430} 2156}
1431 2157
1432/*****************************************************************************/ 2158/*****************************************************************************/
1433 2159
1434void 2160void
1435ev_invoke (EV_P_ void *w, int revents) 2161ev_invoke (EV_P_ void *w, int revents)
1436{ 2162{
1437 EV_CB_INVOKE ((W)w, revents); 2163 EV_CB_INVOKE ((W)w, revents);
1438} 2164}
1439 2165
1440void inline_speed 2166unsigned int
1441call_pending (EV_P) 2167ev_pending_count (EV_P)
2168{
2169 int pri;
2170 unsigned int count = 0;
2171
2172 for (pri = NUMPRI; pri--; )
2173 count += pendingcnt [pri];
2174
2175 return count;
2176}
2177
2178void noinline
2179ev_invoke_pending (EV_P)
1442{ 2180{
1443 int pri; 2181 int pri;
1444 2182
1445 for (pri = NUMPRI; pri--; ) 2183 for (pri = NUMPRI; pri--; )
1446 while (pendingcnt [pri]) 2184 while (pendingcnt [pri])
1447 { 2185 {
1448 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2186 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1449 2187
1450 if (expect_true (p->w))
1451 {
1452 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1453
1454 p->w->pending = 0; 2188 p->w->pending = 0;
1455 EV_CB_INVOKE (p->w, p->events); 2189 EV_CB_INVOKE (p->w, p->events);
1456 } 2190 EV_FREQUENT_CHECK;
1457 } 2191 }
1458} 2192}
1459 2193
1460void inline_size
1461timers_reify (EV_P)
1462{
1463 while (timercnt && ((WT)timers [0])->at <= mn_now)
1464 {
1465 ev_timer *w = (ev_timer *)timers [0];
1466
1467 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1468
1469 /* first reschedule or stop timer */
1470 if (w->repeat)
1471 {
1472 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1473
1474 ((WT)w)->at += w->repeat;
1475 if (((WT)w)->at < mn_now)
1476 ((WT)w)->at = mn_now;
1477
1478 downheap (timers, timercnt, 0);
1479 }
1480 else
1481 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1482
1483 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1484 }
1485}
1486
1487#if EV_PERIODIC_ENABLE
1488void inline_size
1489periodics_reify (EV_P)
1490{
1491 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1492 {
1493 ev_periodic *w = (ev_periodic *)periodics [0];
1494
1495 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1496
1497 /* first reschedule or stop timer */
1498 if (w->reschedule_cb)
1499 {
1500 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1501 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1502 downheap (periodics, periodiccnt, 0);
1503 }
1504 else if (w->interval)
1505 {
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1508 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1509 downheap (periodics, periodiccnt, 0);
1510 }
1511 else
1512 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1513
1514 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1515 }
1516}
1517
1518static void noinline
1519periodics_reschedule (EV_P)
1520{
1521 int i;
1522
1523 /* adjust periodics after time jump */
1524 for (i = 0; i < periodiccnt; ++i)
1525 {
1526 ev_periodic *w = (ev_periodic *)periodics [i];
1527
1528 if (w->reschedule_cb)
1529 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1530 else if (w->interval)
1531 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1532 }
1533
1534 /* now rebuild the heap */
1535 for (i = periodiccnt >> 1; i--; )
1536 downheap (periodics, periodiccnt, i);
1537}
1538#endif
1539
1540#if EV_IDLE_ENABLE 2194#if EV_IDLE_ENABLE
1541void inline_size 2195/* make idle watchers pending. this handles the "call-idle */
2196/* only when higher priorities are idle" logic */
2197inline_size void
1542idle_reify (EV_P) 2198idle_reify (EV_P)
1543{ 2199{
1544 if (expect_false (idleall)) 2200 if (expect_false (idleall))
1545 { 2201 {
1546 int pri; 2202 int pri;
1558 } 2214 }
1559 } 2215 }
1560} 2216}
1561#endif 2217#endif
1562 2218
1563void inline_speed 2219/* make timers pending */
2220inline_size void
2221timers_reify (EV_P)
2222{
2223 EV_FREQUENT_CHECK;
2224
2225 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2226 {
2227 do
2228 {
2229 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2230
2231 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2232
2233 /* first reschedule or stop timer */
2234 if (w->repeat)
2235 {
2236 ev_at (w) += w->repeat;
2237 if (ev_at (w) < mn_now)
2238 ev_at (w) = mn_now;
2239
2240 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2241
2242 ANHE_at_cache (timers [HEAP0]);
2243 downheap (timers, timercnt, HEAP0);
2244 }
2245 else
2246 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2247
2248 EV_FREQUENT_CHECK;
2249 feed_reverse (EV_A_ (W)w);
2250 }
2251 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2252
2253 feed_reverse_done (EV_A_ EV_TIMER);
2254 }
2255}
2256
2257#if EV_PERIODIC_ENABLE
2258
2259static void noinline
2260periodic_recalc (EV_P_ ev_periodic *w)
2261{
2262 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2263 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2264
2265 /* the above almost always errs on the low side */
2266 while (at <= ev_rt_now)
2267 {
2268 ev_tstamp nat = at + w->interval;
2269
2270 /* when resolution fails us, we use ev_rt_now */
2271 if (expect_false (nat == at))
2272 {
2273 at = ev_rt_now;
2274 break;
2275 }
2276
2277 at = nat;
2278 }
2279
2280 ev_at (w) = at;
2281}
2282
2283/* make periodics pending */
2284inline_size void
2285periodics_reify (EV_P)
2286{
2287 EV_FREQUENT_CHECK;
2288
2289 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2290 {
2291 int feed_count = 0;
2292
2293 do
2294 {
2295 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2296
2297 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2298
2299 /* first reschedule or stop timer */
2300 if (w->reschedule_cb)
2301 {
2302 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2303
2304 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2305
2306 ANHE_at_cache (periodics [HEAP0]);
2307 downheap (periodics, periodiccnt, HEAP0);
2308 }
2309 else if (w->interval)
2310 {
2311 periodic_recalc (EV_A_ w);
2312 ANHE_at_cache (periodics [HEAP0]);
2313 downheap (periodics, periodiccnt, HEAP0);
2314 }
2315 else
2316 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2317
2318 EV_FREQUENT_CHECK;
2319 feed_reverse (EV_A_ (W)w);
2320 }
2321 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2322
2323 feed_reverse_done (EV_A_ EV_PERIODIC);
2324 }
2325}
2326
2327/* simply recalculate all periodics */
2328/* TODO: maybe ensure that at least one event happens when jumping forward? */
2329static void noinline
2330periodics_reschedule (EV_P)
2331{
2332 int i;
2333
2334 /* adjust periodics after time jump */
2335 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2336 {
2337 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2338
2339 if (w->reschedule_cb)
2340 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2341 else if (w->interval)
2342 periodic_recalc (EV_A_ w);
2343
2344 ANHE_at_cache (periodics [i]);
2345 }
2346
2347 reheap (periodics, periodiccnt);
2348}
2349#endif
2350
2351/* adjust all timers by a given offset */
2352static void noinline
2353timers_reschedule (EV_P_ ev_tstamp adjust)
2354{
2355 int i;
2356
2357 for (i = 0; i < timercnt; ++i)
2358 {
2359 ANHE *he = timers + i + HEAP0;
2360 ANHE_w (*he)->at += adjust;
2361 ANHE_at_cache (*he);
2362 }
2363}
2364
2365/* fetch new monotonic and realtime times from the kernel */
2366/* also detect if there was a timejump, and act accordingly */
2367inline_speed void
1564time_update (EV_P_ ev_tstamp max_block) 2368time_update (EV_P_ ev_tstamp max_block)
1565{ 2369{
1566 int i;
1567
1568#if EV_USE_MONOTONIC 2370#if EV_USE_MONOTONIC
1569 if (expect_true (have_monotonic)) 2371 if (expect_true (have_monotonic))
1570 { 2372 {
2373 int i;
1571 ev_tstamp odiff = rtmn_diff; 2374 ev_tstamp odiff = rtmn_diff;
1572 2375
1573 mn_now = get_clock (); 2376 mn_now = get_clock ();
1574 2377
1575 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2378 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1591 * doesn't hurt either as we only do this on time-jumps or 2394 * doesn't hurt either as we only do this on time-jumps or
1592 * in the unlikely event of having been preempted here. 2395 * in the unlikely event of having been preempted here.
1593 */ 2396 */
1594 for (i = 4; --i; ) 2397 for (i = 4; --i; )
1595 { 2398 {
2399 ev_tstamp diff;
1596 rtmn_diff = ev_rt_now - mn_now; 2400 rtmn_diff = ev_rt_now - mn_now;
1597 2401
1598 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2402 diff = odiff - rtmn_diff;
2403
2404 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1599 return; /* all is well */ 2405 return; /* all is well */
1600 2406
1601 ev_rt_now = ev_time (); 2407 ev_rt_now = ev_time ();
1602 mn_now = get_clock (); 2408 mn_now = get_clock ();
1603 now_floor = mn_now; 2409 now_floor = mn_now;
1604 } 2410 }
1605 2411
2412 /* no timer adjustment, as the monotonic clock doesn't jump */
2413 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1606# if EV_PERIODIC_ENABLE 2414# if EV_PERIODIC_ENABLE
1607 periodics_reschedule (EV_A); 2415 periodics_reschedule (EV_A);
1608# endif 2416# endif
1609 /* no timer adjustment, as the monotonic clock doesn't jump */
1610 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1611 } 2417 }
1612 else 2418 else
1613#endif 2419#endif
1614 { 2420 {
1615 ev_rt_now = ev_time (); 2421 ev_rt_now = ev_time ();
1616 2422
1617 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2423 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1618 { 2424 {
2425 /* adjust timers. this is easy, as the offset is the same for all of them */
2426 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1619#if EV_PERIODIC_ENABLE 2427#if EV_PERIODIC_ENABLE
1620 periodics_reschedule (EV_A); 2428 periodics_reschedule (EV_A);
1621#endif 2429#endif
1622 /* adjust timers. this is easy, as the offset is the same for all of them */
1623 for (i = 0; i < timercnt; ++i)
1624 ((WT)timers [i])->at += ev_rt_now - mn_now;
1625 } 2430 }
1626 2431
1627 mn_now = ev_rt_now; 2432 mn_now = ev_rt_now;
1628 } 2433 }
1629} 2434}
1630 2435
1631void 2436void
1632ev_ref (EV_P)
1633{
1634 ++activecnt;
1635}
1636
1637void
1638ev_unref (EV_P)
1639{
1640 --activecnt;
1641}
1642
1643static int loop_done;
1644
1645void
1646ev_loop (EV_P_ int flags) 2437ev_run (EV_P_ int flags)
1647{ 2438{
2439#if EV_FEATURE_API
2440 ++loop_depth;
2441#endif
2442
2443 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2444
1648 loop_done = EVUNLOOP_CANCEL; 2445 loop_done = EVBREAK_CANCEL;
1649 2446
1650 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2447 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1651 2448
1652 do 2449 do
1653 { 2450 {
2451#if EV_VERIFY >= 2
2452 ev_verify (EV_A);
2453#endif
2454
1654#ifndef _WIN32 2455#ifndef _WIN32
1655 if (expect_false (curpid)) /* penalise the forking check even more */ 2456 if (expect_false (curpid)) /* penalise the forking check even more */
1656 if (expect_false (getpid () != curpid)) 2457 if (expect_false (getpid () != curpid))
1657 { 2458 {
1658 curpid = getpid (); 2459 curpid = getpid ();
1664 /* we might have forked, so queue fork handlers */ 2465 /* we might have forked, so queue fork handlers */
1665 if (expect_false (postfork)) 2466 if (expect_false (postfork))
1666 if (forkcnt) 2467 if (forkcnt)
1667 { 2468 {
1668 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2469 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1669 call_pending (EV_A); 2470 EV_INVOKE_PENDING;
1670 } 2471 }
1671#endif 2472#endif
1672 2473
2474#if EV_PREPARE_ENABLE
1673 /* queue prepare watchers (and execute them) */ 2475 /* queue prepare watchers (and execute them) */
1674 if (expect_false (preparecnt)) 2476 if (expect_false (preparecnt))
1675 { 2477 {
1676 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2478 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1677 call_pending (EV_A); 2479 EV_INVOKE_PENDING;
1678 } 2480 }
2481#endif
1679 2482
1680 if (expect_false (!activecnt)) 2483 if (expect_false (loop_done))
1681 break; 2484 break;
1682 2485
1683 /* we might have forked, so reify kernel state if necessary */ 2486 /* we might have forked, so reify kernel state if necessary */
1684 if (expect_false (postfork)) 2487 if (expect_false (postfork))
1685 loop_fork (EV_A); 2488 loop_fork (EV_A);
1690 /* calculate blocking time */ 2493 /* calculate blocking time */
1691 { 2494 {
1692 ev_tstamp waittime = 0.; 2495 ev_tstamp waittime = 0.;
1693 ev_tstamp sleeptime = 0.; 2496 ev_tstamp sleeptime = 0.;
1694 2497
2498 /* remember old timestamp for io_blocktime calculation */
2499 ev_tstamp prev_mn_now = mn_now;
2500
2501 /* update time to cancel out callback processing overhead */
2502 time_update (EV_A_ 1e100);
2503
1695 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2504 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1696 { 2505 {
1697 /* update time to cancel out callback processing overhead */
1698 time_update (EV_A_ 1e100);
1699
1700 waittime = MAX_BLOCKTIME; 2506 waittime = MAX_BLOCKTIME;
1701 2507
1702 if (timercnt) 2508 if (timercnt)
1703 { 2509 {
1704 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2510 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_mintime;
1705 if (waittime > to) waittime = to; 2511 if (waittime > to) waittime = to;
1706 } 2512 }
1707 2513
1708#if EV_PERIODIC_ENABLE 2514#if EV_PERIODIC_ENABLE
1709 if (periodiccnt) 2515 if (periodiccnt)
1710 { 2516 {
1711 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2517 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_mintime;
1712 if (waittime > to) waittime = to; 2518 if (waittime > to) waittime = to;
1713 } 2519 }
1714#endif 2520#endif
1715 2521
2522 /* don't let timeouts decrease the waittime below timeout_blocktime */
1716 if (expect_false (waittime < timeout_blocktime)) 2523 if (expect_false (waittime < timeout_blocktime))
1717 waittime = timeout_blocktime; 2524 waittime = timeout_blocktime;
1718 2525
1719 sleeptime = waittime - backend_fudge; 2526 /* extra check because io_blocktime is commonly 0 */
1720
1721 if (expect_true (sleeptime > io_blocktime)) 2527 if (expect_false (io_blocktime))
1722 sleeptime = io_blocktime;
1723
1724 if (sleeptime)
1725 { 2528 {
2529 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2530
2531 if (sleeptime > waittime - backend_mintime)
2532 sleeptime = waittime - backend_mintime;
2533
2534 if (expect_true (sleeptime > 0.))
2535 {
1726 ev_sleep (sleeptime); 2536 ev_sleep (sleeptime);
1727 waittime -= sleeptime; 2537 waittime -= sleeptime;
2538 }
1728 } 2539 }
1729 } 2540 }
1730 2541
2542#if EV_FEATURE_API
1731 ++loop_count; 2543 ++loop_count;
2544#endif
2545 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1732 backend_poll (EV_A_ waittime); 2546 backend_poll (EV_A_ waittime);
2547 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1733 2548
1734 /* update ev_rt_now, do magic */ 2549 /* update ev_rt_now, do magic */
1735 time_update (EV_A_ waittime + sleeptime); 2550 time_update (EV_A_ waittime + sleeptime);
1736 } 2551 }
1737 2552
1744#if EV_IDLE_ENABLE 2559#if EV_IDLE_ENABLE
1745 /* queue idle watchers unless other events are pending */ 2560 /* queue idle watchers unless other events are pending */
1746 idle_reify (EV_A); 2561 idle_reify (EV_A);
1747#endif 2562#endif
1748 2563
2564#if EV_CHECK_ENABLE
1749 /* queue check watchers, to be executed first */ 2565 /* queue check watchers, to be executed first */
1750 if (expect_false (checkcnt)) 2566 if (expect_false (checkcnt))
1751 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2567 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2568#endif
1752 2569
1753 call_pending (EV_A); 2570 EV_INVOKE_PENDING;
1754 } 2571 }
1755 while (expect_true ( 2572 while (expect_true (
1756 activecnt 2573 activecnt
1757 && !loop_done 2574 && !loop_done
1758 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2575 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1759 )); 2576 ));
1760 2577
1761 if (loop_done == EVUNLOOP_ONE) 2578 if (loop_done == EVBREAK_ONE)
1762 loop_done = EVUNLOOP_CANCEL; 2579 loop_done = EVBREAK_CANCEL;
1763}
1764 2580
2581#if EV_FEATURE_API
2582 --loop_depth;
2583#endif
2584}
2585
1765void 2586void
1766ev_unloop (EV_P_ int how) 2587ev_break (EV_P_ int how)
1767{ 2588{
1768 loop_done = how; 2589 loop_done = how;
1769} 2590}
1770 2591
2592void
2593ev_ref (EV_P)
2594{
2595 ++activecnt;
2596}
2597
2598void
2599ev_unref (EV_P)
2600{
2601 --activecnt;
2602}
2603
2604void
2605ev_now_update (EV_P)
2606{
2607 time_update (EV_A_ 1e100);
2608}
2609
2610void
2611ev_suspend (EV_P)
2612{
2613 ev_now_update (EV_A);
2614}
2615
2616void
2617ev_resume (EV_P)
2618{
2619 ev_tstamp mn_prev = mn_now;
2620
2621 ev_now_update (EV_A);
2622 timers_reschedule (EV_A_ mn_now - mn_prev);
2623#if EV_PERIODIC_ENABLE
2624 /* TODO: really do this? */
2625 periodics_reschedule (EV_A);
2626#endif
2627}
2628
1771/*****************************************************************************/ 2629/*****************************************************************************/
2630/* singly-linked list management, used when the expected list length is short */
1772 2631
1773void inline_size 2632inline_size void
1774wlist_add (WL *head, WL elem) 2633wlist_add (WL *head, WL elem)
1775{ 2634{
1776 elem->next = *head; 2635 elem->next = *head;
1777 *head = elem; 2636 *head = elem;
1778} 2637}
1779 2638
1780void inline_size 2639inline_size void
1781wlist_del (WL *head, WL elem) 2640wlist_del (WL *head, WL elem)
1782{ 2641{
1783 while (*head) 2642 while (*head)
1784 { 2643 {
1785 if (*head == elem) 2644 if (expect_true (*head == elem))
1786 { 2645 {
1787 *head = elem->next; 2646 *head = elem->next;
1788 return; 2647 break;
1789 } 2648 }
1790 2649
1791 head = &(*head)->next; 2650 head = &(*head)->next;
1792 } 2651 }
1793} 2652}
1794 2653
1795void inline_speed 2654/* internal, faster, version of ev_clear_pending */
2655inline_speed void
1796clear_pending (EV_P_ W w) 2656clear_pending (EV_P_ W w)
1797{ 2657{
1798 if (w->pending) 2658 if (w->pending)
1799 { 2659 {
1800 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2660 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1801 w->pending = 0; 2661 w->pending = 0;
1802 } 2662 }
1803} 2663}
1804 2664
1805int 2665int
1809 int pending = w_->pending; 2669 int pending = w_->pending;
1810 2670
1811 if (expect_true (pending)) 2671 if (expect_true (pending))
1812 { 2672 {
1813 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2673 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2674 p->w = (W)&pending_w;
1814 w_->pending = 0; 2675 w_->pending = 0;
1815 p->w = 0;
1816 return p->events; 2676 return p->events;
1817 } 2677 }
1818 else 2678 else
1819 return 0; 2679 return 0;
1820} 2680}
1821 2681
1822void inline_size 2682inline_size void
1823pri_adjust (EV_P_ W w) 2683pri_adjust (EV_P_ W w)
1824{ 2684{
1825 int pri = w->priority; 2685 int pri = ev_priority (w);
1826 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2686 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1827 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2687 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1828 w->priority = pri; 2688 ev_set_priority (w, pri);
1829} 2689}
1830 2690
1831void inline_speed 2691inline_speed void
1832ev_start (EV_P_ W w, int active) 2692ev_start (EV_P_ W w, int active)
1833{ 2693{
1834 pri_adjust (EV_A_ w); 2694 pri_adjust (EV_A_ w);
1835 w->active = active; 2695 w->active = active;
1836 ev_ref (EV_A); 2696 ev_ref (EV_A);
1837} 2697}
1838 2698
1839void inline_size 2699inline_size void
1840ev_stop (EV_P_ W w) 2700ev_stop (EV_P_ W w)
1841{ 2701{
1842 ev_unref (EV_A); 2702 ev_unref (EV_A);
1843 w->active = 0; 2703 w->active = 0;
1844} 2704}
1851 int fd = w->fd; 2711 int fd = w->fd;
1852 2712
1853 if (expect_false (ev_is_active (w))) 2713 if (expect_false (ev_is_active (w)))
1854 return; 2714 return;
1855 2715
1856 assert (("ev_io_start called with negative fd", fd >= 0)); 2716 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2717 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2718
2719 EV_FREQUENT_CHECK;
1857 2720
1858 ev_start (EV_A_ (W)w, 1); 2721 ev_start (EV_A_ (W)w, 1);
1859 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2722 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1860 wlist_add (&anfds[fd].head, (WL)w); 2723 wlist_add (&anfds[fd].head, (WL)w);
1861 2724
1862 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2725 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1863 w->events &= ~EV_IOFDSET; 2726 w->events &= ~EV__IOFDSET;
2727
2728 EV_FREQUENT_CHECK;
1864} 2729}
1865 2730
1866void noinline 2731void noinline
1867ev_io_stop (EV_P_ ev_io *w) 2732ev_io_stop (EV_P_ ev_io *w)
1868{ 2733{
1869 clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
1870 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
1871 return; 2736 return;
1872 2737
1873 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2738 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2739
2740 EV_FREQUENT_CHECK;
1874 2741
1875 wlist_del (&anfds[w->fd].head, (WL)w); 2742 wlist_del (&anfds[w->fd].head, (WL)w);
1876 ev_stop (EV_A_ (W)w); 2743 ev_stop (EV_A_ (W)w);
1877 2744
1878 fd_change (EV_A_ w->fd, 1); 2745 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2746
2747 EV_FREQUENT_CHECK;
1879} 2748}
1880 2749
1881void noinline 2750void noinline
1882ev_timer_start (EV_P_ ev_timer *w) 2751ev_timer_start (EV_P_ ev_timer *w)
1883{ 2752{
1884 if (expect_false (ev_is_active (w))) 2753 if (expect_false (ev_is_active (w)))
1885 return; 2754 return;
1886 2755
1887 ((WT)w)->at += mn_now; 2756 ev_at (w) += mn_now;
1888 2757
1889 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2758 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1890 2759
2760 EV_FREQUENT_CHECK;
2761
2762 ++timercnt;
1891 ev_start (EV_A_ (W)w, ++timercnt); 2763 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1892 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2764 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1893 timers [timercnt - 1] = (WT)w; 2765 ANHE_w (timers [ev_active (w)]) = (WT)w;
1894 upheap (timers, timercnt - 1); 2766 ANHE_at_cache (timers [ev_active (w)]);
2767 upheap (timers, ev_active (w));
1895 2768
2769 EV_FREQUENT_CHECK;
2770
1896 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2771 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1897} 2772}
1898 2773
1899void noinline 2774void noinline
1900ev_timer_stop (EV_P_ ev_timer *w) 2775ev_timer_stop (EV_P_ ev_timer *w)
1901{ 2776{
1902 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
1904 return; 2779 return;
1905 2780
1906 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2781 EV_FREQUENT_CHECK;
1907 2782
1908 { 2783 {
1909 int active = ((W)w)->active; 2784 int active = ev_active (w);
1910 2785
2786 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2787
2788 --timercnt;
2789
1911 if (expect_true (--active < --timercnt)) 2790 if (expect_true (active < timercnt + HEAP0))
1912 { 2791 {
1913 timers [active] = timers [timercnt]; 2792 timers [active] = timers [timercnt + HEAP0];
1914 adjustheap (timers, timercnt, active); 2793 adjustheap (timers, timercnt, active);
1915 } 2794 }
1916 } 2795 }
1917 2796
1918 ((WT)w)->at -= mn_now; 2797 ev_at (w) -= mn_now;
1919 2798
1920 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
1921} 2802}
1922 2803
1923void noinline 2804void noinline
1924ev_timer_again (EV_P_ ev_timer *w) 2805ev_timer_again (EV_P_ ev_timer *w)
1925{ 2806{
2807 EV_FREQUENT_CHECK;
2808
1926 if (ev_is_active (w)) 2809 if (ev_is_active (w))
1927 { 2810 {
1928 if (w->repeat) 2811 if (w->repeat)
1929 { 2812 {
1930 ((WT)w)->at = mn_now + w->repeat; 2813 ev_at (w) = mn_now + w->repeat;
2814 ANHE_at_cache (timers [ev_active (w)]);
1931 adjustheap (timers, timercnt, ((W)w)->active - 1); 2815 adjustheap (timers, timercnt, ev_active (w));
1932 } 2816 }
1933 else 2817 else
1934 ev_timer_stop (EV_A_ w); 2818 ev_timer_stop (EV_A_ w);
1935 } 2819 }
1936 else if (w->repeat) 2820 else if (w->repeat)
1937 { 2821 {
1938 w->at = w->repeat; 2822 ev_at (w) = w->repeat;
1939 ev_timer_start (EV_A_ w); 2823 ev_timer_start (EV_A_ w);
1940 } 2824 }
2825
2826 EV_FREQUENT_CHECK;
2827}
2828
2829ev_tstamp
2830ev_timer_remaining (EV_P_ ev_timer *w)
2831{
2832 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1941} 2833}
1942 2834
1943#if EV_PERIODIC_ENABLE 2835#if EV_PERIODIC_ENABLE
1944void noinline 2836void noinline
1945ev_periodic_start (EV_P_ ev_periodic *w) 2837ev_periodic_start (EV_P_ ev_periodic *w)
1946{ 2838{
1947 if (expect_false (ev_is_active (w))) 2839 if (expect_false (ev_is_active (w)))
1948 return; 2840 return;
1949 2841
1950 if (w->reschedule_cb) 2842 if (w->reschedule_cb)
1951 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2843 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1952 else if (w->interval) 2844 else if (w->interval)
1953 { 2845 {
1954 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2846 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1955 /* this formula differs from the one in periodic_reify because we do not always round up */ 2847 periodic_recalc (EV_A_ w);
1956 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 } 2848 }
1958 else 2849 else
1959 ((WT)w)->at = w->offset; 2850 ev_at (w) = w->offset;
1960 2851
2852 EV_FREQUENT_CHECK;
2853
2854 ++periodiccnt;
1961 ev_start (EV_A_ (W)w, ++periodiccnt); 2855 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1962 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2856 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1963 periodics [periodiccnt - 1] = (WT)w; 2857 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1964 upheap (periodics, periodiccnt - 1); 2858 ANHE_at_cache (periodics [ev_active (w)]);
2859 upheap (periodics, ev_active (w));
1965 2860
2861 EV_FREQUENT_CHECK;
2862
1966 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2863 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1967} 2864}
1968 2865
1969void noinline 2866void noinline
1970ev_periodic_stop (EV_P_ ev_periodic *w) 2867ev_periodic_stop (EV_P_ ev_periodic *w)
1971{ 2868{
1972 clear_pending (EV_A_ (W)w); 2869 clear_pending (EV_A_ (W)w);
1973 if (expect_false (!ev_is_active (w))) 2870 if (expect_false (!ev_is_active (w)))
1974 return; 2871 return;
1975 2872
1976 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2873 EV_FREQUENT_CHECK;
1977 2874
1978 { 2875 {
1979 int active = ((W)w)->active; 2876 int active = ev_active (w);
1980 2877
2878 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2879
2880 --periodiccnt;
2881
1981 if (expect_true (--active < --periodiccnt)) 2882 if (expect_true (active < periodiccnt + HEAP0))
1982 { 2883 {
1983 periodics [active] = periodics [periodiccnt]; 2884 periodics [active] = periodics [periodiccnt + HEAP0];
1984 adjustheap (periodics, periodiccnt, active); 2885 adjustheap (periodics, periodiccnt, active);
1985 } 2886 }
1986 } 2887 }
1987 2888
1988 ev_stop (EV_A_ (W)w); 2889 ev_stop (EV_A_ (W)w);
2890
2891 EV_FREQUENT_CHECK;
1989} 2892}
1990 2893
1991void noinline 2894void noinline
1992ev_periodic_again (EV_P_ ev_periodic *w) 2895ev_periodic_again (EV_P_ ev_periodic *w)
1993{ 2896{
1999 2902
2000#ifndef SA_RESTART 2903#ifndef SA_RESTART
2001# define SA_RESTART 0 2904# define SA_RESTART 0
2002#endif 2905#endif
2003 2906
2907#if EV_SIGNAL_ENABLE
2908
2004void noinline 2909void noinline
2005ev_signal_start (EV_P_ ev_signal *w) 2910ev_signal_start (EV_P_ ev_signal *w)
2006{ 2911{
2007#if EV_MULTIPLICITY
2008 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2009#endif
2010 if (expect_false (ev_is_active (w))) 2912 if (expect_false (ev_is_active (w)))
2011 return; 2913 return;
2012 2914
2013 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2915 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2014 2916
2015 evpipe_init (EV_A); 2917#if EV_MULTIPLICITY
2918 assert (("libev: a signal must not be attached to two different loops",
2919 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2016 2920
2921 signals [w->signum - 1].loop = EV_A;
2922#endif
2923
2924 EV_FREQUENT_CHECK;
2925
2926#if EV_USE_SIGNALFD
2927 if (sigfd == -2)
2017 { 2928 {
2018#ifndef _WIN32 2929 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2019 sigset_t full, prev; 2930 if (sigfd < 0 && errno == EINVAL)
2020 sigfillset (&full); 2931 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2021 sigprocmask (SIG_SETMASK, &full, &prev);
2022#endif
2023 2932
2024 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2933 if (sigfd >= 0)
2934 {
2935 fd_intern (sigfd); /* doing it twice will not hurt */
2025 2936
2026#ifndef _WIN32 2937 sigemptyset (&sigfd_set);
2027 sigprocmask (SIG_SETMASK, &prev, 0); 2938
2028#endif 2939 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2940 ev_set_priority (&sigfd_w, EV_MAXPRI);
2941 ev_io_start (EV_A_ &sigfd_w);
2942 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2943 }
2029 } 2944 }
2945
2946 if (sigfd >= 0)
2947 {
2948 /* TODO: check .head */
2949 sigaddset (&sigfd_set, w->signum);
2950 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2951
2952 signalfd (sigfd, &sigfd_set, 0);
2953 }
2954#endif
2030 2955
2031 ev_start (EV_A_ (W)w, 1); 2956 ev_start (EV_A_ (W)w, 1);
2032 wlist_add (&signals [w->signum - 1].head, (WL)w); 2957 wlist_add (&signals [w->signum - 1].head, (WL)w);
2033 2958
2034 if (!((WL)w)->next) 2959 if (!((WL)w)->next)
2960# if EV_USE_SIGNALFD
2961 if (sigfd < 0) /*TODO*/
2962# endif
2035 { 2963 {
2036#if _WIN32 2964# ifdef _WIN32
2965 evpipe_init (EV_A);
2966
2037 signal (w->signum, ev_sighandler); 2967 signal (w->signum, ev_sighandler);
2038#else 2968# else
2039 struct sigaction sa; 2969 struct sigaction sa;
2970
2971 evpipe_init (EV_A);
2972
2040 sa.sa_handler = ev_sighandler; 2973 sa.sa_handler = ev_sighandler;
2041 sigfillset (&sa.sa_mask); 2974 sigfillset (&sa.sa_mask);
2042 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2975 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2043 sigaction (w->signum, &sa, 0); 2976 sigaction (w->signum, &sa, 0);
2977
2978 if (origflags & EVFLAG_NOSIGMASK)
2979 {
2980 sigemptyset (&sa.sa_mask);
2981 sigaddset (&sa.sa_mask, w->signum);
2982 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2983 }
2044#endif 2984#endif
2045 } 2985 }
2986
2987 EV_FREQUENT_CHECK;
2046} 2988}
2047 2989
2048void noinline 2990void noinline
2049ev_signal_stop (EV_P_ ev_signal *w) 2991ev_signal_stop (EV_P_ ev_signal *w)
2050{ 2992{
2051 clear_pending (EV_A_ (W)w); 2993 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2994 if (expect_false (!ev_is_active (w)))
2053 return; 2995 return;
2054 2996
2997 EV_FREQUENT_CHECK;
2998
2055 wlist_del (&signals [w->signum - 1].head, (WL)w); 2999 wlist_del (&signals [w->signum - 1].head, (WL)w);
2056 ev_stop (EV_A_ (W)w); 3000 ev_stop (EV_A_ (W)w);
2057 3001
2058 if (!signals [w->signum - 1].head) 3002 if (!signals [w->signum - 1].head)
3003 {
3004#if EV_MULTIPLICITY
3005 signals [w->signum - 1].loop = 0; /* unattach from signal */
3006#endif
3007#if EV_USE_SIGNALFD
3008 if (sigfd >= 0)
3009 {
3010 sigset_t ss;
3011
3012 sigemptyset (&ss);
3013 sigaddset (&ss, w->signum);
3014 sigdelset (&sigfd_set, w->signum);
3015
3016 signalfd (sigfd, &sigfd_set, 0);
3017 sigprocmask (SIG_UNBLOCK, &ss, 0);
3018 }
3019 else
3020#endif
2059 signal (w->signum, SIG_DFL); 3021 signal (w->signum, SIG_DFL);
3022 }
3023
3024 EV_FREQUENT_CHECK;
2060} 3025}
3026
3027#endif
3028
3029#if EV_CHILD_ENABLE
2061 3030
2062void 3031void
2063ev_child_start (EV_P_ ev_child *w) 3032ev_child_start (EV_P_ ev_child *w)
2064{ 3033{
2065#if EV_MULTIPLICITY 3034#if EV_MULTIPLICITY
2066 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3035 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2067#endif 3036#endif
2068 if (expect_false (ev_is_active (w))) 3037 if (expect_false (ev_is_active (w)))
2069 return; 3038 return;
2070 3039
3040 EV_FREQUENT_CHECK;
3041
2071 ev_start (EV_A_ (W)w, 1); 3042 ev_start (EV_A_ (W)w, 1);
2072 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3043 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3044
3045 EV_FREQUENT_CHECK;
2073} 3046}
2074 3047
2075void 3048void
2076ev_child_stop (EV_P_ ev_child *w) 3049ev_child_stop (EV_P_ ev_child *w)
2077{ 3050{
2078 clear_pending (EV_A_ (W)w); 3051 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w))) 3052 if (expect_false (!ev_is_active (w)))
2080 return; 3053 return;
2081 3054
3055 EV_FREQUENT_CHECK;
3056
2082 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3057 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2083 ev_stop (EV_A_ (W)w); 3058 ev_stop (EV_A_ (W)w);
3059
3060 EV_FREQUENT_CHECK;
2084} 3061}
3062
3063#endif
2085 3064
2086#if EV_STAT_ENABLE 3065#if EV_STAT_ENABLE
2087 3066
2088# ifdef _WIN32 3067# ifdef _WIN32
2089# undef lstat 3068# undef lstat
2090# define lstat(a,b) _stati64 (a,b) 3069# define lstat(a,b) _stati64 (a,b)
2091# endif 3070# endif
2092 3071
2093#define DEF_STAT_INTERVAL 5.0074891 3072#define DEF_STAT_INTERVAL 5.0074891
3073#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2094#define MIN_STAT_INTERVAL 0.1074891 3074#define MIN_STAT_INTERVAL 0.1074891
2095 3075
2096static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3076static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2097 3077
2098#if EV_USE_INOTIFY 3078#if EV_USE_INOTIFY
2099# define EV_INOTIFY_BUFSIZE 8192 3079
3080/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3081# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2100 3082
2101static void noinline 3083static void noinline
2102infy_add (EV_P_ ev_stat *w) 3084infy_add (EV_P_ ev_stat *w)
2103{ 3085{
2104 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3086 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2105 3087
2106 if (w->wd < 0) 3088 if (w->wd >= 0)
3089 {
3090 struct statfs sfs;
3091
3092 /* now local changes will be tracked by inotify, but remote changes won't */
3093 /* unless the filesystem is known to be local, we therefore still poll */
3094 /* also do poll on <2.6.25, but with normal frequency */
3095
3096 if (!fs_2625)
3097 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3098 else if (!statfs (w->path, &sfs)
3099 && (sfs.f_type == 0x1373 /* devfs */
3100 || sfs.f_type == 0xEF53 /* ext2/3 */
3101 || sfs.f_type == 0x3153464a /* jfs */
3102 || sfs.f_type == 0x52654973 /* reiser3 */
3103 || sfs.f_type == 0x01021994 /* tempfs */
3104 || sfs.f_type == 0x58465342 /* xfs */))
3105 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3106 else
3107 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2107 { 3108 }
2108 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3109 else
3110 {
3111 /* can't use inotify, continue to stat */
3112 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2109 3113
2110 /* monitor some parent directory for speedup hints */ 3114 /* if path is not there, monitor some parent directory for speedup hints */
3115 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3116 /* but an efficiency issue only */
2111 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3117 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2112 { 3118 {
2113 char path [4096]; 3119 char path [4096];
2114 strcpy (path, w->path); 3120 strcpy (path, w->path);
2115 3121
2118 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3124 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2119 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3125 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2120 3126
2121 char *pend = strrchr (path, '/'); 3127 char *pend = strrchr (path, '/');
2122 3128
2123 if (!pend) 3129 if (!pend || pend == path)
2124 break; /* whoops, no '/', complain to your admin */ 3130 break;
2125 3131
2126 *pend = 0; 3132 *pend = 0;
2127 w->wd = inotify_add_watch (fs_fd, path, mask); 3133 w->wd = inotify_add_watch (fs_fd, path, mask);
2128 } 3134 }
2129 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3135 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2130 } 3136 }
2131 } 3137 }
2132 else
2133 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2134 3138
2135 if (w->wd >= 0) 3139 if (w->wd >= 0)
2136 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3140 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3141
3142 /* now re-arm timer, if required */
3143 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3144 ev_timer_again (EV_A_ &w->timer);
3145 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2137} 3146}
2138 3147
2139static void noinline 3148static void noinline
2140infy_del (EV_P_ ev_stat *w) 3149infy_del (EV_P_ ev_stat *w)
2141{ 3150{
2144 3153
2145 if (wd < 0) 3154 if (wd < 0)
2146 return; 3155 return;
2147 3156
2148 w->wd = -2; 3157 w->wd = -2;
2149 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3158 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2150 wlist_del (&fs_hash [slot].head, (WL)w); 3159 wlist_del (&fs_hash [slot].head, (WL)w);
2151 3160
2152 /* remove this watcher, if others are watching it, they will rearm */ 3161 /* remove this watcher, if others are watching it, they will rearm */
2153 inotify_rm_watch (fs_fd, wd); 3162 inotify_rm_watch (fs_fd, wd);
2154} 3163}
2155 3164
2156static void noinline 3165static void noinline
2157infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3166infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2158{ 3167{
2159 if (slot < 0) 3168 if (slot < 0)
2160 /* overflow, need to check for all hahs slots */ 3169 /* overflow, need to check for all hash slots */
2161 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3170 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2162 infy_wd (EV_A_ slot, wd, ev); 3171 infy_wd (EV_A_ slot, wd, ev);
2163 else 3172 else
2164 { 3173 {
2165 WL w_; 3174 WL w_;
2166 3175
2167 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3176 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2168 { 3177 {
2169 ev_stat *w = (ev_stat *)w_; 3178 ev_stat *w = (ev_stat *)w_;
2170 w_ = w_->next; /* lets us remove this watcher and all before it */ 3179 w_ = w_->next; /* lets us remove this watcher and all before it */
2171 3180
2172 if (w->wd == wd || wd == -1) 3181 if (w->wd == wd || wd == -1)
2173 { 3182 {
2174 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3183 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2175 { 3184 {
3185 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2176 w->wd = -1; 3186 w->wd = -1;
2177 infy_add (EV_A_ w); /* re-add, no matter what */ 3187 infy_add (EV_A_ w); /* re-add, no matter what */
2178 } 3188 }
2179 3189
2180 stat_timer_cb (EV_A_ &w->timer, 0); 3190 stat_timer_cb (EV_A_ &w->timer, 0);
2185 3195
2186static void 3196static void
2187infy_cb (EV_P_ ev_io *w, int revents) 3197infy_cb (EV_P_ ev_io *w, int revents)
2188{ 3198{
2189 char buf [EV_INOTIFY_BUFSIZE]; 3199 char buf [EV_INOTIFY_BUFSIZE];
2190 struct inotify_event *ev = (struct inotify_event *)buf;
2191 int ofs; 3200 int ofs;
2192 int len = read (fs_fd, buf, sizeof (buf)); 3201 int len = read (fs_fd, buf, sizeof (buf));
2193 3202
2194 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3203 for (ofs = 0; ofs < len; )
3204 {
3205 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2195 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3206 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3207 ofs += sizeof (struct inotify_event) + ev->len;
3208 }
2196} 3209}
2197 3210
2198void inline_size 3211inline_size void
3212ev_check_2625 (EV_P)
3213{
3214 /* kernels < 2.6.25 are borked
3215 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3216 */
3217 if (ev_linux_version () < 0x020619)
3218 return;
3219
3220 fs_2625 = 1;
3221}
3222
3223inline_size int
3224infy_newfd (void)
3225{
3226#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3227 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3228 if (fd >= 0)
3229 return fd;
3230#endif
3231 return inotify_init ();
3232}
3233
3234inline_size void
2199infy_init (EV_P) 3235infy_init (EV_P)
2200{ 3236{
2201 if (fs_fd != -2) 3237 if (fs_fd != -2)
2202 return; 3238 return;
2203 3239
3240 fs_fd = -1;
3241
3242 ev_check_2625 (EV_A);
3243
2204 fs_fd = inotify_init (); 3244 fs_fd = infy_newfd ();
2205 3245
2206 if (fs_fd >= 0) 3246 if (fs_fd >= 0)
2207 { 3247 {
3248 fd_intern (fs_fd);
2208 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3249 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2209 ev_set_priority (&fs_w, EV_MAXPRI); 3250 ev_set_priority (&fs_w, EV_MAXPRI);
2210 ev_io_start (EV_A_ &fs_w); 3251 ev_io_start (EV_A_ &fs_w);
3252 ev_unref (EV_A);
2211 } 3253 }
2212} 3254}
2213 3255
2214void inline_size 3256inline_size void
2215infy_fork (EV_P) 3257infy_fork (EV_P)
2216{ 3258{
2217 int slot; 3259 int slot;
2218 3260
2219 if (fs_fd < 0) 3261 if (fs_fd < 0)
2220 return; 3262 return;
2221 3263
3264 ev_ref (EV_A);
3265 ev_io_stop (EV_A_ &fs_w);
2222 close (fs_fd); 3266 close (fs_fd);
2223 fs_fd = inotify_init (); 3267 fs_fd = infy_newfd ();
2224 3268
3269 if (fs_fd >= 0)
3270 {
3271 fd_intern (fs_fd);
3272 ev_io_set (&fs_w, fs_fd, EV_READ);
3273 ev_io_start (EV_A_ &fs_w);
3274 ev_unref (EV_A);
3275 }
3276
2225 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3277 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2226 { 3278 {
2227 WL w_ = fs_hash [slot].head; 3279 WL w_ = fs_hash [slot].head;
2228 fs_hash [slot].head = 0; 3280 fs_hash [slot].head = 0;
2229 3281
2230 while (w_) 3282 while (w_)
2235 w->wd = -1; 3287 w->wd = -1;
2236 3288
2237 if (fs_fd >= 0) 3289 if (fs_fd >= 0)
2238 infy_add (EV_A_ w); /* re-add, no matter what */ 3290 infy_add (EV_A_ w); /* re-add, no matter what */
2239 else 3291 else
3292 {
3293 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3294 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2240 ev_timer_start (EV_A_ &w->timer); 3295 ev_timer_again (EV_A_ &w->timer);
3296 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3297 }
2241 } 3298 }
2242
2243 } 3299 }
2244} 3300}
2245 3301
3302#endif
3303
3304#ifdef _WIN32
3305# define EV_LSTAT(p,b) _stati64 (p, b)
3306#else
3307# define EV_LSTAT(p,b) lstat (p, b)
2246#endif 3308#endif
2247 3309
2248void 3310void
2249ev_stat_stat (EV_P_ ev_stat *w) 3311ev_stat_stat (EV_P_ ev_stat *w)
2250{ 3312{
2257static void noinline 3319static void noinline
2258stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3320stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2259{ 3321{
2260 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3322 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2261 3323
2262 /* we copy this here each the time so that */ 3324 ev_statdata prev = w->attr;
2263 /* prev has the old value when the callback gets invoked */
2264 w->prev = w->attr;
2265 ev_stat_stat (EV_A_ w); 3325 ev_stat_stat (EV_A_ w);
2266 3326
2267 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3327 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2268 if ( 3328 if (
2269 w->prev.st_dev != w->attr.st_dev 3329 prev.st_dev != w->attr.st_dev
2270 || w->prev.st_ino != w->attr.st_ino 3330 || prev.st_ino != w->attr.st_ino
2271 || w->prev.st_mode != w->attr.st_mode 3331 || prev.st_mode != w->attr.st_mode
2272 || w->prev.st_nlink != w->attr.st_nlink 3332 || prev.st_nlink != w->attr.st_nlink
2273 || w->prev.st_uid != w->attr.st_uid 3333 || prev.st_uid != w->attr.st_uid
2274 || w->prev.st_gid != w->attr.st_gid 3334 || prev.st_gid != w->attr.st_gid
2275 || w->prev.st_rdev != w->attr.st_rdev 3335 || prev.st_rdev != w->attr.st_rdev
2276 || w->prev.st_size != w->attr.st_size 3336 || prev.st_size != w->attr.st_size
2277 || w->prev.st_atime != w->attr.st_atime 3337 || prev.st_atime != w->attr.st_atime
2278 || w->prev.st_mtime != w->attr.st_mtime 3338 || prev.st_mtime != w->attr.st_mtime
2279 || w->prev.st_ctime != w->attr.st_ctime 3339 || prev.st_ctime != w->attr.st_ctime
2280 ) { 3340 ) {
3341 /* we only update w->prev on actual differences */
3342 /* in case we test more often than invoke the callback, */
3343 /* to ensure that prev is always different to attr */
3344 w->prev = prev;
3345
2281 #if EV_USE_INOTIFY 3346 #if EV_USE_INOTIFY
3347 if (fs_fd >= 0)
3348 {
2282 infy_del (EV_A_ w); 3349 infy_del (EV_A_ w);
2283 infy_add (EV_A_ w); 3350 infy_add (EV_A_ w);
2284 ev_stat_stat (EV_A_ w); /* avoid race... */ 3351 ev_stat_stat (EV_A_ w); /* avoid race... */
3352 }
2285 #endif 3353 #endif
2286 3354
2287 ev_feed_event (EV_A_ w, EV_STAT); 3355 ev_feed_event (EV_A_ w, EV_STAT);
2288 } 3356 }
2289} 3357}
2292ev_stat_start (EV_P_ ev_stat *w) 3360ev_stat_start (EV_P_ ev_stat *w)
2293{ 3361{
2294 if (expect_false (ev_is_active (w))) 3362 if (expect_false (ev_is_active (w)))
2295 return; 3363 return;
2296 3364
2297 /* since we use memcmp, we need to clear any padding data etc. */
2298 memset (&w->prev, 0, sizeof (ev_statdata));
2299 memset (&w->attr, 0, sizeof (ev_statdata));
2300
2301 ev_stat_stat (EV_A_ w); 3365 ev_stat_stat (EV_A_ w);
2302 3366
3367 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2303 if (w->interval < MIN_STAT_INTERVAL) 3368 w->interval = MIN_STAT_INTERVAL;
2304 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2305 3369
2306 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3370 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2307 ev_set_priority (&w->timer, ev_priority (w)); 3371 ev_set_priority (&w->timer, ev_priority (w));
2308 3372
2309#if EV_USE_INOTIFY 3373#if EV_USE_INOTIFY
2310 infy_init (EV_A); 3374 infy_init (EV_A);
2311 3375
2312 if (fs_fd >= 0) 3376 if (fs_fd >= 0)
2313 infy_add (EV_A_ w); 3377 infy_add (EV_A_ w);
2314 else 3378 else
2315#endif 3379#endif
3380 {
2316 ev_timer_start (EV_A_ &w->timer); 3381 ev_timer_again (EV_A_ &w->timer);
3382 ev_unref (EV_A);
3383 }
2317 3384
2318 ev_start (EV_A_ (W)w, 1); 3385 ev_start (EV_A_ (W)w, 1);
3386
3387 EV_FREQUENT_CHECK;
2319} 3388}
2320 3389
2321void 3390void
2322ev_stat_stop (EV_P_ ev_stat *w) 3391ev_stat_stop (EV_P_ ev_stat *w)
2323{ 3392{
2324 clear_pending (EV_A_ (W)w); 3393 clear_pending (EV_A_ (W)w);
2325 if (expect_false (!ev_is_active (w))) 3394 if (expect_false (!ev_is_active (w)))
2326 return; 3395 return;
2327 3396
3397 EV_FREQUENT_CHECK;
3398
2328#if EV_USE_INOTIFY 3399#if EV_USE_INOTIFY
2329 infy_del (EV_A_ w); 3400 infy_del (EV_A_ w);
2330#endif 3401#endif
3402
3403 if (ev_is_active (&w->timer))
3404 {
3405 ev_ref (EV_A);
2331 ev_timer_stop (EV_A_ &w->timer); 3406 ev_timer_stop (EV_A_ &w->timer);
3407 }
2332 3408
2333 ev_stop (EV_A_ (W)w); 3409 ev_stop (EV_A_ (W)w);
3410
3411 EV_FREQUENT_CHECK;
2334} 3412}
2335#endif 3413#endif
2336 3414
2337#if EV_IDLE_ENABLE 3415#if EV_IDLE_ENABLE
2338void 3416void
2340{ 3418{
2341 if (expect_false (ev_is_active (w))) 3419 if (expect_false (ev_is_active (w)))
2342 return; 3420 return;
2343 3421
2344 pri_adjust (EV_A_ (W)w); 3422 pri_adjust (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
2345 3425
2346 { 3426 {
2347 int active = ++idlecnt [ABSPRI (w)]; 3427 int active = ++idlecnt [ABSPRI (w)];
2348 3428
2349 ++idleall; 3429 ++idleall;
2350 ev_start (EV_A_ (W)w, active); 3430 ev_start (EV_A_ (W)w, active);
2351 3431
2352 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3432 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2353 idles [ABSPRI (w)][active - 1] = w; 3433 idles [ABSPRI (w)][active - 1] = w;
2354 } 3434 }
3435
3436 EV_FREQUENT_CHECK;
2355} 3437}
2356 3438
2357void 3439void
2358ev_idle_stop (EV_P_ ev_idle *w) 3440ev_idle_stop (EV_P_ ev_idle *w)
2359{ 3441{
2360 clear_pending (EV_A_ (W)w); 3442 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 3443 if (expect_false (!ev_is_active (w)))
2362 return; 3444 return;
2363 3445
3446 EV_FREQUENT_CHECK;
3447
2364 { 3448 {
2365 int active = ((W)w)->active; 3449 int active = ev_active (w);
2366 3450
2367 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3451 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2368 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3452 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2369 3453
2370 ev_stop (EV_A_ (W)w); 3454 ev_stop (EV_A_ (W)w);
2371 --idleall; 3455 --idleall;
2372 } 3456 }
2373}
2374#endif
2375 3457
3458 EV_FREQUENT_CHECK;
3459}
3460#endif
3461
3462#if EV_PREPARE_ENABLE
2376void 3463void
2377ev_prepare_start (EV_P_ ev_prepare *w) 3464ev_prepare_start (EV_P_ ev_prepare *w)
2378{ 3465{
2379 if (expect_false (ev_is_active (w))) 3466 if (expect_false (ev_is_active (w)))
2380 return; 3467 return;
3468
3469 EV_FREQUENT_CHECK;
2381 3470
2382 ev_start (EV_A_ (W)w, ++preparecnt); 3471 ev_start (EV_A_ (W)w, ++preparecnt);
2383 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3472 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2384 prepares [preparecnt - 1] = w; 3473 prepares [preparecnt - 1] = w;
3474
3475 EV_FREQUENT_CHECK;
2385} 3476}
2386 3477
2387void 3478void
2388ev_prepare_stop (EV_P_ ev_prepare *w) 3479ev_prepare_stop (EV_P_ ev_prepare *w)
2389{ 3480{
2390 clear_pending (EV_A_ (W)w); 3481 clear_pending (EV_A_ (W)w);
2391 if (expect_false (!ev_is_active (w))) 3482 if (expect_false (!ev_is_active (w)))
2392 return; 3483 return;
2393 3484
3485 EV_FREQUENT_CHECK;
3486
2394 { 3487 {
2395 int active = ((W)w)->active; 3488 int active = ev_active (w);
3489
2396 prepares [active - 1] = prepares [--preparecnt]; 3490 prepares [active - 1] = prepares [--preparecnt];
2397 ((W)prepares [active - 1])->active = active; 3491 ev_active (prepares [active - 1]) = active;
2398 } 3492 }
2399 3493
2400 ev_stop (EV_A_ (W)w); 3494 ev_stop (EV_A_ (W)w);
2401}
2402 3495
3496 EV_FREQUENT_CHECK;
3497}
3498#endif
3499
3500#if EV_CHECK_ENABLE
2403void 3501void
2404ev_check_start (EV_P_ ev_check *w) 3502ev_check_start (EV_P_ ev_check *w)
2405{ 3503{
2406 if (expect_false (ev_is_active (w))) 3504 if (expect_false (ev_is_active (w)))
2407 return; 3505 return;
3506
3507 EV_FREQUENT_CHECK;
2408 3508
2409 ev_start (EV_A_ (W)w, ++checkcnt); 3509 ev_start (EV_A_ (W)w, ++checkcnt);
2410 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3510 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2411 checks [checkcnt - 1] = w; 3511 checks [checkcnt - 1] = w;
3512
3513 EV_FREQUENT_CHECK;
2412} 3514}
2413 3515
2414void 3516void
2415ev_check_stop (EV_P_ ev_check *w) 3517ev_check_stop (EV_P_ ev_check *w)
2416{ 3518{
2417 clear_pending (EV_A_ (W)w); 3519 clear_pending (EV_A_ (W)w);
2418 if (expect_false (!ev_is_active (w))) 3520 if (expect_false (!ev_is_active (w)))
2419 return; 3521 return;
2420 3522
3523 EV_FREQUENT_CHECK;
3524
2421 { 3525 {
2422 int active = ((W)w)->active; 3526 int active = ev_active (w);
3527
2423 checks [active - 1] = checks [--checkcnt]; 3528 checks [active - 1] = checks [--checkcnt];
2424 ((W)checks [active - 1])->active = active; 3529 ev_active (checks [active - 1]) = active;
2425 } 3530 }
2426 3531
2427 ev_stop (EV_A_ (W)w); 3532 ev_stop (EV_A_ (W)w);
3533
3534 EV_FREQUENT_CHECK;
2428} 3535}
3536#endif
2429 3537
2430#if EV_EMBED_ENABLE 3538#if EV_EMBED_ENABLE
2431void noinline 3539void noinline
2432ev_embed_sweep (EV_P_ ev_embed *w) 3540ev_embed_sweep (EV_P_ ev_embed *w)
2433{ 3541{
2434 ev_loop (w->other, EVLOOP_NONBLOCK); 3542 ev_run (w->other, EVRUN_NOWAIT);
2435} 3543}
2436 3544
2437static void 3545static void
2438embed_io_cb (EV_P_ ev_io *io, int revents) 3546embed_io_cb (EV_P_ ev_io *io, int revents)
2439{ 3547{
2440 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3548 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2441 3549
2442 if (ev_cb (w)) 3550 if (ev_cb (w))
2443 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3551 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2444 else 3552 else
2445 ev_loop (w->other, EVLOOP_NONBLOCK); 3553 ev_run (w->other, EVRUN_NOWAIT);
2446} 3554}
2447 3555
2448static void 3556static void
2449embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3557embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2450{ 3558{
2451 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3559 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2452 3560
2453 { 3561 {
2454 struct ev_loop *loop = w->other; 3562 EV_P = w->other;
2455 3563
2456 while (fdchangecnt) 3564 while (fdchangecnt)
2457 { 3565 {
2458 fd_reify (EV_A); 3566 fd_reify (EV_A);
2459 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3567 ev_run (EV_A_ EVRUN_NOWAIT);
2460 } 3568 }
2461 } 3569 }
3570}
3571
3572static void
3573embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3574{
3575 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3576
3577 ev_embed_stop (EV_A_ w);
3578
3579 {
3580 EV_P = w->other;
3581
3582 ev_loop_fork (EV_A);
3583 ev_run (EV_A_ EVRUN_NOWAIT);
3584 }
3585
3586 ev_embed_start (EV_A_ w);
2462} 3587}
2463 3588
2464#if 0 3589#if 0
2465static void 3590static void
2466embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3591embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2474{ 3599{
2475 if (expect_false (ev_is_active (w))) 3600 if (expect_false (ev_is_active (w)))
2476 return; 3601 return;
2477 3602
2478 { 3603 {
2479 struct ev_loop *loop = w->other; 3604 EV_P = w->other;
2480 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3605 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3606 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2482 } 3607 }
3608
3609 EV_FREQUENT_CHECK;
2483 3610
2484 ev_set_priority (&w->io, ev_priority (w)); 3611 ev_set_priority (&w->io, ev_priority (w));
2485 ev_io_start (EV_A_ &w->io); 3612 ev_io_start (EV_A_ &w->io);
2486 3613
2487 ev_prepare_init (&w->prepare, embed_prepare_cb); 3614 ev_prepare_init (&w->prepare, embed_prepare_cb);
2488 ev_set_priority (&w->prepare, EV_MINPRI); 3615 ev_set_priority (&w->prepare, EV_MINPRI);
2489 ev_prepare_start (EV_A_ &w->prepare); 3616 ev_prepare_start (EV_A_ &w->prepare);
2490 3617
3618 ev_fork_init (&w->fork, embed_fork_cb);
3619 ev_fork_start (EV_A_ &w->fork);
3620
2491 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3621 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2492 3622
2493 ev_start (EV_A_ (W)w, 1); 3623 ev_start (EV_A_ (W)w, 1);
3624
3625 EV_FREQUENT_CHECK;
2494} 3626}
2495 3627
2496void 3628void
2497ev_embed_stop (EV_P_ ev_embed *w) 3629ev_embed_stop (EV_P_ ev_embed *w)
2498{ 3630{
2499 clear_pending (EV_A_ (W)w); 3631 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 3632 if (expect_false (!ev_is_active (w)))
2501 return; 3633 return;
2502 3634
3635 EV_FREQUENT_CHECK;
3636
2503 ev_io_stop (EV_A_ &w->io); 3637 ev_io_stop (EV_A_ &w->io);
2504 ev_prepare_stop (EV_A_ &w->prepare); 3638 ev_prepare_stop (EV_A_ &w->prepare);
3639 ev_fork_stop (EV_A_ &w->fork);
2505 3640
2506 ev_stop (EV_A_ (W)w); 3641 ev_stop (EV_A_ (W)w);
3642
3643 EV_FREQUENT_CHECK;
2507} 3644}
2508#endif 3645#endif
2509 3646
2510#if EV_FORK_ENABLE 3647#if EV_FORK_ENABLE
2511void 3648void
2512ev_fork_start (EV_P_ ev_fork *w) 3649ev_fork_start (EV_P_ ev_fork *w)
2513{ 3650{
2514 if (expect_false (ev_is_active (w))) 3651 if (expect_false (ev_is_active (w)))
2515 return; 3652 return;
3653
3654 EV_FREQUENT_CHECK;
2516 3655
2517 ev_start (EV_A_ (W)w, ++forkcnt); 3656 ev_start (EV_A_ (W)w, ++forkcnt);
2518 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3657 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2519 forks [forkcnt - 1] = w; 3658 forks [forkcnt - 1] = w;
3659
3660 EV_FREQUENT_CHECK;
2520} 3661}
2521 3662
2522void 3663void
2523ev_fork_stop (EV_P_ ev_fork *w) 3664ev_fork_stop (EV_P_ ev_fork *w)
2524{ 3665{
2525 clear_pending (EV_A_ (W)w); 3666 clear_pending (EV_A_ (W)w);
2526 if (expect_false (!ev_is_active (w))) 3667 if (expect_false (!ev_is_active (w)))
2527 return; 3668 return;
2528 3669
3670 EV_FREQUENT_CHECK;
3671
2529 { 3672 {
2530 int active = ((W)w)->active; 3673 int active = ev_active (w);
3674
2531 forks [active - 1] = forks [--forkcnt]; 3675 forks [active - 1] = forks [--forkcnt];
2532 ((W)forks [active - 1])->active = active; 3676 ev_active (forks [active - 1]) = active;
2533 } 3677 }
2534 3678
2535 ev_stop (EV_A_ (W)w); 3679 ev_stop (EV_A_ (W)w);
2536}
2537#endif
2538 3680
3681 EV_FREQUENT_CHECK;
3682}
3683#endif
3684
2539#if EV_ASYNC_ENABLE 3685#if EV_CLEANUP_ENABLE
2540void 3686void
2541ev_async_start (EV_P_ ev_async *w) 3687ev_cleanup_start (EV_P_ ev_cleanup *w)
2542{ 3688{
2543 if (expect_false (ev_is_active (w))) 3689 if (expect_false (ev_is_active (w)))
2544 return; 3690 return;
2545 3691
3692 EV_FREQUENT_CHECK;
3693
3694 ev_start (EV_A_ (W)w, ++cleanupcnt);
3695 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3696 cleanups [cleanupcnt - 1] = w;
3697
3698 /* cleanup watchers should never keep a refcount on the loop */
3699 ev_unref (EV_A);
3700 EV_FREQUENT_CHECK;
3701}
3702
3703void
3704ev_cleanup_stop (EV_P_ ev_cleanup *w)
3705{
3706 clear_pending (EV_A_ (W)w);
3707 if (expect_false (!ev_is_active (w)))
3708 return;
3709
3710 EV_FREQUENT_CHECK;
3711 ev_ref (EV_A);
3712
3713 {
3714 int active = ev_active (w);
3715
3716 cleanups [active - 1] = cleanups [--cleanupcnt];
3717 ev_active (cleanups [active - 1]) = active;
3718 }
3719
3720 ev_stop (EV_A_ (W)w);
3721
3722 EV_FREQUENT_CHECK;
3723}
3724#endif
3725
3726#if EV_ASYNC_ENABLE
3727void
3728ev_async_start (EV_P_ ev_async *w)
3729{
3730 if (expect_false (ev_is_active (w)))
3731 return;
3732
3733 w->sent = 0;
3734
2546 evpipe_init (EV_A); 3735 evpipe_init (EV_A);
3736
3737 EV_FREQUENT_CHECK;
2547 3738
2548 ev_start (EV_A_ (W)w, ++asynccnt); 3739 ev_start (EV_A_ (W)w, ++asynccnt);
2549 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3740 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2550 asyncs [asynccnt - 1] = w; 3741 asyncs [asynccnt - 1] = w;
3742
3743 EV_FREQUENT_CHECK;
2551} 3744}
2552 3745
2553void 3746void
2554ev_async_stop (EV_P_ ev_async *w) 3747ev_async_stop (EV_P_ ev_async *w)
2555{ 3748{
2556 clear_pending (EV_A_ (W)w); 3749 clear_pending (EV_A_ (W)w);
2557 if (expect_false (!ev_is_active (w))) 3750 if (expect_false (!ev_is_active (w)))
2558 return; 3751 return;
2559 3752
3753 EV_FREQUENT_CHECK;
3754
2560 { 3755 {
2561 int active = ((W)w)->active; 3756 int active = ev_active (w);
3757
2562 asyncs [active - 1] = asyncs [--asynccnt]; 3758 asyncs [active - 1] = asyncs [--asynccnt];
2563 ((W)asyncs [active - 1])->active = active; 3759 ev_active (asyncs [active - 1]) = active;
2564 } 3760 }
2565 3761
2566 ev_stop (EV_A_ (W)w); 3762 ev_stop (EV_A_ (W)w);
3763
3764 EV_FREQUENT_CHECK;
2567} 3765}
2568 3766
2569void 3767void
2570ev_async_send (EV_P_ ev_async *w) 3768ev_async_send (EV_P_ ev_async *w)
2571{ 3769{
2572 w->sent = 1; 3770 w->sent = 1;
2573 evpipe_write (EV_A_ &gotasync); 3771 evpipe_write (EV_A_ &async_pending);
2574} 3772}
2575#endif 3773#endif
2576 3774
2577/*****************************************************************************/ 3775/*****************************************************************************/
2578 3776
2588once_cb (EV_P_ struct ev_once *once, int revents) 3786once_cb (EV_P_ struct ev_once *once, int revents)
2589{ 3787{
2590 void (*cb)(int revents, void *arg) = once->cb; 3788 void (*cb)(int revents, void *arg) = once->cb;
2591 void *arg = once->arg; 3789 void *arg = once->arg;
2592 3790
2593 ev_io_stop (EV_A_ &once->io); 3791 ev_io_stop (EV_A_ &once->io);
2594 ev_timer_stop (EV_A_ &once->to); 3792 ev_timer_stop (EV_A_ &once->to);
2595 ev_free (once); 3793 ev_free (once);
2596 3794
2597 cb (revents, arg); 3795 cb (revents, arg);
2598} 3796}
2599 3797
2600static void 3798static void
2601once_cb_io (EV_P_ ev_io *w, int revents) 3799once_cb_io (EV_P_ ev_io *w, int revents)
2602{ 3800{
2603 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3801 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3802
3803 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2604} 3804}
2605 3805
2606static void 3806static void
2607once_cb_to (EV_P_ ev_timer *w, int revents) 3807once_cb_to (EV_P_ ev_timer *w, int revents)
2608{ 3808{
2609 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3809 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3810
3811 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2610} 3812}
2611 3813
2612void 3814void
2613ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3815ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2614{ 3816{
2615 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3817 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2616 3818
2617 if (expect_false (!once)) 3819 if (expect_false (!once))
2618 { 3820 {
2619 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3821 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2620 return; 3822 return;
2621 } 3823 }
2622 3824
2623 once->cb = cb; 3825 once->cb = cb;
2624 once->arg = arg; 3826 once->arg = arg;
2636 ev_timer_set (&once->to, timeout, 0.); 3838 ev_timer_set (&once->to, timeout, 0.);
2637 ev_timer_start (EV_A_ &once->to); 3839 ev_timer_start (EV_A_ &once->to);
2638 } 3840 }
2639} 3841}
2640 3842
3843/*****************************************************************************/
3844
3845#if EV_WALK_ENABLE
3846void
3847ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3848{
3849 int i, j;
3850 ev_watcher_list *wl, *wn;
3851
3852 if (types & (EV_IO | EV_EMBED))
3853 for (i = 0; i < anfdmax; ++i)
3854 for (wl = anfds [i].head; wl; )
3855 {
3856 wn = wl->next;
3857
3858#if EV_EMBED_ENABLE
3859 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3860 {
3861 if (types & EV_EMBED)
3862 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3863 }
3864 else
3865#endif
3866#if EV_USE_INOTIFY
3867 if (ev_cb ((ev_io *)wl) == infy_cb)
3868 ;
3869 else
3870#endif
3871 if ((ev_io *)wl != &pipe_w)
3872 if (types & EV_IO)
3873 cb (EV_A_ EV_IO, wl);
3874
3875 wl = wn;
3876 }
3877
3878 if (types & (EV_TIMER | EV_STAT))
3879 for (i = timercnt + HEAP0; i-- > HEAP0; )
3880#if EV_STAT_ENABLE
3881 /*TODO: timer is not always active*/
3882 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3883 {
3884 if (types & EV_STAT)
3885 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3886 }
3887 else
3888#endif
3889 if (types & EV_TIMER)
3890 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3891
3892#if EV_PERIODIC_ENABLE
3893 if (types & EV_PERIODIC)
3894 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3895 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3896#endif
3897
3898#if EV_IDLE_ENABLE
3899 if (types & EV_IDLE)
3900 for (j = NUMPRI; i--; )
3901 for (i = idlecnt [j]; i--; )
3902 cb (EV_A_ EV_IDLE, idles [j][i]);
3903#endif
3904
3905#if EV_FORK_ENABLE
3906 if (types & EV_FORK)
3907 for (i = forkcnt; i--; )
3908 if (ev_cb (forks [i]) != embed_fork_cb)
3909 cb (EV_A_ EV_FORK, forks [i]);
3910#endif
3911
3912#if EV_ASYNC_ENABLE
3913 if (types & EV_ASYNC)
3914 for (i = asynccnt; i--; )
3915 cb (EV_A_ EV_ASYNC, asyncs [i]);
3916#endif
3917
3918#if EV_PREPARE_ENABLE
3919 if (types & EV_PREPARE)
3920 for (i = preparecnt; i--; )
3921# if EV_EMBED_ENABLE
3922 if (ev_cb (prepares [i]) != embed_prepare_cb)
3923# endif
3924 cb (EV_A_ EV_PREPARE, prepares [i]);
3925#endif
3926
3927#if EV_CHECK_ENABLE
3928 if (types & EV_CHECK)
3929 for (i = checkcnt; i--; )
3930 cb (EV_A_ EV_CHECK, checks [i]);
3931#endif
3932
3933#if EV_SIGNAL_ENABLE
3934 if (types & EV_SIGNAL)
3935 for (i = 0; i < EV_NSIG - 1; ++i)
3936 for (wl = signals [i].head; wl; )
3937 {
3938 wn = wl->next;
3939 cb (EV_A_ EV_SIGNAL, wl);
3940 wl = wn;
3941 }
3942#endif
3943
3944#if EV_CHILD_ENABLE
3945 if (types & EV_CHILD)
3946 for (i = (EV_PID_HASHSIZE); i--; )
3947 for (wl = childs [i]; wl; )
3948 {
3949 wn = wl->next;
3950 cb (EV_A_ EV_CHILD, wl);
3951 wl = wn;
3952 }
3953#endif
3954/* EV_STAT 0x00001000 /* stat data changed */
3955/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3956}
3957#endif
3958
2641#if EV_MULTIPLICITY 3959#if EV_MULTIPLICITY
2642 #include "ev_wrap.h" 3960 #include "ev_wrap.h"
2643#endif 3961#endif
2644 3962
2645#ifdef __cplusplus 3963EV_CPP(})
2646}
2647#endif
2648 3964

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines